HYPERFINE SPLITTING OF THE $3^{2} S_{\frac{1}{2}}$ ENERGY LEVEL OF SODIUM FROM INTERFERENCE FRINGE RADII MEASUREMENTS

By
HAROLD J. MARTIM
Bachelor of Science
Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma
1848
WTLLIATE H. BRUDACE
Bachelor of Science
Oklahome Agricultural and Rechanical College Stillwater, Oklahoma
1948

Submitted to the Deportment of Physics Oklahora Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MABTER OF SCIEACE

Preface

The yellow doublet, $D_{1}-D_{2}$, in the sodium spectrua con be resolved to show a hyperfine structure of ten lines. The hyperfine components of both D_{1} and D_{2} war separated into two groups by the double nature of the $3^{2} S_{2}$ energy level. The splitting of this level is caused by the interaction of nuclear megnetic moment with the total magnetic moment of the valence electron. The interaction energy is proportional to the wave nuaber difference of the two major groups of hyperfine lines of either D line. The purpose of this thesis is to demonstrate a method by which the above rentioned wave number difference can be obtained from measurements of the radif of interference fringes.

ACKIOMLTDGETETM

The authore wish to express their appreciation to professor Sherman . Eeger for his aid in procuxine photographic materials and apparatus; Dr. Alvin V. Bershine for his invaluable supervisory aid and advice in comection with the experinental work and the mriting of this paper; Dx. P. A. Riedel for his cid with the photographic procedure; and to Dr. H. A. Fisher for the opm portunity to use the reduction formules devised under his direction by his students at Dorthrestern \quad niversity.

TABLE OF CONTEMTS

Esge
Introduction 2
Sande Intervel Fule 3
Chapter I
Muclear Interaction with One Valence Electron 5
Theoretical Computations 9
Chapter II
Iastrumentation for the study of Hyperfine Structure 11
The Fabry-Ferot Interferometer 15
Chaptar III
Experimental procedures 21
Measurements 25
Deta 26
Experinental Results 29
Concluding Remexks 30
Bibliography 32

IMRODUCTION

A small prism spectrometer reveals a single yellow line in the sodium spectrum. An instrument of higher resolving power, however, shows this line to be a doublet. This complexity is generally referred to as fine structure. This doublet can be explained in terms of the three quantum numbers, s, i, and j. The quantur number s is obtained by giving the velence electron a spin of one-halif a quantun unft of anguler momentum $s^{*} h / 2 \pi$. ${ }^{1}$ The quentum number I is associated with the orbital angular momentum given by $1^{*} h / 2 \pi$. The resultant $j^{*} h / 2 \pi$ is obtained by adding vectorially the spin angular momentum to the orbital angular momentum. ${ }^{2}$ The quantum number j is associated with this resultant. The sodium doublet is governed by the selection rule that $\Delta J= \pm 1$ or 0 , and is shown by Figure 1 .

Figure 1

1 Harvey E. Witite, Introduction to Atomic Epectra, pp. 121. ${ }^{2}$ Ibid., pp. 125.

Howerex, when the D zines of souinn are exmined with a Pabrymerot internometer, all of the ottarable spectul lines can rot be expletned by these three quentra moubers. forli ${ }^{3}$ ins Ehow that these Ines couk be explained by the introduction of a small maghetre monent assoctated with the moclous. This megm netic sament could be associated with a mechanical monont whose megnitude mill be given by $I \mathrm{H} / \mathrm{Er}$. I is a nev quentwn number colled the nuelear spin quantuander. The vector model Ror byporine sigucture is shoma in figure $\%$

pigure 2
The vector F^{*} is the vector sum of I^{*} ana \dot{d}^{*}. \bar{y} is the resuito ant quantum nuber end is in xeality the totel argolar momentur quentran nuber for the whole atom. The f^{*} vectar and the I^{*} Wector whl precess around the resultat F^{*} vector juat as $1^{\text {th }}$ and s^{*} precess around $j^{*} .4$ The hyperine structure pettern of a line is goveraed by tho sclection princtple that $\Delta t=1$ or 0 , excinding $(0 \rightarrow 0) .5$ Eigure 3 shows this rule for the hyperine
(2, Rau1, Matureissengchaten, XII (1084): MA1.
AR. C. Johnson, Atonic spectre, pp. 74.
5 ghite, pu. cit., pl. 354 .
structure of the sodim 0 lines where I is equan to threenalyes.

