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Abstract
Two methods are developed to deal with the problem of unequal 

class frequencies when the reliability of the mean rating on a single 
evaluation item is desired. Following the derivation of the linear 
models and the accompanying estimation methods, simulation results 
are presented, comparing the proposed methods with methods based on 

true replication of the evaluation procedure.



RELIABILITY THEORY FOR TEACHER EVALUATIONS:
SOME PARTIAL REPLICATION METHODS

Because student evaluations of teachers may play an important 
part in reaching decisions on promotion, tenure, and salary increases, 

such evaluations should be examined for reliability and validity as 

measurement instruments. Evaluation reliability, the subject of this 
paper, deals with the determination of the extent to which ratings 
given an instructor reflect true abilities rather than evaluation 

"noise," Studies of evaluation reliability have usually been conducted 
in the same manner as other measurement techniques. Costin (1968, 1971) 

used the test—retest coefficient of stability with factor scores derived 
from evaluations given at two points in the sat& semester and on factor 
scores from successive semesters. Somers and Southern (1974) confuted 

estimates of internal consistency by means of coefficient alpha and 
average item intercorrelations.

However, several factors distinguish the assessment of the 
reliability of teacher evaluations from other measurement situations. 

First, since the amount of time allotted for completing an evaluation 
is normally limited to part of one class period, it is not desirable 

to increase the number of items in order to increase the reliability 
of the entire instrument. Thus the reliability of individual items is
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of critical importance. Second, instructors are usually compared with 

their colleagues on the basis of the mean (or median) rating received 
on each item, rather than on the basis of the ratings given by individual 

students. Third, except in special circumstances, evaluations are 
generally conducted only once a semester. Multiple administrations of 

evaluations usually require obtaining the permission of instructors and 
administration, which may lead to use of a biased sample. In some cases, 
evaluations are conducted more than once in order to give instructors 

"feedback" about their teaching, in which case a coefficient of stability 
would be inappropriate.

We are therefore interested in determining the reliability of a 
single average score received on an item administered only once. The 
classical methods of test-retest and parallel forms require more class time 

to be sacrificed and may be contaminated by memory or fatigue effects. 
Furthermore, Lord.and Novick (1968, Ch. 7) have pointed out the inadequacies 

of these methods when class sizes are moderate or when it is not reasonable 
to assume parallelism of the raters.

Two theories that lend themselves to the evaluation situation as 
described are generalizability theory (see, e.g., Cronbach, Rajaratnam, 
and Gleser, 1963) and generic true score theory (Lord and Novick, 1968,
Ch. 7). These equivalent theories generate estimation methods based upon 

the random selection of instrucgors, items, subject matter, etc., to serve 

as levels of random factors in an analysis of variance (ANOVA) design.
The meaning of reliability in such a setting is our ability to generalize 

the results of the evaluation to larger populations from which we have 
sampled our effects.
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For such a formulation, we can define several different "true" 
scores for each observed rating by defining a true score as the expected 
value of the observed score across certain of the populations. For 
instance, the true score for instructor j on item k of an evaluation is
the expected value of the observed rating of instructor j on item k, with

the expectation taken across the populations of student raters, subject 
matter, etc. That is, the universe score of generalizability theory or the
true score of generic true score theory corresponds to a main effect mean
or a cell mean of the ANOVA framework.

Furthermore, for each of the ways in which we can define a 

true score, we can define a reliability coefficient as the intraclass 
correlation coefficient associated with the effects of interest. The 
intraclass correlation coefficient, as a ratio of variance components, 
tells us the extent to which observed score variability is due to the 

variability of the effects in which we are interested, and is thus 

essentially equivalent to the reliability coefficient of classical true 
score test theory.

For the situation under discussion, that of determining the 
reliability of a single item, a one-way random ANOVA would be used with 

instructors as the single main effect and student raters nested 
within instructor "conditions". Implementation of this design would 

require random selection of a number of instructors, such that no 
instructor is selected more than once and, ideally, such that no student 

is in more than one of the associated classes. The mean square between 
instructors and the mean square within instructors are used to form 
estimates of true score variance and observed score variance, and the
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ratio of these estimates is used as an estimate of the intraclass 
correlation, or reliability, coefficient.

From the computational point of view, the simplest design is 
one with equal numbers of students rating each instructor. This condi­

tion will rarely be met in practice if instructor-class combinations 
are indeed randomly sampled for the estimation procedure. One instructor 

may be evaluated by a five-person graduate seminar, while another is 
evaluated by a 500—student survey course. Even if instructors are 
sampled from categories such as "large lecture," "small lecture," or 

"laboratory course," and a reliability coefficient is computed for each 

category, there will still be some disparity in the number of students 
rating each instructor. Class mean ratings will therefore be computed 
on different numbers of ratings, and the derivations of the estimates 

of variance components is no longer the simple procedure outlined in 
standard texts (e.g., Scheffe, 1959, p.228; Winer, 1971, p. 286).

Suppose four instructors are selected for the purposes of 

estimating item reliability. If their classes are included in a cate­
gory such as "small lecture," the number of students in the classes 

will probably be comparable but not necessarily equal. Class sizes 
might be 10, 24, 30, and 40. Generalizability theory and generic true 

score theory have been developed, for the most part, on the basis of 

equal class sizes. Should we therefore discard ratings from the three 
larger classes in order to have 10 ratings per instructor? To do so 
means ignoring 62% of the information gathered; it would be preferable 
to find some way to use all the data.

