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Abstract 

 Optimizing the speed of image acquisition in magnetic resonance imaging 

(MRI) is a significant consideration to reduce patient examination time and/or to 

increase temporal resolution in dynamic studies. The advancement of simultaneous, 

multi-slice imaging increased the acquisition efficiency of MRI data. This technique for 

reducing scan time has opened a new door for functional MRI studies and diffusion-

based fiber tractography to visualize the structural networks in the human brain [1]. The 

problem with the existing multi-slice image reconstruction algorithm using the 

MATLAB [2] program is that it is completely dependent on the MATLAB 

environment. In addition, the algorithm can be performed only on offline, preventing 

monitoring of subject motion and brain activation during scanning in order to adjust 

task presentation and for utilizing the brain signal to control other equipment and 

neurofeedback. To date, there is no stand-alone method for image reconstruction for 

multi-slice EPI data. To meet this need, I propose C/C++ programming language-based 

image reconstruction using the Slice-GRAPPA [3] algorithm for multi-slice acquisition 

and GRAPPA [4] algorithm for accelerating the image acquisition in the phase 

encoding direction. The main advantage of this reconstruction based on C/C++ is that it 

is stand-alone. In addition, optimizing the reconstruction program speed will enable it to 

be embedded into software to be applied in real time fMRI studies. This process was 

validated through matching the images from C/C++ language-based reconstruction with 

MATLAB environment-based reconstruction results. This thesis documents the process 

used to determine the efficacy of the proposed methodology.
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Chapter 1: Introduction 

1.1 MRI 

 Magnetic resonance imaging (MRI) is an imaging technique based on the 

principle of nuclear magnetic resonance. It is widely used in medical imaging, 

especially for neuroimaging due to its excellent soft tissue contrast and other range of 

contrast mechanisms and use of non-ionizing radiation. 

 The MRI device is composed of a magnet, magnetic gradient coils, a radio 

frequency transmitter and receiver, and a computer for controlling signal acquisition 

and generating MR images [5]. An MRI scanner utilizes a strong main magnetic field to 

polarize the protons inside the human body. In the presence of an external magnetic 

field, the protons undergo a precessing motion at a frequency dependent on the proton 

species and the strength of the magnetic field. This frequency is called the Larmor 

frequency. To acquire an MR signal, a radiofrequency (RF) pulse oscillating at the 

resonant frequency is applied, resulting in a transfer of energy in the form of photons 

that tip some of the protons from the low-energy (stable) to the high-energy (unstable) 

state. In the absence of RF pulse, the high-energy protons that were tipped return to 

their low-energy state to maintain equilibrium. This change in state releases energy in 

the form of photons, which are selected by the RF receiver coils. Thus the current that is 

induced in the RF coils generates the MR signal. To excite one slice at a time, gradient 

magnetic fields are applied in addition to main magnetic field. Because of the applied 

gradient field, the field strength varies with the location on which the gradient field is 

applied. Therefore, the precession frequencies of the protons become a function of 
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space, which helps to choose one slice at a time. A desired imaging slice is excited by 

applying an RF pulse oscillating at the slice’s resonant frequency.  

 

 1.2 fMRI 

 Functional magnetic resonance imaging (fMRI) utilizes MRI technology to 

study brain functionality over time. During the fMRI experiment, several brain images 

are acquired while the subject performs a set of tasks. Changes in the measured signal 

between different images are used to make inferences regarding task-related activations 

in the brain. fMRI has several advantages as a brain imaging technique that includes 

non-invasiveness and no radiation, excellent spatial and temporal resolution and this 

technique is easier for the experimenter to use [11]. 

 Blood oxygen level dependent (BOLD) contrast is used in fMRI as an indirect 

measure of brain neural activities [6-8]. This BOLD fMRI technique measures the ratio 

of oxygenated to deoxygenated hemoglobin in the blood [9]. Neural activity consumes 

oxygen, thereby affecting vasculature response to provide more highly oxygenated 

blood to local brain regions [10]. This activity results in a significant change in the 

amount of oxygen in the blood, indicating the extent of local neural activity. This 

measured signal is stated as the BOLD signal.  
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1.3 Echo Planar Imaging 

 In MRI, image data acquisition speed is one of the crucial parameters that 

technologists and researchers care about. Echo planar imaging (EPI) is an MR 

acquisition method that collects multiple segments of image data from a single spin 

echo or gradient echo.  

 It has arguably become the most talked about of MR acquisition methods 

because of its acquisition speed.  In general, it uses a single nuclear spin excitation to 

obtain entire k-space data via fast switching of readout and phase-encoding gradients 

[12]. The capability of EPI to reduce the scan time has opened doors to a diversity of 

critical medical and scientific applications, such as water diffusion mapping in tissue, 

evaluation of cardiac function in real time, mapping of organ blood pool & perfusion, 

and functional imaging of the central nervous system [13].  

