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device.. The organized lD8tbod llhieh he propoeee accOll)U abea W.a to ... 

a:tAftt. .. In \ha process oL d.eq\op1.ng &n organlsed mode ot appl'QICh• w,w.i 

adftnt.a&M are obtainer1. Tllo ot th_, -~ vei, The ..-:&rm or tbcNght 

necea,_.,. to alw a problm. 1.s r«iuoecl.t am aboi-t.cuta 1n IUl8ri.cel ealoalat­

icma mro- be i'ewd. Hot.lmtr• these are not the greatest. bene11ts der!ftd ball 

the JllfJthad oE ~ introduced. b7 Iron. The tJl)8 ~ orgmd111d'J.on he UNS 

aJlmra the ~on at tenao.r ~ ·a. CCllbined. lfith ~ ether mathe­

maUeal comepts mt. mw oJ! CWl'l ue in eng:l.neering. 1he application or t.1:w,._ 
1n t~ tAsda '° 1l1llf.J' the ........ .tlu.da 1n electl"lcal. eng1neering llb!ah haft 

O'Om vp ~. am baw dr1.ft.ecl apart 1n theories am u.wili\Clature. 

'ftd.a, plu oertatn geome,t.r!.o concepts• allow the engbeer to aSl8'Ulll8 a 80Jl.llhbat. 

ldder am· d.ittera:it ~. ~ ten90r ~• la a potent tool. 

tor the d18oaaey ol fill8llt1a1 J>10Jdll ~1• of the ent!U.ea belng atwli.,. m.nee 

onl1' pi90pert!ea im~ ol the pa.J"Ucula.r coordinate 8Jet9n bell '11:dch the,­

are ob8erve4 JIIQ' be represented bJ' temon • 
. , 

l!ibea put in the 1IINt. bu1c or the mo.t elegant. ro.., ~ 1n tena ot 

~ equa\lou ~ to aesngl7 mrelatect branahN ot pto,atca OJ" 

englnewing. often lhow a 1"Wl'kable rdndl81':li;7., ~ Sa a JdaS ~ "um.....-. 

al ~ ffa, the expreuton ot theee 1'oml4as. DltteNnt.ta'l ~ am 
. topolog., • amlJ'lda attws. are t;w muche8 or •t.1Mlnrd.ica tlllll)loJinl geo­

~ reuoning that, are beglm1ng to '- uee1bl 1n eng.1.neerbc. 'f...­

anal1ala 111 uaecl to aG1118 degree 1n both eobJeo\a., Iron ata\ea that. Wtennt!al. 

geametrr a111 topoloa c:1o mt e&n7' th• nld7 et ~ tar -.-gh 11o eat1•t.1 

the d-Di• ot ~ probl.ema. For exaq,le, the 901.u\lon may nqu1re 

tnmstoaatl.am 1ib1ch __. apart. spaces or IQ'lltADa or ,8fJ&088., lffllle topGlogy 

~ Smllliles the group ot.: tnmd'o:nlaUom wioh allow· atrelohiDg am bem.-

1.ag. 



the ~ical. toalB uaed by troa 1n h1a OJ"pniMtJ.on ct es>£1neariilg 

·pJ"Obl._. are matrix analpis am tem,aJ" ~ coup.bid vi.th dittwctial. 

geometey, an:l topology. Th• epeeiliu approach 1a ·through throe ·~ti<m 

poatul&tu"., the 11m tw ot which a.re applied. 1a 1:£MK ,!ll:}n:J! gl MJ9l15!. 2 

'?he third postulate is described in ,,,,.. Ami ;m.s.3 

TM 1tJ!rtlt Generalisation Poat.w.atett· replaces single quantiti•a by ~ 

•trices. Th!a ~-- bent ene degree ol bald.cm to n degreu ~ .lreedala. 

Bo new propert.tee are intNduced., ·beeauae the ~nenta ol the matrioes eoiild 

stm be handle! Mpa.r&~• Better orprd sation is the oa11' ruult. 

the "3'Cmd ae.~ Poaulate" •• \he org.ar,daUon created b7 \he 

fl.rat. pc>atulate to emov the ~ UIIIVicu ld.th new ~ ·!he ~ lllit.h 

t.1x«l 1DU.cea becctraua a aet el NIii~ ol a geomat,ric object, aJo.og ._. 

reference frame. ~ equa\iou Nl)laoe G&'diDai7 ~ona.. Unlike 

ord1nar;r equat,!ona, these equat,iona &re 'ValJd .for a large IUlber ot coot,Unate 

spteu ot tM - ~ 

Appllaation ol ~ ·lltJ!dr4 Generaliu.t.ion Poeb4atr' Ntau.lta 1a still higher 

organl~ ae.et.ric ejecta .are replaced tq- teDW"a. '?he 1zrmr1ant. equ,.. 

tiOM 'Qll4 fbr· one t,ne ol ra.t-erence eds. becclle ten.- equations T&licl ttW 

sewra1 ditteNmt tJP9& ~ Nl.terence tramea... 

!he •,..erallution ~n JII.\J' be Gl'Ude1¥. ~ as .to.1.lmat 

1.'he •n.rat Ollmeralhat.:ton Po31;ul4.t, generalim .fr-. l dimena:1Qn to n d1JDer18iOaa 

by rep1.ac;S.na aiqla quantJ.tiu bl' n,.,wq aav:leea. 'fhe. "Secom General :1 zat1on 

P(Jstulate" ehangea -~ natr:S.c• to ~ ohjeeta.. ?he fllfb1Jd General.­

iaa.t.1en Putl4.ate• cba.nge8 geometri.c ob,Jecta to t.emiora. 



ate 111pllcat1on of the tJP9 of~ Just. out1Sn«1 is that- 'llheDeftr J.t. 

.la sueceuf'alq appl.1«1.,. 11111ey probl ... hitherto ~ separate an1 m.g1ml 

became •rab' routine trwfonlltiODJ et w 'bud.c wmozo.. 'ftle mathmt1ca1 

ana1p1a baa parUall7 paraUe1.ed ~ at the engtneer 12u accae­

pUshal ~. !he Mure abaald see an c.temr.ton o~ the parall.U• wdeht 

ahau.ld reel1. 1n DaD7 banef1ts to ~-
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SOlJE ASPECTS OF l'HE ELEMENTARY APPLI CATION OF TENSOR ANALYSIS TO NETWCIU( THEORY 

Although not a necessity, the application of matrices in tensor analysis 

of networks is useful, for many of the manipulations in tensor analysis can be 

expressed very conveniently by the use of mtrlces. 

A matrix is a set of quantities, that is, any aggregation of constants or 

variables arranged in a row, square, cube, or some other orderly manner, which 

is manipulated in accordance with certain fixed rules, A swmnary of the rules 

w.ll.l be given shortly, 

There are three kinds of notation in fairly common use,1 direct notation, 

imex notation, arxl matrix notation. The latter type will not be described 

since it is seldom used in electrical engineering problems, In direct nota-

tion, matrices are represented. by bold face letters when printed or by letters 

with bars for script applications, for example, A. In iniex. notation, a matrix 

is written as a base letter ld.th indices attached, tor ex.ample., Al.lei• Each 

imex repreaenta a group ot 1-matrices such that when each ind.ex attached. to 

the matrix is given a particular value, a specific element in the matrix is 

defined. In the case of the matrix above, 0< could represent rows and '3 

columns. Thus, Aal' wuld t>c~ .row a, .or ~ccolumn c, and A wul.d be the 

el.em.ent con:anon to row a and column b. The rules of multiplication o! mtrices 

can be remembered easily if the rule tor the multiplication of two 2-matrlces 

is remembered. If A and B ar-e 2-ma.trices6 then A-Ba C equals the elements of 

each row of A times the elements of each column o! B, the sum or the products 

of the correspoming elements of row m and column n forming the element Cmn in 

the 2-matrix C. In imex notation, the product is expressed as A B1 • C , 
A& fr OI}" 

thus implying the use of the so-called Einstein convention, or summation 

1 
Gabriel Kron, Tensor Ana.l.Ysis 2.t Networks, PP• 12-l3. 

9 
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convention that an in:iex is 8UlZllled on when it appears twice in the term. 