Gounmit and Dack heve shoma thet the interaction caerey be ween the auchear monen and the electron mone is given by

From tiguse 2 it is sem that

$$
\left.I^{*} J^{*} \cos \left(2^{*}\right)^{*}\right)=\frac{F^{2}-T^{2}-J^{2} 8}{2} .
$$

Therepore, mo obtar

$$
T_{E}=\frac{7}{2} A^{8}\left(T^{2} 2-I^{2} 2-d^{2} 2\right) .
$$

A vector dagmen rich hlustrates erahically tho interval rale poz the a_{s} levele in sodim for an selectron thth 1 equal to zoro, is soom in Figumo A.

6 mite, op git. pp. BEA.

3240\% A

 60°

CHAPTER I

WUCTEAR THERACRIOE WTRT ORE VATBNCE ETECTROD 1

The interaction of an clectron with the nucleus nay be diviced into tro parts: (1) Interaction of the orbital motion $1^{\text {\% }}$ With the nuclear spin I^{*}, and (2) the interaction of the electron spin s^{*} with I^{*}.

According to the clesstcal electromagnetic theory the electric field at the nucleus due to the electron at a distance is given by

$$
E=\left(e / r^{3}\right) r
$$

The magnetic field at the nucleus due to the orbital motion of the electron is

$$
H=\frac{E X V}{c}
$$

Bohr's relation for the angular momentum is

$$
\pi x v=\frac{\frac{1}{}_{*} h}{2 \pi}
$$

Therefore,

$$
H=\frac{e(x x v)}{r^{3} c}=\frac{e}{r^{3}} \frac{2^{3} h}{2 \pi \mathrm{mc}}
$$

(m) and (e) are the moss and charge on the electron and r is the distance between the nucleus and the electron. Because is not constant, the quantity $\left(1 / r^{3}\right)$ must be averased. I. Maller ${ }^{2}$ gives

[^0]$$
\overline{\left(1 / x^{3}\right)}=\frac{2^{3}}{a_{0}^{3} n^{3} 1\left(2-\frac{3}{2}\right)(1-1)}
$$

The ancleus with a mechanical moment $I^{4} \mathrm{n} / 2 \mathrm{~F}$ and macnetie moment H_{I} tends to carry out o Laror precession around this field with an angular velocity w, which is the product of the field strength and the ratio between the magnetic moment and the mechanical moment of the nucleus. For this ratio we obtain

$$
\frac{M_{I}}{I^{*} h_{h} / 2 \pi}=E_{I}(e / 2 m c)
$$

The quantity e/eme is the classical ratio and gr is called the nuclear $\%$ factor. Then

$$
M=G_{I} \frac{e^{2}}{\operatorname{mn}^{2} c^{2}} \frac{I^{2} h}{2 \pi}\left(\overline{1 / x^{3}}\right)
$$

The interaction energy is given by the product of wad the projection of $x^{*} \mathrm{~L} / \mathrm{E}$ on I^{*},

$$
\left.W_{I, I}=\varepsilon_{I}\left(e^{2} / 2 n^{2} c^{2}\right)\left(1^{2} / 2 \pi\right)\left(\overline{1 / r^{3}}\right)\left(I^{2} h / E \pi\right) \overline{\cos \left(I^{2} I^{2}\right.}\right)
$$

Since I^{*} and j^{*} precess around F^{*}, and I^{*} precesses around j^{*}, $\cos \left(I^{2} \sum^{*}\right)$ must be averaged. I^{*} precesses around j^{*} much facter than I^{*} and j^{*} precess around r^{*}. We may then project 1^{*} on j^{*}, then j^{*} on I^{*}. We then obtain ${ }^{3}$

$$
\overline{\cos \left(I^{*} I^{*}\right)}=\cos \left(I^{3} j^{*}\right) \cos \left(1^{*} j^{*}\right) .
$$

Therefore

$$
M_{2}=I_{I}\left(e^{2} / m^{2} c^{2}\right)\left(1^{*} h / 2 \pi\right)\left(\overline{2} / x^{2}\right)\left(I^{*} h / 2 n\right) \cos \left(I^{3} j^{*}\right) \cos \left(1^{*} j^{*}\right) .
$$

3 White, op. cit. pp. 359 .

The mutwal energy of two megetic aipoles with nonents Wi and is and distance r apart is equal to

$$
I_{q S}=\left(M_{I} M_{S} / x^{3}\right)\left\{\cos \left(M_{I} M_{S}\right) n \operatorname{sos}\left(M_{I} r\right) \cos \left(M_{S} r\right)\right\}
$$

