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ABSTRACT

THE DESIGN OF A MULTIVARIATE MESOSCALE FIELD EXPERIMENT

Radar reflectivities and rain gage data can be 
combined in many ways to estimate convective-storm surface 
rainfall. However, optimum (interpolation-produced) esti­
mates used to evaluate modification experiments or to imple­
ment sampling techniques require that statistical properties 
of such estimates be knovm. Such properties derive from 
the storm structure, implied by the observed data, and are 
deduced by using space-time covariance and cross-covariance 
functions. A four dimensional Gaussian-damped function can 
reflect relevant characteristics (physical and statistical) 
of Southeastern Montana convective systems. Functional 
parameter values relate to system features of size, raotion- 
speed and preferred storm track. An average Southeast 
Montana system compares and contrasts with the features of 
an Oklahoma counterpart.

The optimum interpolation methodology is enhanced 
to account for multivariate means and variances. Bivariate 
analyses that use radar/rain gage data sets are shown supe­
rior to the best univariate results. The analyses reflect 
patterns derived from radar rainfall estimates and scaled 
to rain gage magnitudes. The influence of a Z-R relation­
ship on analysis accuracy is minimal and the model's signal 
recoverability qualities are shown. Consequences of filter­
ing data set observations improperly are discussed.

The development of an experimental-design evalua­
tion function is completed through modelling the parameter 
means and variances. Predictand-related sensors are shown 
essential to network design. Trade offs in multivariate 
sensor deployments (spatial and temporal) are explained. 
Deployment along and across a preferred storm track is 
related to covariance anisotropy, gage density, temporal 
sampling intervals, the availability of radar data, and the 
interrelationships among the multivariate predictor data 
sets. Moreover, optimal sensor orientation to sample a 
moving convective system is found best to observe the 
system’s accumulated rainfall pattern.
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THE DESIGN OF A MULTIVARIATE MESOSCALE FIELD EXPERIMENT

CHAPTER I 

THE INTRODUCTION

Nearly 4000 years ago an Egyptian Pharaoh was fore­
warned of a weather-related catastrophe destined to affect 
the civilization of that day. The events happened as pre­
dicted. Time has come and gone. Clearly world civilisation 
has changed and become complex during the intervening 
centuries. In spite of significant technological advances, 
weather-related catastrophes continue to plague twentieth 
century man. Ancient (e.g., John, AD 95) and contemporary 
writers (Ehrlich, 1971, and Schneider, 1976) now point to 
our climate-related crises that lie ahead. Indeed, in­
creasing world population coupled with runaway inflation and 
an energy crises of immense proportions, brought to the 
forefront during the 1970s, added turmoil to other complex 
world problems. The message is clear to all who hear: we
must use our known diminishing resources wisely as our world

1



seeks to move intact into the twenty-first century.
Resources available to meteorologists for use in 

gaining a fuller understanding of atmospheric interactions 
are limited and often difficult to obtain. The message is 
equally ours to share. Meteorological field programs de­
signed to contribute solutions of climate-related problems 
must, of necessity, be sound theoretically as well as de­
signed for efficiency.

Coordinated field programs are under̂ vay (the 
National Hail Research Experiment--NHRE and the High Plains 
Experiment--HIPLEX) with weather modification objectives.
NHRE focuses on damaging hail and aims for its suppression; 
HIPLEX aims to enhance rainfall. Common to each program 
(indeed, to comprehensive field programs in general) is the 
need to deploy a variety of observational resources includ­
ing radiosonde networks, surface stations, radars, aircraft, 
tethered balloons and other sensing systems, direct and 
indirect. Typically, these systems are deployed for periods 
of two to three months and provide the data base with which 
many scientists will test their hypotheses. Although the 
number and variety of instruments which can be devoted to 
these programs is substantial, the complexities of the 
atmosphere, its relevant scales of activity and scale inter­
actions, dictate that observational compromises must be made. 
It follows that, because of the substantial manpower and 
instrument resources committed to such programs, the



instrument sets must be utilized in an efficient, if not 
optimum, fashion.

An equally compelling reason for optimum experi­
mental design is provided by Barnes' well documented report 
(1974) that became the first coordinated life-cycle study 
of the immediate environmental structure in devastating 
storms. Bames said "that our ensemble sounding might have 
yielded more Information had attention been paid to their 
spacing relative to the storms."

This study is directed toward an optimum experi­
mental design of the HIPLEX program; the study concentrates 
on areas of immediate concern to HIPLEX as it seeks to 
achieve the stated modification objectives: Can radar and
rain gage observations be combined to produce analyses with 
qualities superior to those obtained in univariate analyses? 
I*Jhat analysis methodology will provide consistent, high 
quality results essential to HIPLEX? How many gages are 
necessary to achieve a desired sampling and analysis quality? 
%at is the best deployment of that gage quantity? Study 
results are based on the null hypothesis of convective storm 
features deduced from statistical structures implied by 
digital radar and surface gage data. The methodologies 
applied herein are universal and await application in other 
areas.

The primary positive contributions herein include:
1) more realistic modelling of storm statistical 

structure;



2) a convective storm climatology obtained using 
modelled space-time covariance functions whose 
parameters correlate well with system physical 
characteristics ;

3) upgrading the analysis algorithm to account for 
realistic differences in multivariate parameter 
means and variances with the consequence that 
bivariate radar/rain gage analyses reflect 
radar-derived precipitation patterns scaled to 
gage magnitudes;

4) the development of an experimental design 
evaluation function which incorporates the 
effect of observational biases and the rela­
tive role to be played by each parameter in 
producing a final analysis ;

and 5) the evaluation of trade offs involved in
multivariate sensor deployments (spatial and 
temporal) using a combination of fixed and 
movable sensors.
The study reviews meteorological experimental design 

(Chapter III), discusses refinement of the covariance func­
tion and objective analysis algorithms (Chapter IV), evalu­
ates analysis and sampling data requirements (Chapters V 
and VIII), reveals the analysis algorithm's positive char­
acteristics (Chapter VI), and develops an experimental 
design evaluation function (Chapter VII and Appendix B).
My results are illustrated by using a combination of radar/ 
rain gage data sets (Chapter II) obtained from Southeast 
Montana during 1975-1976.

A computational overview is provided, in Appendix C, 
of the analysis and sampling methodologies applied herein.



CHAPTER II 

THE DATA

The data sets used in this research consisted of 
precipitation observations obtained from quantitative radar 
reflectivity measurements and (only when supported by 
simultaneous storm radar data) from surface rainfall mea­
surements. All observations were made in Southeast Montana 
in the Bureau of Reclamation's HIPLEX study area near 
Miles City, Custer County.

Data-acquisition procedures on the Miles City 
C-band (5 cm) radar produces a complete observation set 
every five minutes with spatial resolutions characterized 
by 1° azimuthal and vertical separations and generally 
0.5 km radial separations. Three dimensional (x-y-t) and 
four dimensional (x-y-z-t) radar data sets were obtained. 
Most data sets contained 1000 or more spatially separated 
radar bins. However, spatial and temporal data gaps 
frequently limited the data volume processed.



Reflectivity was converted into rainfall (in 
mm hr using Jones' (1956) relationship of Z = 486R^'^^, 
suggested by Battan (1973) as appropriate for "typical" 
convective storm systems. Reflectivities less than 20 dBz 
were converted into zero measured rainfall. The three- 
dimensional radar-rainfall data sets (typically taken from 
the 1° elevation scan) were used to produce total-storm- 
rainfall data sets (x-y) by appropriately summing, over 
the storm-period of interest, the rainfall represented in 
each five-minute observation.

Fifteen-minute surface rainfall accumulations
were obtained from a recording gage network of 58 gages
(Fig. 1) in 1975 and 109 gages in 1976 (Fig. 2). Precipita-

-1tion amounts were converted to mm hr and total-storm- 
rainfall data sets calculated. Average gage separation- 
distance was approximately 3.6 km. Reflectivity data from 
storms passing over the gage network were interpolated 
linearly (for data processing convenience even though 
this is not required by the analysis algorithm) to be 
time-coincident with the corresponding gage data.

Three rain gage and 17 radar sets were obtained 
(Table 1) from the Bureau of Reclamation's CYBER 74-28 
computer system. This quality user-oriented system pos­
sesses data archive and retrieval components capable of 
maximizing "thruput" and minimizing frustration ( a rare 
system characteristic indeed!). A more complete description



I V

; Locote
Miles C ity  ^

^— Td/iffu* R l i t r

J»'
®  '

SCJU.E CF KtOWCrCM
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Fig. 2. The 1976 HIPLEX recording gage network of 109 stations 
near Miles City, Montana.



DATE TIME TYPE OF DATA
5 July 75 1930-2000 x-y-t and x-y-z-t radar data only
7 July 75 1307-1342 x-y-t radar data only
7 July 75 1900-2000 x-y-t radar data plus gage data
17 July 75 0007-0027 x-y-t radar data only
17 July 75 1545-1615 x-y-t radar data only
21 July 75 2252-2322 x-y-t radar data only
30 July 75 2003-2018 x-y-t and x-y-z-t radar data only
31 July 75 0658-0713 x-y-t and x-y-z-t radar data only
18 August 75 2213-2238 x-y-t and x-y-z-t radar data only
18 August 75 2347-0012 x-y-t radar data only
6 June 75 0530-0600 x-y-t ,r,adar data plus gage data
7 June 76 0430-0445 x-y-t radar data plus gage data
7 June 76 0515-0545 x-y-t radar data only

Table 1. Bureau of Reclamation HIPLEX radar/rain gage data 
sets investigated herein. All times are Greenwich 
Mean Time.

of Bureau of Reclamation HIPLEX data may be found in the 
HIPLEX Data Inventory (Interior Department, 1976).

Finally, similar radar and rain gage observations 
were obtained from the work of Pat Brady (1976) who investi­
gated structural characteristics of Oklahoma thunderstorms.



CHAPTER III

THE DEVELOPMENT OF METEOROLOGICAL EXPERIMENTAL DESIGN

A. Objective Analysis Development 
In the development stage of a field experiment, 

it is necessary to consider the methods used to assess the 
meteorological characteristics under study, such as size, 
shape, intensity, and duration, as well as to have the 
ability to determine instrument-induced noise-effect on 
observation quality. Also, it is important to measure 
objectively the role of a proposed instrument configuration 
in terms of instrument type and number, the sampling rate, 
and the sampling positions. The statistical objective 
analysis technique used herein fulfills these needs, and 
is an essential part of the experimental design concept.

Because an objective analysis is the weighted 
combination of observations taken at irregular intervals in 
space and time, it estimates a parameter field at some 
specified point (normally a lattice) in space and time.
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The computer age and numerical weather prediction 
(NWP) prompted development of numerous "objective" analysis 
techniques. Panofsky (1949) made what was likely the first 
attempt at today's objective analysis by using least squares 
polynomial fitting to an observed data set to analyze 
objectively the data field at non-observation points. First 
guess fields and statistical weight functions were introduced 
by Bergthorsson and DÔôs (1955). The methodology, a succes­
sive correction technique later extended by Cressman (1959), 
was used to initialize N!‘IP models for many years by applying 
a series of first-guess-field corrections based on the sep­
aration distance between grid points and observation loca­
tions. Barnes (1964) used the Cressman distance-weighting 
technique with his own data-density weighting factor to 
increase the detail in objectively analyzed fields. Asyn- 
optic observations were later incorporated into the Barnes 
technique (1973) using mesoscale time-series observations.

Sasaki suggested a different analysis approach 
(1958) and used variational calculus to achieve dynamic 
consistency; Amos Eddy (1963) and L. S. Gandin (1963) formu­
lated what is known today as "optimum interpolation" statis­
tical objective analysis. The optimum interpolation 
technique effectively uses a data set's structure expressed 
in terms of the data auto- and cross-correlation functions. 
Eddy and Gandin's technique is termed "optimum" because it 
is the interpolation scheme that minimizes the interpolation
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error variance compared to any other interpolation method.
The work of Endlich and Mancuso (1968) and Shapiro 

and Hastings (1973) used an approach similar to Panofsky 
while Stephens and Polan (1971) investigated the problem of 
spectrum degeneration induced by objective analysis.

Multivariate objective analysis has been pursued 
vigorously by many authors in the most recent literature 
including Eddy (1973), Thiebaux (1973, 1974), Schlatter (1975), 
Passi (1975), and Thiebaux (1977).

B. Early Sensor Placement Efforts
Determination of an aerological network’s optimum 

spacing dates from the rawinsonde invention. Attempts and 
techniques used afterwards have been summarized concisely 
by Gandin ê . al. (1967) and Gandin (1970). The first known 
quantitative attempt to solve the sensor deployment problem 
was made in 1936 in the Soviet Union by Drozdov (via 
Gandin et. al., 1967). Drozdov began by not allowing the 
linear interpolation standard error, mid-way between 
stations, to exceed a certain given amount. This inter­
polation error was related uniquely to a meteorological 
variable's structure function by Drozdov and Sepelevskij 
(1946). The important trade off between increasing station 
density and/or instrument quality was contributed by Pone 
(via Gandin et. al., 1967). After an elaborate theoretical 
study of network requirements, Bessemoulin (1960) determined 
that the objective analysis errors in differing network



12

densities were related to: (1) the atmospheric structure,
(2) the instrumentation accuracy, and (3) the analysis 
technique.

By 1961 Gandin also related the sensor deployment 
problem to the objective analysis technique and recommended 
use of the optimum interpolation error instead of the linear 
interpolation error. Gandin (1963) felt that the advantage 
of optimum interpolation was not in its ability to minimize 
interpolation error variances, but in its ability to account 
for observational error effects. He stated that optimal 
interpolation made possible analyses whose accuracy exceeded 
that of the observations themselves. The reader can visual­
ize the point by considering N observations from an analysis 
location, each possessing a kno^m standard deviation a. An 
analysis produced by a simple average of the observations 
has a standard deviation a/N. A similar argument proceeds 
when the observations are relocated spatially. Optimum 
interpolation builds from this concept to produce analyses 
that are superior to all other interpolation schemes 
(fundamentally!) because variance between the analysis and 
the truth is minimized.

Additional information considered important in 
network design included (1) the use of auxiliary information 
such as parameter inter-correlations and data from multi­
type sensors, (2) the actual station arrangement (and not 
only station density), (3) the observational frequency, and
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(4) the likely meteorological scales probed by a proposed 
network. Gandin proposed sequential establishment of new 
stations at points where interpolation error variance was 
a maximum.

Other attempts at specifying optimal networks have 
been reported by Alaka (1970), Baer and Withee (1971),
Steinitz £t. al., (1971), Kasahara (1972), Alaka and Elvander 
(1972a), and Northrup e_t. (1972). The optimum measure
usually includes a root-mean-square deviation of the result­
ant analyses from some arbitrary "true" analyses in the 
simulation experiments they performed. The Kasahara design 
algorithm, for example, referred to as Observing Systems 
Simulation Experiments (0S3E), is highly dependent on 
numerical model output (the true analyses) for "results often 
difficult to interpret."

C. Development of Multivariate Experimental Design

C.l Fundamental Model Assumptions 
The recent work in experimental design has been 

developed theoretically by Eddy (1973, 1974) and applied by 
Eddy (1976), Yerg (1973b), Kays (1974) and Brady (1975, 1976). 
The characteristic feature of their experimental design 
approach lies in its use of multivariate objective analysis.
(A discussion of classical multivariate linear regression 
is given in Appendix A.) The objective analysis model 
represents an extension of classical multivariate linear
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regression and is described by:

Y = XS + e (1)

where X is an n x m observation matrix, Y is an n x I 
predictand matrix, 6 is an m x I matrix of regression 
weights, G is an n X 1 population error matrix, and 
e = Y - Y is the residual error matrix associated with 
sample regression. The noise or error matrix will reflect 
not only instrument errors and correlations, but geophysical 
noise representing scales (much more important!) not ob­
jectively analyzed, for one reason or another -- such as
model inadequacy, multi-scale data, fine scale information. 
The objective analysis is given by:

Y = XB (2)

where 3 estimates the population weights 3 and Y estimates 
the population values Y. Following the Appendix A discus­
sion, 3 is found from:

3 = (xV'^X)"^ X^V'^Y (3)

where V is the error covariance matrix derived in Appendix 
A. Confidence in an analysis may be evaluated through :

Var 3 = (xV^X)"^ o= (4)

or through:

Var Y = V"^ X^(Var 3)X V^. (5)
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Clearly, unless we know the nature of the residual variance 
0 ,̂ the confidence in an objective analysis cannot be evalu­
ated!

The assumptions of this multivariate multiple 
linear regression objective analysis model are that:

(1) the underlying relationships between pre­
dictors and predictands are modelled (thus the need for 
predictand data, the grid point values, is avoided);

(2) the basic signal plus noise (the [X^V X̂]
and the X*"V of Eq. (3)) is modelled and referred to as
the modelled covariance function. The function, expressed 
in terms of an observation set’s spatial-temporal lag 
correlations, subsequently may be used to analyze that set 
or to place sensors optimally to sample phenomena assumed to 
have similar statistical characteristics;

(3) the covariance function is assumed homogeneous 
throughout a parameter field (points of equal distance- 
separation and the same relative direction have equal cor­
relation) . However, isotropy is not assumed because separa­
tion direction betv/een two locations is a significant in­
fluence on the point-pair correlation coefficient (Thiebaux, 
1975). The covariance fundamental to Eq. (3) is assumed by 
Eq. (1) to be a measure of the linear relationship that exists 
between two variâtes;

(4) the regression weights, which filter observa­
tions in space and time, are evaluated using the modelled
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covariance function, thereby making the analysis methodology 
"portable";

(5) the model's residual errors are assumed 
distributed e v N(0,o^V) where V is the error covariance 
matrix of Appendix A. Residual errors having the assumed 
distribution imply that a relative bias associated with any 
reporting instrument is assumed zero (ECuy - ^] = - X^]
= ... = E[n^ - Xjj] = 0), and that the residual variance is 
assumed constant across the field (oy = o| = ... = = ô );

(6) the noise contributions are not necessarily 
mutually independent (see Appendix A);

(7) finally, the model in Eq. (1) is assumed 
adequate in the sense that e does not contain coherent 
signal.

Extensive investigation of the interpolation results 
using multivariate analysis-of-variance techniques has shown 
Ee^e. = 0. Hiese results provide support of the analysis 
model's ability to produce unbiased results (Eddy and 
McDonald, 1977).

The residual variance in any objective analysis 
may be estimated from:

= e V ^ e  = (Y - V'^ (Y - X6) (6)

If we let A = X(X-V^X)"^ X^V'^, Eq. (6) may be written as:

92 = (Y*̂ - Ŷ Â̂ ) V"^ (Y - AY) (7)
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which can be rewritten as:

5^ = Y^(I - A) V"’- Y (8)

since (1 - A) is idempotent.
From Eq. (8) it is seen that the residual or 

unexplained variance is a function only of sampling positions, 
a concept developed in Section C.5 of this chapter.

C.2 The Covariance Function Formulation
The multivariate experimental design model imple­

mented by Brady (1976) begins with a null hypothesis about 
the atmospheric signals to be sampled. Tlie atmospheric co- 
variance represented by the X^V and the X*"V ^Y in Eq. (3) 
is assumed to represent the population covariance for a 
given analysis or sampling problem. The covariance may be 
derived from an historical data set or from some numerical 
model output (Kreitzberg and Perkey, 1974). Clearly, the 
more the covariance function reflects the physical and 
statistical characteristics of the phenomenon being analyzed, 
the better the resultant analysis will be.

