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As an intreduction to the method of approach to engineering problems which
has been developed by Kron, it would be well to review the definitien of "engin-
eering", and to compare engineering with physies., Work in the field of physics
consists primarily of correlating observed phenomens. New happenings which
have not been previously correlated may require the statement of new "laws of
nature®™ or the re-dnterpreting or extending of old ones. Ome objective is to
create the simplest but most comprehensive correlations. The ultimate goal
is a unified field theory or the like that will cover all branches of physics.

they deal with simple units, that is, they may describe a particle, a single
conductor,; or two unlike charges. Assuming no uncorrelated phenomena are
introduced, the laws will still be walid regardless of how the one particle

specific answers, Its problems in most cases consist of firding ways of com-
bining entities already covered by the laws of physics in such manners as to
serve useful purposes., New phenomena may and usually do arise out of the com=
bination., A radio, for instance, certainly possesses properties that its
independent parts do not possess. If the physicist has done his work well,
these new phenomena are due only to the interactions of the components and are
included in the existing correlations. Kron's thesis is that since the behav-
iour of the parts intercommected to make engineering devices is knowm, it should

be possible to develope routine methods of finding the characteristiecs of these

1 Gabriel Kron, Jensor Apalvsis of Networks, pp. xiif-xxiii.



devices, The organized method which he proposes accomplishes this to some
extent. In the process of developing an organized mode of approach, several
advantages are obtained, Two of these advantages are: The amount of thought
necessary to solve a problem is reduced, and shortcuts in mumerical ecalculate
ions may be found, However, these are not the greatest benefits derived from
the method of analysis introduced by Kron., The type of organisation he uses
allows the introduction of tensor amalysis, combined with several other mathe-
matical concepts not now of common use in engineering. The application of these,
in tuwrn, temis to unify the separate fields in electrical engineering which have
groun up haphasardly, and have drifted apart in theories and nomenclature,
This, plus certain geometric concepts, allows the engineer {0 assume a somewhat
wider and different viewpoint, PFurthermore, tensor amalysis is a potent tool
for the discovery of essential properties of the entities being stuiied, sinee
only properties independent of the particular coordinate system from which they
mohlmoduybergpreacntodbym.

When put in the most basic or the most elegant form, especially in terms of
tensors, equations pertaining to seemingly unrelated branches of physics or
Mmm;mm.ﬁzy. Geometry is a kind of “"univer
sal language” for the expression of these formilas, Differential geometry and
topology, or amalysis situs, are two branches of mathematics employing geo-
metrical reasoning that are beginning to become useful in engineering, Tensor
analysis is used to some degree in both subjects. Kron states that differential
geometry and topology do not carry the study of geomeiry far enough to satisfy
the demanis of engineering problems, For example, the solution may require
transformations which tear apart spaces or systems of spaces, while topology
only includes the group of transformations which allows stretching and bend~
ing.



Th.anal:tiaaltoolsuaed‘szroninhisor@niutionofming
problems are matrix analysis and tensor analysis coupled with differential
geonetry and topology. The specific approach is through three "generalization
postulates”, the first two of which are applied in Tensor Analysis of Networks.?
The third postulate is described in Tensor Analvsis.’

The "First Generalization Postulate™ replaces single quantities by n-ay
matrices., This generalizes from one degree of freedom to n degrees of freedom.
Ho new propertlies are introduced, because the components of the matrices could
sti1l be handled separately, Better organization is the only result,

The "Second Ceneraligation Postulate™ uses the organization created by the
first postulate to endow the n-way matrices with new content, The matrix with
fixed indices becomes a set of conponents of a geometric object along some
reference frame, Invariant equations replace ordinary equations, Unlike
ordinary equations, these equations are valid for a large number of coordinate
systews of the same iype.

Aprlication of the "Third Generalization Fostulate" results in still higher
organization, Osometric objects are replaced by tensors. The invariant equa~
tions valid for one type of reference axis become tensor eguations valid for
several different types of reference frames.

The "generalization postulates” may be crudely sumarized as follows:

The "Flrst Ceneralisation Postulate® generalizes from 1 dimension to n dimensions
by replacing single quantities by n-way matrices, The "Second Generalization
Postulate” changes n-way matrices to geomeiric objects, The "Third General-
igation Postulate™ changes geometric objects to tensors.

2 nadey ppe 47-91.
3 Gabriel Krem, Teugor Amalysis, po. 242-245.



One implication of the type of analysis just outlined is that whenever it
is successfully applied, many problems hitherto considered separate and origimal
becoms merely routine transformations of some basic tensor, The mathematical
analysis has partially paralleled geometrically what the engineer has accom-
plished physically. The future should see an extension of the parallelism which -
should result in many benefits to engineering.



SOFE ASFECTS OF THE ELEMENTARY APPLICATION OF TENSOR ANALYSIS TO NETWORK THEORY

Although not a necessity, the application of matrices in tensor analysis
of networks is useful, for many of the manipulations in tensor analysis can be
expressed very conveniently by the use of matrices.

A matrix is a set of quantities, that is, any aggregation of constants or
variables arranged in a row, square, cube, or some other orderly manner, which
is manipulated in accordance with certain fixed rules. A summary of the rules
will be given shortly.,

There are three kinds of notation in fairly common use,l direct notation,
index notation, and matrix notation. The latter type will not be described
since it is seldom used in electrical engineering problems, In direct nota-
tion, matrices are represented by bold face letters when printed or by letters
with bars for script applications, for example, As In index notation, a matrix

is written as a base letter with indices attached, for example, Each

Aa e*
index represents a group of l-matrices such that when each index attached to
the matrix is given a particular value, a specific element in the matrix is
defineds In the case of the matrix above, & could represent rows and @3
columns, Thus, A,p would be row a, or chcolmm ¢y, and A would be the
element common to row a and column b, The rules of mltiplication of matrices
can be remembered easily if the rule for the multiplication of two 2-matrices

' is remembered. If A and T are 2-matrices, then A*B = C equals the elements of
each row of A times the elements of each column of B, the sum of the products
of the correspording elements of row m and column n forming the element Cpn in
the 2-matrix C. In index notation, the product is expressed as Aathr' Cﬂ_:
thus implying the use of the so-called Einstein convention, or summation

. Gabriel Kron, Tensor Analysis of Networks, pp. 12-13.
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convention that an index is summed on when it appears twice in the term,
Examples of the multiplication of 2-matrices will be given later. Kron gives
what he calls the "arrow rule" which, in effect, states that in a matrix
product, the matric«s are split into l-matrices along the repeated index anmd
then corresponding l-matrices are multiplied, Two l-matrices are multiplied
by multiplying corresponding elements and adding the products, thus giving a
O-matrix, or scalar. The product A*b where & is a 2-matrix and b a l-matrix
. is obtained by multiplying each row of A times the row or @olumn which is b,
It is immaterial whether a l-matrix is expressed as a row or column, Using
the arrow rule, b°A means elements of row (or column) of b times columns of A.
The result is a l-matrix. Matrices are added by adding corresponding elements,
Only matrices having the same number of free indices can be added. It is to
be noted that free indices are indices such as ® and ® in A, each of which
represents several fixed indices.