Examples ot the mul.Uplication ot 2-matrices will be given later. Kron gives 

what he calls the "arrcv rule"2 which, in effect, states that in a matrix 

product, t.he matric1~a are split into 1-matrices along the repeated. imex arxl 

then corresponding 1-matrices are multiplied. Two -1-matrices are multiplied 

by multiplying oorrespoming element.a arx1 ,adding the products, thus ,p.~-a 
~::1(.-_ ,. - -- - -

Q-ma.trix,, or scalar. ,~e product A•b where A is a 2-matrix am b al-matrix 

is obtained by multiplying each row . ot A times the row or (IDl_umn which is b.­

It is iDIDaterial whether a 1-ma.trix is expressed as a row or column. Using 

the arrow rule, b ·A means elements of rov (or column) ot b times columna ot i . 

The result is a 1-matrix.. Matrices are added by adding corresponding elements. 

Only matrices having the eame number of free indices can be added. It is to 

be noted that tree in:iices are irdices such as 111. and (' in A"(P each of 'Which 

represents several fixed in:U.ces. 

The transpose of a matrix is a matrix with rows and columns interchanged. 

It is written in direct notation with the original. base letter ani a '*t" 

subscript. The irxlex notation or a matrix is not changed by interchanging 

rows an:i columns. The use of the transpose of a matrix is to enable products 

such as A,.,IJ~(J to be represented in direct notation as X • Bt . The inverse of 

a matrix, i, i -\s defined such that i ·l -~ I where I is the unit matrix or 

Kronecker delta. Only 2-matrices have inverses. The inverse of a matrix is 

founi as follows: Interchange rows arx1 columns. Replac.e each element . by its 

cofactor, Divide each cofactor by the value ot the determinant of the matrix. 

Because of the organizing power of "The First General.ization Postulatett 

which brought into v.i.ew the concept.a of transformation, invariance, am group, 



the n5econ1 Generalization Postulate" could be applied, geometric object.a 

replacing n-matricea. Actually, a geometric object ia represented only by 

an infinite nwnber of n-matricea, each matrix representing a picture of the 

object from one reference frame. However, a geometric object may be considered 

conq:>l.etel.y represented by an n-matrix the components of which are along a 

certain reference frame, a set of f1:xed ildices attached to the matrix to 

identify the reference frame, am a formula of trans.formation .for fin:ling 

the components along any other reference frame. To avoid clumsy statements, 

-it 'Will be stated that the matrix A represents the geometric object A, instead. 

of postulating that it represents the components ot A along some axes iden­

tified by the iniices alongside the matrix. 

To show bow geometric objects a.re represented, examples of objects of 

valence 1, 2, an:i 3 will be given. 

Two examples of vectors., or l-matrioes are: 
b O d 

i•Atc= t g h k 

An example ol a 2-matrix is: 

z = lt.9 = 

p 
0( a 

a I\ 

b 4 

C l 

b 0 

15 23 

1 't-

5 IZ 

Particular rows or columns may be 1Diicated as 

C 

a 2.3 

z",= b 2 

C l2 

b C d f g h 

10 0 O 4 7 1 

a b e 
zbl' I 41 71 2 l 

Two ways in which a }-matrix may be represented are shown on the next page. 

11 



mM•'1l, 
er 

a 

b 

ln the last representation, MOCllt is split into layers along the in:lex >". 

The buis tor deciding whether or not some geometric object is a tensor 

is its transformation formula. The transfonnation formula tor a tensor is: 
«& •••• °''ta-'···" fl ~ ,,, T"'c. : T,,c.• C,c ;re_•c ,.. ..... 
a o•••• o .~~ oc ~YJ ,, . 

l"lhenever an iniex is repeated in a product it indicates a summation. This 

12 

is called the summation convention. That is, \ x .c : a1 x I I, a.ix 'E. I, aa~f'. • • a11x ~ 

The number of indepement variables, x ', x-.. x 3, ••• x",, is n, and is also the 

range of the .tree index or • The transformation g1 ven above changes the com-

ponents of T .from the prim«l set of axes tb the unprimed set. 

~en one set of variables can be expressed aa a. set of functions ot 

"" another set of variables. a more detinite expression tor C ,, the tranafol'-
"' 

mat.ion tensor, can be obtained. lor instance, if x " : f(x•), or 

I ...I ( & ' ~1 "'' ) X : .1 X •X J ..... X 

'&. -a.( ,• ,., "') 
X : f X ,x 1 ----· X 

3 ~c .. a.' ~·> X : z-- X 1X 1 • • • • X 

•••••••••••••••••••••• 
"' "'( ,, z..' "') X • f X ,x 1 •••, X 

then 

If it is assumed that 

The transformation formula .for a tensor then becomes 



A t;..ra.nsfonnation for lllhich xC'lf can be expressed as a set of tunct.iorus of 

~ l an::l tor lilhich iJ.."" can be det.ermined 1a cal l.ai a bolom.mic tramtorma'tion. 
ax0 ' 

\hen one set of "Varlablea canmt. be expressed u a function ot the other set, 

ani h°' cannot be determined, the t.ranatonaat:J.on 1a cal le! non-holoanic. 
ax"'' 

" For a ~n-holorMX?d.e transformation, the C 11(' •a mnst be det,emined some other 

~ than by differentiation, perhaps by inapection. In electrical ma.chiner)" 

problems which involve spatial mtion,. most ot the tranet"Omations performed 

It c~~ 1a g1wn, there ia a simple_,,. ot .t1m1ng whether or not the 

transfer.mat.ion is hoJ.onomic.3 Consider tw particular coq:,onents ot C; • 

If the transformation 1s holonamie, am 

then 

Of 
'l'his 1a the teat, tor determimng vbat. ldn:l of transformation c., represents. 

o,I 

For · COlar:1.ant varia.blee 'Which are tranafomi.Ed by °'" , there ia a aim Jar 

wat.. It t.he transformation 1a hol.onom1c, 

•• "Ji,' 2 

~-(l.lft:~ • 
iJ x,• -axi ax .. ai.1:1 

To obtain the geometric objects aaeoc1at.ed "1th a g1:ven netliOrk• the 

building blocke am the anal1t,ieal unit• of the net.wrk must be cons1dend. 

A n&WOZ'k ~ be v1sualized as several. luq,ed coils ~ 1n aome 

manner. It will be assumed t.bat. the pl"Opa81Ltion of auperilrpoaed quantities 



through the network is instantaneous. The net~rk may either be isolated 

or be a detached portion of eome larger network. A component net'WOrk not 

connected, or connected only by mutual irriuctance to another part of the net­

work is called a. sub-net.work. The two ends of a coil where it is joined to 

other coils in the net'WOrk are cal.led junctions. Coils am junctions are the 

tw building blocks ot net'WOrks. The characteristics o! the coils are asswned 

not to vary with the superimposed electromagnetic quantities. The junctions 

are assum«l to be fixed at the instant under consider.J.tion. The two anal.yt-

ical units of networks are the mesh and the junction pair. A mesh is any 

closed circuit traced through the network. To .fim. the minimum number o! 

meshes in a network, each coil must be traced through at least once. Any 

two junctions on the same sub-network are called a jw1ction-pair. To avoid 

confusion in fin:ling the mini.mum number of junction-pairs, it is usually most 

convenient to select one jwiction a.ni pair it with all the other junctions 

on the same sub-net.work. This process is repeated .for each sub-network. 

Meshes and junction-pairs will be assumed to include the concept or orient.a-

tion. For instance., one mesh is the negative of another if they are traced 

over the same path in opposite direc-tions. 

There are tli.O important relations between the analytical units am build­

ing blocks of net.works. 4 The number of junctions minua the number of sub-

net-works equals the number of junotion-pairs. The nwnber of coils in the 

network equals the sum of the number of meshes and the number of junetion­

pairs •. ~ These relations are useful in determining the number of mesht s or 

the number .of juncti.on-pairs in a complex network. 

I.,, 0. Veblen, Analnis Situs, PP• 1.5 arri 18. 
5 .. 

Kron., .in>• ~ . P• 7.5. 
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T1'IO analagous concepts to those of mesh ani jWlCtion-pair are the branch 

an:1 open mesh. A branch is a part of the netwrk in which the same current 

.flows. An open mesh is any circuit through the netvorlc that joins the tl!IO 

junctions forming a junction-pair. In netlllGrk analysis, any mesh quantity 

can be replaced by a corresponding branch quantity. Similarly, any junction-

pair quantity can be replaced by a corresponiing open mesh quantity. 

Electromagnetic quantities superimposed on a net\iOrk may be divided into 

two types, impressed quantit1es am response quantities. These quantities 

may be either currents or voltages or both. 

