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Abstract
Two methods are developed to deal with the problem of unequal
class frequencies when the reliability of the mean rating on a single
evaluation item is desired. TFollowing the derivation of the linear
models and the accompanying estimation methods, simulation results
are presented, comparing the proposed methods with methods based on

true replication of the evaluation procedure.



RELIABILITY THEORY FOR TEACHER EVALUATIONS:

SOME PARTIAL REPLICATION METHODS

Because student evaluations of teachers may play an important
part in reaching decisions on promotion, tenure, and salary increases,
such evaluations should be examined for reliability and validity as
measurement instruments. Evaluation reliability, the subject of this
paper, deals with the determination of the extent to which ratings
given an instructor reflect true abilities rather than evaluation

"noise." Studies of evaluation reliability have usually been conducted

in the same manner as other measurement techniques. Costin (1968, 1971)

used the test-retest coefficient of stability with factor scores derived

from evaluations given at two points in the same semester and on factor
scores from successive semesters. Somers and Southern (1974) computed
estimates of intermal consistency by means of coefficient alpha and
average item intercorrelations.

However, several factors distinguish the assessment of the
reliability of teacher evaluations from other measurement situations.
First, since the amount of time allotted for completing an evaluation
is normally limited to part of one class period, it is not desirable
to increase the number of items in order to increase the reliability

of the entire instrument. Thus the reliability of individual items is
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of critical importance. Second, instructors are usually compared with
their calleagues on the basis of the mean (or median) rating received

on each item, rather than on thevbasis of the ratings given by individual
students. Third, except in special circumstances, evaluations are
generally conducted only once a semester. Multiple administrations of
evaluations usually require obtaining the permission of instructors and
administration, which may lead to use of avbiased sample. In some cases,
evaluations are conducted more than once in order to give instructors
"feedback about their teaching, in which case a coefficient of stability
would be inappropriate.

We are therefore interested in determining the reliabllity of a
single average score received on an item administered only once. The
classical methods of test-retest and parallel forms require more class time
to be sacrificed and may be contaminated by memory or fatigue effects.
Furthermore, Lord.and Novick (1968, Ch. 7) have pointed out the inadequacies
of these methods when class sizes are moderate or when it is not reasonable
to assume parallelism of the raters.

Two theories that lend themselves to the evaluation situation as
described are generalizability theory (see, e.g., Cronbach, Rajaratnam,
and Gleser, 1963) and generic true score theory (Lord and Novick, 1968,

Ch. 7). These equivalent theories generate estimation methods based upon
the random selection of instrucgors, items, subject matter, etc., to serve
as levels of random factors in an analysis of variance (ANOVA) design.
The meaning of reliability in such a setting is our ability to generalize
the results of the evaluation to larger populations from which we have

sampled our effects.
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For such a formulation, we can define several different "true"
scores for each observed rating by defining a true score as the expected
value of the observed score across certain of the populationms. For
instance, the true score for instructor j on item k of an evaluation is
the expected value of the observed rating of instructor j on item k, with
the expectation taken across the populations of student raters, subject
matter, etc. That is, the universe score of generalizability theory or the
true score of generic true score theory corresponds to a main effect mean
or a cell mean of the ANOVA framework.
Furthermore, for each of the ways in which we can define a
true score, we can define a reliability coefficient as the intraclass
correlation coefficient associated with the effects of interest. The
intraclass correlation coefficient, as a ratio of variance components,
tells us the extent to which observed score vaxiability is due to the i
variability of the effects in which we are interested, and is thus !
essentially equivalent to the reliability coefficient of classical true
score test theory.

For the gituation under discussion, that of determining the

reliability of a single item, a one-way random ANOVA would be used with
instructors as the single main effect and student raters nested %
within instructor "conditions". Implementation of this design would

require random selection of a number of instructors, such that no

instructor is selected more than once and, ideally, such that no student
is in more than one of the associated classes. The mean square between

instructors and the mean square within instructors are used to form

1
1
{
i
¢
i

estimates of true score vardance and observed score variance, and the
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ratio of these estimates is used as an estimate of the intraclass
correlation, or reliability, coefficient.

From the computational point of view, the simplest design is
one with equal numbers of students rating each instructor. This condi-
tion will rarely be met in practice if instructor-class combinations
are indeed randomly sampled for the estimation procedure. One instructor
may be evaluated by a five-person graduate seminar, while another is
evaluated by a 500-student survey course. Even if instructors are
sampled from categories such as ''large lecture," "small lecture," or
"laboratory course," and a reliability coefficient is computed for each
category, there will still be some disparity in the number of students
rating each instructor. Class mean ratings will therefore be computed
on different numbers of ratings, and the derivations of the estimates
of variance components is no longer the simple procedure outlined in
standard texts (e.g., Scheffd, 1959, p.228; Winer, 1971, p. 286).

