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‘ABSTRACT

- A finite element procedure was developed for analysis of
thin plates and thin-walled sections. The procedure is based on the
large deflection theory and geometrical nonlinearities were considered.
The displacement approach of finite element method was followed. The
incremental method was used for solution of nonlinear equations and the
effect of membrane stresses was included by means of geometric stiff-~
ness matrices. Most of the stiffness matrices were computed by
numerical integration. The procedure can be applied to the problems
of in-plane and out-of-plame actions and also to the problems of
demonstrating combined behavior, thus it is applicable to bending,
buckling and post-buckling problems. The formulation was specialized
to two types of elements selected from the literature. A computer
program was developed and using the program, example problems were
solved. Load-deflection behavior is shown for the solved problems and
buckling load is determined from the load-deflection diagram. Also
the failure load was roughly estimated considering the failure to be
first yield. The results of the estimation are very close to failure
loads predicted by other methods. Results obtained for. the buckling
load and post-buckling behavior are in good agreement with the existing
solutions and for most of the problems very few elements were required
to obtain adequate results.




NONLINEAR STABILITY ANALYSIS OF THIN-WALLED SECTIONS

USING THE FINITE ELEMENT METHOD

CHAPTER I

. INTRODUCTION

1.1.1 Conventional Analysis

For many years practicing engineers conducted analyses on
the basis of the linear theory. In the linear theory it is assumed
that deflections are very small, thus the geometry of the structure
does not change significantly during the loading process, and linear
stress approximation is applicable. The linear theory also assumes
that materials are linearly elastic, hence the constitutive matrix
remains constant and independent of the load level. Utilizing these
assumptions, simplified procedures were formulated to obtain solutions
to engineering problems.

In the conventional method of analysis, it is also assumed
that different failure modes are independent and each one can be studied
separately. Yielding of the cross section due to bending, for instance,
is assumed to be independent of local buckling. Analysis of local
buckling is based on simple plate buckling theory and in the study of

member buckling, distortion of the cross section is neglected.



Although behavior of virtually every structure is nonlinear,
the linear theory yields sufficient accuracy in many problems. The
linear theory is applicable when deflegtions of structures at
working loads are small and the material behaves linearly elastic. The
uncertainty and approximation of linear theory can be tolerated with
use of high factors of safety, thus the stresses and deflections are

much less than the allowable limits.

1.1.2 Present Study

There are many cases which require nonlinear analysis; instan-—
ces where strains are small but deflections are relatively large and
the deformation of the structure is affected by interaction of load
and deflection. For such cases the determination of stresses requires
consideration of nonlinear behavior. Post-buckling analysis of thin-
walled sections fall into this category. Another example is when
different phenomena occur simultaneously, i.e., where effects are
coupled and must not be considered separately. For example, in the
bending of a beam of thin~walled cross section, it may not be realis-
tic to assume that fiexure is independent of local buckling.

In the present work the 'approach is based on the finite ele-
ment method. Large deflections are accounted for in the derivation of
the element stiffness matrix; it is possible to consider different
boundary conditions and complicated loading. Of course the method
needs an extensive amount of numerical computation and can be handled
only with computer facilities.  The method can be applied to thin

plates and sections composed of thin plates (see Figure 1-1).
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Loading may be in-plane or transverse. Failure modes may be bending
or buckling or, depending on the shape of the cross section, a combi-

nation of bending and local buckling.

1.2 Literature Survey

1.2.1 Classical Methods

Exact solutions are available for linear problems related to
bending and buckling of bars. In the case of buckling, Euler was the
first todevelop a theoretical solution for prismatic bars [52]. The
linear plate problems of bending and buckling, have been solved
assuming an infinite series representation for the deflection of the
plate [53, 54]. However, analysis of a structural member by a linear
classical method suffers from a number of limitations. It is usually
assumed that the cross sections do not distort and buckling occurs
from the initial configuration. These assumptions result from separate
Investigation of different modes. Even with the above simplification
the closed form solution of the plate differential equation is
mathematically complex and it is only available for a limited number
of simple problems and boundary conditions.

Using classical methods attention has also been given to some
geometrically nonlinear problems. Several types of simple plate bend-
ing problems have been solved in this category [53], but for most cases
only approximate solutions exist. Post-buckling behavior of some
simple plate problems have also been solved using the large deflection
method [9] where out-of-plate deflection is assumed to be zero before

the bifurcation load is attained. In this manner, it is determined

4



that, for thin plates, the bifurcation load may be much smaller than
the failure load [54].