 

1.4 Echo Planar Imaging Sequences 

 The echo planar imaging technique uses the transverse magnetization by 

producing a series of gradient echoes that uses a bipolar oscillating readout gradient 

before the transverse magnetization decays due to T2* relaxation. In between each echo 

readout, phase encoding blips are played to encode multiple k-space lines with a single 

RF excitation.  Following an RF excitation, the number of gradient echoes generated is 

defined as echo train length (or ETL). The scan-time reduction factor in EPI pulse 

directly depends on echo train length sequences and has a significant effect on artifacts 

generated with EPI such as image distortion, signal loss, chemical shift displacement, 

and image blurring.  
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1.4.1 Gradient Echo EPI 

 A generalized gradient echo EPI sequence is shown in Fig. 1.  To produce the 

FID (fast induction decay) signal, the pulse sequence starts with a slice selective 

excitation like the standard gradient echo.  A series of spatially encoded gradient echoes 

are produced using a train of bipolar readout gradient that oscillates rapidly from 

positive to negative amplitude and phase-encoding gradient blips under the envelope of 

FID [14]. 

 

 

Figure 1: Gradient echo EPI sequence. The interval between two successive echoes 

can be defined as echo spacing [15] 
 

 Along the phase-encoding direction, every k-space line is acquired at a different 

echo time (TE). The gradient echo amplitude S(n) decays for the corresponding echo 

time can be expressed by the following equation. 
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 S(n)=S0 +  (1) 

 
 Here, n denotes the echo index in the echo train and S0 represents the signal at 

time zero, which can be defined as the time instantly after the magnetization is tipped 

by the used RF pulse. 

 The gradient echo EPI sequence is used for numerous reasons. The most 

important reason is to capture functional imaging. The contrast behavior includes a T2* 

instead of a T2 component due to local field inhomogeneities. As a result, the signal 

intensity decays after excitation at a rate determined by local field inhomogeneities 

[16].  With gradient echo EPI, it is also possible to use shorter TRs without suffering 

large signal losses because the smaller excitation flip angle results in fewer disturbances 

from magnetic equilibrium and, therefore, shorter relaxation recovery times [16]. 

1.4.2 Spin Echo EPI 

 Spin echo EPI depends on gradient echoes sampling k-space similar to gradient 

echo EPI, except that instead of free induction decay, the gradient echoes are generated 

under the spin echo [17]. Fig. 4 shows the generalized spin echo EPI sequence. In this 

case, the spatial encoding module is preceded by a 90° excitation pulse and a 180° echo-

forming pulse that results in the formation of a Hahn echo [17] during the readout 

period. The signal intensity (SI) of the image can be described by the following 

equation [16]: 

 SI=k )  (2) 

 Here, k is the sequence independent factors such as magnetic field strength and 

RF denotes the "echo time" or the time between excitation pulse and center of the r coil 
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sensitivity, p is the tissue proton density, Tr denotes the repetition and Te readout period. 

SE-EPI images show relatively little sensitivity to local field inhomogeneities and 

behave similarly to conventionally acquired MR images. The major difference is that in 

a single shot EPI case,  the images are obtained with little or no T1 contrast since the 

repetition time is effectively infinite [16]. This is a great advantage in T2-weighted 

studies where the T1 and T2 contrast mechanisms when put together, the overall image 

contrast is reduced [16]. 

 

Figure 2: Pulse sequence diagram for spin echo EPI. Here, within a spin echo 

multiple gradient echoes are formed [18] 
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1.4.3 Inversion Recovery EPI 

 In inversion recovery EPI (IR-EPI), an inversion recovery module is generated 

earlier to a GE-EPI or SE-EPI pulse sequence.  Fig. 3 shows the generalized inversion 

recovery EPI sequence.   

 

Figure 3: Pulse sequence diagram for inversion recovery EPI. Due to the added 

180° RF pulse prior to standard spin echo EPI scan results in inversion-recovery 

contrast behavior [16] 

 
 Inversion recovery EPI has various usages, which include measuring tissue 

perfusion with arterial spin labeling (ASL). This pulse sequence is also used to form a 

desired tissue contrast as in magnetization-prepared, T1-weighted imaging to reduce the 

signal from cerebrospinal fluid or to produce a T1 map. 

 

1.5 Organization of the Thesis 

 In this thesis introduces a C/C++ based, stand-alone image reconstruction for 

multi-slice echo planar imaging. The rest of the thesis is organized as follows. Chapter 2 

describes reducing the scan time and different parallel imaging approaches for reducing 

the scan time in the phase encoding direction. It also discusses the multi-slice imaging 

approach and different parallel imaging-based algorithm for acquisition of simultaneous 
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multi-slice echo planar imaging. Chapter 3 presents problems associated with acquiring 

different multi-slice data, briefly describes the blipped-CAIPIRINHA method for 

simultaneous multi-slice acquisition, and justifies the advantage of using the method. 

Chapter 3 also discusses the slice-GRAPPA method in detail, which is followed to 

reconstruct the simultaneously acquired, multi-slice images. Chapter 4 discusses the 

results acquired from the C/C++ based, stand-alone reconstruction. Chapter 5 draws 

some conclusions for the proposed work and offers suggestions for improving the 

proposed work. 
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Chapter 2: Methods to Reduce the Scan Time 

In general, there are several ways to reduce the scan time in MRI. One of them 

is to fully sample k-space at a faster rate than the usual using the fast imaging 

sequences. Another approach includes acquiring partially sample k-space data to 

increase the speed of image acquisition where the missing information can be calculated 

using the parallel imaging techniques. Finally, simultaneously excited multi-slice 

acquisition approach can decrease the MRI imaging time.  