The megnetic moment of the spinning electron is

$$
H_{s}=-2(\epsilon / 2 \mathrm{nc})\left(s^{*} \mathrm{~h} / 2 \pi\right)
$$

The nuclear magnetic moment is given by

$$
H_{I}=E_{I}(e / 2 m c)\left(I^{2} h / 2 n\right)
$$

By the use of the direction cosines Pauling and coudsnit have Show that the value of the term in the braces is equal to

$$
-\frac{z^{2}}{\cos \left(I^{*} j^{*}\right)}\left\{\cos \left(j^{*} \mathrm{~s}^{*}\right)-3 \cos \left(j^{\left.\omega^{*} 1^{*}\right)} \cos \left(\mathrm{s}^{*} \mathrm{~m}^{\prime \prime}\right)\right\} .\right.
$$

Therefore

$$
\begin{aligned}
& \left\{\cos \left(y^{*} s^{*}\right)-3 \cos \left(j^{*} 工^{*}\right) \cos \left(s^{*} I^{*}\right)\right\} \quad \text {. }
\end{aligned}
$$

She total interaction for the syin and orbit becomes
where

$$
\begin{aligned}
a^{\prime}=\varepsilon_{I}\left(e^{2} h^{2} / 8 \pi^{2} m^{2} c^{2}\right)\left(1 / r^{2}\right) & \left\{\left(1^{2} / j^{2}\right) \cos \left(1^{*} j^{2}\right)+\left(s^{*} / \varepsilon^{*}\right) \cos \left(s^{2} j^{2}\right)\right. \\
& \left.-\left(3 s^{2} / 2 j^{*}\right) \cos \left(j^{*} 1^{*}\right) \cos \left(s^{*} 1^{3}\right)\right\}
\end{aligned}
$$

5 Pauling and Goudsint, The Structure of Line Snectre, pp. 206.

Substituting the value

$$
\overline{\left(1 / 1^{3}\right)}=\frac{2^{3}}{3_{0}^{3} n^{3} 1(1-1)(1-1)}
$$

Into the preceding fommar, we obtain

$$
a^{4}=\varepsilon_{I} \frac{z^{3}}{n^{3} 1\left(1-\frac{2}{2}\right)(1-1)} \frac{e^{2_{1} 2}}{8 a_{0}^{3} n_{m}^{2} c^{2}}\{ \}
$$

Letting

$$
R=\frac{2 \pi^{2} e^{4}}{c^{3}}, \quad \delta^{2}=\frac{4 \pi^{2} e^{4}}{h^{2} c^{2}}, \quad a_{0}=\frac{h^{2}}{4 \pi^{2} e^{2}}
$$

then

$$
a^{2}=g_{1} \frac{\operatorname{Rhc} q^{2} Z^{3}}{n^{3} 1(1-1)(1-1)}
$$

Goudsmit hes shomn that the value of the tems in the bracket could be replaced by $1^{* 2} / j^{* 2}$.

Then

$$
\begin{gathered}
a^{1}=G_{I} \frac{\operatorname{Rhc} \varepsilon^{2} Z^{3}}{n^{3}\left(1-\frac{y}{2}\right) j(j-1)} \\
a^{1}=E_{I} \frac{F q^{2} Z^{3}}{n^{3}\left(1-\frac{1}{2}\right) j(j-1)} \mathrm{cm}^{\sim}
\end{gathered}
$$

The nuelear factor g is given by the ratio between the nuclear magnetic moment in Bohr magnetons (eh/4nme) and the mechanical monent Therefore if E_{I} is to be expressed in nuclear magnetons (eh/4rife) then EI must be alviced by 1838, then ${ }^{7}$

6 Ibia., pp. 225.
7 Thite, op. cit. pp. 261.

$$
a^{\prime}=\frac{S_{E}}{1838 n^{3}\left(1-\frac{1}{2}\right) j(d-1)} \operatorname{cn}_{Z}^{-}
$$

z^{3} is broken up into two parts z_{i} and z_{0}^{2} where z_{i} is the effec. tive nuclear charge inside the closed electron shell and z_{0} the effective nuclear charee outside. ${ }^{8}$ This eives

$$
a^{t}=\frac{6 I}{2880} \frac{R a^{2} Z_{2} Z_{0}^{2}}{n_{0}^{3}\left(1-\frac{2}{2}\right) j(j-1)} .
$$