For computation of post-buckling strength, an exact solution of
the governing equation is not available; hence a semi-empirical method
called the "effective width" concept [20, 58, 60] has been developed.

In many other cases difficulties of obtaining exact solutions have led
the investigators and designers to consider approximate methods of

analysis.

1.2.2 Numerical Methods Other Than The Finite Element Method

For bending and buckling problems of even moderate complexity,
a numerical method must be adopted. Also when the problem involves
complex geometry, material properties and boundary conditions, solution
is only possible with the aid of a numerical method. The best known
of these may be the finite difference method, in which the differential
equation is approximated by discrete values of the variable at selected
points [17]. The discretization results in a system of algebraic
equations whose solution yields the approximate values of the unknowns
at the base points. When the differential equation is nonlinear the
system of finite difference equations is also nonlinear.

Other well-known numerical procedures are commonly grouped as
"weighted residual methods," such as Ritz, Galerkin and Least Square
methods. Suppose that the governing differential equation can be
written in the operator form Au = F, where u is the unknown function,

A is a differential operator, and F is a generalized force. If an

approximation for u is assumed, say U, then the governing equation



becomes AU - F = R, where R is the residual of the approximation.
Since the assumed function is not exact, in general, the residual will

not be equal to zero. The weighted residual methods seek the solution

by requiring that some weighted integral of the residual over the domain

under consideration be zero: J[. RpdR = 0, where p is a weight
R

function.
In the Galerkin method the weight is taken to be the trial

function used to represent U = E¢i Ui' Then Jr R (ijUj) wi dR = 0
R

for every i =1, . ., N.

The least squares method is based on minimizing the integral

of the square of the residual or ? R2 (Zijj) dR = 03
here the weight function is p = 2R 2 (R (ijj)).
F}i

k

In the Ritz method, it is assumed that the solution can be
represented by a linear combination of simple functions, each function
has to satisfy the given boundary conditions. First, the problem is
formulated as definite integrals, then the desired unknown function is
substituted as a linear combination. Finally, the fumctional is mini-
mized with respect to the arbitrary coefficients in the linear com—
bination.

The above numerical methods may be used in the analysis of
different types of structures, They were originally developed for.

hand computation and recently adopted to modern digital computers



[19, 11]. The finite element method is a product of computer era and
it utilizes variational methods to construct approximate solutions at

the element level.

1.3 The Finite Element Method

1.3.1 General

The finite element method can be programmed in a systematic
way and it can be adjusted to incorporate nonlinearities, complex
geometrieé and boundary conditions, which are more difficult to
accomodate in other numerical methods. The basic concepts of the
finite element method was discussed in a very important paper [55] in
1956. Since then there has been much effort toward development and
application of the method. The basic concept of finite element method
is that the structure can be modeled as an assemblage of a number of
subregions, called finite elements. The solution over each element is
described by a set of assumed functions. The assumed functions are
chosen in such a form to insure certain properties like continuity of
the behavior of the structure, inclusion of rigid body modes (displace-
ments), constant_strain and curvature state. Howeverxr, satisfactory
solutions have been obtained [63] from elements which do not meet all
the aforementioned requirements. Stiffness matrices have been formu-
lated for diffierent types of problems and behavior [4, 14, 24, 33, 36,
47]. 1In some cases such as buckling problems or nonlinear analysis,
the stiffness matrix has to be modified. The modification takes place
by adding a corrective matrix which is called the geometric stiffness

or Initial stress matrix. It is based on the physical consideration

7




that the presence of in-plane loads (stresses) influence subsequent
deflection of an already deflected structure. Depending on the nature
of stresses and deflections, the initial stress matrix may increase
or decrease the stiffness of the structure.

The concept of geometric matrix was first introduced in
reference [56]. There the derivation was based on a strain energy
formulation. Later on a purely geometrical consideration was used to
derive the matrix [4]. Although buckling and nonlinear problems are
completely different in theory, some similarity exists in utilizing the

geometric matrix concept.