The transpose of a matrix is a matrix with rows and columns interchanged.
It is written in direct notation with the original base letter and a "t"
subscript. The index notation of a matrix is not changed by interchanging
rows and columns, The use of the transpose of a matrix is to enable products
such as A, Byp to be represented in direct notation as X-B;. The inverse of
a matrix, &, K is defined such that A* = T where I is the umit matrix or
Kronecker delta, Only 2-matrices have inverses, The inverse of a matrix is
found as follows: Interchange rows and columns, Replace each elenent._.by its
cofactor, Divide each cofactor by the value of the determinant of the matrix.

Because of the organizing power of "The First Generalization Postulate"
which brought into view the concepts of transformation, invariance, and group,

2 Ibids, pp. 18-21.



the "Second Ceneralization Postulate" could be applied, geometric objects
replacing n-matrices, Actually, a geometric object is represented only by
an infinite number of n-matrices, each matrix representing a picture of the
object from one reference frame. However, a geometric object may be considered
completely represented by an n-matrix the components of which are along a
certain reference frame, a set of fixed imdices attached to the matrix to
identify the reference frame, and a formula of transformation for finding
the components along any other reference frame, To avoid clumsy statements,
it will be stated that the matrix A represents the geometric object A, instead
of postulating that it represents the components of A along some axes iden-
tified by the indices alongside the matrix,

To show how geometric objects are represented, examples of objects of
valence 1, 2, and 3 will be given.

Two examples of vectors, or l-matrices are:

.ade Pa.b

c d
Azhgz|f|g|h|k B=Bgw= |0|10]0]0O

=3 |m
Ll =2

An example of a 2-matrix is:

q\p.i._b__c_
&l | 15|23

c|l | 5|12

Particular rows or columns may be indicated as

c
al23

Z‘c=b2 a b ¢
Zpg (RITT2]
cl|i?

e

Two ways in which a 3-matrix may be represented are shown on the next page.
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In the last representation, M“m, is split into layers along the index 7,
The basis for deciding whether or not some geometric object is a tensor
is its transformation formula. The transformation formula for a tensor is:
AT T
Whenever an imdex is repeated in a product it indicates a swmation. This
is called the summation convention. That is, a.“x" = ax' Fax®{ axdfiagx”,
The number of indeperndent variables, x', x5 x3...x" is n, and is also the
range of the free indexq . The transformation given above changes the com-
ponents of T from the primed set of axes tb the unprimed set.
when one set of variables can be expressed as a set of functions of
another set of variables, a more definite expression for c:f, the transfor-
mation tensor, can be obtained. For instance, if x%= f£(x*), or
x = £ (x'yx* werx™)
x® = £(x'yx e x™)
x® 2 B2ty e x™)
x" & t"(x",x"; e x™)
then
dx® m 20" = I dx*,

3 x*' a x«'
If it is assumed that
1 _a
ax” = Q‘:dxas Co :3_115“:
ox”

The transformation formula for a tensor then becomes
aB .. x'osl,,,

T e = Thgr o dx axtaxt b,
i 15 s s



A transformation for which x¥ can be expressed as a set of functions of
fmmmma;:mmdﬁmdumuammmmm
H:enomsetofvg:"iablucanmhbaexpmsueduamoftheotherm,
mafmtudwmm,mmmmummmmm
Fornmn-mlarmin t.ramfomt.ion,thoc 's must be determined some other
way than by differentiation, perhaps by inspection. In electrical machinery
problems which involve spatial motion, most of the transformations performed
are non~-holonomice

£ Gy is given, there is a simple way of finding whether or not the
transformation is holonomic.? Consider two particular components of C;.

If the transforrmation is holonomic, and
q
Cy :?.iz Gt = 3x7
2x

dxc’
then

3.@: “-?.GB:‘ nh,-

2x¢ Jxbyxe x* Jx
This is the test for determining what kind of transformation Cor represents.
For covariant variables which are transformed by G, there is a similar
test. If the transformation is holonomic,

3Gi= 9= Vsa._ -
dXy X IXgIMy

To obtain the geometric objects associated with a given network, the
building blocks and the analytiecal units of the network must be considered.
A network may be visualized as several lumped coils intercomnected in some
manner, It will be assumed that the propagation of superimposed quantities

3 Banesh Hoffmann, "What Is Tensor Analysis?', Electrical Engineering,
LVII (Pebruary, 1938), 61-66.



through the network is instantaneous. The network may either be isolated

or be a detached portion of some larger network. A component network not
connected, or connected only by mutual inductance to another part of the net-
work is called a sub-network. The two ends of a coil where it is joined to
other coils in the network are called junctions. Coils and junctions are the
two building blocks of networks. The characteristics of the coils are assumed
not to vary with the superimposed electromagnetic quantities., The junctions
are assumed to be fixed at the instant under consideraition. The two analyt-
ical units of networks are the mesh and the junction pair, A mesh is any
closed circuit traced through the network. To find the minimum number of
meshes in a network, each coil must be traced through at least once. Any

two Jjunctions on the same sub-network are called a junction-pair. To avoid
confusion in finding the minimum number of junction-pairs, it is usually most
convenient to select one junction and pair it with all the other junctions
on the same sub-network. This process is repeated for each sub-network.
Meshes and junction-pairs will be assumed to include the concept of orienta-
tion. For instance, one mesh is the negative of another if they are traced
over the same path in opposite directions.

There are two important relations between the analytical units and build-
ing blocks of networks.” The number of junctions minus the number of sub-
networks ecuals the number of Jjunction-pairs., The number of coils in the
network equals the sum of the number of meshes and the number of junction-
pairs._',’- These relations are useful in determining the number of meshis or
the number of junction-pairs in a complex network.