Two recent studies attempted to use generalizability theory
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to assess evaluation reliability. Doyle and Whitely (1974), in an 

equivocal analysis, seem to have circumvented the problem of unequal 
class sizes by not reporting them, while Kane, Gillmore, and Crooks 

(1976) discarded data from the sampled classes in order to balance the 
design. Neither of these approaches may be viewed as exemplary of the 

use of the generic true score-generalizability methodology.
While directing their considerations mainly to the balanced 

ANOVA designs, Cronbach, Gleser, Nanda, and Rajaratnam (1972, pp. 207- 

208) acknowledge the problem of unequal class frequencies and suggest 
that, rather than discard information, an unbalanced ANOVA design be 

used, following the work of Graybill (1961). In making this recommenda­
tion, Cronbach e^ al. do not indicate that the resulting intraclass 

correlation estimate is based on a single rating and should be adjusted 
by the Spearman-Brown formula to reflect the reliability of the class 
mean rating. Nor do they give the form of the population reliability 

coefficient being estimated. The present paper will determine both the 
form of the population coefficient and the method for adjusting the 
reliability of a single rating to reflect the reliability of the class 
mean rating.

In addition, we will investigate the adequacy of another method 
of dealing with the problem of unequal class sizes. Suppose we balance 

the ANOVA design by randomly dividing each class in half, compute the 
mean rating for each class-half, and then use the class-half mean rat­
ings as the observations in the reliability estimation process. Again, 

the Spearman-Brown formula would be used to reflect the reliability of 
the mean rating for the whole class. Such a method would leave the
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mean rating for each instructor unchanged, provide an equal number of 
ratings for each instructor, and base the reliability not on single 

ratings, but on mean ratings for each half of each class.
In each of these methods we are estimating the performance 

of actual replication of the mean rating by using either a mean based 
on half as many ratings or by a mean based on only one rating. Use of 

the class-half method is the closer approximation, intuitively, and will 
be referred to as the "first-order partial replication of the mean," 

since each half of each class serves as a partial replicate of the 
performance of the entire class. The method using the reliability of 
a single rating is less closely related to the performance of the whole 

class and will be referred to as the "second-order partial replication 
of the mean."

Two differences between the partial replication methods are 
immediately obvious. Based on more information, the first-order method 

uses "observations" with a smaller error variance than those used in 
the second-order method. However, the first-order method uses fewer 

"observations" per instructor in the ANOVA-based estimation process than 

does the second-order method. The present paper will examine the effects 
of these differences on the performance of the two methods of estimation.

Linear Models
Suppose that J instructors are selected for the purpose of 

estimating the reliability of a given item on an evaluation instrument. 
Suppose that instructor j is rated by n^ students, and let be the 

rating given instructor j by student i. Let Çj be the mean rating



Evaluation Reliability
7

received by instructor j over the population of student raters, i.e.,
Çj = E^(X^j). The quantity ç^, called the universe score by Cronbach 

et al. (1963) or the generic true score by Lord and Novick (1968), is 
a random variable over instructors and is closely related to the true score of
classical test theory. The observed rating can be expressed as

Cl)

where = X^j - Çj is the residual or "generic error of measurement."
The corresponding linear model for the one-way random ANOVA is

= p + aj + (2)

where y is the expected rating over raters and instructors, a^ is the 

deviation pj - y of the expected rating of instructor j from the over­
all mean, and e^j is the ANOVA residual or error term. For fixed j and 

the usual ANOVA assumption of zero expectation of the errors, the true 
score Çj is given in ANOVA terras as

Cj = = E^(p + aj + = p + aj = yj. (3)

Thus Çj of the true score model equals yij of the ANOVA model, and hence 

both models, the error term includes all discrepancies 

between the observed rating and its expected value, including any inter­
actions between instructor and item, rater and instructor, etc.

The coefficient of reliability (or generalizability or generic 

reliability) for a single rating, p2(X,ç), is the proportion of the 
observed rating variance (X) that is linearly predictable from the 
true scores, i.e..
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p 2 ( x , ç )  = o %  ) /  o ^ X )  ( 4 )

where ct̂ (ç) is the variance of the true scores Çj. For true scores and 
error scores uncorrelated, (4) can be written as

p2(x,ç) = o^ç)/{a2(ç) +a2(e);^ (5)

where (e ) is the variance of the generic errors, e^j.

Using the ANOVA model for X^j, we can express the reliability
p^(X,ç) as the intraclass correlation coefficient for the random in­

structor effect, i.e.,

P^(X,ç) = (a) + a ^ ( e ) }  (6)

where (a) is the variance of the instructor effects aj, and (e) is

the variance of the residuals ê ĵ.

