
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

TRANSLATING CLOJURE TO ACL2 FOR VERIFICATION

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

RYAN LEE RALSTON
Norman, Oklahoma

2016

TRANSLATING CLOJURE TO ACL2 FOR VERIFICATION

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Rex L. Page, Co-Chair

Dr. Dean F. Hougen, Co-Chair

Dr. Christopher E. Weaver

Dr. David P. Miller

Dr. Matthew L. Jensen

© Copyright by RYAN LEE RALSTON 2016
All Rights Reserved.

Acknowledgements

Completing a dissertation is a long and difficult process. Throughout the process, I

have been fortunate to have the support and encouragement from many others. I have

known my adviser Rex Page for 14 years since my first semester as an undergraduate

student. He has guided me through my bachelor’s, master’s, and doctoral education.

I appreciate the advice and opportunities he has given me over the years. I also

thank Dean Hougen for serving as my co-chair following Rex’s retirement. Your

suggestions helped me overcome several stumbling blocks in the research. I thank

the rest of my committee of Chris Weaver, David Miller, and Matt Jensen for their

time and advice. I thank my good friend Jonathan Boston for introducing me to

Clojure and encouraging my initial research ideas. I thank my friends Chris Allen,

Richard Gillock, Nick Stringer, and Javier Elizondo for listening to my frustrations

and otherwise being supportive.

I thank Mom and Dad for instilling in me a desire for knowledge and a strong

work ethic, in addition to their overwhelming support to pursue higher education. I

thank my siblings Chad, Trevor, Zane, and Kaitlyn so that they don’t feel left out,

even though they probably deserve to be for all the hard times they have given me

every Christmas that I was still in school.

Finally, I thank Kristi for her love and support while I worked on something that

was much harder and took far longer than I ever expected.

iv

Contents

Acknowledgements iv

List of Figures vii

Abstract viii

1 Introduction 1
1.1 Contributions . 4

1.1.1 Verification of Bignum Addition 5
1.1.2 JVM Model for Compiled Clojure 6
1.1.3 Big-Step Style Verification . 6
1.1.4 Verification of a Recursive Sequence Clojure Function 7

1.2 Summary . 8

2 Research Methodology 9
2.1 Definitions . 10

2.1.1 Models . 10
2.1.2 Conventions . 12

2.2 ACL2 . 13
2.2.1 The Programming Language 13
2.2.2 The Theorem Prover . 14
2.2.3 The Method . 16

2.3 Clojure . 17
2.4 Methodology . 18

3 Big-Endian Bignum Arithmetic 21
3.1 BigInteger Specification . 22
3.2 Proof Sketch . 24
3.3 Unsigned, Little-Endian Add . 25
3.4 Signed, Little-Endian Add . 29
3.5 Signed, Big-Endian Add . 31
3.6 Summary . 36

4 The Java Virtual Machine Model 37
4.1 Structures . 39
4.2 Method Invocation . 42
4.3 Stepping the Machine . 45
4.4 Summary . 49

v

5 Java Class Models 50
5.1 Structure of the Class Declaration . 51
5.2 Static Fields . 53
5.3 Loading and Dependencies . 54
5.4 Class Instances . 56
5.5 Method Lookup . 59
5.6 Constructors . 61
5.7 Summary . 63

6 Sequences as Lists 64
6.1 Sequence Overview . 65
6.2 Sequence Allocation . 67
6.3 Static Run-Time Methods . 71

6.3.1 Seq . 72
6.3.2 First . 74
6.3.3 Rest . 75
6.3.4 Cons . 77

6.4 Function Classes . 77
6.5 Summary . 84

7 Sequence Recursion 85
7.1 Cutpoints . 86
7.2 Base Case . 92
7.3 Prelude . 93
7.4 Postlude . 95
7.5 Internal Segment . 98
7.6 Proof of Correctness . 99

8 Conclusion 103
8.1 Verification of a Recursive Sequence Clojure Function 103
8.2 Big-Step Style Verification . 105
8.3 JVM Model for Compiled Clojure . 105
8.4 Verification of Bignum Addition . 107
8.5 Summary . 108

Bibliography 110

vi

List of Figures

2.1 Fibonacci Functions . 19

3.1 BigInteger Add Magnitudes . 23
3.2 Bignum Addition Proof Sketch . 25
3.3 Unsigned Add and Carry Functions 27
3.4 Unsigned, Little-Endian Add . 28
3.5 Signed Add and Carry Functions . 32
3.6 Relationship between Big- and Little-Endian Representations 35

5.1 PersistentList MC Declaration . 52
5.2 PersistentList Superclasses and Interfaces 57

6.1 Heap Configuration Preserved by Allocation 70
6.2 RT seq and seqFrom Methods . 72
6.3 Verified Correctness of seq . 73
6.4 Verified Correctness of more . 76
6.5 RT cons Method . 77
6.6 Verified Correctness of cons . 78
6.7 The Empty Class . 80
6.8 Configuration of Empty Class Object 81
6.9 Verified Correctness of empty? . 83

7.1 EveryOther invoke Java Code . 87
7.2 EveryOther invoke Bytecode . 90
7.3 eo-end-state . 91
7.4 prelude-end-state . 94
7.5 Postlude Starts and Ends . 97

vii

Abstract

Software spends a significant portion of its life-cycle in the maintenance phase and

over 20% of the maintenance effort is fixing defects. Formal methods, including

verification, can reduce the number of defects in software and lower corrective main-

tenance, but their industrial adoption has been underwhelming. A significant barrier

to adoption is the overhead of converting imperative programming languages, which

are common in industry, into the declarative programming languages that are used by

formal methods tools. In comparison, the verification of software written in declar-

ative programming languages is much easier because the conversion into a formal

methods tool is easier. The growing popularity of declarative programming — evi-

dent from the rise of multi-paradigm languages such as Javascript, Ruby, and Scala

— affords us the opportunity to verify the correctness of software more easily.

Clojure is a declarative language released in 2007 that compiles to bytecode that

executes on the Java Virtual Machine (JVM). Despite being a newer, declarative

programming language, several companies have already used it to develop commercial

products. Clojure shares a Lisp syntax with ACL2, an interactive theorem prover that

is used to verify the correctness of software. Since both languages are based on Lisp,

code written in either Clojure or ACL2 is easily converted to the other. Therefore,

Clojure can conceivably be verified by ACL2 with limited overhead assuming that

the underlying behavior of Clojure code matches that of ACL2. ACL2 has been

previously used to reason about Java programs through the use of formal models of

the JVM. Since Clojure compiles to JVM bytecode, a similar approach is taken in

this dissertation to verify the underlying implementation of Clojure.

The research presented in this dissertation advances techniques to verify Clojure

viii

code in ACL2. Clojure and ACL2 are declarative, but they are specifically func-

tional programming languages so the research focuses on two important concepts in

functional programming and verification: arbitrary-precision numbers (“bignums”)

and lists. For bignums, the correctness of a model of addition is verified that ad-

dresses issues that arise from the unique representation of bignums in Clojure. Lists,

in Clojure, are implemented as a type of sequence. This dissertation demonstrates

an abstraction that equates Clojure sequences to ACL2 lists. In support of the re-

search, an existing ACL2 model of the JVM is modified to address specific aspects

of compiled Clojure code and the new model is used to verify the correctness of core

Clojure functions with respect to corresponding ACL2 functions. The results sup-

port the ideas that ACL2 can be used to reason about Clojure code and that formal

methods can be integrated more easily in industrial software development when the

implementation corresponds semantically to the verification model.

ix

Chapter 1

Introduction

A successful project spends a significant portion of its life cycle in the maintenance

phase with estimates of maintenance costing as low as 32% (McKee, 1984) to as high

as 90% (Erlikh, 2000) of the total cost of software development. The cost of fixing a

defect during maintenance is between 2 and 100 times more expensive than during the

specification phase, depending on the type of software (Boehm & Basili, 2001; Shull

et al., 2002). Corrective maintenance, which removes defects from released software,

is estimated to only be 21% of the maintenance cost (Abran & Nguyenkim, 1991),

but developers are the least productive at it compared to other maintenance activities

(Basili et al., 1996; Graves & Mockus, 1998; Nguyen et al., 2009). Formal methods,

which is the application of mathematical logic to the specification and development

of software (Schumann, 2001), can reduce the defects in software and, by extension,

the cost of maintenance.

Hoare (1996) attributes software’s reliability in the absence of formal methods

to modern processes and tools addressing the most common issues. The uncommon

issues, though, represent a significant portion of the defects in released software. For

example, infrequently executed code in applications disproportionately contributes

to the number of defects discovered during maintenance (Hecht et al., 1997). For-

mal methods identify those defects more effectively than traditional testing because

they consider all possible execution paths equally (Holzmann, 2001). Case studies at

Amazon (Newcombe et al., 2015) and NASA (Havelund et al., 2001) report develop-

ers finding, through the use of formal methods tools, subtle bugs that their engineers

1

did not believe would be found otherwise.

Formal methods tools are generally built on top of declarative programming lan-

guages. Declarative languages implement software by “stating what is to be com-

puted, but not necessarily how it is to be computed” (Lloyd, 1994), so they make

effective specification languages. The syntax for declarative languages is based on

mathematical notation and programs written in them can be analyzed using classical

mathematical logic. One class of formal methods tool are interactive theorem provers

(ITPs) that mechanize mathematical logic to create proof assistants, such as HOL

(Gordon & Melham, 1993), Isabelle (Nipkow & Paulson, 1992), PVS (Owre et al.,

1992), Coq (Théry et al., 2006), and ACL2 (Kaufmann et al., 2000). Through the

use of these tools, an engineer can write a formal specification, simulate its execution,

and verify that it exhibits desirable properties.

Since industry has preferred imperative languages for implementation, researchers

have embedded the semantics of imperative languages within ITPs. For example, C

(Tuch, 2008), C# (Börger et al., 2005), and Java (Strecker, 2002) have each been for-

malized in an ITP to verify properties of programs written in those languages. The

programs that are verified can be significant, such as a seL4 microkernel written in C

(Klein et al., 2009). Results like these are impressive, but are still motivated largely by

academia. Industrial adoption of formal methods has been slow with part of the rea-

son being related to the tools using declarative languages. Newcombe (2014) reports

Amazon developers specifically complaining about the cognitive difficulties of learning

a language that is only used during the design phase when formal methods are often

applied. The complaint is empirically evident as well: developers take 20% more time

to develop in unfamiliar languages (Boehm, 1987) and are 40% less productive when

their work is fragmented evenly across two languages (Krein et al., 2010). However,

improvements in tools and processes are the most significant cause of increases in

productivity over the last 40 years (Nguyen et al., 2011) and the use of modern tools

2

and processes is highly correlated with programming language (Maxwell et al., 1996).

Therefore, if the industrial adoption of declarative programming increased, industry

could more easily adopt existing formal methods tools, the application of ITPs to

programs would be easier, and it would lead to higher quality software.

There are reasons to believe declarative programming is more acceptable to in-

dustry now. Declarative semantics are being added to Java (first-order function ob-

jects, generics) and C# (anonymous functions, delegates) and newer languages like

Javascript, Ruby, and Scala are designed to be multiple paradigm programming lan-

guages. This dissertation focuses on Clojure: a functional language, which is a specific

type of declarative language, with a Lisp syntax that compiles to Java Virtual Ma-

chine (JVM) bytecode and runs on the JVM. It is a viable functional programming

language for modern development that has been used by over 200 companies includ-

ing Atlassian, Walmart, and Facebook (Miller, 2016). In this research, Clojure is

formalized in ACL2, a mechanical logic for an applicative subset of Common Lisp

(Kaufmann et al., 2000).

Thesis Statement

The bytecode of Clojure’s core functions can be modeled in the ACL2 logic so that

the functional composition of those core functions may be reasoned about in ACL2.

This thesis is supported by the formal verification in ACL2 of the underlying

Clojure system that culminates in the verification of a user-defined function that

combines the results. The ACL2 logic and the Clojure programming language are

described in more detail in Chapter 2. A simple model of arbitrary-precision integers,

or bignums, based on the Clojure implementation is verified in Chapter 3. The rest of

the dissertation uses a complex model, described in Chapter 4, to reason about Clojure

code. In the model, programs are represented in objects that mimic Java classes,

3

which is reasoned about using an abstraction layer presented in Chapter 5. Our

model is used to formalize Clojure sequences, in Chapter 6, and apply the sequence

formalization to the verification of a user-defined recursive function in Chapter 7.

The remainder of this chapter identifies the contributions of the dissertation.

1.1 Contributions

Moore (2002) challenged the community to develop a verified stack of components

that can be combined to create a practical computing device. At each layer of the

stack, the semantics of the input language must be formalized, which is non-trivial

for high-level programming languages. A novelty of our choice of Clojure is that

ACL2 is already a formalization of its Lisp-based semantics. Despite that benefit, it

is still important to verify that the Clojure implementation is correct with respect to

the ACL2 formalization of Lisp and that ACL2 can be used to reason about Clojure

code. By doing so, it creates a verified user interface — the Clojure programming

language — for a end-user engineer to develop and verify new systems. This research

makes four contributions to the current literature to verify the Clojure programming

language: (1) a verified bignum addition that addresses the unique representation

of Clojure’s bignums, (2) a model of the JVM that specifically addresses aspects of

verifying features of Clojure’s underlying implementation, (3) a big-step verification

style that effectively reasons about large programs, and (4) an abstraction of Clojure’s

sequences, verification of Clojure’s sequence functions, and a demonstration that the

results can be applied to verify a user-defined sequence function. Contribution (1) is

also significant as a verification of a widely distributed Java bignum class that may

be used to develop software security features. Contributions (2) and (3) are also

applicable to any verification approach that is based on machine models.

4

1.1.1 Verification of Bignum Addition

A bignum is an unbounded number that is implemented as an array of words, where

each word is a fixed-sized number in the implementation language. Theorem provers

can reason about infinite types like natural numbers. When theorem provers are

used to reason about code written in programming languages with fixed-sized num-

bers, researchers either represent the modeled language’s integers with bignums, as in

Hardin (2015), or define a new sized number type, as in Klein et al. (2009). The use

of bignums is easier and it simplifies verification because existing, extensive proof li-

braries for infinite types are available. New types are harder to implement and verify,

but the results are more accurate. Since Clojure supports bignums, it is possible to

write Clojure code that can be accurately and easily verified, if the underlying arith-

metic is verified. We verify an addition function based on Clojure’s implementation.

Other languages have verified bignum arithmetic including the Piton language

(Moore, 1989), a formal C-like language named C0 (Fischer, 2007), Ada (Berghofer,

2012), and machine code (Affeldt, 2013; Myreen & Curello, 2013). The logic of

bignum arithmetic is also similar to hardware-based arithmetic on bit-vectors by

considering the word size to be 1-bit. Arithmetic has been verified as well for different

hardware (Hunt, 1994; Swords & Davis, 2011; Russinoff, 2005). In each of those

examples, the representation of bignums is conducive to inductive reasoning because

the least significant component of the number is operated on first. Clojure uses

Java’s BigInteger class to support bignums, which represents numbers with the

most significant component first. The verification effort is significantly affected by

the changes. In Chapter 3, we convert a proof similar to that of Moore (1989) to

apply to the more difficult BigInteger representation.

The bignum verification is also a contribution independent of its use by Clojure.

Bignums are used in cryptography (Denis & Rose, 2006) and one of the existing im-

5

plementations has been used for that purpose (Berghofer, 2012). BigInteger, unlike

the other examples in the literature, is a widely distributed Java implementation of

bignum arithmetic and security is an important area of interest for verification.

1.1.2 JVM Model for Compiled Clojure

A significant portion of the Clojure programming language is implemented in Java.

The remaining non-Java portion is the Clojure core library that is implemented using

Clojure. The core library defines the 448 standard functions of the language. Both

portions of Clojure compile to the JVM. In this dissertation, we verify the underlying

Java code and core functions for a specific Clojure data structure. To do so, we

contribute a formal model of the JVM and an abstraction layer for programs that

run on the model.

Our model of Clojure is named MC and is based on an existing formal model

of the JVM (Moore & Porter, 2002). The existing model lacks support for inter-

faces, but Clojure uses interfaces extensively to invoke methods and check the type of

objects. MC adds support for the bytecode instructions INVOKEINTERFACE and

CHECKCAST and updates support for the instruction INSTANCEOF to recognize

interface types. MC is described in Chapter 4.

MC is not sufficient by itself to verify a large program like Clojure. In a JVM

model similar to MC, Liu (2006) finds the direct use of the model to scale poorly for

programs with many classes. In addition to MC, we contribute an abstraction layer,

described in Chapter 5, that can be used to reason about larger programs.

1.1.3 Big-Step Style Verification

Models are reasoned about in both small-step and big-step semantics, where the differ-

ence between the two is the amount of computation performed in a single transition.

MC is a small-step semantic that is used to reason about programs with transitions

6

that execute a single bytecode instruction. Small-step semantics are capable of verify-

ing programs of any size, but big-step semantics are easier to apply to large programs.

Since Clojure is a large program, we introduce an ACL2 macro, in Chapter 4, to rea-

son about programs in MC using big-step semantics where each transition executes

an entire method. Our -> macro combines series of small-step transitions into a single

step to equate machine states that would eventually converge if both were executed

indefinitely. It is based on the implementation given by Manolios & Moore (2003)

for an earlier model of the JVM, but we modify it to improve the reliability that

theorems are useful rewrite rules and apply it to the verification of a large system.

1.1.4 Verification of a Recursive Sequence Clojure Function

The final contribution is the verification of a recursive Clojure function that operates

on sequences, which is a Clojure data structure similar to a list. Recursive func-

tions are typically verified using inductive reasoning, which requires the inputs to be

well-ordered. Sequences are well-ordered when created and operated on by Clojure

functions, but MC operates on sequences as references to objects in a heap. From that

perspective, MC cannot guarantee that sequences are well-ordered. We contribute an

abstraction, which is described in Chapter 6, of sequences that can be used to guar-

antee that they are well-ordered. Using the sequence abstraction, we also verify the

correctness of seven Clojure functions that operate on sequences. In Chapter 7, the

abstraction and verified functions are combined together in an inductive proof of a

sequence recursive function. The contribution is similar to the verified Java list im-

plementation in Moore (2003), but that version is a small “toy” example that uses

two Java classes and three methods. Clojure’s implementation of sequences requires

17 classes and 37 methods.

7

1.2 Summary

A verified Clojure core library, including the verification of the underlying Java byte-

code, enables developers to verify software more easily and the integration of verifi-

cation into development processes is more flexible than traditional formal methods

approaches. Since formal methods prioritize specification, the costs of using formal

methods in software development are paid early in the life-cycle and the return on

the investment is not gained until the maintenance phase. Since Clojure and ACL2

share a syntax and semantics, much of the overhead in applying formal methods tools

is avoided because one implementation is applicable to both systems. In a traditional

formal methods process, ACL2 can be used to formally specify the software and then

applied to Clojure for implementation. However, a strength of our approach is the

system can be developed in Clojure without a formal specification, as is common in

development, and verified later using the Clojure code in ACL2. This shifts the cost

of applying formal methods later into the process and closer to the maintenance phase

when the risks and rewards are more noticeable.

8

Chapter 2

Research Methodology

The concept of verified correctness is appealing, but the process is not straightforward.

A process must formally specify desired properties and define how to model a system

to verify those properties. The process we use is significantly informed by Moore

(1999). Moore constructed a model of the JVM in ACL2 that executed bytecode

generated by compiling Java programs. The behavior of bytecode programs was

verified to be equivalent to the behavior of “semantically close” ACL2 programs.

Since the semantics of the implementations were close, additional properties of the

Java programs could be analyzed by reasoning about the equivalent ACL2 programs.

However, the semantic similarities were artificially enforced by the implementation

of the Java version of the program and the perspective of the developer. In this

research, the semantics are closer between the Clojure and ACL2 implementations

and the closeness is inherent to the language paradigm.

This dissertation, like Moore (1999), verifies the underlying imperative behavior

of Java bytecode programs is equivalent to similar ACL2 programs for the purpose of

reasoning about the ACL2 programs. In our case the programs are the compiled form

of the core Clojure functions. If the behavior of a set of Clojure functions is equivalent

to ACL2 versions, the composition of those Clojure functions is equivalent to the

same composition in ACL2. Our process is to model the JVM and the underlying

bytecode generated from Clojure functions, verify the functions are equivalent to

corresponding ACL2 functions, and show that new functions can be composed in

Clojure and reasoned about in ACL2. This chapter begins with definitions for key

9

terms. Later in the chapter, ACL2 and Clojure are defined in more depth and our

methodology is explained.

2.1 Definitions

Several terms are used frequently in this dissertation that have more than one defi-

nition. Those terms are defined and discussed in this section to avoid ambiguity.

2.1.1 Models

Verification is performed on models of the software being analyzed. Models, how-

ever, can vary significantly depending on the investigation. In this dissertation, three

different types of models are used. The simplest type of model is a formal, mathemat-

ical definition of an algorithm. It works as a specification of the algorithm that can

ignore most of the implementation concerns that affect production quality software.

The verification of bignums is performed on such a model.

The other two types of models are related. The first of these is the formal imple-

mentation of the JVM that is constructed in Chapter 4. This JVM model, named MC

in this dissertation for model of Clojure, can simulate the execution of JVM bytecode

programs. The bytecode programs are the third type of model discussed in this dis-

sertation. The following subsections define terms related to models of machines like

the JVM that execute programming languages. Such models are categorized across

three dimensions: program semantics, style of embedding, and step semantics.