The 5,*'̂ element of the first term in Eq. (3)
is given by:
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where is the signal covariance between station k and
station Î,. is the noise anatomy. Using discrete time
and space lags (typically a function of data density) raw 
correlation matrices (sometimes loosely referred to as co- 
variance matrices) representative of the data structure are 
calculated. In the context of Eq. (1), correlations between 
stations the same distance apart contribute to the stability 
of any given correlation estimate. Then, the problem be­
comes one of incorporating the raw structure into the ob­
jective analysis/experimental design model. Brady (1976) 
used a functional relationship to express the climatological 
information content of these raw correlation matrices. A 
similar approach is used in this study.

The need for such a functional relationship can be 
justified readily:

(1) analysis accuracy is improved when the analysis 
scheme uses a functional relationship instead of sample co- 
variances (Thiebaux, 1977) ;

(2) the function dispenses with data management 
problems presented by several thousand discrete space/time 
correlation values sufficient to discern a given system's 
atmospheric structure;

(3) dispenses with the interpolation of discrete 
lag correlation values at all possible observation-pair/ 
separation-distance combinations ;

(4) incorporates small scale perturbations and
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inadequate data samples realistically by requiring a 
function fit in proportion to the observation-pair count 
used to determine each correlation coefficient;

(5) and, the function, through its parameters, 
more easily reflects relevant physical and statistical in­
formation of a system under study than is gained by pondering 
over raw correlation coefficient matrices.

A modified negative exponential function that 
resolves the stated needs was developed and is discussed in
Chapter IV. An engineering solution to the data-function
fit uses non-linear programming (NLP) to achieve a least- 
squares functional determination through appropriate para­
meter value adjustments. These parameters become the NLP 
algorithm's independent decision variables whose final 
values minimize the objective function Q:

D
Q = Z N (r. - f.)2 (10)i 1 X X

where IL pairs enter into each of the D correlation values
r̂ ,̂ and f^ is the negative exponential function.

C.3 The Use of Non-Linear Programming 
The NLP algorithm is a key element in the objective 

analysis/experimental design package (Yerg, 1973a). It is 
used in the covariance function parameterization and plays 
a vital role in the sensor placement problem. The algorithm 
implemented was developed initially by Spendley et. al. (1962),
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Nelder and Mead (1964) added a variation to this sequential 
simplex method which in turn was extended and generalized 
by Paviani and Himmelblau (1969). An updated version of the 
technique described in Himmelblau (1972) is the one imple­
mented here. This flexible tolerance method:

(1) is a direct search method (it does not use 
analytical approaches such a gradients and second derivatives) 
that improves objective function values by using information 
from feasible points and certain "near" feasible points;

(2) uses a flexible polyhedron with W + 1 vertices 
(for W independent decision variables), evaluates the ob­
jective function at each vertex and rejects the highest ob­
jective function value;

(3) performs a continual check on the constraint 
set violation by points used in the objective function 
evaluation;

(4) and, in the limit, allows only feasible points 
to remain in the solution space as the flexible polyhedron 
contracts to within a given tolerance of the solution.

The Paviani-Himmelblau method is used because
(1) it was "the most reliable direct-search method" tested 
by Stocker (1969), (2) the algorithm was available readily,
(3) Yerg (1973) and Eddy (1974) showed its potential, and 
Brady (1976) implemented it.

One final note: the justification of this powerful
technique as part of the experimental design package lies.
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not simply in its ability to solve the correlation-model- 
fitting problem, but principally in its ability to place 
sensors optimally in a highly constrained environment. In­
corporation of the NLP algorithm into a sensor placement 
algorithm is discussed in Section C.5.

C,4 The Obiective Analysis Algorithm 
Full utilization and implementation of the multi­

variate methodology necessitated expansion of the univariate 
model "represented" in Eq. (1). As a demonstration, bivariate 
analyses are produced using:

Y = + Xggg (11)

where, for example, (rain gage observations) and Xg 
(reflectivity precipitation estimates) are used to estimate 
Y (surface rainfall). In the bivariate case, two covariance 
functions and two cross-covariance functions are required:

COV(X̂ Xĵ ), C0V(XgX2), COV(X]̂ Xg), C0V(X2X̂ )

All four functions are evaluated using Eq. (3) with actual 
use in Eq. (11) determined by the parameter mix (gage mea­
surements and/or reflectivity estimates) producing the "best" 
analysis Y (best is determined through the multiple correla­
tion coefficient). The extension of Eq. (11) to a multi­
variate case is clear.

Actual implementation of the algorithm proceeds
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in several steps. For any given predictand location:
(1) variables enter into a possible predictor set 

if they are positively correlated with the predictand. This 
bit of engineering prevents the X^V ^X matrix from becoming 
singular and difficult to invert when a disproportionate 
share of predictors have negative correlations ;

(2) if the predictors found exceed program dimen­
sions, selected predictors are eliminated using stepwise 
regression (Efroymson, 1960), the appropriate correlation 
function and its "radius of influence," defined as that 
spatial/temporal distance from a predictand to the negative 
exponential function's zero value;

(3) respective elements of the X^V ^X matrix and 
the X*'V~̂ Y vector are computed and the regression coefficients 
determined. Thus the correlation function serves to determine 
not only predictor locations, but the actual model filtering 
properties;

(4) finally, the objective analysis using Eq. (2) 
or Eq. (11) is performed.

Extensive use of the analysis methodology reveals 
positive characteristics;

(1) data set structures compare favorably with 
objectively analyzed structures (Brady, 1976);

(2) signal-to-noise ratios are significantly 
larger in analyzed data sets than in raw data sets (Brady, 
1976);
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(3) the technique, compared to other analysis 

methods, performs best with minimum data persistence (Lacy, 
1973). This point is supported strongly by Phillips (1976) 
and Thiebaux (1977);

(4) methodology apparently encounters no data bound­
ary problems (Pasteris, 1975) compared to some analysis schemes 
(Brandes, 1975);

(5) residual errors essentially are Gaussian distri­
buted (Eddy, 1967);

(6) analysis residuals exhibit no significant space 
autocorrelation implying the analysis abstracted the signifi­
cant data-set signal and filtered most of the data-set noise 
(Eddy, 1967, and Eddy and McDonald, 1977). Additional positive 
characteristics are indicated by Alaka and Elvander (1972b) and 
Alaka (1974). The analysis technique and the NLP algorithm 
intermesh to produce a sensor placement package described in 
the next section.

C.5 The Sensor Placement Algorithm
Previously, Eq. (8) indicated that an analysis' 

unexplained variance was a function only of sampling positions. 
The result may be stated also in terms of the multiple correla­
tion coefficient, R, which represents the proportion of vari­
ance of Y accounted for by Y. By definition:

R = Cov(Y.Y) (12)
{(Var Y)(Var Y)}^
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Now if = (Y^V"4)^ and a- = (Y^v"4)^, Eq. (12) may 
be written as:

(Ŷ V'̂ Y)̂  (Y*̂ V"̂ Y)̂

If the results of Eq. (3) are used in Eq. (13), our result 
becomes :

R" = (14)
y'̂v'^y

The best objective analysis is obtained when the 
correlation between Y and Y is maximized or when (1 - R^) is 
minimized. Stated another way, the modelled residual vari­
ance, (1 - R^)a^, unaccounted for by the regression and for 
any one grid point, depends upon the atmospheric structure, 
the error covariance matrix, and the objective analysis 
technique and may be minimized by an appropriate sensor 
deployment. The residual variance is modelled from the same 
components required to obtain S in Eq. (3). For an entire 
grid array and for any given set of sensor locations, the 
weighted mean residual variance is given by:

s (1 - Rpo" ] (15)
L i=l  ̂ J

where G is the number of grid points, weights each grid
point by its relative worth (as suggested by an a priori
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climatology), and = 1. The Eq. (15) summation con­
stitutes an objective function minimized using the NLP 
algorithm discussed previously through appropriate sensor 
relocation, subject to logistic and engineering constraints 
if necessary. The objective function represented by Eq. (15) 
is referred to as the experimental design model; model 
development is completed in Chapter VII and Appendix B.

The optimal design of a network requires that 
relative values be assigned to the data collected by com­
peting networks. Eq. (15) indicates that the weighted sum 
of residual variances can be minimized by NLP to yield an 
optimum network. One realization from Eq. (15) becomes a 
measure of the relative value of that particular proposed 
network.

A particular network's relative value is obtained 
as follows : Given a set of perfect sensors and an adequate
model, one station located at the space-time analysis 
location would predict exactly the predictand signal; there 
is no residual variance. Given an imperfect sensor set, the 
covariance function lag-zero correlation value (referred to 
as the Ay parameter) now is less than 1.0. Thus, the one 
imperfect station located at the same space-time analysis 
location would predict a value proportional to Ay; the 
residual variance in this case would be proportional to 
(1 - Ay). The same logic can extend to include all other 
proposed station locations, each evaluated for its effect on
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the one predictand location; and then, the residual vari­
ance evaluated at all locations is summed as in Eq. (15).
The NLP algorithm systematically shifts station locations, 
subject to any constraint set, until it discovers that 
placement set producing the minimum objective function.
Sensors are located optimally in an expected value sense 
when climatology is used as the a priori weights in Eq. (15). 
Thus, actual data realizations are not needed to evaluate 
a proposed network's sampling qualities I

The extensive testing by Yerg (1973b) demonstrate 
merits of the approach in that:

(1) optimum sampling is most beneficial when 
system size is relatively small compared to the analysis 
grid;

(2) optimal sampling becomes more important as the 
signal-to-noise ratio decreases ;

(3) optimal sensor deployment always reduces the 
objective analysis residual variance from that obtained 
using a good intuitive sensor deployment I

Additional characteristics are shown in Chapter VIII.



CHAPTER IV

COVARIANCE FUNCTION AND OBJECTIVE 
ANALYSIS ALG0RITffi4S: A REFINEMENT

A. The Covariance Model -- A Multivariate 
Gaussian-Damped Function 

The fundamental concept of optimum objective 
analysis is it's use of data-set statistical structure to 
determine, not only the analysis model's filtering pro­
perties, but also the actual selection of predictor stations ; 
thus, the necessary correlation analysis ^  not an end unto 
itself. The logical and straightforward approach toward an 
optimum analysis is through use of an analytical function 
assumed to model the statistical structure. Because analysis 
accuracy is highly dependent on the form of the correlation 
function (Lacy, 1973; Thiebaux, 1975 and 1977), care must be 
given to the analytical function's selection (Julian and 
Thiebaux, 1975; Brady, 1976; and Thiebaux 1976).

A covariance function model simple and compact, yet 
explicitly derivable from statistical principles, was desired

27
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possessing the following characteristics;
(1) the function must be four dimensional (to 

delineate spatial and temporal determined correlation co- 
variance) and capable of becoming negative at increasing lags;

(2) the analytical function must be capable of 
modelling possible asymmetry in a data set's structure. 
Thiebaux (1976 and 1977) indicated the deficiencies of 
isotropic weighting functions used in objective analysis.
X’Jhen anisotropy was included, she demonstrated a significant 
deviation reduction (74%) in observed correlation values 
around the best fitting isotropic model. Consequently, 
anisotropy will be permitted in the covariance model by 
allowing each Cartesian coordinate direction "influence 
radius" to assume different values in the respective 
positive and negative directions. Anisotropy in the time 
domain, however, is not modelled. While there is no 
difficulty in principle in accounting for the statistical 
structure of developing or dissipating storm systems, it 
remains to be shown that increased computer time and associ­
ated complexity would be compensated by a more accurate 
analysis ;

(3) in general, however, covariance anisotropy is 
not conveniently oriented along a coordinate axis. The 
study extends previous work and proposes that anisotropic 
covariance patterns, not oriented along a Cartesian co­
ordinate axis, represent an additional significant analysis-
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error-effect. Typically, such elliptical covariance data 
sets reflect system physical characteristics or result from 
data-set trends and predominant storm motion-tracks;

(4) the function must represent accurately the 
raw signal covariance (Fig. 3).

In the example, relatively large deviations at 
lag-zero between values of the covariance function and the 
raw covariance matrix does not indicate the model's in­
ability to model parameter structure; rather, the model 
rejects the raw lag-zero covariance value because that 
value does not represent the data set's basic signal-to- 
noise ratio. The unrealistically high value resulted from 
observations that contained highly correlated information 
because they were closest to the radar, and hence, had 
smaller radial separations than did the more distant 
observations.

Function accuracy is demonstrated using three 
different forms of the covariance model. The accumulated 
rainfall covariance of 7 July 75 (2000 GMT) became the 
test case (see also Fig. 23). Anisotropic function-fit, 
constrained to be oriented along a coordinate axis, reduced 
the weighted least squares error v 70% over the best fitting 
isotropic model. An additional significant deviation 
reduction of 12% (to v 82%) was obtained when the co- 
variance model permitted the elliptical field to be skewed 
with respect to the coordinate axis. It should be noted



1.0
EAST-VreST SECTION THROUGH RADAR 

TOTAL-STORM COVARIANCE OF 7 JULY 75

Raw Covariance

Covariance Model

0.6

0.4

0.2

-0.2

0 1.0 2.0 3.0 4.0 5.0

1.0
NORTH-SOUTH SECTION THROUGH RADAR 
TOTAL-STORM COVARIANCE OF 7 JULY 75

0 .8 Raw Covariance

Covariance Model

0 .6

8

0.2

0.4
2.0 3.0 4.0 3.00 1.0

wo

LAG DISTANCE (km) LAO DISTANCE (km)

Fig. 3. Covariance model accuracy suggested by the sample covariance values.
Function influence radii are 3.55 km east-west and 6.03 km north-south; and 
the function lag-zero covariance is 0.65.
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that function parameter values are influenced strongly by 
raw covariance characteristics and the actual data volume 
used in a least squares fit. For example, the lag-zero 
correlation value is somewhat lower and the system influence 
radius somewhat longer the more the function is "influenced" 
by negative covariances which appear at large lag values.

A multivariate Gaussian-damped function possesses 
these characteristics, resolves the stated needs of 
Chapter III and is given by:

f(xyzt) = Aj COS
2 IT /1k-|̂ +K2

EXP -
K-, Ko

2(l-a")
(16)

where :

- 2oxz + zl 
V y  <

(17)

and:

t J
(18)

Eq. (16) represents.J±.e linear covariance between 
locations at separation distances of (x-y-z-t) and is 
generated from raw covariance matrices (Eq. (9)) assuming 
homogeneous and stationary parameter mean values. In this 
study, the positive X axis is east, positive Y is north, and 
positive Z is up while T is the time-domain axis. Function 
parameters in Eq. (16) are the NLP algorithm's independent
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decision variables and are given by: â , and
which represent the analysis model's influence radii in the 
respective X-Y-Z and T directions. Study notation is given 
by: Oy = Ag, = A^, a~ = A^, = A5. and
0  ̂= Ag which permit anisotropy and determine the covariance 
function's size and shape; by Ay which is the function's 
lag-zero correlation value ; by a = Ag which reflects co- 
variance function ellipticity not oriented along an X-Y 
plane coordinate axis (discussed shortly); and by = Ag 
which is the time influence radius. Their final values are 
the result of a least-squares functional determination. The 
covariance function for two-dimensional (x-y) and three- 
dimensional data sets (x-y-t) may be expressed also by Eq. (16) 
when simplified through omission of appropriate components.

For the data sets processed, only covariance function 
ellipticity in the X-Y plane will be free to orientate as 
indicated by the data set characteristics (a^^ = a). The co­
efficient a becomes a measure of the product-moment correla­
tion of the density contained in the X-Y covariance field. 
Anisotropy in the X-Z, Y-Z, or time domain planes will be 
constrained to be oriented along a respective coordinate axis
(i.e., a = a = . . . =  a = 0). Consequently, some con- xz yz z c
vective storm characteristics, such as storm tilt with height, 
are not modelled. The constraints imposed on the covariance 
modelling characteristics do not compromise the study effort 
since the major thrust is in the optimal sampling and analysis
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of accumulated rainfall patterns. Thus, the four-variate 
normal function takes the form of Eq. (16).

Tatsuoka (1971) indicates the major axis of a 
bivariate normal curve is oriented at the following angle 
with respect to the positive X axis (east):

2aa a
% ARCTAN  when a fa.

0 = (19)
X y

45° when a = aX y

The coefficient (a) is synonymous with the bivariate normal's 
correlation coefficient. The study refers to the orientation 
angle (8) as the storm's preferred track, even though system 
physical characteristics, data set trends or actual storm 
tracks could produce similar covariance patterns. Both the 
orientation angle (0) and the coefficient (a) assist in 
modelling covariance ellipticity in the X-Y plane; thus,
Eq. (19) reflects orientation of the covariance function to 
the X axis.

The function has certain symmetries which always 
over-simplify the storm to be sampled. Clearly, every storm 
is different and whereas the function can mold itself to the 
main features of each storm, the rainshafts (which seem to 
occur nearly randomly in space and time) appear to the 
analysis as high frequency, high power noise. In addition.
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there are three basic reasons why an accurately calibrated 
radar will not measure rainfall correctly and hence, produce 
cross-correlations between radar reflectivity patterns and 
surface rainfall patterns which often are weak: (1) the
radar pulse volume is not full; (2) an incorrect Z-R rela­
tionship is not used; and (3) dry subcloud air may alter 
significantly the radar-revealed rainfall as it descends 
from the radar pulse volume to the surface. Moreover, storm 
scale asymmetries cause problems which are compounded when 
asymmetries in the radar data are transposed and modified 
by the time the rain reaches the ground.

The results of the non-linear program fit yield:
(1) signal-to-noise ratios ; (2) gage/radar calibration 
information; (3) storm size and lifetime; (4) orientation 
and motion direction; and (5) certain asymmetries in the 
storm structure.

T(fo covariance modelling deficiencies remain; 
first, storm motion-direction and speed has not been in­
corporated properly, thereby occasionally permitting cor­
rupted horizontal spatial influence radii. A second known 
deficiency is the model's inability to permit maximum 
cross-covariance values at non-zero spatial and temporal 
lags. In other words, the model currently cannot express 
completely the atmosphere's physics inherent in intensifying 
or dissipating systems nor in situations with time-lagged 
responses between multivariate predictors (e.g., radar
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indicated rainfall does not immediately reach ground level 
but is modified by wind flow patterns while enroute). This 
study is most concerned with total-storm-rainfall patterns ; 
at this point these modelling deficiencies are not con­
sidered serious. However, these two deficiencies remain 
and are points for additional study.

A third point of future concern involves sampling 
and analysis of phenomena which contain interacting action 
scales (e.g., tornado cyclone circulation embedded and im­
posed upon a larger parent thunderstorm circulation). The 
current covariance/objective analysis model does not in­
corporate directly such realistic features. The analysis 
model (Eq. (1)) is no longer correct under such multiple 
scale circumstances and produces estimates biased by an 
alias matrix which contains secondary action-scale information 
(Draper and Smith, 1966).

Climatological characteristics of the covariance 
model are illustrated by the function parameter values iu 
Chapter VI.