In setting up the equation or performance of a network, the variables may 

be either the mesh currents, 1, or the V<>ltages, E, across the jwiction­

pairs. In some cases, both. E and I must be assumed as variables. Such a 

network is called an orthogonal network. The equations of performance for 

mesh am junction netwrks are 

i - 'i•l -
for mesh networks am 

1 = i •i 

for junction net"Wrlas. 

For orthogonal net"WOrks either the equation of voltage or the equation of 

current may be used. The equations of pertomance are 

i .;. • = z. er .;. 'i> 
- - - - 6 i f I : Y • (E f i). 

The two SimJ)lest collections of coils a.re called primitive networks. 

The primitive mesh network consists of n coils ani n meshes, each coil being . ' 

short-circuited upon itself. The primitive junction net-work consists or n 

6 
Ibid., PP• 82-84. -
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coils am n junction pairs, being merel.y a eoil.l«,ction of open-circuited coils. 

The so1ution ot netwrks having n coils an:l less tha.n n meshes follows 

trom the solution of networks having n coils am. n meshes., the only difference 

being that the opening of impedance-less branches which changes the all mesh 

network into a network having both meahea am junction-pairs introduces con-

straints due to the fact that some currents are not allowed to flow. The 

effect of this is to reduce the number of variables, since only as ma?\Y branch 

or mesh currents as there are meshes need to be asswned. The constraints 

result in a singular transformation tensor which has more rows than columns, 

for the transformation tensor., c, is determined by using the assumption 

1: C·i.' where I are coil currents in the primitive network an.i I• are branch 

or mesh currents in the netwrk built out ot the coils in the primi.tive net-

work. A singular transformation matrix has no inverse, so the transforma-

tiona which can be made with it are restricted. 

The transformation trom the primitive net-work to some other net"10rk 

leaves power an invariant. That is, e-I • i••i•. FroJn this, arrl the assump­

tion that I : a-I•. the transrorma.tion formulas or all the quantities associ­

ated with a mesh net"WOrk can be detenni.ned. 7 The most important or these are 

swmnarized. below, both in direct ani ime.x notation. 

- " " "" i : c · l • 1 : c •. 1 

e' = ct· e 

z' • ct z· c 
"' Ii= c_. ~ 

QC ' ~i SIGll'C..9 C,s' 

e is the impressed voltage vector of the primitive network, e' the correspond­

ing quantity for the given net,.'Ork, i the impedance tensor of the primitive 

net\oiOrlc, ani i• the impedance tensor of the given net1«>rk. 



The first thing to do i n solving a mesh network is to set up the primitive 

net'WOrk and its voltage vector an:1 impedance tensor. Next, arbitrarily assume 

as many indeperdent branch or mesh currents in the given network as there are 

meshes. By using Kirchhoff's current law., determine all coil currents in the 

network in tenns of the assumed branch currents. Since i: C•i•., the trans-

-formation tensor" C, :may be detemined fl-an the above process. llext., fin:l i•. 
Then invert. z I to get y' 11 the admittance tensor of the given net-work. Fill:l 

I• by f,: y•. i •. If desired, find i 0 ., the coil voltagea, by •c: i·C·i•. 

An example showing how C is determined am i• is found will be given later. 

Besides merely solving for currents., various other transformations may 

be made by using a transformation tensor. 8 A few of these are: An n-coil 

all mesh netwrk may be used instead of the primitive network to analyze an 

n-coil., less than n-mesh network. One set of branch currents may be replaced 

either by another set of branch currents fiowing in the same network., or by 

mesh currents flowing in the network. Magnetizing currents ma.y be neglected, 

the nwnber of turns in a coil may be changed, ard meshes may be opened. All 

of these processes may be expressed in terms o! a transformation tensor., c. 

8 
Ibid., PP• 141-17.3. 

17 



THE APPLICATION OF TENSOR ANALYSIS TO THE SOLUTI ON OF A llli.SH NLTWORK 

In order to show how tensor analysis is used to solve a network• the 

transformation tensor. impedance tensor., a.rd voltage vector of a given network 

will be found. The impedance tensor will first be toUid by means of the 

primitive net.wrk and then by using three other networks as a primitive system 

from whose interconnection the given network is obtained. 

The given network is shown below. There are sixteen coils., ten junctions, 

am three sub-networks. The number of junctions minus the number of sub-

netwrks gives seven as the number o.f junction-pairs. The number of coils 

minus the number of junction-pairs equals nine., the number of meshes. There-

fore, nine mesh currents must be assumed. These currents am the coil cur-

rents determined from them are also sholllll. 

' 

18 



The primitive network is shmm below. The lines connecting the coils 

iniicate mutual in:luctance 

z "2. -
I Z~~ L 

I z 2 
hf.. 

1 Ztt.z. 

I ZJd, 1. 

19 



The voltage vector of the primitive netwrk is: 

a. b c d f g h J k l m n ~ q r a t 
e • I ea1° 1 ° 1 ° 1 ° 1 ° 1 ° 1 o 1 §do 1 ° 1 ~ =10 1 o Io I ei1 

Equating old and new currents: 

-- -Si.nee I • C ·1 '• the com.ponent.a of the transi'ormation tensc>r, C# are the 

coefficients of the 1 • t.erms in the above set of equations wtrl.ch expre&a 

the currents in the primitive netwrk 1n tezma of those 1n the given net.­

wrk.1 The trans.format.ion t.ensor is show in the product i-c. To f1m the 

20 

.., ........ 
inpedance tensor ot the given net.w:>rl(, the t.ranstorma.tion formula z' = ct· z ·G 



-- -will be used. The product z•C will be calculated first. Whether z•C or 
.. - - - __ , 
Ct• z is found is largel y a matter of personal choice except when ec : z ·C·i 

__ 2 
is to be fown . Then it is convenient to have the product z •C. The matrix 

product bel ow gives t he intermediary geometric object z ~ which is expressed 
Cf" 

along tlli'O different reference frames,3 

a b C d f It. h j k Jll. n D 

a z X 
Otll ,. 

b x. \., 

C z .c.c.. 

d z.,.. 
j 

~ x.A\ 
I 

i z,, 
h I~ ~ 

······ 

j ~ 

k ' z X X 
IUt ,. .. ktt 

m X z x .... 
""' ..... 

n X X z 
l(a,, IN "" 

p z ,~ 
q ~ 
r 

s 

t 

Q r 5 t 

x"' 
~,. 

z X Xn ..... .. i 

~ ~ xst 

Xrt I~ Z-t:t; 

a 

b 

C 

d 

I t t t t t f f t 
a b C d f g h j k 

-1 

1 

- -J l 1 

-1 

f -: ::::__ 

g - 1 

b - 1 - 1 l 

j -1 
• 
k - l 1 

m l ' 

ll -J l l 

p 1 

q 1 

r l - 1 1 

f - ) -1 1 

t 1 -J -l l 

The Impedance Tensor of the Primitive Network • The Transformation Tensor 

2 
Ibid. , p. no. -3 
Ibid., PP• 178-179. -
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This is the product of the two tensors on the preceding page., z ,. 
Q'il 

a b C ' d f f I?. 
t 

h t .1 k t ... x,u, 0a 

-~, Zw. 

-z,<. z c:.c:. z~, 

-z.a. 
- z-H -x-+'-' -~. x..fh 

-zJJ# 

-~ -zhk - z .. ,. Zw. 