A O. Veblen, Analysis 3itus, pp. 15 and 18,

> Krcm,_qp. m- Pe 75.
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Two analagous concepts to those of mesh and junction-pair are the branch
and open mesh, A branch is a part of the network in which the same current
flows. An open mesh is any circuit through the network that joins the two
Junctions forming a junction=-pair. In network analysis, any mesh quantity
can be replaced by a corresponding branch quantity. Similarly, any junction-
pair quantity can be replaced by a corresponding open mesh guantity.

Electromagnetic quantities superimposed on a network may be divided into
two types, impressed quantities and response quantities. These cguantities
may be either currents or voltages or both.

In setting up the equation of performance of a network, the variables may
be either the mesh currentis, ‘.{, or the voltages, E, across the junction-
pairs. In some cases, both L and 1 must be assumed as variables. Such a
network is called an orthogonal network. The ecuations of performance for

mesh and junction networks are
for mesh networks and

for junction networks,
For orthogonal networks either the equation of voltage or the equation of
current may be used. The eguations of performance are
E£S=5.(T4T)
I4T-T@+0.°
The two simplest collections of coils are called primitive networks.
The primitive megh network consists of n coils and n meshes, each coil being

short-circuited upon itself. The primitive Jjunction network consists of n

6 ij-dc’ PPe 32—8#.
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coils and n junction pairs, being merely a collection of open-circuited coils.

The solution of networks having n ccils and less than n meshes follows
from the solution of networks having n coils and n meshes, the only difference
being that the opening of impedance-less branches which changes the all mesh
network into a network having both meshes and junction-pairs introduces con-
straints due to the fact that some currents are not allowed to flow. The
effect of this is to reduce the number of variables, since only as many branch
or mesh currents as there are meshes need to be assumed, The constraints
result in a singular transformation tensor which has more rows than columns,
for the transformation tensor, C, is determined by using the assumption
1 = C-1' where 1 are coil currents in the primitive network and 1! are branch
or mesh currents in the network built out of the coils in the primitive net-
worke A singular transformation matrix has no inverse, so the transforma-
tions which can be made with it are restricted.

The transformation from the primitive network to some other network
leaves power an invariant. That is, ©-1 = @"I1', From this, and the assump-
tion that I = C-i', the transformation formulas of all the cuantities associ-

/¢

ated with a mesh network can be determined.’ The most important of these are

summarized below, both in direct and index notation.

1:3‘1' f: :'141‘
=G, 6 o= Ca g
- . =" % .8
i = Gy BT 5.3 %0t Cb

¢ is the impressed voltage vector of the primitive network, €' the correspond-
ing quantity for the given network, z the impedance tensor of the primitive

network, and z' the impedance tensor of the given network.

7 Ib3a,, pp. 102-104.
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The first thing to do in solving a mesh network is to set up the primitive
network and its woltage vector and impedance tensor. Next, arbitrarily assume
as many independent branch or mesh currents in the given network as there are
meshes. By using Kirchhoff's current law, determine all coil currents in the
network in terms of the assumed branch currents. Since i = E'i', the trans-
formation tensor, C, may be determined from the above process. Next, find Z'.
Then invert Z' to get ¥', the admittance tensor of the given network. Find
It vy I = FL&8', If desired, find €,> the coil voltages, by &, = 2 C-i'

An example showing how C is determined and 3! is found will be given later.

Besides merely solving for currents, various other transformations may
be made by using a transformation tmsor.s A few of these are: An n-coil
all mesh network may be used instead of the primitive network to analyze an
n-coil, less than n-mesh network. One set of branch currents may be replaced
either by another set of branch currents flowing in the same network, or by
mesh currents flowing in the network. Magnetizing currents may be neglected,
the number of turns in a coil may be changed, and meshes may be opened. All

of these processes may be expressed in terms of a transformation tensor, Ge

8 Ibid.’ ppa llll"l?B.
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THE APPLICATION OF TENSOR ANALYSIS TO THE SOLUTION OF A MESH NETWORK

In order to show how tensor analysis is used to solve a network, the
transformation tensor, impedance tensor, and voltage vector of a given network
will be found. The impedance tensor will first be found by means of the
primitive network and then by using three other networks as a primitive system
from whose interconnection the given network is obtained.

The given network is shown below. There are sixteen coils, ten junctions,
ard three sub-networks. The number of junections minus the mmber of sub-
networks gives seven as the nuumber of junction~pairs. The number of coils
minus the number of Jjunction—pairs equals nine,; the number of meshes., There-
fore, nine mesh currents must be assumed. These currents and the coil cur-

rents determined from them are also shown.

& el k! cnt
Eoehix Zee

St A SAAYY @

t ohy

_.._'._'*.



The primitive network is shown below. The lines connecting the coils

indicate mutual inductance
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—wWw W

Zmz l 265" | Z¢ 2 VZyy 2
o Lo Lo O

\/ N\

I 24¢ 2 I Z4q* 'z ?

N\ ()

U/ / .

2
Zpp ! Zg®
LYYV

N
”~”
P

p

OF)
)
®

19



The voltage vector of the primitive network is:
- a becd £ h k 1 m n qr s ¢
€= ofofJoJo Olo] enlepfoTOTo | ot
Equating old and new currents:
1&2_1(1'
b ]
1wt
] ' L]
122~ 18 23t g4

T L 111' y, 4k

L L 3h' 4 j_k'

AAIPLUPLP P
SinceI-E-I', the components of the transformation tensor, C, are the
coefficients of the i' terms in the above set of equations which express
the currents in the primitive network in terms of those in the given net-
work.” The transforration tensor is shown in the product 3-0. To fimi the

impedance tensor of the given network, the transformation formula E' = Cy- Z-C

1 Kron, Tensor Analyeis of lietworks, pp. 98-102,



will be used. The product Z+C will be calculated first. Whether Z-C or
Et-E is found is largely a matter of persomal choice except when €, = T
is to be found. Then it is convenient to have the product 55522 The matrix
product below gives the intermediary geometric object n& 9!, which is expressed

along two different reference .i‘rmnes:.3

rotr ot r 1 o ot
c d £f gh jkmnpagrst abecd fghjk

a b
4 %a xq. a -1
bl x,. 1%, b 1
el z_ c - =11 |1
d %u d -1
b4 ?&e xﬂl 1]~ =
+ g ._1

g Zy,

J z, J -1
[ ]
k z |x |x k -1
i
mj x |z |x i 5
AL
n| x |x n“] nI -1 1]1
kw nn
1
p z |x | P
q gl Zas .
1 -1 1
r by
z 1% |%,
o g -1' a] |1
e | %s | *se ]I
t 1] - -,
t Xye| X 242 1 1