B. The Analyzed Signal -- A Perturbation About Its Mean
It is quite probable that multivariate predictor 

data sets do not exhibit the same population characteristics 
of equal means and variances. The analysis algorithm 
(Eq. (1)) must be generalized to model these characteristic 
differences by including a Sq term in the 6 matrix. For any
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given predictand location, modelling of parameter means and 
variances is accomplished in several steps :

(1) predictor locations and corresponding weight­
ing coefficients are determined as in Chapter III.C.4;

(2) each predictor data value is transformed to a 
standardized variable by using the appropriate parameter 
mean and pooled standard deviation {x̂  = (x^ -
Tlie resulting data sets represent normalised signal plus 
noise perturbations ;

(3) the selected predictor values are filtered 
to determine the final signal perturbation ■

(4) finally, the estimated but standardized signal 
perturbation is scaled back to predictand magnitudes
(Y = Yp * Op + %p).

Tlius, the modelling effort allows non-stationary 
parameter mean values to be incorporated in time series 
analysis. If realistic differences in parameter means and 
variances are considered, straightfort^ard and impartial 
filtering of the multivariate data sets follow; and each 
predictor is allowed its proper influence in modulating the 
final analyzed field. The result is an analysis that 
possesses parameter characteristics in proportion to the 
strength of existing parameter interrelationships. As an 
example, bivariate radar/rain gage analyses will be shown to 
produce surface rainfall estimates from gage magnitudes 
modulated by observed radar patterns. The methodology (which
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does go far beyond that proposed by Brandes, 1975) produces 
analyses that possess the desirable statistical properties 
of a maximum likelihood estimator; and it is determined from 
properly chosen, properly weighted predictors! First guess 
fields and other superfluous handwaving is not required.

The influence of the covariance model chosen on 
analysis accuracy was evaluated using the 7 July 75 radar 
data set. Rainfall estimates at each bin location were 
determined withholding the predictand bin observation from 
the analysis. Analysis error variances were determined 
using a covariance model that was: (1) constrained to be
isotropic; (2) anisotropic but constrained to be orientated 
along a coordinate axis (i.e., a = 0); and (3) anisotropic 
with no overriding restrictions (i.e., Eq. (16)). Analysis 
results of filtering the observations, using the latter 
covariance function, served as the standard. The actual 
anisotropy in the test data set is only slightly off a 
north-south orientation (illustrated later in Fig. 23).

Interpolation error variances increased only 0.3% 
when observations were filtered using a covariance model which 
was anisotropic along a coordinate axis. However, isotropic 
data analysis increased error variances by 47». Indeed these 
results are significant when one considers the high data 
density (1040 bins spaced 0.5 km radially and 1° azimuthally) 
and the fact that Lacy (1973), Yerg (1973b), and Phillips 
(1976) have found the optimum interpolation methodology to
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perform best, compared to other methods, in sparse data 
areas. Also, the brief demonstration of covariance model 
influence on analysis accuracy confirms the results of 
Thiebaux (1977) who provided evidence of 7-16% interpola­
tion error reductions for the multivariate scheme using 
anisotropic weighting over the same scheme using a Gaussian 
correlation function.

Objective analysis results are presented in 
Chapter VI.



CHAPTER V

THE GENESIS OF A CONVECTIVE STORM CLIMATOLOGY 
FROM SOUTHEAST MONTANA

A. Covariance-Generation Data Requirements
This study focuses primarily on the analysis and 

data sampling requirements needed to evaluate weather 
modification experiments. The methodology is universal; it 
only awaits implementation in other areas. Logically, the 
field experiment design begins with an early quantitative 
description of the phenomenon considered amenable to sampling. 
The definitive statement, expressed in terms of the statisti­
cal properties of convective-storm surface-rainfall estimates, 
will be derived from space-time covariance and cross­
covariance functions. Also, the statement might take the 
form of preferred storm tracks, frequencies of occurrence, 
and seasonal and geographical variations. A climatological 
investigation of these properties using modelled covariance 
functions is started in this Chapter. All conclusions 
rest on the data sets investigated.

39
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The first natural questions to arise center on the 
type of data sets necessary to approximate population stati­
stical properties of surface rainfall estimates. Evidence 
presented later strongly suggests that storm covariances 
shown by gage observations are unreliable. Primarily, 
gage-determined covariances are unreliable because spatial 
(3.6 km average spacing) and temporal (15 minutes) gage 
sampling resolutions are inadequate to determine the co- 
variance, even though the gages may be adequate for later 
objective analyses.

Thus, radar derived precipitation estimates become 
the prime source for revealing convective storm character­
istics. Data requirements are evaluated using the 7 July 75 
total-storm-rainfall data set. The covariance function 
determined from the original data set (1040 bins each 
covering approximately 0.325 km^) will serve as the standard 
against which value judgements are made. Data set density 
was decreased progressively (all bins, then every other bin, 
every third, etc.) to approximately 10% of the original data 
(2.91 km^/bin) and the covariance function was determined. 
Function parameters were compared to their original values. 
Differences, between the newly determined and original 
parameter values, of less than % 10% were assumed subjectively 
to indicate no substantial difference between the two co- 
variance functions. Most parameters became unstable and 
differed by more than 10% when less than 15% of the original
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data remained for function determination and became 
difficult to determine when only 10% remained. A plot of 
the lag-zero covariance value (Fig. 4) suggests the inference. 
Therefore, it is concluded that the covariance function can 
be defined with acceptable accuracy using as little as 
% 15% of available radar data (or range bins separated by 
•V 3.0 km) at the lowest elevation angle. Additional spatial 
data-requirement reductions become possible when three 
dimensional data sets (x-y-t) are examined.

7 JULY 75 TOTAL-3T0RH-RAINFALL COVARIANCE0.8
g

I

1,0 2.0 3.0
BIN DENSITY (kmVgage)

Fig. 4. Covariance at lag-zero determined from data sets 
whose density was progressively decreased. Para­
meter instability increased as bin-separation 
distance approached the storm influence radius.
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It is interesting to notice that the average 3.6 km 
gage separation distance is just slightly longer than the 
3.0 km bin separations required for adequate radar covari­
ance determination. Widely spaced gage sensors, whose 
observing qualities can be suspect, were simply unable to 
detect the small spatial characteristics of Southeast 
Montana systems. Chaotic patterns in the raw covariance 
matrices do suggest a basic inability by the Miles City gage 
network to provide the convective storm structure.

Finally, the effect of using a different Z-R 
relationship was investigated. Using the Marshall-Palmer
relationship of Z = 200R^'^ and a modified Jones relation-

1 37ship of Z = 3 * (486R ' ), the radar total-storm-rainfall
was recalculated, the covariance functions were determined 
and compared with the original function. The modified 
Jones-determined function was identical to the original 
function; the Marshall-Palmer data set did produce very 
minor, almost random differences. Although only one data 
set has been processed in this manner, it does suggest that 
the Z-R relationship effect on covariance function determina­
tion is not substantial while only the a in Z = BR'* exerts 
an influence on analysis results.

B. Objective Analysis Data Requirements 
Of equal importance are the data requirements 

necessary to produce analyses sufficiently accurate to permit
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satisfactory discrimination between two storm analyses 
obtained when population rainfall amounts differed by a 
specified amount (Eddy, 1976). The radar data requirements 
were evaluated using the rain gage/radar 7 July 75 total- 
storm-rainfall and an approach similar to that in Section A. 
Gage data requirements are inferred later in Chapter VIII.
At this place it is sufficient to understand that gage 
importance in analysis accuracy is minimal provided "enough" 
surface observations are available to adjust biased radar 
precipitation estimates adequately.

However, since previous results suggested gage- 
determined covariance functions as unreliable, it is impor­
tant to evaluate the influence, beyond calibration, that 
gage observations exert on an analysis. Gage influence was 
assessed in the following manner. A grid-point bivariate 
surface rainfall analysis was performed by filtering gage 
observations with a gage-determined covariance function.
Raw correlation matrices, determined using analysis grid- 
point values as input data, were used to calculate a "fil­
tered" gage covariance function. (The lag-zero covariance 
value was left purposely unchanged since it indicated ex­
pected signal-to-noise ratios.) The filtered gage function 
was used in a second bivariate surface rainfall analysis and 
the same process repeated. At each step the filtered co- 
variance function was compared with original function- 
parameter values.
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Alternatively, it seems reasonable to assume that 
a gage network should reflect the same statistical structure 
as that shown by a corresponding radar data set. Thus a 
second series of bivariate surface rainfall analyses were 
initiated and used a gage covariance function that derived 
its shape from the radar data sets and its magnitude from 
the surface data.

Both procedures were repeated with the consequence 
that the two filtered gage covariance functions converged 
on what was essentially a common function and nearly 
identical in shape to the original radar structure. Thus, 
the storm covariances revealed by the Miles City network 
are again concluded as unreliable. Gage observations in 
this study are filtered accordingly by radar-derived storm 
structure.

Bivariate surface rainfall estimates at each gage 
location were determined (referred to as a station objective 
analysis), withholding the predictand gage observation from 
the analysis and using progressively decreased radar data­
set densities. Analysis error and predictand variances 
were used to form a signal-to-noise ratio (SNR). The SNR 
determined using all original data became the standard 
against which value judgements were made.

The analysis model recovered progressively less 
signal, but the SNR reductions became less significant, as 
bin-separation distance increased (Fig. 5). Categorical
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Fig. 5. Signal-to-noise ratios of station (58 gages) bi­
variate surface rainfall analyses determined from
radar data sets whose density was progressively
decreased. Solid curve represents a best fit of 
actual data values (circles).

interpretation (Fig. 5) of the optimum data-set size would 
require knowledge of increased signal recoverability costs 
compared with the benefits derived therefrom. However, it 
is plain that increasing data density in a sparse observa­
tional network (say from 3.0 km^/bin to 2.0 km^/bin) would 
provide minimal improvements in recovering the large scale 
signal. In fact, the realistic finer scale convective
storm features can be recovered only when most of the avail­
able data is used. Thus, for a given sensor deployment, 
analysis accuracy appears more highly dependent on available 
data than does covariance-function determination.
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In addition to data set densities, analysis results 
are controlled strongly by the cross-covariance between gage 
and radar observations. Cross-covariance influence was 
evaluated using the SNR from station objective analyses.
The results (Table 2) clearly show the significant radar 
influence on surface precipitation analysis. Nevertheless, 
too much influence by the radar (p(0) = 0.84) or too little 
influence (p(0) = 0.42) gives sub-optimal results. One 
must use a proper sensor mix for optimum analysis results.

PREDICTOR
VARIABLES

COVARIANCE
SOURCE

SIGNAL-TO-NOISE
RATIO

Gages only Gage data 0.29

Gages only Pattern from radar 
Magnitude from gage

0.15

Radar plus 
gages

Cross-covariance 
P(0) = 0.42

0.56

Radar plus 
gages

Cross-covariance 
p(0) = 0.63

1.06

Radar plus 
gages

Cross-covarianc e 
P(0) = 0.84

0.96

Table 2. Station surface precipitation analysis: radar
influence controlled by varying the lag-zero 
cross-covariance value.
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Also, the effect on analysis accuracy of using a
different Z-R relationship was investigated. Using the
Marshall-Palmer relationship and a modified Jones relation-

1 37ship of Z = 3 * (486 ' ), the radar total-storm-rainfall
was recalculated, a bivariate station analysis performed 
and the SNR calculated. The modified Jones-determined SNR 
was identical with the original SNR; the Marshall-Palmer 
derived SNR was improved slightly. The implication seems 
that the 6 of Z = gR° is unimportant for analysis results and 
that only the a exerts an influence. In fact through the 
SNR, the analysis model provides an objective, realistic 
approach toward evaluation of an optimum Z-R relationship. 
Although only one data set has been processed in this manner, 
it seems to suggest that the Z-R relationship effect on 
analysis accuracy, when using the analysis methodology 
developed in this study, is minimal.



CHAPTER VI

COVARIANCE CLI^TOLOGICAE STUDY AND 
OBJECTIVE ANALYSIS RESULTS

A. Univariate Objective Analysis Results 
The climatological characteristics of surface rain­

fall estimates from Southeast Montana are dominated by the 
statistical structure from the many radar data sets processed. 
Radar univariate analysis results and covariance-function 
plots, typical of Southeast Montana, are illustrated 
graphically (Section A); climatological characteristics are 
discussed in Section B. Bivariate radar/rain gage analyses 
follow (Section C) and illustrate the analysis algorithm's 
power and capability.

Univariate analyses of three organized lines and two 
embedded convective cells follow. Also presented is a 
typical set of rainfall patterns analyzed from a four­
dimensional data subset; these results illustrate the model's 
data assimilation capability. All figures presented have

48
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true north toward the page top. The storms’ motion- 
directions and speeds were determined by tracking movements 
of the salient storm features. Unless otherwise noted in 
figure captions, analysis grids are 22.5 km x 22.5 km and 
covariance plot mesh sizes are 1.0 km x 1.0 km.

On 5 July 75 a well organized convective line moved 
southward toward Miles City and produced maximum steady 
rainfall rates near 10 ram hr  ̂ (Fig. 6). Little intensity 
or feature change was noted as the system progressed stead­
ily southward. By 1338 GMT (not shoim), cells moving from 
350° and 010° at 25 km hr~^ merged into a distinct core and 
accounted for the total rainfall swath observed (Fig. 7A). 
Maximum analyzed rainfall was less than 2.0 ram.

On 31 July 75 a northwest-southeast squall line 
moved rapidly northward. Maximum rainfall rate observed was 
12.7 mm hr~^ (Fig. 8B). Rapid system movement resulted in 
minimal surface rainfall accumulations (Fig. 9A). Analyzed 
amounts were barely 1.0 mm. Notice the highly skewed and 
anisotropic squall line features reflected in the optimal 
filtering function (Fig. 8E).

The third squall line presented (18 August 75) in-
-1

tensified rapidly (Fig. lOD) to rates exceeding 110 mm hr 
as it moved quickly east northeastward. Rainfall rates 
diminished to near 75 mm hr  ̂by 2238 GMT (Fig. lOE). Total- 
storm-rainfall exceeded 10 mm (Fig. 11) and was oriented in 
northwest-southeast bands that were coincident with successive
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Fig. 6 (A-H). Radar univariate analysis of 7 July 75 squall 
line moving from 350° at 25 km hr” .̂ Isohyet contour­
ing interval is 2.5 mm hr"l. Modelled covariance 
function values (H) range from 0.0 to 0.40.
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Fig. 7 (A-B). Radar univariate total-storm-rainfall analysis 
of 7 July 75 squall line. Isohyet contouring interval 
is 1.0 mm. Modelled covariance function values (B) 
range from -0.094 to 0.460.

line positions. An explanation for the precipitation band­
ing is offered in Section B.

The model's four-dimensional data-assimilation 
capability is demonstrated by interpolation analyses on 
horizontal grid arrays placed a desired distance above ground 
level (for the 18 August 75 squall line of Figs. 10-11 now 
illustrated in Fig. 12). Interpolation estimates derive from 
predictor information (in a four-dimensional data subset) 
filtered in proportion to the predictor’s spatial-temporal 
separation distance from the analysis location. The plotted 
results become a true constant-altitude planned-position- 
indicator (CAPPI) analysis of the radar information. These
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Fig. 8 (A-E). Radar univariate analysis of 31 July 75 squall 
line moving from 190° at 74 km hr"^. Isohyet contour­
ing interval is 2.5 mm hr"^. Modelled covariance 
function values (E) range from 0.0 to 0.40. Covariance 
mesh is 0.75 km square.
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lOC: 2228 GMT lOD: 2233 GMT

Fig. 10 (A-F). Radar univariate analysis of 18 August 75
squall line moving from 250° at 59 km hr"^. Isohyet 
contouring interval is 15.0 mm hr"^. Modelled covar­
iance function values (F) range from -0.031 to 0.650.
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Fig. 12 (A-J). Constant Altitude PPI (CAPPI) analysis of the 
Fig. 10 squall line obtained from a four dimensional 
data subset, its Table 3 covariance function, and the 
data assimilation capability in the objective analysis 
model. Isohyet contouring interval is 15.0 mm hr”i.
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12E: 2238 GMT. 1.0 km 12J: 2238 GMT, 2.25 km

results may be termed "true" because some investigators allow 
only the closest observation to become the final value at a 
CAPPI grid location. Other investigators simply average the 
closest N observations for a grid point estimate. Features 
commonly associated with advancing convective systems are 
noted. Storm intensities are stronger 2.25 km into the storm 
(Figs. 12F-J) than at cloud base (Figs. 12A-E). Lower level 
features are retarded somewhat over the corresponding 
entities aloft.

Late on 17 July 75 and on the south side of a large 
rain mass, a small cell became organized, intensified, and 
moved quickly northeastward (Fig. 13). Rainfall rates reached 
21.6 mm hr'^ by 0022 GMT (Fig. 13D). A well defined precipi­
tation maximum trailed the storm-core path. Rapid cell 
movement prevented accumulations from exceeding 3.0 mm (Fig. 14).
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Fig. 13 (A-F) Radar univariate analysis of 17 July 75 
embedded thunderstorm moving from 220° at 53 km hr 
Isohyet contouring interval is 5.0 ram hr"^. Model 
covariance function values (F) range from -0.080 to 
0.350.
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Modelled
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Fig. 14 (A-B). Radar univariate total-storm-rainfall analysis 
of 17 July 75 embedded thunderstorm. Isohyet contour­
ing interval is 1.0 mm. Modelled covariance function 
values (B) range from -0.044 to 0.340.
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Fig. 15 (A-G). Radar univariate analysis of 18-19 August 75 
embedded thunderstorm moving from 270° at 45 km hr 
Isohyet contouring interval is 10.0 mm hr"-*-. Modelled 
covariance function values (G) range from -0.003 to 
0:600.
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Fig. 15 (A-B). Radar univariate total-storm-rainfall analysis 
of 18-19 August 75 embedded thunderstorm. Isohyet 
contouring interval is 1.0 nm. Modelled covariance 
function values (B) range from -0.130 to 0.570.

An embedded convective system (possibly a short line) 
moved quickly toward Miles City on the afternoon of 18 August 
75. At 2352 GMT, after reaching maximum intensity of 38 mm 
hr  ̂ (Fig. 15B), the system weakened slowly to 25 mm hr  ̂by 
0007 GMT (Fig. 15E) Surface rainfall accumulations reflected 
the weakening trend of the eastward moving system (Fig. 16A). 
Maximum observed precipitation was almost 5.0 mm.

This study documents (Section B) the covariance 
model's capability to reflect system characteristics. The 
reader is urged to study the Table 3 and 4 summaries and con­
trast the covariance function plots: for (1) small (Fig. 9B)
and large (Fig. 15G) systems; (2) symmetrical (Fig. 20F) and 
anisotropic (Fig. 23B) systems; and (3) anisotropic systems
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oriented off the coordinate axes (Figs. 8E, 14B, and 15G) 
and parallel to a major axis (Fig. lOF).