Ereit ${ }^{9}$ has shom that relativity corrections are different for two levels of a doublet and must be talen into account. This correction is obtained by multiplying a' by k, there

$$
\underline{L}=\frac{\Delta j(j-2)(j-1)}{\left(\Delta p^{2}-1\right) p}, \quad p^{2}=\left(j-\frac{z}{2}\right)^{2}-\left(\left\{z_{1}\right)^{2} .\right.
$$

THEORYICAL COMPJATEOUS

For s electrons 1 is equal to zero and j is equal to onehalf, therefore, the new value of at is given by

$$
a^{\prime}=\left(E_{I} / 1888\right)\left(8 R q^{2} Z_{i} z_{0}^{2} / 3 n_{0}^{3}\right) k
$$

z_{i} is equal to z ror s electrons and z_{0} is equal to one for an alkali atom. A is equel to $109754 \mathrm{~cm}^{-1}$ and n_{0} equals 1.627 .10 q 2 is given by 5.305×10^{-5} and EI equals 1.4. Eubstituting
${ }^{8}$ Ibid., pp. 361.
9 G. Rreit, see Goudsait, physical Review, XIIII (1933), 636. 10 white, pe cit., pp. 90.

 value cat the above velues me find that k is equal to $1.0128 e 65$.
 to 0.050550.
mecrang to tigure a , we see that the E_{S} soperation is
 Substituting the this formala thet fox equal to two and then

 seprathon is $0.061118 \mathrm{~cm}^{-1}$.

Observation of the hyperfine structure of spectra requires instmonts which are capable of high resolution. The term resolation refers generally to the ability of an optical instrument to separate two closely situated ineges. Interferometers are the chief instruments for resolving hyperfine structure. The one most comonly used is some modifjcation of the parallel plate or Fabry-Ferot type. Powerful as this instrument is, the over-all resolution obtainable with any experimentel arrangemeat is limited by other factors. The origin of line spectra is in general a complex process and several fectors influcnce the form of the "lines" in emission. The phenomena of hyperfine structure are mentested by extrenely minute effects, and considerable attention must be directed to instrumentation in order that such effects thay be detected.

The factors which, at the radiation source, affect the Widh and form of spectral lines must especially be talsen into account in the stady of hyperfine structure. A group of such factors is the following: 1,2

1. Netural wiath.
E. Doppler effect.
2. Pressure broadening.
3. Absorption.
4. Stark effect.
[^1]The pirst of these is an intrinsic property of the atoms. anis natural midth exises from the fact that the energy levels with In the "average" atom are not too sharply defined, but are of finite ridth. It is to be expected, then, that a suectral line mill have a finite wiath corresponding to the sum of the finite Fidths of the energy levels involved in its formetion. since the spectroscopist deals with collections of atoms and not with individual atoms, this Ine midh is inescepable; hence, the tems "average" atom and "natural" vidth.

The Doppler effect exercises perhaps the largest influence on the breadth of spectral lines. The Doppler spread is a consequence of the randon themal motions of the radiating atoms. Atoms moving with velocity component (u) tovard or away from the observer emit radiation which, because of the Doppler effect, would appear to be of frequency $v+d v a n d v-d v ~ r e s p e c t i v e l y$, Where, $d v=u v_{0} / c ; v_{0}$ being the radiation frequency of an atom for mhich (u) is zero, and (c) the velocity of light. 3 the net result is a statistical broadening of the spectral lines axd is a fronction of temperature and the mass of the atom.

Pressure broadening of lines results from the pertarbing effects of neighboring atoms of molecules on the energy states of the radiating atom. The degree of perturbetion depends on the nature of the porturbing perticle, i.e., the perticle may be charged or uncharged, like or whike the radiating atom. The perturbation effects depend also on the closezess of

3 Tolansiry, op. cit., pp. 6.
approach of the particles, ond, bence on the temperature and density of the gas in which the radiating atom is located. This tye of broadening may be reanced by use of sources in Which the gas pressure and current density are maintained at low values.

The emission of a radiating atom any be absorbed by nonradiating atoms which surround it. This absorption may cause serious wideaing of spectral lines; especially in the case of resonance lines. The tendency for absorption is a maximu for the frequency of greatest intensity, i.e., at the center of the line. If the source is extensive or of high density, the center-line range of frequencies may be entirely absorbed and not observable. This phenomenon, knom as self-reversal, results in the fometion of a folse "structure". For example, if the absorption at the center of a line is nearly complete, the Line may appear to be a doublet, wich, in reality, it is not.