-zi, 

-z - X Z f X x'"'' XKII I\K 11(1 kK K111 

-X - X X J Z x.,,., X """ ... " ..... ." 
-~- . z x j x z .. ·1111 z I 

"" " .... ,.. 
z .o-, x.,., 
x.Pl z~~ 

z,..,f- x.,~ -x.s-~t -z rr-x r5 -x,.t z ./, x -/.x 
....... ,.~ t"t" 

XP$./, XSi· - zsr, -X;s~ -x,.~-z~-~ 1Xt$ f ZSs f J;t" 

~ t- f ~~t- -Xst-4# -x -x -z x. /. x ./, r. 
'· 

ti 5t -II' t"t- 3t- ·H 
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- ,-.,.) -• Ct• Z•v = z, the impedance tensor of the given netwrk 'Which is : 

a. b' C ' d ' f g h j k 

a ' l. x .., ... X -x~J..w fl, 

( 
z.,.J- ~ -zit-x.,.~ -zt\.-z~,. zr,,/, x .-~ 

t Z_g~~ 
-xl'j-2Xa-t ~ 2)tt ~-

I .. ~~ • -:ic,...-Xst -Xsf Z~t-

b 

• -xt-.-xst z5st' z~t- Z~$f' Ztt -zss-xr.!J 

~ ... .;. 2,;t 
I, x'1,./- x ... t -x .. r2x.&t--z.u.-xH 2xg -Z ,t-t; 

C 

' ~ -xcab d 

t "tilt' ~ -~-x ..... I- z,.J Zx -x -x -~-x ,-z...._ -1. 
kl' k" MIii .. ·kt\ t 

t i-ztc."-xkh zkJ Z c.t.. -z~.;. ~ .. i-zu ./-x 
-x -x z .;. 2x• 7- x ..,. .. "J.x,,,,.,.k• 

kM llln 

-- Ibo, 

I -z.,.,. x~ X rt . -z"./, 3c. z,,..../,z55 /.. ~ z"'./, a! -;.-~-~ 
X -~-Xst f Z51 ~ ... ~. i-zt1w1-:X.11 .j. X fZc.. , /.z-.,_ · 2 ~ .. .;. z -2xr1;~ 
fill . -2xw-.,. -z ti- ·"' .;.2x,123.,.A "" 2x Sit z# - -z"., . n 

t X i-x -z -\1 ~':. ~ .j. Z"t. ,.~,. ... X -z 
fll l(K "" /.. z,.., I"! "'1 

' 
z" Z..,.,; r' 

j 

, 

' z,,..,../, zl -x~-x,.t -z,.Siz,;~ss · ~~ ,.~ ., 't--x, 'I:+ ... -z~ ...2:itbt' -7ff~ ... 5 IC -z#,h 

"" .;: ~ .· -Zu -2x -~i · ~!J. "2i,.,I-., 7'I;- . 

k 

The voltage vector o~'t he given net,-.ork11 Ct e, equals 

a• b' c• d' fl s' h' . ~· k' I O I et f-et I :5)-ek -enl •kl en -8t I ep ! enl et I • 
The given netwrk may be considered as having been built out of the 

interconnection of several component networks. If the impedance tensors 

of these networks were already known, it might be desirable to work the 



problem from this atampoint. To illustrate this method, the impedance · 

tensors ot three separate netwrks, l, 2, am J, will be eombine.:1 ard tt'&DS­

form«i to obtain the impedance tensor of the gi ~ network. The three net­

wrks are callei the primitive syst.em. 

I L l ·v• 

I 

3 

The Primitive System 

24 ··' 
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The impedance tensor of the primitive system is show below. The heavy 

lines border the impedance tensors of netwrks 1., 2., am J. 

u v' w t a C 11 d0 r" X y z 
1 :~f' Zs• 
i · ztt:J' 2x.,s z~.J. ~ ~.x...s-z 
I- ~f .;. 2xst .;. x,.i S! 

-~t 

u 

I 

Zr~ X rs zdd /. zt-1 -x..s ,. x.,t 
V 

w ' ~s I-ts ... ~-Zss '."9:X.,.5 
:;Xs,c 

.. :, 
·' IJ . 

·~If\ a"" ~ -x 
-~ ,F\ 

, . . · : 
. 

fl 

\a;'"~ zlth -~ -x 
fZ,,, .... b 

It 

Zg_9. -~!L Zw. ~. 7'1'! 
C 

" d X. ~ 

ti -~ -x z 
f" -1-t 

·. 

t 
~~fZIMn lz..;~., i-~, ... -~"' 
i~'J:/«., ~n -x"'"-
2x...J~ 

X 

t 
x.u1-~ft ~f\~ -X.n 
fZnlfl 

• 
zll ,lz'"',.. i-x._-~ h\wt -x ,..'I\. 

""'Z""n 



-, 
The transformation tensor, C, which changes the primitive system to 

the given network must now be found by setting corresponding currents in 

the primitive system and the given network equal to each other and by again 

using the property 

c• 

' u 

I 
V 

., 
w 

ti 
a 

Hi 

b 
ti ' 

• C 

d" 

N 

t 
t 

X 

y' 

' z 

a 

-1 

- -· _, i:C•i • 
' b' f h' k' 

iu : 1 -i0 -i ri 

v' t 
i = iC; 
wl 

i 
b' 

= i 
. a" u' v' ' h' k' 
1 = -i -i tiw = -i -i 
bu 

i = 1J' 

10" 
h' = -i 

1d" d' 
:I i 

f'' It 

i : -ia 

.. f' t : 

ix = -i rig 

' Ii ' • iy = -ig .;. 1h rij 

z r f' 
i = -i 

b - C d f 11. h .1 k . 
1 -1 · i-1 . 1 

l 

l 

ll -1 

_ ,. 1 

-1 

l 

-1 1 

-1 1 l 

-1 ·-



-·· The impedance tensor of the given network, z, is .found by the formula 

-. -· - - ' z : ct,· ~ C 

were~ is the impedance tensor of the primitive system. If the multi­

plications are performed, the result will be town to be equal to the one 

obtaine.d by using the primitive netwrk. 



C<l1POUND TENSORS., MULTIPLE TENSOOS., AND CctiPOUND COILS 

Oftentimes in a. set of equations such as 

8: i-1, 

there is a natural sul:xlivision of the set into t'WO or more groups. One group 

may represent those meshes having impressed voltages., the other group those 

having no impressed voltages., or in the equation 

i = y-i'., 
all the currents may not be required., so there are two groups ot currents., 

one group wanted an:l one unwanted. In a junction network., there are oft.en 

three or four different types of junction-pairs,! ie., those across which 

there are currents impressed., those which supply currents to outside loads., 

ani those that are inactive. The inactive ones may be further sul:xlivided 

as to those wose voltages are wanted ani those whose voltages are not wanted. 

This subdivision of the netwrk quantities is one reason for the use ot com-

pouni tenaors. In the example to follow., the equation 

_, -· -1• e : z • 

28 

will be divided into two invariant equations in two di.fferent ways. The method. 

of accomplishing this is sho'Wll below. Originall.y., 

2 

1 ei f • .l' 1 zu z ~ l l. ,12 
1 

2 
2• 

z22 i 

•32 J 1' 
-:- I 

= i' . ' _, 
am 1 are subdivided .along the heavy lines giving 

rl,--h e{:~ .· 

l Gabriel Kron, tensor Analysis 2l. Netwrks, PP• 484-4$5. 



12 = 11''1 
l 2 

l 

i'1 : 2 
•n 
z2J. 

' 
' 

-11~3·1 ~ - ' 
2 Zi.3 

"12 
•22 

l 2 
~ : I Z.31 ' I Z32' I 
i4 = 1"3./1 

The t'WO invariant. equations are 

1 HI = 1 z:u. "12, 
2 ~ 2 s21 z22 

' 
.. 

· QI = I •31 • I •321 · I 11 • I 12 • I I I 8331 . 0 
These invariant equations can be written 

- - - 1 _J - T2 81: &i·i r •2· ;1 . 

82 = i2-11 f ii-12 • 

The original equation may oow be expressed in terms of compourxi tensors as 

29 



i _~--1 = 

.. · 2 
2 i 

_, 
e -- - , 

z • 
. , 
i-

'fhe index, r, represents iniioes l.. ar:d 2 and 18 cal.1~ a co.mpound imex. 

Index 2 in tb1s part-1~ ease only represent.a irdex 3, but it. is a. compound 

inie.x am., in general, would _represent mre than one iI:dex. The subdivision 

above will be applied 1n another example to show how a. r eduction fonn.ula may 

be used to eliminate a mesh from a network. 

'ftlere are other ways of subdividing the above equation. It might have 

been divided so that 

• l ei 
' 2 82 : 2 

' 3 e.3 3 

'Whieh ia equivalent. to 

i ~' - . . 
2 -2 

This represents tib'e equations 
f 

l 2 

• t 

• ' 
~ Z.32 •3:, 

i ~ 
2~·l!:J 

-· _, -· 8:1. = Zi·i 
_,. -· -· -· 82 = ~ -1 • 

' 1 

2 
2' 

1 

3 
3• 

1 

By following this same line of reasoning, geometric objects of higher 

valence may be subi1vided in many ways.. Ccmpow:d tensors are manipulated 
., 

analogously to ordinary tensors, ... but a few precautions must be observed. 