Program Semantics

Program semantics formally define the meaning of a program. Different types of se-

mantics exist that capture different concepts. In this work, the model is implemented

using operational semantics. Operational semantics define the “meaning of a pro-

10

gramming language by specifying how it executes on an abstract machine” (Winskel,

1993). Our model is an abstract JVM that defines the operational semantics of JVM

instructions as transition functions from a start state to an end state. The presented

work is limited to operational semantics, but denotational (Scott & Strachey, 1971)

and axiomatic (Hoare, 1969) semantics are both well-established alternatives to de-

scribing languages.

Deep and Shallow Embeddings

Approaches to embedding programs in logic are divided into deep embeddings and

shallow embeddings. A deep embedding represents programs as abstract data types

and defines functions in the logic that give the programs meaning. A shallow em-

bedding defines the behavior of the program as functions in the logic (Boulton et al.,

1992). Our model is a deep embedding of the JVM that represents programs as data

in a structure based on the specification for JVM class files. Since Clojure and ACL2

are semantically similar languages, the shallow embedding of a Clojure function is

the corresponding ACL2 function.

Shallow embeddings are easier to implement, but the analysis performed in the

logic is less likely to apply to the implemented system. It can be much more difficult

to verify properties in a deep embedding but the results reflect the properties of the

system more reliably. Our verification of the deep embedding in MC is intended to

increase the likelihood that a shallow embedding of a Clojure function describes its

actual behavior.

Step Semantics

Operational semantics are implemented as a transition from configuration s to s′.

Commonly, the transitions are implemented in either a small-step or big-step style.

Small-step semantics are single step transitions applied repeatedly to define program

11

behavior. In the context of the JVM, a single step is the execution of an instruc-

tion. Small-step semantics are able to reason about non-terminating programs and

cases where an application behaves incorrectly (Leroy, 2009). Big-step semantics are

transitions from an initial configuration to a final configuration. Big-step semantics

are effective at verifying compilers because programs can be decomposed into smaller

programs (Ciobâcă, 2013). Both step styles are used in this research.

2.1.2 Conventions

In this research, the behavior of Clojure functions are equated to the behavior of

corresponding ACL2 functions. The analysis is performed by reasoning about Java

programs and their compiled bytecode. To be as clear as possible, the following

terminology is used precisely:

� A function is a Clojure or ACL2 function.

� A method is either a Java method or the MC representation of Java bytecode.

� An operation is a term to describe program behavior that can be used to refer

to methods and functions.

� A Clojure function is mapped to an ACL2 function by equating the behavior of

the Clojure function’s bytecode method to the behavior of the ACL2 function.

References to code in the text are written in a monospace font and follow naming

conventions. Java classes are written in Pascal case so every word in an identifier

is capitalized including the first. Java methods are written in Camel case, where

every word in an identifier is capitalized except the first. For example, the Java

class LinkedList has an addFirst method. Clojure and ACL2 functions are written

in lowercase characters with a “-” separating words. For example, Clojure has a

replace-first function in its core library.

12

2.2 ACL2

ACL2 is a functional programming language and a mechanical theorem prover. Func-

tions defined in the programming language are introduced into the logic database,

often referred to as the world, of the theorem prover. This section is an introduction

to the ACL2 programming language, a brief overview of the reasoning system, and a

description of the process of guiding ACL2 to prove theorems.

2.2.1 The Programming Language

Common Lisp is a popular, standard dialect of the functional programming language

Lisp. Lisp expressions are contained within parenthesis and written in prefix notation.

For example, adding x and y is expressed in Lisp as (+ x y). The following code

shows the definition of a Fibonacci function in Common Lisp,

1 (defun fibonacci (n)

2 (if (<= n 0)

3 0

4 (if (equal n 1)

5 1

6 (+ (fibonacci (- n 1))

7 (fibonacci (- n 2))))))

The ACL2 programming language is a subset of Common Lisp that removes fea-

tures of the language that cause side-effects. Specifically, the language removes access

to a global state and destructive operations that modify data in-place. The lack of

side-effects means functions are referentially transparent, so expressions within a for-

mula can be rewritten to equivalent expressions without changing the meaning of

the formula. The mechanical theorem prover relies on functions being referentially

transparent.

The ACL2 logic is one of total recursive functions. As such, functions defined

in ACL2 are total meaning that they terminate on all inputs. The theorem prover

13

verifies that a new function is a total function before accepting it into the world.

Under certain conditions, it is possible to define and reason about partial functions

that may not terminate for some inputs (Manolios & Moore, 2003), which we do

to define our big-step function in Chapter 4. However, programs containing partial

functions can not be executed so they are avoided whenever possible.

Programs written in ACL2 can be compiled by any compliant Common Lisp im-

plementation. Features have been added to the language to support efficient run-time

execution. In some cases, code written in ACL2 has been shown to be comparable

in performance to C code (Wilding et al., 2001). Despite its potential, there are no

known cases of ACL2 being used to develop production code. The ACL2 programming

language is specifically used to implement and reason about models of programs.

2.2.2 The Theorem Prover

ACL2 extends the syntax of Common Lisp to support the definition of theorems.

The ACL2 theorem prover searches for a proof that verifies the truth of a theorem

submitted to it. Once a theorem is verified by ACL2, it is added to the world and can

be applied by the prover to verify new theorems. Kaufmann et al. (2000) provides a

detailed description of the techniques that the theorem prover uses. In this section,

we focus on the structure of ACL2 theorems, a general overview of rewriting, the

available rule classes, and induction.

Conjectures are supplied to the theorem prover using defthm. If the theorem

prover can ascertain the veracity of the conjecture, it is added as a theorem to the

world. To illustrate, consider a function absolute(x) that computes the absolute

value of x. absolute is idempotent because applying it multiple times is the same

as applying it once. The idempotency of absolute is submitted to ACL2 using the

theorem,

14

1 (defthm idempotency-of-absolute

2 (implies (integerp x)

3 (equal (absolute (absolute x))

4 (absolute x))))

Since ACL2 functions are total, the theorem prover will, by default, attempt to verify

conjectures for any type of input. Idempotency is a property of absolute for numeric

values, so the hypothesis of idempotency-of-absolute specifies x is an integer.

The ACL2 theorem prover mechanically verifies theorems by applying a power-

ful rewriting system to formulas. If idempotency-of-absolute is a theorem in the

world, the theorem prover may apply it during the proof attempt of a new theo-

rem. Imagine the theorem prover produces a subgoal that contains the expression

(absolute (absolute y)). The expression is matched to the equivalent expression

in the theorem’s conclusion. If the theorem prover can establish that y is an inte-

ger, it can apply the rule and rewrite the expression (absolute (absolute y)) to

(absolute y).

One of the strengths of the ACL2 theorem prover is its ability to apply induc-

tion on recursive functions definitions. ACL2’s “definitional principal” (Kaufmann

et al., 2000) requires recursive functions to continuously decrease a parameter for

each recursive call until reaching a terminating state. Based on how the parameter is

decreased, ACL2 associates induction schemes with the function in its database. The

theorem prover uses induction schemes to generate the base and inductive subgoals

and then applies its other techniques to verify the subgoals. The two most common

induction schemes are (1) decrementing a number towards zero and (2) reducing a

list towards the empty list. Expert ACL2 users learn to write function definitions

that produce inductive subgoals that are easy to solve.

15

2.2.3 The Method

ACL2 automatically proves significantly complex conjectures, but it is designed to be

an interactive theorem prover. Its expected use is as a proof assistant where a user

guides the theorem prover towards a solution. Expert users learn how to guide the

theorem prover by adding lemmas, managing the world, and directing proof attempts

using hints. Those individual techniques are most successful when users apply The

Method (Kaufmann et al., 2000), a process for proving complex theorems in ACL2.

At its heart, The Method is the strategy of creating a proof sketch, implementing

it in ACL2, and using the ACL2 output to fill in the messing pieces. For example,

imagine a user that desires to prove a theorem T . Using The Method, that user

sketches a proof that states that T is provable from lemmas T1, T2, and T3. Once the

proof is sketched, the user implements (defthm T-1 t) in ACL2 to correspond to the

lemma T1. If the attempt is successful, the user moves on to T2, T3, and eventually

T . If the proof attempt of T1 fails, the user inspects the output to determine why. In

some cases, ACL2 does not “know” enough to prove T1 and the proof sketch needs to

be expanded with more lemmas. In other cases, the user may be wrong and T1 is not

true, in which case, the proof sketch must be fixed. Eventually, the user implements

enough knowledge, in the form of theorems, to attempt to verify the desired theorem

T . If the attempt fails, the process continues in the same way as verifying the lemmas.

The ACL2 output is examined and used to determine why the attempt failed. At this

point, it is possible to discover that T is not a theorem and be forced to reconsider the

entire problem. Importantly, The Method is a recommendation that users informally

sketch out a proof by hand and refine it using ACL2.

16

2.3 Clojure

Clojure is a Lisp programming language that compiles to JVM bytecode instructions.

A large portion of the language, including data structures and base functionality,

is implemented using Java. The remaining portion that defines the fundamental

functions is implemented in Clojure. Code from both portions is analyzed in this

research.

The Java portion of the Clojure code implements the low-level details required to

create a functional language that targets the JVM. Functions, for example, are objects

in Clojure. The features of functions are implemented in Java using the abstract class

AFunction and several interfaces. When a function definition is compiled, a new class

is generated that extends the abstract class and implements the appropriate interfaces.

All Clojure data structures are partially implemented as Java classes.

The Java code also implements a layer that performs basic operations on the low-

level data structures. Clojure’s run-time class RT is the primary link between code

written in Clojure and the underlying Java portions of the implementation. RT im-

plements static methods that route behavior to the appropriate data structures. For

example, RT implements methods to create a sequence and access its data. Sequences

are implemented using more than one class, so the RT methods determine, based on

the type of the inputs, what class should execute the operation.

The core library, written in Clojure, glues the language to the underlying Java

code. The Clojure functions that call Java methods do so by using the . operator.

The cons function, shown below, calls the static cons method in the RT class.

1 (def

2 ^{: arglists '([x seq])

3 :static true}

4 cons (fn* ^: static

5 cons [x seq] (. clojure.lang.RT (cons x seq))))

17

The core library contains 579 definitions which includes 448 function definitions.

In this research, the JVM bytecode generated from each portion of the system is

analyzed with respect to the sequence data structure. The classes that implement

the sequence structure are analyzed in Chapters 5 and 6. The core functions that

operate on sequences, as well as the RT methods that those functions call, are analyzed

in Chapter 6. The complete analysis equates Clojure functionality on sequences to

that of lists in ACL2.

2.4 Methodology

We will investigate a system that is written in Clojure and compiled to Java bytecode.

We will reason about the system in ACL2. The Clojure and ACL2 syntaxes are both

inspired by Common Lisp so the mapping between the two is straightforward. As

an illustration of the intent of this research, let us consider an implementation of

Fibonacci. Figure 2.1 shows a Clojure implementation of Fibonacci and an ACL2

implementation.

Despite small differences in syntax, there is a clear mapping from the Clojure

implementation to the ACL2 model. But the Clojure function is compiled to Java

bytecode before execution, so the mapping is only valid if the compiled bytecode is

equivalent to the ACL2 function. For example, the + operator in Clojure must be

equivalent to ACL2’s + function. This is particularly important because Clojure must

incorporate the JVM’s type system in the compilation so a math operator is implicitly

boxing and unboxing numerics. It is a goal of this research to verify functions in the

Clojure core library so a developer can assume equivalence between the two languages.

Our research models the behavior of programs developed in Clojure version 1.7.0.

The analysis is performed in an ACL2 model of the JVM that is named MC for

model of Clojure. MC is a modification of the M5 model (Moore & Porter, 2002). It

18

1 ; Clojure implementation

2 (defn fibonacci [n]

3 (if (<= n 0)

4 0

5 (if (equal n 1)

6 1

7 (+ (fibonacci (- n 1))

8 (fibonacci (- n 2))))))

9

10 ; ACL2 model

11 (defun fibonacci (n)

12 (if (<= n 0)

13 0

14 (if (equal n 1)

15 1

16 (+ (fibonacci (- n 1))

17 (fibonacci (- n 2))))))

Figure 2.1: Fibonacci Functions

is described in Chapter 4. The ACL2 code is developed in the ACL2 Sedan version

1.1.7.1 (Dillinger et al., 2007) in Compatibility mode using ACL2 version 7.0.0.

The compiled class files that execute on the JVM are translated into MC class

declarations. A series of standard functions are defined for each class included in an

analysis. The functions simplify the process for configuring a state in a manner that

allows ACL2’s logic to reliably apply knowledge defined in the class declarations. The

format for the standard class functions is defined in Chapter 5.

The research analyzes two important features of functional programming as it

relates to the implementation of Clojure: structural recursion and arbitrary-precision

numbers. For structural recursion, a template for a sequence recursive function is

defined. Sequences are modeled in ACL2 as an abstraction on top of the standard

class functions. The function dependencies of the template are mapped from Clojure’s

implementation to ACL2. This is described in detail in Chapter 6. In Chapter 7, an

example recursive function is implemented in Clojure, compiled to MC, and mapped

19

to ACL2.

For arbitrary-precision numbers, the algorithm for adding magnitudes is imple-

mented in ACL2 and verified to produce the correct magnitude. The proof is described

in Chapter 3.

20

Chapter 3

Big-Endian Bignum Arithmetic

Similar to software libraries, proof libraries encapsulate work that can be reused to

simplify the verification of more complex problems. Many proof libraries that exist for

theorem provers are built to reason about infinite number sets such as the naturals or

mathematical integers. Theorem provers that are integrated into functional languages

use bignums — numeric types that can represent arbitrarily large numbers — to

represent numbers from an infinite set. When a theorem prover is used to verify a

software system, researchers must either define numeric types that mimic the types

used in the system or ignore the difference. Defining specific numeric types results in

a more accurate model of the system, but it can also limit the applicability of existing

proof libraries.

Fortunately, Clojure supports bignums, so systems developed with Clojure can

be accurately verified without sacrificing the use of existing bignum proof libraries.

However, since Clojure runs on the JVM, the representation of bignums and the

associated arithmetic operations are implemented in Java code. Clojure’s underlying

bignum representation, which relies on Java’s BigInteger class, needs to be verified

to claim bignum operations are accurately modeled.

Abstractly, a bignum is stored in memory as an array of words where each word

is a primitive numeric type in the implementation language. Individual arithmetic

operations iterate over the arrays of two bignums to calculate a result. Concrete

implementations of bignum arithmetic have previously been verified for the Piton

language (Moore, 1989), a formal version of C (Fischer, 2007), and machine code (Af-

21

feldt, 2013; Myreen & Curello, 2013). For each of those implementations, the bignum

representation was designed to be conducive to inductive reasoning. In comparison,

BigInteger is a widely available bignum implementation that is distributed with

the Java Development Kit (JDK). It was not designed with this verification effort in

mind and its internal representation of bignum magnitudes adds additional complex-

ity that complicates reasoning about its arithmetic operations. The specification of

BigInteger and the complications are explained in Section 3.1.

In this chapter, an ACL2 model of BigInteger’s magnitude addition is verified to

correctly add natural numbers. Section 3.1 defines a specification for the algorithm

based on a code analysis of BigInteger. The verification is performed in ACL2 by

following The Method, a process that begins with sketching out a proof first. The

proof sketch for verifying BigInteger operations, which is detailed in Section 3.2,

adds a single element of complexity at each layer in the proof tree. The implementa-

tion and verification of each layer is presented in Sections 3.3-3.5. This chapter serves

an additional purpose as an introduction to using the ACL2 theorem prover, so some

technical details regarding the configuration of ACL2 are described.

3.1 BigInteger Specification

BigInteger represents the magnitude of a bignum as an integer array. The magnitude

is interpreted in big-endian order so the integer in the zeroth index of the array is the

most significant integer. Addition is the operation that will be verified because it is the

simplest operation that illustrates the complications of BigInteger’s representation.

The code for BigInteger’s add method is shown in Figure 3.1.

The method splits the addition into five pieces: (1) swap, (2) add, (3) propa-

gate the carry, (4) copy, and (5) expand. The pieces are highlighted in Figure 3.1

by comments in the code. The BigInteger specification introduces two challenges

22

1 private static int[] add(int[] x, int[] y) {

2 // Swap the longest array into the x variable

3 if (x.length < y.length) {

4 int[] tmp = x;

5 x = y;

6 y = tmp;

7 }

8

9 int xIndex = x.length;

10 int yIndex = y.length;

11 int result [] = new int[xIndex];

12 long sum = 0;

13

14 // Add common parts of both numbers

15 while(yIndex > 0) {

16 sum = (x[--xIndex] & LONG_MASK) +

17 (y[--yIndex] & LONG_MASK) + (sum >>> 32);

18 result[xIndex] = (int)sum;

19 }

20

21 // Propagate carry

22 boolean carry = (sum >>> 32 != 0);

23 while (xIndex > 0 && carry)

24 carry = ((result[--xIndex] = x[xIndex] + 1) == 0);

25

26 // Copy remainder of longer number

27 while (xIndex > 0)

28 result[--xIndex] = x[xIndex];

29

30 // Expand result if necessary

31 if (carry) {

32 int bigger [] = new int[result.length + 1];

33 System.arraycopy(result , 0, bigger , 1, result.length);

34 bigger [0] = 0x01;

35 return bigger;

36 }

37 return result;

38 }

Figure 3.1: BigInteger Add Magnitudes

23

that have not been addressed in previous research. First, since Java does not have

unsigned primitive types, each word in the magnitude is a signed int. The words

are interpreted as unsigned 32-bit integers by applying a mask that casts the value

to the larger long type but preserves the bit values of the original int. Second, the

magnitude is stored in big-endian order rather than little-endian order. Little-endian

order is easier to analyze because the arrays are inherently aligned at index 0 and the

magnitude of a word at index i can be calculated from the magnitude of the word at

i−1. In comparison, in big-endian order, the arrays must be explicitly aligned at the

largest index in each array and the magnitude of a word at index i changes depending

on the length of the array. The proof sketch addresses each challenge separately to

verify bignum addition.

3.2 Proof Sketch

Our focus is on the addition of magnitudes as implemented in BigInteger. We will

demonstrate that coercing the result of a BigInteger magnitude operation to an

ACL2 natural is equivalent to executing the corresponding operation on naturals.

Our approach, which addresses the complications of the signed, big-endian represen-

tation, is to begin by verifying our desired property on an unsigned, little-endian

representation of the operation. We will then define a signed, little-endian imple-

mentation and a signed-to-unsigned translation and verify the desired property still

holds. We finish by implementing the BigInteger specification and equating it to

the reverse of the signed, little-endian results.

For this proof, imagine that a function ηr(m) converts a magnitude array m into

the natural number it represents if interpreted as being stored in representation r.

Assume xr and yr are arrays formatted according to r that represent natural numbers

x and y respectively. Then the goal of the proof at each layer is to verify that

24

ηb(xb + yb)=x+ y

ηs(xs + ys)=x+ y

ηu(xu + yu)=x+ y υ(xs)=xu ηs(xs + ys)=ηu(υ(xs) + υ(ys))

ρ(xb)=xs ηb(xb + yb)=ηs(ρ(xb) + ρ(yb))

Figure 3.2: Bignum Addition Proof Sketch

ηr(xr + yr) = x + y. The proof sketch considers three representations which are

identified with the subscripts: u for unsigned, little-endian, s for signed, little-endian,

and b for signed, big-endian. The proof sketch is a three-layered approach shown in

Figure 3.2.

Each node in the proof sketch represents a theorem that must be admitted to

ACL2. The function υ(m) converts a signed array m into an unsigned array and the

function ρ(m) reverses the array m. The top node in the proof is the desired theorem

that verifies the bignum addition operation implemented by BigInteger. The proof

begins in the bottom left node that states ηu(xu + yu) = x + y, which is a theorem

similar to those in the literature. Our implementation is most similar to the version

presented by Moore (1989). The remaining nodes on the bottom layer translate that

proof into one that verifies the signed, little-endian representation. The nodes in the

middle layer convert the signed, little-endian representation into the goal theorem by

reversing the elements. The lemmas to verify each node are explained in the following

sections.

3.3 Unsigned, Little-Endian Add

The proof sketch requires each representation to define (1) a function ηr(m) that

converts a magnitude array to a natural and (2) a function that adds two magnitude

arrays formatted in the representation. Since the informal description is similar for

all iterations of adding magnitudes, the implementations specify the representation

25

in the function names: ule- functions are unsigned, little-endian, sle- functions are

signed, little-endian, and sbe- functions are signed, big-endian. The prefixes are also

used in the text to reference the representations. The function ule-to-nat converts

a ule magnitude into a natural number.

1 (defun ule-to-nat (xs)

2 (if (endp xs)

3 0

4 (+ (car xs)

5 (* (expt 2 32)

6 (ule-to-nat (cdr xs))))))

This function recursively walks the list from the least to most significant integer and

multiples the recursive call by 232 to shift the value.

The difference between the first two representations in the proof sketch is the

signedness of the words. For representations using signed words, each word is still

interpreted as unsigned during calculations. Therefore, the difference between the

first two representations is limited to the calculations performed on individual words.

Specifically, words are added together to calculate a new word and to determine if

there is a carry. The ACL2 code for both calculations is shown in Figure 3.3. It

introduces three additional functions: uint-p, loghead, and logtail. The predicate

uint-p recognizes unsigned 32-bit integers. loghead returns the lower n bits of its

input where, in this case, n is 32. It is used in the add function to truncate the result

to 32-bits. The carry is calculated by logtail, which returns all of the higher bits

after index n.