The Impedance Tensor of the Primitive Network o The Transformation Tensor

2
Ibid., p. 110.

3 Ibid., pp. 178-179.



This is the product of the two tensors on the preceding page, z p"
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E{(Eoﬁ) = rh » the impedance tensor of the given network which is:

a! bt c! at ' g h' __jj k'
Zyyt Zgp |~Bgg=X ~Zp =By Zndt X
bt ¥ > -x,,,-fo-t ¥ 2xpepf r.:;_ﬁ
L |7 %9072 | X =52 ~Xst F 2ge!
S B it i Sl oA eon,
e | Bt 25 e e
1
d %al *ab
' M’l G "
: T e P
=2y =X san| 2w Bec | =2, F % e #X
g' —x“:-‘-xm z ‘f 2x; = x:: plx': o
-3 Xt X pp %, # X |t Fogt Bp| Bea b B| =22~
N A R N T LN S SN B B, P e ) X
% =2X =% g¢ # %y £2x 3 -2x_ =z,
3 x x -z |=z,f > Ze # Bhh -2
i | Kn An .2“; x.::. T ;z:“é::; ‘Pz hh
E 3
T Zpp |=X =X s
I«r‘t -3 fa"ﬁ- f -zm-ZJ'c.t :q;-z-g?s -% # '4
7Y s 59 st Lt 5 "f hh
Xg, ~Zeg B #2%y, # .qq

~ The voltage vector of ‘the given network, Cy e, equals

at b! et dat gl_ gr ht JI k!
[_0 e |-e -aal-ek--en exle -ey ep{enet .

The given network may be considered as having been built out of the
interconnection of several component networks., If the impedance tensors

of these networks were already known, it might be desirable to work the



problem from this stamdpoint. To illustrate this method, the impedance
tensors of three separate networks, 1, 2, and 3, will be combined and trans-
formed to obtain the impedance tensor of the given network. The three net-

works are called the primitive system.

The Primitive System



The impedance tensor of the primitive system is shown below,

lines border the impedance tensors of networks 1, 2, and 3.

cﬂ dﬂ fﬂ

The heavy

25



The transformation tensor, ¢' s which changes the primitive system to

the given network must now be found by setting corresponding currents in

the primitive system and the given network equal to each other and by again

using the property

i=c-1'.

ARPL AL DA
iv' - i®
™ o
LN LA S S
LA
je" = -ih'
34" 4a'

£ " LY
ix’ = 4T’ 418
3 2 af bl
3% -

1 ] 1 1 1 1
R
v' 1
w 1
a" 1 <1
B 1
& =1
d" 1
f” -1
x' 4 (3
y' 1l1]2
. -1




The impedance tensor of the given network, ?i"', is found by the formula
' = T-ag T’
where ;p is the impedance tensor of the primitive system. If the multi-
plications are performed, the result will be fourd to be equal to the one

obtained by using the primitive network.



COMPOUND TENSORS, MULTIPLE TENSORS, AND COMPOUND COILS
Oftentimes in a set of equations such as

Tz z-,
there is a natural subdivision of the set into two or moré groups. One group
may represent those meshes having impressed voltages, the other group those
having no impressed voltages, or in the equation

i-75
all the currents may not be required, so there are two groups of currents,
one group wanted and one unwanted, In a junction network, there are often
three or four different types of junction-pairs,l ie., those across which
there are currents impressed, those which supply currents to outside loads,
and those that are inactive. The inactive ones may be further subdivided
as to those whose voltages are wanted and those whose voltages are not wanted.
This subdivision of the network cuantities is one reason for the use of com-
pound tensors, In the example to follow, the equation

g =31

28

will be divided into two invariant equations in two different ways. The method

of accomplishing this is shown below., Originally,

e !
°

E': 4 . €

&, %3, and 1 are subdivided along the heavy lines giving
2

' Ll

e'1=| °1|%

Gabriel Kron, Tensor Analysis of Networks, pp. 484~485.

1
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The two invariant ecuations are

] (] = L 1' ]
o =1 I L 0 ) ol LY |
2 leg] "2 |an| s | 2 |2 2 [eas

? 11 1
e;=531 %32 . |at] 52 ;‘s33.13

&= il 5% .
The original ecuation may now be expressed in terms ¢f compound tensors as

29
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The index, 1, represents indices 1 ard 2 and is called a compound index,
Index 2 in this parti.clmi;* case only represents index 3, but it is a compound
index ard, in general, would represent more than one irdex. The subdivision
above will be applied in another example to show how a reduction fornula may
be used to eliminate a mesh from a network.

There are other ways of sub:iivi-:iing the above equations. It might have
been divided so that
1 [

which is equivalent to

"3

This represents the equations

-l T -
% =31
-t 1 =t
25 Bk s
By following this same line of reasoning, geometric objects of higher
valence may be subdivided in many ways. Compound tensors are manipulated

analogously to ordinary tensors,* but a few precautions must be observed.

2 Ibid.’ PDe 222«221
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Operations may be performed only when the compound indices inwvolved each
represent the same fixed indices, In multiplying, the order of multiplication
of the geometric objects which compose the compound object must not be
disturbed, since matrix algebra is non-commutative. To illustrate this, the

multiplication of two campound vectors will be performed,

X|B|C| |D|E|F
and not DA £ EB £ FC .

In takdng the transpose of a compoumd tensor, the transpose of each element

AD/BE4CT

is taken in addition to interchanging rows and columns., For instance, if

X|D
C=|B|E
A|F
then
s [ERE
5 |5, [F,

In index notation, compourd tensors may be represented by some scheme
such as letting Greek letters represent all indices, letters from a to f
represent one group of fixed indices, g to k another group, and other letters
in the remainder of the alphabet the compourd imdices, each of which represents
a group of the fixed indicea.3

The compounding of tensors may be carried several degrees further. A
compound tensor may be subdivided to form a doubly compound tensor which may

again be subdivided to form a triply compound tensor and so on. The compound

3 Tbid., ppe 227-229.
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tensor

might have been divided along the heavy line to form the doubly compound

tensor

i|g
a

Zb .