 

2.1 Parallel Imaging 

 Parallel magnetic resonance imaging is a robust method for accelerating 

conventional MRI encoding. It works by acquiring a reduced amount of k-space data, 

using an array of receiver coils with spatially varying sensitivities. This array of 

receiver coils can be used to calculate the missing data as well as the consequent 

aliasing in the image.   

 

2.2 Basic Concepts of Parallel Imaging 

2.2.1 K-space and the MR Image 

 In MRI, the data are collected in k-space. The k-space data are collected by 

varying the magnetic field strength in a particular direction. Once all the data are 

collected, the inverse Fourier transform is taken to acquire the whole image [20]. The  

k-space point space in each direction is inversely proportional to the field of view 

(FOV). So, decreasing the k-space point space increases the field of view. In other 
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words, the more k-space points in one direction, the larger the field of view in that 

direction.   

FOVX=  = sampling rate along KX 

 FOVy=  = sampling rate along Ky (3) 

 On the other hand, spatial resolution depends on the width of the k-space 

coverage. That means the highest frequency collected in the k-space (kxmax or kymax) is 

inversely proportional to the image resolution. As a result, increasing kymax results in 

decreasing the ∆y and increasing the image resolution in the y direction. 

    x   

 y   (4) 

 K-space data are generally collected line by line to fill a grid of points. 

Generally kx direction is considered the readout direction, and the ky direction is the 

phase-encoding direction. In a 3-D scan, the kz direction corresponds to the partition 

encoding direction [20]. The total acquisition (TA) time for a 2D dataset is calculated 

using the following equation: 

 TA=TR x NPE (5) 

 Here, TR is the repetition time, or the time from the application of an excitation 

pulse to the application of the next pulse along the kx direction. NPE is the total number 

of phase encoding lines in the ky direction. 
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  (a)                      (b)              (c) 

 

Figure 4: (a): Big Kymax and small ∆ky spacing results in full FOV and full 

resolution. (b): Reduced Kymax with small ∆ky spacing results in lower resolution 

while maintaining the full FOV (c): Increased ∆ky with big Kymax results in 

decreased FOV [20] 

 

To reduce the scan time, TR or NPE must be reduced. In order to reduce TR, the k-space 

data should be collected more quickly than the usual. K-space data collection speed 

depends on the desired image contrast and the strength of the magnetic field gradient 

required encoding the k-space data. For some types of scan, TR needed to be long in 

order to achieve the desired image contrast. Hence the TR cannot be short. In other 

types of scan, to keep the TR short, rapidly switching high-strength magnetic field 

gradients are needed. Hence, the electrical power required would be high. Moreover, the 

rapidly switching high-strength magnetic field gradients could induce electrical currents 

in the patient, potentially causing the peripheral nerve simulation [21-23]. In addition, 
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when using some fast multi-echo pulse sequences at high magnetic field strength, the 

specific absorption rate can limit the minimum achievable TR that, in turn, will limit the 

speed at which data can be acquired [24]. The other method to decrease the TA is to 

reduce the NPE in the equation that is decreasing the amount of k-space data collected. It 

can be achieved by either decreasing the kymax or by removing some phase encoding 

lines. Because decreasing the kymax will lead to a reduction in image resolution, spacing 

between k-space in the y direction is increased to speed the acquisition of MRI data. 

However, this action result in smaller FOV, hence spatial aliasing. Fig. 4 shows the case 

for reduced kymax (Fig. 4 (b)), increased ∆ky (Fig. 4 (c)). But the aliasing image could be 

separated using different parallel imaging methods, which will be discussed in the next 

section. 

 

2.2.2 Coil Array 

 In parallel magnetic resonance imaging, the signal is obtained using an array of 

receiver coils with different spatial sensitivities. A single receiver channel in an array is 

sensitive to signals generated from a specific spatial region, which can be seen in Fig. 4. 

The signal Sn received by the nth receiver from the coil array for an ideal receiver array 

is the following:   

 Sn (x,y)=S(x,y) Cn(x,y) (6) 

where Cn(x,y) is the sensitivity of the nth receiver coil, and S(x,y) is the signal received 

by the coil with homogeneous receive sensitivity. 

 In the array, this individual coils are organized so that the sensitivity profiles 

cover the desired FOV (Fig. 5). When a scan is performed, all of the images resulting 
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from the several channels must be combined to form a single image. This combination 

can be done by means of a sum-of-squares operation [25] or using other methods that 

result in a homogeneous signal after the combination [26]. 

 

 

Figure 5: An example of head coil array that is made up of eight independent 

receiver coils arranged around the object in a circle. The combined magnitude 

image is shown in the center [20] 

 

2.3 Parallel Imaging Techniques 

 There are two approaches to reconstructing the image in parallel imaging 

methods: image-based and k-space based. Image-based methods reconstruct images 

from each coil element with reduced FOV and then combining the images using 

knowledge of individual coil sensitivities (SENSE). On the other hand, k-space-based 

methods explicitly calculate the missing k-space lines before Fourier transformation of 

the raw data is performed (SMASH, GRAPPA). 
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2.3.1 SENSE (Sensitivity Encoding) 

 The SENSE parallel imaging reconstruction method [27] is characterized as an 

image domain unfolding algorithm [28]. In the Cartesian-type sampled k-space, the 

location of and distance between periodic recurrences in the image domain are well 

known [28]. A parallel imaging accelerated acquisition with a reduction factor R results 

in a reduced FOV in every component coil image.  A schematic example of the SENSE 

method using a four-channel linear array is shown in Fig. 6 where the acceleration 

factor R=2.  