The add operation is implemented in ACL2 with the functions ule-add and

ule-propagate. Figure 3.4 shows the code for both functions. The ule-add function

adds the common elements until reaching the end of the shorter list before calling

ule-propagate on the longer list. If a carry exists, ule-propagate propagates it over

the longer list and expands the resulting list if necessary. Otherwise, ule-propagate

26

1 (defun add-uint (x y carry)

2 (let* ((i (if (uint-p x) x 0))

3 (j (if (uint-p y) y 0)))

4 (loghead 32 (+ i j carry))))

5

6 (defun add-uint-carry (x y carry)

7 (let* ((i (if (uint-p x) x 0))

8 (j (if (uint-p y) y 0)))

9 (logtail 32 (+ i j carry))))

Figure 3.3: Unsigned Add and Carry Functions

copies the remaining elements in the longer list into the resulting list. Recall that

the add method in BigInteger splits the operation into five steps: (1) swap, (2) add,

(3) propagate the carry, (4) copy, and (5) expand. ule-add addresses step 2 and

ule-propogate addresses steps 3, 4, and 5. Step 1, which is a swap that guarantees

the longest list is the x variable, simplifies the Java code for steps 3 and 4 by removing

the need to reference the y array. The ACL2 code gets the same effect by splitting

steps 3 and 4 into a separate function.

With definitions for the components, we turn our attention to formalizing, in

ACL2, the node in the proof sketch that states ηu(xu + yu) = x + y. Before ACL2

can prove that statement, it must be “taught” a few facts. For starters, the carry

of an addition is at most 1. The predicate carry-p recognizes acceptable values for

the carry. ACL2 can prove a theorem that states that the function add-uint-carry

always returns an acceptable carry value.

1 (defthm add-uint-carry-is-0-or-1

2 (implies (and (uint-p x)

3 (uint-p y)

4 (carry-p carry))

5 (carry-p (add-uint-carry x y carry))))

ACL2 uses this theorem during induction to “know” that the calculated carry is

acceptable for each recursive call.

27

1 (defun ule-propagate (xs carry)

2 (if (endp xs)

3 (if (< 0 carry)

4 (cons carry nil)

5 nil)

6 (cons (add-uint (car xs) nil carry)

7 (ule-propagate (cdr xs)

8 (add-uint-carry (car xs) nil

carry)))))

9

10 (defun ule-add (xs ys carry)

11 (if (or (endp xs) (endp ys))

12 (ule-propagate (if (endp xs) ys xs) carry)

13 (cons (add-uint (car xs) (car ys) carry)

14 (ule-add (cdr xs)

15 (cdr ys)

16 (add-uint-carry (car xs)

17 (car ys)

18 carry)))))

Figure 3.4: Unsigned, Little-Endian Add

We anticipate ACL2 will generate subgoals about the behavior of ule-propagate.

Since the carry is either 0 or 1, we can address ule-propagate with two cases. For

the case when the carry is 0, ule-propagate is an identity function.

1 (defthm ule-propagate-identity

2 (implies (uint-listp xs)

3 (equal (ule-propagate xs 0) xs)))

For the case when the carry is 1, the following theorem is admitted to ACL2:

1 (defthm propagate-carry-works

2 (implies (and (uint-listp xs)

3 (= carry 1))

4 (equal (ule-to-nat (ule-propagate xs carry))

5 (+ (ule-to-nat xs) carry)))

Using the previous theorems as lemmas, ACL2 can now accept a theorem that

states ηu(xu + yu) = x+ y. In ACL2, it is implemented as,

28

1 (defthm add-lists-works

2 (implies (and (uint-listp xs)

3 (uint-listp ys)

4 (carry-p carry))

5 (equal (ule-to-nat (ule-add xs ys carry))

6 (+ (ule-to-nat xs)

7 (ule-to-nat ys)

8 carry)))

The theorem add-lists-works is a proof of the bottom-left node of the proof sketch.

The next section uses this theorem to prove the middle node of the sketch.

3.4 Signed, Little-Endian Add

The signed, little-endian (sle) representation changes the storage of the words to

signed integers. According to the proof sketch, the verification of the ule representa-

tion is translated into a proof for sle by verifying that υ(xs) = xu and ηs(xs + ys) =

ηy(υ(xs)+υ(ys)), where υ(m) converts a sle magnitude into a ule magnitude. Both of

those properties are verified as lemmas in this section and used to verify the theorem

that an sle addition function correctly adds magnitudes in the sle format.

The only difference between the sle and ule representations is the signedness of

the words. Signed 32-bit integers, which correspond to Java ints, are recognized

with jint-p. Signedness is only relevant to the storage of the values; the calculations

performed on words still interpret the values as unsigned. In the Java code, the

interpretation is performed by applying a longmask that casts an int to a long but

preserves the bit-order. In ACL2, the function longmask applies the conversion in

the same manner. The following theorem, jint-longmask-is-uint, verifies that

applying a longmask to a signed int results in an unsigned int.

1 (defthm jint-longmask-is-uint

2 (implies (jint-p x)

3 (uint-p (longmask x))))

29

The theorem is necessary to verify both of our lemmas.

The proof sketch defines a function υ(m) that converts m from an sle magnitude

to a ule magnitude. The function sle-to-ule is an ACL2 implementation of υ(m).

1 (defun sle-to-ule (xs)

2 (if (endp xs)

3 nil

4 (cons (longmask (car xs))

5 (sle-to-ule (cdr xs)))))

The sketch requires that the conversion be verified to work correctly by the node that

states the property υ(xs) = xu. In the sketch, xs and xu are related to the natural

number x by definition. For verification of the lemma, the magnitudes are formally

converted into natural numbers using the existing to-nat functions.

1 (defthm sle-to-nat-is-ule-to-nat

2 (implies (jint-listp xs)

3 (equal (sle-to-nat xs)

4 (ule-to-nat (sle-to-ule xs)))))

The theorem sle-to-nat-is-ule-to-nat verifies the lemma υ(xs) = xu from the

proof sketch. Similary, a ule-to-sle function is also defined and verified.

The sketch also requires a proof of the statement: ηs(xs + ys) = ηu(υ(xs) +υ(ys)).

Informally, it states that the result of adding two sle magnitudes is equivalent to

adding ule conversions of the magnitudes. The property is verified by demonstrating

the relationship between the differences of the two add functions. In the previous

section, ule-add was implemented with the calculations for adding words and deter-

mining the carry separated into the functions add-uint and add-uint-carry. The

sle-add function is identical to ule-add except it depends on signed versions of those

functions, which are shown in Figure 3.5. The function logext, seen in the defini-

tion of add-jint, converts an unsigned integer into a signed integer of size n bits.

Along with the code, Figure 3.5 shows the theorems that confirm that the signed

calculations are equivalent to unsigned calculations on converted inputs. With that

30

knowledge, ACL2 accepts that sle-add is equivalent to ule-add on converted lists.

1 (defthm sle-add-is-ule-add

2 (implies

3 (and (jint-listp xs)

4 (jint-listp ys)

5 (carry-p carry))

6 (equal

7 (sle-add xs ys carry)

8 (ule-to-sle

9 (ule-add (sle-to-ule xs)

10 (sle-to-ule ys)

11 carry)))))

The bottom layer of the proof sketch defines three nodes that must be verified

to convert a proof of ule correctness into a proof of sle correctness. The first node

was verified in the previous section. The remaining two nodes were verified in this

section. When ACL2 is configured with all three lemmas, it accepts the theorem

sle-add-lists-works that corresponds to the node in the the middle of the sketch

that states: ηs(xs + ys) = x+ y.

1 (defthm sle-add-lists-works

2 (implies

3 (and (jint-listp xs)

4 (jint-listp ys)

5 (carry-p carry))

6 (equal (sle-to-nat (sle-add xs ys carry))

7 (+ (sle-to-nat xs) (sle-to-nat ys) carry))))

In the next section, the sle representation is translated into a signed, big-endian (sbe)

representation to verify the correctness of the model of the BigInteger add method.

3.5 Signed, Big-Endian Add

The little-endian representations use definitions that can be reasoned about using

list induction. In contrast, the big-endian representation requires functions to know

the length of the original list and interpret values starting at the last index. For the

31

1 (defun add-jint (x y carry)

2 (let* ((i (if (jint-p x) x 0))

3 (j (if (jint-p y) y 0)))

4 (logext 32

5 (loghead 32

6 (+ (longmask i)

7 (longmask j)

8 carry)))))

9

10 (defthm add-jint-is-add-uint

11 (implies

12 (and (jint-p x)

13 (jint-p y)

14 (carry-p carry))

15 (equal

16 (add-jint x y carry)

17 (logext 32

18 (add-uint (longmask x)

19 (longmask y)

20 carry)))))

21

22

23 (defun add-jint-carry (x y carry)

24 (let* ((i (if (jint-p x) x 0))

25 (j (if (jint-p y) y 0)))

26 (logtail 32 (+ (longmask i) (longmask j) carry))))

27

28 (defthm add-jint-carry-is-add-uint-carry

29 (implies

30 (and (jint-p x)

31 (jint-p y)

32 (carry-p carry))

33 (equal (add-jint-carry x y carry)

34 (add-uint-carry (longmask x)

35 (longmask y)

36 carry))))

Figure 3.5: Signed Add and Carry Functions

32

previous results to be related to a big-endian implementation, the list-based induction

schemes must be converted to index-based induction schemes. For demonstration of

this process, we will focus on equating the little-endian and big-endian natural number

conversions.

The function sle-to-nat-i is an indexed-based implementation to convert signed,

little-endian lists into natural numbers. The index of the big-endian implementation

will decrease from the length of the list to 0, so the function is defined with a parameter

i that also decreases so the inputs to the little-endian and big-endian functions are

aligned. The index in the little-endian implementation is calculated by subtracting i

from the length of the list.

1 (defun sle-to-nat-i (xs i)

2 (if (zp i)

3 0

4 (+ (longmask (nth (- (len xs) i) xs))

5 (* (expt 2 32)

6 (sle-to-nat-i xs (1- i))))))

The result of calling sle-to-nat-i with an i value of (len xs) should be equal

to calling sle-to-nat on the same list. To prove that in ACL2 requires coordinating

the induction schemes of the two functions. ACL2 chooses induction schemes by

examining the induction schemes used to admit the functions found in a theorem.

In this case, the induction scheme for the original definition is based on walking the

list and the induction scheme for the indexed version is based on decrementing the

index. The theorem sle-idx-to-sle supplies a hint that instructs ACL2 to apply a

combination of both induction schemes.

1 (defthm sle-idx-to-sle

2 (implies (jint-listp xs)

3 (equal (sle-to-nat-i xs (len xs))

4 (sle-to-nat xs)))

5 :hints

6 (("Goal" :induct (cdr-dec-induct xs (1- (len xs))))))

33

With an index-based implementation of the sle functions, the verification can proceed

towards the remaining lemmas required by the proof sketch.

Similar to the bottom layer of the sketch, the middle layer converts the sle proof

into a sbe proof by introducing a conversion function. In the sketch, the function is

named ρ(m), but sle is converted to sbe by reversing the elements so we use ACL2’s

built-in rev function. We include rev’s definition here, because we need to prove an

important lemma about it to continue.

1 (defun rev (x)

2 (if (consp x)

3 (append (rev (cdr x)) (list (car x)))

4 nil))

When a list xs is reversed, the elements are in the opposite order, but that descrip-

tion does not say anything about the position of specific elements. For our purposes,

we need to know where an element moved in the reversed list. rev reverses a list re-

cursively by appending the first element to the end. With that in mind, the theorem

distance-moved verifies that the element appended to the end of a list xs is at an

index equal to the length of xs.

1 (defthm distance-moved

2 (implies

3 (and (consp xs)

4 (atom y))

5 (equal (nth (len xs) (append xs (list y)))

6 y)))

The length of a list and the length of its reverse are the same. Therefore, when

distance-moved is combined with the definition of rev, it states that an element

moves the length of the remaining elements in the list. ACL2 mechanically com-

bines the theorem and definition during proof attempts to verify both lemmas re-

quired by the proof sketch. Figure 3.6 shows both ACL2 theorems. The theo-

rems sbe-to-nat-is-sle-nat and sbe-add-is-sle-add correspond to the nodes

34

1 (defthm sbe-to-nat-is-sle-to-nat

2 (implies (and (jint-listp xs)

3 (<= i (len xs)))

4 (equal (sbe-to-nat-i xs i)

5 (sle-to-nat-i (rev xs) i))))

6

7 (defthm sbe-add-is-sle-add

8 (implies

9 (and (jint-listp xs)

10 (jint-listp ys)

11 (carry-p carry)

12 (<= xi (len xs))

13 (<= yi (len ys)))

14 (equal

15 (sbe-add-i xs ys carry xi yi)

16 (rev (sle-add-i (rev xs) (rev ys) carry xi yi)))))

Figure 3.6: Relationship between Big- and Little-Endian Representations

ρ(xb) = xs and ηb(xb + yb) = ηs(ρ(xb) + ρ(yb)), respectively.

Once the indexed versions of sbe-add and sle-add are equated, the functions

sbe-add-w and sle-add-w are written to wrap the definitions and explicitly initialize

the indexes to the lengths of the lists. All of the theorems in this chapter guide ACL2

to accept the theorem sbe-add-w-works.

1 (defthm sbe-add-w-works

2 (implies

3 (and (jint-listp xs)

4 (jint-listp ys)

5 (carry-p carry))

6 (equal (sbe-to-nat-w (sbe-add-w xs ys carry))

7 (+ (sbe-to-nat-w xs)

8 (sbe-to-nat-w ys)

9 carry))))

The theorem sbe-add-w-works is an ACL2 artifact that verifies that a model of

BigInteger’s add specification correctly adds bignums. The theorem corresponds to

the top node in the proof sketch.

35

3.6 Summary

The code in this chapter implements an ACL2 model of the algorithm used to perform

addition in Java’s BigInteger class, which is the basis for Clojure’s bignums. The

theorems presented verify that the addition algorithm correctly implements bignum

addition. The layered approach to the verification began with a proof of a simpler

representation of bignums and added additional complexity one component at a time.

The same approach can be applied to the remaining arithmetic operations that are

implemented in BigInteger to complete a bignum arithmetic library based on its

specific representation.

By modeling Clojure’s versions of bignums in ACL2, existing proof libraries can

be more easily applied to industrial software without sacrificing the accuracy of the

model. However, Clojure also supports the use of Java’s primitive number types.

The primitive types are more efficient to store in memory so the use of bignums,

even in Clojure, may not be common. Despite possibly limited use, the verification of

bignums is still significant because many cryptography libraries operate on arbitrarily

large numbers and security software is an important domain for formal verification

(Denis & Rose, 2006).

The verified code in this chapter is a model built from an inspection of Java code.

Beginning in the next chapter, the remainder of the dissertation considers a deeper

analysis of Java code. Instead of building a model from inspection, a model of the

JVM is constructed in ACL2. The JVM model can then be used to simulate the

execution of Java bytecode.

36

Chapter 4

The Java Virtual Machine Model

Software is an abstraction that directs the execution of a hardware system. Applica-

tions are a single layer of software that sits atop many others. Each piece of software,

and the underlying hardware, all affect the execution of the application. Therefore, a

formal analysis of a system must decide what layers to model and how precisely the

model reflects the system.

Early research focused on building models of hardware to reason about the com-

piled machine code of software. Boyer & Yu (1996) formalizes a significant portion of

the Motorola MC68020 processor and gives a rationale for reasoning about programs

at the machine code level, which includes the points that (1) the semantics of the

machine are what determine the run-time behavior of a program and (2) hardware

is generally defined with more formal semantics than programming languages. The

Java Virtual Machine (JVM) is a higher level abstraction than hardware but it does

have a well-defined semantics (Lindholm et al., 2013) that describe the run-time exe-

cution of software. The JVM has two additional benefits to verification compared to

hardware. First, the JVM specifies a format for valid programs that is more struc-

tured than required by hardware. Second, the use of memory — including format of

objects, storage, and access — are defined by the JVM and enforced by the semantics

of the instructions. For these reasons, the JVM and code that runs on it have been

extensively studied.

The JVM has been studied in ACL2 through a series of six JVM models, named

M1 through M6. Of the six models, three have been featured in the literature. The

37

earliest version, M1, only implements 17 instructions but it was used to demonstrate

that the JVM code of a Java method could be mapped to an ACL2 function (Moore,

1999). M5, which is the next model featured in publication, is a significantly more

sophisticated model that implements 138 instructions. M5 has been used to analyze

a non-terminating, multithreaded Java program (Moore & Porter, 2002). The final

model in the series, M6, is sufficiently sophisticated to reason about properties of

the JVM including class initialization (Liu & Moore, 2003) and the bytecode verifier

(Liu, 2006). We introduce a new ACL2 model of the JVM that is targeted towards

the verification of bytecode programs generated from Clojure source code.

The model is named MC for model of Clojure. MC is a modification of M5 that

adds additional features to support the verification of Clojure programs. Clojure uses

interfaces, which are not supported in M5, to check types and invoke methods. MC

adds two new instructions and extends the implementation of a third to add support

for interfaces. M5 is modified instead of the newer, more sophisticated M6 because

M5 is the most sophisticated model that is publicly available through the ACL2

community books (Moore & Porter, 2001). M6 has still influenced the development

of MC. For example, support for invoking native methods is added to MC based on

the implementation in M6. Also, this research project verifies programs that require

reasoning about more interacting classes than the examples that have been published

for the M1 through M5 models. Since M6 was used to verify properties of the JVM

rather than JVM programs, Liu & Moore (2004) formalized abstract properties of

the JVM as rewrite rules in ACL2 to reduce the complexity of later proofs. This

dissertation formalizes several similar properties, beginning in this chapter with the

introduction of our big-step semantics that is used to abstract the execution of method

calls.

The ACL2 JVM models implement the semantics as transition functions that each

perform a single JVM instruction. The models can be used to reason about programs

38

naturally using small-step semantics by simulating execution of the model. On the

other hand, big-step semantics, which define transitions that encompass many JVM

instructions, are easier to use in the verification of large systems because each step

covers more logic. The Clojure core library is a large system. Even though this dis-

sertation only verifies the portions of Clojure related to sequences, the verification

still requires the analysis of several interconnected classes. In this dissertation, meth-

ods are verified initially using small-step semantics, but the resulting theorems are

applied as big-steps. In addition to defining MC, this chapter explains how methods

are invoked in MC and how methods are verified to apply as big-steps.

4.1 Structures

The state is a call stack, a heap, and a class table that binds class names to class

declarations. The heap is represented as a list of integer addresses mapped to instance

objects, where instance objects specify the class name of the instance and its fields’

values as well as any parent classes and fields. References are stored as (REF i) and

dereferenced by selecting the heap object at the i -th address. The call stack is a list

of frames where the currently executing frame is at the top. A frame has a program

counter, the list of local objects, the operand stack, a set of instructions, and the

name of the current class.

Class declarations define the name, list of superclasses, list of implemented inter-

faces, member and static fields, constant pool, and list of methods. Identically to

M5, MC defines a function to access each element in a declaration. MC also adds an

abstraction layer to the access functions for the list of superclasses and interfaces in

the form of a function that retrieves a class declaration by name from a class-table.

1 (defun class-decl-superclasses (dcl)

2 (nth 1 dcl))

39

1 (defun class-superclasses (class-name class-table)

2 (class-decl-superclasses

3 (bound? class-name class-table)))

This abstraction layer is combined with class loading predicates to restrict information

ACL2 actively considers at each subgoal.

Each method is a name, list of parameters, flag that identifies whether the method

is native or not, and list of instructions that comprise the method program. The

constant pool of a Java .class file contains a lot of information including data to look

up methods and class declarations. MC stores the method and class information

directly in the instructions. The simplified constant pool of an MC class declaration

only stores references to constant values.

MC implements 138 JVM 7 instructions, but does not implement instructions

that throw exceptions or operate on floats or doubles. A Java primitive integer is

represented as an ACL2 integer, and a Java primitive long is represented as a 0

followed by an ACL2 integer. As an example, the ALOAD instruction copies a value

from the locals onto the stack. The instruction is represented as a list (ALOAD i) in a

program. The execute-ALOAD function will modify state s by updating the program

counter pc and pushing onto the stack the value in the i -th location.

1 (defun execute-ALOAD (inst s)

2 (modify

3 s

4 :pc (+ (inst-length inst) (pc (top-frame s)))

5 :stack (push (nth (arg1 inst)

6 (locals (top-frame s)))

7 (stack (top-frame s)))))

MC adds support for interfaces which requires extending execute-INSTANCEOF to

check the interface list of the class of an instance object. The function class-types

appends the instance’s class name, its list of parent classes, and its interfaces into a

single list. The instance-of logic is separated from execute-INSTANCEOF into its

40

own function that searches the list of class types for the desired type.

1 (defun class-types (class-name class-table)

2 (let*

3 ((obj-supers

4 (cons class-name

5 (class-superclasses class-name

6 class-table))))

7 (append obj-supers

8 (class-interfaces class-name

9 class-table))))

10

11 (defun instance-of (type ref heap class-table)

12 (let*

13 ((obj (deref ref heap))

14 (obj-class (caar obj))

15 (obj-types (class-types obj-class

16 class-table)))

17 (if (nullrefp ref)

18 0

19 (if (member-equal type obj-types)

20 1

21 0))))

The execute-INSTANCEOF function pushes the result onto the stack and modifies the

state.

1 (defun execute-INSTANCEOF (inst s)

2 (let* ((ref (top (stack (top-frame s)))))

3 (modify

4 s

5 :pc (+ (inst-length inst) (pc (top-frame s)))

6 :stack (push (instance-of (arg1 inst)

7 ref

8 (heap s)

9 (class-table s))

10 (pop (stack (top-frame s)))))))

41

4.2 Method Invocation

Each method executes within its own frame. When the JVM encounters an invoke in-

struction, a new frame is created containing the method’s program, an empty operand

stack, and a program counter set to index 0. For each parameter of the method, the

calling frame pops an object off its operand stack and pushes it onto the new frame’s

locals. The parameters in the calling frame are in reverse order to the method sig-

nature so that the order of the locals match the order of the signature. When an

instance method is invoked, a reference to the instance is pushed onto the top of the

locals.