8y
n

o't

This is a very simple example, but all subdivisions follow the same method
regardless of the number of elements,’

The compound tensors which have been described have the common property
that all the components are expressed along the same reference frame, Some-
times there are problems where it is convenient or necessary to use tensors
having several sets of variable indices each set of which belongs to a different
reference frame arnd may transform under a different group of transformation
tensora.S The tensor of valence four, A'mnn might conceivably be a tensor
whose indices ag transform under the group of transformations q::, while the
indices mn transform under an entirely different group of transformations,
C,":; the two sets of indices being expressed along different reference axes.
This condition occurs in tube circuits where several currents of different
frequencies may flow simultaneously, thus requiring the use of multiple
tensors, as these entities are called.6 Multiple tensors may be subdivided
just as ordinary tensors are to form compound multiple tensors.

When the equation of performance of a network is subdivided into several

5 Ibid., pp. 538-543.

6 1bid., pp. 547-549.
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equations, a fictitious network called a compourd network is sometimes used
to give a physical picture of the equat.iona.7 The voltage and current in each
compournd coil of the network are vectors while the impedance is a tensor of
valence two. Each coil represents a whole network and its reference frames
may be changed by its "individual impedance tensor" without affecting the
remainder of the netmrk.s To distinguish them from ordinary networks, the
coiia in a compound network are drawn with heavy lines, These networks may
be considered a gemeralized concept of the single line diagram used in
ordinary three-phase circuit ana.l_ysia. A single line diagram and a compound
network could be made to correspond for a given three-phase network if the

compourd coils were properly chosen.

7 Ibid., pp. 480-496.
8
Ibid.t, Ple 501-509.



REDUCTION FORMULAS

VWhen dealing with a network, it is sometimes advantageous to reduce the

number of meshes which must be considered. This is done either to reduce the

labor of computatfon, or because some of the mesh currents are not wanted.
The eliminated meshes may or may not have impressed voltages in them. The
analysis for each case differs slightly.

An example of the reduction by one of the number of meshes in a simple

network will be given and a formula will be developed which can be used for

any similar type of reduction. There will be no impressed voltage in the
Etaten Woal, TuGTL LS b Sl 0w ths RLSASALION OF Gk el 18
equivalent to a delta-wye conversion.l The elimination of more than one
mesh is equivalent to several delta-wye conversions,

Consider the eguation

e=z-1

for the performance of a mesh network., The same process applies to networks

having different numbers of meshes than the one used for the illustration

below.
er| fafv|e]d [4*
&l=|e|f]& bl - 12
e il31k}jd 1_3
ﬁ ju |n jolp ih

In terms of compound tensors, this equation may be expressed as

_ETHLE
T BlE E

which is equivalent to the two equations which follow on the next page.

[=]) |_p|l

: §
m.’ PPs 261-26&-
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8 = il £330
- - =1 - =2
0= 3Zy > 201

2

- -2
It is desired to eliminate i™ from these equations, Solving for i in the

second equation,

L, o

L 3
Substituting this expression for I~ in the first equation,

CRRE- TRl % Au s iy
or,
- — = -] = 371
01: (31“'" ‘2'3!‘. 53)‘1 @
This last equation can be written
- =t=l
=3t

where
R'=f -yt
which is the reduction formula for this case, % being the impedance tensor
of the reduced network.
The network below will be used as an example for the above discussione.
The mesh containing za, 35, an g will be eliminated.

The Original Retwork and the Assumed Reference Axes
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The Reduced Network

1
The Delta, zb, 55, 56’ Replaces the Wye, z&', 35 » sz .

e €3
' ot ' l @2 —O
7 Z, 2 1 Zy 2 1 Z3 2
64:0 85:0 e“:O
'AM/W\— -—‘/V\NV\Z -
! Z, 2 Zs Ze¢ 2

The Primitive Network
1 2 3 4 5 &

B 1z 1|1 The Equation
23 2 z, 2 |13 of

3 3 %3 3 |43 Performance
4|0 ) 4 8, ) L |14 of

5191 5 3 5 (3] e Printtive
6lo| 6 2| 6 |1 Network
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1 2" 3!
Coil Currents in Terms of i~ s 1 , and i
Old and new currents are equated to find the components of the transformation

tensor, C.

Since

oy v &~ W NN
H
I
'-l

[~
- |~
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N
1"
o
v
(]|
<l

In this instance, since there are no mutual inductances to complicate matters,
it can easily be seen how E' corresponds to the network. The expressions
along the main diagonal of Z' are the impedances around the meshes while those
off the main diagonal are the ones common to two meshes, as,
t
532 = ’6

"
which is common to the meshes in which i3‘ and i* flow. The heavy lines on

z' show that it is to be subdivided so that

1 2
El-]_'zl;fzz;lzh 2,
21 %, ’2"53"56

]

1’ .

-Z

82 4

2 26
3|

The reduction formula,



is used to eliminate the third mesh,

7"-'1:]':3l 1
mz‘{zsﬁ%
1 ] 1
1 2
g7z ' % 3g
h™ 3 sh;fss;l% sh;laS;lsf,
i v 2’
Gt ' -z 2
a4 . 1if-= 3 b 6
52_-54- 3332, - = ’4?(35’[36 “2,"“5"‘6
L6
3 2'
1! !Itz =3}, %4
- ﬁh,[ﬁs;‘lé 51.*557‘36
2" R, % ="
zh}zs,‘s() ak;lzsfzé
1 g’
2, fay f3, |z 4 % %6
1' . ;542; 5&#35;36
‘ o 3, F 2, # 3
!1 : 31 -zz-zh. Zn -

2 2
_ » 3
32‘. 35 36
1! 2'
z, # 3, z,
1' 4 B B LB 2 | L o B
) zhﬁZSizf: 247535,‘2.6
z, £ __ 24 %6 %, # B
= R z, }‘AS >z : 2 3
2 4% 57 6 # 3 3¢ f 35 %
, ah"‘ zg 4 zg,




The tensor at the bottom of the preceding page is the impedance tensor of

the reduced network. It is also equal to

1 2
] 1 ]
2. 2 # %y £ 26 £ z, 2y # Zg
] ) 1 1
2 z5 # 35 Z, # zg # g # z, |
where
24' - L5 Z¢
z # 3 » 2
] L3 2
Z; = )
3, £ 55 e 3¢
261 - Z 56 .