Suppose four instructors are selected for the purposes of
estimating item reliability. If their classes are included in a cate-
gory such as "'small lecture,'”" the number of students in the classes
will probably be comparable but not necessarily equal. Class sizes
might be 10, 24, 30, and 40. Generalizability theory and generic true
score theory have been developed, for the most part, on the basis of .
equal class sizes. Should we therefore discard ratings from the three
larger classes in order. to have 10 ratings per instructor? To do so
means ignoring 62% of the information gathered; it would be preferable
to find some way to use all the data.

Two recent studies attempted to use generalizability theory
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to assess evaluation reliability. Doyle and Whitely (1974), in an
equivocal analysis, seem to have circumvented the problem of unequal
class sizes by not reporting them, while Kane, Gillmore, and Crooks
(1976) discarded data from the sampled classes in order to balance the
design. Neither of these approaches may be viewed as exemplary of the
use of the generic true score~generalizability methodology.

While directing their considerations mainly to the balanced
ANOVA designs, Cronbach, Gleser, Nanda, and Rajaratnam (1972, pp. 207-
208) acknowledge the problem of unequal class frequencies and suggest
that, rather than discard information, an unbalanced ANOVA design be
used, following the work of Graybill (1961). In making this recommenda-
tion, Cronbach et al. do not indicate that the resuiting intraclass
correlation estimate is based on a single rating and should be adjusted
by the Spearmap—Brown formula to reflect the reliability of the class
mean rating. Nor do they give the form of the population reliability
coefficient being estimated. The present paper will determine both the
form of the population coefficient and the method for adjusting the
reliability of a single rating to reflect the reliability of the class
mean rating.

In addition, we will investigate the adequacy of another method
of dealing with the problem of unequal class sizes. Suppose we balance
the ANOVA design by randomly dividing each class in half, compute the
mean rating for each class-half, and then use the class-half mean rat—
ings as the observations in the reliability estimation process. Again,
the Spearman-Brown formula would be used to reflect the reliability of

the mean rating for the whole class. Such a method would leave the
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meaﬂ rating for each instructor unchanged, provide an equal number of
ratings for each instructor, and base the reliability not on single
ratings, but on mean ratings for each half of each class.

In each of these methods we are estimating the performance
of actual replication of the mean rating by using either a mean based
on half as many ratings or by a mean based on only one rating. Use of
the class-half method is the closer approximation, intuitively, and will
be referred to as the "first-order partial replication of the mean,"
since each half of each class serves as & partial replicate of the
performance of the entire class. The method using the reliability of
a single rating is less closely related to the performance of the whole
class and will be referred to as the ''second-order partial replication
of the mean."

Two differences between the partial replication methods are
immediately obvious. Based on more information, the first-order method
uses "observations'" with a smaller error variance than those used in
the second-order method. However, the first-order method uses fewer
"observations'" per instructor in the ANOVA-based estimation process than
does the second-order method. The present paper will examine the effects

of these differences on the performance of the two methods of estimation.

Linear Models
Suppose that J instructors are selected for the purpose of
estimating the reliability of a given item on an evaluation instrument.
Suppose that instructor j is rated by ny students, and let Xij be the

rating given instructor j by student i. Let 4] be the mean rating
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received by instructor j over the population of student raters, i.e.,

ty = Ei(xij)' The quantity zy» called the universe score by Cronbach

et al. (1963) or the generic true score by Lord and Novick (1968), is

a random variable over instructors and is closely related to the true score of
classical test theory. The observed rating Xij can be expressed as

Xij = %3 + €ij 1

where g;: = X is the residual or "generic error of measurement."

3703 TR

The corresponding linear model for the one-way random ANOVA is

Xio = p+ as + €53 2)

ij 3

where p is the expected rating over raters and instructors, a:_I is the
deviation uj ~m of the expected rating of instructor j from the over-
all mean, and ei3 is the ANOVA residual or error term. For fixed j and

the usual ANOVA assumption of zero expectation of the errors, the true

score g3 is given in ANOVA terms as
tj = By(Xyg) = Ey(u+ aj +ez5) = u+ ay=py. (3

Thus 3 of the true score model equals M3 of the ANOVA model, and hence
€ij = eij' In both models, the error term includes all discrepancies
between the observed rating and its expected value, including any inter-
actions between instructor and item, rater and instructor, etc.

The coefficient of reliability (or generélizability or generic
reliability) for a single rating, p2(X,z), is the proportion of the

observed rating variance g2 (X) that is linearly predictable from the

true scores, i.e.,
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p2(X,z) = o%z)/ okX) 4

where 02(z) is the variance of the true scores t4. For true scores and

error scores uncorrelated, (4) can be written as
p2(X,5) = 0% g)Ho?2 (@) +02 @)} (s)

where 02 () is the variance of the generic errors, Eij'
Using the ANOVA model for Xij’ we can express the reliability
p2 (X,z) as the intraclass correlation coefficient for the random in-

structor effect, i.e.,
02 (X,2) = c?(a)/{c? (a) + o2 (e)} 6)

where o2 (a) is the variance of the instructor effects aj, and o2 (e) is
the variance of the residuals ejj-