The JVM Specification defines four invocation instructions:

� invokestatic calls a static method,

� invokeinterface calls an interface method,

� invokevirtual calls an instance method

� invokespecial calls a constructor, superclass method, or private method

The bytecode format in the JVM is INVOKESTATIC index-byte1 index-byte2,

except for INVOKEINTERFACE. The index-bytes are combined to form a integer

index into the class’s constant pool that should resolve to a method reference. The

method reference is resolved to find the number of parameters and corresponding

program code. The INVOKEINTERFACE instruction is similar, but has two ad-

ditional legacy bytes to each instruction that do not change its behavior but do

change its instruction length. The invoke instructions are modeled in MC as (invoke*

"method-name" "object-name" param-count). For INVOKEINTERFACE, the ob-

ject name is the interface; otherwise, it is a class name. The parameter count indicates

how many values to push onto the locals, so each long parameter must increment the

count by two to account for the 2-value representation.

42

The general lookup procedure is to check the class definition of the invoked class

for a method that matches the instruction parameters. If a method is not found,

the class’s immediate parent is checked and the process is repeated until a matching

method is found or no more parent classes exist.

1 (defun lookup-method-in-superclasses (name

2 classes

3 class-table)

4 (cond

5 ((endp classes) nil)

6 (t

7 (let*

8 ((class-name (car classes))

9 (class-decl (bound? class-name

10 class-table))

11 (method

12 (bound? name

13 (class-decl-methods class-decl))))

14 (if method

15 method

16 (lookup-method-in-superclasses

17 name

18 (cdr classes)

19 class-table))))))

20

21 (defun lookup-method (name class-name class-table)

22 (lookup-method-in-superclasses

23 name

24 (cons class-name

25 (class-decl-superclasses

26 (bound? class-name class-table)))

27 class-table))

The function lookup-method searches through the class-table for a method name

in a base class named class-name. The function constructs a list of class names con-

taining class-name and the class’s parents. The lookup-method-in-superclasses

function finds the applicable method by recursively checking the declarations of each

class in the list of class names. The base class-name used to look up a method differs

slightly depending on the invocation being executed. The instructions INVOKEIN-

43

TERFACE and INVOKEVIRTUAL invoke methods based on the class of the instance

of the method that is invoked, whereas INVOKESPECIAL and INVOKESTATIC

specify the base class to begin the lookup procedure.

Java supports native methods, which are interfaces to code that run outside of the

JVM. M5 represents native methods as a method with a nil program but does not

implement native invocation. M6, the immediate successor to M5, implements native

invocation as a lookup table for a set of native method names. Each method name in

the table is mapped to a ACL2 function that modifies the state consistently with the

behavior of the native method. MC implements the function execute-native based

on the M6 implementation.

The function execute-INVOKEINTERFACE is described in detail as an example.

1 (defun execute-INVOKEINTERFACE (inst s)

2 (let*

3 ((method-name (arg2 inst))

4 (nformals (arg3 inst))

5 (obj-ref

6 (top (popn nformals (stack (top-frame s)))))

7 (obj-class-name

8 (class-name-of-ref obj-ref (heap s)))

9 (closest-method

10 (lookup-method method-name

11 obj-class-name

12 (class-table s)))

13 (prog (method-program closest-method))

14 (s1 (modify s

15 :pc

16 (+ (inst-length inst)

17 (pc (top-frame s)))

18 :stack

19 (popn (+ nformals 1)

20 (stack (top-frame s))))))

21 (modify

22 s1

23 :call-stack

24 (push

25 (make-frame

26 0

44

27 (reverse

28 (bind-formals (+ nformals 1)

29 (stack (top-frame s))))

30 nil

31 prog

32 (arg1 inst))

33 (call-stack s1)))))

Lines 5 through 13 retrieve the class name of the instance the instruction is operating

on and initiates the method lookup procedure on that class name. Lines 14—20

increment the pc of the calling frame and remove the formals from the stack prior to

pushing the new frame on top. Lines 21—33 construct a new frame and push it onto

the call stack of the existing state. The other invocation instructions are similar.

A method terminates once it reaches a return instruction. MC supports four of

the JVM return instructions. RETURN instructions terminate methods that do not

return a value. They pop the frame off of the call stack. The instructions IRETURN,

LRETURN, and ARETURN return values of type integer, long, and reference. Each

one retrieves the top element off the returning method’s stack, pops the frame off

of the call stack, and pushes the element onto the stack of the next frame. The

execute-ARETURN function shows one of the return implementations.

1 (defun execute-ARETURN (inst s)

2 (declare (ignore inst))

3 (let* ((val (top (stack (top-frame s))))

4 (s1 (modify s

5 :call-stack (pop (call-stack s)))))

6 (modify s1

7 :stack (push val (stack (top-frame s1))))))

4.3 Stepping the Machine

When verifying properties of a method in Java, we simulate the machine as it steps

from the invocation of the method to the eventual return. In past work, clock func-

tions have been used that calculate the number of steps necessary to terminate. Clock

45

functions require knowledge of the state to calculate the number of steps an execution

will take, which complicates the use of any theorems as lemmas. Consider a method

m1 that calls a method m2 and both methods have a corresponding mn-clock func-

tion. The m1-clock must be aware of the m2-clock as well as any changes to the state

prior to the m2 call. The logic of the clocks will increase in complexity as fast as the

programs, which will either make reasoning about the programs impossible or require

effort introducing lemmas to ACL2 to reason about the clocks. What we need is a

notion of a big-step that can be used to configure effective rewrite rules in ACL2.

ACL2 is a logic of total functions but it can be used to build theories about partial

functions. To do so, one defines a witness where the witness is a total function that has

the desired properties. The desired properties are configured as theorems in ACL2.

The witness and the theorems are defined in ACL2 within an encapsulation event

but only the theorems are exported. Manolios & Moore (2003) demonstrate that tail

recursive partial functions are always able to be witnessed and create the defpun

macro in ACL2 to quickly define partial functions. Like Manolios and Moore, we are

only interested in programs that terminate so we borrow their halting predicate and

big-step function.

1 (defun haltedp (s)

2 (equal (step s) s))

3

4 (defpun big-step (s)

5 (if (haltedp s)

6 s

7 (big-step (step s))))

The machine does not need to terminate even though the program must. If a machine

runs to state sn then executes method program p that terminates at sn+1, the proper-

ties of method program p hold for the transition from sn to sn+1 regardless of whether

or not the machine continues running after sn+1. The benefit of this intuition is that

we do not need to prove termination to reason about it. Instead, we verify properties

46

hold on a machine by showing that big-stepping s1 is equivalent to big-stepping s2.

Manolios & Moore (2003) implemented this concept as a function ==, but we found

using the macro resulted in more successful rewrite rules. The equivalence relation

between s1 and s2 is symmetric, but it is intended to be used in theorems to generate

ACL2 rewrite rules, which are triggered by the terms in the left-hand side of the

conclusion. Therefore, we name the macro -> to imply a convention that s1 is an

earlier state in the execution than s2. The -> macro is shown here,

1 (defmacro -> (s1 s2)

2 `(equal (big-step ,s1)

3 (big-step ,s2)))

If a machine is proven to terminate, the big-step can be eliminated. The theorem

big-step-halts-all states that if s2 halts, so does s1.

1 (defthmd big-step-halts-all

2 (implies (and (haltedp (big-step s2))

3 (-> s1 s2))

4 (haltedp (big-step s1))))

The theorem halting-is-s eliminates the big-step term from a halted state.

1 (defthmd halting-is-s

2 (implies (haltedp s)

3 (equal (big-step s) s)))

ACL2 does not rewrite (big-step s) to (big-step (step s)) naturally, which

we need it to do. When enabled, the following theorem big-step-opener-infinite

will rewrite instances of (big-step s) until it reaches the maximum call depth for

ACL2’s theorem prover.

1 (defthmd big-step-opener-infinite

2 (equal (big-step s) (big-step (step s))))

It is introduced to ACL2 using defthmd, which immediately disables the rewrite rule

associated with the theorem. big-step-opener-infinite is an expensive theorem

47

because it is triggered by the term big-step and equates to a term that contains

big-step. Therefore, the rule needs to be weakened with a hypothesis that eventually

falsifies so that the proof does not apply big-step indefinitely. Since the machine

must at least consider every instruction is the code being verified, ideally, we want

ACL2 to step the program as long as it knows what the next step is. To do just that,

we define a predicate inst-known-p that recognizes all instructions that have been

implemented in MC.

1 (defun inst-known-p (s)

2 (let* ((inst (next-inst s))

3 (op (op-code inst)))

4 (or (equal op 'AALOAD)

5 ... All other instructions ...

6 (equal op 'SWAP))))

The theorem big-step-opener weakens the theorem big-step-opener-infinite

to only apply when the next instruction is known.

1 (defthm big-step-opener

2 (implies (inst-known-p s)

3 (equal (big-step s) (big-step (step s))))

4 :hints (("Goal" :use big-step-opener-infinite)))

MC admits to ACL2 theorems that describe the behavior of a single instruction

being stepped, which is consistent with the example from Manolios & Moore (2003).

For example, here is a theorem that big-steps a program poised to execute ALOAD 0.

1 (defthm ->- execute-ALOAD

2 (implies

3 (equal (next-inst s) '(ALOAD_0))

4 (-> s

5 (modify s

6 :pc (+ 1 (pc (top-frame s)))

7 :stack

8 (push (nth 0

9 (locals (top-frame s)))

10 (stack (top-frame s)))))))

48

Most of these theorems are simple to construct but save ACL2 the work of applying

rules for do-inst, execute-*, and inst-length at each step.

4.4 Summary

MC defines the formal semantics of our deep embedding of the JVM into ACL2. A

deep embedding also requires that programs written in the embedded language be

represented as objects in the logic. A basic structure of programs is described in this

chapter. The basic structure has been sufficient for all of the previously published

examples that use any of the models in the ACL2 series. However, the systems

analyzed in this dissertation are larger in terms of the number of interacting classes

and the length of the call stacks. Liu (2006) concluded from using M6 that a more

robust class representation would be beneficial. In the next chapter, an abstraction

layer is introduced to simplify some of the complexity required to reason about classes

in MC.

49

Chapter 5

Java Class Models

In Java, the class defines both the code and the structure of instances. MC supports

a basic class declaration that mimics the format of the files that a traditional JVM

reads. The declarations are used to load code into a new frame and to create instances

that are stored in the heap. The basic declaration structure, which is comparable to

the structures used in M5 and M6, is sufficient for verifying small projects (Moore

& Porter, 2002; Moore, 2003, 2006). However, when relying on the basic format, the

ability to reason about a system in MC scales poorly with the number of classes in

the system, which is consistent with results for a similar model (Liu, 2006). To reason

about any Clojure program requires the consideration of several classes because every

Clojure function generates a new class, including the functions defined in the Clojure

core library. For MC to be applicable to reasoning about Clojure, it must be capable

of scaling efficiently. Based on the verification of a bytecode verifier in M6, Liu

(2006) suggests large verification projects should (1) organize the proofs into groups

that limit the information that is exposed outside of the group and (2) “identify

an effective strategy” to define and set up new data structures. We identify such a

strategy in the form of an abstraction layer on top of the basic class declaration that

hides information from the ACL2 logic except at key points during proof attempts.

The abstraction layer is described in this chapter as a set of functions and theorems

that will be defined for every class to simplify the common access patterns of the

internal structure of a declaration.

50

5.1 Structure of the Class Declaration

A class declaration is responsible for defining its dependencies, the structure of objects

of that class, and the access to its methods. For each of these responsibilities for each

class, we define convenience functions to identify the properties explicitly by name.

Theorems are introduced into ACL2 to rewrite those convenience functions to base

unit components that MC instructions access. The benefit of this process is two-fold.

First, the theorems written using the convenience functions reference the components

and concepts by name, making the theorems more intuitive to read and write. Second,

by rewriting only the base unit components for an operation, the ACL2 output is much

easier to read. In this chapter, we will build the book for Clojure’s PersistentList

class to demonstrate.

PersistentList is a class in the Java portion of the Clojure core library and it

is written in an Object Oriented fashion. The components in the abstraction layer

apply to any Java class, but certain components are specifically emphasized because

of the structure of classes that are generated by Clojure functions. Clojure uses

static fields and interfaces extensively so the abstraction simplifies accessing static

fields, identifying the interface types of instances, and invoking interface methods.

PersistentList, despite falling on the pure Java side of the Clojure implementation,

does use a static field and implements interfaces.

The PersistentList declaration in MC is shown in Figure 5.1. In addition to

the static field EMPTY, PersistentList has three member fields first, rest, and

count. It implements a constructor and three accessor methods for its three member

fields.

The symbols for the class functions follow a naming convention. The names are

prefixed with the name of the class within |’s. If the function accesses an element of

the class, it is included in the prefix after a “:”, so a function describing the method

51

1 (defconst *clojure.lang.PersistentList*

2 (make-class-decl

3 ; class name

4 "clojure.lang.PersistentList"

5 ; Parent Classes

6 '("clojure.lang.ASeq"

7 "clojure.lang.Obj"

8 "java.lang.Object")

9 ; Interfaces

10 '(

11 ; PersistentList Interfaces

12 "clojure.lang.IPersistentList"

13 "clojure.lang.IReduce"

14 "clojure.lang.List"

15 "clojure.lang.Counted"

16 ; ASeq Interfaces

17 "clojure.lang.ISeq"

18 "clojure.lang.Sequential"

19 "java.util.List"

20 "java.io.Serializable"

21 "clojure.lang.IHashEq"

22)

23 '("_first"

24 "_rest"

25 "_count")

26 '("EMPTY")

27 '()

28

29 (list

30 *clojure.lang.PersistentList- <init >*

31 *clojure.lang.PersistentList-first*

32 *clojure.lang.PersistentList-next*

33 *clojure.lang.PersistentList-count*

34)

35 '(REF -1)))

Figure 5.1: PersistentList MC Declaration

52

run in class App would be prefixed with |App:run|. The prefix is followed by a “-” and

a description of the operation. The naming convention of the specific operations is

self-evident. Long class names are abbreviated in prefixes that also contain a method

or field. For example, the function that accesses the EMPTY field in PersistentList

is abbreviated |PL:EMPTY|.

5.2 Static Fields

Except in situations that require interfacing directly with Java, Clojure functions are

the composition of other functions. The other functions are function dependencies to

the definition. When the definition is compiled, the resulting class stores references

to the function dependencies as static fields. During the execution of the function,

the dependencies are loaded into a frame using the GETSTATIC instruction and

invoked upon. When verifying a function, it is necessary to configure its dependencies.

Therefore, accessor functions are defined for each static field in a class that allow

referencing the fields by name. Theorems are verified for each accessor that guarantee

the correct static field is loaded onto the operand stack of the current frame.

PersistentList has a single static field EMPTY of type EmptyList, which is a

sequence object that evaluates to null. EMPTY is returned by sequence operations that

return empty. EMPTY is constructed when the class declaration is loaded. We define

an accessor function to get EMPTY’s value from the heap.

1 (defun |PL:EMPTY|-get (heap class-table)

2 (static-field-value

3 "clojure.lang.PersistentList"

4 "EMPTY"

5 heap

6 class-table))

For the theorems written using the accessor to be reused as lemmas, ACL2 must

know to introduce the term while stepping through a machine state. We construct a

53

theorem that will add the term when the field is accessed. The EMPTY field is accessed

by the GETSTATIC instruction. We define a poised function that recognizes system

states that are poised to execute GETSTATIC to access EMPTY on its next instruction.

1 (defun |PersistentList:EMPTY|- poised (s)

2 (equal

3 (next-inst s)

4 '(GETSTATIC "clojure.lang.PersistentList"

5 "EMPTY"

6 NIL)))

The theorem PersistentList-EMPTY-is-EMPTY adds the term |PL:EMPTY|-get to

the resulting state.

1 (defthm PersistentList-EMPTY-is-EMPTY

2 (implies

3 (|PL:EMPTY|- poised s)

4 (-> s

5 (modify

6 s

7 :pc (+ 3 (pc (top-frame s)))

8 :stack

9 (push

10 (|PL:EMPTY|-get (heap s)

11 (class-table s))

12 (stack (top-frame s)))))))

With this theorem, future theorems about code that uses PersistentList can be

configured to specify the instance stored in the EMPTY field using the |PL:EMPTY|-get

function.

5.3 Loading and Dependencies

The first step to reasoning about a snippet of bytecode is stating that the code is

loaded. For each class that is simulated in our model, we define a loaded? predicate

that confirms the class table of a state contains the declaration and its dependencies.

PersistentList extends ASeq and has a static field of type EmptyList so its loaded?

54

function confirms both of those classes are also loaded.

1 (defun |PersistentList |- loaded? (s)

2 (and

3 (|ASeq|- loaded? s)

4 (| EmptyList |- loaded? s)

5 (loaded? s

6 "clojure.lang.PersistentList"

7 *clojure.lang.PersistentList *)

8 (| EmptyList |-p

9 (|PL:EMPTY|-get (heap s)

10 (class-table s))

11 (heap s))))

The function |EmptyList|-p recognizes EmptyList instances. Instances are described

in more detail in Section 5.4. For now, it is important to note that the JVM executes

the code that initializes the static members. The loaded? function ensures that the

class exists in the state that occurs after the class is loaded in the JVM.

The loaded? predicate is not recursive, so ACL2 expands the definition during

simplification of a theorem, which causes a significant usability problem. When the

definition is expanded, the constant *clojure.lang.PersistentList* is also ex-

panded to show the entire class declaration in the ACL2 output. For systems with

multiple classes containing many methods, each subgoal becomes several pages long,

making it difficult to find relevant information indicating why theorems do not suc-

ceed. The key to solving this issue is disabling |PersistentList|-loaded?, but doing

so hides relevant information from ACL2. We solve the issue by admitting theorems to

ACL2 that introduce specific information from the loaded? predicate. For example,

we want ACL2 to know that if PersistentList is loaded, that PersistentList’s

dependencies are also loaded.

1 (defthm |PersistentList |-dep

2 (implies (| PersistentList |- loaded? s)

3 (and (|ASeq|- loaded? s)

4 (| EmptyList |- loaded? s)))

5 :rule-classes :forward-chaining)

55

This rule is admitted as a forward chaining rule. Forward chaining rules do not add

terms to the goal, but rather add the information to a context that ACL2 assumes

during a proof attempt. Once all of the abstraction layer components described in

this chapter are defined for a class declaration, the loaded? predicate for the class is

disabled. At that point, proof attempts in ACL2 rely on the forward chaining rules

and the remaining components to introduce class information to the logic.

5.4 Class Instances

MC stores instances as a list of class structure data. The class structure data is the

class name followed by a list of fields. Each field is a pair containing a name and the

field’s value. The instance is ordered from the most derived class structure data to its

earliest parent, which is always java.lang.Object. The instance type is the class’s

most derived class, so the class name is the caar of the instance.

1 (defun j-instance-classname (instance)

2 (caar instance))

3

4 (defun j-type-p (class ref heap)

5 (let* ((instance (deref ref heap))

6 (class-name (j-instance-classname instance)))

7 (equal class-name class)))

8

9 (defun |PersistentList |-p (ref heap)

10 (and (not (nullrefp ref))

11 (j-type-p "clojure.lang.PersistentList"

12 ref

13 heap)))

The type of an instance effects control flow. Based on the instance type, the

INVOKEINTERFACE and INVOKEVIRTUAL instructions load methods and the

INSTANCEOF instruction branches. Both cases require MC to know a class’s par-

ents and the interfaces it implements. Once the loaded? predicate is disabled, neither

will be visible to ACL2 so we need to define rewrite rules that introduce the informa-

56

1 (defthm |PersistentList |- superclasses

2 (implies

3 (| PersistentList |- loaded? s)

4 (equal

5 (class-superclasses "clojure.lang.PersistentList"

6 (class-table s))

7 (list "clojure.lang.ASeq"

8 "clojure.lang.Obj"

9 "java.lang.Object"))))

10

11 (defthm |PersistentList |- interfaces

12 (implies

13 (| PersistentList |- loaded? s)

14 (equal

15 (class-interfaces "clojure.lang.PersistentList"

16 (class-table s))

17 (list "clojure.lang.IPersistentList"

18 "clojure.lang.IReduce"

19 "clojure.lang.List"

20 "clojure.lang.Counted"

21 "clojure.lang.ISeq"

22 "clojure.lang.Sequential"

23 "java.util.List"

24 "java.io.Serializable"

25 "clojure.lang.IHashEq"))))

Figure 5.2: PersistentList Superclasses and Interfaces

tion. The |PersistentList|-superclasses and |PersistentList|-interfaces

theorems, which are shown in Figure 5.2, rewrite the superclass and interface lookup

functions in MC for instances of type PersistentList.

The INSTANCEOF instruction leads to an immediate branching decision. By

default, ACL2 splits branches into two subgoals and attempts to verify both. This

will almost always fail because one branch is expecting a different instance type.

ACL2 frequently realizes that one of the branches is not relevant, but as a practice,

we verify the behavior of the INSTANCEOF instruction explicitly. The following

theorem confirms that a PersistentList instance is an ASeq.