2 Ibicl., PP• 222.-2Z/. 
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Operations may be perfonned only when the compound imices involved each 

represent the same fixed indices. In mu1tiplying, the order of multiplication 

of the geometric objects 'Which compose the compound object must not be 

disturbed, since matrix algebra is non-commutative. To illustrate this, the 

multiplication of two compound vectors will be performed. 

I r I 1 I cl IO I i" I 1 1 = Ix: o ,t B· i ,t c-F! 
am. not D·A.;. i •B ,l ,F•C • 

In taking the transpose of a compound tensor, the transpose of each element 

is taken in addition to interchanging ro11-s am. columns. For instance, if 

'i: o 
-C: B E 

ii f 

then 

At Bt 1\ 
- E F~ Dt t 

In in:iex notation, compound tensors may be represented. by some scheme 

such as letting Greek letters represent all indices, letters from a to f 

represent one group of fixed iniices, g to k another group, e.n1 other letters 

in the remainder of the alphabet the compoun:1 in:iices, each of which represents 

a group of the fixed ind.ices. 3 

The compourding of tensors nay be carried several degrees further. A 

compound tensor may be subdivided to form a doubly compound tensor lllhich may 

again be sul:xlivided to form a triply compound tensor arrl so on. The compourrl 

3 Ibid., pp. 227-229. 



tensor 

might have been divided along the heavy line to form the doubly compound 

tensor 

This is a very simple example, but all subdivisions follow the same method 

regardless of the number of elements.5 

The compound tensors which have been described have the common property 

that all the components are expressed. along the same reference frame. Some-

times there are problems where it is convenient or necessary to use tensors 

32 

having several sets of variable indices each set of which belongs to a different 

reference frame and may transform under a different group of transformation 

tensors. 5 The tensor of valence four, "''"'"' might conceivably be a tensor 

whose indices GS transform under the group of transformations q:,, while the 

irdices mn transform under an entirely different group of transformations, 

~ the tw sets of indices being expressed along different reference axes. 

This condition occurs in tube circuits where several currents of different 

.frequencies may .flow simultaneously, thus requiring the use of multiple 

6 
tensors, as these entities are called. Multiple tensors may be subdivided 

just as ordinary tensors are to form compound multiple tensors. 

When the equation of performance of a net-work is subdivided into several 

.. 
5 ~., PP• 538-543. 
6 
~., pp. 547-549. 



equations, a fictitious network cal.led a compound. net'WOrk is sometimes used 

to give a physical picture of the equations.? The voltage an:i current in each 

compouni coil of the net-work are vectors while the impedance is a tensor of 

valence tw .. Each coil represents a whole netwrk ani its reference frames 

may be changed by its "individual impedance tensor" without affecting the 

remim.er of the netwrk. 8 ·to distinguish them from ordinary networks, the 

coils in a compound. net"WOrk are drawn with heavy lines. Tbe&e network.a may 

be considered a generalized concept o! the single line diagram used in 

ordinary three-phase circuit analysis. A single line diagram am a compound 

net"WOrk could be made to correspond for a given three-phase network if the 

compound. coils were properly chosen. 

7 
Ibid., PP• 480-496. 

8 Ibid., PP• 501-509. 
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REDUCTION FORMULAS 

When dealing with a network, it is sometimes advantageous to reduce the 

number of meshes vdch must be considered. This is done either to reduce the 

labor of computation, or because some of the mesh currents are not wanted. 

The eliminated meshes ina.y or may not have impressed voltages in them. The 

analysis for each case differs slightly. 

An example of ~he reduction by one of the number of meshes in a simple 

network w.i.ll be given and a formula will be developed which can be used for 

any similar type of reduction. There w.1..11 be no impressed voltage in the 

eliminated mesh. It w.i.ll also be shown how the elimination of one mesh is 

equivalent to a delta-wye conversion.1 The elimination of more than one 

mesh is equivalent to several delta-wye conversions. 

Consider the equation 

e = i .1 

tor the performance of a mes~ netw::>rk. The same process applies to networks 

having different numbers of meshes than the one used for the 11.iustra.tion 

below. 

a b C d 

e t g h 

i j k 1 

0 Jll n 0 p 

In terms of compound tensors, this equation may ·oe expressed. as 

· = ~-. £2.~ . i . 2 
3 

which is equivalent to the two equations lilhich follow on the next page. 

l 
~., PP• 261-264. 
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- -1 I - · -,2 81. = ii_• i r z2• i 
- -1 -2 o : zj· i f z4• i 

It is desired to eliminate I 2 from these equations. 
-2 

Solving for i in the 

secon:l equation, 

-2 - -1- -1 i - - z • z •i 
- 4 3 
-2 Substituting this expression for i in the first equation, 

or, 

- - -1 - - -1 - -1 e:t_: Z1•i - a2•Z4 • z3•i 

- c- - "!! -1 - ) -1 ei_ : Z:l. - 52• .. 4 • ~ •i • 

This last equation can be written 

where 

- -· --1 91 = -i· 1 

i..' -i. -'i-"i -ii) 
J.-l. 24 3 

which 1s the reduction formula for this case,~· being the impedance tensor 

of the reduced netwrk. 

The network below w.i.11 be used as an example tor the above discussion. 

The Original Net.wrk and the Assumed Reterence Axes 
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The Reduced Network 
• t • 