The formula for the intraclass correlation coefficient given
in (6) is the reliability for a single rating if the errors ey have
equal variances. The reliability of the class mean rating,pz(;{.,ﬁ), is
found by replacing the variance of eij in (6) with the variance of the
mean error for a class, -é-.j, i.e., by replacing a2 (e) by a2 (Ej) = o2 (e)/nj

to give

p2(X,z)

62 (a)/{c2(a) + o2 (Ej)} )

[}

a2(a)/{o2(a) + oz(e)/nj} . (8)

If ny = ny = *+°- = ny =n, the result is one reliability coefficient

for the item; however, if the ny vary from class to class, then we can

derive a separate coefficient for each class size. This may be desir-
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able if evaluations can be tailored to fit different classes. In general,
however, we will be interested in an item's reliability across a range

of class situations. Since true score variance is constant, we are most
likely interested in the proportion of the average observed rating
variance that is linearly predictable from the true scores. This pro-

portion is given by

p2(X,z) = o2(a) /a2 (D) )
= 02(a)/{c2(a) + g2 (&)7/n}} (10)
= o2(a)/{c2¢a) + o2 (e)/njs}. (11)
Now : o2(e)/ny = (1/3)z{c?(e)/ny} a2)
i
={o%(e)/J} T(1/ny) (13)
3
= 6%(e)/{I/Z(1/ny)} ' (14)
3
n
= o2 (e)/n, (15)

where © is the harmonic mean of the nj. Thus,

p2(X,1) = o2(a)/{02(a) + o2(e)/n} . (16)
The coefficient given in (16) is the second-order partial replication
coefficient of reliability for the situation of unequal class sizes.
The usual methods of estimating intraclass correlations from
sample data involve combining the mean square between instructors and
the mean square within instructors in accordance with their expected
values to obtain unbiased estimates of c62(a) and ov2(e). For the

unbalanced one-way ANOVA being considered, Graybill (1961) gives the
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expected values for the mean square between instructors (MSB) and the

mean square within instructors (MSW) as
E(MSB) = g2(e) + Ko2(a) Qa7
and EMSy) = a2(e) (18)

where K = (N2 - );n:?]')/N(J - 1) and N = Z‘nj. Unbiased estimates of o2 (e)
i 3

and o2(a) are given by

§2(e) = MSy, 19
and o2(a) = (a5, - MS)/K . ' (20)
An estimate p2(X,z) of p2(X,z) is given by

{qs

02 (X,2) - MS) /R {(MSy - MS.) /K + MSy} [exb)

B

(MSp - MS.)/{MSy + (K - 1)MS_} . (22)

An estimate, p2(X,z), of the second-order partial replication

reliability of the class mean p?(X,z) is given by

p2(X,5) = {(MSy — MSp) /RI/{(MSy - MS)/K + MSu/X}  (23)

R(MSg - MSy)/{X(MSg + (K.~ MHIMS}, (24)

the same result given by the Spearman-Brown formula for the reliability ‘
of a test lengthened ;\1' times.

The foregoing results can readily be generalized to the case
of unequal variances for the errors by substitution of the average

error variance for the common error variance in (6) through (18);
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however, the form of the estimates is the same.
The linear model for the first-order partial replication

method can be written, in true score terms, as

=rc. +n.. 25
Yij gy + 0y (25)

where Yij is the mean rating given instructor j by the i-th partial
replicate of the class (4 = 1, 2), ;j is the true score previously
defined, and Nig is the mean error for partial replicate i. The ANOVA

model corresponding to (25) is

. Yij = u + aj + Eij (26)

where Yij’ u, and aj are as previously defined, and gij is the mean
ANOVA error for partial replicate i within instructor j's class. Again
¥y = gy and Eij = Nij» and the tautology is complete.

Assuming that the errors of the individual raters have equal

are of equal size, the variances for the mean errors (and the mean rat-
ings) will be equal within each class, but unequal between classes of
different sizes. Using the same approach as before, we can find the
reliability for the item as the proportion of the average rating varia-

bility that is linearly predictable from the true scores, i.e.,
p2(¥,8) = 02(x)/02(¥) = o2(a)/{02(a) + o2(E)} . @7

The mean error variance ¢g2(g) is the average of the az(gj) = 02(e)/(nj/2)
= 202(6)/nj. Thus

p2(¥,z) = o2(a)/{c2(a) + 202(e)/n} . 28
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The first-order partial replication reliability of the mean rating for

the entire class is then given by

p2(¥,z) = oZ(a)/{c2(a) + o2(&) /2} (29)
= 02(a)/{o2(a) + o2(e)/N}, (30)

the same parameter as in (16). The parameters p2(Y¥,Z) and 02(Y,z) can
be estimated in the same manner as before, using the linear model in
(26). The relationships between the mean square between (MSBv) and
the mean square within (MSW') and the variances o2(a) and g2(£) are

given by the formulas

EMSy,) = 52(8) + 202(a) (3D
and EMSy1) = 0Z(E). (32)

Following the estimation techniques outlined earlier, we form

estimates of pz(Y,z;) and pz(?,;), respectively, as

02(¥,8) = Sy, - MSy)/ (MSge + MS,) (33)

i

and 02(¥,1) (MSpy ~ MSye)/MSpy . (34)
Again, this procedure may be adapted to the case of unequal wvariances
of the individual rater error scores by the substitution suggested
previously for the second~order method.