The Etark effect, i.e., the interaction of a strone external electrical field with the raiating atoms, broadens the lines in that it iniiates aditional quantized splitting of the energy levels. The effect is more deleterious if the extemal field is non-unifom. In this case, radiating atoms in different parts of the fiela are variously affected, and the result is a "smeared" Staris broadening.

The above discussion on the factors which influence the form of spectral lines may be applied directly to the images obtained by interference methoas. The spectral "lines" of the Interferometer are then called frinces.

 sectioned aquaras.

The breadth of thac le destanted by the whomidth (b) Which is the dutwne between tro oints where the intenetty is anembin of the mextmon intenaizy.

Fie. G.-wrane bowble mat Tecked mountet
If the halfomiths of the dovbet comonents sprobches on
 detected.

Whe onth curve represents the Iine as enttted. Whe dask eunvos mbor the chects of aboumption. Mote the Increase in enpective whemidth cased w absomption the fometron of
a spuxious structure, when absorption at the center of the line is excessive, is also indicated.

The width of spectral lines or fringes can be controlled to a remarable oxtent by the proper design and operation of the lisht sonse. The guthors of this paper wore, however, linited to the use of an are-trpe source. With the arc source both the Doppler effect and pressure broadening are reletively lerge. For exampe a quantitative indication of the megnitude of the Doppler effect alone may be calculated from the following expression. 4

$$
\begin{aligned}
& \text { Malf-Wath }=.71 \times 10^{-6}(\mathrm{~T} / \mathrm{n})^{9} \mathrm{v} \mathrm{~cm} .^{-1} \\
& \text { where, } \quad I=\text { Absolute temperature } \\
& \text { in Atomic weight } \\
& v=\text { Frequency in mave numbers }
\end{aligned}
$$

Por Sodium at $500^{\circ} \mathrm{Abs}$., a relatively low value, the above form mula yields a half-width of $.056 \mathrm{~cm}^{-1}$ or . OE Angstron wits. This value is of the same order of megnitude as the seperation of the hyperfine structure components of one of the sodiva D Ines. The properties of the are, thas, may Leave mach to be desired in connection with the sherpness of its lines.

The Fabry-Perot Interferoneter

This instrunent consists of two planemanallel gless plates with adjecent suriaces coated with a pertially transparent film of metal which has a high coefficient of reflection.

[^2]Whe of the plutec is free hule the otmer ws movele nomel to

 help-stivered pletes. If Itut or wave length λ folls on the pletes at ali arges, intorberence frumges are formed in the fock plame (FD) of the objectue lens (os. Al Iight inctcont alonge che of semimange θ whi cundibute to the romation of a surgle fringe the patrem in the foen whene of the objecm

 ane bsencmitued at each plete the anlitunes ere propotelonel to the seuero hoote of han p. ahon, in is one weve front of
 at am ange θ, the powtion (H) tracenteded tho mret plate has an anplude pt; by the second plete (BC) an mplitute of P. The antituae gescotetce when reg (Bu) is bat; wh (W) it is
 sponctas to the multale-replectod portion of Theb is represented by its nomal (Tt) has an ampitade of pRe these vave

[^3]Pronts, resulting from matiple realoctions, are all perellel and mill be collected by the lens at the point s. When θ is smoll and the reflection effleioncy is high, there may be over onemundred of such wave fronts. The phase difference between successive nave fronts is given by the expression;

$$
\phi=(2 \pi / \lambda) 2 \operatorname{tcos} \theta,
$$

where (t) is the separetion between plates. Then this phase drperance is an integrel multiple of (0), constructive interfercnce occurs. The intensity distribution within any fringe, in terms of P, \bar{R}, and \varnothing, is given by: ${ }^{6}$

$$
\begin{aligned}
I & =\frac{P^{2}}{(I-R)^{2}} \frac{1}{1-\frac{4 R}{(I-R)^{2}} \sin ^{2} \phi / \hat{L}} \\
\text { or: } I & =\frac{I_{\max }}{1-F \sin ^{2} \phi / 2}, \text { where }, I_{\max }=\frac{P^{2}}{(I-R)^{2}}, \\
\text { and, } F & =\frac{4 R}{(I-R)^{2}} .
\end{aligned}
$$

The order (n) of a fringe is ($2 t / \lambda$) cos θ and is a maximum at the center of the patiem. From the intensty equation ond the Royleigh criterion for resolution, an expression can be obtained for the resolving power of the Fabrymerot interferometer.