The Oe ta., Z4; z1 Z6:, Replaces the Wye., Z4 .. •s • •z • 

e, e2. .._ e3 
~~~.. ... 

z, 

e-=-o 
4 

z 2. 
4 

l 

2 

= 

-

The Primitive Network 

1 2 3 4 5 6 
Zi 

g ~ 
' 

Z_3 

Z4 

Z.5 

z6 

l The Equation 

2 of 

3 Performance 
• 

4 of 

5 The Primitive 

6 l1etwork 

.36 



1' 2' 3' 
Coil Currents in Terms or i , i • ard i 

Old an:i new currents are equated to find the components of the transformation 

tensor, C. 

Si nce 

il : il I 

• .2 il 
1 - -- 2' 

-i 

- --, i: C 1, 

l 2 3 
11 

2 -l -1 

3 1 
C: 

4 1 -1 

5 1 

6 1 1 
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z' - c. z.c 
- t 

I 
1 

l 
Z1 r Z2 r Z4 

z2 

-z4 

2 1 

z2 -Z4 

z2 f Z3 f z6 z6 

z6 z4 .f Z5 .;. z6 
' 

In this instance, since there are no mutual inductances to complicate matters, 

it can easily be seen how i 1 corresponis to the network. The expressions 

along the main diagonal of z' are the impedances around the meshes while those 

off the ma.in diagonal are the ones common to tw meshe~, as, 

' Z32 : 216 
3• 2' which is common ±o t he meshes in which 1 a.Di i .flow. The heavy lines on 

i 1 show that it is to be subdivided 80 that 

The reduction formula, 

1' 

' 'i - 3 3 -

• 2 

1 1 2' 

1-s4 j z6 l 

- ' --- - -1--z.. - Z ... . Z • z4 • z3 J. - l .2 
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is used to eliminate the third mesh. 

i -1 - 3 1 1 
4 - · -z4-7-z--5 -7-z-6 

• l , 

,. 

' 2 

t' 

_ -l _ l -z 3 ,~3· . ":'z4 z6 

~~z4 . •3: , • 
2 z 

Z4 f :; f Z6 Z4 7 Z5 f Z6 

--

-
' -

I 
l 

' 2 

I 
·1 

1' 
r 

2 

·6 

, t 
Zi f z2 f Z4 

- z14:2 
z4 7 z5 7 z6 

Z ./, Z4 z6 
2 Z4 7 z5 7 z6 

l 
t 

zl f' z2 

,- "z4 r~ t Z; Z6 
, Z4 z5 z6 

z f z1,; s6 
' 2 z4 7 z5 7 z6 

z,; .;. ~4 l!,6 
<-

Z4 rz5 7 ~6 

z2 .;. Z3 -/, z6 

z2 - 6 
z4 7 z5 7 z6 

' 2 

z2 

.;. Z4 z6 
z4 7-z5 7 z6 

•2.;. •.3 

t' Z4 36 f' z5 116 

z4 . .J. z5 .J. z6 
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The tensor at the bottom of the preceding page is the impedance tensor of 

the reduced network. It is also equal to 

1' 

' I 

z1 .;. z2 .;.. Z6.;. z,; 
t 

z2 .j. Z5 

z2 f Z5 ' ' z2 f z3 .J. z 5 .f.. z 4 

where 

' z~ z6 Z4 -- Z4 7 z5 f Z6 

' "&: z6 Z5 -- z4 7 z5 7 z6 

I zlt. z6 z6 - • - z4 7 z5 7 z6 

I 

These are the equations which convert the delta, z4, z5, z6, to the wye, 

' ' ' z4 , z5 , z6 • 

As an additional check, the impedance tensor of the reduced network will 

be determined directly .from the primitive network in order to see if it 

equals the one fourrl by using the reduction formula. 

The Reduced Network and Its Coil Current s 



z--

l 

2 

3 

4 

5 

6 

l 2 3 

~ 

z2 

a.3 

4 5 6 

' •1,. 
1 

z,_ 
t 

z6 

The Impedance Tensor of the Primitive Reduced Net'WOrk 

Equating old am new currents to determine the transformation tensor, 

1 1 1 

i = i 
2 1' 2 1 

i = -i -i 

, ' zl.;. z2.;. a5 .;. Z6 ' 

~ .;. :&5 ' 

' 2 

z21" Z5 
t 

z2 .;. z3 .;. z 4, .;. z 5 
t 

The above tensor equals the one found by using the reduction formula. 

Since the illustration just given -was a simple one, it could have been 

solved more easily by conventional methods. However, i.f there were perhaps 

twelve or more meshes, t he use of the reduction formula 'WOuld prove quite 

a labor saver. In such cases, it is usua.lly most convenient to eliminate 

three rows an:l eolUJrJlS of the impedance natrix in one operation because tht; 

determinant of a three ro'Wed matrix can be easily .found. Successive elimi-

nations can be performed until the desired number of meshes have been 

41 



eliminated. 

The use of tensor methods tor determining the ilnpedance between tw points 

of a net-work involves the elimination of several meshes. An additional mesh 

is introduced by assuming a. voltage across the t'WO points between which the 

impedance is to be measured, and assuming an additional current. in this extra 

branch. Ii' all the rows a.ni columns of z except the additional one are 

eliminated, the scalar that remains is the impedance between the tw points. 



'l.'he impedance tensors of three-phase n~w.>rks am machines someUmes 

assume aimpler forms when e:xpressed &long other reference frames than the pbaae 

axes. The otiber reference bames most used are the so-called sequence ..... 

To transform from the phase ues to the sequence axes, a tensor, which is 

rea1lT a spinor, or Hermitian tensor s1nce some ot it.a components are complex. 

caµ.ed the sequence tensor, c.,- is used.. :rt equals 

C l & 

a - -1.;. j.866: eJl.20° 
- 2 

a2 : -1- j.$66 = •SJ.20° 
2 

The three rowa o! t.he sequence tensor are the sequence operators used in the 

theory ot s,naetrieal components. lt. 8bould be noted that 

1 /. a f a2 : o 

a3 = l 
a4: a . 

~ - -The a,mbol,. C , means, "the conjugate of en, which 1a C with each element. 

replaced. by it.a conjugate. 

0 
a l 

l 

l 

1 
l 

a 

&2 

2 
l 

a2 

a 

,r -1 
: l.,st 

The letters a, b, am c represent the phase ans am ·the numbers o, 1,- am. 2 



are the sequence a;x:es. The phase currents in terms of the sequence eu:rrents 

are 

ia :1c1° ~ 11 ~ 12) 
3 

ib = !.(10 ~ a.2 11 ~ a 12) 
3 

1°: !( 1° ~ a t'" f a2 12) •1 
3 

The transfonnation formulas of spinors differ slightly from those of 

tenecirs. Usually the only difference, 'When there is any, is that wherever 

·* Ct occurs it is replaced by Ct. In index not.ation, indices to be trans-

-* tor.med by some form ot C are written with a bar over them, as Ziit and are 
2 

called barred imices. The imices ot a spi.nor are cal.led spin irdices, 

those ot a tensor, tensor irnicea.J 

To demonstrate the use of the sequence tensor am the use of compourd 

coil&,. the netwrk shown in Fig. l consisting ot a star, or wye, connected 

to a delta will be uaed. 

Fig. l 

1 Gabriel Kron, Tensor Ana;1Ysl,s ot Networks, p. 328. 
2 

Ibid., PP• 345-349 • 

.3 ~ •• pp •. 349-353. 
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The compoum network is shown in Fig. 2. 

,. l z.. -z a 

Fig. 2 

In using compouni networks., a transfonna.tion tensor., the junction tensor 

must be used when some three-phase apparatus are connected to the line. 

-For this network., the j1.U1ction tensor c0 is used to connect the delta to the 

star. Whenever the current umergoes a trans!onnation as it enters a. com-

poum coil., crosses are put on the leads to the coil and the value of the 

current in the coil is irdiaated.. 

The junction tensor of the delta expressed along the phase axes is 

obtained in a manner similar to that ot fiming the transformation tensor 

ot any other network. 

•Z. ;J' .,, 
(.a" -( 

4 

Fig. 3 
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From Fig.. .3., 

The coe.f'fieiet.s of primed currents torm the components .. o.t the junction 

tensor. 

1 ' 
t 

1 

~ = 2 -1 1 

.3 l - 1 

The Jllnctiion Tensor 

The components of c4 along the sequence axes are found b7 the transformation 

formula 

- - -1 -" C -C • C •". 
A a - a A a 

· 1 2 3 
' • t 

l 2 J 
0 IJ. J. J. l l. -J 

c-~a -11 
8 D, - rJ 1 a 2 2 -1 l a 

2 1 
2 

a a 3 l -1 

' t 

t t I 
l 2 1 

0 0 0 0 

2 2 
a -a 1-a .. -1 

2 
1-a 2 a-a a - l 

0 
1 2 1 
0 0 0 

1 0 l 2 
l · l l l 

2 
l -a2 a -a a -1 

2 2 l -a . a -a a -, 

0 
0 

l. 
D 

l 
0 

2' 

' 3 

l .2 

l a 

0 

=i l 

2 

a2 -a.;. l -a.2 I: a -1 2 -a I, 8 2 -a,. a2 -a a 

a -a.2 .;. l -a,/. a2 -1 
2 2 

a-a ,}a -1 ./- l -a 

Aft.er cancelling ani collecting terms, 