These are the equations which convert the delta, ZA? zs, 26’ to the wye,

¥ 1 1
%, 5 B s 56 .

As an additional check, the impedance tensor of the reduced network will

be determined directly from the primitive network in order to see if it

equals the one found by using the reduction formula.

The Reduced Network and Its Coil Currents
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The Impedance Tensor of the Primitive Reduced Network

Equating old and new currents to determine the transformation tensor,

3! 2'
3 | L]
E'-E.a-ﬁ-l 31#52#35""6 33 # s
- e ¥

2 ’2"’5' 52,52;_,‘ sh';lzj'

The above tensor equals the one found by using the reduction formula.

3ince the iilustration just given was a simple one, it could have been
solved more easily by conventional methods., However, if there were perhaps
twelve or more meshes, the use of the reduction formula would prove quite
a labor saver, In such cases, it is usually most convenient to eliminate
three rows and columns of the impedance matrix in one operation because the
determinant of a three rowed matrix can be easily found. OSuccessive elimi-

nations can be performed until the desired number of meshes have been



eliminated.

The use of tensor methods for determining the impedance between two points
of a network involves the elimination of several meshes. An additional mesh
is introduced by assuming a voltage across the two points between which the
impedance is to be measured, and assuming an additional current in this extra
branch. If all the rows and colurmns of z except the additional one are
eliminated, the scalar that remains is the impedance between the two points,



USE OF THE SECUEKCE TENSOR
The impedance teasors of three-~phase networks and machines sometimes
assume simpler forms when expressed along other reference frames than the phase
axes. The other reference frames most used are the so-called sequence axes.
To transform from the phase axes to the sequence axes, a tensor, which is
really a spinor, or Hermitian tensor since some of its components are complex,
called the sequence tensor, Ugy is useds It equals

r.g._l-..-g-

#

a:-—%;‘j.ﬁﬁgcw

1
lla]a

a® = <L - 3,866 = 2%°
2

The three rows of the sequence tensor are the sequence operators used in the
theory of symmetrical components. It should be noted that

1;‘&{&2=0

a? =1

8“.-,8.
The symbol, C » means, "the conjugate of G", which is G with each element
replaced by its conjugate. |

i
T
a | a2 -_-Es;l

a.za

S

a
-t
C :ﬁ.b
8

c

The letters a, b, and ¢ represent the phase axes and the numbers 0, 1, and 2




are the seocuence axes, The phase currents in terms of the sequence currents

are

f=¥f¢ﬁ¢3)

P 11%£ 212 £a 1D

c

1°-1(%4att pa24¥ 1

Wik W

The transformation formulas of spinors differ slightly from those of
tensurs, Usually the only difference, when there is any, is that wherever
C, occurs it is replaced by Cy. In index notation, indices to be trans-
formed by some form of C* are written with a bar over then, as 2gg and are
called barred 11:11003.2 The indices of a spinor are called spin indices,
those of a tensor, tensor indices.3

To demonstrate the use of the sequence tensor and the use of compourd
coils, the network shown in Fig, 1 consisting of a star, or wye, comnected

to a delta will be used.

3 Cabriel Kron, Tensor Analysis of Networks, p. 328.

2
Ibid., FPs 345=349.
3 Ibid., pp. 349-353.
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The compound network is shown in Fig. 2.

F.’Lg- 2
In using compound networks, a transformation tensor, the junction tensor

must be used when some three-phase apparatus are connected to the line.
For this network, the junction tensor EA is used to comnnect the delta to the
star. Whenever the current undergoes a transformation as it enters a com=
pound coil, crosses are put on the leads to the coil and the value of the
current in the coil is indicated.

The junction tensor of the delta expressed along the phase axes is
obtained in a manner similar to that of finding the transformation tensor

of any other network.




From Fig. 3,

The coefficients of primed currents form the components of the junction

tensor,

e

G=2|-1 1

311 | -1

The Junction Tensor
The components of EA along the sequence axes are found by the transformation

formula

] U t ] t ]

1 2 3 1 2 3 i 2 g_
oL 11 : 5 4 | =l 0 4] 0
ca'co=é“‘ a|a 2| -1 1 :&1 a8 -a|l-a |a«l
2
2l1 [a%|a | 3|1 | 2|a<a®1-a|a®
' 2" ' 0 1 2
oo 0 g’ 1IN
- - 2
C1GC.T :él a -a 1-4:.2 a-<1|12"1 aza
3 & s 4
ZJa-az 1l -a 32- 311] a a2|
0 1 2
Q 0 0 0

.

=§1 az-nfl-az{a—l az-a.;‘az-a;laa—a a-afa-l41
2

a-az;il-a,laz-l a—az,laz—l;fl-a a-az;la-az,la.-az

After cancelling and collecting terms,
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G‘snl

2

In the compound network of Fig. 2,

o 1 2
0 0 0
0 az - 8a 0
0 0 a- a.2
o t
11 - L
2 = <1
i : cb!i L ]

L7

The transformation tensor of the network is, from the preceding two equations,

1

2

2=

The impedance tensor of the network is

where

Along the phase axes,

S
5

1
.

'\g'll

13
=

N+l




b 5 6 1 2' 3
2 5[ % | 4 =
— L
g;‘ 22'36' - 2l 3, -z -1 1
3 -3, | %5 6|1]-1
. 2' 3'
1l g # 34 -%4, ~%g
=2 | -5 |3, ¢%]| -3,
1
3 ~% = 4 & 55
Ly
L
1' 2 # 5 * s 5, =,
il,i EA 2 -g¢ 52"31,"56 -2,
L
3 = -3, 34 4 3, A :5

3ince the networks are similar, this tensor is quite similar to that for the
network in the previous example.
To find the impedance tensor along the secuence axes, the procedure is

repeated. Expressing phase currents in terms of sequence currents,

2 -
K  a— b 8 # _ -
z,=Cp 2T |G* Gst’ B2 5" Cot 8°Cs # 8 v % G
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ast.'sz as - e 35

2 (az -32) 2

&

0 1l 2

- (a -az) (32 -a) B,

2 (a{-—a) (a —az) %

6

2 3
3

W

2| 8%y

a’z4],

3zg

031,152}:3 51;‘&252,‘323

=1 sl;‘azz,‘azz,a 51,152{33

2 zl,lazsz;lazz slffuszazss

12

Q
8 A3y F e, [m #

aza%az,;

L

5 # az, # a.zal

ﬁr‘zzr‘sarf%s

N +H O

8 # 3%, £ asy

u £ as £ a3,

If the star and delta are balanced, that is, if

and %, =%, =%, =%

then is' reduces to the diagonal matrix

49
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] %,
1 &, e BnB
= 3, # 33,

which is much easier to manipulate than the corresponding tensor expressed
along the phase axes, This is one of the main reasons for the use of the

sequence tensor.