57

1 (defthm PersistentList-instanceof-ASeq

2 (implies

3 (and (| PersistentList |- loaded? s)

4 (equal ref (top (stack (top-frame s))))

5 (| PersistentList |-p ref (heap s))

6 (equal (next-inst s)

7 '(INSTANCEOF "clojure.lang.ASeq")))

8 (equal (step s)

9 (modify s

10 :pc (+ 3 (pc (top-frame s)))

11 :stack

12 (push 1

13 (pop (stack (top-frame s))))))))

We also define accessors for the instance fields that are stored in the class data

structure. These are similar to the static field accessors, but operate on a instance

rather than the loaded class declaration. For each field in a class, accessor functions

are defined to get and set the field values. For example, the PersistentList class has

a first field. The functions to get and set the value of first on a PersistentList

object are:

1 (defun |PersistentList:_first |-get (ref heap)

2 (let* ((instance (deref ref heap)))

3 (field-value "clojure.lang.PersistentList"

4 "_first"

5 instance)))

6

7 (defun |PersistentList:_first |-set (instance value)

8 (set-instance-field "clojure.lang.PersistentList"

9 "_first"

10 value

11 instance))

The get function for instance fields is used to configure theorems in the same way as

the static field get functions. However, unlike static fields, instance fields in Clojure

programs may be set or modified during execution. The set function abstracts that

modification so that the theorem’s configuration can be updated by MC during a

proof attempt.

58

5.5 Method Lookup

The methods in the declaration are defined as individual constants. Theorems are

introduced into ACL2 that rewrite calls to the lookup procedure for the method into

the method constant. Recall from Section 4.2 that the lookup procedure is a two

function process. The top-level function lookup-method constructs a list of class

names containing the name of the base class and all of its children. The bottom-level

function lookup-method-in-superclasses iterates over the list searching for the

method in each class. For methods invoked by the instructions INVOKESTATIC or

INVOKESPECIAL, it is acceptable to write the theorem to rewrite instances of the

top-level lookup function because the method is called on a specific class name. The

PersistentList constructor is always invoked by INVOKESPECIAL, so its method

lookup theorem is

1 (defthm |PersistentList:<init >|- method

2 (implies

3 (| PersistentList |- loaded? s)

4 (equal (lookup-method "<init >"

5 "clojure.lang.PersistentList"

6 (class-table s))

7 *clojure.lang.PersistentList- <init >*)))

Methods that are invoked by the INVOKEINTERFACE or INVOKEVIRTUAL

instructions will not be found if the theorem rewrites the top-level function because

those instructions do not specify an exact class name. For example, if a child class

extends PersistentList and a PersistentList method is invoked on an object

of the child, lookup-method will be evaluated on the class name of the child. In

this case, the rewrite rule would not match and ACL2 would not apply it to the

term. Instead, these methods are found using theorems that rewrite the bottom-

level function lookup-method-in-superclasses. PersistentList’s first method

is run by executing INVOKEINTERFACE on ISeq, so an example of a theorem that

59

rewrites the bottom-level function is shown using it.

1 (defthm |PersistentList:first|- method

2 (implies

3 (and (| PersistentList |- loaded? s)

4 (equal (car classes)

5 "clojure.lang.PersistentList"))

6 (equal (lookup-method-in-superclasses "first"

7 classes

8 (class-table s))

9 *clojure.lang.PersistentList-first *)))

PersistentList’s first method is just an accessor to the first field. As shown

in the previous section, the abstraction layer defines ACL2 accessor functions for all

fields in a class declaration to simplify the configuration of theorems. Since first

is an accessor to a field with an ACL2 accessor, we verify that executing the first

method on an instance behaves identically to executing the |PL: first|-get on a

reference to the instance. The poised function |PL:first|-poised specifies that the

state s is poised to invoke the first method.

1 (defthm |PL:first|= _first

2 (implies

3 (and (| PersistentList |- loaded? s)

4 (|PL:first|- poised s))

5 (-> s

6 (modify

7 s

8 :pc (+ 5 (pc (top-frame s)))

9 :stack

10 (push

11 (|PL:_first |-get (top (stack (top-frame s)))

12 (heap s))

13 (pop (stack (top-frame s))))))))

The theorem verifies that a system executing the first method pushes the instance’s

value of first, as defined by the ACL2 accessor function, onto the stack.

60

5.6 Constructors

The JVM separates the construction of an instance into two steps. The first step

allocates an empty object on the heap. This step is issued on the JVM with the

NEW instruction. The second step invokes the class’s constructor to execute the

initialization logic. This step is issued on the JVM with the INVOKESPECIAL

instruction. The function |PersistentList|-new models the NEW instruction.

1 (defun |PersistentList |-new ()

2 (build-an-instance

3 (list "clojure.lang.PersistentList"

4 "clojure.lang.ASeq"

5 "clojure.lang.Obj"

6 "java.lang.Object")

7 (make-class-def

8 (list *clojure.lang.Obj*

9 *clojure.lang.ASeq*

10 *clojure.lang.PersistentList *))))

The NEW instruction allocates a new reference from the heap and adds the refer-

ence to the stack. The theorem new-PL-creates-new-PL shows the heap allocating

a reference by executing NEW in lines 10 through 12. MC only adds elements to the

heap, so the allocation is to the next index as determined by the length of the current

heap. The lines 8 and 9 show the reference being returned.

1 (defthm new-PL-creates-new-PL

2 (implies

3 (and (poised-to-new s "clojure.lang.PersistentList")

4 (| PersistentList |- loaded? s))

5 (-> s

6 (modify s

7 :pc (+ 3 (pc (top-frame s)))

8 :stack (push (list 'REF (len (heap s)))

9 (stack (top-frame s)))

10 :heap (bind (len (heap s))

11 (| PersistentList |-new)

12 (heap s))))))

61

The second step of the initialization executes the <init> method.

1 (defthm |PL:init|- initializes

2 (implies

3 (and (| PersistentList |- loaded? (class-table s)

4 (heap s))

5 (|PL:<init >|- poised s)

6 (equal (deref (top (pop (stack (top-frame s))))

7 (heap s))

8 (| PersistentList |-new)))

9 (-> s

10 (modify

11 s

12 :pc (+ 3 (pc (top-frame s)))

13 :stack (popn 2 (stack (top-frame s)))

14 :heap

15 (bind (cadr (top (pop (stack (top-frame s)))))

16 (| PersistentList |-init

17 (deref (top (pop (stack (top-frame s))))

18 (heap s))

19 (top (stack (top-frame s))))

20 (heap s))))))

In the programs analyzed in this dissertation, the static field values are only set

once during class loading. MC is not used to reason about the JVM’s class loading

behavior, so the static fields are specified in the loaded? predicates for each class.

For example, the loaded? predicate for PersistentList specifies the value of EMPTY

after the class declaration is loaded. If the values defined by loaded? are not valid,

the proofs that depend on the static fields would also be invalid. The specified value

for the static field EMPTY is justifiable, though. The EmptyList class declaration

is created using the same paradigm for class development that is described in this

chapter. It includes the constructor functions and corresponding proofs that verify

that new objects are allocated correctly.

62

5.7 Summary

In Java, classes are responsible for defining the storage of static and instance fields,

referencing class dependencies and methods, and defining the structure of instances

of the class. In short, the behavior of a Java program is almost entirely defined by the

set of class declarations in the program. Previous results have indicated a need for

applying higher-level abstractions to class declarations in a JVM model when reason-

ing about large programs (Liu, 2006). In this chapter, each of the responsibilities of

a class was separated into specific functions for the responsibility and theorems were

verified that enable ACL2 to execute the responsibility independent of the rest of the

declaration. In addition to the generic needs of Java programs, additional emphasis

was added to abstracting the access of static fields and referencing a class’s interfaces

because most compiled Clojure functions use both features.

All class declarations that are reasoned about in this dissertation have been struc-

tured using the abstractions presented in this chapter. Two of the theorems verified

in this chapter, |PL:first|= first and |PL:init|-initializes, are examples of

the type of bytecode analysis MC is built to perform. In both cases, the theorem con-

figures a system poised to execute a piece of code containing multiple instructions.

The conclusion applies the big-step equivalence macro -> to verify the behavior of

running all of the instructions in the method. In the remaining chapters, a Clojure

program is separated into method-sized portions of code and reasoned about in the

same way using ACL2.

63

Chapter 6

Sequences as Lists

The Clojure core library implements the features for the entire Clojure language. It is

a large library containing 579 Clojure definitions that is supported by an underlying

Java system. In this dissertation, we focus on modeling in MC a single, comprehensive

section of the core library and demonstrating that Clojure functions programmed

using the modeled section can be analyzed in MC. We choose to focus on Clojure’s

sequence data structure because it compares to list, which is a fundamental data

structure in Common Lisp. Additionally, functions that operate on lists are commonly

recursive. Recursive functions are a staple of functional programming and reasoning

about recursive functions using induction is a strength of ACL2.

Modeling a specific data structure in MC requires abstractions for three compo-

nents: (1) the underlying Java classes that implement the structure, (2) the allocation

of instances on the heap, and (3) the Clojure core functions that operate on the struc-

ture. The abstractions are built in MC with the explicit intention of applying them to

the inductive reasoning of recursive functions. Inductive reasoning, however, poses a

problem. Recursive functions that operate on lists can be reasoned about inductively

because lists are immutable and well-ordered. Sequences are also immutable and well-

ordered when constructed and operated on by Clojure functions, but those properties

cannot be inferred by the representation of a sequence in MC. Abstractions for (1)

and (2), which are described in Section 6.1 and Section 6.2, address the well-ordered

property of sequences.

The immutable property of sequences is inherently enforced by only applying the

64

model to functions that depend on acceptable functions. In this situation, acceptable

functions are those that have a Common Lisp analog. For component (3), the seven

acceptable core library functions are verified to behave correctly with respect to their

Common Lisp analog. Functions in the core library are defined in two ways and

both are analyzed in this chapter. Core functions either directly call the underlying

Java code or are the composition of other functions. Four examples of functions that

call Java are verified in Section 6.3. A remaining function, and its dependencies, are

verified in Section 6.4. Section 6.4 also details the format of a compiled Java function.

The functions verified in this chapter represent the basis of a verified core li-

brary. The functions are proven correct against their logical specification, as defined

by the Clojure documentation and the ACL2 semantics of the functions. New Clojure

functions, defined using the verified set presented in this chapter, can be reliably rea-

soned about directly in ACL2 without including MC. In the next chapter, a recursive

function that combines these verified functions is verified using MC to validate this

claim.

6.1 Sequence Overview

In Common Lisp, the cons cell is a basic data type that stores an ordered pair. The

first element of the pair is the car and the second element is the cdr. A list is a cons

cell that has a cons cell or nil in the cdr. In Clojure, the sequence data structure is a

generic type that represents a superset of list. Sequences are actually implemented in

the underlying Java code as a set of classes: PersistentList, Cons, and EmptyList.

Sequence classes implement the ISeq interface which defines contracts for methods

first, next, more, and cons. In this dissertation, sequence refers to the Clojure

structure and list refers exclusively to the ACL2 structure. This section explains how

sequences are related to lists. The code in this section reference functions seq-first

65

and seq-more, which retrieve a sequence’s first and more fields respectively. The

definitions will be introduced later in the chapter.

Sequences are reasoned about in ACL2 as references to sequence instances. The

predicate seq-p recognizes a sequence reference given a heap.

1 (defun seq-p (ref heap)

2 (and (not (nullrefp ref))

3 (or (|Cons|-p ref heap)

4 (| PersistentList |-p ref heap)

5 (| EmptyList |-p ref heap))))

A sequence is traversed by calling seq-more on a sequence, which returns a refer-

ence to the next instance in the sequence. The Clojure function used to construct a

sequence will not create one with cycles, but there is no type information stored for

a sequence reference that can guarantee that it does not contain a cycle. A sequence

with cycles would not be a well-ordered set so it would be incompatible with induc-

tion. Sequences must be constrained to ordered lists. Our approach is to define a list

of sequence references such that each sequence’s more field is the next reference in

the list. The more field of the last reference in the list must be the static EMPTY field.

The predicate seq-listp recognizes these lists.

1 (defun seq-listp (xs heap class-table)

2 (if (endp xs)

3 (equal xs nil)

4 (and (seq-p (car xs) heap)

5 (not (| EmptyList |-p (car xs) heap))

6 (if (endp (cdr xs))

7 (equal (seq-more (car xs) heap class-table)

8 (|PL:EMPTY|-get heap

9 class-table))

10 (equal (seq-more (car xs) heap class-table)

11 (cadr xs)))

12 (seq-listp (cdr xs) heap class-table))))

Note that the list does not contain any EmptyList sequences. We use this feature in

the next chapter to verify the base case in an inductive proof.

66

The inductive step to verify a property P (xs) for sequences is P (more(xs)) ⇒

P (xs). In most cases, the Clojure functions that are verified are overloaded to operate

on types other than the sequence types modeled in this chapter. Therefore, our

lemmas only reason about a function by assuming the input is a sequence. Such

lemmas will only apply as rewrite rules in the inductive step if seq-more returns a

sequence reference. The definition of seq-listp is sufficient to verify that property.

If seq-more is called on sequence from a sequence list, the result is also sequence.

The following theorem verifies.

1 (defthm seq-more-of-seq-is-seq

2 (implies

3 (and (|Cons|- loaded? class-table heap)

4 (| PersistentList |- loaded? class-table heap)

5 (not (endp xs))

6 (seq-listp xs heap class-table))

7 (seq-p (seq-more (car xs) heap class-table) heap))

6.2 Sequence Allocation

A Clojure function that recursively constructs a sequence will allocate an object for

every element in the result. When the function is mapped to an ACL2 function, it

is necessary to demonstrate that the result of the ACL2 function is allocated in MC.

Our approach follows the one taken by Moore (2003) to reason about a Java insertion

sort method in M5. Moore defines a heap invariant and theorems that demonstrate

it holds after allocation. In this section, an allocation function is defined for cons

allocation and two properties of Moore’s invariant are described and verified. A third

invariant that is unique to our examples is described and verified as well.

The code for the cons method is described in detail in Section 6.3.4, but it is a

function that constructs a sequence element from a value x and an existing sequence

coll, which is short for collection. An individual allocation initiated by cons creates

67

a new Cons instance if coll is non-null; otherwise, it creates a PersistentList

instance. The alloc function implements the logic.

1 (defun alloc (x coll heap)

2 (if (null coll)

3 (bind (len heap)

4 (| PersistentList |-init (| PersistentList |-new) x)

5 heap)

6 (bind (len heap)

7 (|Cons|-init (|Cons|-new) x coll)

8 heap)))

The alloc-list function takes a list of sequences and allocates a new sequence

for each element. Sequences allocated recursively using cons allocate objects from

the last element forward. Therefore, alloc-list performs allocations in that order

and calculates the reference index for the coll input as the sum of the length of the

heap and the length of the list minus 1.

1 (defun alloc-list (xs heap)

2 (if (endp xs)

3 heap

4 (let* ((x (seq-first (car xs) heap)))

5 (if (endp (cdr xs))

6 (alloc x nil heap)

7 (alloc x

8 (list 'REF

9 (+ (len heap) (len (cdr xs)) -1))

10 (alloc-list (cdr xs) heap))))))

In ACL2, association lists are recognized by alistp. Association lists are lists

of ordered pairs that interpret the first element in the pair as a key and the second

element as a value. The heap is an association list where the keys are references and

the values are objects. The first invariant property verifies that the heap is still an

association list after allocating a sequence.

1 (defthm alistp-alloc-list

2 (implies (alistp heap)

3 (alistp (alloc-list xs heap))))

68

The NEW instruction is implemented in MC to always add the instance at a

reference index equal to the length of the initial heap. MC does not garbage collect

heap objects, so there is no mechanism for reducing the heap. If the initial heap only

consists of reference indexes less than the length, then allocations in MC are additive

and the heap grows predictably. The function all-smallp is used to recognize this

property. all-smallp recognizes heaps where the index of every reference in the heap

is less than a maximum value.

1 (defun all-smallp (heap max)

2 (cond

3 ((endp heap) t)

4 (t (and (integerp (caar heap))

5 (<= 0 (caar heap))

6 (< (caar heap) max)

7 (all-smallp (cdr heap) max)))))

The function all-smallp was originally defined in the ACL2 community book asso-

ciated with Moore (2003) as part of the heap invariant. The all-smallp property

holds after allocating a sequence.

1 (defthm all-smallp-alloc-list-heap

2 (implies

3 (and (alistp heap)

4 (all-smallp heap (len heap)))

5 (all-smallp (alloc-list xs heap)

6 (len (alloc-list xs heap)))))

The third invariant property is the preservation of the heap configuration. Ba-

sically, the type and values of existing heap references must not change after an

allocation. This invariant is verified with a set of theorems that can be organized into

three groups. Examples of each are shown in Figure 6.1. The first group of theorems

verifies, for every type, that references to instances of that type are still that type after

an allocation. The theorem EmptyList-persists demonstrates this property for the

EmptyList type. The second group verifies that every static field maintains its value

69

1 (defthm EmptyList-persists

2 (implies

3 (and (| EmptyList |-p ref heap)

4 (alistp heap)

5 (all-smallp heap (len heap)))

6 (| EmptyList |-p ref

7 (alloc-list xs heap))))

8

9 (defthm |PL:EmptyList |- persists

10 (implies

11 (and (alistp heap)

12 (all-smallp heap (len heap)))

13 (equal (|PL:EMPTY|-get (alloc-list xs heap)

14 class-table)

15 (|PL:EMPTY|-get heap class-table)))

16

17 (defthm PersistentList-loaded-persists

18 (implies

19 (and (| PersistentList |- loaded? class-table heap)

20 (alistp heap)

21 (all-smallp heap (len heap)))

22 (| PersistentList |- loaded? class-table

23 (alloc-list xs heap))))

Figure 6.1: Heap Configuration Preserved by Allocation

after allocation. An example of the second group is |PL:EmptyList|-persists, which

shows that PersistentList’s EMPTY member is preserved. The third group verifies

that if a class is loaded before an allocation, it is still loaded after an allocation. For

this group, a theorem is verified in ACL2 for each loaded? predicate. The theorem

PersistentList-loaded-persists is an example of this group. Interestingly, since

|PersistentList|-loaded? defines |PL:EMPTY|-get as an EmptyList, it relies on the

first two theorems as lemmas.

The reference to an allocation is generally returned on the stack as the result.

Therefore, it must be possible to derive the last reference value allocated. An

all-smallp heap grows predictably by allocating a single element for each object

in the sequence so the new heap is the combined length of the initial heap and xs.

70

1 (defthm len-alloc-list-heap

2 (implies

3 (and (alistp heap)

4 (all-smallp heap (len heap)))

5 (equal (len (alloc-list xs heap))

6 (+ (len xs) (len heap)))))

The returned reference index is the length of the new sequence minus one, but ACL2

accounts for the difference without a specific rewrite rule. Theorems that allocate

a sequence from the elements in a seq-listp use this theorem to determine the

returned reference.

6.3 Static Run-Time Methods

Clojure implements several operations as static methods in the Run-Time class RT.

The core functions defined in Clojure are wrappers that compile to direct calls of

those RT methods. The functions cons, first, and rest are all defined as wrappers

to RT methods. The empty? function is defined using the functions seq and not. The

seq function is also a wrapper for a RT method call. In this section, the functions

seq, first, rest, and cons are mapped to the corresponding logic in ACL2. The

theorems presented in this section apply the sequence structure to small operations

and are used as rewrite rules later for more complex functions.

The functions in this and the next section are key operations performed on se-

quences. It covers type-checking, access, traversal, and construction of sequences.

In addition, the not function verifies boolean negation, which is important for im-

plementing branching. These functions can be combined to create common function

patterns that iterate over the elements in a sequence or iteratively construct new

sequences.

71

1 static public ISeq seq(Object coll){

2 if(coll instanceof ASeq)

3 return (ASeq) coll;

4 else { /* Additional cases */ }

5 else

6 return seqFrom(coll);

7 }

8

9 static ISeq seqFrom(Object coll){

10 if(coll instanceof Seqable)

11 return ((Seqable) coll).seq();

12 else if(coll == null)

13 return null;

14 else { /* Additional cases */ }

15 }

Figure 6.2: RT seq and seqFrom Methods

6.3.1 Seq

The seq function coerces an input into a sequence or null if the input cannot be

coerced. It is a wrapper for the seq method, which depends on the seqFrom method

to perform the type coercion. The seq and seqFrom methods are shown in Figure 6.2.

For this investigation, the inputs to seq are either a sequence or null. The seq function

acts as an identity function for inputs of type Cons, PersistentList, and null. The

Cons and PersistentList classes extend ASeq so the seq method returns the input

on line 3 of Figure 6.2. A null input is identified and returned at lines 13 and 14. The

EmptyList does not extend ASeq but does implement Seqable. Line 13 in Figure 6.2

shows that seqFrom returns the result of calling the instance method seq on the

object. EmptyList’s implementation of the seq method returns null.

The seq behavior is defined in two theorems in ACL2, which are shown in Fig-

ure 6.3. The first, |RT:seq|-null-input, verifies the behavior when the input is

null. The second, |RT:seq|-sequence-input, verifies the behavior when the input

is a sequence.

72

1 (defthm |RT:seq|- null-input

2 (let* ((coll (top (stack (top-frame s)))))

3 (implies

4 (and (|RT|- loaded? (class-table s)

5 (heap s))

6 (|RT:seq|- poised s)

7 (nullrefp coll))

8 (-> s

9 (modify s

10 :pc (+ 3 (pc (top-frame s)))

11 :stack

12 (push (nullref)

13 (pop (stack (top-frame s)))))))))

14

15 (defthm |RT:seq|- sequence-input

16 (let* ((coll (top (stack (top-frame s)))))

17 (implies

18 (and (|RT|- loaded? (class-table s)

19 (heap s))

20 (|RT:seq|- poised s)

21 (seq-p coll (heap s)))

22 (-> s

23 (modify s

24 :pc (+ 3 (pc (top-frame s)))

25 :stack

26 (push (if (| EmptyList |-p coll (heap s))

27 (nullref)

28 coll)

29 (pop (stack (top-frame s)))))))))

Figure 6.3: Verified Correctness of seq

73

6.3.2 First

The RT method for first returns the car of the sequence.