a 

a-;, 

2 
0 

a?· -a .;. a -1 ,/. 1 

2 2 2 a-a ./-a-a ,}a-a 

-: CAB 
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0 l 2 
0 0 0 

0 a2 - a 0 

0 0 
2 a-a 

In the compounl net.work of Fig. 2, 

11 - 11' -
- 2 - - 1 1 
1 : c6 • i • 

The transformation tensor of the network is, from the preceding t-..o equations, 

The impedance tensor of the netwrk is 

where 

l 2 .3 
l si 

~ 

SJ 

4 5 6 
4 •4 

•s 
.6 • 

- · c- - ,r S - ~· S • l.i -- " -
Along the phase axes., 



• l 

~ I i • C.: -2' 
o t 2 a - • 3 

• 1 
Z5 r Z6 

-z6 - 2' - • J -•5 

4 5 6 

Z4 

-z 
4 

-Z5 

•s 
' 2 

-&6 

Z4 .f. S6 

--Z4 

I 
1 

z6 

-z6 

-s, 

4 

5 

6 

-z4 

Z4.} z5 

t 
2 

1' si f •s r s6 -z6 

1 1 2' 3' 
l. -J. 

-1 l 

1 -l 

' 3 
-z5 

i' = 81 .;. ~ t,· ~ · ~ = 2' 

:J' 
-z6 ~ r z4 r z6 -z4 

-s5 -z4 Z3 ./, Z4 {- ZS 

Since the net.wrks are ad mj lar • this tensor is quite similar to that tor the 

network in the previous example. 

To fim tlie illpedance tensor along the sequence axes, t he procedure is 

repeated. Expr essing phase currents in t erms ot sequence currents, 

t ' I1 - c ,11 
p - 8 . ' -2 - - 1 
i - C • 1 
P - O S 

The sequence 1 mped&nce tensor is calculated next.. 



0 

-* - - 1 C • z • C -4St 2 ~ a -

4 5 

2 
{a -& ) z5 

6 0 l 

2 a -e. 

2 {a;t -a) •6 

4 

s 
6 

0 l 2 0 l 
0 0 

2 2 
(a -a ){a -a) Zr; 3•5 -l - - 1 -

2 (a2 -e.){a -a.2) z6 2 

0 

= l. 

1 2 

~ z"' ,(. ", 
Zi U2 a'z 

:3 

8l. a2a 2 az 
3 

l 

8l. ,' a ~ ,' az3 

z ,' s2 ,' a 

o si7'~,'z z:i,t 
t 2 

z8 =,J l 31 ,' az2 ,' a z 

1 

. 12 
t/"J 

3 

0 
1 

l 

l 

2 

1 1 

2 
a a 

& i 

Zi ,'~,'a Z.3 

-i."••2/.UJ 

~,'a z2 ,' u 

2 

2 
a -a 

2 

3z6 

2 8].,'az2 ,t~ 91,'u2 ,ta.s ~ ,' z2 ./, Z3 ./, 9z6 

It·· the s-t.$r' and delta are balanced, that 19> it 

z.. - !l.... - Z-::i • Z -.i. - - .4 - ., .. A 

then i 8
1 reduces to the diagonal ma.t.rix 
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0 

1 

2 

0 
ZA 

l 2 

aA .J,. 3~ 

"A .J. 3~ 

which is mu-ch easier to manipulate than the con-esporxling tensor expressed 

along the phase axes. This is one of the ma.in reasons for t.he use of t.he 

sequence tensor. 



THE APPLICATION OF TENSCR ANALYSIS TO TUB& CIRCUITS 

Wl:um11 as is oft.en the case, there are only small variations of voltage 

in a tube circuit, the tube may be considered a linear circuit element and 

the method or nuwrk analysis previously described may be applied. The 

cotdition of small voltage variation occurs mainly in amplifiers am oscil­

lators. other types of circuits sueh aa m:xlulato.rs am rectifiers make use 

of the non-linear properties of the tube. 

Since most tube circuits have !ewer junction pairs than meshes, they a.re 

usually treated as junction net:worka. The filament or cathode serves as a 

common lead .from which the various "coils• of the tube, which are the eleo-

tron paths from the emitter to the grids am plate, branch. Using this 

l scheme, a tetrode wuld be represented as shO'Wll in Fig. 4. 

'3, p 

F.S.g. 4 

A.nalyt,ically, no distinction is made between the grid.a am. the plate. 

Suppose a change of wltage, 
~ 

b C 

occurs on the grids, a, b, ani c, an:l the plate, p, o.t a pentode. Meglecting 

the curvature of the static characteristic curve, the changes in current are,2 

l 
Gabriel Iron, Tensor Analyaj,s 21. Network§, P• 379. 

2 
Ibid., P• 381. 



where 

V . . . 
Mote that the vector I ~s been di.tlcrentiated with respect to the vector . . 

. . 

E • The question ll1aY' be asked 'Whether ffv is a. tensoJ,"". The answer ie in 
u . . ~ - . 

. - -the a.f.f1..:,native ao long aa the components ot C~ the t.ranstormat..ion tensor, 

are constants. ot.hendse,. the concept o! absolute, or covariant, di!teren-

tiation must be int,roduced. To illustrate.,. let 

1•. r;. i-; 

ani it follows that• 

f 

E rl R u: u -uo 

~• -~C:t..1•) - jC!• 1"'1.J. c, ~ -f'41 • 

<lEu -~ - a<c:fiu,) ,rcl<C: ~·) 
Since there is an extra term 1n the last expression, !£ <loea not transform 

If Eu. 
as a tensor. llowever, it the component• of g,, are constant.a, then 

:f=O, 

acdt~,> = c':.fEu; 



which agrees with the characteristic transformation tomw.a ot a tensor. 

The tour equations tor current change can be written 

A :XU : yuv AEy 

t" =(. 
yN- is called the admittance ~sor of t.he tube. Oefining the various 

ampl.Uication tactot-s an1 resist.Ances ot the tube :tu the conwntional manner. 

the admittance tensor of a pent.ode 1si 

a b c p 

a ...1... 
b 

.t& JU d ~- raa ra Paa 

b J!l i .J ~ 
-F -- C 

rbb rbb rbb rbb 

aJ e.l _l_ Ir!! 
rec roe :rec rec 

p I!! IL! ,J. _.._ 
r. pp r: pp r. pp rPJ) 

Odt.tJ.ng the l"OW· ard colur$» c, the admittance tensor of a tetrode i s. 4 

& b p 

a 1- ~ 3fa 
ra ra ra 

l1lt 1.. "' 1'"b rb l"b 

p ea ... ... 
rp rp r p 
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where f4 1• the plate amplification factor ., '11 the grid amplification factor, 

'I the cross ampl.i.tJ.cation factor. The admittance tensor of a tr.iode is 

town by omitting rows am co1umns band c .from the admittance tensor of a 

pentode. It 1s5 

g 
yUV : r ~- g ~ 

g g - P .. ~ 
p # ...L , 

r 
p 

r 
p 

u the grid current of a triode is zero, rg is in.t'inite am 

y11V = g t--+---11 

p t,-o .......... 

Simflarly, when no grid current i'lows in a tetrode, 

& b l> 

0 0 0 

0 0 0 

p 
~ ~ ...!... r r p p p 

'l'he impedance tensor e.ni transformation tensor ot a circuit cont.aining 

tubes can be set up in the manner of &JV' junction netwrk., the tube adding 

tw or more axes tot.he tensors. llso it 1Df11' be added that the tube net-

wrk a.Di the remaim.er of the network may be separated., analysed ard recom­

bined. 
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To fim the amplification ot a.n amplifier. the ratio of the change in 

output voltage to the correspon:ling change in input voltage is required. To 

find this• the reduction formula.a are used t.o eliminate all but the input and 

• output axes ot I. This leaves two equationa 

t' = y&&~a r y&bA!\, 
ba bb 

O:Y 4 Ea,'Y 6 Eb • 

4~=-~ 6 ll' -.ua 

tdlich is the desired ratio. 

One method tor determ1n1.ng the conditj,.ona necessary :tor a junction net­

work to be oscillatory is t.o consider t.he equation 

i - Y·E -
or 

- ril., 6 
E - • .a. ·• -

It there are no impressed currents. then 

- -The inverse ot Y is a ma.trix whose elements are cofactors of Y divided by 

the detend.nant. of Y. that is. 

.;,-l t 
.l :....£ • 

D 

In order tori not to be zero lllhen I aquals zero• 

!s_-o ~ 0 
I) 

tad.ch can be true onl.7 it 

Therefore. it the determinant o! the admittance tensor ia aero• the netwrk ia 

6 
~-, PP• 399-400. 
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oscillatory. By using the equation, 

D: O, 

the necessary relations between circuit components for oscillation may be 

determined.. 

When it happens that a tube circuit has fewer meshes than junction pairs, 

it is advantageous to treat it as a mesh network. The tube's impedance . 

tensor is, found by taking the inverse of its admittance tensor. The: imped­

ance tensor of a tetrode is 

where 

a b p 

a l - .1!2 t,b W>11a -"Pia .,.a fib - lla 
1orpD rarpD ral),D 

!!'f'b -!lb l -,tA,t..a ~b11a -11b 
rbrpD rarJ!' rar D p 

z - b 
mn -

p l'"hb kb - l.LJI t!:121• -~b l -~a?Jb 
lbrpD rarpD r.arpD 

D = l {: pe.C,a-llb -"'a) ,q~·bf'lbila -11b) -:,a"'lb 
r arbrp 