The Rayleigh criterion is that tro lines are said to be resolved when the maximum intensity of one line falls on the first minimum of the other. This situation for two lines of equal in-

[^4]tensity is suom in the sicme.

Fic. S.m-Limit of Resolution

In the theory of the difraction encting it is ghom thet the intonsity anctribution of sectrel Ina mey be put in the Som; $I=I \operatorname{mex}\left(\sin ^{2} \phi / 2\right) / \not^{2}{ }^{7}$. since \varnothing, the phase change from wat C to woint $D, i s \pi / 2$, it followe that the intensty at D $18 T_{D}=\left(4 / \pi^{2}\right) T_{\text {Dax }}=0.405 I_{C}$, and from the intensity equetion:

$$
\begin{gathered}
\sin ^{2} \phi / 2=\frac{\sum_{C}-I_{D}}{T_{D}}=\frac{2-105}{105 T}=\frac{1.069}{T} \\
\operatorname{and}, \neq 2 \sin ^{-1}\left(1.21 / F^{2}\right) .
\end{gathered}
$$

Who letter is tro phase chane betoer points C and D. We Whese change from point 0 to point x is then trice this value. A change in phase of en is equivalont to an onder change of one, i.e., from n to n - 1. The total phese chago srom c to t then correswonds to an order change of $n=(2 / \pi) \sin ^{-1}(1.21 / 4)$. At the conter of the fringe gystem we have $a_{0}=2 t / \lambda$, end by diferentevion, $\lambda / d \lambda=-n_{0} / n_{0}$. The resolving pomer is given by the ratio $\lambda / d \lambda$. The velue of uno is siven by the above exprescion for the mivimun resolvable chmage of order. Then the

[^5]resolving porer is:
$$
\lambda / a \lambda=-n_{0} / d n_{0}=-n_{0} \pi / \quad\left[2 \sin ^{-1}\left(1.21 / F^{\frac{1}{2}}\right)\right] \quad .
$$

If the reflecting power R is high, F is large enough that the angle may be replaced by the sine, and the resolving power expression then becomes:

$$
\begin{aligned}
\lambda / d \lambda & =-n_{0} \Pi_{F^{2}}^{2} /(2 \times 1.21) \\
& =-n_{0} \pi \quad\left\{\mathbb{R}^{2} / 1.21(1-\pi)\right\}
\end{aligned}
$$

The quantity in braces nay be called the effective number of reflections and is analogous to the number of apertures in the expression for the resolving power of diffraction gratings. It must be reamed, however, that the fringes of two radiations to be resolved are in general not of equal intensity. Also, in the case of the Fabry-perot interferometer, the fringes are not symmetrical, but are broadened unsymatrically toward the center of the pattern. Hence, the Rayleigh criterion cannot be applied with rigor. The above equation, however, is a workable approximatron, and shows the dependence of resolving power on the centrail order number and the reflecting power of the half-silvered surfaces.

The variation of order (n) with wave number (v) may be obtaine from the basic equation: $n=2 t v \cos \theta$, where $1 / \lambda$ is replaced by (v). Near the center of the patter; $\mathrm{dv}=\mathrm{da} / 2 \mathrm{t}$. moving from one fringe to the next, an is equal to one, and the corresponding wave number change in is $1 / 2 t$. This last quantio ty is called the spectral rance. It represents the range of
 Pringes of successive orders. The renge betmeen orders may be varied at will by adjusting the plate separation.

CFAPTER IIT

Expertamera brocedones

The components of the apporatus used by the authors are shown in the photograph oa page 23. A schematic diagram showing the placement of the components is given on page e4. A list of the specific parts of apparatus is as follows:

1. Light source----w-Sodium Lab-Arc--Gertner
. Wonochromator----Type 3227 Spectrometer--Gaertmer
2. Interferometer---Fabry-Perot-Gaertner
3. Short telescope--Iype 508--Gacrtner
4. Cathe tometer----wType 1980--28--Cuertner
5. Miscellaneous----Auxiliary lenses and photographic equipment.