1.3.2 Buckling and Post-Buckling Problems

Considerable literature is available on the use of the finite
element method for eigenvalue buckling problems [7, 24, 28, 30, 43].
For this class of problems it is normally assumed that the member is
perfectly straight, it has a plane of symmetry and is loaded in that
plane. It is also assumed that there is no lateral or torsional
displacement until the critical load is reached. In lateral-torsional
buckling of beams, deflection about the major axis is neglected. The
procedure is called linearized stability [24] for which the matrix
formulation may be expressed as

P = (K, +u<g) q
where Kc = conventional stiffness matrix, Kg = geometric stiffness
matrix, q = displacement vector, p = load vector. At bifurcation load

neutral stability must exist or

(R, +AK) q =0



with the solution

det (Kc +XKg) =0
The above formulation requires small deflection assumptions. The
analysis must be conducted in two steps: a prebuckling analysis in
which a small portion of the load to be carried by the structure is
applied and "initial stress" computed, then the matrix Kg is formed.
The conventional stiffness matrix Kc is assumed to remain constant
during the loading process and the geometric matrix at each increment
is directly proportional to the applied load with A being the propor-
tionality factor. Solution yields the buckled shape and the buckling
load is equal to the lowest eigenvalue multiplied by the applied load
in the prebuckling stage.

The above scaling procedure may be applied successfully to
problems which exhibit linear behavior up to the point of failure. It
is equivalent to classical Euler buckling formulation in which pre-—
buckling deflections are neglected and buckling is assumed to occur
from initial configuration. Nevertheless, the method has some advan-—
tages over classical methods such as treating load and geometric
irregularities and nonisotropic materials. As will be seen later,
nonlinear analysis is also based on the use of the geometric matrix,
hence the eigenvalue buckling analysis gives an insight into nonlinear
analysis by a matrix method.

In most of the buckling problems some deflection exist from
the very beginning, hence the bifurcation load is not meaningful.

Also in the problems where deflections are relatively large the change
in the geometry cannot be neglected.

9



Several problems in elastic stability have been solved using
a linear theory. 1In reference [7], using the displacement finite
element method, stiffness matrices are formulated for torsional and
lateral stability of structural members. The elements are beam seg—
ments with two nodes, every node having seven degrees of freedom,
fu, w, ¥, v, 0, ¢, x] where u, v, w are deflections in the x, y, =

direction,¢ = angle of twist,® = dv, ¥ = dw and x = d¢. Then 14 by
dx dx dx

14 geometric and conventional stiffness matrices are derived and an
eigenvalue problem is formulated whose solution yields the buckling
" load. The following examples are studied in the mentioned reference:
torsional buckling of an axially locaded uniform member where
linear displacements are constrained and angular displacements are
free; lateral buckling of a narrow rectangular beam subjected to equal
end moments; lateral buckling of a cantilever beam subjected to a
concentrated load at the shear center; buckling of a simply supported
beam with different loading conditions such as distributed or concen-
trated load at the top flange, at the bottom flange and at the shear
center; stability of a circular shaft under conservative torque.
Results for the above problems converged to the classical
solutions, whenever available, as the mesh was refined. Better results
were obtained for problems governed by flexural and lateral instability
relative to those governed by torsion.
Reference [43]% gives solutions for lateral buckling of steel
beams. The method is the same eigenvalue procedure as mentioned pre—

viously. The method uses beam segments with two nodes and lateral

10




displacement, torsional rotation, lateral bending and warping are
selected as degrees of freedom at each node. Anal&ses are performed
for a number of examples including simply supported beams under end
moments, concentrated load, distributed load. Also, analyses for a
series of two span aluminum beams have been carried out with the

results given in the form of an interaction diagram. A solution is also
presented for a continuous beam with different cross sections in
different sapans. The results are in close agreement with those given
by classical or experimental methods.

Stability of plates by finite element method is considered
in reference [30] where linearized buckling analysis is performed for
square and rectangular plates under compressive loads in one or two
directions; plates under combined bending and compression and under
pure shear; orthotropic plate under uniform compression in one direc-—
tion. With fine meshes good agreement is obtained compared to other
approximate solutions such as Raleigh~Ritz and finite difference
method.

In reference [28] using the finite element method, a solution
is presented for stability problems of beams. The beams are divided
into plate elements. Double symmetric sections (rectangular, wide
flange, I) are considered. Numerical examples include: buckling of
axially loaded column; lateral buckling of a simpl - supported I beam
with a concentrated load at the .centroid at the midspan and the same
beam loaded at the top flange; cantilever beam loaded at the centroid

at the free end; continuous beams with stifferiers and bracing at the

11




top and bottom flange at midspan also with braces only at the com-
pression flange.