B. Covariance Cliraatological-Study Results
The statistical properties of surface rainfall esti­

mates from Southeast Montana derive from storm structure 
implied by observed data and then deduced by using space-time 
covariance and cross-covariance functions. These properties 
were investigated using a variety of convective storm systems 
(Table 1). Included in the study were dissipating and in- • 
tensifying squall lines and isolated convective cells moving 
from a variety of motion-directions and speeds. Study results 
are summarized in Table 3 (three and four dimensional co- 
variances), Table 4 (total-storm-rainfall covariances) and 
Table 5 (motion-direction and speeds and calculated preferred 
storm track (Eq. (19)). A sensor array orientated along the 
preferred storm track of a convective system will permit the 
optimal sampling and analysis of similar phenomena; this point 
is clearly shown in Chapter VIII. Please note that two di­
mensional data sets always possess symmetric covariance prop­
erties of the form = Ag and Ag = Â . System physical 
characteristics are termed "coherent" over those spatial or 
temporal lag distances that exhibit positive covariance. 
Drufuca and Zawadzki (1975) provide similar definitions of 
pattern coherency in their study of the climatological fea­
tures in a large rain gage data set.
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M IL fe S  C IT Y  M ON TAN A RAINFALL A - Y - i - T  COVARIANCE S T A T I S T IC S

D A T E E A S T NORTH WEST S O U TH UP DOWN CCRR E L  IP S E T IM E AR EA R O T A T E SNR

S  J U L Y  7 5  
IS 3 0 - 2 0 0 C  GMT

6 . 7 4 . 9 3 . 5 5 . 5 0 . 3 0 . 0 0 . 6 5 - 0 . 3 3 4 1 . 3 9 3 . 2 - 2 8 . 5 1 . 0 6

7  J U L Y  7 5  
1 2 0 7 - 1 3 4 2  GMT

1 2 . 0 4 . 2 7 . 5 6 . 0 0 . 0 0 . 0 C . 4 0 0 . 9 7 1 1 . 0 1 8 7 . 2 3 3 . 6 0 . 6 7

7  J U L Y  7 5  • 
1 5 0 0 - 2 0 0 0  GMT

4 . 1 4 . 0 4 . 3 5 . 2 0 . 0 0 . 0 0 . 5 9 - C . 5 3 1 8 . 6 6 1 . 1 - 5 4 . C 1 .44

1 7  J U L Y  7 5  
0 C 0 7 - 0 O 2 7  GMT

5 . 6 1 0 .1 3 . 8 5 . 6 0 . 0 0 . 0 C . 3 5 0 . 0 7 1 0 . 0 1 1 5 . 5 8 6 . 8 0 . 5 4

1 7  J U L Y  7 5  
1 5 4 5 - 1 6 1 5  GMT

5 . 2 5 . 8 3 . 6 3 . 9 0 . 0 o . c 0 . 5 9 - 0 . 9 2 2 3 . 3 6 7 . 5 - 4 8 . 5 1 . 4 4

21  J U L Y  7 5  
2 2 5 2 - 2 3 2 2  GMT

1 4 . 7 3 . 6 4 . 7 3 . 4 0 . 0 0 . 0 0 . 4 5 0 . 8 3 1 9 . 8 1 0 7 . 2 1 1  . 6 0 . 0 2

3 0  J U L Y  7 5  
2 0 0 3 - 2 0 1 8  GMT

S . l 5 . 1 4 . 1 0 . 0 0 . 0 0 . 4 1 0 . 5 8 2 3 . 6 7 3 . 3 4 5 . 2 0 . 6 9

3 1  J U L Y  7 5  
C 6 S 8 - 0 7 1 3  GMT

1 2 . 4 5 . 1 1 0 . 0 4 . 6 0 . 9 0 . 0 0 . 4 0 - 0 . 9 4 6 . 6 1 7 0 . 9 - 2 1  . 4 0 . 6 7

1 8  AU G U S T 7 5  
2 2 1 3 - 2 2 3 8  GMT

2 . 8 5 . 8 2 , 8 5 . 8 0 . 0 0 . 0 0 . 6 5 - C .  7 9 3 . 3 5 0 . 8 - 6 7 . 1 1 . 6 6

1 9  AU G U S T 7 5  
2 3 4 7 - 0 0 1 2  GMT

9 . 6 9 . 9 5 . 9 7 . 1 0 . 0 0 . 0 0 . 6 0 - 0 . 9 1 6 . 8 2 0 7 . 0 - 4 5 . 9 1 . 5 0

5  J U L Y  7 5  
1 9 3 0 - 2 0 0 0  GMT

6 . 6 5 . 2 3 . 6 5 . 9 7 . 7 7 . 7 0 . 5 6 - C . 4 0 4 0 . 9 8 9 . 7 - 3 8 . 2 1 . 2 7

3 0  J U L Y  7 5  
2 0 C 3 - 2 0 1 8  GMT

5 . 0 5 . 1 4 . 2 6 . 0 6 .  1 0 . 4 4 0 . 6 7 2 0 . 6 7 3 . 2 4 6 . 3 0  . 7 9

31  J U L Y  7 5  
0 6 5 8 - 0 7 1 3  GMT

8 . 9 4,5 9 . 5 4 . 8 5 . 2 C . 4 b - 0 . 9 4 4 . 5 1 3 4 . 9 - 2 6 . 0 0 . 8 5

1 8  AU G U ST 7 5  
2 2 1 3 - 2 2 1 0  GMT

3 . 4 0 . 7 3 . 5 8 . 8 3 . 0 3 ,  1 0 . 6 3 - 0 . 8 8 3 . 3 9 5 . 9 - 7 0 . 0 I  . 7 0

6  J U N E  7 b  
0 5 3 0 - 0 6 0 0  GMT

6 . 9 9 . 7 5 . 9 7 . 6 0 . 0 0 . 0 0 . 6 9 3 5 .  1 1 7 5 . 3 —6 5 . 6 2 . 2 3

7 JU N E  7 6  
0 4 3 0 - 0 4 4 5  GMT

4 . 8 6 . 5 5 . 3 7 . 2 0 . 0 0 . 0 C . 5 5 - C . 4 2 3 6 . 4 1 0 8 . 7 - 6 3 . 3 1 . 2 2

7  JU N E  7 6  
0 5 1 5 - 0 5 4 5  GMT

1 2 , S 8 , 3 1 2 . 8 8 . 5 O . J 0 . 0 0 . 7 1 - 0 . 3 3 1 0 . 2 3 3 4 . 2 - 1 8 , 8 2 . 4 5

P A R A M E TE R
A V E R A G E S

7 . 4 6 . 3 5 . 6 6 . 0 5 . 5 5 . 5 0 . 5 4 - 0  . 2 7 1 8 . 6 1 2 5 . 6 - 1 9 . 1 1 . 2 9

S T A N D A R D
D E V IA T IO N S

3 . 5 2 . 1 2 . 7 1 «0 1 . 7 1 .  b 0 . 1 1 0 . 6 4 1 2 . 8 6 9 . 4 4 5 . 8 0 . 5 7

Table 3. Covariance climatological-study results from
investigating the Table 1 storm data sets. Para­
meters correspond to the variables A, through Ag 
in Chapter IV.A. Units are km and minutes. 
Covariance area, preferred storm track (Eq. (19)), 
relative data-set signal, and parameter averages 
and standard deviations are included.
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7 . 2 3 . 8 7 , 2 3 . 8 9 . 0 0 . 0 0 . 5 7 0 . 0 8 0 . 0 8 4 . 6 3 . 4 1 . 3 3

6  JU N E  7 6  
0 6 0 0  GMT

5 . 2 7 . 1 5 . 2 7 . 1 0 . 0 0 . 0 0 , 7 0 - 0 . 3 2 9 , 0 1 1 5 . 8 - 6 7 , 5 3 . 5 5

7  J U N E  7 6  
0 4 4 5  GMT

4 . 7 6 . 8 4 . 7 6 . 8 0 , 3 0 . 0 0 . 5 3 - c . i a 0 . 0 1 0 1 . 6 - 7 7 , 1 1 . 1 3

7 J U N E  7 6  
0 5 4 5  GMT

6 . 4 4 . 6 6 , 4 4 . 6 0 . 3 0 . 0 - 0 . 2 0 0 . 0 9 4 . 2 - 1 5 . 5 1 . 7 8

P A R A M E T E R
AV E R A G E S

5 . 1 S . l S . l S . l 0 . 0 0 . 0 0 , 5 9 - 0 .  1 0 0 . 0 7 9 . 8 - 1 7 . 0 1 . 7 4

S T A N D A R D
C E V IA T IO N S

2 . 3 1 . 6 2 , 3 1 . 6 3 , 3 0 . 0 O . I J C . 4 3 0 . 0 3 0 . 8 5 1 . 7 0 . 9 7

Table 4. Covariance climatological-study results obtained 
from investigating the accumulated rainfall pat­
terns of the Tables 1 and 3 storm data sets. Para­
meters correspond to the variables through Ag
in Chapter IV.A. Units are km and minutes.
Covariance area, preferred storm track (Eq. (19)), 
relative data set signal, and parameter averages 
and standard deviations are included.
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The climacological characteristics (Tables 3 and 4) 
suggest a very close relationship exists between parameter 
values of the covariance function and convective-storm system 
dimensions. Physical features such as system size and 
asymmetry, motion-direction and speed, and calculated pre­
ferred storm track reflect similar features in a system's 
statistical structure. The implication seems that optimal 
sampling and analysis is strongly dependent upon a system's 
physical characteristics.

The average cloud base area within the 20, 25, and 
30 dBz reflectivity contours was calculated for the three 
dimensional storm data sets and time intervals in Table 3.
The corresponding covariance function area was also calcu­
lated as the function's ellipsoidal area within the spatial 
influence radii (i.e., the area containing positive covari­
ance at time lag zero). A simple correlation between the 
covariance function area and the cloud base area within the 
20, 25, and 30 dBz reflectivity contours produced correlation 
coefficients of 0.45, 0.49, and 0.52, respectively. (Selec­
ted storm data sets were eliminated subjectively from this 
and following computations for several reasons--unable to 
determine motion speed, system life-time too short). The 
results presented suggest that weak precipitation rates are 
not part of the salient storm statistical structure. More­
over, the results indicate covariance function responses to 
cardinal system features.
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The simple correlation between the storm motion- 
speed and the covariance time influence radius (also re­
ferred to as the decorrelation time) was -0.76. Without 
regard to storm size, the strong implication is that fast 
moving storms decorrelate quickly. As an example, the 
31 July 75 squall line (a large system illustrated in Fig. 8) 
moved at 74 km hr”̂  and decorrelated in 6.6 minutes. A 
statistically smaller storm on 18 August 75 (Fig. 10) moved 
at 59 km hr  ̂and decorrelated in 3.3 minutes. At the other
extreme, the 5 July 75 convective cell (not shown) drifted

-1southeastward at 11 km hr and was coherent statistically 
for over 40 minutes. These results indicate that small storms 
which move slowly are equivalent statistically in time to 
faster moving large storms. The simple correlation between 
motion speed, normalized by the storm's spatially coherent 
dimensions, and decorrelation time verifies the point ( cor­
relation coefficient of 0.79) and is a step toward universal 
applicability of these results.

Motion-speed, even for a well defined intense 
system, is a significant influence on the total-storm-rainfall 
footprint. The 31 July 75 system moved northward at 74 km 
hr  ̂ (Fig. 8), and produced maximum rainfall rates near 15 mm 
hr However, the rainfall left in its wake appeared as a 
collection of random noise (Fig. 9). The covariance model 
reflected the lack of spatial coherency and indicated in­
fluence radii (Table 4) significantly below the climatological
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average. A simple correlation between total-storm- 
rainfall covariance area and storm motion-speed (correlation 
of -0.54) points to the same conclusion.

Proper interpretation of the parameter averages 
requires recognition of the small sample size which contains 
individual cells and organized lines, weak systems and 
stronger ones. Nonetheless, squall-line covariance statis­
tics do dominate parameter averages, principally because 
organized lines are about 40% more spatially coherent than 
are individual cells (average covariance area of 160 km* vs 
116 km*). The high variability in the east-west influence 
radius (Table 3) and the relative high uncertainty in im­
plied covariance orientation (standard deviation of 0.64) 
is attributed to non-homogeneous system averaging. Four of 
five highly elongated convection lines moved either northward 
or southward (Table 5); the more symmetrical convective cells 
moved from a basic westerly direction.

The primary area of investigation involves the de­
sign of a multivariate mesoscale field experiment, which is 
expressed in terms of optimal sensor density and orientation 
requirements. .Now the point is addressed partially; later 
a more comprehensive discussion follows (Chapter VIII). The 
motion direction of a convective system and its calculated 
optimal sampling orientation (Eq. (19)) is presented in 
Fig. 17. At first glance the plot looks unimpressive and 
suggests only a weak positive relationship. Two (of five)
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DATA MOTION DIRECTION.
AND SPEED (km hr"^)

TYPE
SYSTEM

SAMPLING-- 
(Table 3)

-ORIENTATION 
(Table 4)

5 Jul 75 310/11 Cell 299° 323°
7 Jul 75 350/25 Line 236 199
7 Jul 75 330/22 Line 324 343
17 Jul 75 220/53 Cell 183 200
17 Jul 75 240/45 Cell 319 326
21 Jul 75 240/22 Cell 258 266
30 Jul 75 ? Line* 225* 219*
31 Jul 75 190/74 Line 291 291
18 Aug 75 250/59 Line 337 329
19 Aug 75 270/45 CelK?) 316 267
6 Jun 76 ? Cell* 336* 338*
7 Jun 76 180/21 Dissipated* 333* 347*
7 Jun 76 190/51 Line 289 286

MODAL VALUE 240/45 239-291° 286-291°

Table 5. Type convective system (Table 1), motion-direction 
and speed, and optimal sampling orientation 
(positive with respect to north = 360° and equal 
to 270° - Tables 3 or 4 results). Superscript 
table values (*) not used in modal value determina­
tion.
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Î
 300'i

§M

^  260'

H
OQ  220'

MILES CITY, MONTANA 
(1975-1976)

* Organized Lines 
a Convective Cells

K

«  180'

130° 220° 260° 300°
SYSTEM MOTION DIRECTION

Fig. 17. The relationship between convective system motion- 
direction and the sensor orientation for optimal 
sampling. Organized line (circles) and individual 
cell (squares) results taken from Table 5. Solid 
line is for user reference.

cells depart from the relationship; conceivably, one cell 
could have been classified appropriately as an embedded line 
(Fig. 15). The other cell (not shown but from 17 July 75, 
1545-1615 GMT) was of marginal quality primarily because of 
temporal data gaps.

The relationship between a convective line's
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Fig. 17. The relationship between convective system motion- 
direction and the sensor orientation for optimal 
sampling. Organized line (circles) and individual 
cell (squares) results taken from Table 5. Solid 
line is for user reference.

cells depart from the relationship; conceivably, one cell 
could have been classified appropriately as an embedded line 
(Fig. 15). The other cell (not shown but from 17 July 75, 
1545-1615 GMT) was of marginal quality primarily because of 
temporal data gaps.

The relationship between a convective line's
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motion-direction and the sensor orientation that permits 
optimal sampling is certainly not obvious. Only the 7 July 
75 squall line indicated a close relationship between co- 
variance orientation and system motion-direction (see 
Fig. 20); primarily that relationship resulted from a well 
defined strong cell curving southeast through the analysis 
grid at the same basic velocity as the parent squall line.
A closer subjective inspection (Figs. 6, 8 and 10) supports 
strongly the calculated orientation as that of the organized 
line. In most cases the line orientation appears orthogonal 
to its movement path. Yet, implications are that convection 
line sampling does benefit from the near non-orthogonality 
of covariance ellipticity and system motion-direction. The 
results are encouraging considering the limited sample and 
the inelegant methodology used to determine a system's 
velocity.

But what is the relationship of these parameters to 
that orientation necessary to observe optimally an accumulated 
rainfall pattern? Figure 18 provides convincing evidence 
that the sensor orientation, which produces optimal sampling 
in a moving convective system, is also best to observe the 
system's accumulated rainfall pattern--an important concept 
supported by nearly identical modal values of the preferred 
storm track in accumulated rainfall patterns and in the orien­
tation of moving convective systems (Table 5). Eleven of 
thirteen Table 5 moving-system orientations differed by less



74

CALCULATED SAMPLING ORIENTATION (deg)
340'

300
cn

m 260'
I
I MILES CITY. MONTANA 

(1975-1976)220'

® Organized Lines 
B  Convective Cells

180

180° 220° 260° 300° .340°
ACCUMULATED RAINFALL PATTERNS

Fig. 18. The relationship between the sensor orientation 
for optimal sampling of accumulated rainfall 
patterns and moving convective systems. Organized 
lines (circles) and individual cell (squares) 
results taken from Table 5. Solid line is for 
user reference.

than 25° from those sensor orientations that would permit 
optimal sampling of the accumulated rainfall patterns. The 
two cases that differed by more than 25° were organized as 
lines (Figs. 6-7 and 15-16) whose rainfall swath was domin­
ated by the motion direction of an embedded cell. The 
18 August 75 squall line results conform but are misleading
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(Figs. 10-11). A closer study indicates an intense squall 
line (rainfall rates exceeded 110 mm hr that progressed 
moderately northeastward. System intensity and northeast 
movement-speed resulted in an accumulated rainfall pattern 
dominated by relative precipitation maxima and oriented 
along successive line positions (Figs. 10-11). Radar cloud 
base sampling at five-minute intervals in this case was not 
sufficient to detect the true rainfall swath. One quick 
solution to the problem created by insufficient temporal 
sampling would be to incorporate (optimally) information 
above cloud base in estimating the accumulated rainfall 
pattern. But sampling implications, for the 18 August case 
only, are judged unrealistic and are dismissed.

The results were anticipated for observing indi­
vidual cells (Figs. 13-16), Frequently, organized lines 
sweeping across the countryside deposit precipitation maxima 
parallel to system motion direction (reflecting embedded 
cell movement); so, appropriately, such features are detected 
by the covariance model (see Figs. 6-7, 15-16, 20, and 23). 
Chapter VIII results provide significant information relating 
a sensor set's deployment to a phenomenon's preferred storm- 
track.

Clearly, the results justify procurement of an 
adequate climatology deduced from space-time covariances and 
so necessary for any optimal experimental design, In parti­
cular, the results point to the need for occurrence
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frequencies of (1) system motion-directions and speeds, and 
to a lesser extent, (2) squall line/convective cell relative 
frequency and (3) squall line orientation. Additional 
climatological requirements are mentioned in Chapter VIII.

Radar information has been used to determine 
characteristic features of convective systems on the High 
Plains. For the present, the results suggest that the 
average moving storm in Southeast Montana (Table 3) is almost 
spatially symmetric (x-y-z), time coherent for almost 20 min­
utes, and has salient features covering 125 km^. These sys­
tems would have been sampled and analyzed more optimally if 
sensors had been oriented west northwest-east southeast 
(289-109°; see Chapter VIII for more conclusive results), 
and contained, in their raw data sets, a third more signal 
than noise (SNR = Ay/(1 - Ay)).

Similarly, the average accumulated rainfall pattern 
from Southeast Montana (Table 4) is symmetric, and has 
salient features covering 80 km^. These rainfall footprints 
would have been sampled and analyzed more optimally if sta­
tions had been oriented west northwest-east southeast (287- 
107°; also see Chapter VIII) and contained, in their raw data 
sets, almost twice as much signal as noise.

The fact that moving convective systems "apparently" 
are more spatially coherent than their accumulated rainfall 
patterns (125 km^ vs 80 km^) was a surprising result. For 
most data sets (Figs. 8-9 provide a notable acception), the
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implications are misleading and result primarily from rela­
tive SNR differences between the two type data sets. The 
spatial influence radii in any system are restricted some­
what by engineering aspects in achieving the least squares 
functional fit to a raw covariance matrix set. The NLP 
algorithm has more freedom to adjust values of the spatial 
influence radii when a data set's signal is low than when 
the data set's signal is high. For example, in data sets 
containing marginal signal qualities, the engineered spatial 
influence radii asympotically may approach the correct value 
and still inflict only minor least square errors on the 
function's determination. For systems of similar size but 
where signal qualities are increased, miner adjustments by 
the NLP algorithm in its search for the spatial influence 
radii will produce increased errors between the raw covari­
ance matrices and the NLP-determined function values. Data 
sets where signal qualities are high produce an added benefit 
of high confidence in the calculated spatial influence radii. 
Thus, there is higher confidence in the characteristic 
dimensions of accumulated rainfall patterns than in the 
physical dimensions of a moving system--simply because 
accumulated rainfall patterns generally contain more signal 
than is observed in its moving-system observation set. It 
appears then, that the covariance model over estimates 
spatial coherency in moving convective systems.