Light from the Sodivm Lab-Arc is passed through the spectrometer in order to isolate the Dines from other lines present in the Sodium spectrum. The spectrometer also offers a means of controlling the intensity of the light falling on the Interferometer. The oftical system of the spectroneter (monochromer) consists of an entrance silit, collinating lens, con-stant-deviation prism, objective lens and exit slit. Adjustment of the monochromator slits is somewhat critical in that the optimum combination of resolution and intensity is thereby controlled. This is especially pertinant in the case of direct visual observation. Fa-kowing the monochromstor are the collimating and converging leases. The convergent bean method of mownting is adventageous in the it effectively introduces a
stop, i.e., the interferoncter aperture is reduced. 8 ith an intense source, the loss of intensity due to decrease in aperture is no problem, and errors in plate figure, mirror deposition, and plete parallelisn are materially reduced. In using the interferometer, the plate separation was adjusted so that the fringes of the D_{1} and D_{2} lines fell alternately and evenly spaced. The plate separation for such a pattern may be caleulated by setting the spectral range ($1 / 2 t$) equal to $1 /\left(n+\frac{2}{3}\right)$ times the wave number difference of the D lines ($17.3 \mathrm{~cm}^{-1}$). ${ }^{9}$ The plate sepration used ras 1.497 centimeters. A short telescope fitted mith a micrometer eyepiece was used for visual observation of the fringe pettern. The fringes were photogrephed in two ways: (1) a lens of 50 cm . focel length pras used, the film being placed in its focal plane, (2) the fringe pattern was first iomed by the short telescope objective lens and then projected by the eyepiece on to the photogrephic filu. By the last method, the imege size obu tained was equivalent to that of a single leas of 1.5 meter foeal length.

[^6]

Figure 9.--Photograph of Apparatus

weasurerasnts

the dets when was besed on reduetron pomalas oommatceted to the awthoma adviser, Dr. A. V. Tesentag. by Tr Rasedi A.
 malas if as follous:

A drempe of a portion of the fringe pettera mil perve to Llustrete the mannex in whon the date por the above pommas Wes tader.

Whe T^{8} e in the formuns are shaty the seate meadings of tho meroneter eyeptece or cethetometen as the crosenheir of
the instrument was set on the hyperfine components of one of the sodium D lines. The primed and unprimed subscripts refer to parm ticular components as lobeled on the above drawing. The quantity (t) In the Pormulas is the plate separation in centincters. The average of the results of these fomvias then gives the desired separation of the byperfine components of one of the sodiua D Ines; in wave numbers (cm^{-1}).

Data

The data in Table I was taken from a photograph; using a cathetometer. Dne-hunared readings were taken on each component of the D_{2} ine, in three successive orders. The first block of ten readings is eiven complete. The first and the nine remaining blocks are indiceted by their respective averages.

Figure 10.--Fabry-Perot Interferometer Fringes of the D_{1} and D_{2} Lines of Sodium

Table I

\pm	E:	K	k^{\prime}	J	J
4.7702	5.0849	5.9745	6.1583	6.9015	7.0518
4.7718	5.0730	5.9873	6.1639	6.8919	7.0421
4.7535	5.0899	5.9677	6.1598	6.8987	7.0178
4.7663	5.0835	5.9764	6.1735	6.8914	7.0554
4.7768	5.0830	5.9719	6.1648	6.8885	7.0527
4.7627	5.0823	5.9702	6.1656	6.8921	7.0514
4.7680	5.0879	5.9777	6.1605	6.8918	7.0492
4.7627	5.0792	5.9672	6.1748	6.8823	7.0442
4.7668	5.0848	5.9703	6.1762	6.8956	7.0531
4.7648	5.0704	5.3643	0.1669	6.8863	7.0414
4.76540	5.08209	5.97275	6.16643	6.89180	7.04886
4.75962	5.07909	5.97133	6.17357	6.88855	7.05142
4.77008	5.08460	5.97583	6.17490	6.89238	7.05510
4.75846	5.08504	5.97499	6.17376	6.88891	7.05457
4.75842	5.09215	5.98158	6.17246	6.88925	7.05584
4.78357	5.07801	5.98675	6.17639	6.89664	7.05187
4.77446	5.08670	5.97677	6.17767	6.88714	7.05562
4.78897	5.08139	5.98211	6.28047	6.89518	7.05604
4.78000	5.09729	5.98861	6.18679	6.90373	7.06666
4.77276	5.10639	5.99009	6.18877	6.90355	7.06824

Average of 100 readings.
$4.77059 \quad 5.08737 \quad 5.97886 \quad 6.17713 \quad 6.89371 \quad 7.05642$