Let us summarize the differences in the estimates 52 (i,;)
and 52(?,;). In using Ez(i,z;) as an estimate of the reliability of the

mean rating for the entire class, we are essentially finding the relia-

bility for a single rater in the class and boosting that reliability
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by the Spe‘aman-—Brown formula to represent the reliability of the mean
rating for the entire class. If we assume equal error variances for
all raters (parallel raters), then we still have to contend with the
problem of unequal class frequencies through use of an unbalanced
ANGOVA design. If we use ;;2(?,1;) as an estimate of class mean reliability,
we are using the mean rating for half the class as an approximation to
the mean of the entire class. The Spearman-Brown formula is again used
to reflect the reliability of the mean rating based on all ratings in
each class. However, regardless of the equality or inequality of the
error variances for the individual raters, we must use estimation pro-
cedures that take into account the unequél variances of the errors of
the means based on half of each class.

Since both of the estimators p2(X,r) and p2(¥,r) are formed as
ratios of unbiased estimators, neither method should produce an unbiased
estimator of :52 (E,;). Rather, both estimators should have means that
are ]..ower than the population parameter. - Furthermore, it is not readily
apparent which of the two methods should produce a better estimate of
reliability in the sample. The following simulation was carried out
to provide further insight into the problem.

In order to evaluate the adequacy of the two partial repli-
cation methods, two additional measures of reliability were examined
which require two administrations of the evaluation item. The first
of these is the intraclass correlation coefficient applied to truly
replicated data. That is, the observations in the ANOVA model are the
mean ratings for the entire class for each of two administrations of

the item (see Lord and Novick, 1968, Ch. 7).
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The second method involving truly replicated data is the sample
product-moment correlation coefficient, computed across instructors
between the class mean ratings on the two administrations of the item.
Both of these methods yield estimates of the parameter given in (16),

under the same set of assumptions, but neither estimate is guaranteed

to be unbiased.

Method

Monte Carlo methods were used to simulate the sampling proper-
ties of the four estimates of reliability. A computer program was
written to generate data representing ratings given twelve randomly
selected instructors evaluated on an item with a given reliability.
Reliabilities examined ranged from .90 to .30 in steps of .10: For
each reliability, instructor true score variance was set at 1.0, and
rater error variance was chosen in accordance with (16) for 5 = 20.
Four sets of class frequencies were used to examine the differences in
the various methods as a function of class size configuration. The

class frequencies used in these simulations are given in Table 1.

Insert Table 1 about here

A technique developed by Box and Muller (1958) and modified
by Chen (1971) was used to select instructor true scores from the unit
normal distribution. For the j-th instructor, n, rater errors were
selected from a normal distribution with mean zero and variance chosen

as previously described. The error scores were added to the instructor's
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true score to form simulated ratings. For the two methods based upon
true replicétion of the item, a second set of rater errors was generated
to provide the ratings for the second "administration" of the item. For
the first-order partial replication method, a computer subroutine was
written to randomize the observ.tions in each class into two halves.
Each of the four estimates of reliability was computed using the methods
described in the previous section.

The procedure of generating instructor effects and rater errors,
and computing the four estimates of reliability was repeated 1000 times
for each combination of class frequencies and population reliability.

A count was maintained of the number of estimates that exceeded the

parameter value, the number that fell short of the parameter value, and
the number of negative estimates. All negative estimates were set equal
to zero after counting, and means and standard errors were computed for

each method.

Results

Summary statistics for the partial replications methods are
given in Table 2. The corresponding statistics for the two methods
based on true replications are given in Table 3. Because of similarity
in results and for ease of presentation, the results from the three
conditions of unequal class frequencies have been averaged across con-

ditions.

Insert Tables 2 and 3 about here
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For all population reliabilities examined other than .3, the
two methods based on true replications produced estimates with less bias
on the average than did the two partial replications methods. Within
the> true replications methods, the intraclass correlation method tended
to produce more bias on the average than did the sample correlation
coefficient, although the difference between these two methods was never
greater than .02. Within the two partial replications methods, there was
no appreciable difference in average ratings for population reliabil-
ities of .90 to .70. For reliabilities from .60 to .30, the first-order
method produced a mean estimate that was closeé to the parameter value
than did the second-order method, with the two methods differing by as
much as .05 in the most extreme cases.

For the population reliability equal to .30, the intraclass
correlation computed on true replications produced the closest average :
estimate, the first-order partial replication method the next closest, :
the sample correlation tended to overestimate on the average, and the
second-order partial replication method produced the'most: deviant average
estimate, with a negative bias of approximately .04. Across the range H
of reliabilities and class frequencies, none of the four methods yielded i
an average estimate more than .1 deviant from the parameter value.

In terms of variability, the first-order partial replication
method had thg largest standard error, the second-ordexr method had the

smallest, and the two methods based on true replications produced inter-

mediate values. Overall, standard errors for the first-order method i
were 30% to 40% larger than those of the second-order method, and the

two true-replications methods tended to be 15% to 20% more variable than
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the second-order partial replication method.