In contrast. Central Oklahoma convective systems
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present a striking difference to those selected from South­
east Montana. Brady's (1976, 1977) early morning storm on 
21 May 74 was noticeably anisotropic, time coherent for near 
two-thirds an hour, and had salient features covering almost 
3000 km^ (25 times as large as the average moving Montana 
system) . The Oklahoma system contained equal amounts of 
signal and noise and was sampled and analyzed optimally if 
the sensors were oriented southwest-northeast (245-065°). 
Similarly, the corresponding accumulated rainfall pattern 
was anisotropic, had salient features covering almost 2100 km^ 
(also 25 times as large as a Montana rainfall field), and was 
sampled and analyzed optimally for sensors oriented west 
southwest-east northeast (250-070°). Also, the pattern con­
tained four times as much signal as noise.

The covariance model has the inherent ability to 
discriminate objectively between parameter characteristics 
which are controlled, perhaps, by geographical location, 
season or modification experiments. This particular ability 
of the covariance model is a quality that seems well worth 
evaluating in future experimental work.

The majority of 1975-early 1976 convective systems 
judged suitable for this study did not pass over the recording 
gage network. Only three rain gage/radar data sets were 
secured for study (Table 1). Consequently, any development 
of a cross-covariance climatology and expected gage network 
signal-to-noise ratio was not practical. Only average
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parameter values are presented (Table 6); the reader may wish 
to compare these limited Southeast Montana results with 
Brady's (1976) similarly limited Oklahoma gage and cross­
covariance results. All three storm data sets enter into 
the average accumulated rainfall cross-covariances ; the 
moving storm results are solely from the 7 July 75 squall 
line case. Interpretation of the results follow in Section C.

EAST NORTH WEST SOUTH CORR ELLIPSE TIME GAGE Ay
MOVING 4.4 8.4 5.0 6.0 0,40 -0.80 31.0 0.50
SYSTEM

ACCUMULATED 6.6 7.7 7.5 9.1 0.55 -0.25 0.0 0.50
RAINFALL

Table 6. The average Southeast Montana cross-covariance and 
expected gage network lag-zero covariance value for 
moving storm systems and accumulated rainfall pat­
terns . Influence radii are in km and minutes.

Additional comment on cross-covariance importance 
is noted in Chapter VIII.

A final point worth discussing concerns the analysis 
model’s ability to recover a data set's signal. User confi­
dence in model filtering properties is evaluated objectively 
by system ability to filter data set noise (geophysical and 
otherwise) and still recover the basic observed signal.
Model performance is evaluated by comparing parameter values 
for the covariance function obtained from the original data 
and from grid-point estimates of the analyzed data set
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(using the methodology of Chapter V.B). Parameter values of 
the filtered covariance function and for the moving systems 
(Table 3) and for the accumulated rainfall patterns 
(Table 4) are summarized in Tables 7 and 8.

F IL T I-R E O  M ILE S  C ITY MONTANA R A IN F A LL  X - Y - i - T  COVARIANCE S T A T IS T IC S

DATE EAST NORTH SOUTH UP OCMN COKR F H P S E TIME AREA ROTATE SNR

S J U L Y  7S> 
I9 3 0 - 2 D 0 0  GMT

7 ,3 6 . 0 5 .1 6 .1 3 .3 9 . 0 0 .7 5 - 0 , 3 7 5 7 .6 1 1 7 .6 - 3 2 . 2 3 . CO

7 J U L Y  75  
I 3 0 7 - I 3 4 2  GMT

1 6 .3 4 .2 1 0 .8 9 .3 0 . 0 C .O 0 .7 1 0 . 6 4 2 1 .1 2 8 6 .9 2 3 . 8 2 . 4 5

7 JU LY  7 5  
I9 C O -2 0 0 0  GMT

7 . 5 6 .3 8 .1 t c . i 9 .0 c .  : 0 .6 9 2 1 .1 1 9 9 .8 - 5 7 . 7 2 . 2 3

17 JU LY  7 5  
0 ( 0 7 - 0 0 2 7  GMT

7 . 8 1 4 .3 4 . 9 6 . 9 0 .0 0 . 0 0 .5 8 - 0 . 5 3 1 0 .8 211 .1 - 7 0  .1 1 .3 8

17 JU LY  7 5  
I 5 4 5 -1 6 1 5  GMT

t l . O 1 2 .2 8 .7 1 1 .4 0 .0 0 . 0 0 .5 9 - 0 . 2 8 1 8 .4 3 6 6 .9 - 5 5 . C 1 .4 4

21 JU LY  7 5  
2 2 5 2 -2 3 2 2  GMT

1 6 .9 5 . 7 9 .6 6 . 2 0 .0 0 . 0 0 .6 1 0 . 4 9 2 5 . C 2 4 7 .2 1 1 .4 1 . 5 6

30 JU LY  75  
2 ( 0 3 - 2 0 1 5  CMT

1 1 .2 2 2 .3 7 . 5 1 4 .0 0 .0 0 . 2 0 *6 6 C .0 2 2 9 .8 541 .1 8 9 . 3 1 .9 4

31 JU LY  7 5  
0 6 5 8 -0 7 1 3  GMT

1 7 .4 11 .5 2 0 . 0 1 5 .4 0 .0 C .O 0 .7 9 4 .4 7 9 0 .1 - 3 7 . 4 3 . 7 6

18 AUGUST 75 
2 2 1 3 -2 2 3 8  GMT

1 4 .1 2 7 . 7 1 1 . 1 2 2 .4 0 .0 0 . 0 0 .7 4 6 .8 9 9 2 .8 - 6 3 . 3 2 . 8 5

19 AUGUST 75 
2 3 4 7 -0 0 1 2  GMT

9 . 9 1 3 .1 5 .8 9 .8 0 .0 0 . 0 0 .O 6 - 0  .5 9 1 0 .7 2 8 3 .1 —5 7  .  4 1 .9 4

6  JUNE 7 6  
C S 3 0 -0 6 C 0  GMT

1 0 .1 l a . i 8 . 6 1 0 .3 0 .0 0 . 0 C . 7 , - 0 . 5 7 4 2 .3 4 1 7 .2 - 6 8 . 5 2 . 8 5

7 JUNE 7 6  
0 430  -  04  4 5 GMT

9 . 5 1 4 .3 8 . 9 9 .5 0 .0 0 . 0 - 0 . 4 1 2 5 .8 3 4 3 .4 - 6 8 .  1 1 . 5 6

7  JUNE 76  
0 5 1 5 - 0 5 4 5  GMT

1 9 .2 1 0 .9 1 8 .0 1 0 .0 0 .0 0 . 0 0 .7 9 1 3 . C 6 1 0 .6 - 1 4 . 3 3 . 7 6

PARAMETER
AVERAGES

1 2 .2 1 2 .8 9 .8 1 0 .9 0 .0 0 . 0 0 . 6 9 2 2 . 1 4 1 6 .0 - 3 0 . 7 2 . 3 6

STANDARD
D E V IA T IC N S

3 .9 6 .6 4 . 4 4 .3 0 .0 0 . 0 0 .0 7 0 . 4 6 1 4 .3 2 4 4 .1 4 5 . 5 C .8 0

Table 7. Filtered covariance parameter values obtained from 
the methods in Chapter V.B and the Table 3 convec­
tive systems. Variables listed correspond to 
Table 3.
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A comparison of original and filtered parameter 
values of the covariance model provides strong evidence of 
model ability to abstract observed signal from significantly 
noisy data sets. The filtered signal of the average moving- 
storm (Table 7) closely resembles characteristics of the 
original signal. Salient features are slightly larger than 
original data set features because (1) filtered small-scale 
fluctuations corrupted the predominant system signals and 
(2) because grid-point data resolution was about half the 
original data resolution. Optimal sampling station orienta­
tion was unchanged. Albeit, the analysis did recover almost 
twice as much signal (compared with analyzed noise) as was 
apparent in the original data.

Conversely, almost 50% of the noise contributions 
to the original data were discarded by the analysis. Model 
performance was exceedingly high for most data sets (e.g., the 
SNR increased by 561% and 366% after analysis of the squall 
line data sets that occurred on 31 July 75 and 7 July 75).
Poor data set quality likely restricted model performance on 
17 July 75 (1545 GMT).

Similar results were found (Tables 4 and 8) in the 
analyzed accumulated rainfall patterns. Clearly, these 
filtering results convincingly point to the high ability of 
optimum interpolation methods in retaining essential data­
set features while tossing aside nearly 50% of the undesired 
data set properties.
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F IL T f iR E ü  M ILE S  C IT Y  MONTANA STüHM -TO TAL R A IN F A L L  COVARIANCE S T A T IS T IC S

DATE EAST NORTH WEST SOUTH UP OUaM CORR l l i p s s TIME APEA ROTATE SNR

5 JU LY  7 5  
2 0 0 0  GMT

6 . 2 6 .2 6 .2 6 . 2 0 . 0 0 . 0 0 .8 3 -C  .3 0 3 .0 1 2 0 .6 - 4 5 . 2 4 .8 8

7 JU LY 75  
1 3 4 2  GMT

8 .7 7 .6 8 . 7 7 . 6 0 . 0 0 . 0 C .7 5 0 . 1 3 0 . 0 2 0 7 .9 2 3 .1 3.C C

7 JU LY 7 5  
2 0 0 0  GMT

4 .0 a . 6 4 .0 8 . 6 0 . 0 0 . 0 0 .8 2 - 0 . 5 1 0 ,0 1 0 7 .4 - 7 4 . 5 4 .5 6

17 JU LY  75  
0 0 2 7  GMT

4 .9 9 . 3 4 . 9 9 . 3 c .o 0 . 0 C .7 3 0 . 5 3 o .c 1 4 2 .6 71 . 2 2 . 7 0

17 JU LY 7 5  
1 6 1 5  OMT

7 .6 7 . 7 7 . 6 7 . 7 0 . 0 o .c 0 .5 3 - C . 3 8 o .c 1 8 3 .9 - » 5 . « 1 .1  3

21 JU LY 7 5  
2  3 2 2  GMT

1 4 .6 5 .0 M . 6 5 . 0 0 . 0 o .c 0 .8 0 0 . 2 3 o .c 2 2 9 .3 5 .1 4 .C 0

30 JU LY  75  
2 0 1 8  GMT

8 .3 2 0 .1 8 . 3 2 0 .1 0 . 0 0 , 0 0 .6 0 0 . 3 3 o .c 5 2 2 .4 81 .1 1 .SC

31 JU LY  7 5  
0 7 1 3  GMT

5 .1 2 . 8 S . 1 2 . 8 0 . 0 0 . 0 C .7 3 - 0 . 6 9 o .c 4 3 . 9 - 2 3 . 4 2 . 7 0

18 AUGUST 75  
2 2 3 8  GMT

6 . 3 7 . 8 6 . 3 7 . 8 0 . 0 0 . 0 0 .5 9 0 .0 1 5 5 .6 - 6 2 . 9

t o  AUGUST 75 
0 0 1 2  GMT

1 3 .5 5 . 6 1 3 .5 5 . 6 0 .0 0 , 0 0 .7 7 - 0 . 0 8 0 .0 2 3 7 .5 - 2 . 2

6  JUNE 7 6  
0 6 0 0  CMT

8 .1 1 3 .7 8 .  1 1 3 .7 0 . 0 0 . 0 0 .7 1 - 0 . 3 1 o .c 3 4 9 .8 - 7 5 . 0 2 . 4 5

7 JUNE 7 6  
0 4 4 5  GMT

8 .1 8 . 7 8 .  1 8 . 7 0 .0 0 . 0 0 .6 6 - 0 .  16 o .c 2 1 9 .3 - 5 6 . 9 1 .9 4

7 JUNE 7 6  
0 5 4 5  GMT

8 . 3 7 . 2 8 . 3 7 . 2 0 .0 0 . 0 C .7 7 - C . 0 3 o .c 1 8 7 .1 —6 . 0 3 . 3 5

PARAMETER
AVERAGES

8 .0 8 . 5 8 . 0 8 .5 0 .0 0 . 0 0 .7 1 - 0 . 1 2 0 .0 2 0 8 .2 - 1 6 . 2 2 . 8 5

STANDARD
D E V IA T IO N S

3 .0 4 .2 3 . 0 4 .2 0 .0 0 . 0 0 .0 9 0 . 3 » 0 .0 1 1 5 .4 4 9 . 5 1 .1 3

Table 8. Filtered total-storm-rainfall covariance parameter 
values obtained from the methods in Chapter V.B 
and the Table 4 convective systems. Variables 
listed correspond to Table 4.

C. Bivariate Objective Analysis Results 
On 7 July 75 a squall line moved south and crossed 

the rain gage network (between 1900-2000 GMT). After 1930 
GMT, the convective line's core split into two distinct cells 
with the strongest portion curving southeast before moving 
beyond the network. Gage and radar univariate analyses at 
15-minute intervals are shown in Figs. 19-20 and the cor­
responding bivariate analyses in Fig. 21.



83

.■n‘:ii::-,in!ata t:i.

I ”   ̂ * ****** '***■

JVîîir.i;/.! ;a'.;}îii''.îiîîî!{iii{!!;î;!!î;*i**/î:

19A: 1900 GMT 19B: 1915 GMT

.................... ^..............■ iiilliiiiiiii
M U M iiiM tM iiIla x ii t l i l a a *11i i a a I I  iiiaiaaiaiailaaajaal

 .................  laiaiaaaaaiaiiiaiiiiiaiaiiiaaiK
ï|iii|iii||aai*aâiiaaaiiiaaaaaaaaaaaiaaiiaiâaaaaaMik

■ aiiiiiaiiiaiiiiiaaaiiaaai iii i i  taBaiiMiiiiiiiiiaaaiaaiaiailliiiixi 
là jlji ijia ijjijjjàaaaiiaiiii iiaiiiiaiiMaaiaiajii laaMii" iaaaaiiiiiiaainiiiiiaiiiiaf 
aaaaiaiaaiaaiaaaaâaa#aaaaiiaaaaa22aa222ai2222aaaiaaaiii2l2à2i2la22a2aaa!*i2i»aa22ai2a«

19C: 1930 GMT 19D: 1945 GMT

Fig. 19 (A-F).(A-F). Rain gage univariate analysis of 7 July 75 
squall line moving from 330° at 22 km hr"^. Isohyet 
contouring interval is 15.0 mm hr” .̂ Modelled covar­
iance function values (F) range from -0.001 to 0.310. 
Covariance mesh is 0.5 km square.
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19E: 2000 GMT 19F: System Covariance

Figures 19-21 are presented basically for reader 
information; demonstration of bivariate objective analysis 
superiority is achieved with the accumulated rainfall' 
analyses presented shortly.

All the same, Fig. 19F (the actual calculated gage 
covariance) and Fig. 20F (the "true" storm structure) 
illustrate graphically the misleading structures obtained 
from an inadequately sampled system. Improper signal filter­
ing of the system (not shown) resulted in displaced maxima 
broadly spread (true gradients relaxed) over the network 
and inconsistent with the true analyses.

System physics are reflected by the gage/radar cross­
covariance function (Fig. 2IF and Table 6). Accuracy in 
surface rainfall estimates from radar observations is 
possible in this case only when radar predictor information
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Fig, 20 (A-F). Radar univariate analysis of 7 July 75 squall 
line moving from 330° at 22 km hr“ .̂ Isohyet contour­
ing interval is 2.5 mm hr" . Modelled covariance 
function values (F) range from -0.089 to 0.590.
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is obtained from locations north northwest of the gage 
(direction from which storm moved). Predictors chosen from 
the south would have relaxed rainfall gradients along the 
storm's leading edge (where typically gradients are strongest) 
and artificially increased gradients on the storm's backside. 
Moving east or west for radar predictors would have produced 
similar undesirable consequences.

Fx-om evidence gained during the gage/radar case 
studies, there appears a strong possibility that radar 
precipitation estimates were significantly too low. In­
clusion of observations as low as 20 dBz could conceivably 
have accounted for some bias in the rainfall estimates. Co- 
variance results and author experience suggest more explana­
tions are needed. However, the beauty of my analysis model 
is that none are needed! Data sets that possess different
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Fig. 21 (A-F). Rain gage/radar bivariate analysis of 
75 squall line moving from 330° at 22 ky hr"-*-

July 
Iso­

hyet contouring interval is 15.0 mm hr”-*-. Modelled 
cross-covariance function values (F) range from -0.017 
to 0.400. Gross-covariance mesh is 1.0 km square.
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parameter means or variances are considered properly by the 
methods introduced in Chapter IV.B. But, the reader should 
understand that accurately calibrated radar information 
properly converted to rainfall important to analysis 
quality. Zawadzki (1975) suggests an approach whereby gage 
information can be correlated with radar data to enhance the 
radar's value as a hydrological tool.

Gage and radar univariate accumulated rainfall 
analyses (Figs. 22-23) reflect the same general patterns and 
indicate the movement path of the line's significant cell. 
(Contrast Figs. 22B and 23B and notice the misleading 
structure revealed by the gage network.) The gage analysis 
maximum (20.4 mm) coincides with observations but lacks 
enough detail given by the univariate analysis of closely 
spaced radar observations. Maximum radar analyzed rainfall
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was 4.67 mm (an amount 1/4 as large as the surface measured 
precipitation).

The resulting bivariate analysis (Fig. 24A) main­
tains essential features of both data sets and those in which 
the meteorologist has most confidence: the radar indicated
rainfall pattern adjusted by the mean observed surface rain­
fall. Maximum analyzed rainfall of 20.6 mm was colocated 
with a similar surface maximum (Figs. 22A and 24A). In 
addition, the bivariate analysis indicated a relative rain­
fall maximum that apparently was missed by the coarse gage 
network. The accompanying cross-covariance function (Fig. 24B) 
suggested optimum radar predictor location directions along 
storm-motion-path and not the sub-optimal isotropic or across 
movement-path direction.

Bivariate analysis capability is demonstrated again 
using a rain gage/radar data set from a slowly moving con­
vective cell on 6 June 76. Gage accumulated rainfall analy­
sis (Fig. 25A) indicates a diffuse rainfall core basically 
oriented northwest-southeast. Maximum amounts of 19.4 mm 
occurred in the east central portion of the analysis grid.
Radar observed patterns (Fig. 26A), basically similar, sug­
gested maximum surface amounts should have occurred north­
west of the primary gage indicated maxima.