The formula for the intraclass correlation coefficient given 
in (6) is the reliability for a single rating if the errors e^j have 

equal variances. The reliability of the class mean rating,P^(X,4), is 
found by replacing the variance of e^^ in (6) with the variance of the 

mean error for a class, e.j, i.e., by replacing (e) by u^Cej) = a^(e)/n^ 
to give

p2(X,ç) = a^(a)/{cr^(a) +  cr^(ej)} (7)

= cr^(a)/{a^(a) +  a^(e)/n^> . (8)

If n^ « n2 = = nj = n, the result is one reliability coefficient
for the item; however, if the n^ vary from class to class, then we can 

derive a separate coefficient for each class size. This may be desir—
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able if evaluations can be tailored to fit different classes. In general, 
however, we will be interested in an item's reliability across a range 

of class situations. Since true score variance is constant, we are most 
likely interested in the proportion of the average observed rating 
variance that is linearly predictable from the true scores. This pro­

portion is given by

p2(X,ç) = o2(a)/a2(x) (9)

= o^(a)/(o^(a) + tj2(e)/nj}. (11)

Now a^(e)/nj = (l/J)l{a^(e)/n. } (12)
j

={o2(e)/J} 2(l/n.) (13)
j

= a2(e)/{J/Z(l/nj)} (14)

= 02(e)/n, (15)
where n is the harmonic mean of the nj - Thus,

P^(X,ç) = a^(a)/{a^(a) + o^(e)/n} . (16)
The coefficient given in (16) is the second-order partial replication 

coefficient of reliability for the situation of unequal class sizes.

The usual methods of estimating intraclass correlations from 
sançle data involve combining the mean square between instructors and 
the mean square within instructors in accordance with their expected 

values to obtain unbiased estimates of o^(a) and o^(e). For the 

unbalanced one-way ANOVA being considered, Graybill (1961) gives the
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expected values for the mean square between instructors (MS )̂ and the 

mean square within instructors (MS^) as

E(MS^) = o2(e) + Ka^Ca) (17)

and E(MS;j) = 0 2 (e) (18)

where K = (N^ - En?)/N(J - 1) and N = liij . Unbiased estimates of a^(e)
3 J 2

and (a) are given by

02(e) = MSjj (19)

and a2(a) = (MS^ - MS^)/K . (20)

An estimate p2(x,ç) of p2(x,ç) is given by

p2(X,ç) = {(MSg - MS^) /K)/{(MSg - MS^)/K + MS„} (21)

= (MSg - MSgP/{MSg + (K - 1)MS^} . (22)

An estimate, p2(x,ç), of the second-order partial replication 

reliability of the class mean p2(x,ç) is given by

P^(X,Ç) = {(MSg - MSw)/K}/{(MSg " MS%)/K + MS„/ft} (23)

= n(MSg - MS„)/{a(MSg + (K..- »)MS„}, (24)

the same result given by the Spearman-Brown formula for the reliability 
of a test lengthened n times.

The foregoing results can readily be generalized to the case 
of unequal variances for the errors by substitution of the average 

error variance for the common error variance in (6) through (18);



Evaluation Reliability
11

however, the form of the estimates is the same.

The linear model for the first-order partial replication 
method can be written, in true score terms, as

?lj - Cj +

where Y —  is the mean rating given instructor j by the i-th partial 
replicate of the class (i = 1, 2), is the true score previously 
defined, and is the mean error for partial replicate i. The ANOVA
model corresponding to (25) is

= U + â  + (25)

where , p, and â  are as previously defined, and is the mean

ANOVA error for partial replicate i within instructor j*s class. Again 

pj = Çj and Ç ĵ = ^ij» and the tautology is complete.
Assuming that the errors of the individual raters have equal 

variances, and assuming that the two pe
are of equal size, the variances for the mean errors (and the mean rat­
ings) will be equal within each class, but unequal between classes of 
different sizes. Using the same approach as before, we can find the 

reliability for the item as the proportion of the average rating varia­
bility that is linearly predictable from the true scores, i.e..

p^(Y,ç) = o2(ç)/o2(Y) = a2(a)/{a^(a) + (Ç)} . (27)

The mean error variance a^(ç) is the average of the a^(Çj) = a^(e)/(nj/2) 

s

p^(Y,ç) = cr̂ (a)/{o^(a> + 2o^(e)/n} . (28)

2a^(e)/nj. Thus
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The first-order partial replication reliability of the mean rating for 

the entire class is then given by

p2(Y.Ç) = o2(a)/{a2(a) + a2(Ç)/2} (29)

= o2(a)/{a2(a) + a2(e)/n}, (30)

Che same parameter as in (16). The parameters P^(Y.C) and p2(Y,ç) can 
be estimated in the same manner as before, using the linear model in 
(26). The relationships between the mean square between (MSgf) and
the mean square within (MS^,) and the variances (a) and (̂ ) are 
given by the formulas

E(MS„,) = + 2o2(a) (31)

and E(MS„,) = a H O -  (32)

Following the estimation techniques outlined earlier, we form 

estimates of p^(Y,ç) and p^(Y,ç), respectively, as

p2(Y,ç) = (MSg, - MS„,)/(MSg, + MS^,) (33)

and p2(Ÿ,ç) = (MSg, - MS^,)/MSg, . (34)