Both the first-order method and the intraclass cor;élation
method on true replications appear to be unbiased in the median, since
the parameter value is close to the medians of the sampling distribu-
tions of the 1000 obtained estimates. The second-order method tended
to produce more underestimates than overestimates of the parameter
values, with an average of 56% of the estimates being less than the
population reliability. The sample correlation coefficient, on the
other hand, exceeded the parameter an average of 55% of the time, across
the range of reliabilities examined.

Finally the first—-order partial replication method produced a
greater proportion of negative estimates than did the other methods.

For a population reliability of .30, for instance, nearly 30%Z of the
first-order estimates were less than zero, almost twice as many as
produced by the methods.based on true replications, and 10% to 40% more
than were produced by the second-order method.

Differences between equal and unequal class frequencies seemed
to be negligible in their effect on the me;n estimate or on the standard
error, and produced no regular pattern of effects on the numbers of

overestimates, underestimates, and negative estimates.

Discussion

In terms of bias, variability, and proportion of negative
estimates, either of the methods based on true replication of the

evaluation should be preferred over the first-order partial replication
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method. This is not unreasonable, since both partial replication methods
serve as approximations to true replication of the evaluation. To their
credit, both partial replication methods do an acceptable job of esti-
mation, comsidering that they deal with half as much information as do
the true replications methods.

However, a decision between the two partial replications
methods is not easy on the basis of the summary data. The first-order
method leads to less bias but more variability; the second-order
method produces fewer negative estimates, but more underestimates of the
parameter value.

Perhaps the deciding point is the manner in which negative
estimates are handled by the two partial replication methods.‘ Each of
the four methods examined will produce a negative estimate of reliability
a certain proportion of the time. For any of the methods other than the
first—-order method, such an occurrence forces the researcher to decide
between interpreting the findings as zero reliability, on the one hand,
and running a new reliability study with a new sample of instructors,
on the other..

The first-order partial replication method, however, allows the
researcher to reanalyze the data at hand, perhaps several times, by re-
randomizing each class's data. A mean of several such reanalyses might be
a reasonable non-zero estimate of the population reliability. To examine
this possibility, data from the simulation using reliability equal to
.30 was subjected to such reanalysis. This reliability was previously
shown to lead to more negative estimates in each method than any other

value examined. For each of ten simulated reliability studies, ten
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estimates of the first—order partial replication reliability coefficient
were computed. Each estimate was computed on a different randomization
of the data, and any negative estimates were set equal to zero. For
each simulated study, the ten estimates of reliability were averaged to
yield a mean reliability estimate. The resulting ten mean estimates
ranged from .036 to .638, with an overall mean of .323 for the ten
studies.

This method of reanalysis bears further investigation, as do
situations involving other class frequency configurations, different
numbers of classes, and non-normal distributions of true and error
scores. There is a definite need for simulation studies employing
discrete ratings instead of the continuous ratings used in the present
study, since most ratings are based on Likert-like scales with only a
finite number of possible responses.

The present study dealt only with parallel raters, i.e., with !
equal variances for the error scores. In reality the variance of the
errors may be related to the size of the class or type of class, in which {
case an assumption of tau equivalence (unequal variances) would be more
easily defended.

The approach used in the present paper should be extended to
higher-order desligns. One of the advantages of the generic true score E
method is that it enables the user to look at multiple sources of vari-
ability, including multiple items, differing conditions of administra- é
tion, occasions of evaluation, etc. Extension of the partial replica-
tion methods to higher designs would bring the theory one step closer

to the reality of application.
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In summary, for the fairly restrictive set of conditions exam-—
ined in the present study, the first-order and second-order partial
replication methods, both modifications of the gemeric true score approach,
perform adequately when compared to methods requiring true replication
of teacher evaluations. Of the two partial replication methods, the
first-order offers less bias on the average, apparent umbiasedness in
the median, and, most importantly, the opportunity to reanalyze data
instead of re-running the study Qhen a negative estimate is obtained.
It stands as an acceptable alternative to the time-consuming and expen-—
sive methods based on test-retest estimation and enables the devotee of
generalizability theory to utilize all the information collected in

estimating reliability.
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Table 1

Class Frequency Patterns and Graybill's K Factors Used in the Simulation

Pattern Number Frequenciles )4
1 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20  20.000
|
2 10, 10, 10, 30, 30, 30, 30, 30, 30, 30, 30, 30 24,727
3 12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60 34.545
4 10, 10, 10, 24, 24, 24, 30, 30, 30, 40, 40, 40 25.587

€2
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Table 2
Suvmmary Statistics for the First-Order Method, p (Y ), and the
Second-Order Method, pz(x z), for 1000 l\epllcal::.ons of 12 Classes

Reliability Method * Meant Std. Exrort+ % Hish Z Low % Neg
pz(y,;) =) .874 .0922 - 49.2 ‘50.-8 .1