The bivariate analysis again maintained essential
data set features (Fig. 27A) and produced 29.3 ram at the
location of maximum precipitation in the radar analyzed pattern.
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22A: 2000 GMT 22B: System Covariance
Fig. 22 (A-B). Rain gage univariate total-storm rainfall

analysis of 7 July 75 squall line. Isohyet contour­
ing interval is 5.0 mm. Modelled covariance function 
values (B) range from -0.104 to 0.570. Covariance 
mesh is 0.5 km square.
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23A: 2000 GMT 23B: System Covariance
Fig. 23 (A-B). Radar univariate total-storm-rainfall analysis 

of 7 July 75 squall line. Isohyet contouring interval 
is 1.0 mm. Modelled covariance function values (B) 
range from -0.125 to 0.650.
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24A: 2000 GMT 24B: System Cross-Covariance

Fig. 24 (A-B). Rain gage/radar bivariate total-storm rainfall 
analysis of 7 July 75 squall line. Isohyet contouring 
interval is 5.0 mm. Modelled cross-covariance function 
values (B) range from -0.078 to 0.450. Cross-covariance 
mesh is 1.0 km square.

The rainfall swath trailed southeast to a secondary maximum 
near 15 mm and colocated with the gage analyzed maximum. 
Differences between the two univariate analyses and the bi­
variate results appear significant; in fact, the results agree 
with observed data when the model’s filtering properties are 
considered. The bivariate maximum of 29.3 mm is consistent with 
gage observations in the area. The coarse network gage analy­
sis did not reflect the larger rainfall volume because gage- 
location/grid-point separation distance was large enough to 
dilute the linearly interpolated observations. Further, the 
analysis methods have been shown to be fully capable of pre­
dicting values larger (or smaller) than observations suggest
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25A: 0600 GMT 25B: System Covariance
Fig. 25 (A-B). Rain gage univariate total-storm-rainfall 

analysis of 6 June 76 convective cell. Isohyet 
contouring interval is 5.0 mm. Modelled covariance 
function values (B) range from -0.136 to 0.710. 
Covariance mesh is 0.5 km square. Analysis grid is 
36.0 km square.
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26A: 0600 GMT 26B: System Covariance
Fig. 26 (A-B). Radar univariate total-storra-rainfall analysis 

of 6 June 76 convective cell. Isohyet contouring 
interval is 1.0 mm. Modelled covariance function values 
(B) range from -0.158 to 0.780. Analysis grid is 36.0 
km square.
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27A: 0600 GMT 27B: System Cross-Covariance

Fig. 27 (A-B). Rain gage/radar bivariate total-storm-rainfall 
analysis of 6 June 76 convective cell. Isohyet con­
touring interval is 5.0 mm. Modelled cross-covariance 
function values (B) range from -0.065 to 0.680. Cross­
covariance mesh is 1.0 km square. Analysis grid is 
36.0 km square.

as possible (Eddy, 1967 page 36). Thus, the bivariate analysis 
benefits from details revealed by the very dense radar observa­
tion set.



CHAPTER VII

AN EXPERIMENTAL DESIGN EVALUATION 
FUNCTION; REVISITED

Rain gage data and radar reflectivity information 
have been combined previously to produce optimal surface 
rainfall estimates. Now, deployment of a statistically 
adequate rain gage set is investigated. Previous discussions 
have shown that the task critically depends on the chosen 
analysis procedure, storm physics, and sensor engineering 
aspects. In addition, decisions by a project director signi­
ficantly interact with features critical to sensor deployment 
and influence a field experiment's design.

The experimental design model (Chapter III, Eq. (15)) 
evaluates the relative value of a proposed instrument con­
figuration. Sampling quality is measured through modelled 
estimates of explained signal variance. Brady (1976) demon­
strated the practical validity of this approach. The model 
assumes the value of each sensor is determined only by para­
meter statistical structure. Primarily, the model examines

94
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the effect of sensor density reduction on the ability of a 
sampling system to detect signal variation. The model does 
not account for observational biases nor the relative role 
played by each parameter in producing the final analysis.

Brady (1976) extended the model's ability to 
detect signal variation by accounting for the predictand's 
mean value, which scales the analyzed field. He assumed un­
biased observations where the mean values and variances of 
both parameters are equal. Now, development of the experi­
mental design model is completed when parameter means and 
variances are modelled. Chapter VIII results report on the 
trade offs involved in the final use of a sensor set. At 
this point, the only assumptions are those fundamental to 
the objective analysis algorithm.

Derivation of the experimental design model is given 
in Appendix B. The design evaluation function becomes :

,  I ^
I \

K
(1-Rp + (1- S Bg )" + (o /o I ): 

 ̂ 1=1 -j ^ k=l \
Mr,

2(o /̂0g)15
K . K . J ^
E 6 - E E

k=l \  k=l ^  i=l j
(20)
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which represents the weighted-mean, residual-variance fraction 
over the space-time sample field (G points), Each term has 
the following interpretation:

TERM 1: J Z n^d - R!)

The first term represents the unexplained variance fraction 
contributed by perturbations in the phenomenon under analysis. 
Also, it measures the sensor reduction effect on the ability 
of a sampling system to detect signal variation.

1 I=GTERM 2: ^ Z (1 - z )' 
i=l

where J is a subset of Mg.

The second term represents the unexplained variance fraction 
contributed by uncertainty in the mean value of gage observa­
tions. Clearly, a multivariate designed experiment is im­
possible without minimal predictand-related sensors (Mg); 
otherwise, the term is infinite and the final analysis cannot 
be scaled. This implies, for the particular case of radar/ 
rain gage sensor deployments, that gage observations are 
essential to relate radar information to surface rainfall esti­
mates. Our interpretation of Mg is the effective number of 
gages within the statistically coherent area of a convective 
storm. Enough sensors must be within this area for an analy­
sis of surface rainfall adequate to meet the requirements 
of a principal investigator. If no gages are chosen for the
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J .

perturbation analysis (i.e., S Bp = 0), uncertainty in the
j=lanalyzed parameter mean value still exists and is represented 

by 1/Mg.

I=G n K
s I "i [

This term's contribution to the residual variance fraction 
has an interpretation similar to Term 2; that ô /Mĝ  represents 
uncertainty in the mean value of precipitation estimated from 
reflectivity information. Numerous radar-derived rainfall 
observations give high confidence to its mean value field; the 
residual variance contribution is relatively small. The term is 
zero if no reflectivity predictors are chosen. Also notice that 
a relative perturbation power ratio . determined by the
radar and gage data, is required if radar observations are to 
be used. Relatively high variances among the gage observations 
increases the radar's importance to system sampling ability.

1TERM 4: # Ü n.-----  G  ̂ 1
K . K . J .

- 2(0 /o)p E g  - E g  E g
^ ) k=l \  k=l \  i=l

The final term represents residual variance contributions 
from uncertainty in the observation's mean value. The only 
new variable is p̂ --the expected correlation between modelling 
errors in estimating the mean value of rain gage and radar 
derived rainfall.
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The important control exercised by the objective 

function on the placement algorithm exists because it con­
siders: (1) the uncertainty in the parameter mean values
(required for proper scaling of a bivariate analysis); and 
(2) the uncertainty in the perturbation analysis (measured 
by the residual variance).

The following general result is inferred. For a 
given gage covariance function, a low lag-zero cross­
correlation value results in an objective function dominated 
by the first two terms. A high lag-zero cross-correlation 
value lowers the first term's contribution (radar bin density 
is much greater than gage network density), raises the second 
term's contribution (because gages are not chosen for the 
perturbation analysis) and brings the third and fourth terms 
into play. These features are shown in Chapter VIII.

At this point, recall that the sample residual vari­
ance is a biased estimate of the population unexplained vari­
ance. The sample residual variance “ n ^ (e^e)} easily 
is shown equal to 5̂  = by extending the Eq. (8) results
with the methods of Appendix B. The 1/(n-m) term represents 
the effective degrees of freedom in an analysis. The term's 
effect insures that sample residual variances are increased 
to more accurately represent the population value. Because 
sensors are deployed in a climatological sense, occasionally, 
the modelled residual variances are larger than the observa­
tion error variances.
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Since storms may occur throughout the study area, 
the sensor deployment must consider the climate of the region; 
otherwise, experiment requirements may not be satisfied. Be­
cause an a priori climatology of preferred storm track or 
genesis information was not available, a weighted residual 
variance fraction was not obtained (i.e., of Eq. (20) 
was kept uniform across the analysis grid).

Also, storm size variety implies that over sampling 
of one storm is under sampling in another. Thus, the gage 
density and orientation requirements must be adequate to 
define a sufficient storm subset. These requirements consider 
"average" accumulated rainfall patterns (Chapter VI) of prime 
interest to HIPLSX. Clearly, the storm climatology is too 
sparse at the present to produce stable results (Chapter VIII).

The actual sensor deployment of this study proceeds 
differently from Brady's methods (1976). He placed sensors 
by using latitude/longitude coordinate positions as the NLP 
decision variables. Efficiency in determining the optimal 
deployment of a sensor set relates closely to the number of 
decision variables involved. When each station is free to 
find its optimal location, placement of large sensor sets 
demands excessive computer resources.

Because study objectives are different than were 
Brady's, the current method uses only two NLP decision vari­
ables to place sensors. Initial deployment proceeds as 
follows : the first sensor is placed at the center of the
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analysis grid. Then, the desired additional sensors are 
added in the symmetrical fashion suggested (Fig. 28). Sen­
sor separation-distances (east-west {Ax} and north-south 
{Ay}), relate directly to the influence radii of the predict­
and's covariance function. Finally, the seniors are rotated 
to lie along the preferred storm-track (Eq. (19)). The 
algorithm's two decision variables become the sensor- 
separation distances parallel and normal to a preferred storm 
track. Now, sensor set size does not impact (theoretically) 
on placement efficiency (and hence computer resources).

Deployment of multivariate sensor sets, fixed and 
movable, are possible. Extensive tests of the placement 
methods are presented in Chapter VIII.
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Fig. 28. The method used to provide the experimental design 
algorithm a movable sensor's relative location 
(closed squares) in the presence of an analysis grid 
(circles) and a permanently located (if any) sensor 
set (open squares).



CHAPTER VIII 

EXPERIMENTAL DESIGN RESULTS

The objectives of this chapter seek to evaluate 
the HIPLEX data requirements in observing accumulated rain­
fall patterns. Because HIPLEX is concerned with rainfall 
enhancement, evaluation of modification experiments involves 
optimal sampling and analysis. Previous discussions sug­
gested that these methods are interdependent; both techniques 
are vital for HIPLEX to achieve its objectives.

Satisfactory discrimination between storm analyses, 
obtained from systems whose population rainfall amounts dif­
fer, rests on the accurate analysis of an adequate data set. 
Logically, obtaining a statistically adequate data set pre­
cedes its optimal analysis ; in reality, this rarely occurs. 
Thus, selected data sets of interest, and representative of 
the study area climatology, are used to derive objective 
criteria that a principal investigator could use to determine 
and to deploy his "best" sensor set (quality, quantity, type

102
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and location). Consequently, the experimental design re­
sults relate to the covariance study and objective analysis 
results presented earlier. Now, design of the HIPLEX sam­
pling program is evaluated by using an "average" accumulated 
rainfall pattern (Table 4) and the experimental design model 
(Chapter VII).

The illustrative gage pattern possesses symmetric 
structural characteristics (i.e., = Ag = = A^) and is
only slightly anisotropic (Ag = -0.10). Since "filtered" 
covariance functions accurately represent the population 
structure of a system (Chapter V.B), features of the accumu­
lated rainfall pattern were enlarged to evaluate sampling 
requirements of systems statistically coherent over 150 km^ 
(i.e., influence radii of 6.9 km). Thus, the illustrative 
storm "sampled" in this chapter possesses the Table 9 fea­
tures (assembled subjectively from Tables 4 and 6). Other 
attempts at specifying gage network requirements to observe 
spatial variations in precipitation also are based on para­
meter characteristics (Hendrick and Comer, 1970).

A natural question to arise concerns analysis grid 
characteristics, since design results depend on sensor loca­
tions relative to the grid. Its size must be sufficient to 
contain the storm. In reality, the grid must be adequate to 
"catch" enough storms to satisfy experiment requirements. 
Storm characteristics are considered homogeneous over the 
Miles City study area; thus, sensor density and deployment
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EAST NORTH I7EST SOUTH CORR ELLIPSE TIME

GAGE
GOV.

6.9 6.9 6.9 6.9 0.50 -0.10 0.0

RADAR
GOV.

6.9 6.9 6.9 6.9 VRBL -0.10 0.0

GAGE/RADAR 
CROSS-GOV.

7.0 8.5 7.0 8.5 VRBL -0.25 0.0

RADAR/GAGE 
GROSS-GOV.

7.0 8.5 7.0 8.5 VRBL -0.25 0.0

Table 9 : Characteristics of an "average" accumulated rain­
fall pattern from Southeast Montana. Values of 
the radar covariance and cross-covariance at lag- 
zero are controlled subjectively to assess clim­
atology's impact on sampling requirements.

over a minimum size grid represents deployment requirements 
that extend to a larger grid. The only limitations are 
economics and the relevant climatology.

An illustrative "round storm" is inscribed inside 
a square grid containing 190 km^ (13.8 km x 13.8 km). As 
the mesh size of a grid approaches the average station spacing, 
interpolation analysis accuracy becomes more stable. Analyses 
on grids, that have a mesh size smaller than the average sta­
tion spacing, produce little new information and serve only 
to reduce computational efficiency. The results presented 
use a 7 X 7 X 2.3 km square grid.
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A. Radar Observation Influence 
on Optimal Gage Deployment 

A fundamental question faced by HIPLEX investigators 
concerns gage density requirements and the subsequent deploy­
ment sufficient to meet and evaluate stated HIPLEX objec­
tives. A decision on the basic optimal gage density is ex­
pressed as the gage quantity (Mg) required within the storm. 
In part, the decision is governed by parameter SNR character­
istics ; to a larger degree, the decision is influenced by the 
value, at lag-zero, of the cross-correlation between radar 
and gage data. The results represent the objective criteria 
a project director should use to obtain an efficient match of 
available resources and experiment requirements.

Sensor deployment in a highly constrained environ­
ment is complex at best. The design function invariably con­
tains several local optima in a solution space dependent on 
the sensor quantity, grid characteristics, and multivariate 
parameter structure. However, our NLP algorithm guarantees 
that any sensor deployment will find at least a local optimum 
(Himmelblau, 1972). Indeed, the local optimum problem was 
encountered during the sensor placement investigation. The 
model's occasional sensitivity to different sensor starting 
vectors became a source of irritation. With experience, 
internally consistent results were obtained; they are consid­
ered valid and accurate.

Now, gage density requirements are evaluated for the
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Table 9 system. Radar SNR values and the strength of gage/ 
radar interrelationships are controlled subjectively, along 
with movable gage and fixed radar bin quantity, to illustrate 
the consequent impact on sampling requirements. Typical 
results obtained are presented when 391 and 63 fixed radar 
bins are spaced uniformly throughout the analysis grid 
(Figs. 29-30), For reader convenience, univariate gage de­
ployment results are repeated in each figure. I'Jhen the radar 
covariance equalled 0.80, the bivariate design requirements 
matched the gage univariate results ; these results are not 
shown in Fig. 29A and 30A. Values of each objective function
term are provided (Tables 10-11) when approximately 5 and 10
gages are within the statistically coherent accumulated rain­
fall pattern; the results derive from Figs. 29-30.

Gage observations from Miles City were found to con­
tain four times more variance than observed in corresponding 
radar data sets (Eddy and McDonald (1977)); thus, the ratio 
0ĵ /Og was set to 0.25. The correlation coefficient ~p was set 
to 0.4, a value that reflects only marginal correlation in 
modelling errors of the two mean values. The following points 
are noted for designers of multivariate mesoscale field 
experiments:

In general, elliptically shaped storms require widely 
separated gages oriented along the storms' preferred track 
and spaced more closely along the minor axis of the covariance 
ellipse. As sensors are added to a network, the placement
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algorithm permits more closely spaced sensors. The algorithm 
actually "forces" sensors to remain in the analysis grid. 
However, a point of diminishing returns is soon reached. Now, 
sensors added no longer provide independent sampling informa­
tion. For a system possessing Table 9 characteristics, a 
maximum of 10 gage sensors is ample to explain and sample the 
significant signal variance. Additional sensors, placed 
initially outside the analysis grid, no longer are relocated 
inside, simply because the gages are not needed to explain 
the signal variance.

Under the conditions which all study results are 
derived, sampling quality is not diminished by minor location 
adjustments to an optimally deployed sensor set. Should trees, 
hills, and obstinate land owners cause problems, a project 
director could, in good faith, relocate selected sensors by 
several hundreds of meters and not compromise the design 
effort.

Reader attention is now called to Figs. 29-30. A 
first point to notice is that no matter how many radar bins 
are available for analysis, unless a certain minimum gage 
quantity is present to stabilize the mean value estimates, 
these radar data-are simply of no use in accurately esti­
mating surface rainfall.

A second point is made when one considers the 
cross-covariance between the two different data sets to be 
significantly better than the gage autocovariance. In such
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Fig. 29 (A-B). An evaluation of HIPLEX sampling requirements for observing accumu­
lated rainfall patterns. Sensor set quantity and quality varied to assess the 
impact on sampling requirements (391 radar bins spaced uniformly throughout 
the analysis grid).
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Fie 30 (A-B). An evaluation of HIPLEX sampling requirements for observing accumu-
lated rainfall patterns. Sensor set quantity and quality varied to assess the 
impact on sampling requirements (63 radar bins spaced uniformly throughout 
the analysis grid).



GAGES IN 
STORM (Mq )

GAGE
COV

RADAR
COV

CROSS
COV

PERTURBATIONS MEAN TOTAL

TERM 1 TERM 2 TERM 3 TERM 4 OF

5.51 0.50 0 0 0.815 0.042 0 0 0.857
5.51 0.50 0.80 0.55 0.667 0.182 0.00 -0.003 0.846
5.51 0.50 0.60 0.55 0.594 0.182 0.00 -0.004 0.772
5.51 0.50 0.80 0.80 0.257 0.182 0.00 -0.005 0.434
5.51 0.50 0.60 0.80 0.042 0.182 0.00 -0.006 0.218

10.24 0.50 0 0 0.726 0.009 0 0 0.735
10.24 0.50 0.80 0.55 0.667 0.094 0.00 -0.002 0.759
10.24 0.50 0.60 0.55 0.594 0.098 0.00 -0.003 0.689
10.24 0.50 0.80 0.80 0.257 0.098 0.00 -0.003 0.352
10.24 0.50 0.60 0.80 0.042 0.098 0.00 -0.004 0.136

Table 10. Contributions of each term to selected obiective function values plotted in 
. Fig. 29.



GAGES IN 
STORM (Mg)

GAGE
COV

RADAR
COV

CROSS
COV

PERTURBATIONS MEAN TOTAL
TERM 1 TERM 2 TERM 3 TERM 4 OF

5.51 0.50 0 0 0.815 0.042 0 0 0.857
5.51 0.50 0.80 0.55 0.680 0.157 0.000 -0.006 0.831
5.51 0.50 0.60 0.55 0.624 0.180 0.001 -0.009 0.796
5.51 0.50 0.80 0.80 . 0.244 0.229 0.002 -0.016 0.459
5.51 0.50 0.60 0.80 0.090 0.225 0.002 -0.018 0.299

10.24 0.50 0 0 0.726 0.009 0 0 0.735
10.24 0.50 0.80 0.55 0.668 0.071 0.000 -0.004 0.735
10.24 0.50 0.60 0.55 0.620 0.092 0.001 -0.007 0.706
10.24 0.50 0.80 0.80 0.243 0.135 0.002 -0.012 0.368
10.24 0.50 0.60 0.80 0.080 0.150 0.003 -0.016 0.217

Table II. Contributions of each term to selected objective function values plotted in 
Fig. 30.
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cases, a simple replacement of gages as predictors by radar 
reflectivities as predictors does not improve significantly 
the sampling accuracy. Increased confidence in the radar 
field's mean value (terms 3 and 4 of Eq. (20)) is far out­
weighed by decreased confidence in the gage field's mean value 
(term 2 of Eq. (20)). This second point results from an abun­
dance of radar observations (Mp̂ ), from a ratio ct̂ / that is less 
than uniity,. ̂ and to a lesser extent, from a correlation (o’) 
between Xg and Xp that also is less than unity.