Linearized stability discussed in the above references, where
applicable to many engineering problems is not sufficient for the cases
where the stability of a critical equilibrium configuration or post-—-
buckling behavior must be considered. In such cases the need for a .
more accurate theory has resulted in considerable effort for the solu-
tion of'nonlinear problems.

To date much progress has been made in the field of nonlinear
analysis. 1In reference [49], a procedﬁ;e is formulated for the solution
of geometric and material nonlinearity but complete derivation of
stiffness matrices and numerical examples are not given. Reference
[33]1 formulates the general. nonlinear problems by potential energy,
direct and incremental method, two corrective matrices are derived
which are denoted by N1 and N2 and are called the first order and
second order stiffness matrices. The mentioned paper also gives a
useful explanation of nonlinear analysis, but numerical results are
not presented; in reference[47l’, the finite element procedure is for-—
mulated for the solution of inelastic beam and beam column problems by
using one dimensional elements and replacing elastic modulus by the
tangent modulus. The formulation is accompanied by numerical results
for a cantilevér beam-column subjected to doubly eccentric axial load and
a beam column with residual stress. Reference [36] gives a general dis—
‘cussion and formulation of geometrically nonlinear problems using
one dimensional elements for beam-columns and plane stress triangular

elements for plates. Elasto plastic solution of plane stress and plane

12



strain problems by finite element method are considered in reference

. T42] where results are given for a rectangular paﬁel under tensile
load. Plane stress, plane strain and axisymmetrically loaded body of
revolution in the nonlinear range (geometric and material) are dis-
cussed. In reference [34] numerical results are given for a thick
cylinder under internal pressure, a plate under tension with central
hole and a notched tension specimen. Formulation of geometrically non-—
linear problems under uniform heating with large temperature changes
are presented in reference [56]. Stiffness matrices for truss and
plane stress problems are given with no numerical results. The plane
stress relationship for elastic-plastic material is developed in
reference [62] and the procedure is used to solve plane stress problems
such as a perforated tension strip and cantilever beam, the method is
extended [64] to axisymmetric problems of large deflection and plas~
ticity. Plastic bending problems of plates, assuming small deflection,
are solved in reference [8]. Solution to elastic~plastic problems of
axially compressed cylinders and columns are presented in reference
[35].

Although the above references have contributed greatly to
nonlinear analysis, still it is not possible to include geometric and
material nonlinearity in a routine manner. To date, solved problems
involving elastic~plastic material properties have been limited to one
dimensional elements, plane stress or plane strain, axisymmetric mem-
bers using isoparametric elements, or plastic bending of plates with

small deflections. Solutions for complex problems with combined
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geometric and material nonlinearity and considering buckling have not
been presented. The available rigidity matrices required for these
problems are not efficient and the computational effort required for
even relatively simple problems is enormous. For this reason, the
present work is concerped with only geometric nonlinearities, however,
relatively complex problems are solved as a first step to developing

a complete solution. The incremental method is used wherein the non-
linear problem is replaced with a piecewise linear series of solutions.
For every increment of load, geometry is assumed to remain constant,
and a new tangential stiffness matrix is formed and deflection is

obtained for that increment.

1.3.3 Elements

In the early application of finite element method to stabi-
lity problems, one -dimensional elements were used [4, 7, 36, 51].
Although trusses and some beam-columns may be represented adequately
by one dimensional elements, the model seems to have some deficiencies
for thin-walled structures. One dimensional elements, cannot take into
account the completé geometry, loading and local behavior. Two. cross
sections with the same moment of inertia and cross—-sectional area may
have different shapes (e.g., one may be symmetrical, the other one
nonsymmetrical), hence, different load-deflection behavior. A finite
element mesh in the case of one dimensional element is obtained by
dividing the structural member through the length into 2 number of

elements. Every element has two nodes at the two ends. Displacements,
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rotations, angle of twist and warping are taken as degrees of
freedom.

Dividing the member into two dimensional elements may result
in a more accurate model [28, 30], since distortion of the cross
section and consideration of local and member behavior can be handled
simultaneously. When using two dimensional elements the geometric
matrix can be obtained from the interation of in-plane stresses and
out-of-plane deflections [13, 22, 30]. A. more precise formulation
takes into account both in-plane and out-—of-plane deformations [27]f

Two dimensional elements while possessing the advantage of
better representing the behavior of the structure have also some dis-
advantages over one dimensional elements. The increased number of
nodes increases the size of stiffness matrices and consequently the
computational effort increases. The stress—-strain and strain-deforma-

tion relationships are not as simple as one dimensional cases.