P2 (X, %) (#) .877  -.0905 50.1 49.9 .03

-9 PEX,L) (=) .877  .0678 ., 46.5  53.5 0.0
p2(X,2) A .874 .0048 42.2 57.8 0.0

o2 (Y LY (=) .752  .1694 " s0.0 500 .4

p @.5) & .757 .1672 50.8 49.2 .8

-8 p X,z) (=) .757 .1308 46.2 53.8 .4

3 (X,c) ) .755 L1233 ‘42,2 57.8. .1

2 F,2) (=) .636 2241 49.4  50.6 3.6

pz @,z) & .643  .2255 . 50.5 _ 49.5 3.1

-7 2(X,z) (=) 641 . .1764 T 45.2 54.8 1.5
pZ(x z) ) .641 1652 . 42.2 - 57.8 .7

'pz .0 (=) .532 .2561 49.1 50.9 7.8

. (Y ) &#) .540 .2671 50.7 49.3 8.1

.6 . p X,2) (=) .529 °  .2076 45.0 55.0 4.8

L p2(XD) ) .533 .1933 43.3  56.7 2.7

: (Y z) (=) 441 .2709 48.4° 51.6 15.1

. . p @,z) (#) .451  © .2776 50.9 . 49.1 14.2
.5 e2 2(X,z) (=) .427 .2229 44.6 55.4 9.6

. p2(%,5) () .433, .2070 44.6 ° 55.4 6.4

2(‘! 2) (=) .364 .2722 48.8  51.2 22.1

.- Ty 2(¥,z) ) .376 .2809 50.9 49.1 22.2
- <4 p2(X,2) (=)  .336 .2263 - &4.7 55.3 16.3
p2(X,0) (#) .342 .2089 44.5 55.5 11.9

p2(¥,2) (=)  .298  .2668 48.4  51.6 29.4

p2(¥,0) ()  .314 .2760 50.1 . 49.9 29.4

-3 p2(X,2) (=) .260  .2182 44,1  55.9 26.5
p2(X,2) ) .261 .1995 44.5 55.5 20.1

* “"=" refers to the results for the equal-frequencies conditions;

"#" refers to the average of the results for the unequal-frequencies
conditions

T Negative reliability estimates were set equal to zero in computing
means and standard errors.



Table 3
Summary Statistics for the Intraclass Correlation, pl, and the
Sample Correlation, r, for 1000 Replications of 12 Classes

Reliability Me thod#* Meant Std. Errort % High % Low % Neg
S S .874 .0728 48.0 52.0 0.0
: . pL (#) -.886 .0775 51.1 48.9: 0.0
: .9 r (=) .886 .0714 54.0 46.0° 0.0
: . r .890 .0759 © 57.1 42.9 0.0
. - L (=) .780  .1158 50.8  49.2 0.0
L (#) 772 .1340 51.2 48.8 .03
.8 r (=) .793 .1166 57.2 . 42.8 0.0
r ) .787 L1341 56.4 43.6 .03
" © eI (=) .  .666 .1738 50.1  49.9 .5
: A eI () .669 .1785 51.3 48.7 .4
.7 r (=) .682 .1778 . 55.1 44.9 .7
r # _ .685 .1823 55.8 44.2 .5
PI (=) .569 .1957 50.9 49.1 1.0
. PL () .569 .2054 51.2 48.8 1.8
.6 r (=) .587  ".2015 54.0 46.0 1.3
r (#) .587 .2111 54.5 *° 45.5 2.0
PL (=) .459 L2145 48.9- 51.1 3.5
pI (#) .475 .2282 51.5 48.5 4.5
.5 r (=) 477 .2234 52.1 - 47.9 4.2
r (&) .493 .2361 54.9 45.1 5.0
L (=) 2390 .2220 - 50.8 49.2 7.6
PL (#) .386 .2387 W 50.7 49.3 10.4
-4 r (=) .407 .2315 53.6 46.4 7.7
r @& .405 .2488 53.2 46.8 10.5
PI (=) .299 | .2191 49.4 50.6 15.4
P (4) .309 .2344 50.7 49.3 17.8
.3 r (=) .313 .2285 51.6 48.4 15.2
r (#$) .325 .2466 52.6 47.4 18.7

* "=" refers to the results for the equal-frequencies conditiom;
""#" refers to the average of the results for the unequal-frequencies
conditions

T Negative reliability estimates were set equal to serc in computing
means and standard errors. .
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COMPLETE SIMULATION RESULTS



CLASS SIZ2E

SUMNARY STATISTICS FCR THE FOUR

ESTIMATESe USING 12 CLASSES AND AN ITER WITH

PATTERN HETHAD

FIRST OROER
SECEND QHDER
INTRACLASS

CORRELATION

. FIRST ORDER
SECCND QRDER
INTRACLASS

CORRELATION
FIRST ORDER
SECCND QRDER
INTRACLASS

CORRELATION

FIRST OROER
SECCND QROER
INTRACLASS

CORFEL'AT 10N

RELIABILITY EQUAL TO
INSTAUCTOR VAR JANCE

RATER ZRRCR VAFIANCE

MEAN S$TD. ERROR
0.874 0.0922
04877 040678
J.a77 0. 0728
0.896 0.071a
04876 040049
0.674 040671
0.679 040775
0.887 0.0762
0.880 040843
0,873 040707
2.680 040762
3.890 040733
0.874 0.0922
046074 0.0686
<
9.884 0.0767
04892 Q. 0781

RELTIABILITY

0490
1.00

2425 .
X HIGH

49.2
4605
© 4840

2440

4945
4249
4%.1

5848

516
418
€040

3643

4943
421
24,2

€043

X LOw

50.8

$3.5

5240

4640°

5045
57.1
5049

434

A3.4
5845
5040

437

807
.