The impedance tensor of a triode is 

g p 

g r 
,g ~r12 

z -mn - 1-~g,ap 1-ft.P~g 

-flD ~ 
., r 

:e p 
l · - ,,.g,ip 1 - ,.g,,. p 

The value of the grid current in a triode is usually not required and is 

often equal to zero, so the axes gin the impedance tensor of the triode may 

be eliminated by using the reduction formula 

_, - - ~ -1 -
z : ~ - z2 •z4 • z3 • 

Applying this reduction formula, 
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i':rp'= . rp - 8PJ'8 (l-,ipJ4B)( ,mrp ):r(l-ppt:!g):r 
l -t4Pf"\8 l -t&Pf,18 rg 1 - ~fA-g P(l - pP pg) P 

The grid coil of the triode may be omitted by changing the self-impedance ot 

the plate coil from . r p t,o rp• 
1 -ppp.g 

It there is a wltage, ef! impressed in aeries 'With the grid coil, or i! there 

is a difference of potential, ef! across it, then the equivalent impressed 

voltage on the plat.e coil is found by the reduction formula 

-· it. .. - -l -e : "'l. - •2•Z4 • e2 

am it follows that 

' e : e -( - 11,P f g)(l -flPI:' g)e : e ,'IApe • 
P P l - ,,. p f"g r g g P g 

If a more exact analysis of a w.cuum tube circuit is required., one or 

two more terms in the series expansion of Alu may be used• 7 giving 

A Iu = r1~Ey ./, '.h.UVWAE,,AF.w .;. Duwz6EvAEwAEz • 
UV 

y , the admittance tensor, is also called the amplification tensor. 

Muvw = !iynv= ~ 'fru 
21 l E,, 2l 'yw 

is called the modulation tensor, and i~ a. tensor of valence three. For a 

tetrode it consists of three tw-matrioes, one of which is 

7 Ibid., PP• 547-564. 

a 

a -Lira. --z c)E 
ra a 

b p 

• 



The other two matrices., Mbvw., a.rd }{PVW are simila.r in :form to M4TW~ 'When no 

grid currents now., ir1w and ~ are zero. The tensor Duvwz is of valence 

four am. is called the distortion tensor. 

0uvwz = l iJ.fYW ::: ! fyuv = l a31u • 
31fi'z. · .3! ·9E,.aEv 3li~YEz 

For a pentode, the distor tion tensor consists of sixteen tw-matriees.,. each 

having four rows an:l .four columns. In general, where n is the range ot one 

o:t its irriices., it ea.n be represented as ri2- matrices., each matrix ha.Ying n2 

component.a. 



PRACTICAL EXAMPLES 

As an example of bow the reduced .form ot the triode impedance tensor 

may be applied. the basic circuit of the cathode-.tollowr type of amplltter 

will be analysed. · Its circuit is show in Fig. 5 

E g 

Fig. ·5 

The reduced network ot this circuit is shown in Fig. 6. !he tube is replaced 

by rp in aeries with a voltage IA\• · 

Input 
Voltage I\ Output 

Voltage 

Pig. 6 

ai, inoludea r and any outaid.e load·. BJ' inapeetion. the input voltage equal.a 

Eg .J. Ip ~ • 

Since 

I:~, 
P rn f a,. p D 

S9 



The output voltage equals 

Amplification equals OU:tput voltage divided by ibput voltage 

- . f,'E ~ 

= 1'·~ Ii, 
rP tt < Eg 91> :J. ,.sg ~ 

~ ;z ... p . ~l) 

= rp i1ll, fl-1si, .1 

The cireuit ot the Hanley OJiiCill a.t or shown in P.lg. 7 ldll be anal.1sed. 

to determine ·ita trequene;y of oscillation min the formula for ita criterion 

of o9C1Jlalion. 

Y" 

C 

Fig. 7 
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The values of the various admittances in terms of impedances are given below, 

°'· r-1 = zu . . 2 • _ J w_Li 'if- = . -.1Li 2 
zuz22 - (~2) -~(L11-2 1'1! ) -!j(L]_ La - M ) 

f2 :::: z22 ~ - j L2 - . -JL2 
zi1z22 - Cx12) - - u?C1l_Lz - Ji2) - '-l{!.i 12 - ii2J' 

12 .x; _ j wM _ .ru r = -12 2 : - 2 2'"'\' __ JC .. 2 
zu•22 - <,_2) -w <Li~ - M ) - w(~L2 - MJ, 

M" is the mutual inductance between 1i. an:l ~· 

y33: jwC 

oPg - "" --
rp 

In Fig. 8, th'? network is redra'Wil, the tube being replaced by a grid coil ani· 

a plate coil. Assumed junction-pair voltages am coil voltages are sho'Wil. 

Fig. 8 

There are three junctions am one sub-network so there are t-wo junction pairs. 

Assumed junction pairs are shown in Fig._ 9 

E' • 
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Old aDi new vol.t&ges across ea.ch coil are equated in order to .fin! the trans-

2 
formation tensor • . 

' E.i= - Ei 
~=E;i' 

t t 

E3: Bi_ ,' ~ 

Eg = - Ei 
' Ep: E2_ 

' 

The components of I, the transformation teneor, are obtained .from the coet-

1'1.cienta of the new volt.9.ges. 

l 

2 

I:3 

g 

p 

-1 

l 

1 l 

-1 

l 

Assuming that no grid current. .!lows, the admittance tensor ot the primitive 

network is 

l 

2 

l:J 

g 

p 

l 2 3 

r1- i12 
t'"2 i-2 

-,33 

I! J) 

------

. , 
I 

0 0 

(J><I GPP, 

- ~1 
The trans.formation formula. tor the- admittance tensor, lilere A equals C,i , is 

_, - --
y - A • Y•A • 

- t 



l 

2 

i ·l: 3 

I 

p 

l 2 3 g p 

r-1 yl2 

r2 r2 
iJ' 

0 ,0 

er- rPI 

.. 

1 

2 

3 

g 

p 

1• 1" 

-3.. 

l 

.1 

l 

1 

1 

l 

2 

:;3 

'8 

p 

' .• 

I 2• 
l 

.. . 

_yll iJ-2 .~ -r2 
i''-' y33 

0 0 

-of'<}, -d!P 

6) 

' 
It,· T•i a ' ~----+---........... --1 

. 2 1 l l • 2 _y12 · Jf12. • 2• 
'--__,;..---.-.1.-...;...____,;_~ 

3 y.33 J.33 
g O O ., ... 

p ...r. ~ 

Thia product, ia the admittance t.en80r of the oae1llator. It the c1rcuit !.a 

to oacdllate,.. tho~ of yt· mlS\ be equal to zero. '.l'henlore, 

cyn,.. y33)(l122.;. y:33;. r..PP> -- c-r-2 .J. ~'>c-r2 1- y33 - d'q) - o 
. -

~ 
· .;,1p.21- r1YJ3;. y~ 1- y3>£22 1, CY:;3>2,. y3JoPP _ <r2)2;. NJ 

. · -i12tFt ,_ y~ _ (y3.3)2 ,/. y33~ : o 

Substitut.ing \be adtdttance ruues into tb!s eGWJ.t.ion. 

-I-i.12 /. 1.ic ~ I- ~ /. ;£ ,J. ~ 
. cZltfi12 • .ir2) LJ.La • 1!2 r~1i~ - E2 5 · Li~ ·--i2 -r; u,2(~~ -i2) 

I, -. IP .J. ~ /- ,MC _ 1'~:0 LiLa - Yt' ~~ $) 11~ - fl "p 

Shw:e f.be. aum of the re.a.l a.,u ~ part.a ia eqaal. to JMmJ• · both real am 
· imagS,IU'1 part.a ~ be equal to · aero. Equating the Nal parte to zero. 

=.112 I ;.a I- 1.;.c . I n2 .J . m I /. m = o 
w2o;t.;:ii2> Li~· ii2 11.t:2 - " JcfiL:z - r> 11.12 -ii2 Lili- i2 

Mul~ tbroup by..,2(1.i~ - !!2)• 



- Li_ L2 f "' 2(L_i /- L2 ,} 2M)C .j. 'fil- a 0 

cc,2 - ~12 - iiZ 
- (L;i. L2 7 2M)C 

1l_i1i.f.2M:L. 
which i.s the total inductance of the coil, so,, 

w = jiu;. -!i2 
LC 
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For a giwn 11, L~ M, am c, this is the theoretical frequency of oscillation. 



CONCWSIONS 

Tensor analysis is a comparitively new engineering too1. Only in the 

last fifteen ,-ra has it been applied to electrical engineering. In that 

ti.Itte, there have been applications to auch diverse electrical engineering 

subject.a as electrical rota.ting machinery• linear netwrks.• vacuum tube 

circui ta, transformers, ani gaseous rectifiers. 

The point o~ view introduced by tensor analysis is helpful. to the 

engineer in allowing him to solve his problems with a minimum of analysis 

for each iniiv.ldual. problem. Its organiz«l methods sometimes save labor on 

complicated problems o.r allow the solution of problems which are so complex 

that ordinary modes of solution fail. 

This thes-1s has covered a very limited portion of the .field in which 

tensor analysis is applicable. However, it may help to give some idea ot 

the nature ot tensor analysis am some aspects of its application to elec­

trical. net.works to those who do mt w.lsh to do a great. deal. of reading on 

the subject. Enough material is included to give the reader a working know­

ledge of the solution of mesh net-works by the tensorial method. The thesis 

may also dispel some of the fears o.f those 'Who have the erroneous belier 

that tensor analysis is too esoteric for the average engineer. 
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