 

 

Figure 6: For an acceleration factor R=2, a four channel linear array is used. Four 

single coil images were formed where pixels IA and IB aliased on each other. The 

SENSE algorithm is used to unfold the aliased single-coil images into a full FOV 

image [20] 

 

 In this case, FOV has been reduced to one-half the results in aliasing of two 

pixels on top of each other in each of the single channel images. However, these pixels 
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are multiplied by the suitable coil sensitivity value and then added together in the 

aliased image. This function is shown in the following equation: 

 

 S1=A1+B1 =IACA1 + IBCB1 

 S2=A2+B2 =IACA2 + IBCB2 

 S3=A3+B3 =IACA3 + IBCB3 

 S4=A4+B4 =IACA4 + IBCB4 (7) 

 

 Here, S denotes the aliased pixel, C denotes the coil sensitivities, and I 

represents the values of the pixels in the desired image at locations A and B.  From (7) 

if the coil sensitivity value C is known and the aliased pixel value S is known, there are 

only two unknown values IA and IB remaining, which can easily be solved using (7). 

The above equation from (7) can be written in matrix form as: 

     S=IC                        (8) 

where C is a matrix with a size NXR (N = number of coils and R = acceleration factor). 

The system of equations from (7) can be solved for the case N > R. Though for 

simplicity, only four coil arrays are considered in the discussion here. In general larger 

number of coils are used in an array for image acquisition [13]. 

 

2.3.2 SMASH 

 The basic concept used in simultaneous acquisition of spatial harmonics 

(SMASH) algorithm [29] is that missing phase-encoding steps can be generated directly 

from a linear combination of the individual coil sensitivities of the receiver array.  A 

schematic illustration of SMASH algorithm is shown in Fig. 7 
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Figure 7: A schematic illustration of combining coil sensitivities with appropriate 

linear weights to produce composite sensitivity as is done for SMASH 

reconstruction [13] 

 

In SMASH, combining the coil sensitivity values Ck(x,y) with appropriate linear 

weights  produce composite sensitivity profiles  that include sinusoidal 

spatial sensitivity variations of the order m as represented by the following equation:  

 (x,y)=  Ck(x,y)   (9)  

where, =2 /FOV and NC is the number of coil elements in an array coil. Integer m 

specifies the order of the generated spatial harmonic. The only unknowns in (9) are the 

linear weights , which can be estimated by fitting (e.g., least square fit) the coil 

sensitivity profiles Ck to the spatial harmonic of order m. The component coil signal 

Sk(ky) in the phase-encoding direction is received in coil k and can be calculated as the 

Fourier transform of the spin density (y) fitted with the coil sensitivity profile CK(y): 

 SK(ky) = dy (10) 
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 Using (9) and (10), it is possible to derive an expression to generate shifted k-

space lines S(ky+ m∆ky ) from weighted combinations of measured component coil 

signals Sk (ky ). The expression is shown below:  

 
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 Equation 11 represents the fundamental SMASH relation and specifies that 

linear combinations of component coils can be used to generate missing k-space lines 

from adjacent acquired k-space lines. In general, although this approach is applicable 

only if the coils are arranged in a linear fashion in an array, it is able to generate the 

preferred spatial harmonics in phase-encoding direction with adequate accuracy. 

 

2.3.3 AUTO-SMASH and VD-AUTO-SMASH  

 In AUTO-SMASH, the component coil sensitivities are estimated by acquiring a 

small number of additional fully sampled central k-space regions, known as auto-

calibration signals (ACS), with the under-sampled k-space data [30]. Fig. 8(b) shows an 

AUTO-SMASH-type acquisition scheme for a reduction factor R=3.  In general, R-1 

extra ACS line is acquired in the center of k-space at locations m∆ky, where m counts 

from 1 to R-1 [32]. These additionally obtained ACS lines  are used to derive the 

linear weights  that are required to generate the missing k-space lines. The 
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component coil images that correspond to k-space shift of m∆ky should be equal to the 

weighted combination of auto-calibration profile obtained at ky + m∆ky. 
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 By solving (12), a set of linear weights  can be derived, which can be used 

to generate the missing k-space lines. Once all the missing k-space lines are generated 

in an under-sampled k-space data, a full FOV image can be generated by applying the 

inverse Fourier transformation.  

 To further improve the reconstruction procedure of the AUTO-SMASH 

approach the idea of variable-density, (VD)-AUTO-SMASH was introduced. In the 

VD-AUTO-SMASH approach (Fig. 8(c)) [31], the number of available fits to derive the 

weights  for the desired k-space shifts (m=+1,-1) are significantly increased by 

acquiring multiple ACS lines instead of only R-1 number of lines. To further improve 

the image reconstruction quality, these reference data can be integrated with final k-

space data, thus partially replacing generated k-space lines by actually acquired k-space 

lines.    
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                  (a)            (b)               (c) 

 

Figure 8: (a) A fully Fourier encoded k-space is shown (b) In this example for R=3, 

in AUTO-SMASH, the central 2 auto-calibration lines are additionally acquired 

(c) In VD-AUTO-SMASH, multiple auto-calibration lines are obtained. 