1.3.4 Plasticity

There are some certain limits of stresses beyond which the
stress—strain behavior of material is nonlinear. These limits are
defined according to plasticity theories. Plasticity problems are
also studied by the use of finite element method. In one approach a
linear variation of plastic strain is assumed over the element [22].
For some cases, this procedure gets extremely difficult [8] . Besides
it is known that plastic strain is not a continuous function over the
surface and through the thickness of the element. In reference [6] a

method is presented for finite element solution of elasto-plastic
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material. In that paper the authors assumed a linear variation of
plastic strain between the nodes and in addition assumed that the
plastic strain varies linearly from its value on the lower or upper
surface to some elastic plastic boundary in the cross section. 1In a
later paper [5] the same authors discarded the mentioned method and
suggested the use of well-known plasticity theories. »

In reference [64] noﬂlinear material and geometry is discussed
and incremental flow theory of plasticity is used to present material
behavior. The formulation was applied to two and three dimensional
isoparametric elements. 1In that paper bending and buckling is not
discussed. 1In fact, the constitutive law given for two or generally
three dimensional cases may not be simply reduced to the case of
bending. Apparently numerical integration was necessary which will
spoil the rather simple form of the constitutive law.

Inclusion of nonlinear material behavior in the case of one
dimensional element may be possible by means of simple modification
using tangent modulus instead of elastic modulus [47]. ¥For two and
three dimensional elements confusion still exists about stress distri-
bution and stress-strain relationship [25]. Little information on non-
linear material is available in the literature and finite element
solutions are not of uniformly acceptable quality. It is knowm that
for nonlinear material, the principle of superposition is not valid,
hence the analysis becomes more complex. The chances of obtaining

closed form solution to specific problems are fairly remote.

16



Numerical solution usually reduces a nonlinear problem to a
piecewise linear one. In the case of nonlinear material it means
adjusting the rigidity matrix at the end of each increment and keeping
it constant during the next increment. Based on the plasticity
theories two approaches are available for computation of rigidity
matrix. The two widely accepted plasticity theories are incremental
flow theory and deformation theory. Deformation theory gives the
relationship between total stress and total strain [26] while incremen-—
tal flow theory gives the relationship between incremental values of
stress and strain I35, 38]. The first one has a simpler form while
the latter is theoretically more acceptable [37) . As discussed pre-
viously the present work is concerned only with geometrical nonlin-
earity, however, formulation for both plasticity theories is given in
Appendix C.

Since the distribution of stresses at a yielded point in a
material is completely different from the other points in its neigh-
borhood, a large number of integration points will be necessary on the
surface and through the thickness of each element. Computation of
stresses at the nodal points follows the same procedure. All these
values must be stored and then used in later computations. Hence for
large problems the storage location for material nonlinearity may be
needed for 50,000-100,000 values. These computations must be repeated
in each step. Working with the deformation theory may simplify the
required operation to some extent. The only difference being the

stress-strain relationship which is given for total values rather
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than incremental values. But still most of the above mentioned
difficulties exist.

At the present time, simultaneous treatment of large deflec—
tion and.plasticity results in a-computational=effort which is.
extremely large and uneconomical. In the present work using large
deflection method for thin-walled steel members, in the elastic range
a very good approximation is obtained for elastic buckling, post—
buckling behavior and even failure load by assuming the failure at

the first yield. .

1,4 State-of-the~Art Summary

Although much attention has been devoted to linearized
buckling theory, which is a numerical equivalent of the classical
method, very few practical problems exist which may follow this theory.
Examples are a perfectly straight column under axial loads or a plate
without imperfection under in-plane loads. 1In reality, the ideal
case of a perfect structure with a perfectly centroidal or in-plane
load may nmot occur very often. Therefore evéry load williéause some
deflection.

For thin-walled sections, the relative magnitude of pre-
buckling deflections are significant and cannot be neglected. The
same comment applies to bending of thin plates, where transverse
deflection and the resulting membrane forces have considerable effect
on the overall behavior. Also cross-sectional distortion (local
buckling) which will change the geometrical properties and stress

distribution may not be treated separately.
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Very little work has been donme on the theoretical investiga-
tion of post-buckling behavior. In fact, complicated problems of post-—
bifurcation have not been solved theoretically and the "effective
width" concept produces reasonable results in only a semi-empirical
way. In the very few simple cases where the solution for post-buckling
behavior exists, assumption of bifurcation may cause some inaccuracy
in the results of the post-buckling analysis.