879
45.8

39.7

X NEGATEIVE

0.t

Lz



SUMMARY STATISTICS FOR THE FOUR RELTABILITY

ESTINATES, USING'IZ CLASSES AND AN ITEX WITH
RELIABILITY EOU;L TO 0.60
INSTRUCTOR VAR 1ANCE 1.00

RATER ERRCR VARIANCE 5.00

CLASS S1Z5 PATTERN METHOD NEAN STD. ERRCR X HIGH X LO¥ + X NEGATIVE

! FIRSY OADER 0,782 Co16va 5040 50.0 . O !
1 SECCHC ORDER 04788 0.1308 . 4642 s3.8 0ed :

' INTRACLASS 04780 001158 0.8 a9.2 040

I CCRRELATION 04793 C.1166 57.2 42,8 < 0.0 .
2 FIRSY ORDER 0-%57 de«1700 50.4 49406 0.8
. ,

2 SECCND DRDER 04755 041229 o301 5849 ot

2 INTRACLASS 04773 01456 1.5 aas 01

2 CORRELATION 0,789 0.1334 58.0 ‘4240 0a1

3 N FIRST OROER 0.762 8.10622 5]-6 281 . 0.7

3 SECEND QRDER 04756 0.1212 42,0 58,0 0.0

. 3 INTRACLASS 04767 0i1382 496  8nea 0.0
k] CORRELATION J.781 0s1411 54,3 L1Th4 0.0 i
i
. FIRST ORDER 04753 Oel694 0.1 49,9 0.8 i

.
Kl SECOND ORDER e 754 01257 421 579 0.2
4 : INTRACLASS G778 0e1281 528 AT.6 G0

8¢

L CORRELATION Ge790 041277 649 430} 0.0 0



SUMMARY STATISTICS FCR THE FOUR RELIABILITY

ESTIMATESs USING 12 CLASSES AND AN ITEN wITH
REI;IA&ILITV EQUAL TG 0.70
INSTRUCTOR VARIANCE 1.00

RATER ERRCR VARIANCE 8.57

CLAES 51ZE PATTERN NETHUD * MEAN S5TDs ERRCR - X HIGH X LOvw X NEGATIVE
H FIRST DRDER 846306 0. 2241 4944 5046 3+6
) SECCND ORDER 04641 041764 4542 5448 1.5
1 INTRACLASS 0666 0.1738 . %0s1 49.9 0.5
1 CORRELATION J.682 0.1778 5.1 44.9 0.7
. .
2 FIRST ORDER 0.682 0,2291 505 49,5 3.4
2 SECCND ORDER 24638 ’ 041694 4340 5740 1.0
2 INTRACLASS 04666 041766 . 505 49.5 0.5
2 CORRELATION 9.6a0 Q.18040 SA 7 4543 A6
3 FIRST ORDER 04646 Qe2245 50.5 495 2.6
3 *  SECCAD ORDER 04645 01581 42.1 ’ €7.9 0.2
3 INTRACLASS nee72 041789 1.2 ¢ 46.8 0e3
3 CORRELATION 0,688 0.1819 8643 a3.7 043
4 FIRSY ORDER 0639 0.2229 £0e5 49.5 3.4
L3 SECCND JRDER 0.639 0.1682 42.5 sb.s .9
! 4 INTRACLASS 0668 0.1800 2.1 479 Oct

L3 CORRELATION 0+684 0+ 1849 !6.4' 436 05

62



CLASS SIZE PATTERN

SUKMARY STATISTICS FOR THE FOUR RELIABILITY

ESTIMATESe USING 12 CLASSES AND AN [TEM WITH
RELIABILITY EQUAL TO 0.60
INSTRUCTOR VARIANCE 1.00

RATER ERRCR VARIANCE 13.33

METHOD ‘MEAN STDs ERRAOR X HIGH X LOW

FIRST GROER 24532 0.2561 - 49,1 5149
SECCND ORDER 94529 n.2076 45,0 5840
INTRACLASS 2,569 041957 5049 491
CORRELATION  0.587  0.2618 5440 4640
FIPST ORDEZR  0.581 042651 5142 48.8
SECCND ORDER  0.529 041997 a3.7 5643
INTRACLASS 04573 02020 s46 45e4
CORRELATION 04594 042069 5741 420
FIAST ORDER ’ 0.543 0.2627 Sie0 4940
SECCND QRCER 04540 0.1836 a4, 85,9
iNTFchAss 04569 052083 £0.5 49,5
CORRELATION  0.586 0.2149 se.8 4545
FIRST ORDER 04533 042558 49.8 0.2
SECOND ORDER 74531 041965 a2.2 578
INTRACLASS 94565 042059 a8.4 Slet