 

2.3.4   GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition) 

 GRAPPA is basically a more generalized implementation of the VD-AUTO-

SMASH approach. Although both techniques follow the same acquisition procedure, 

they differ considerably in the way reconstruction of missing k-space lines is calculated. 

In GRAPPA, multiple blockwise reconstructions are performed to generate the missing 

k-space line for each of the coil that results in uncombined images for each coil in the 

array [4]. Fig. 8 shows the schematic diagram of the GRAPPA algorithm.  Multiple 

lines from all the coils are used to fit an ACS line in a single coil. In Fig. 9, four lines 

are used from all four coils to fit an ACS line from coil 4. This fit provides the linear 

weight used to generate the missing k-space line for that coil. Once all the k-space lines 

are generated for a particular coil, a Fourier transform is performed to synthesize the 

uncombined image for that coil. This process is repeated for each of the coils of the 

array, resulting in a full set of uncombined images for every coil in the array. 
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Figure 9: The GRAPPA algorithm is shown for four coils array for an acceleration 

factor of two. On the right side a block is shown which is defined as a single 

acquired line plus the missing k-space lines next to that line [4] 

 

 The individual coil images are then combined into a composite image using a 

normal sum of squares reconstruction [33].  In general, the above mentioned process of 

reconstructing the missing data in coil j at a line (ky -m∆ky) offset from the normally 

obtained data using a blockwise reconstruction is represented by the following equation: 

 

 Sj(ky- m∆ky)=  Sj(ky- bA∆ky) (13) 

where A denotes the acceleration factor, Nb represents the number of blocks used in the 

reconstruction where a block can be defined as a single acquired k-space line and (A -1) 

missing lines; n(j,b,l,m) represents the linear weights in the linear combination. The 

index l counts from 1 to L for l element coil array, and the index b counts through the 

individual reconstruction blocks. This procedure is repeated and full k-spaces are 

derived for each coil in the array. This results in L uncombined single coil images, 

which can be combined finally to a single image using a conventional sum of squares 

reconstruction [34] or any other optimal array combination [35]. 
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 The original implementation of GRAPPA approach was later improved by 

including the points along the kx direction in the kernel used to determine the coil 

weights [13]. Since GRAPPA method does not depend on the exact knowledge of the 

coil sensitivities, it provides more accurate images in cases where it might be difficult to 

obtain coil sensitivity map such as in regions that are subject to patient motion and 

images with areas of low signal. In addition, GRAPPA can sometimes provide images 

with fewer artifacts when there is aliasing in the full FOV image [36-37]. 

 

2.4 SNR and Geometry Factor (g) in parallel imaging 

 In general, Parallel imaging approach suffers from an SNR loss by a factor of 

R due to reduced Fourier averaging. Moreover, the SNR of reconstructed images 

depends on how different the coil sensitivities are at the location of the aliased pixels. 

Therefore, an additional term, called the geometry factor or g-factor [38], needs to be 

taken into account to compare SNR of images obtained with parallel imaging. As a 

result, the SNR of the final image acquired with parallel imaging approach can be 

shown as following. 

 

 SNRPI =  (14) 

 

 Where, SNRPI denotes the SNR of images acquired with parallel imaging, SNR 

denotes the SNR of fully sampled images. R is the reduction factor, and g is geometry 

factor. SENSE g-factor is derived from explicit knowledge of the coil sensitivity 

profiles. On other hand, the GRAPPA g-factor is calculated using the GRAPPA 
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weights. Although the GRAPPA g-factor and SENSE g-factor differ because the 

techniques are not the same, still they likely to be quite similar as the g-factor originates 

from the coil sensitivities for both approaches.  

 

2.5 Simultaneous Multi-Slice Acquisition (SMS Acquisition)  

 For dynamic studies of the brain, such as diffusion-weighted imaging or 

functional MRI, the speed of acquiring the images is of utmost importance. Although 

conventional parallel imaging approaches can greatly reduce the scan time by 

eliminating phase encoding steps, it does not significantly reduce TR or acquisition time 

for diffusion and fMRI sequence since it contains large, fixed time blocks that cannot be 

shortened for action such as  for a suitable echo time (TE) for T2* contrast. On the other 

hand, simultaneous multi-slice acquisition accelerates the acquisition by acquiring 

multiple slices together instead of just a single slice. Moreover, unlike conventional 

parallel imaging acceleration, since SMS acquisition does not shorten the readout period 

or omit k-space samples, it is not subject to a R penalty on SNR. Simultaneous multi-

slice imaging technique undersamples data in the slice direction and the slice images are 

unfolded using the algorithm of conventional parallel imaging methods.  Figure 10 (a) 

and (b) shows the difference between the conventional acquisition (10(a)) and multi 

slice acquisition (10(b)). 
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Figure 10:  (a) Conventional image acquisition where one slice is acquired per shot. 

(b) multi-slice acquisition where two slice is acquired per shot decreasing the total 

acquisition time directly by a factor of two. 

 

 

2.6 Simultaneous Multi-Slice Acquisition (SMS Acquisition) Techniques 

2.6.1 SENSE algorithm for SMS acquisition 

 Simultaneously multi-slice acquisition was first demonstrated by Larkman et al. 