Most of the solutions in the literature refer to a member with
a plane of symmetry which is not the case for thin-walled zee and
channel sections.

Solution procedures presented in the literature for buckling,
post-buckling and some bending problems are inadequate. Generally for
the problems in which the behavior depends on the load level, non-
linear analysis must be followed. So far no unique treatment for the
general nonlinear problem has been presented in the literature. In
spite of theoretical and experimental investigations the matter is
not clear enough. The general nonlinear problem is still under exten-—
sive research. Although in references [39, 40], a formulation for non-
linear structural analysis is presented, computation or detailed defi—
vation of any of the matrices is not.given. In the following section

a method for solution of nonlinear structural problem is proposed.

1.5 Solution Method
Here the finite element method is used to solve proklems of

geometrical nonlinearity. The method has a very apparent physical

interpretationwhile it is strongly supported by basics of mechanics.
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Most important of all it is cast into matrix formulation which makes
possible the use of standard matrix structural analysis. The member is
idealized by two dimensional elements which makes possible the siﬁul—
taneous treatment of local and structural action and gives a better
representation (relative to one dimensional mesh). The displacement
method is adopted in the present work. It is particuiarly suited to
nonlinear analysis because geometric nonlinearities may be incorporated
through displacement formulation directly [31, 33].  For displacement
models two approaches are available [49, 64]:

1. Eulerian formulation or moving coordinate system,

2, Lagrangian formulation or fixed coordinate system.

The latter is used here for being more straightforward.

Retaining nonlinear strain-displacement terms and assuming
large deflection requires a nonlinear stiffness matrix and also a
geometric stiffness matrix. Both are variable and depend on the load
level. The stiffness matrices contain bending, membrane and counter-—
action components.

For the solution of nonlinear matrices incremental technique
is used. In this manner an increment of load is applied to the system
and deflections computed, then the existing geometry is considered in
computation of conventional and geometric matrices for the next incre-
ment. For buckling and post-buckling analysis some imperfection in the
structural member is needed in order to avoid bifurcation. Here the
required deflection is imposed by applying a very small concentrated

load in the transverse direction at a critical point.
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Details of theoretical formulations are presented in Chapter
II, selected elements are discussed in Chapter III-and results of

numerical studies are given in Chapter IV.
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CHAPTER II

" ANALYSIS PROCEDURE

2.1 Formulation in Compact Form

2.1.1 Governing Equations of Equilibrium
A finite element formulation may be developed assuming dis-
placements, stressés or both displacements and stresses (a mixed
procedure). In the displacement formulation, one may start with the
virtual work principle which states that for a body in equilibrium,
the algebfaic sum of all work done during a virtual displacement is
equal to zero or mathematically

5U=f 8¢ gdv= &6W ) (GB)]
vol.

where § denotes incremental value, W = external work by the applied
load, o = stress, U = internal work or strain energy.

Writing equation (1) for a typical element and performing
standard manipulation leads to the stiffness equation for the element

K)}® {q)° = {F2°
where {K}¢ = element stiffness matrix, {q}® = nodal displacements, {F3}¢
= generalized nodal forces for one element.

The stiffness equation may then be assembled using a direct
stiffness approach to obtain.the structural stiffness equation.

&k} {q} = {F}
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where {K}, {q}, {F} are stiffness matrix, generalized nodal displacements
and generalized nodal forces respectively, for the entire structure.

For small deflection assumptions {K} is linear e.g. bending
of a beam or a plate may be formulated as a linear function of the
applied load; for large deflection {K} is nonlinear and depends on the
displacement and load levels and, thus, may be expressed as {K} =

{K (v}, {F})}, a typical nonlinear relationship is shown in Figure 2-1.

2.1.2 Displacement Model
As was mentioned in Chapter I, geometric nonlinearities can
be incorporated most readily within a displacement formulation, and
since only geometric nonlinearities are considered in this study the
.displacement approach is used here. The strain expression needed for
manipulation of equation (1) may be obtained from the definition of

Lagrangian strain tensor:

+ U, 44U . U .) +
J,

.3 U, Un, Wag Wog + 2 X34 @

€ =1 (U
ij 3 ( i

N

where & = strain temnsor, U = in-plane displacements, W = out-of-plane
displacements, Z = distance of the point from the middle plane, Xij =
curvature tensor.