Again, this procedure may be adapted to the case of unequal variances 

of the individual rater error scores by the substitution suggested 

previously for the second-order method.
Let us summarize the differences in the estimates p2(X,ç) 

and p^(Y,ç). In using p^(X,ç) as an estimate of the reliability of the 

mean rating for the entire class, we are essentially finding the relia­
bility for a single rater in the class and boosting that reliability
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by the Speannan-Brown formula to represent the reliability of the mean 
rating for the entire class. If we assume equal error variances for 

all raters (parallel raters), then we still have to contend with the 
problem of unequal class frequencies through use of an unbalanced 

ANOVA design. If we use P^(Y,ç) as an estimate of class mean reliability, 
we are using the mean rating for half the class as an approximation to 
the mean of the entire class. The Spearman-Brown formula is again used 

to reflect the reliability of the mean rating based on all ratings in 
each class. However, regardless of the equality or inequality of the 

error variances for the individual raters, we must use estimation pro­

cedures that take into account the unequal variances of the errors of 

the means based on half of each class.
Since both of the estimators p^(X,ç) and p^(Y,ç) are formed as 

ratios of unbiased estimators, neither method should produce an unbiased 
estimator of p^(X,ç). Rather, both estimators should have means that 

are lower than the population parameter. Furthermore, it is not readily 
apparent which of the two methods should produce a better estimate of 
reliability in the sample. The following simulation was carried out 

to provide further insight into the problem.
In order to evaluate the adequacy of the two partial repli­

cation methods, two additional measures of reliability were examined 
which require two administrations of the evaluation item. The first 
of these is the intraclass correlation coefficient applied to truly 
replicated data. That is, the observations in the ANOVA model are the 
mean ratings for the entire class for each of two administrations of 

the item (see Lord and Novick, 1968, Ch. 7).
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The second method involving truly replicated data is the sample 
product—moment correlation coefficient, computed across instructors 

between the class mean ratings on the two administrations of the item. 

Both of these methods yield estimates of the parameter given in (16), 

under the same set of assumptions, but neither estimate is guaranteed 
to be unbiased.

Ifethod

Monte Carlo methods were used to simulate the sampling proper­

ties of the four estimates of reliability. A computer program was 
written to generate data representing ratings given twelve randomly 

selected instructors evaluated on an item with a given reliability. 

Reliabilities examined ranged from .90 to .30 in steps of .10; For 
each reliability, instructor true score variance was set at 1.0, and 

rater error variance was chosen in accordance with (16) for n = 20.
Four sets of class frequencies were used to examine the differences in 
the various methods as a function of class size configuration. The 

class frequencies used in these simulations are given in Table 1.

Insert Table 1 about here

A technique developed by Box and Muller (1958) and modified 
by Chen (1971) was used to select instructor true scores from the unit 

normal distribution. For the j-th instructor, n^ rater errors were 
selected from a normal distribution with mean zero and variance chosen 

as previously described. The error scores were added to the instructor's
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true score to form simulated ratings. For the two methods based unon 
true replication of the item, a second set of rater errors was generated 
to provide the ratings for the second "administration" of the item. For 

the first-order partial replication method, a computer subroutine was 
written to randomize the observations in each class into two halves.

Each of the four estimates of reliability was computed using the methods 
described in the previous section.

The procedure of generating instructor effects and rater errors, 
and computing the four estimates of reliability was repeated 1000 times 
for each combination of class frequencies and population reliability.

A count was maintained of the number of estimates that exceeded the 
parameter value, the number that fell short of the parameter value, and 

the number of negative estimates. All negative estimates were set equal 
to zero after counting, and means and standard errors were computed for 
each method.

Results

Summary statistics for the partial replications methods are 
given in Table 2. The corresponding statistics for the two methods 

based on true replications are given in Table 3. Because of similarity 

in results and for ease of presentation, the results from the three 
conditions of unequal class frequencies have been averaged across con­
ditions .

Insert Tables 2 and 3 about here
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For all population reliabilities examined other than .3, the 
two methods based on true replications produced estimates with less bias 

on the average than did the two partial replications methods. Within 
the true replications methods, the intraclass correlation method tended 

to produce more bias on the average than did the sample correlation 

coefficient, although the difference between these two methods was never 

greater than .02. Within the two partial replications methods, there was 
no appreciable difference in average ratings for population reliabil­
ities of .90 to .70. For reliabilities from .60 to .30, the first-order 

method produced a mean estimate that was closer to the parameter value 
than did the second-order method, with the two methods differing by as 

much as .05 in the most extreme cases.
For the population reliability equal to .30, the intraclass 

correlation computed on true replications produced the closest average 

estimate, the first-order partial replication method the next closest, 

the sample correlation tended to overestimate on the average, and the 
second—order partial replication method produced the most deviant average 

estimate, with a negative bias of approximately .04. Across the range 

of reliabilities and class frequencies, none of the four methods yielded 
an average estimate more than .1 deviant from the parameter value.

In terms of variability, the first-order partial replication 
method had the largest standard error, the second-order method had the 
smallest, and the two methods based on true replications produced inter­

mediate values. Overall, standard errors for the first-order method 
were 30% to 40% larger than those of the second-order method, and the 

two true-replications methods tended to be 15% to 20% more variable than
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the second-order partial replication method.