T-Jhen the cross-covariance function is equal to or 
higher than the gage covariance function, an analysis reflects 
radar data characteristics, primarily because the grid points 
are surrounded by abundant radar data. Recall that:
6̂  = Y - ZggXg - SBp̂ fp. If the cross-covariance and gage co- 
variance functions are nearly equal, a replacement of gages 
by radar data as the predictors may increase sampling pattern 
accuracy. However, the pattern accuracy increases only at the 
expense of accuracy (over many analyses) in the mean value of 
the field (i.e., = 0).

Notice a third point. If the cross-covariance is high, 
the gages serve only to calibrate the radar; the placement 
algorithm responds by failing to relocate any gage sensor. In 
this case, an adequate placement solution is a uniform deploy­
ment across the analysis grid of at least the minimum gage 
quantity (point 1 noted previously). However, some storms 
have low cross-covariance values (dry sub-cloud air, incorrect
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Z-R relation, radar pulse volume not full, gusty surface..wirids). 
Now, an optimal deployment pays dividends because the gage 
observations, in such cases, both define the perturbations and 
stabilize the mean value.

A fourth point occurs as the gage's covariance value 
at lag zero decreases (plotted results not shovm). This 
implies that gage accuracy has decreased; consequently, deploy­
ment of more gages per unit area is needed for calibration 
purposes. Unless the gage quantity is increased, even good 
radar data will not improve the analysis quality over one ob­
tained from more accurate gages.

The fifth point is rather subtle. It arises from 
differences in the bivariate placement results of Fig. 29B 
(391 bins) and Fig. 30B (63 bins). Network requirements 
evaluated from highly intracorrelated data (cov = 0.80) is 
accurate only if predictor redundancy is minimized. Stepwise 
regression procedures, which eliminate predictor redundancy, 
were compromised somewhat to maintain a computationally effi­
cient algorithm (details in Section C). The effect of predictor 
redundancy becomes clear when sampling requirement results 
are not altered--even though evaluated from only 16% of an 
available, but highly intracorrelated radar data set (Tables 
10-11 might assist the reader at this point). Predictor sub­
sets, obtained from sparse radar data, have more intra­
observation independence than an equivalent number of closely 
spaced radar predictors.



114

Screening procedures, permitted to perform effi­
ciently, produce similar results, regardless of initial pre­
dictor quantity or parameter intrarelationships. Consequently, 
each analysis point in the bivariate curves of Fig. 29B used 
highly intracorrelated radar data, whereas in Fig. 30B, the 
radar data contained more useful information (more degrees of 
freedom). Statistically significant pattern features are not 
lost, even though less than 20% of the available radar data may 
be used. Bergman and Bonner (1976) have encountered high re­
dundancy in their predictor data sets and have used optimum 
interpolation methods to assess the impact of predictor redund­
ancy on analysis quality. Alaka (1974) shows that, the ability 
to consider data quality, is a significant advantage in using 
optimum interpolation schemes.

Tables 10-11 support these results. For example,
5-10 gages, combined with highly intracorrelated but widely 
spaced radar observations, observe the same basic signal varia­
tion (term 1 of Eq. (20)) as observed in a dense sampling en­
vironment. Decreased parameter intracorrelations (limited by 
logic of course) assist the design algorithm in providing favor­
able decision criteria to a project director.

The second point noted should be considered with this 
fifth point to reach a desired compromise.

B. Preferred Storm-Track Influence 
On Sensor Deployment

Does a preferred storm track influence the sampling
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quality of a sensor array? Do sensors oriented along such a 
preferred track produce the best sampling results? Brady's 
results (1976) imply that the answers are yes— covariance 
anisotropy is an important consideration if experiment goals 
are to be achieved.

The current placement methods evaluate a preferred 
storm track's influence on sampling quality. Pitfalls of 
subjective network design are illustrated with two different 
anisotropic covariance functions: the first is characterized
by symmetry = Ag = A^ = A^) and the second by asymmetry
(Aĵ = Ag and Ag = A^ but A^ / A^). A sparse (5 gages spaced 
38.1 km^/gage) and a dense (13 gages spaced 14.7 km^/gage 
network is deployed optimally to observe systems possessing 
these characteristics. Relative gage locations are inferred 
from Fig. 28. The two optimally deployed gage networks, each 
derived from two different system covariances, were reoriented 
progressively around the original preferred storm path. At 
each new sensor orientation, the value of the objective 
function was determined.

Sampling anisotropic systems with symmetrical pro­
perties (Table 9) is always optimal (Fig. 31) when sensors, 
regardless of density, are oriented parallel to the storm 
structure ellipse. Analysis and sampling errors decrease 
nearly 4% when parameter climatology is considered and the 
sensors are not misoriented by 45° (the optimal orientation is 
325-135°). However, increased sensor density tends to off­
set sampling errors that result from misorienting a sensor set
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(compare plotted result amplitudes). Also, the errors in­
dicate little response to increased covariance function an­
isotropy (Ag varied from 0.0 to -0.50) if the system possess 
symmetric structural characteristics (Â  = A^ = Ag = A^ = 6.9 km),

X.
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STORM-TRACK INFLUENCE ON SENSOR DEPLOYMENT 
("ROUND" SYSTEM)z
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-90 -60 -30 0 30 60 90
SENSOR ORIENTATION RELATIVE TO PREFERRED STORM-TRACK

Fig. 31. The influence of a preferred storm track on sensor
denloyment. Sensors rotated clockwise when oriented 
positive relative to the preferred track.
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A similar evaluation was performed for an aniso­
tropic system that possessed properties of the 7 July 75 
accumulated rainfall pattern (Fig. 23 and Table 4). On this 
date, f Ag and the storm's preferred track was parallel to 
a 343-163° line (Table 5).

The same sparse and dense gage networks were deployed 
optimally, systematically reoriented, and objective function 
values recalculated. The results (Fig. 32) reveal a pro­
nounced sensor-density influence on a network's ability to 
detect signal variation. The sparse network still performs 
best when oriented near the preferred storm track. Considera­
tion of parameter climatology improves sampling and analysis 
quality by almost 6% over the least optimal sensor orientation.

Now, increased sensor density does not have the same 
positive effect noticed earlier. Additional sensors do not 
offset the sampling errors that result from misorientation of 
a sensor set (note the plotted result amplitudes). The thirteen 
sensors, as deployed originally, represent a best sampling and 
analysis configuration. The design algorithm searches for the 
best deployment configuration, but is restricted by severe 
(though not unrealistic) constraints which include : (1) place­
ment of the first sensor at the grid center; (2) the order 
which sensors are placed {Fig. 28}; and (3) a relative sensor 
separation-distance imposed along and across the preferred 
storm track. These constraints seem to represent a logical 
strategy for use in sensor deployments based on limited know­
ledge of the parameter a priori climatology or of the para­
meter characteristics.
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detection of signal variation (term 1 of Eq. (20)). If
f Ag, increased ellipticity in a system's features (evalua­

ted varying Ag from -0.07 to -0,67) exerts a stronger in­
fluence on the sampling and analysis quality of accumulated 
rainfall patterns. For parameters with highly anisotropic struc­
tural characteristics, sampling and analysis quality is highest 
only if sensors are oriented along the preferred storm track.

Our conclusion is: sampling and analysis quality is
influenced significantly by systems that possess exotic 
structural characteristics (e.g.. Figs. 8E and 14B), Clearly, 
the deployment problem is complicated and depends significantly 
on parameter characteristics. The results provide indisputable 
evidence that coordinated field programs which propose pretty 
sampling configurations likely will fail to achieve their full 
potential. The implications are worth considering.

C. Time-Domain Sampling Influence 
On Sensor Deployment 

Sensors deployed to sample accumulated rainfall pat­
terns also provide the information used to investigate details 
of selected case-study systems. If the morphology of a 
convective storm were of prime importance, sampling require­
ments could incorporate time-domain sampling. The concept 
illustrated in the following example uses the Table 9 covariance 
function parameter values. For illustrative purposes, the 
cross-covariance and radar covariance values were set higher 
than observed (both equal 0.80). Each time influence radius
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was set equal to 20.0 minutes.
Three sensor set combinations are presented to em­

phasize trade offs involved in sampling a moving system:
(1) a coarse univariate gage deployment (7 gages spaced 27.2 
km^/gage); (2) a dense univariate gage deployment (13 gages 
spaced 14.7 km^/gage); and (3) a bivariate deployment using 
7 gages and 63 fixed radar bins spaced 3.0 km^/bin. Sampling 
errors for each deployment are generated by using radar ob­
servation frequencies and gage accumulation times of 5.0, 7.5, 
10.0, 12.5, and 15.0 minutes. The predictor location subset 
is constrained to be displaced no more than one time unit 
from the predictand location.

The results assume each parameter's SNR is constant 
for the temporally spaced "data sets" used. The concept of 
improved sampling quality through increased sampling frequency 
is alluded to by Eddy (1964). Improving the SNR of a data set 
through increased temporal (or spatial) sampling is limited, 
of course, by each sensor's engineering qualities. However, 
proper SNR consideration in evaluating the spatial or temporal 
sampling requirements would improve the results. Eddy (1976) 
viewed the temporal sampling problem from a similar perspec­
tive. He noted "that the uncertainty in observed rainfall 
amount (and in the objective analysis) increases with in­
creasing rain amount....(and) performing two five-minute 
accumulation time analyses and adding them together will give 
a result with greater uncertainty than that associated with
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performing one ten-minute accumulation time analysis. Thus,
... one needs more gages if he is going to sum two five-minute 
analyses." For rainfall patterns on our scale of interest, 
the SNR has been found to increase with decreasing rainfall 
volume (limited by sensor engineering qualities). However, 
the increased SNR with decreased rainfall is not sufficient 
to produce higher confidence in the sum of four fifteen- 
minute analyses than in an analysis of one hour rainfall data. 
Thus, the results represent a sampling quality that is achieved 
when weak to moderate rainfall producing systems are sampled 
(intense storms were not part of the Table 4 results).

As a general result, increased temporal sampling 
reduces spatial data requirements; the placement algorithm 
produces larger separations between sensors.

More specific results are noted in Fig. 33. An 
identical sampling quality is achieved by the three following 
sensor sets : (1) a coarse gage network that accumulates rain­
fall at five-minute intervals (point 1); (2) a dense gage 
network that accumulates at eight-minute intervals (point 2); 
or a bivariate sensor set that observes at 9.5 minute intervals.

If observations at five-minute intervals are needed, 
gages plus good radar data (point 5) reduce sampling error 
variances by ~ 34% from those that occur in a coarse gage net­
work (point 1). If only gages are available, sampling 
accuracy is improved ~ 11% when gage network density is 
doubled (point 4). Thus, the illustrative results indicate
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the trade offs involved when time-domain sampling is incor­
porated into the deployment of sensors.

TIME SAMPLING INFLUENCE 
ON SENSOR DEPLOWIENT
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7 Cages
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5 10 15
SAMPLING TIME INTERVAL (mln)

Fig. 33. The influence of time-domain sampling on sensor 
deployment.
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One point of concern is noted. The bivariate place­
ment results "appear" inferior to the univariate results when 
temporal sampling is infrequent. Clearly, the feature is not 
realistic. The discrepancy apparently originates in the screen­
ing regression algorithm; its purpose is to eliminate the in­
significant and redundant predictors. Likely, the predictor 
array dimensions combined with the relative data paucity in 
the example and the F-test criteria (used to accept or reject 
possible predictors) to produce the sub-optimal results.

Because the predictand/radar relationship was so 
strong (cross-covariance of 0.80), core storage limitations 
prevented the screening procedure from even considering gage 
information. F-test criteria, set unrealistically low, re­
duced efficiency in the screening procedure. Some predictor 
redundancy likely remained (radar covariance of 0.80). As 
the sampling time interval decreased, the predictor subset 
produced represented analysis time information only. Some 
predictors chosen were separated widely, even though within 
the analysis location's spatial influence radii. In such 
instances, predictor intercorrelations (the off diagonal 
elements of the (X̂ X) covariance matrix) likely are negative. 
Because few predictors were available, the net result was 
an unstable {X^X} matrix that, inturn, corrupts the calcula­
ted regression coefficients. Hopefully, these points under­
score the pitfalls of blatantly analyzing meteorological data 
without provisions for quality control.
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D. The Sensors Deployed - 
An Economic/Climatological Balance 

So, what is the optimum gage density necessary to 
meet HIPLEX sampling requirements? That question's answer is 
approached as follows. Consider Fig. 29B and the climatology 
it represents. Suppose a reasonably accurate gage analysis is 
obtained from sensors spaced 60 km^/gage (point 1). An equiva­
lent analysis is obtained from good radar data and a gage den­
sity of 190 km^/gage (point 2). Analysis accuracy in the gage 
network is improved only 10% when the gage density is increased 
to 50 km^/gage (point 3). At this gage density (point 3), 
quality radar data, combined with gage information, produces 
an analysis containing 65% less sampling error variance (point 4) 
than obtained in the best sampling from gage data alone. If 
these marginal increases in accuracy are deemed worth the extra 
resources required to obtain it, then one simply proceeds 
along the Fig. 29B curve to a sensor density where the project 
director calls a halt.

The sampling requirements illustrated do not pretend 
to meet the climatological data requirements of HIPLEX in ob­
serving accumulated rainfall patterns. Though a "representative" 
selection of HIPLEX storms has been investigated throughout the 
study, the sampling requirements apply only to systems possess­
ing the Table 9 characteristics. Multi-parameter data set 
qualities, preferred storm tracks, system anisotropy, and 
spatial and temporal sampling resolution all interact to a
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significant degree to influence final determination of a 
"best" sensor set deployment. However, the evidence is 
clear--sampling requirements are controlled indisputably by 
parameter climatology. Clearly, a climatological study focus­
ing on system characteristics of prime interest is justified 
as an essential and early phase in HIPLEX (and all proposed 
coordinated field programs as well). Thus, final sensor re­
quirements represent a balance between the demands of economy 
and climatology.



CHAPTER IX 

THE CONCLUSIONS

An optimal sampling and analysis technique has been 
applied to a fundamental problem faced by HIPLEX investigators 
in observing and analyzing accumulated rainfall patterns from 
convective storms on the High Plains. The techniques employed 
are founded on the theory of optimum internolation and effi­
ciently used nonlinear programming and concepts of multiple 
correlation coefficients and stepwise regression analysis. 
Implementing such techniques requires knowledge of parameter 
statistical characteristics (climatology). Analyses pro­
duced have the desirable statistical properties of a maximum 
likelihood estimator and are determined from properly chosen, 
properly weighted predictors.

Here, climatological characteristics of convective 
storms are evaluated by using numerous data sets from South­
east Montana. A four-dimensional Gaussian-damped function is 
developed to reflect the relevant physical and statistical 
characteristics of High Plains convective systems. This
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function is enhanced to model parameter covariances that 
exhibit anisotropy whose major axis isn't necessarily oriented 
along a Cartesian axis. Structural characteristics of accumu­
lated rainfall patterns are definable with acceptable accuracy 
using less than 20% of available radar data (from the lowest 
elevation angle). Storm structure deduced using rain gage 
observations is accurately represented when the covariance 
function derives the shape from radar data sets and the 
signal-to-noise ratio from surface observations. The Z-R re­
lationship effect on covariance function determination is not 
substantial.

The simple correlation between the covariance function 
area of moving convective systems and the cloud base area with­
in the 20, 25 and 30 dBz reflectivity contours was 0.45, 0.49 
and 0.52, respectively. The correlations indicate covariance 
function responses to cardinal system features and suggest that 
weak precipitation rates are not part of any salient storm 
statistical structure. Without regard to storm size, a simple 
correlation (-0.76) between storm-motion speed and covariance 
decorrelation time strongly suggests that any fast moving sys­
tem deccrrelates quickly. When motion speed is normalized by 
storm statistical dimensions and correlated with system de- 
correlation time, the coefficient of 0.79 reveals that slower 
moving small systems are statistically equal in time to faster 
moving large systems. Finally, the simple correlation (-0.54) 
between the covariance area of accumulated rainfall patterns
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and storm-motion speed provides evidence that slow moving 
systems generally produce more coherent accumulated rainfall 
patterns than do the faster moving systems.

In Southeast Montana, the average radar accumulated 
rainfall pattern was spatially symmetric, was coherent over 
80 km^, would have been sampled and analyzed most optimally if 
sensors were oriented west northwest-east southeast, and con­
tained almost twice as much signal as noise in their raw data 
sets. These selected High Plains systems were found to be 
much smaller than Brady's Oklahoma counterparts.

The optimum interpolation method is generalized to 
model characteristic differences in parameter means and vari­
ances by including a 3̂  term in the g -matrix. Considering 
realistic differences in parameter means and variance permits 
straightforward and impartial filtering of multivariate data 
sets ; and each predictor is allowed its proper influence in 
modulating the final analyzed field. Here, a limited gage net­
work, more sparse than that needed to produce a satisfactory 
analysis on its own, is combined with radar observations to 
produce satisfactory surface rainfall analyses. Consequently, 
the bivariate radar/rain gage analyses produced reflect radar- 
derived precipitation patterns scaled to gage magnitudes. .

The interpolation methods demonstrate a minimal Z-R 
relationship influence on analysis accuracy; in fact, the 
methodology reveals an objective, very realistic approach toward 
evaluating an optimum Z-R relationship. The model's signal
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recoverability properties point convincingly to its high 
ability to retain essential data set features while tossing 
aside nearly 50% of the undesired data set properties.

An experimental design evaluation function is developed 
which incorporates the effect of observation biases and the 
relative role played by each parameter in producing a final sen­
sor deployment. Predictand-related sensors are shown essential 
to network design. Deployment of sensors along and across the 
preferred storm track is related to covariance anisotropy, gage 
density, temporal sampling intervals, the availability of radar 
data, and the interrelationships among the multivariate pre­
dictor data sets.

A maximum of 10 gage sensors within the coherent con­
vective storm area is sufficient to fully explain and sample 
the significant signal variance of a representative High Plains 
convective system.

As surface gage density is increased, the marginal 
increase in sampling accuracy is shown for the same representa­
tive system; also, results are indicated when radar data is 
available. A reasonably accurate surface rainfall analysis is 
possible using gage sensors spaced 60 km^/gage. An equivalent 
analysis is obtained from good radar data and a gage density 
of 19.0 km^/gage. Analysis accuracy in the gage network is 
improved only 10% when the gage density is increased to 50 km^/ 
gage. Quality radar data, combined with gage information spaced 
50 km^ apart, produces 65% less sampling error variance than
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observed in the best sampling from gage information alone.
Misorientation of a sensor set exerts minimal influ­

ence on sampling quality when phenomena possess symmetric 
structural characteristics. However, as system anisotropy in­
creases, sampling quality is influenced substantially by sensor 
set density and orientation. Sampling quality deteriorates 
by 12% when parameter climatology, only moderately anisotropic, 
is not considered. Moreover, the optimal sensor orientation 
to sample a moving convective system is found best to observe 
the system's accumulated rainfall pattern.