1 static public Object first(Object x){

2 if(x instanceof ISeq)

3 return ((ISeq) x).first();

4 ISeq seq = seq(x);

5 if(seq == null)

6 return null;

7 return seq.first();

8 }

The seq-first function implements the logic in ACL2. It takes a reference and

a heap. If the reference points to a Cons or PersistentList instance, it returns

the element the instance stores in its first field. If it is neither, it returns a null

reference.

1 (defun seq-first (ref heap)

2 (if (|Cons|-p ref heap)

3 (|Cons:_first |-get ref heap)

4 (if (| PersistentList |-p ref heap)

5 (|PL:_first |-get ref heap)

6 (nullref))))

The theorem |RT:first|=first verifies that running the bytecode produced by com-

piling the first method pushes the result of seq-first onto the stack.

1 (defthm |RT:first|=first

2 (let* ((x (top (stack (top-frame s)))))

3 (implies

4 (and (|RT|- loaded? (class-table s) (heap s))

5 (|RT:first|- poised s)

6 (seq-p x (heap s)))

7 (-> s

8 (modify s

9 :pc (+ 3 (pc (top-frame s)))

10 :stack

11 (push

12 (seq-first x (heap s))

13 (pop (stack (top-frame s)))))))))

74

6.3.3 Rest

The rest function returns the cdr of a sequence. It is a wrapper for RT’s more

method, shown here:

1 static public ISeq more(Object x){

2 if(x instanceof ISeq)

3 return ((ISeq) x).more();

4 ISeq seq = seq(x);

5 if(seq == null)

6 return PersistentList.EMPTY;

7 return seq.more();

8 }

The more method is very similar to first. If the input is not a sequence, an

EmptyList is returned. The seq-more function implements the logic in ACL2.

1 (defun seq-more (ref heap class-table)

2 (if (| EmptyList |-p ref heap)

3 ref

4 (if (nullrefp ref)

5 (|PL:EMPTY|-get heap class-table)

6 (if (|Cons|-p ref heap)

7 (if (nullrefp (|Cons:_more|-get ref heap))

8 (|PL:EMPTY|-get heap

9 class-table)

10 (|Cons:_more |-get ref heap))

11 (if

12 (or (= (|PL:_count |-get ref heap) 1)

13 (nullrefp (|PL:_rest|-get ref heap)))

14 (|PL:EMPTY|-get heap class-table)

15 (|PL:_rest|-get ref heap))))))

The verification of more is split into two theorems, shown in Figure 6.4. The

theorem |RT:more|=seq-more verifies that running the bytecode produced by com-

piling the more method pushes the result of seq-more onto the stack. The theorem

seq-more-of-seq-is-seq in Section 6.1 states that seq-more returns a sequence

reference. It is necessary to reason inductively about recursive functions because it

guarantees the type of the input does not change on the recursive call. By proving

75

1 (defthm |RT:more|= seq-more

2 (implies

3 (and (|RT|- loaded? (class-table s)

4 (heap s))

5 (|RT:more|- poised s)

6 (seq-p (|RT:more|- param1 s) (heap s)))

7 (-> s

8 (modify s

9 :pc (+ 3 (pc (top-frame s)))

10 :stack

11 (push

12 (seq-more (|RT:more|- param1 s)

13 (heap s)

14 (class-table s))

15 (pop (stack (top-frame s))))))))

16

17 (defthm |RT:more(null)|=null

18 (implies

19 (and (|RT|- loaded? (class-table s)

20 (heap s))

21 (|RT:more|- poised s)

22 (nullrefp (|RT:more|- param1 s)))

23 (-> s

24 (modify s

25 :pc (+ 3 (pc (top-frame s)))

26 :stack

27 (push (seq-more (|RT:more|- param1 s)

28 (heap s)

29 (class-table s))

30 (pop (stack (top-frame s))))))))

Figure 6.4: Verified Correctness of more

76

1 static public ISeq cons(Object x, Object coll){

2 if(coll == null)

3 return new PersistentList(x);

4 else if(coll instanceof ISeq)

5 return new Cons(x, (ISeq) coll);

6 else

7 return new Cons(x, seq(coll));

8 }

Figure 6.5: RT cons Method

|RT:more|=seq-more in terms of seq-more, the value of seq-more-of-seq-is-seq is

applicable to proofs about more. |RT:more(null)|=null, also shown in Figure 6.4,

verifies the behavior of more when executed on a null reference.

6.3.4 Cons

The RT cons method, in Figure 6.5, takes two parameters: x and coll. If coll is

null, cons creates a PersisentList instance with a first field containing x. If coll

is not null and it is an instance of a class that implements ISeq, the cons function

creates a Cons instance with a first field containing x and a more field containing

coll. The alloc function defined in the previous section implements this behavior.

The theorem |RT:cons|-alloc, which is shown in Figure 6.6, verifies that invoking

the cons method allocates the appropriate instance and returns a reference to it. It

specifically introduces the term alloc into the logic when a program executes the

cons method.

6.4 Function Classes

The functions in the previous section are basically function wrappers to the underly-

ing Java code. Unlike those functions, most Clojure functions, especially those defined

in a functional style, are defined as the composition of other functions. The compiled

77

1 (defthm |RT:cons|-alloc

2 (let* ((x (top (pop (stack (top-frame s)))))

3 (coll (top (stack (top-frame s)))))

4 (implies

5 (and (|RT|- loaded? (class-table s) (heap s))

6 (|RT:cons|- poised s)

7 (or (nullrefp coll)

8 (and (seq-p coll (heap s))

9 (not (null coll)))))

10 (-> s

11 (modify s

12 :pc (+ 3 (pc (top-frame s)))

13 :stack

14 (push (list 'REF (len (heap s)))

15 (popn 2 (stack (top-frame s))))

16 :heap

17 (alloc x

18 (if (nullrefp coll)

19 nil

20 coll)

21 (heap s)))))))

Figure 6.6: Verified Correctness of cons

78

version of such a function is more complex than the function wrappers already verified

because composite functions must load references to the objects that implement its

function dependencies. In this section, the structure of a compiled composite function

is explained along with our approach to configuring the structure in theorems. All

user-defined functions composed of our verified core library will be compiled to Java

classes that match this format, so our structure for configuring the function depen-

dencies is a Clojure-specific component that fits with our class abstraction layer from

Chapter 5.

All Clojure functions are compiled to Java classes that extend the AFunction

class. AFunction implements the IFn interface that defines signatures for invoke

methods of different arity. The AFunction implementation of each signature throws

an ArityException error. A compiled Clojure function overrides the invoke method

of the appropriate arity. Wrapper functions are compiled into classes that have an

invoke method that calls the corresponding RT static method. Composite functions,

in contrast, compile to classes that load other AFunction objects that implement

its function dependencies. Those dependencies must be configurable in MC and the

configuration must be capable of applying the proofs about those dependencies to the

verification of the composite function. This capability is demonstrated in this section

through the verification of the empty? Clojure function.

The Clojure empty? function is the composition of the functions not and seq.

1 (defn empty?

2 {: static true}

3 [coll] (not (seq coll)))

The function evaluates an input coll to a Boolean. If coll is null or an EmptyList,

empty? evaluates to true. Any other type of sequence evaluates to false. Figure 6.7

shows the code for the class that implements the empty? logic. At a high level, Clojure

stores an AFunction instance as the root field of a Var instance. Var instances are

79

1 public final class core$empty_QMARK_ extends AFunction {

2 public static final Var const__0 =

(Var)RT.var("clojure.core", "not");

3 public static final Var const__1 =

(Var)RT.var("clojure.core", "seq");

4

5 public core$empty_QMARK_ () {

6 }

7

8 public Object invoke(Object coll) {

9 IFn var10000 = (IFn)const__0.getRawRoot ();

10 IFn var10001 = (IFn)const__1.getRawRoot ();

11 Object var10002 = coll;

12 coll = null;

13 return var10000.invoke(var10001.invoke(var10002));

14 }

15 }

Figure 6.7: The Empty Class

stored in a hashmap and referenced by name within Namespaces. Namespaces are

stored in a hashmap as well. Line 2 shows a Var being loaded that is named “not”

in namespace “clojure.core” and line 3 shows a Var being loaded for “seq”.

At a low level, function loading is implemented using concurrency and Java’s

Unsafe class wrapper for direct memory management, neither of which is supported

by MC. Also, functions are loaded statically during class loading, which is not a

period of operation considered in this research. Therefore, the function loading is

assumed to create a Var object with the correct root. The information is added to

the loaded? predicate function for AFunction classes. The loaded? predicate for

the Empty class is shown in Figure 6.8.

The function |Var:root|-get accesses the root field directly. The predicates

|not|-p and |seq|-p recognize instances of AFunction classes that implement the not

and seq logic. AFunction classes are loaded into the logic of an invoke method

by executing Var’s getRawRoot method. The theorem |Var:getRawRoot|-is-root

80

1 (defun |empty |- loaded? (class-table heap)

2 (and (|Var|- loaded? class-table)

3 (|not|- loaded? class-table heap)

4 (|seq|- loaded? class-table heap)

5 (loaded? class-table

6 "clojure.core$empty_QMARK_"

7 *clojure.core$empty_QMARK_ *)

8 (|Var|-p (| empty:not|-get heap class-table)

9 heap)

10 (|Var|-p (| empty:seq|-get heap class-table)

11 heap)

12 (|not|-p

13 (|Var:root|-get

14 (|empty:not|-get heap class-table)

15 heap)

16 heap)

17 (|seq|-p

18 (|Var:root|-get

19 (|empty:seq|-get heap

20 class-table)

21 heap)

22 heap)))

Figure 6.8: Configuration of Empty Class Object

81

verifies that invoking getRawRoot returns the root field.

1 (defthm |Var:getRawRoot |- is-root

2 (implies

3 (and (|Var|- loaded? (class-table s))

4 (|Var:getRawRoot |- poised s)

5 (|Var|-p (top (stack (top-frame s)))

6 (heap s)))

7 (-> s

8 (modify

9 s

10 :pc (+ 3 (pc (top-frame s)))

11 :stack

12 (push

13 (|Var:root|-get (top (stack (top-frame s)))

14 (heap s))

15 (pop (stack (top-frame s))))))))

AFunction invoke methods are executed by INVOKEINTERFACE instructions.

The poised functions include the object type that the instruction is being invoked

upon. The poised function for invoking the Empty class is

1 (defun |empty:invoke |- poised (s)

2 (and

3 (equal (next-inst s)

4 '(INVOKEINTERFACE "clojure.lang.IFn"

5 "invoke"

6 1))

7 (|empty|-p (top (pop (stack (top-frame s))))

8 (heap s))))

If the function references are defined, the analysis of the code precedes similarly

to the previous examples. The theorems in Figure 6.9 prove the correctness of the

empty?. Theorem |empty|-sequence-is-false verifies that empty? evaluates to

false for non-EmptyList sequences and |empty|-null-or-EmptyList-is-true veri-

fies that empty? evaluates to true when the input is either an EmptyLists reference

or null.

82

1 (defthm |empty|- sequence-is-false

2 (let* ((coll (top (stack (top-frame s)))))

3 (implies

4 (and (|empty |- loaded? (class-table s) (heap s))

5 (|empty:invoke |- poised s)

6 (| Boolean |- loaded? (class-table s) (heap s))

7 (seq-p coll (heap s))

8 (not (| EmptyList |-p coll (heap s))))

9 (-> s

10 (modify

11 s

12 :pc (+ 5 (pc (top-frame s)))

13 :stack

14 (push (| Boolean:FALSE |-get (heap s)

15 (class-table s))

16 (popn 2 (stack (top-frame s))))))))

17

18 (defthm |empty|- null-or-EmptyList-is-true

19 (let* ((coll (top (stack (top-frame s)))))

20 (implies

21 (and (|empty |- loaded? (class-table s) (heap s))

22 (|empty:invoke |- poised s)

23 (or (nullrefp coll)

24 (| EmptyList |-p coll (heap s))))

25 (-> s

26 (modify

27 s

28 :pc (+ 5 (pc (top-frame s)))

29 :stack

30 (push (| Boolean:TRUE|-get (heap s)

31 (class-table s))

32 (popn 2 (stack (top-frame s))))))))

Figure 6.9: Verified Correctness of empty?

83

6.5 Summary

Clojure executes on the JVM, so MC reasonably is modeled after the JVM. However,

at the JVM level, sequences do not have the requisite properties to analyze their use

inductively. This chapter introduced an abstraction of Clojure sequences that allow

inductive reasoning. In addition, the Clojure core functions that operate on sequences

were verified to be correct. In the next chapter, a recursive function is verified that

combines all of the concepts presented in this chapter.

84

Chapter 7

Sequence Recursion

This dissertation is defending the thesis that new Clojure functions defined using

verified core functions can be reasoned about in ACL2. In support of the thesis, a new

Clojure function is defined and verified in ACL2 that uses the core sequence functions

that were verified in the previous chapter. The verification requires combining most of

the previous results into a new proof. The new function compiles to a Java class that

has many class dependencies so it requires the abstraction layer from Chapter 5 to

shrink the search space for a proof. It operates on sequences so it requires the sequence

abstraction and the verified properties of the sequence functions from Chapter 6.

Finally, it combines the verified properties of the sequence functions by using the

big-step equivalence macro -> from Chapter 4. A recursive function is chosen as the

new function because it is common in functional programming but adds complexity

to the verification process.

Recursion is a concise method for specifying an algorithm that can be reasoned

about with mathematical induction. Successful inductive proofs of recursive functions

structure the definitions so that the inductive hypothesis introduces the information

necessary to simplify the desired conclusion. This can happen naturally in ACL2 when

the terms used for the inductive hypothesis match the terms used for the recursive

call within a function definition. However, recursion in bytecode does not naturally

provide matching terms because the machine configuration for each state differs. In

this chapter, an inductive proof of a recursive Clojure function is described that maps

the Clojure function to a corresponding ACL2 function.

85

As an example recursive function, we use an exercise from a library designed

for teaching software engineering students. The every-other function constructs a

sequence that keeps the first element and removes every other element after it.

1 (defn every-other [xs]

2 (if (empty? xs)

3 nil

4 (cons (first xs)

5 (every-other (rest (rest xs))))))

The structure of every-other is typical of functional code that constructs a se-

quence from an existing sequence. The every-other example is used because it is a

non-identity function that uses only the sequence operations verified in the previous

chapter.

Clojure compiles every-other into an EveryOther class that extends AFunction.

The function dependencies empty?, cons, first, every-other, and rest are stored

in Var’s const 0, const 1, const 2, const 3, and const 4. The root of const 3

is an instance of EveryOther. Throughout the chapter, it is referred to as self in

the text and as (|eo:every other|-get heap class-table) in the code.

Figure 7.1 shows the Java code gathered by decompiling the Java class file gen-

erated by the Clojure compiler. The code is annotated to indicate which function is

referred to by each const object. The invoke method allocates to the heap a new

sequence of objects that contain the result and returns a reference to the initial ele-

ment in the sequence. To map every-other into an ACL2 every-other function, an

inductive proof is constructed in ACL2 that verifies that the every-other function

infers the new heap and return reference.

7.1 Cutpoints

EveryOther is reasoned about in segments and those segments are combined to verify

the mapping. The first segment is the code that executes for EmptyList or null inputs,

86

1 public Object invoke(Object xs) {

2 // const__0 = empty?

3 Object var10000 =

4 ((IFn)const__0.getRawRoot ()).invoke(xs);

5 if(var10000 != null) {

6 if(var10000 != Boolean.FALSE) {

7 var10000 = null;

8 return var10000;

9 }

10 }

11

12 // const__1 = cons

13 IFn var2 = (IFn)const__1.getRawRoot ();

14 // const__2 = first

15 Object var10001 =

((IFn)const__2.getRawRoot ()).invoke(xs);

16 // const__3 = every -other

17 IFn var10002 = (IFn)const__3.getRawRoot ();

18 // const__4 = rest

19 IFn var10003 = (IFn)const__4.getRawRoot ();

20 IFn var10004 = (IFn)const__4.getRawRoot ();

21 Object var10005 = xs;

22 xs = null;

23 var10000 =

24 var2.invoke(var10001 ,

25 var10002.invoke

26 (

27 var10003.invoke

28 (

29 var10004.invoke(var10005)

30)

31));

32 return var10000;

33 }

Figure 7.1: EveryOther invoke Java Code

87

which is in lines 3-10 in Figure 7.1. The recursive call is executed on line 25. For

sequence inputs, the code prior to the recursive call and the code after the recursive

call returns are two other segments. The recursive call is treated separately, similar

to a fourth segment.

The state configuration changes to reason about segments of methods. In previous

chapters, theorems were proved using states poised to invoke the method under verifi-

cation. The first step of the machine in those theorems pushed a frame containing the

method instructions onto the call stack. For the every-other verification, the strategy

instead uses states poised to execute instructions at specific pc values. The pc values

are cutpoints and are defined for the entry and exit of the method as well as each

segment of code. The segments are combined by verifying that each cutpoint steps

correctly to the next. The cutpoints are defined as a transition from a base frame

configured at the first instruction in invoke. The predicate eo-base-frame recognizes

the base frame.

1 (defun eo-base-frame (frame heap)

2 (and (| every_other |-p (top (locals frame)) heap)

3 (equal (pc frame) 0)

4 (equal (stack frame) nil)

5 (equal (cur-class frame) "clojure.lang.IFn")

6 (equal

7 (program frame)

8 (method-program *examples$every_other-invoke *))))

The base frame is at pc 0 with an empty operand stack. The frame’s method contains

the instructions to run EveryOther’s invoke method. The first local variable is an

instance of EveryOther.

State configurations are constructed for each cutpoint from a base frame, a list of

sequences, and a state with EveryOther and its dependencies loaded. The function

eo-start-state configures a state at the method’s entry. It pushes a base frame

onto the call stack and modifies the locals to include the first sequence in xs as the

88

input to every-other.

1 (defun eo-start-state (frame xs s)

2 (let*

3 ((s1 (modify s :call-stack (push frame (call-stack

s))))

4 (xs-ref (if (endp xs)

5 (|PL:EMPTY|-get (heap s)

6 (class-table s))

7 (car xs))))

8 (modify

9 s1

10 :locals

11 (list (car (locals frame)) xs-ref))))

The start state configuration can be defined from the method signature and knowl-

edge of the JVM. The method’s bytecode must be analyzed to define the end state

configuration. The bytecode for EveryOther’s invoke method is shown in Figure 7.2.

Even though the method written in Java has two return statements, the bytecode only

has a single return instruction in line 39. The Java method returns null on empty

inputs but the bytecode method implements that behavior with the instructions on

lines 12 (ACONST NULL) and 13 (GOTO 78). Those instructions load null onto the

operand stack and jump to the return instruction at line 39. Therefore, the end state

configuration is always at that final instruction, which is pc 104, regardless of the

input. The locals may be modified as well. Initially, locals store the reference to the

input sequence or, if the input evaluates to empty, the EmptyList. However, lines 33

and 34 overwrite non-empty sequences with a null pointer before exiting. The end

state accounts for the change to locals, but the external behavior is unaffected. The

function eo-end-state, shown in Figure 7.3, modifies a base frame to correspond to

the entire behavior of the method and pushes the result onto an MC state s.

The correctness properties of the heap and the return value are the interesting

portions of the end state. The ACL2 every-other function specifies the correct

behavior of the method, so the heap and return value must be described in terms of

89

1 (defconst *examples$every_other-invoke*

2 '("invoke" ((CLASS "java.lang.Object"))

3 (GETSTATIC "every_other" "const__0" NIL)

4 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

5 (CHECKCAST "clojure.lang.IFn")

6 (ALOAD_1)

7 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 1)

8 (DUP)

9 (IFNULL 13)

10 (GETSTATIC "java.lang.Boolean" "FALSE" NIL)

11 (IF_ACMPEQ 8)

12 (ACONST_NULL)

13 (GOTO 78)

14 (POP)

15 (GETSTATIC "every_other" "const__1" NIL)

16 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

17 (CHECKCAST "clojure.lang.IFn")

18 (GETSTATIC "every_other" "const__2" NIL)

19 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

20 (CHECKCAST "clojure.lang.IFn")

21 (ALOAD_1)

22 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 1)

23 (GETSTATIC "every_other" "const__3" NIL)

24 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

25 (CHECKCAST "clojure.lang.IFn")

26 (GETSTATIC "every_other" "const__4" NIL)

27 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

28 (CHECKCAST "clojure.lang.IFn")

29 (GETSTATIC "every_other" "const__4" NIL)

30 (INVOKEVIRTUAL "clojure.lang.Var" "getRawRoot" 0)

31 (CHECKCAST "clojure.lang.IFn")

32 (ALOAD_1)

33 (ACONST_NULL)

34 (ASTORE_1)

35 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 1)

36 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 1)

37 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 1)

38 (INVOKEINTERFACE "clojure.lang.IFn" "invoke" 2)

39 (ARETURN)))

Figure 7.2: EveryOther invoke Bytecode

90

1 (defun eo-end-state (frame xs s)

2 (let*

3 ((s1 (modify

4 s

5 :call-stack

6 (push frame (call-stack s))))

7 (result (if (endp xs)

8 nil

9 (every-other xs)))

10 (result-ref (if (endp result)

11 (nullref)

12 (list 'REF (+ (len (heap s))

13 (len result)

14 -1))))

15 (local-1 (if (endp result)

16 (|PL:EMPTY|-get (heap s)

17 (class-table s))

18 (nullref))))

19 (modify

20 s1

21 :pc 104

22 :locals (list (car (locals frame)) local-1)

23 :stack (push result-ref (stack frame))

24 :heap (alloc-list result (heap s)))))

Figure 7.3: eo-end-state

91

that function. To do so, the end state calculates a result sequence using every-other.