Both the first-order method and the intraclass correlation 
method on true replications appear to be unbiased in the median, since 

the parameter value is close to the medians of the sampling distribu­

tions of the 1000 obtained estimates. The second-order method tended 

to produce more underestimates than overestimates of the parameter 

values, with an average of 56% of the estimates being less than the 
population reliability. The sample correlation coefficient, on the 

other hand, exceeded the parameter an average of 55% of the time, across 
the range of reliabilities examined.

Finally the first-order partial replication method produced a 
greater proportion of negative estimates than did the other methods.
For a population reliability of .30, for instance, nearly 30% of the 

first-order estimates were less than zero, almost twice as many as 

produced by the methods based on true replications, and 10% to 40% more 
than were produced by the second-order method.

Differences between equal and unequal class frequencies seemed 
to be negligible in their effect on the mean estimate or on the standard 
error, and produced no regular pattern of effects on the numbers of 

overestimates, underestimates, and negative estimates.

Discussion

In terras of bias, variability, and proportion of negative 
estimates, either of the methods based on true replication of the 

evaluation should be preferred over the first-order partial replication
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method. This is not unreasonable, since both partial replication methods 
serve as approximations to true replication of the evaluation. To their 

credit, both partial replication methods do an acceptable job of esti­
mation, considering that they deal with half as much information as do 
the true replications methods.

However, a decision between the two partial replications 
methods is not easy on the basis of the summary data. The first-order 
method leads to less bias but more variability; the second-order 

method produces fewer negative estimates, but more underestimates of the 
parameter value.

Perhaps the deciding point is the manner in which negative . 
estimates are handled by the two partial replication methods. Each of 
the four methods examined will produce a negative estimate of reliability 
a certain proportion of the time. For any of the methods other than the 

first-order method, such an occurrence forces the researcher to decide 

between interpreting the findings as zero reliability, on the one hand, 
and running a new reliability study with a new sample of instructors, 

on the other..

The first-order partial replication method, however, allows the 
researcher to reanalyze the data at hand, perhaps several times, by re- 

randomizing each class's data. A mean of several such reanalyses might be 
a reasonable non-zero estimate of the population reliability. To examine 
this possibility, data from the simulation using reliability equal to 
.30 was subjected to such reanalysis. This reliability was previously 

shown to lead to more negative estimates in each method than any other 
value examined. For each of ten simulated reliability studies, ten
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estimates of the first-order partial replication reliability coefficient 

were computed. Each estimate was computed on a different randomization 
of the data, and any negative estimates were set equal to zero. For 

each simulated study, the ten estimates of reliability were averaged to 
yield a mean reliability estimate. The resulting ten mean estimates 

ranged from .036 to .638, with an overall mean of .323 for the ten 
studies.

This method of reanalysis bears further investigation, as do 
situations involving other class frequency configurations, different 

numbers of classes, and non-normal distributions of true and error 
scores. There is a definite need for simulation studies employing 
discrete ratings instead of the continuous ratings used in the present 

study, since most ratings are based on Likert-like scales with only a 

finite number of possible responses.

The present study dealt only with parallel raters, i.e., with 
equal variances for the error scores. In reality the variance of the 
errors may be related to the size of the class or type of class, in which 

case an assumption of tau equivalence (unequal variances) would be more 
easily defended.

The approach used in the present paper should be extended to 
higher-order designs. One of the advantages of the generic true score 

method is that it enables the user to look at multiple sources of vari­
ability, including multiple items, differing conditions of administra­

tion, occasions of evaluation, etc. Extension of the partial replica­

tion methods to higher designs would bring the theory one step closer 
to the reality of application.
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In summary, for the fairly restrictive set of conditions exam­
ined in the present study, the first-order and second—order partial 

replication methods, both modifications of the generic true score approach, 
perform adequately when compared to methods requiring true replication 

of teacher evaluations. Of the two partial replication methods, the 

first-order offers less bias on the average, apparent unbiasedness in 
the median, and, most importantly, the opportunity to reanalyze data 

instead of re-running the study when a negative estimate is obtained.

It stands as an acceptable alternative to the time-consuming and expen­
sive methods based on test-retest estimation and enables the devotee of 

generailzability theory to utilize all the information collected in 
estimating reliability.
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Table 1

Class Frequency Patterns and Grayblll's K Factors Used in the Simulation 

Pattern Number _______________Frequencies______________  K

2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 20 2 0 .0 00

10, 10, 10, 30, 30, 30, 30, 30, 30, 30, 30, 30 24.727

12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60 34.545

10, 10, 10, 24, 24, 24, 30, 30, 30, 40, 40, 40 25.587



24

Table 2 __
Sunmarj' ScacisCics for thje First-Order Method, p^(Y,c), and the 
Second-Order Method, p^(X,ç), for 1000 Replications of 12 Classes

Reliability Method * Mean i Std. Error+ % Ilish % Low % Neg

.9
(Ÿ.C) (=)

p^(ï.ç) m
p'-(X,ç) (=)
P^(X,ç) (V)