CORRELATION Qo582 Ge2i1 £1e9 401

X NEGATIVE




CLASS SIZE PATTERN

SUMMARY STATISTICS FOR THE FOUR RELTABILITY

ESTIMATES,

¥ETHOD

" FIRST ORDER

SECCNC ORDER
INTRACLASS

CORRELATION

FIRST ORDER
SECCND ORDER
INTRACLASS

CORRELATICN

F15ST DRDER
SECCND ORDER
INTRACLASS

CIRRELATION

FIRST ORDER
SECCND QRDER
INTRACLASS

CORRELATION

USING 12 CLASSES ARD AN ITEM WITH

RELIABILITY EQUAL TO Q.5C
INSTRUCTCR VASIANCE 1.00

RATER ERALR VAR[ANCE 2Q.0C

MEAN STD. ERROR N HIGH
0.481 0.2709 43,4
0.427 . 0.2229 44,6
0.4%9 T 0e2148 £8.9
04476 0.223¢ s2.1
[N 0.2814 8242
04425 0,2131 4446
04468 0.2287 49,2
04485 0.2364 €2.8
04455 0,2780 51.3
0.440 041972 45,8
0.472 002249 £0.5
0.493 0e2324 5846
10443 0.2733 49.3
043¢ 042197 ° 43S
0448 02309 £448
2.503 0e2396 5744

X LOw

8146
554
8141

479

47.8
854
5048

47.2

46.7
8442
49,8

45.4

80.7

96e5
.

48,2

42.6

X NEGATIVE

151
9.8

35

Se0

- SeS

€



SURMARY STATISTICS FCR THE FOUR RELIABILITY . .
ESTINATESs USING 12 CLASSES AND AN ITEM WITH

RELIAGILITY EOUAL TO 0440

INSTRUCTOR VARIANCE 1400

.
RATER EFRCP VARIANCE 30.00

CLASS SI1ZE RATTERN RETHIO T MEAN STD. ERROR X HIGH X LOw X NEGATIVE .

1 FIPST ORDER 04364  0.2722 4848 5142 2241
1 " sECcND GROER  0.336 0.2263 a7 55,3 1643
Y INTRACLASS 00390 002220 5048 49,2 7.6
1 c_unﬁeunon 9.407 0.2315 5346 a6.4 7.7
2 FIRST ORDER  3.382 0.2852 5242 st 22.1
2 SECCND ORDER 04337 €.2159 YW 5844 T a0
2 INTRACLASS 0.39¢ 0.2302  © s2.3 a7 1048
2 CORRELATION ™ 04410 042068 5449 a1 9.8
3 FIAST ORDER 04381 0.2821 50.5 49,5 - 228
3 ‘ SECCNC QROER  0.348 3.1902 as.e 5406 9.4
3 INTRACLASS 94376 0.2074 a5 | s2.s 17
3 CORRELATLON 04398 0.2565 047 T 1201
.
. FIRST ORDER 04366 0.2748 5040 5040 2248
. SECCND ORDER 04339 | v.a1ze a3e6 S804 1244
. INTRACLASS 0.393 0.2296 22,3 At 8.9

CORFELATION

Geall

0e2410

4.0

4640

9.8

Z€



CLASS SIZE

SUMMARY STATESTICS FOR THE FCUR RELEABILITY

ESTIMATES, USING 12 CLASSES AND AM ITEW WITH
N . RELIABILITY EQUAL TD 0.30

INSTRUCTCR VARIANCE 1400

RATER ERRCA VARIANCE 4667

PATTERN NETHOD “nEan STD. ERROR X HIGH
FIRST ORDER 04298 042668 4g.4
SECOND DRDER 04260 042182 [TeE
INTRACLASS 0.299° 042191 494
CCRRELATION  0.313 0.2288 21.6
FIRST DRDER 04323 0.2805 S1.9
SECCND ORDER 04259 0.2062 as.p
INTRACLASS 0.307 0.2309 * 50,7
CORKELATICN' 0,322 0.2433 £2.2
F196T DRDER 24317 0.2796 9.7

' SECCND ORDER 94265 0.1876 . 5.0
INTRACLASS 0.312 042390 0.3 °
CORFELATION 04329 0.2502 8340
FIRST QRDER 24301 002678 48.8

.
SECCND QADER 94258 C.2047 a3.7
INTRACLASS 04309 002332 2l
CORRELATION  0.325 0.2464 52.7

X LOw

S1¢8
559
5046

484

L 1Y}
5541
49.3

A7.8

5043
5540
49.7

a700

5142
.

5643

48.9

47.3

% NEGATIVE

29,8
2645
15.4

15,2

29.4
23.2
17.0

17.8

28.8
1S.6
1747

18.4

301
214
18.7

19.8

te