The heap is updated by allocating the result onto the original heap using alloc-list.

The method returns a reference to the first sequence element in the resulting sequence.

Since the heaps are constrained to sequential indexes without garbage collection, the

end state calculates the reference index by adding the maximum index in the initial

heap to the length of the result.

Our goal is to verify that a machine configured at the start state will run to

the end state. Two additional cutpoints are necessary to sketch out the high-level

proof: a recursive call cutpoint at the instruction that invokes the recursive call and a

recursive end cutpoint at the instruction immediately after. The goal is verified using

proof by induction. The inductive step is broken into three segments: a prelude,

postlude, and internal segment. The prelude describes the behavior of the method

from the beginning of the method until the recursive call cutpoint and the postlude

describes the behavior from the recursive end cutpoint until the end of the method.

As a roadmap for the remaining sections of the chapter, the cases are enumerated.

1. Base: For an empty sequence, the start state runs to the end state.

2. Prelude: For a non-empty sequence, the start state runs to the recursive call.

3. Postlude: For a non-empty sequence, the recursive end state runs to the end

state.

4. Internal Segment : For a non-empty sequence, the recursive call cutpoint runs

to the recursive end cutpoint.

7.2 Base Case

The EveryOther method, which operates on sequences, is being mapped to an ACL2

every-other function, which operates on lists. The base case for each type must be

92

verified, but it is accomplished by verifying the base case on an empty sequence list.

A sequence list has two properties pertaining to this:

1. A sequence list does not contain references to EmptyList sequences

2. The more field of the last sequence in the list is the EmptyList

The start frame and end frame functions interpret an empty list as an EmptyList

reference. Therefore, the base cases for the two types are aligned for a sequence list.

The following theorem verifies the base case:

1 (defthm every-other-base-case

2 (implies

3 (and (| every_other |- loaded? (class-table s) (heap s))

4 (eo-base-frame frame (heap s))

5 (seq-listp xs (heap s) (class-table s))

6 (endp xs))

7 (-> (eo-start-state frame xs s)

8 (eo-end-state frame xs s))))

7.3 Prelude

The method prelude is the code prior to the recursive call. The prelude includes the

logic that reacts to empty inputs, but that behavior is covered by the base case. The

behavior for non-empty inputs begins on line 14 in Figure 7.2 and ends at the call to

invoke self on line 37. In between those lines, the stack is modified multiple times.

The net change in the stack is as follows:

1. The Empty reference is popped

2. A reference to self is pushed

3. The result of executing First’s invoke method is pushed

4. A reference to Cons is pushed

93

1 (defun prelude-end-state (frame xs s)

2 (let*

3 ((s1 (modify

4 s

5 :call-stack

6 (push frame (call-stack s))))

7 (xs-ref (car xs)))

8 (modify

9 s1

10 :pc 94

11 :locals

12 (list (car (locals frame)) (nullref))

13 (push

14 (seq-more (seq-more xs-ref

15 (heap s)

16 (class-table s))

17 (heap s)

18 (class-table s))

19 (push (|Var:root|-get

20 (|eo:every_other |-get (heap s)

21 (class-table s))

22 (heap s))

23 (push (seq-first xs-ref (heap s))

24 (push (|Var:root|-get

25 (|eo:cons|-get (heap s)

26 (class-table s))

27 (heap s))

28 (stack frame))))))))

Figure 7.4: prelude-end-state

94

5. The result of executing Rest’s invoke method twice is pushed

The second element of the locals is set to the null reference. The prelude-end-state

function modifies a base frame to construct a state that reflects the prelude behavior.

The function is shown in Figure 7.4. The following theorem verifies that the prelude

is correct:

1 (defthm prelude-is-correct

2 (implies

3 (and (| every_other |- loaded? (class-table s) (heap s))

4 (eo-base-frame frame (heap s))

5 (seq-listp xs (heap s) (class-table s))

6 (not (endp xs)))

7 (-> (eo-start-state frame xs s)

8 (prelude-end-state frame xs s)))

It states that if EveryOther is invoked on a non-empty sequence, the start state runs

to the recursive call.

7.4 Postlude

The postlude must define a where and a when. The where is easy to identify from

bytecode analysis; it starts at the instruction immediately following the recursive call.

Defining when the postlude starts requires making a choice between two points in the

process of executing a method: invocation or return. The invocation updates the

stack and pc on the calling frame before pushing the new frame onto the call stack.

If the called method returns a value, when the new frame reaches an exit, the top

element on its operand stack is pushed onto the calling frame’s operand stack.

We choose to define the postlude as the state immediately after the recursive

call is invoked because it simplifies the transition from the prelude. The function

postlude-start-state constructs a postlude state from a base frame, list of se-

quences, and a state.

95

1 (defun postlude-start-state (frame xs s)

2 (let*

3 ((s1 (modify

4 s

5 :call-stack

6 (push frame (call-stack s))))

7 (xs-ref (car xs)))

8 (modify

9 s1

10 :pc 99

11 :locals (list (car (locals frame)) (nullref))

12 :stack

13 (push (seq-first xs-ref (heap s))

14 (push (|Var:root|-get

15 (|eo:cons|-get (heap s)

16 (class-table s))

17 (heap s))

18 (stack frame))))))

The call stack of the postlude state does not contain the newly invoked method.

Instead, a recursive start state is constructed using the postlude state.

1 (defun recursive-start (frame xs s)

2 (eo-start-state frame

3 (cddr xs)

4 (postlude-start-state frame xs s)))

The base frame requires that the top value on the locals is a reference to an

instance of the EveryOther class. In the case of the recursive call, the reference is

specifically self. The theorem prelude-to-postlude, shown in Figure 7.5, explicitly

declares the reference is self in lines 7 through 11.

The prelude ends with the result of invoking First on the top of the stack. When

the recursive call exits, a reference to a sequence is pushed onto the stack. The

postlude concludes execution of the method by invoking Cons on those two references.

The theorem every-other-postlude-ends in Figure 7.5 verifies that if the recursive

call results in an end state, the calling frame will run to an end state.

96

1 (defthm prelude-to-postlude

2 (implies

3 (and (| every_other |- loaded? (class-table s) (heap s))

4 (eo-base-frame frame (heap s))

5 (seq-listp xs (heap s) (class-table s))

6 (not (endp xs))

7 (equal (car (locals frame))

8 (|Var:root|-get

9 (|eo:every_other |-get (heap s)

10 (class-table s))

11 (heap s))))

12 (-> (prelude-end-state frame xs s)

13 (recursive-start frame xs s))))

14

15

16 (defthm every-other-postlude-ends

17 (implies

18 (and (alistp (heap s))

19 (all-smallp (heap s) (len (heap s)))

20 (| every_other |- loaded? (class-table s) (heap s))

21 (eo-base-frame frame (heap s))

22 (seq-listp xs (heap s) (class-table s))

23 (not (endp xs)))

24 (-> (eo-end-state frame

25 (cddr xs)

26 (postlude-start-state frame xs s))

27 (eo-end-state frame xs s))))

Figure 7.5: Postlude Starts and Ends

97

7.5 Internal Segment

Our goal is to prove that a Clojure every-other function maps to an ACL2 every-other

function. The internal segment is an instance of the goal that is specific to the method

being invoked on self. A proof of correctness for the internal segment resolves the

inductive step in the goal theorem, but it requires a special induction scheme.

The conclusion of the goal theorem affirms that (eo-start-state frame xs s)

runs to (eo-end-state frame xs s). The induction is on xs and sequences have

been modeled in ACL2 to facilitate inducting on xs as a list. Frame is always a base

frame that is configured for a specific cutpoint. It is neither referenced nor modified

by the machine, so it does not change for a recursive call. The state s, however, is

changed for each recursive call because a new frame is pushed onto the call stack.

We need to define an induction scheme in ACL2 that acknowledges the change to the

state for the recursive call.

ACL2 verifies that a function terminates before accepting it into the logic. ACL2

associates an induction rule with every recursive function based on the induction used

to admit it. Theorems in ACL2 can be configured to apply a specific induction rule.

The function eo-ind is defined to introduce an induction rule that can be used to

verify the correctness of the internal segment.

1 (defun eo-ind (xs frame s)

2 (if (endp xs)

3 (list xs frame s)

4 (list

5 (eo-ind (cddr xs)

6 frame

7 (postlude-start-state frame

8 xs

9 s)))))

The function reduces xs by two elements to match every-other’s behavior and

pushes the postlude state onto the call stack. Other than those two properties, the

98

behavior of the function is unimportant.

The induction scheme is recommended to ACL2 as a hint, which can be seen in

the theorem every-other-internal-segment.

1 (defthm every-other-internal-segment

2 (implies

3 (and (alistp (heap s))

4 (all-smallp (heap s) (len (heap s)))

5 (| every_other |- loaded? (class-table s) (heap s))

6 (eo-base-frame frame (heap s))

7 (seq-listp xs (heap s) (class-table s))

8 (equal (car (locals frame))

9 (|Var:root|-get

10 (|eo:every_other |-get (heap s)

11 (class-table s))

12 (heap s))))

13 (-> (eo-start-state frame xs s)

14 (eo-end-state frame xs s)))

15 :hints

16 (("Goal" :induct (eo-ind xs frame s))))

The proof of correctness of the internal segment is used as a lemma to resolve the

inductive step in the final proof.

7.6 Proof of Correctness

The previous sections verified the base case, prelude, postlude, and the internal seg-

ment. In this section, those results are combined into a proof of correctness that

Clojure every-other maps to ACL2 every-other. The verification of the internal

segment is limited to invocations called on self. The process for removing the self

constraint from the theorem is straight-forward and aligns with the original strategy.

In this section, an internal frame is one that is operating on self. The strategy

is to prove the following properties:

1. For a non-empty sequence, the start state runs to a state poised to run an

internal frame in the start state.

99

2. A state that is exiting an internal frame runs to the end state.

3. An internal frame in the start state runs to an internal frame in the end state.

An internal frame is created using

1 (defun internal-frame (frame heap class-table)

2 (make-frame

3 (pc frame)

4 (list

5 (|Var:root|-get

6 (|eo:every_other |-get heap class-table)

7 heap))

8 (stack frame)

9 (program frame)

10 (cur-class frame)))

Before verifying the three properties, it must be demonstrated that an internal frame

is a base frame. The frame constructed by internal-frame is identical to the input

frame except the first element in locals is set to self. The |every other|-loaded?

predicate defines self as an EveryOther object. If every other is loaded and the

internal frame is constructed from a base frame, then the internal frame is a base

frame.

1 (defthm internal-frame-is-base-frame

2 (implies

3 (and (| every_other |- loaded? (class-table s) (heap s))

4 (eo-base-frame frame (heap s)))

5 (eo-base-frame (internal-frame frame

6 (heap s)

7 (class-table s))

8 (heap s)))

Property 1 affirms that a start state runs to the recursive state with an internal

frame on the top of the call stack. The theorem prelude-is-correct in Section 7.3

verifies a start state runs to the end of the prelude, so we only need to verify that

stepping past the prelude’s end state will push an internal frame onto the call stack.

The function eo-internal-start is similar to eo-recursive-start except it pushes

100

an internal frame onto the call stack of the start state. The following theorem verifies

property 1.

1 (defthm ext-prelude- >internal-start

2 (implies

3 (and (| every_other |- loaded? (class-table s) (heap s))

4 (eo-base-frame frame (heap s))

5 (seq-listp xs (heap s) (class-table s))

6 (not (endp xs)))

7 (-> (prelude-end-state frame xs s)

8 (eo-internal-start frame xs s))))

Property 2 affirms that an internal frame in the end state runs to the end state

of the calling frame.

1 (defthm internal-end- >end

2 (implies

3 (and (alistp (heap s))

4 (all-smallp (heap s) (len (heap s)))

5 (| every_other |- loaded? (class-table s) (heap s))

6 (eo-base-frame frame (heap s))

7 (seq-listp xs (heap s) (class-table s))

8 (not (endp xs)))

9 (->

10 (eo-end-state

11 (internal-frame

12 frame

13 (heap (postlude-start-state frame xs s))

14 (class-table (postlude-start-state frame xs s)))

15 (cddr xs)

16 (postlude-start-state frame xs s))

17 (eo-end-state frame xs s))))

Property 3 affirms that an internal frame in the start state runs to the end state.

It is verified below by the theorem internal-start->internal-end. The theorem is

similar to the theorem every-other-internal-segment, but it removes the reference

to self from the hypothesis. The theorem is still specific to instances invoked on

self, but it is constrained to those instances by the function internal-frame in the

conclusion.

101

1 (defthm internal-start- >internal-end

2 (implies

3 (and (alistp (heap s))

4 (all-smallp (heap s) (len (heap s)))

5 (| every_other |- loaded? (class-table s) (heap s))

6 (eo-base-frame frame (heap s))

7 (seq-listp xs (heap s) (class-table s)))

8 (-> (eo-start-state (internal-frame frame

9 (heap s)

10 (class-table s))

11 xs

12 s)

13 (eo-end-state (internal-frame frame

14 (heap s)

15 (class-table s))

16 xs

17 s)))

The final proof of correctness verifies that the Clojure every-other maps to the

ACL2 every-other when invoked on an arbitrary instance of EveryOther.

1 (defthm every-other-is-every-other

2 (implies

3 (and (alistp (heap s))

4 (all-smallp (heap s) (len (heap s)))

5 (| every_other |- loaded? (class-table s) (heap s))

6 (eo-base-frame frame (heap s))

7 (seq-listp xs (heap s) (class-table s)))

8 (-> (eo-start-state frame xs s)

9 (eo-end-state frame xs s))))

The effort to prove every-other-is-every-other required the analysis of 17 classes,

37 methods, and bytecode totaling a length of 346 JVM instructions. The final

analysis required over 500 theorems to be admitted to ACL2. The ACL2 source code,

including the theorems, can be found online (Ralston, 2016).

102

Chapter 8

Conclusion

Correctness is a pursuable quality using current state-of-the-art formal methods.

However, there are still considerable difficulties in applying formal methods in in-

dustrial development. Functional languages are chosen industrially for many reasons,

but verification is not yet seen as a motivating factor. Therefore, there is a need to

adapt existing verification tools to the languages being used in industry. Towards

that goal, this dissertation presents research that maps Clojure code into the ACL2

theorem prover. In this chapter, the contributions are summarized and limitations

are discussed. The contributions are presented in order of significance, with the most

significant presented first. The chapter concludes with a discussion of future work.

8.1 Verification of a Recursive Sequence Clojure Function

Recursion is an important pattern in functional programming and verification. Re-

sults presented in this dissertation led to a recursive sequence function being mapped

to a recursive list function. The mapping required the verification of Clojure core

functions as well as abstractions for sequences and the heap. The core functions

empty?, cons, first, rest, seq, and not were verified and the associated theorems

were used as rewrite rules for the recursive proof.

The concept of a sequence list was introduced to relate sequences to lists. A

sequence list enforces a well-ordered property on sequence references. Recursive se-

quence functions can be reasoned about using induction by limiting the input to

sequence lists. The verified recursive function is an example of induction being used

103

on a sequence list. The recursive proof also required reasoning about the allocation

of a sequence onto the heap. The alloc-list function abstracts the logic of allo-

cating a sequence if it is constructed in a function based on our recursive template.

Heap invariants from Moore (2003) were verified about alloc-list and a new set

of invariants was introduced to prove persistence of the existing objects on the heap

prior to the allocation.

A limitation of our results is the assumption that the compiled form of a Clojure

function correctly loads its dependencies. A compiled Clojure function references

its function dependencies as static fields that are initialized during class loading. A

verification of function loading could strengthen the results. It was not attempted

here because the implementation of function loading relies on the Java Unsafe class.

Unsafe is a wrapper for native calls that directly modify memory. The behavior is

undefined in the JVM specification and the documentation of Unsafe is minimal and

its use is discouraged. MC could reason about some restricted use of Unsafe but

each class declaration would need to define how instances of the class are stored in

memory. A more complete model of Unsafe would require a more sophisticated JVM

model than MC.

The results are also limited by the assumption that the compiled form of the

analyzed Clojure code is representative of the form generated by compiling similar

Clojure code. A verified proof of the Clojure compilation process would significantly

improve the value of this work. To accomplish this goal, a formal specification would

need to be created from code analysis, and it would need to be verified that the

Clojure compiler implements the specification.

104

8.2 Big-Step Style Verification

MC uses small-step semantics but we reasoned about programs in it using a big-step

style. The -> macro equated states that eventually converge if both are executed

indefinitely. It is based on an implementation in Manolios & Moore (2003) for an

earlier ACL2 model of the JVM, but it is modified to improve the reliability that

theorems written using it are applied as rewrite rules. -> is used effectively to prove

theorems about methods using MC’s natural small-step semantics, but apply the

theorems as lemmas in a big-step style in the verification of larger programs.

In our experience, the use of -> does come at a cost. Rewrite rules were defined us-

ing -> for each JVM instruction, but they significantly lengthened ACL2’s proof time

because the rules were so frequently attempted. Therefore, the rules were disabled by

default. The rules for individual instructions were enabled after determining, through

analysis of the bytecode, their relevance to a specific proof. A new system, Stateman

(Moore, 2015), may eventually resolve this issue. Stateman is an ACL2 system that

incorporates generic proof techniques for verification using models like MC. Stateman

has produced promising results, but it does not currently support state equality so it

could not be applied to our big-step analysis.

8.3 JVM Model for Compiled Clojure

Our research investigated the feasibility of mapping Clojure functions to correspond-

ing ACL2 functions. We introduced MC, a new model of the JVM in ACL2, that was

developed from the existing M5 model to specifically address our research question.

Clojure relies heavily on interfaces, which are not supported in M5, so support was

added in MC. It required modifying the class declaration, implementing INVOKEIN-

TERFACE and CHECKCAST, and extending support of the INSTANCEOF instruc-

105

tion. Clojure is also a large program and MC does not scale well to programs with

many classes. Based on experiences with a similar model to MC, Liu (2006) suggests

a robust representation of Java classes. We followed that advice by developing an

abstraction layer for each class declaration that hides information from ACL2’s the-

orem prover unless it is needed. The abstraction layer improves the ability to prove

theorems about bytecode in MC.

While MC is a sophisticated model of the JVM, it does leave out many features.

Many of the excluded features only require adding the operational semantics of their

instructions. MC implements 138 of the 2041 bytecode instructions in the JVM 7

Specification (Lindholm et al., 2013). The instructions for floats and doubles are

not implemented, but account for 57 of the 66 unimplemented instructions. ACL2

has been used to verify models of IEEE compliant floating point models (Russi-

noff, 1998; Moore et al., 1998) that can be used as a basis for adding floats and

doubles to MC. The remaining nine unimplemented instructions are ATHROW, IN-

VOKEDYNAMIC, LOOKUPSWITCH, MONITORENTER, MONITOREXIT, TA-

BLESWITCH, and WIDE. M6 implements all of those instructions except INVOKE-

DYNAMIC and WIDE (Liu, 2006), and could be used as a basis for support. The

WIDE instruction extends the size of the reference into locals from 8-bit to 16-bit, so

it is only necessary for methods that require more than 256 local variables. Functional

code is usually written in small, concise functions that compile to small methods in

Java, so the need is minimal. Finally, Clojure does not currently support INVOKE-

DYNAMIC.

Some features are unsupported because there is not a clear corresponding con-

cept to relate it to in ACL2. MC does not support accessibility flags, overloaded

methods, and exceptions but support can be added based on the implementations

1Count does not include instructions BREAKPOINT, IMPDEP1, IMPDEP2 that are available
for use by debuggers.

106

in M6 (Liu, 2006). Adding overloaded methods is necessary to reason about Clojure

functions with optional parameters, but ACL2 does not support optional parameters,

so the one-to-one correspondence of the code would be weakened. However, it is still

possible, but an ACL2 function would need to be defined for each possible arity of

the Clojure function. Exception handling and accessibility modifiers, on the other

hand, are imperative programming features that are not common in functional pro-

gramming, so their exclusion is based on the language semantics being researched.

M5 and M6 both support multi-threaded programs, but MC removes it based on

the experience reported in Liu (2006) that verifying sequential programs takes an

unnecessary, and significant, performance hit by including it. ACL2 does not sup-

port multi-threaded code, so it lacks a corresponding syntax to relate multi-threaded

Clojure. However, future support is worthwhile for other research questions because

Clojure implements a software transactional memory (STM) system that shares im-

mutable objects between threads.

MC also does not support garbage collection but its absence is not considered

a significant limitation because when garbage collection is run is generally non-

deterministic. However, adding support for it to MC could be worthwhile for analysis

of Clojure. Studies have shown that, compared to Java, Clojure allocates more ob-

jects, that the objects are smaller, and that their lifespans are shorter (Li et al., 2013;

Sarimbekov et al., 2013). The JVM does not specify the behavior of garbage col-

lection, but systems that allocate a lot of objects with short lifespans will generally

trigger the garbage collector frequently.

8.4 Verification of Bignum Addition

Bignum arithmetic has been represented in little-endian format in prior work. Java’s

BigInteger class represents bignums in big-endian format. The change in represen-

107

tation complicates reasoning about bignum values because the interpretation of an

individual element changes based on the length of the array. A big-endian bignum

addition function was verified in this dissertation. It is an early result in the process

of verifying BigInteger operations.

The verified function is not yet attached to the BigInteger bytecode. The byte-

code implements the behavior with multiple loops and a native method call that

extends the length of the result when necessary. Similar to the every-other verifi-

cation, the loops are treated as segments. The exit of a loop must run to the entry of

the next. Each loop requires an invariant to be defined that demonstrates the correct

value is accumulated during each iteration. We are in the process of defining those

invariants.