.874

.877

.877

.874

.0922

.0905

.0678

.0048

49.2
50.1 
46.5
42.2

•50 . 8 
49.9 
53.5 
57.8

.1

.03
0.0
0.0

p^â,ç) (■=) .752 .1694 50.0 50.0 .4
P^(Y.Ç) W) .757 .1672 50.8 49.2 .8

.8 P^(X,ç) (=) .757 .1308 46.2 53.8 .4 .
p^(x.ç) W) .755 .1233 *42.2 57.8. .1

p ^ â . o  (=) .636 .2241 49.4 50.6 3.6
p2(Y,Ç) (¥) .643 .2255 . 50.5 . 49.5 3.1

.7 P^(x.ç) (=) .641 .1764 45.2 54.8 1.5
P^(x.ç) (¥) .641 .1652 . 42.2 •. 57.8 .7

P^(Y.Ç) (=) .532 .2561 49.1 50.9 7.8
p^(Y.c) m .540 .2671 50.7 49.3 8.1

.6 P^(X,Ç) (=) .529 .2076 45.0 55.0 4.8
• p2(x,ç) (¥) .533 .1933 43.3 56.7 2.7

P^ôf.o (-) .441 .2709 48.4* 51.6 15.1
P^(Y>Ç) W) .451 .2776 50.9 49.1 14.2

.5 P^cx.ç) (-) .427 .2229 44.6 55.4 9.6
P^(X.Ç) (¥) .433 .2070 44.6 • 55.4 6.4

p^(r,0 (=) .364 .2722 48.8 51.2 22.1
P^CY.C) (¥) .376 .2809 50.9 49.1 22.2

.4 p2(X,ç) (=) .336 .2263 44.7 55.3 16.3
p^(x.ç) (¥) .342 .2089 44.5 55.5 11.9

p2(Ÿ,ç) (=) .298 .2668 48.4 51.6 29.4
p2(Ÿ.ç) (¥) '.314 .2760 50.1 . 49.9 29.4

.3 P^Cx.ç) (■=) .260 .2182 44.1 55.9 26.5
P^Cx.c) (¥) .261 .1995 44.5 55.5 20.1

* ”ss« refers to the results for the equal-frequencies conditions;
'V" refers to the average of the results for the uncqtial-frequencics 
conditions

+ Negative reliability estimates were set equal to zero in computing 
means and standard errors.
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Table 3
Sunaaary Statistics for the Intraclass Correlation, pi, and the
Sample Correlation, r. for 1000 Replications of 12 Classes

Reliability Method* Std. Errort % HiRh % tow ■% Nee
pi (=■) .874 .0728 48.0 52.0 0.0
PI .W) .886 .0775 51.1 48,9; 0.0

.9 r (=-) .886 .0714 54.0 46.0 0.0
r (f) .890 .0759 57.1 42.9 0.0

pi (=) .780 .1158 50.8 49.2 0.0
Pl (f) .772 .1340 51.2 48.8 .03

.8 r (-) .793 .1166 57.2 . 42.8 0.0
r (7*) .787 .1341 56.4 43.6 .03

PI (=) .666 .1738 50.1 49.9 .5
PI (f) .669 .1785 51.3 48.7 .4

-7 r (-) .682 .1778 55.1 44.9 .7
r m .685 .1823 55.8 44.2 .5

PI (=) .569 .1957 50.9 49.1 1.0
PI (f) .569 .2054 51.2 48.8 1.8

.6 r (=•) .587 .2015 54.0 46.0 1.3
r (f) .587 .2111 54.5 •' 45.5 2.0

PI (=) .459 .2145 48.9 51.1 3.5
PI (̂ ) .475 .2282 51.5 48.5 4.5

.5 r (-) .477 .2234 52.1 47.9 4.2
r (f) .493 .2361 54.9 45.1 5.0

PI (-) .'390 .2220 50.8 49.2 7.6
PI (f) .386 .2387 50.7 49.3 10.4

.4 r (-) .407 .2315 53.6 46.4 7.7
r (f) .405 .2488 53.2 46.8 10.5

PI (“> .299 . .2191 49.4 50.6 15.4
PI (̂ ) .309 .2344 50.7 49.3 17.8

.3 r (-) .313 .2285 51.6 48.4 15.2
r (=i*) .325 .2466 52.6 47.4 18.7

* '=»*' refers to the results for the equal—frequencies condition;
*V‘* refers to the average of the results for the unequal-frequencles 
conditions

+ Negative reliability estimates were set equal to sero in computing 
means and standard errors.
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COMPLETE SIMULATION RESULTS