[39] who proposed to use the SENSE (Sensitivity Encoding) algorithm, in other words, 

information from sensitivity profile of the RF coils to reconstruct the slice image [40]. 

This method for separating the slices works if there is at least the same number of coils 

as slices and complex sensitivity varies for each coil to any given slice. The complex 

signal acquired in coil j in a single pixel (Sj) is represented by the following equation: 

                                  Sj =Ij1Cj1 + Ij2Cj2 + …..+ IjkCjk (15) 

(a) Conventional Imaging 

(b) Multi-slice imaging 
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where Cjk is the complex sensitivity of coil j at spatial location k for multi-slice and Ik 

denotes the spatially dependent complex signal from slice j. An equation can be derived 

from (15) and can be written in matrix form as: 

         [S]=[I][C]          (16) 

 

The solution for [I] is given by: 

                     [I]=  . [C]                                                         (17) 

where  denotes the inverse of the complex sensitivity matrix. 

2.6.2 SENSE/GRAPPA Algorithm for SMS Acquisition 

While the SENSE algorithm for multiband imaging aims to unfold the aliased 

slices in the image domain, an alternate method for generating missing data was 

proposed. It is a combination of SESNE and GRAPPA [41]. In the SENSE/GRAPPA 

combination method, both in-plane acceleration and slice direction acceleration is 

considered.  Fig. 11 illustrates the basic SENSE/GRAPPA technique.  The fitting 

equation of the SENSE/GRAPPA kernel is given by the following equation: 
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Figure 11: In the SENSE/GRAPPA algorithm where an undersampled 

concatenated image’s k-space data results in a slice-collapsed image and, 

conversely, application of the GRAPPA operator to the aliased data generates a 

concatenated but un-aliased version of the two [3] 

 

 

2.6.3 Slice-GRAPPA Algorithm for SMS Acquisition 

 The Slice-GRAPPA algorithm was introduced by Setsompop et al. [3] to 

overcome the issue of significant aliasing artifact associated with SENSE/GRAPPA 

method. This Slice-GRAPPA approach is developed based on the k-space base parallel 

imaging method used in GRAPPA. In slice-GRAPPA algorithm, before the scan, 

calibration data set are acquired for each slice one slice at a time. These prescan 

GRAPPA kernels are fitted and applied to the simultaneously acquired multi-slice to 

generate the missing k-space data. Once all the k-space data are generated for each 

slice, the inverse Fourier transform is performed to acquire the corresponding image. 

This slice-GRAPPA algorithm is followed in this proposed stand-alone reconstruction 

for multi-slice EPI images. The details of slice-GRAPPA algorithm are described in 

chapter 3.  
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Chapter 3: Methodology 

 

3.1 Problems Associated with Different Multi-slice Approaches 

 Various methods have been proposed for acquisition of simultaneous 

multiplanar imaging.  Echo volumar imaging and its variants [42, 43-46]) re single–

shot, simultaneous, multiplanar imging methods. Echo volumar imaging and its variants 

offer the benefits of true Fourier-encoded, 3D, single-shot imaging. However it has the 

limitation of susceptibility distortions in the slowly encoded k-space direction. It also 

has the trouble of performing the entire 3D trajectory within the T2 * decay time 

[setsompop]. Thus, echo volumar imaging requires considerable parallel imaging 

acceleration to mitigate these concerns [46].  

Various multi-slice methods using slice selection to excite multiple slices 

simultaneously exists. Wideband imaging technique (47-49) applies a slice gradient 

(Gz) during the readout gradient (Gx) to isolate the slices in the frequency. Although it 

presents a simple way to disentangle the slice information, the simultaneous readout and 

slice gradients create an unwanted ‘‘voxel tilting’’ effect, whereby the readout and slice 

direction are no longer orthogonal [3]. Simultaneous echo refocusing (SER) [50] or 

simultaneous image refocused [51] uses serial excitation of the imaging slices followed 

by a shared EPI readout. But this procedure makes the readout period long and. as a 

result, the total echo train length increases the susceptibility-related image distortion in 

EPI [3]. 

 A second class of simultaneous multi-slice methods uses parallel image 

reconstruction based multi-slice imaging to un-alias the pixels from slices excited and 
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encoded simultaneously [52-55]. The problem associated with the parallel imaging 

method is that the aliased slices are generally close to each other due to a relatively 

smaller FOV in the slice direction. Due to the short distances between aliased pixels, it 

creates a great demand on the spatial variations in the coil sensitivities and results in 

unaliasing artifacts and a high g-factor penalty [3].  

 

3.2 Blipped CAIPI Approach 

 The target of the blipped-CAIPI technique is to achieve the same interslice 

image shift like the blipped-wideband technique but without the unwanted 

blurring/tilting artifact. In order to achieve this, Gz blips are modified, resulting in their 

imparting the preferred phase modulation along ky without causing major phase accrual 

over the EPI readout period. In Fig. 12(b-d), this can be observed clearly.  Fig. 12(b) 

shows that the phase-cycled Gz blips now exhibit a sign reversal on every other PE line. 