Experimental Results

When the values of the quantitics $s_{L}, S_{L}^{\prime}, \varepsilon_{K}, s_{K}^{R}, G_{J}, S_{J}$, as given in the final row of averages in Table I, are substitated into the three-order fomulas and the indicated computations performea, the following results are obtained:

The value of (t) was 1.497 centimeters. The final value for the frequency difference of the two components of the sodiun D_{2} line is:

$$
v-v^{\prime}=.182993 / 2.994=.06112 \mathrm{~cm}^{-1} .
$$

Again, this result is based on date talen by using a cathetometer on a photograph of the fringes. Consistent results could not be obtained from data taken drectly by means of the micrometer eyepiece. The unreliability of the latter method rests largely on two factors: (1) eye fatigue in the observer, and (2) the impossibility of retaining the same fringe pattern over a period of time sufficient for the collection of a reasonable arount of data. The ridgidity of the adjustable type interferometer used by the authors was inedequate with respect to the second of the above factors. Visual measurements with the micrometer eyepiece were, however, useful th the preliminary identification of the fatures of the hyperfine structure fringe system.

Conclucing Remarks

We have seen hom the theory of hyperfine structure yields a value of $.061118 \mathrm{~cm}^{-1}$ for the spectral wave number separation corresponding to the splitting of the $3^{2} S_{2}$ energy level of sodium. Separetions of $.0612 \mathrm{~cm}^{-1}$ from the D_{1} line and $.0555 \mathrm{~cm}^{-1}$ from the De line have been reported by Granath and Ven Atta. 10 The agreement between theory and experiment found by the authors of this paper, hence, may not be qualified completely without a similer study of the D_{1} line. Hovever, the application of Dr. R. A. Fisher's reduction formlas toward the analysis of hyperfine structure has been illustrated; and the value of $.06112 \mathrm{~cm}^{-1}$ determined by the authors is in good agreement with the theoretically computed value. It may be expected, that, when the study of hyperfine structure is implemented by light sources baving sharp lines and with a recording microphotometer which indicates the intensity contour of photographically recorded fringe patteras, accurate and rapid analysis of hyperine structure could be accomplished by using the Fisher reduction formulas.

30 Granach and Van Atta, loc. cit.

BTBLIOCEAPHY

Goudsmit, S. Muclear Lagetic Moments." Physical Revievi, XIII $(1933), 637$.

Granath, I. P., and Van \&ta, C. W. "hhe luclear gpin and Wagnetic Moment of Sodium from Pyperfine structure." physical Review, XLIV (1933), 935.

Houston, R. A. A Ireetise on Light. London: Longmans, Green and Company, 1925.

Johson, R. C. Atomic Spectre. London: Sethuen and Company, 1946.

Pauli, \quad. 2 tuxwissenschaften, XII (1924), 741.
Fauline, L., and Gounsmit, S. The structure of Iine spectra. New York and London: FoGraw-Fill Eools Company, 1930.

Eauling, I. and Wilson, E. B. Introduction to guantum Mechenics. Wer York and London: McGrev-Hill Book Company, 1935.

Robertson, J. K. Introduction to Physical Optics. Bev Yoxk: D. Ven Nostrand Company, 1941.

Taylor,. . College Manual of Optics. Boston: Ginn and Company, 1984.

Tolansky, \mathcal{B} High Resolution Spectroscopy. London: Methuen and Company, 1924.

Mhite, . E. Introduction to Atoric spectia. Den Yonk and London: EcGrav-15ill Book Compeny, 1904.

Tilliams, . E. Application of Interferometry. Loncon: Methuen and Company, 1948.

Wood, R. W. Physical Optics. New Vork: The Eacmillen Compeny, 1984.

[^0]: I This theory was beken from White, op. cit., pp. 358.
 2 Pauling and wison, Introduction to Guantum Mechenics, pp. 143.

[^1]: Is. Tolansky, High Resolution Spectroscopy, pp. 3-18.
 2 white, op. cit., pp. 419-486.

[^2]: 4 Solansky, loc. cit.

[^3]: 5 W. Wart Mivione Applections of Interfexometry, pe. 86.82.

[^4]: ${ }^{6}$ Ibid. Fp .78.

[^5]: 7 R. A. Mouston, A freetige on Iigt, pp. 172-173.

[^6]: 8 Tolansky, op. cit., pp. 162.
 9 Granath and Van Atta, "The Ruclear Spin gnd Tacnetic doment of Sodium from Hyperfine structure", Physicel Reviev, XLIV (1933), 935.