SUMMARY STATISTICS FCR THE FOUR RELIABILITY 

ESTlMATcSfl USING U  CLASSES AND AN ITEM WITH 

RELIABILITY EQUAL TO 0,90 

INSTRUCTOR VARIANCE 1.00 

RATCR cRRCR VARIANCE 2.25

2E PATTERN METHOD MEAN STD. ERROR % HIGH X LOW % NEGATIVE

1 FIRST ORÛER 0.67A 0.0922 49.2 SO.8 0.1

1 SECCNO ORDER 0.677 0.0676 46.5 53.5 0.0

I INTRACLASS 0.677 0.0726 ' 46.0 52.0 0.0

1 CORRELATION o.e,6 0.0714 54 .0 46.o' 0.0

2 / FIRST ORDER 0.676 0.0949 49.5 50.5 0.1

SECCNO ORDER 0 i67A 0.0671 57.1 0.0

2 . INTRACLASS 0.679 0.0775 49.1 50.9 0.0

2 CORRELATION 0.C762 54.6 45.4 0.0

3 FIRST ORDER 0.0843 SI.6 48.4 0.0

SECCNO ORDER 0.673 0.0707 41.9 56.5 0.0

INTPACLASS 0.0762 50.0 50.0 0.0

3 CORRELATION 0.0735 96.3 43.7 0.0

FIRST ORDER 0.674 0.0922 49.3 50.7 0,0

SECCNO ORDER 0.874 0.0686 42.1 57.9 0.0

INTRACLASS 9.66* 0.0767 54.2 49,8 0.0

CORRELATION 0.992 0.0761 60.3 39.7 0.0



SUMMARY STATISTICS FOP THE FOUR RELIABILITY 

ESTIMATES* USING 12 CLASSES AhD AN ITEM WITH 

RELIABILITY EQUAL TQ 0.60 

INSTRUCTOR VARIANCE 1.00 

RATEP EPRCR VARIANCE 5.00

SIZE PATTERN METHOD MEAN STD. ERROR X HIGH % LOW ' % NEGATIVE

1 FIRST ORDER 0.792 0.169* 90,0 50.0 0.*

1 SECOND ORDER 0.798 0.1300 *6.2 53.0 0.*

t INTRACLASS 0.760 O.llSO 90.6 49.2 0.0

1 . CORRELATION 0.793 G .1166 97.2 *2.6 • 0.0

2 FIRST ORDER 0.757 9.1700 SO.* *9.6 0.8

2 SECCNO ORDER 0.755 0.1229 *3.1 56.9 C.l

2 INTRACLASS 0.773 0.1356 91.9 *0,5 O.'l

2 CORRELATION 0.789 0.133* 90.0 *2.0 0.1

3 FIRST ORDER 0.762 0.1622 91.9 *8.1 0.7

SECOND ORDER 0.756 0.1212 *2.0 98,0 0.0

IN'‘PACLASS 0.767 0.1302 *9.6 90.* 0.0

CORRELATION 0.761 0.1*11 5* .3 *5.7 0.0

FIRST ORDER 0.753 0.169* SO.l *9,9 0.6

« SECOND ORDER 0.75* 0.1257 *2.1 57.9 0.2

♦ INTRACLASS 0.776 0.1281 9 2 * •7.6 0.0

A CORRELATION 0.790 0.1277 96.9 *3.1 0.0



SUMMARY STATISTICS PCW TmI2 FOUR RSLIAblLlTY 

ESTIMATES, USING 12 CLASSES AND AN ITEM WITH 

RELlAblLlTY EQUAL TO 0.70 

INSTRUCTOR VARIANCE 1.00 

RATER ERROR VARIANCE 6*57

CLASS SIZE PATTERN STD. ERROR % HIGH % LOW % NEGATIVE

FIRST ORDER 0.636 

SECCNO ORDER 0 ,6A| 

INTRACLASS 

CORRELATION

0.1738

0.1778

AS.A

AS,2

50.1

95.1

54,8

AA,9

1.5

0,5

0,7

FIRST ORDER 0.6A2 

SECCNO ORDER 0.636 

INTRACLASS 

CORRELATION

0.2291 

0.169A 

0,1766

SO ,5 

A3.0 

SO,5 

5A «7

A9.5

57.0

A9.5

3.A

1 .0

0.5

FIRST ORDER 0.6A6

SECCNO ORDER 0.6AS

INTRACLASS 0.672

CORRELATION 0.696

0.22AS

0,1581

0.1789

0,1819

50,5

42.1

51.2 '