THE APPLICATION OF TENSOR AFALYSIS TO TUBE CIRCUITS

When, as is often the case, there are only small variations of voltage
in a tube circuit, the tube may be considered a linear circuit element and
the method of network analysis previously described may be applied. The
condition of small voltage variation occurs mainly in amplifiers and oscile-
lators. Other types of circuits such as modulators and rectifiers make use
of the non-linear properties of the tube,

Since most tube circuits have fewer junction pairs than meshes, they are
usually treated as junction networks. The filament or cathode serves as a
common lead from which the various "coils" of the tube, which are the elec~
tron paths from the erdtter to the grids and plate, branch. Using this

scheme, a tetrode would be represented as shown in PFig,. h.l

g; 91. P

Fig. 4
Analytically, no distinction is made between the grids and the plate.

Suppose a change of woltage,

W
\_a b c
QEu - ﬁE& AEb AEG AE l

occurs on the grids, a, b, amd ¢, and the plate, p, of a pentode. Neglecting

the curvature of the static characteristic curve, the changes in current are,2

1 Gabriel Kron, Tensor Analvsis of Hetworks, p. 379.
2
Ibg.’ Pe 381-



ar* = gl'AE ;‘ :‘gl‘AE. t‘%ﬁl:hﬂp

g
ouk ok alt
: “p

AIP_uPaE #11 :‘a.m ,taagpaa

Note that the vector I' has been differentiated with respect to the vector
E « The question 1say be asked metherg_ is a tensor. The answer is in
the affirmative so long as the components of c,,., the transformation tensor,
gt perem— Otherwise, the concept of absolute, or covariant, differen—
tiation must be introduced. To illustrate, let
ol D
u!
E, = G Eues
and it follows that,
3 JaD, = sy T R L
95, AC E ) 3Gy By oley &)
Sincathmisanextmtminthelashupmsion,afdoesmt transform
as a tensor., llowever, if the camponents of Cgl are conut.ants, then

_gao,
S T T

1" = 1" e

9k, 9E,,
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which agrees with the characteristic transformation formula of a tensor.
The four ecuations for current change can be written
A =1vaxg,
where

Y is called the admittance tensor of the tube. Defining the various
amplification factors and resistances of the tube in the conventional manner,
the admittance tensor of a pentode is°

F Bﬂrv o
& [ooft”" e [

B
8

i
TEEEEE |+
3 Bole' b € Bt [

g Eu' g Ecr
gk

Qaitting the row and column, ¢, the admittance tensor of a tetrode 134

o

)
B8 ' [o

1]

R SR |
< SR R |

3 Did., p. 386.
L
Ibid., p. 387



where g is the plate amplification factor, <y the grid amplification factor,
M the cross amplification factor. The admittance tensor of a triode is
fourd by omitting rows and columns b and ¢ from the admittance tensor of a

pentode. Itiss
P B
R B = i ol
e gl 8|~ [P PP
P - )
o ot
P| p

If the grid current of a triode is zero, 'rg is infinite and

T

P a2l L
r r
gl p

2

Similarly, when no grid current flows in a tetrode,

8 b__p

af[o O O

Y '-blo |o|o
Plpa |Bb) L

r r

P P p

The impedance tensor and transformation tensor of a circuit containing
tubes can be set up in the manner of any Jjunction network, the tube adding
two or more axes to the tensors., Also it may be added that the tube net-
work and the remainder of the network may be separated, analyzed and recom-
bined,

° Ibid., p. 387.
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To find the amplification of an amplifier, the ratio of the change in
output voltage to the corresponding change in input wvoltage is recuired. To
find this, the reduction formulas are used to eliminate all but the input and

output axes of 1". This leaves two equations

™ - Y5, £ Yan,

From the last ecuation,

which is the desired ratio.
One method for determining the conditions necessary for a junction net-—
work to be oscillatory is to consider the equation
I-¥E
£-vir.°
If there are no lmpressed currents, then

I=0.
The inverse of Y is a matrix whose elements are cofactors of Y divided by
the determinant of Y, that is,

.5,
D
In order for E not to be zero when I ecuals zero,
1349
D
which can be true only if
D=0,

Therefore, if the determinant of the admittance tensor is gzero, the network is

6 m-’ PDe 399"'@0



56

oscillatory. By using the equation,
D=0,
the necessary relations between circuit components for oscillation may be

determined.
When it happens that a tube circuit has fewer meshes than junction pairs,

it is advantageous to treat it as a mesh network. The tube's impedance
tensor is found by taking the inverse of its admittance tensor. The imped-

ance tensor of a tetrode is

a b P
all-pmbub Mbva -1a Ma®b -7a
rbrpD rarpD rarbD
o T b|pa?b -7Nb|l - jray/a Abva -Ub
& Ty D rr rgr D
P a P
P |hbpb —pajpafa —pb | 1 ~Nanb
rbrpD rarpD rarpD
where
D=1l/paMavh -¥a) /PbMbVa ~Vb) -YaMb
rarbrp

The impedance tensor of a triode is

g P
gl —& | Perp
an: 1—ngp l-PpHg

P -pp Mo Ty
1l -pgpp |l -pgpp

The value of the grid current in a triode is usually not required and is

often equal to zero, so the axes g in the impedance tensor of the triode may

be eliminated by using the reduction formula

o S .
Z =zl-52°-z-1,'33'

Applying this reduction formula,
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t

l1-ppMg l-ppug r, l-pope (1 -pppe)
The grid coil of the triode may be omitted by changing the self-impedance of

the plate coil from ___Tp _ to r.
1 -pppg
If there is a wvoltage, e 2 impressed in series with the grid coil, or if there

is a difference of potential, eg, across it, then the equivalent impressed

voltage on the plate coil is found by the reduction formula

=5 -nts

and it follows that

'
e =ze =(_=pppe)(l -Mpugle =e Fpupe .
If a more exact analysis of a vacuum tube circuit is required, one or
two more terms in the series expansion of AI" may be used,’ giving
u AAVW, o o uvwz v
A1V - Y'BE, £ KB, £ D"AE LK E, .