The desired phase increment is still achieved for the corresponding phase evolution at 

the center of the top slice. The corresponding phase evolution at the center of the top 

slice still exhibits the desired phase increment. Now, the incremental phases at the slice 

edges no longer accrue over the readout period, since sign modulation of the Gz blips 

exists. They move back and forth between two small amplitude conditions, and Aprewind 

is chosen to balance these states so they are centered on zero. From Fig. 12(c), one can 

see that the phase variation within the excited slices is ±  with the same magnitude 

of variation. So, the following equation can be written: 

 

 ) = Ablip  (19) 
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 As a result, the signal attenuation is same for all ky lines that results in a flat 

attenuation plot as shown in Fig 12(c) and no filtering effect, and thus a preserved 

spatial point-spread function. Fig. 12(d) shows resulting spatial point-spread function 

shows, which is an ideal delta function for all z positions within the slice. But the phase 

differences between even and odd lines results in some FOV/2 ghosting. The ghosting 

within each slice varies linearly as a function of z, considering no variation in the 

underlying signal within the slice; the ghosting will cancel for the summed signal along 

the slice direction. 

 
Figure 12: blipped-CAIPI method. (a) Two simultaneously excited slices (b) Gz 

and phase diagrams (c) Fourier space artifact (d) Spatial point-spread function 

(ABS) [3] 
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Figure 13: Generalized blipped-CAIPI method for FOV/2. FOV/3 and FOV/4 

shifts between consecutive slices [3] 

 

 For simultaneously excited multi-slices, FOV/3 or FOV/4 shifts are desired. In 

that case, the period is 3 or 4 for ky line dependent correction cycle. The blip schemes 

and phase diagrams describing the relative phase between the excited slices for different 

types of interslice shifts (FOV/2, FOV/3, FOV/4 shift) is shown in Fig. 13. It is 

necessary to give each slice a unique shift relative to the bottom slice for a coil without 

a z deviation in coil sensitivity patterns. For instance, 3 simultaneously excited slices, 

the shifts can be 0, FOV/3, and 2FOV/3. The aliased pixels can be separated in y. This 

pattern is shown in the FOV/3 diagram shown in Fig. 13. Similarly, when four slices are 
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simultaneously excited, and no z variation is existing in the coil array. If 5 slices are 

simultaneously excited and the array has some z variation, the FOV/4 shifts are suitable 

[3]. 

 

3.3 Slice-GRAPPA 

 In slice-GRAPPA algorithm, GRAPPA-like kernels are fit using prescan 

calibration data acquired from separately excited conventional single-slice data and then 

applies this kernel sets directly to the k-space data of the collapsed images.  Thus, for 

the 2-fold slice-accelerated acquisition, two separate sets of GRAPPA kernels were 

fitted and applied, 1 for each imaging slice to generate each of the 2 imaging slices. 

This slice-GRAPPA algorithm is shown in Fig. 14. The appropriate equation for the 

algorithm is given below:  
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 Here, for the slice located at z, Sj,z(kx,ky) is the k-space data of the jth coil.  

nj,z,l
bx,by

 is the weight coefficient at location (bx,by) in the GRAPPA kernel of the l‘th 

coil. Thus, for a 32-channel coil, each of the 2 kernel sets (1 for each slice) is a set of 32 

X 32 kernels (32 kernels to generate data for each of the 32 coil elements). The weight 

coefficient is applied on the collapsed data Sl,collapse (kx,ky) to help create the missing 

data of the jth coil at slice location z. 
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Figure 14: Slice-GRAPPA algorithm to acquire the k-space data for the unaliased 

slices. To synthesize k-space datasets for each slice, a set of GRAPPA kernels is 

used to the k-space data of the aliased slices. One kernel set is required for each 

slice [3] 
  

 Hence, slice-GRAPPA differs from conventional GRAPPA where the kernels 

work on the acquired k-space data to fill in missing lines. Rather the slice-GRAPPA 

kernels generate an entirely new set of k-space data for each coil of a given slice. For 

the multi-slice image acquisitions in addition with in-plane acceleration, the 

reconstructions methods were performed in successive steps. At first, the slice-

GRAPPA was applied to isolate the aliased slices, then conventional GRAPPA was 

used to produce the missing k-space lines for the in-plane undersampled slices. 

 By expanding and simplifying (20), the governing equation for slice- GRAPPA 

can be obtained.  The equation is given below:  
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Where Cj,z(x,y) denotes the coil sensitivity profile of the j’th coil at slice location z; 

 (x,y) is the underlying image of slice position z.; 

collapse(x,y) is the underlying image in the collapsed image.  

For the case, when Nslice=2, this equation can be written as following:     
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 One thing to be noticed from (22) is that the resulting slice-GRAPPA kernels are 

dependent on the underlying images. This is different from conventional GRAPPA and 

has several consequences if this dependency is strong. Under typical imaging 

conditions, the governing equation can be simplified and written according to the 

following 2 equations where the dependence on the corresponding image no longer 

exist [3]: 
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 For the case, Nslice =2 and z =1, (23) and (24) satisfy (22) if the first term in (21) 

satisfies the equation and the second term is equal to zero. With these circumstances, 

the GRAPPA kernels are independent of the underlying images and are analogous to 

conventional GRAPPA, where the kernels are based solely on the relationships between 

the coil sensitivity patterns. The validity of (23) and (24) was tested for 2 simultaneous 

multi-slice acquisition [3]. 