56.3

49.b

57,9

43.7

2 ,6

0 .2

0.3

0,3

FIRST ORDER 0.639 

SECOND 3R0&R 0,639

INTRACLASS 

CORRELATION

0,668

0,664

0.1800

0.1649

41.5

S 2.1

96.4

49.5

56.5 

47,9

43.6

3.4

0.9

0.4

0.5



SUMMARY STATISTICS FOP THE FOUR RELIABILITY 

ESTIMATES, USING (2 CLASSES AND AN ITEM WITH 

RELIABILITY EQUAL TO 0,60 

INSTRUCTOR VARIANCE 1.00 

RATER ERRCR VARIANCE 13.33

CLASS SIZE PATTERN METHOD MEAN STD. ERROR X HICH X LOW % NEGATIVE

FIRST ORDER 

SECCNO ORDER 

INTRACLASS 

CORRELATION

0,332

0,329

0.569

0.2561

0,2076

0.1957

0.2013

49.1

43.0 

50,9

54.0

50.9

55.0

49.1 

46,0

7.8

4.B
1 . 0  

1.3

FIRST ORDER 0.541 

SECCNO ORDER 0.329 

INTRACLASS 

CORRELATION

0.S7J

0.594

0.2651

0.1997

0 .2 0 2 0

51 .2 

43,7

57,1

46.6

56.3

45.4 

42.9

8.3

4.0

1.9

1.9

FIRST ORDER 0.543

SECCNO QRCER 0,540

INTRACLASS 0,569

CORRELATION 0.586

0.1836

0i2083

0.2149

44.1

50.5

54.5

49.0

55.9

49.5

45.5

1.4

1 .8

2,3

FIRST ORDER 

SECOND ORDER 

INTRACLASS 

CORRELATION

0.535

0.531

0.565

0,582

0.25SS

0.1965

0.2059

42,2

51,9

30,2

57,8

51,6

48,1

7.4

2,8

1 .6

1.9



SUMMARY STATISTICS FOS THE FOUR PELIA8ILITY 

ESTIMATES* USING 12 CLASSES AHO AN |T£M WITH 

ficLIABIUITY EQUAL.TO 0.50 

INSTRUCTOR VARIANCE 1.00 

RATER ERRCR VARIANCE 20.00

SIZE PATTERN method MEAN STD. ERROR % HIGH % LOW % NEGATIVE

i FIRST OROER O.AAI 0.2709 A9.A 51.6 15.1

1 SECOND ORDER 0.A27 . 0.2229 44.6 55.4 . 9.6

1 INTRACLASS 0.A59 0.21A5 48.9 51,1 3.5

1 CORRELATION 0.A76 0.223A 52.1 47.9 4,2

2 FIRST ORDER O.ASA 0.26IA 52.2 47.8 14.0

2 SECCNO ORDER 0.A29 0.2131 A4.6 S5.A 7.6

2 INTRACLASS 0.A66 0.2267 49.2 50.6 4.4

2 CORRELATION 0.A85 0.236A 52.8 47.2

3 FIRST ORDER 0.A55 0.2780 51,3 46.7

3 SECOND OROER 0 «A40 0.1972 45.6 54.2

3 INTRACLASS 0.A72 0.22A9 SO.5 49.S

CORRELATION 0.A93 0.232A 54.6 45.4 4.9

A FIRST ORDER ).AA3 0.2733 49.3 50.7 14.1

A SECOND ORDER 0.A3C 0.2107 43.5 56.5 7.4

A INTRACLASS 0.A83 0.2309 S4.6 45.2 5.0

4 CORRELATION 3.503 0.2396 57.A 42,6 • 5.5



SUMMARY STATISTICS FCR THE FOUR fELUeiLITY 

ESTIMATES* USING 12 CLASSES AND AN ITEM «ITH 

RSLIAGILITV EQUAL TO O.AO 

INSTRUCTOR VARIANCE 1*00 

RATER ERRCR VARIANCE 30.00

S U E  PATTERN METHOD MEAN STD. ERROR % HiCh % LOW X NEGATIVE

1 FIRST ORDER 0 *36A 0*2722 *8.8 51.2 22.1

1 SECOND ORDER 0.336 0,2263 **.7 6S.3 16.3

I INTPACLASS 0.390 * 0.2220 ' 50.8 49.2 7.6

1 CORRELATION 0.2315 53 .6 *6.4 7.7

2 FIRST ORDER 0.302 0.2862 52.2 *7.8 22.1

2 SECCNO ORDER 9 .337 C.21S9 **•6 55.4 14.0

2 INTPACLASS 0.390 0.2392 52.3 *7.7 10 .5

CORRÉLATION' 0.2*68 5* .9 *5,1 9.8

3 FIRST OROER 0.2821 50.5 *9.5 22.0

3 SECOND OROER 0 ,3A8 3.1982 * 5* 54.6 9.4

3 INTRACLASS 3.376 0.2*74 . *7.5 52.5 11.7

3 CORRELATION 0.39» 0.2565 53.7 *9.3 12.1

A FIRST ORDER 0.366 0.27*4 50.0 50.0. 22.4

* SECCNO ORDER 0.339 0.2126 *3.fr 56.* 12.4

♦ INTRACLASS 0.393 0.2296 •2.3 *7,7 6.9

4 CORRELATION 0.411 0.2410 s*.o *6.0 9.S



SUMMARY STATISTICS FCR THE FOUR RELIABILITY 

ESTIMATES* USING 12 CLASSES AND AN ITEM WITH 

R g LIABlLlTV EQUAL TO 0.30 

INSTRUCTCR VARIANCE J.OO 

RATER EPRCR VARIANCE 46,67

SIZE PATTERN method MEAN STD, ERROR % HICH X LOW X NECATIVE

1 FIRST ORDER 0.298 0.2668 48.4 51,6 29.4

I SECOND ORDER 0.260 0.2182 44.1 55.9 26.5

1 INTRACLASS 0,299* 0.2191 ' 49.4 SO «6 15.4

I CORRELATION 0.313 0.2285 51.6 48.4 15.2

2 FIRST ORDER 0.323 0.2805 51,9 48.1 29.4

2 SECCNO ORDER 0.259 0.2062 44.9 55.1 23.2

2 INTPACLASS 0.307 0.2309 50.7 49.3 17.0

corr'el aticn* 0.322 0,2433 «2.2 47.8 17.8

3 FIRST ORDER 0,317 0.2796 49.7 50.3 28.6

3 SECOND ORDER 0 .265 0.1876 45.0 55.0 15.6

3 INTRACLASS 0.3:2 0.2390 50.3 49,7 17.7

3 CORRELATION 0.329 0.2502 53.0 47.0 18.4

« FIRST GRUER 3,301 0,2678 48,8 51.2 30.1

4 SECCND ORDER 0 ,258 0,2047 43,7 56.3 21,4

4 INTRACLASS 0,309 0,2332 51,1 48.9 18.7

4 CORRELATION 0.325 0.2464 52.7 47.3 19.8 LOW