The BigInteger class was considered in this dissertation because Clojure supports

bignums using it. Bignums are also used extensively in cryptography (Denis & Rose,

2006). Since Java is a commonly used language and it represents bignums uniquely,

the verification of BigInteger is a worthwhile goal by itself.

8.5 Summary

This research pursues a verified Clojure core library in ACL2. With a verified core

library, new Clojure functions that are defined can be reasoned about directly in

ACL2 with a significant degree of reliability. The degree of reliability is based on the

properties verified about the Clojure code and the fidelity of MC with respect to the

desired properties. In this dissertation, the properties that are verified state that the

behavior of the Clojure code is equivalent to corresponding ACL2 code. Since ACL2

is formal Common Lisp, it is a reliable specification of the proper behavior of the

Clojure functions. MC is also a trustworthy model when considering the behavior of

Clojure functions that are capable of being transcribed to ACL2. Most of the missing

108

features can be implemented based on existing examples in the literature. However,

many of the missing features do have not a corresponding implementation in ACL2

so their exclusion does not detract from the research question, which focuses on the

verification of Clojure functions with corresponding implementations in ACL2.

The research question, ultimately, is pursued towards the goal of simplifying the

adoption of formal methods in industrial software development. Formal methods

prioritize the specification phase, which helps detect defects earlier (Clarke & Wing,

1996), but also means the overhead of using formal methods is felt early in the

project while the benefit is not realized until the maintenance phase. A benefit

of using Clojure with ACL2 is that the similarity in the code makes it easier to

apply verification at a later stage of development, even after some of the system has

been developed. This shifts the overhead of formal methods closer to the benefit and

increases the chances it will be seen as worthwhile. Eventually, this can lead to lower

maintenance costs for companies and higher quality software for users.

109

Bibliography

Abran, A., & Nguyenkim, H. (1991). Analysis of maintenance work categories through
measurement. In Proceedings of the Conference on Software Maintenance (pp. 104–
113). doi:10.1109/ICSM.1991.160315.

Affeldt, R. (2013). On construction of a library of formally verified low-level arithmetic
functions. Innovations in Systems and Software Engineering , 9 , 59–77. doi:10.
1007/s11334-013-0195-x.

Basili, V. R., Briand, L. C., Condon, S. E., Kim, Y., Melo, W. L., & Valett, J. D.
(1996). Understanding and predicting the process of software maintenance release.
In Proceedings of the 18th International Conference on Software Engineering ICSE
’96 (pp. 464–474). Washington, DC, USA: IEEE Computer Society.

Berghofer, S. (2012). Verification of Dependable Software using SPARK and Isabelle.
In J. Brauer, M. Roveri, & H. Tews (Eds.), 6th International Workshop on Systems
Software Verification (pp. 15–31). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik volume 24 of OpenAccess Series in Informatics (OASIcs).
doi:10.4230/OASIcs.SSV.2011.15.

Boehm, B., & Basili, V. R. (2001). Software defect reduction top 10 list. Computer ,
34 , 135–137. doi:10.1109/2.962984.

Boehm, B. W. (1987). Improving software productivity. Computer , 20 , 43–57. doi:10.
1109/MC.1987.1663694.

Börger, E., Fruja, N. G., Gervasi, V., & Stärk, R. F. (2005). A high-level modular
definition of the semantics of C#. Theoretical Computer Science, 336 , 235–284.
doi:10.1016/j.tcs.2004.11.008.

Boulton, R. J., Gordon, A., Gordon, M. J. C., Harrison, J., Herbert, J., & Tassel,
J. V. (1992). Experience with embedding hardware description languages in HOL.
In Proceedings of the IFIP TC10/WG 10.2 International Conference on Theorem
Provers in Circuit Design: Theory, Practice and Experience (pp. 129–156). North-
Holland Publishing Co.

Boyer, R. S., & Yu, Y. (1996). Automated proofs of object code for a widely used
microprocessor. Journal of the ACM , 43 , 166–192. doi:10.1145/227595.227603.

Ciobâcă, Ş. (2013). From small-step semantics to big-step semantics, automatically.
In Integrated Formal Methods, 10th International Conference, IFM 2013, Turku,
Finland, June 10-14, 2013. Proceedings (pp. 347–361). Berlin, Heidelberg: Springer
Berlin Heidelberg. doi:10.1007/978-3-642-38613-8_24.

110

http://dx.doi.org/10.1109/ICSM.1991.160315
http://dx.doi.org/10.1007/s11334-013-0195-x
http://dx.doi.org/10.1007/s11334-013-0195-x
http://dx.doi.org/10.4230/OASIcs.SSV.2011.15
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.1016/j.tcs.2004.11.008
http://dx.doi.org/10.1145/227595.227603
http://dx.doi.org/10.1007/978-3-642-38613-8_24

Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future
directions. ACM Computing Surveys , 28 , 626–643. doi:10.1145/242223.242257.

Denis, T. S., & Rose, G. (2006). BigNum math — implementing cryptographic multiple
precision arithmetic. Syngress.

Dillinger, P. C., Manolios, P., Vroon, D., & Moore, J. S. (2007). ACL2s: “The ACL2
Sedan”. In Companion to the Proceedings of the 29th International Conference on
Software Engineering ICSE COMPANION ’07 (pp. 59–60). Washington, DC, USA:
IEEE Computer Society. doi:10.1109/ICSECOMPANION.2007.14.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional ,
2 , 17–23. doi:10.1109/6294.846201.

Fischer, S. (2007). Formal Verification of a Big Integer Library Including Division.
(Master’s thesis). Saarland University.

Gordon, M. J. C., & Melham, T. F. (Eds.) (1993). Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. New York, NY, USA: Cambridge
University Press.

Graves, T. L., & Mockus, A. (1998). Inferring change effort from configuration
management databases. In 5th IEEE International Software Metrics Sympo-
sium , March 20-21, 1998, Bethesda, Maryland, USA METRICS 1998 (p. 267).
doi:10.1109/METRIC.1998.731253.

Hardin, D. S. (2015). Reasoning about LLVM code using Codewalker. In Proceedings
Thirteenth International Workshop on the ACL2 Theorem Prover and Its Appli-
cations, Austin, Texas, USA, 1-2 October 2015. (pp. 79–92). doi:10.4204/EPTCS.
192.7.

Havelund, K., Lowry, M., & Penix, J. (2001). Formal analysis of a space-craft con-
troller using SPIN. IEEE Transactions on Software Engineering , 27 , 749–765.
doi:10.1109/32.940728.

Hecht, H., Hecht, M., & Wallace, D. R. (1997). Toward more effective testing for
high-assurance systems. In 2nd High-Assurance Systems Engineering Workshop
HASE ’97 (pp. 176–181). Washington, DC, USA: IEEE Computer Society. doi:10.
1109/HASE.1997.648060.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communi-
cations of the ACM , 12 , 576–580. doi:10.1145/363235.363259.

Hoare, C. A. R. (1996). How did software get so reliable without proof? In M.-
C. Gaudel, & J. Woodcock (Eds.), FME’96: Industrial Benefit and Advances in
Formal Methods book section 1. (pp. 1–17). Springer Berlin Heidelberg volume
1051 of Lecture Notes in Computer Science. doi:10.1007/3-540-60973-3_77.

111

http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1109/ICSECOMPANION.2007.14
http://dx.doi.org/10.1109/6294.846201
http://dx.doi.org/10.1109/METRIC.1998.731253
http://dx.doi.org/10.4204/EPTCS.192.7
http://dx.doi.org/10.4204/EPTCS.192.7
http://dx.doi.org/10.1109/32.940728
http://dx.doi.org/10.1109/HASE.1997.648060
http://dx.doi.org/10.1109/HASE.1997.648060
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/3-540-60973-3_77

Holzmann, G. J. (2001). Economics of software verification. In Proceedings of the 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering PASTE ’01 (pp. 80–89). New York, NY, USA: ACM. doi:10.1145/
379605.379681.

Hunt, W. A., Jr. (1994). FM8501: A Verified Microprocessor volume 795 of Lecture
Notes in Computer Science. Springer. doi:10.1007/3-540-57960-5.

Kaufmann, M., Moore, J. S., & Manolios, P. (2000). Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., & Winwood,
S. (2009). seL4: Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles SOSP ’09 (pp. 207–
220). New York, NY, USA: ACM. doi:10.1145/1629575.1629596.

Krein, J. L., MacLean, A. C., Knutson, C. D., Delorey, D. P., & Eggett, D. L.
(2010). Impact of programming language fragmentation on developer productiv-
ity: A sourceforge empirical study. International Journal of Open Source Software
Processes , 2 , 41–61. doi:10.4018/jossp.2010040104.

Leroy, X. (2009). Formal verification of a realistic compiler. Communications of the
ACM , 52 , 107–115. doi:10.1145/1538788.1538814.

Li, W. H., White, D. R., & Singer, J. (2013). JVM-hosted languages: They talk
the talk, but do they walk the walk? In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools PPPJ ’13 (pp. 101–112). New York, NY,
USA: ACM. doi:10.1145/2500828.2500838.

Lindholm, T., Yellin, F., Bracha, G., & Buckley, A. (2013). The Java Virtual Machine
Specification, Java SE 7 Edition. Addison-Wesley Professional.

Liu, H. (2006). Formal Specification and Verification of a JVM and Its Bytecode
Verifier . (Doctoral dissertation). University of Texas.

Liu, H., & Moore, J. S. (2003). Executable JVM model for analytical reasoning:
a study. In Proceedings of the 2003 Workshop on Interpreters, Virtual Machines
and Emulators IVME ’03 (pp. 15–23). New York, NY, USA: ACM. doi:10.1145/
858570.858572.

Liu, H., & Moore, J. S. (2004). Java program verification via a JVM deep em-
bedding in ACL2. In K. Slind, A. Bunker, & G. Gopalakrishnan (Eds.), The-
orem Proving in Higher Order Logics book section 14. (pp. 184–200). Springer
Berlin Heidelberg volume 3223 of Lecture Notes in Computer Science. doi:10.
1007/978-3-540-30142-4_14.

112

http://dx.doi.org/10.1145/379605.379681
http://dx.doi.org/10.1145/379605.379681
http://dx.doi.org/10.1007/3-540-57960-5
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.4018/jossp.2010040104
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/2500828.2500838
http://dx.doi.org/10.1145/858570.858572
http://dx.doi.org/10.1145/858570.858572
http://dx.doi.org/10.1007/978-3-540-30142-4_14
http://dx.doi.org/10.1007/978-3-540-30142-4_14

Lloyd, J. W. (1994). Practical advantages of declarative programming. In Joint
Conference on Declarative Programming, GULP-PRODE’94 (pp. 18–30).

Manolios, P., & Moore, J. (2003). Partial functions in ACL2. Journal of Automated
Reasoning , 31 , 107–127. doi:10.1023/B:JARS.0000009505.07087.34.

Maxwell, K. D., Wassenhove, L. V., & Dutta, S. (1996). Software development pro-
ductivity of European space, military, and industrial applications. IEEE Transac-
tions on Software Engineering , 22 , 706–718. doi:10.1109/32.544349.

McKee, J. R. (1984). Maintenance as a function of design. In Proceedings of the
July 9-12, 1984, National Computer Conference and Exposition AFIPS ’84 (pp.
187–193). New York, NY, USA: ACM. doi:10.1145/1499310.1499334.

Miller, A. (2016). Clojure Companies. URL: http://clojure.org/community/

companies.

Moore, J. S. (1989). A mechanically verified language implementation. Journal of
Automated Reasoning , 5 , 461–492. doi:10.1007/BF00243133.

Moore, J. S. (1999). Proving theorems about Java-like byte code. In E.-R. Olderog, &
B. Steffen (Eds.), Correct System Design book section 7. (pp. 139–162). Springer
Berlin Heidelberg volume 1710 of Lecture Notes in Computer Science. doi:10.
1007/3-540-48092-7_7.

Moore, J. S. (2002). A grand challenge proposal for formal methods: A verified stack.
In Formal Methods at the Crossroads. From Panacea to Foundational Support (pp.
161–172). doi:10.1007/978-3-540-40007-3_11.

Moore, J. S. (2003). Proving theorems about Java and the JVM with ACL2. In
Models, Algebras and Logic of Engineering Software (pp. 227–290). IOS Press.

Moore, J. S. (2006). Inductive assertions and operational semantics. International
Journal on Software Tools for Technology Transfer , 8 , 359–371. doi:10.1007/
s10009-005-0180-2.

Moore, J. S. (2015). Stateman: Using metafunctions to manage large terms rep-
resenting machine states. In Proceedings Thirteenth International Workshop on
the ACL2 Theorem Prover and Its Applications, Austin, Texas, USA, 1-2 October
2015. (pp. 93–109). doi:10.4204/EPTCS.192.8.

Moore, J. S., Lynch, T. W., & Kaufmann, M. (1998). A mechanically checked proof

of the AMD5k86tm floating point division program. IEEE Transactions on Com-
puters , 47 , 913–926. doi:10.1109/12.713311.

Moore, J. S., & Porter, G. (2001). M5 ACL2 arithmetic book (source code). https:
//github.com/acl2/acl2/tree/master/books/models/jvm/m5.

113

http://dx.doi.org/10.1023/B:JARS.0000009505.07087.34
http://dx.doi.org/10.1109/32.544349
http://dx.doi.org/10.1145/1499310.1499334
http://clojure.org/community/companies
http://clojure.org/community/companies
http://dx.doi.org/10.1007/BF00243133
http://dx.doi.org/10.1007/3-540-48092-7_7
http://dx.doi.org/10.1007/3-540-48092-7_7
http://dx.doi.org/10.1007/978-3-540-40007-3_11
http://dx.doi.org/10.1007/s10009-005-0180-2
http://dx.doi.org/10.1007/s10009-005-0180-2
http://dx.doi.org/10.4204/EPTCS.192.8
http://dx.doi.org/10.1109/12.713311
https://github.com/acl2/acl2/tree/master/books/models/jvm/m5
https://github.com/acl2/acl2/tree/master/books/models/jvm/m5

Moore, J. S., & Porter, G. (2002). The apprentice challenge. ACM Transactions on
Programming Languages and Systems , 24 , 193–216. doi:10.1145/514188.514189.

Myreen, M., & Curello, G. (2013). Proof pearl: A verified bignum implementation
in x86-64 machine code. In G. Gonthier, & M. Norrish (Eds.), Certified Programs
and Proofs book section 5. (pp. 66–81). Springer International Publishing volume
8307 of Lecture Notes in Computer Science. doi:10.1007/978-3-319-03545-1_5.

Newcombe, C. (2014). Why Amazon chose TLA+. In Y. Ait Ameur, & K.-D.
Schewe (Eds.), Abstract State Machines, Alloy, B, TLA, VDM, and Z: 4th In-
ternational Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceed-
ings (pp. 25–39). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/
978-3-662-43652-3_3.

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., & Deardeuff, M.
(2015). How Amazon web services uses formal methods. Communications of the
ACM , 58 , 66–73. doi:10.1145/2699417.

Nguyen, V., Boehm, B., & Danphitsanuphan, P. (2009). Assessing and estimating
corrective, enhancive, and reductive maintenance tasks: A controlled experiment.
In Software Engineering Conference, 2009. APSEC ’09. Asia-Pacific (pp. 381–388).
doi:10.1109/APSEC.2009.49.

Nguyen, V., Huang, L., & Boehm, B. (2011). An analysis of trends in productivity
and cost drivers over years. In Proceedings of the 7th International Conference on
Predictive Models in Software Engineering Promise ’11 (pp. 3:1–3:10). New York,
NY, USA: ACM. doi:10.1145/2020390.2020393.

Nipkow, T., & Paulson, L. C. (1992). Isabelle-91. In D. Kapur (Ed.), Proceedings of
the 11th International Conference on Automated Deduction (pp. 673–676). Springer
Berlin Heidelberg volume 607 of Lecture Notes in Computer Science. doi:10.1007/
3-540-55602-8_201.

Owre, S., Rushby, J. M., & Shankar, N. (1992). PVS: A prototype verification sys-
tem. In Proceedings of the 11th International Conference on Automated Deduction:
Automated Deduction CADE-11 (pp. 748–752). London, UK, UK: Springer-Verlag.

Ralston, R. (2016). Translating Clojure to ACL2 source code. https://github.com/
rlralston/clojure-acl2.

Russinoff, D. M. (1998). A mechanically checked proof of IEEE compliance of the
floating point multiplication, division and square root algorithms of the AMD-K7
processor. LMS Journal of Computation and Mathematics , 1 , 148–200. doi:10.
1112/S1461157000000176.

Russinoff, D. M. (2005). A formal theory of register-transfer logic and computer arith-
metic. URL: http://www.russinoff.com/libman/index.html [Online; accessed
22-May-2015].

114

http://dx.doi.org/10.1145/514188.514189
http://dx.doi.org/10.1007/978-3-319-03545-1_5
http://dx.doi.org/10.1007/978-3-662-43652-3_3
http://dx.doi.org/10.1007/978-3-662-43652-3_3
http://dx.doi.org/10.1145/2699417
http://dx.doi.org/10.1109/APSEC.2009.49
http://dx.doi.org/10.1145/2020390.2020393
http://dx.doi.org/10.1007/3-540-55602-8_201
http://dx.doi.org/10.1007/3-540-55602-8_201
https://github.com/rlralston/clojure-acl2
https://github.com/rlralston/clojure-acl2
http://dx.doi.org/10.1112/S1461157000000176
http://dx.doi.org/10.1112/S1461157000000176
http://www.russinoff.com/libman/index.html

Sarimbekov, A., Podzimek, A., Bulej, L., Zheng, Y., Ricci, N., & Binder, W. (2013).
Characteristics of dynamic JVM languages. In Proceedings of the 7th ACM Work-
shop on Virtual Machines and Intermediate Languages VMIL ’13 (pp. 11–20). New
York, NY, USA: ACM. doi:10.1145/2542142.2542144.

Schumann, J. M. (2001). Automated Theorem Proving in Software Engineering .
Berlin: Springer-Verlag Berlin Heidelberg.

Scott, D., & Strachey, C. (1971). Toward a Mathematical Semantics for Computer
Languages . Programming Research Group Technical Monograph PRG-6 Oxford
University Computing Lab.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., Port, D.,
Rus, I., Tesoriero, R., & Zelkowitz, M. (2002). What we have learned about fighting
defects. In Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on (pp.
249–258). doi:10.1109/METRIC.2002.1011343.

Strecker, M. (2002). Formal verification of a Java compiler in Isabelle. In A. Voronkov
(Ed.), Proceedings of the 18th International Conference on Automated Deduction
CADE-18 (pp. 63–77). Springer-Verlag. doi:10.1007/3-540-45620-1_5.

Swords, S., & Davis, J. (2011). Bit-Blasting ACL2 Theorems. In D. Hardin, &
J. Schmaltz (Eds.), Proceedings 10th International Workshop on the ACL2 Theorem
Prover and its Applications (pp. 84–102). Open Publishing Association volume 70
of Electronic Proceedings in Theoretical Computer Science. doi:10.4204/EPTCS.
70.7.

Théry, L., Letouzey, P., & Gonthier, G. (2006). Coq. In F. Wiedijk (Ed.), The Seven-
teen Provers of the World book section 6. (pp. 28–35). Springer Berlin Heidelberg
volume 3600 of Lecture Notes in Computer Science. doi:10.1007/11542384_6.

Tuch, H. (2008). Formal Memory Models for Verifying C Systems Code. (Doctoral
dissertation). The University of New South Wales.

Wilding, M., Greve, D., & Hardin, D. (2001). Efficient simulation of formal pro-
cessor models. Formal Methods in System Design, 18 , 233–248. doi:10.1023/A:
1011217102270.

Winskel, G. (1993). The Formal Semantics of Programming Languages: An Intro-
duction. Cambridge, MA, USA: MIT Press.

115

http://dx.doi.org/10.1145/2542142.2542144
http://dx.doi.org/10.1109/METRIC.2002.1011343
http://dx.doi.org/10.1007/3-540-45620-1_5
http://dx.doi.org/10.4204/EPTCS.70.7
http://dx.doi.org/10.4204/EPTCS.70.7
http://dx.doi.org/10.1007/11542384_6
http://dx.doi.org/10.1023/A:1011217102270
http://dx.doi.org/10.1023/A:1011217102270

	Acknowledgements
	List of Figures
	Abstract
	Introduction
	Contributions
	Verification of Bignum Addition
	JVM Model for Compiled Clojure
	Big-Step Style Verification
	Verification of a Recursive Sequence Clojure Function

	Summary

	Research Methodology
	Definitions
	Models
	Conventions

	ACL2
	The Programming Language
	The Theorem Prover
	The Method

	Clojure
	Methodology

	Big-Endian Bignum Arithmetic
	BigInteger Specification
	Proof Sketch
	Unsigned, Little-Endian Add
	Signed, Little-Endian Add
	Signed, Big-Endian Add
	Summary

	The Java Virtual Machine Model
	Structures
	Method Invocation
	Stepping the Machine
	Summary

	Java Class Models
	Structure of the Class Declaration
	Static Fields
	Loading and Dependencies
	Class Instances
	Method Lookup
	Constructors
	Summary

	Sequences as Lists
	Sequence Overview
	Sequence Allocation
	Static Run-Time Methods
	Seq
	First
	Rest
	Cons

	Function Classes
	Summary

	Sequence Recursion
	Cutpoints
	Base Case
	Prelude
	Postlude
	Internal Segment
	Proof of Correctness

	Conclusion
	Verification of a Recursive Sequence Clojure Function
	Big-Step Style Verification
	JVM Model for Compiled Clojure
	Verification of Bignum Addition
	Summary

	Bibliography