 

3.4 Implementation 

 Modifications to the multi-slice parallel imaging technique have been used to 

lessen the high g-factor problem [3]. This blipped-controlled aliasing in parallel 

imaging for simultaneous multi-slice echo planar imaging method [3] was followed to 

reconstruct the image for the proposed stand-alone program . This method achieves 

spatial shifts in the PE direction between simultaneously excited multi-slices but avoids 

the voxel tilt problem in echo planar imaging [3]. This allows for application of image 

shifts in the PE direction to achieve great advantage in g-factor reduction. The method 

presents trivial loss of signal or blurring compared with the wideband or blipped-

wideband methods [3]. 

 In order to reconstruct the multi-slice image in the proposed stand-alone system, 

the raw data from the host computer is first corrected using the Orchestra software 

development kit by GE health-care [56] code written in C++.  This C++ code removes 

the artifact by performing data whitening, Nyquist ghost correction, ramp sampling 

correction, Fermi filtering, notch filtering etc.  
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 After the correction of raw data, the k-space data from simultaneously excited 

multi-slice is processed using the proposed C program. This proposed C code un-aliases 

the k-space data in the slice direction using the slice-GRAPPA algorithm. To accelerate 

the scan time, even faster if parallel imaging is used, the GRAPPA method is used in 

the proposed image reconstruction algorithm after applying slice-GRAPPA to calculate 

the missing k-space point in the phase encoding direction. An algorithm of this process 

is shown in Fig. 15. 

 

Figure 15: Algorithm for stand-alone, multi-slice EPI image reconstruction. 
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Chapter 4: Experiment and Results 

 

 The experiment was performed at the Laureate Institute for Brain Research 

(LIBR) with research protocol approved by the Western Institutional Review Board 

(IRB). 

 MRI images were acquired with a 3 Tesla MR scanner (GE MR750) using the 

multi-slice gradient-echo EPI sequence. The EPI imaging included the following 

parameters: 

     FOV = 24 cm 

 Matrix size = 96 x 96 

 TR/TE = 1000/30 ms 

 Flip angle = 90° 

 Total slices=48 

 Slice thickness = 2.5 mm 

 Slice acceleration (mux) = 3 

 In-plane acceleration (arc) = 1, 2 

 Image Volume=360  

 Voxel size=2.5  2.5  2.5 mm
3
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4.1 Results 

 The experimental result for the above-mentioned experiment with in-plane 

acceleration = 1 and slice acceleration = 3, for all slices at time point 14 is shown in the 

Fig. 16.  The experimental result with in-plane acceleration = 2 and slice acceleration = 

3 for all slices at time point 6 is shown in Fig. 17. 

 

Figure 16: Image output from stand-alone multi-slice EPI image reconstruction 

system for 48 slices at a specific time point. Here, slice acceleration=3, in-plane 

acceleration=1 
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Figure 17: Image output from stand-alone multi-slice EPI image reconstruction 

system for 48 slices at a specific time point. Here, slice acceleration=3, in-plane 

acceleration=2 
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The same data was used in MATLAB to reconstruct the images to check the cross 

check of the images acquired from stand-alone reconstruction program shown inFig. 19. 

From Fig. 18 and Fig. 19, it can be concluded that both programs provide similar 

results. Thus, the results from stand-alone image reconstruction for multi-slice EPI are 

validated.  

 

   

Figure 18: Image output from stand-alone multi-slice EPI image reconstruction 

system for 3 different slices at a specific time point. Here, slice acceleration=3, in-

plane acceleration=1 

 

   

Figure 19: Image output from MATLAB program for same slices as acquired in 

stand-alone reconstruction program for slice acceleration=3, in-plane 

acceleration=1  

 

 Fig. 20 shows the reconstructed images from the stand-alone program for in-

plane acceleration=2 and slice acceleration=3 for different slices at different time point. 
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Similarly, MATLAB software is used to reconstruct the images from simultaneously 

excited multi-slices which are shown in Fig. 21. Since the images from both 

reconstruction program is almost same, the proposed stand-alone reconstruction 

program is validated. 

   

Figure 20: Image output from stand-alone multi-slice EPI image reconstruction 

system for 3 different slices at a specific time point. Here, slice acceleration=3, in-

plane acceleration=2 

 

    

Figure 21: Image output from MATLAB program for same slices as acquired in 

stand-alone reconstruction program for slice acceleration=3, in-plane 

acceleration=2  
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Chapter 5: Conclusion 

  The research documented in this thesis concentrated on developing an image 

reconstruction program for multi-slice, echo-planar imaging that does not depend on the 

MATLAB environment. That program provides a great advantage for multi-slice, echo-

planar-imaging reconstruction. This stand-alone reconstruction program is one step 

toward real-time implementation of code for multiband imaging. In order to implement 

it on real-time software, the speed of the reconstruction program needed to be faster. 

Although, the speed of the proposed stand-alone program is not fast enough to be 

implemented on real-time software, it can be optimized by paralleling the computation. 

Thus the real-time implementation of the proposed stand-alone code is promising and 

will allow for monitoring of subject motion and brain activation during scanning in 

order to adjust task presentation and for utilizing the brain signal to control other 

equipment and neurofeedback. 
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