If radar information is available, sampling quality 
is maintained even though gage observation frequency is 
reduced fifty percent.

The sampling and analysis techniques herein have been 
enhanced significantly over the last several years ; they can 
digest complex data sets and provide realistic solutions to 
atmospheric sampling and analysis problems. The techniques 
are not perfect. A number of colleagues, however, share the 
view that the techniques and money have a lot in common--"they 
aren't everything, but they're way ahead of what's in second 
place." Application of the techniques to the problems of HIPLEX 
have, I trust, demonstrated the techniques' merit. Their appli­
cation in other areas is invited.



CHAPTER X

ADDITION RESEARCH: APPLICATIONS

Analysis techniques herein present highly specialized 
methods which now can be applied to all sorts of complex prob­
lems ; but care must be taken as to the limitations noted in 
Chapter IV. Some applications follow.

A. Use of Modelled Covariance Functions 
The covariance model could be upgraded to account 

for system motion directions and speeds which would be in­
corporated as additional decision variables to describe a 
data set's covariance. More decision variables permit cross­
covariance function models to realize maximum values at non-zero 
spatial or temporal lags. Failure to consider such relative 
pattern lags might wreak havoc in bivariate analyses involving 
vertical motion patterns on the synoptic scale and their cor­
responding temperature data sets. Finally, the ability to model 
and hence, analyze multivariate phenomena with interacting
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action scales is important in any phase of meteorological 
analysis; the covariance function and analysis model should be 
upgraded to permit this possibility.

Parameter characteristics shown by modelled covar­
iance functions may be used as a tool to evaluate modification 
experiments. A climatology of nature's evolution inside the 
convective storm and manifested by covariance and/or cross- 
covariance function could be used to detect any abnormal 
changes in the physics of seeded clouds.

Operationally, the covariance modelling technique is 
useful to find optimally the information in real-time radar 
precipitation data, in turn used to update numerical precip­
itation guidance.

B. Use of the Multivariate Analysis Methodology
A next step for analysis might be trivariate analysis 

involving (among parameters) surface divergence patterns ana­
lyzed in conjunction with radar and surface gage data sets (or 
satellite information combined with radar and surface data). 
Already, the National Meteorological Center (NMC) of the 
National Weather Service has performed trivariate analysis of 
temperature and wind field components.

For certain purposes, dynamically constrained analyses 
offer an improved analysis quality. Analyses consistent with 
atmospheric physics are possible and might use a covariance 
function model that would contain the constraining information 
(i.e., an analytical function derived from physical equations
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describing the atmosphere). Actual constraint on a final 
analysis responds to the predictor set chosen for analysis 
Dynamic constraints might also follow the statistical methods 
proposed by Eddy (1973).

Analyses, using sequential updates of the covariance 
filtering properties, seem possible on many atmospheric scales. 
Surface rainfall analysis initially might use climatological 
filtering properties which are updated to reflect a given 
storm's characteristics as the storm evolved over the analysis 
area. On a larger scale, synoptic analysis could use a simi­
lar technique. Currently, the NMC statistically types each 
day's synoptic pattern with 500 mb correlations. As the 
atmosphere evolved (or was forecast to evolve), analysis qual­
ity could improve by updating the model's filtering properties 
with new information.

The impact on analysis accuracy from sensors of dif­
fering qualities (e.g., satellite vs rawinsonde information) 
or from data sets with nonstationarity characteristics could 
be evaluated by incorporating the error covariance matrix into 
the analysis routines (see Appendix A).

C. Use of the Optimal Sampling Methodology
The current techniques are set to evaluate data 

requirements on many levels. What data volume (for instance) 
from the indirect probing sensors currently available will NMC 
require for use in its numerical prediction models? Clearly, 
maximum improved weather forecast accuracy involves optimal
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trade offs between standard high quality data sets and between 
a proper mix of temporally and spatially selected satellite 
data. Would a simple relocation of NMC's coarse or fine mesh 
grids reduce interpolation errors (and hence improve forecast 
accuracy)?

The sampling method can address the cost-benefit in 
changing networks now existing. How many sensors can be with­
drawn from a gage network without significant cost to defining 
any storm? What would be the value associated with adding N 
new sensors to observe mesoscale systems across our United 
States? %'Jhere would be the best place for remote automated 
meteorological observing systems in the vast ocean areas of 
the world?

Thus, our list goes on and on.
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APPENDIX A

The multivariate multiple linear regression model 
of Chapter III evolved from classical multivariate analysis 
models developed theoretically in texts such as Graybill (1961) 
and Tatsuoka (1971) and is represented by:

Y = X3 + e (Al)

where X is an n x m matrix containing the independent stochas­
tic variables, Y is an n x 1 matrix of dependent stochastic 
variable, g is an m x 1 matrix of regression coeffients and 
E is an n X 1 population error term. Assume X and Y have a 
bivariate distribution. The basic theory of classical multiple 
linear regression is founded on the following assumptions:

(1) the fundamental assumption is that X and Y are 
linearly related;

(2) E is an independent stochastic disturbance 
term whose distribution is not specified;

(3) the expected mean value of e is zero (i.e.,
E{ e ) = 0);
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(4) homoscedasticity or constant residual variance 

of E is assumed (i.e., Varie} = Var{Y} = o^);
(5) statistical independence is assumed among the 

disturbance terms (i.e.. Eleĵ ê } = 0). Because Y is a linear 
function of e, Y^ and Yj also are independent statistically;

(6) the number of observations (that is, the sample 
size n) must be larger than the number of regression coeffi­
cients (m plus 1, where m independent predictor variables, 
with non-zero mean values, are chosen for the regression 
analysis).

The regression function of Y on X is expressed by:

Y = XB (A2)

where 8 estimates the population weights 8 and Y estimates 
the population values Y. Residual errors associated with 
sample regression become e = Y - Y. Frequently residual 
errors are assumed Gaussian distributed with e N(0,o^I).
The works of Eddy (1957, p. 39) and Eddy and McDonald (1977) 
support the Gaussian assumption.

If the error sum of squares e*"e (residual variance) 
are minimized, and if e is "v N(0,o^I), then:

8 = (x'̂ X)"̂  X^Y (A3)

which is an unbiased maximum-likelihood estimate E(8) = 8.
The likelihood function, when maximized, produces a minimum 
value in the quantity e^e and justifies use of the least squares
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principle. The E chosen has minimum variance among all the 
unbiased E's that could have been chosen (i.e., its an effi­
cient estimator). As a maximum likelihood estimator, the 
chosen g also has desirable properties of consistency (esti­
mator value approaches population value as the sample size 
increases) and sufficiency (an estimator that utilizes all 
information a sample contains about the parameter to be esti­
mated) .

Meteorological systems in general are not stationary. 
For example, seasonal and geographical differences produce 
non-stationary characteristics in meteorological data. In the 
current study, the data sets represent systems from one geo­
graphical area (Southeast Montana) and one season (summer) 
and are judged not influenced by stationarity considerations.

However, if the residual variance appears non- 
stationary or if the residual errors are correlated in space 
and time (as would occur when systematic small scale perturba­
tions are imposed on the basic signal), then the ordinary least 
squares estimates in Eq. (A3) do not apply. The effect of auto­
correlated residuals or of statistically dependent observa­
tions (multicollinearity) is the same: the regression co­
efficient variance (Eq. (4)) is larger than it would otherwise 
be. Analyses which fail to consider this problem will give 
false impressions of unrealistically high analysis significance 
(Eq. (5))! Thus, if the residuals, e, are autocorrelated or 
if the residual variances are non-stationary, the data must be
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transformed to other variables which then satisfy the usual 
assumptions of £ N(0,a^I). The transformation is accomplished
using the error covariance matrix V = E(ee^). Eq. (A3) be­
comes :

3 = X*̂ V'̂ Y (A4)

When V f I, the residual variance no longer has its minimum 
value because e*"e is minimized to give a 3 free from the bias­
ing influence of correlated residuals. Gilman et. al. (1963) 
and Eddy (1970) also illustrate the point wherein:

, N-1
1 + 1  I (N - T)P(T) 

T=1
(A5)

where the estimated or sample residual variance is a func­
tion of the population error variance a|, the population auto­
correlation p (t ), and the residual sample size N. For cor­
related residuals, the residual variance is larger by a 
factor:

, N-1
4 I (N - t )p (t ) (A6)

T=1

where p (t ) decreases monotonically with t.
Draper and Smith (1966) refer to this situation as 

weighted least squares. They indicate that failure to consider 
the effects contained in the covariance matrix V will produce 
objective analyses whose variance with the signal (and not the 
observations) is not a minimum. An important concept for
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needing V in the model is that its use minimizes regression 
coefficient variance (Eq. (4)). Our aim is minimum variance 
between the analysis and the truth (Eq. (5)) and not minimum 
variance in the residuals. The manner in which V is estima­
ted is described by Best (1973), who assumed residuals that 
possessed stationary variances and were autocorrelated as a 
first order Markov process. Origin of the error covariance 
matrix for a two dimensional case is now described:

A bivariate normal probability distribution of two 
stochastic processes yĵ (t) and yg(t), each possessing a zero 
mean value, may be written as:

f(y,yg) = AMP * EXP -I
2(l-p')

(A7)

,-lwhere AMP = 2ir and Var ŷ  ̂= o|, var y g - ^2
and p is the correlation between y^ and yg. If R is defined 
as :

-11 ^12^
R = (A8)

1^21 ■22>
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where :

(A9)

then Eq. (A7 may be written in quadratic notation as:

f(y,y,) =  EXP r - %{(y,y2)R(y,yp)'=}l (AIO)
^  ^  Z i r o ^ O g / l - p ^  L  ^  ^  J- ^  J

-1Graybill (1961) proves R = V, defined to be the variance- 
covariance matrix given by:

R-l = V = ( I (All)

From Eq. (All) note that Var 7^ “ Var y2 = Og ^̂ *1 
Cov(y^y2) = Cov(y2ŷ )̂ = p0ĵ O2’ Extension to the multivariate 
case is straightforward.

TJhat interpretations may be given to V? In classical 
regression, a trivial point is made when y^ and y2 are com­
pletely uncorrelated. In this case V becomes diagonal and the 
two processes are independent.

The interpretation is somewhat different when ŷ  ̂and 
y2 are stochastic containing signal plus random autocorrelated
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noise contributions. Best (1973) shows the noise structure 
of observations (Eq. (Ail)) to be identical with the analysis 
model's residual structure; individual values are somewhat 
larger than observed in Eq. (All). Thus, Eq. (All) is re­
labelled an error covariance matrix and is given by:

^̂ 1^1 ^1^2
V =1 1 (A12)

>.̂2^1 ^2^2>

where e is the population error term (Eq. (Al)). In addition 
^1^1 Phe model's residual variance at one spatial
or temporal location set (i.e., the realization = XB) and 
EgEg the residual variance at a second realization (Ŷ  = XB).



APPENDIX B

The completed analysis model is given by:

^ *AG + *AR »AR + ' « «

where represents rain gage observations, X^^ the radar 
reflectivity precipitation estimates, and the popula­
tion regression coefficients, and e the population error 
matrix. Rainfall estimates at desired locations are given 
by Y. The model is termed "completed" because the objective 
function used in sensor placement is developed to "account" 
for parameters with non-zero mean values and differing 
variances.

Previously, Chapter III.C.1 notation defined: 

g*" = {g^ gg ... ... with dimensions 1 x M

X = (X̂  X2 .. . Xj . . . with dimensions N x M

Let Py equal the population Y mean, p.= P2 ... Vj ... 
represent the population X. mean and be a 1 x N utility 
row matrix = { 1 1  ... D- X and B̂  are partitioned as {Xg,X^l
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and {3q, 6^ }. Now let:

X

where 3̂  carries the parameter mean values. Eq. (Bl) can be 
rewritten:

Y = PyL - Lp3 + X3 + e (B2)

with PyL - Lp3 accounting for regression parameter-mean values 
whose sample estimate is given by 7 - X3. If Z = X - Lp, the 
minimization process yields:

{(X-Lp)^(X-Lp)}"^ {X-Lp}*̂  {Y- „L}

Z^(Y-PyL) (B3)

where 3 estimates g. Substituting for Y from Eq. (B2):

= 3 + (Z^Z)"^ Z^E (B4)

The analysis equation obtained from Eq. (B2) and Eq. (B4) is 
now:

Y = ( X - L p ) G  + PyL (B5)

Suppose X (sample mean) is used in place of p (population mean),
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and Y in place of Py Eq. (B5) becomes:

Ÿ = (X-LX)B + ŸL (B6)

Note that X - LX may be written as (X-Lp) - L(X-p) and, 
when used in Eq. (B6), yields :

Ÿ = ZB - L(X-p)B + (Y-Py)L + PyL (B7)

Sample regression residual error is defined as :

e = Y - Y (B8)

Use of Eqs. (B2) and (B5) permits Eq. (B8) to be rewritten as:

e = Z(B-B) + L{(X-p)B - (Y-Py)} + e

e = {L(X-P)-Z} {g-g} + L{(X-p)g - (Y-Py)} + e 

which in turn is rewritten using Eq. (B4):

e = j^{L(X-p)-Z}{Z^z}"^Z^+I j E + L{(X-p)g
- (Y-Py) } (B9)

Note that X = (L^X)/N and Lp = (LL^/N)Lp . Thus, L(X-p) 
becomes (LL^/N) (X-Lp) = (LL^/N)Z. Substituting Eq. (B9) it 
gives :
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e = j^{(LL^/N)-l}Z{Z^Z}” Ẑ*̂  + ije + L{(X-v)3 - (Y-W^)} (BIO)

Now assume e ~ N(0,a|). For one particular analysis situation, 
X and Y are modelled and thus, are constants.

The residual sum of squares from Eq. (BIO)) can be 
expanded and simplified to yield:

E(ê ê) = E ĵ e‘̂{l+Z(z‘̂ Z)"^z’̂(LL’̂/N-I)}e

+ 2e’̂{l+Z(Z*̂ Z)"̂ z’̂(L\/N-I)}L{(X-v)S - (Ÿ-Py)}

+ {b’̂(x ’̂-Û ) - (Ÿ'̂ -Py)L̂ }L{(X-p)6 - (Ÿ-Uy)}j

E(e’̂e) = E ĵ e'̂ {I+Z(z'̂ Z)"̂ z'̂ (LL’̂/N-I) }e
n (BID

+ N{(X-D3 - (Ÿ-Py)}"]

since I + Z (Z^Z)'^Z^ (LL^/N - I) is idempotent. Eq. (Bll) 
further expands to:

E(e*̂ e) = Eĵ e’̂Ie + E^(X-p){Z^Z}"^(X-p)^E - e'̂ Z(z‘̂Z)'^z‘̂£]

+ N{(X-p)B - (Y-Py)}"
(B12)

Graybill (1961, page 87) proves that the expected value of a 
quadratic form e*"Ae is equal to trace (A). If A also is an
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idempotent matrix of rank k, the expected value reduces to 
kOg. Because e is assumed ~ N(O.o^), Eq. (12) simplifies to:

E(e-e) = {N + N(X-y){Z Z}" (X-p) -M}o| +
(B13)

N{(X-p)S + (Y-Py)}:

since Z (Z*"Z)  ̂Z^ is idempotent of rank M--the actual number of 
predictors (Mg gages and radar bins) used to determine 
residual variance at a predictand location. How = E(e*'e)/N, 
so :

CTg = {1 - I + (X-p){Z^Z}"^(X-p)^}o^ +

{ ( x - p ) g  -  (Y-Py)}^
(B14)

Eq. (B14) states that, in the limit as N->“, is a biased esti­
mate of with the bias arising from modelling errors in X and 
Y (unless X = p and Y = Py).

Consider the effect of random modelling errors in X 
and Y. Since our analyses are surface rainfall estimates, 
model Xg = Y because Pg = Py. Thus;

 ̂ '̂ Gg ••• ' ^

which has dimensions N x (Mg + M̂ )̂. Let the grid point rain
estimate be derived from X = {X„ X ... X„ , X^ Xp ••• ̂  ^

®1 ’̂2 ^1 ^2
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and define:

Assume a random modelling error over many analyses such that: 

~ ~ N(Wg -
and

The expected residual variance over many analyses (Eq. (B13)) 
is :

2 \  =  _  M  a .  / VE(ap = {1 - Ü + (X-y)(Z Z} (X-p) }a

+ B*̂ CB - 2(X-p)B(Y-V„) +
(B16)

Now,

a- = o- P- = 1 o| = P_ = 1Gi Gj Ĝ j Ri Rj R̂ .

and 0 = p for all ij.
Ri^i

Briefly stated, our assumptions do not permit relative biases 
among the gages or among the radar observations nor do they 
allow non-homoscedastic properties in the observation sets. 
The correlation between variations of Xg and X̂  ̂about their
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population mean values is denoted by p.
Note that X-P = L*"(X-p)/N = L*'Z/N. So from Eq. (B16) ;

E(a^) = {1 - I + l ‘̂Z(Z*̂ Z)"̂ Z*̂ L/N̂ }o* N+oo e IN e
(B17)

+  g^CB - 2(X-p)B(Y-Py) +  O q / M q

Since = (1 - R^)Ug, divide Eq. (B17) by to get (after 
some non-obvious simplifications):

E(a:/op = 1-R" + (l-SB^)VMg + (ô /Og) ̂ (13̂ )̂
(B18)

Equation (B18) becomes a contribution from each analysis 
location to the obiective function that is minimized by an 
optimal sensor-site selection. The B's determined use sensor-site 
location and the modelled covariance function. Additionally,
Or , Og, Xĝ , Xg and o' must now be modelled.

The ratio tJg/og represents the average fraction of 
unexplained variance at each analysis location (grid point or 
station). For an entire grid array and for any sensor location 
set, the weighted mean residual variance in space and time is 
given by:
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F = è[ifi\ (B19)

where G is the number of grid points, weights each grid 
point by its relative worth and = 1. The summation con­
stitutes the objective function minimized for the results pre­
sented in Chapter VIII. Sensor placement implications from 
each objective function term (Eq. (B19)) is discussed in 
Chapter VII.
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Start
~ T ~

Historical Observations 
(Signal + Noise + Bias)

Raw Covariance Matrices--Eq. (9) 
(Signal + Noise + Bias)_____

Non-Linear Programming--Eg. (10)

Modelled Covariance Function--Eq. (16)
' (Signal + Noise + Bias)________

The Data The Data Structure— Eq. (3)
~ i r  T ■
Linear Regression Analysis Model--Eg. (1) 

Desired Anal^sis--Eq. (2)

Analysis Significance— Eq. (5)

Fig. 34. A computational overview of the steps needed to 
produce an optimum interpolation analysis. Equa­
tions refer to those in the text.
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Start

Hypothesis
(in this study, from historical observations)

I
t

Raw Covariance Matrices— Eq. (9)
ÎNon-Linear Programming— Eg. (10)IModelled Covariance Function--Eq. (16)

The Objective Function--Eq. (20) The Hypothesis— Eq. (3) 

Non-Linear ProRramming
Î

Optimal Sensor Selection and Sampling Configuration
Î

Field Experiment 

to Analysis Algorithm— Eq. (1)

Fig. 35. A computational overview of the steps needed to 
evaluate optimal sampling requirements. Equa­
tions refer to those in the text.
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