Yuv’ the admittance tensor, is also called the amplification tensor.

235,  200E,3E,

is called the modulation tensor, and is 2 tensor of valence three. For a
tetrode it consists of three two-matrices, one of which is

a b P

N e ATy
PR LA
= . ]
-%b%&f” a'sfb 5
5| ac | aer
13| % .

7 Tvid., pp. 547-56ks

T =r, = p__ - _mpug (Q-ppue)(_pe¥p J)=r(Q-Popg)=r

P



The other two matrices, M°V¥, and ¥PYW are similar in form to ¥*"Y, When no
grid currents flow, ¥ and M®'¥ are zero. The tensor D™ s of valence

four and is called the distortion tenuor.

DUVWE _ %uw 33 u
3 3!93@157 3'-“"’@%
For a pentode, the distortion tensor consists of sixteen ftwo-matrices,. each

having four rows and four colurms. In general, where n is the range of one
of its indices, it can be represented as n? matrices, each matrix having n2

components.

58
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PRACTICAL EXAMFLES
As an example of how the reduced form of the triode impedance tensor
may be applied, the basic circuit of the cathode-follower type of amplifier

will be analyzed. Its circuit is shown in Fig. 5

Fige 5
The reduced network of this circuit is shown in Fig. 6. The tube is replaced

by 1, in series with a voltage plg.

rP
Input
Voltage %, Output
Voltage
L=% =57
Fig. 6
lbincllﬁoarandwoutddchud. By inspection, the input voltage equals
Eg £ ZII13 5,

Since
i = pa ’
P ﬁ

the input voltage also equals



’ 2
%f%&%“
Ipzb'-Lﬁ——rpE -

Amplification equals output wvoltage divided by input voltage

'
e

rpEé;‘Eg:bprglb
"p;.'b

The output voltage equals

1

_ﬁlu;w%
The circuit of the Hartley oscillator showm in Fig. 7 will be analyzed
to determine its frequency of oscillaticn from the formula for its criterion

of oscillation,
—— V' Yn
IO —
RN
I

C"Y”

Fig. 7
i

Herbert J. Reich, Theory and Applications of Electron Iubes, p. 166.
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The values of the various admittances in terms of imped.e.nces are given below,
' M. - -
21125, = (Xp2) 1'112" )wlLl:e-iz)

Yzz = znszzzf (112)2 . w‘(Lan xg}-{z) sz.l L Hz)-

Y12 = -xLZ . Jwh - I-.ﬂi n
T - ) —wilalz - B) T G(Lis S H)

M is the mutual inductance between Ll and 1'2"

Y33 - :jwc

In Fig. 8, the network is redrawn, the tube being replaced by a grid coil and

a plate coil., Assumed junction-pair voltages and coil voltages are shown.

!
Fig. 8
There are three junctions and one sub-network so there are two junction pairs.

Assumed junction pairs are shown in Fig. 9
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(ld and new voltages across each coil are equated in order to find the trans-

2
formation tensor.

B=- :
EazkEy
Bzh 4B
Eg:—El'
EP=E2'

The components of A, the transformation tensor, are obtained from the coef-
ficients of the new voltages,

1’3
1l1|=1
2 1
=31 |1
gl=1
P 1
Assuming that no grid current flows, the admittance tensor of the primitive
network is 1 2 3 g p
1| |2
2| 2|~
-3 ¥
g 010
P cPe| PP
The transformation formila for the admittance tensor, where A equals E‘;"l, is
A "t-'f-ﬁ .

2
Gabriel Kron, Tepsor Analvsis of Networks, ppe 357-374.
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1 2 3 g p 1|2l ‘ 1' 2
1| |2 1|1 1| v o2
2 | 2| 2| || 2|2 o2
Tiz 3 r L 3| 1[3]=s[2 [
4 |10 |0 gl=1 _-_gIO 0
P qu P 1 P -GP9| PP
1] L ] H
ﬁx,,-m. 'SraER [ 7 -rﬁ,tzi'ﬂ
T (2] 1| 2|22 ¥2| w2 [<12 £ P33 P | YR £ ¥33 4 PP

3|¥33 |33
gl9 0
p | =GP9| oPP

This product is the adrmittance tensor of the oscillator. If the circuit is
to oscillate, the determinant of T must be ecual to zerc. Therefore,
(L £ BB)(PR 4 Y3 4 0P) = (TR A IO £ B3 = PY =0
Expanding,
YR AT AP £ PR (93)2 £ PP - () 4 PR
PP 4 P32 - (B3R f P@s 0
| Substituting the admittance wvalues into this ecuation,

Gl, F LT - L fmd ¥
FOL =) LI~ il -7 L7 T WG 40

""f“?" . A_IC _ Fak =0

L, =¥ rﬂﬂ(ﬁé-ﬂ“) hi;-ﬁ T,

Since the sum of the real and imaginary parts is equal to sero, both real am
" imaginary parts must be equal to zero. Wmmmmm

Jaﬁ%*qhm*'iﬂuﬁufm xfw ‘ii-‘v‘“

Nultiplying through by wi(l,L, - %),




-1.1L2,¢u2(tl,41,2,421~{)c,¢}12.0
- -
it

HI‘LZ?‘ZH-.-L’

which is the total inductance of the coil, so,

w =EL2“HZ

10

For a given ]'.1, Lz, ¥, and C, this is the theoretical frecuency of oscillation,



CONCLUSIONS
Tensor analysis is a comparitively new engineering tool. Only in the
last fifteen years has it been applied to electrical engineering, In that
time, there have been applications to such diverse electrical engineering
subjects as electrical rbtating machinery, linear networks, vacuum tube
circuits, transformers, and gaseous rectifiers.

The point of view introduced by tensor analysis is helpful to the
engineer in allowing him to solve his problems with a minimm of analysis
for each individual problem. Its organized methods sometimes save labor on
complicated problems or allow the solution of problems which are so complex
that ordinary modes of solution fail.

This thesis has covered a very limited portion of the field in which
tensor analysis is applicable. However, it may help to give some idea of
the nature of tensor analysis and some aspects of its application to elec-
trical networks to those who do not wish to do a great deal of reading on
the subject. Enough material is included to give the reader a working know-
ledge of the solution of mesh networks by the tensorial method. The thesis
may also dispel some of the fears of those who have the erroneocus belief
that tensor analysis is too esoteric for the average engineer.
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