This expression is valid for small and large deflection [46,
641 , and also for combination of bending and in-plane action.

The displacement of any point may be represented as a linear
combination of nodal displacements. Hence, if the vector of in~plane
nodal displacements is designated {qp} then U = {N} {qp}where{N} is the
matrix of shape functions. Similarly w = {¢} {qb} where w = out-of-
plane displacement at a point, {qb} = vector of out-of-plane nodal

displacements and {¢} = matrix of shape functions.
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Writing {e} ={C} {U}, where {C} is a differential operator
assuming surface traction per unit area of the element is {T}, substi-
tuting in the virtual work expression and carrying out the finite ele-—
ment manipulation, the following relationship is obtained:

v 81T fotav - {F} = 0 3

Here {F} denotes generalized nodal forces, and with the previously

defined nolations F = {¢}T {T} dA where the integration is carried

A
over the area of a typical element. {B} = displacement to strain trans-
formation matrix for incremental values or

8§ {e} = {B} & {q}
For large deflection {Bl is nonlinear and depends on the displacements
or

{8} = {B(1)}
Taking the first variation of equation (3) results in

Va{B}T {c} av + {B} 8 {c} dv =6F %)

v
{0} may be expressed as {D} {e} where{D} is the constitutive matrix.
The strain-displacement matrix {B} is obtained from the varia-
tion of {Bo} + {BL} where {Bo}is related to the linear terms and {BL}
is related to the nonlinear terms. Hence {Bo}is constant between two
displacement configurations and
§ ({B 3+ {B })=61{g1
Since only nonlinear geometry is considered here, the stress vector of
equation (4) can be obtained as a linear combination of strains. The

two integrals on the left hand side of equation (4) result in two

matrices. The first one is independent of material properties and

25



depends only on the stress level it is called the initial stress or geo—
metric stiffness matrix; the second matrix depends on the displacements,
hence, it is‘nonlinear and may be called the large deflection stiffness
matrix. Finally,the complete formulation for geometric nonlinearity

is given as:

({Kg}+{KL} )8 {q} =6{F} : (5).

where ng} = geometfic stiffness, KLT= large deflection stiffness and
other notations have been defined previously.

The major step in deriving the two stiffness matrices men-—
tioned in the above, consists of obtaining matrix {B} and {B} results
from the first variation of {BL} . It is seen that for the first
integral, first variation of {B} is also needed. The values along with
stress—-strain expressions when substituted in equation (4) will give the

stiffness matrices whose details are presented in the next section.

2,2 Details of Element Stiffness Matrices

To develop the terms of geometric and large deflection
matrices, a two-dimensional strain-displacement expression for combined
in-plane and bending action is written which is the expanded form of

equation (2).

B [(aw? + (w2 + (a2
ax = ox ax
2 2 2 i
et = {ov L +1 | (w?+ w?+ (@ -z !
% z | % 3 3y
2+ B 2 (u B+ vdv+ N ) !
. o % 3y oy ox % :

\

(6)
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The second matrix on the right hand side contains nonlinear terms and is

denoted as

fe,} =1 {m} {8}

2
where
N
Jawaw 0 0 0
x x X
H= 0 0 0 3 v w
¥y ¥
uww W
3y dy oy x  ax  ax J (€))
and {0}F = | &, 3v, w, Bu, v, B,
x & & ¥y ¥y Yy
Taking the first variation
8§ fe;} = 8@ (Y {e}) =1 é{u} {6} +1 {H}§ {8}
2 2 2
and writing
o = {6} {q}
one obtains
8 {eL}= {#} {6}s {q} €]

Since {B} is related to incremental strain-displacement expression,
one may proceed by taking variation of total strain as

s{el=38 {so} +4 {eL} +38 {eb}
in which g is the axial strain due to bending,fao} = strain for small
deflection assumptions, {EL} = additional values due to large deflection
assumptions. Utilizing shape functions and nodal displacements, the

above equation is written as:

8§ {e} = 1B )}§ {q} + {Bl}é' {q} + {Bb}s {q} (¢)]
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Where the displacement to strain transformation matrices for incremental
values are defined as: {Bo} = Linear transformation matrix, {Bl} = non~-
linear transformation matrix and {Bb} = bending transformation matrix.
Comparing (8) and (9), it is concluded that {Bl} = {H} {G}
where G = G11 0
0 Gy

and at node i

{6, 5 = | 2N

i 3= L2

€11
BNi
oy IZ

where N is the shape function for in-plane action and i, is identity

matrix of order 2. Also

~

a‘¢1<1 WK, AWK,

{_GZZ}i - ax % x
¥R, WK, WK,

¥ % &

7

where K1 = 3i - 2, K2

Substituting these values in the integral for geometric stiff-

= 3i-1, K3 = 3i

ness and performing required manipulation results in

R} = [ {1} {s} {c} av
g v

where {S} is a matrix of stress components. Introducing force per unit.
length of the boundary of the element and carrying the integral over the

area.

&} = f c}T o} {6} aa
2 A
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where M= M, ©

o Y52
and submatrices
0,1 =TT, Tyt
TxyIZ T,I,
{M22}= T, Txy
T T
Xy y

Again I2 represents an identity matrix or order 2 and Tx, Ty,

T are stress components per unit length of the boundary of the ele-

ment. Then

K1} = K= 0
g g
b
0 1.<g
s T
—where &} = | {6} 1%} {6} A
=4 JA
b [ T
and &} = _L 16,,3" M,,} {6} aa

considering strain in the middle plane of the element

{e} = {B} {q}

where

L

- {g° !
i{B} = {Bu + B, | Buw}

(10)

and submatrices are related to the deflections in the following manner:

{80} = transformation matrix for small deflection, {B} = additional
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terms for in-plane components of large deflectionm, Buw = additional

terms of out-of-plane components of large deflection.

and {q} = qp

then stress is given by

{c} = {p} {e} = {D} {e} = {D} {8 + Bf; 5.} Ja

Examining matrices {Bo} and {Bl} of equation (9), it is found that the

ith elements are as follows:

' 0
x
{8} = {80}, = 0 -y
u %
oo
o "
ew? + (@w? + Gw?
9x 9x ox
{8, Hal =1{ Cw? + @w? + @w?
2 3y oy 3y

2 QGuw Gw +2 @v) Gv) +2 (Bw) (Bw
ax 3y 3x dy 3x 9y

Now
§ ({p }Hah) = {B;} 8 {q}

where A{Blla_= {1} {e}
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thus r : W

{B,}. = | 3u i
" 1% 5 &5 & &% &

where 3¢k and a{;."k are submatrices defined as
x oy
3 3% 3
3, k| ky kg _l
ax x x® X
and
3% 3 3.
B = ky, Ky kg
¥ oy oy %y
K, =31-2,K =3i-1,Ky=3i
Combining (7), (9), (10), and (11)
d N
a o T
ax x x ax
o Mo My
L y Ty v o
B} = a a
2 Now B
x ¥ iy X
+ +
o Moy W
% ax  9x ¥y
. /
and



A\

2w 2%
®  ox
3¢
aw 0%
{B }=1[-——= —=
w o F ¥y %y
2 Mo o M
. ¥ T ax & oy
~ ” .
The stiffness matrix {KL} is obtained from K; = f BcT DB, dv
v
where
{8} = B, B} + z 1B}
and {8 } = {°} + (&%}
u u u
thus i ~
) 4 2
(arosom ™) osm M| s Maz Py
3x 8% ax 9x ox ax axz
0-5 2u Milaa+0.5 3w N {05 80 Pr+z S
Y Ty dy y oy 3y
{8}=
i
0.5 . Milca+o0.5 3 Tilos aw Fis
¥  ox ¥y ax ¥y X
3 N % 26
+(1 + 0.5 3u) N3 +0.5 v i |0.5 & Tk + 2z k
3x By x* o R axayJ
~
and

T
q =l_Ui’ Vi"" wk""_]

The complete matrix KL is written as (

R %

K Kp2
and the submatrices are defined as
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= T _ T
K=t j B, DB dA, K, = t f B DB dA
A A
_ T
{K21} = {Klz}
and .
= 3 T T
Ky, = %i' B, DB dA+t B, DB dA

A A
where t is the thickness of the element and t is the constitutive
matrix.

The total strain is obtained from

_ o L
{e} = {Bu-!-Bu} {qp} + {B“w} {qb}

and the matrix of surface traction at every point is

T =t {p} {e}
y

T
Xy

It is noted that the formulation can be reduced very easily

to the standard case of bifurcation; however, it is not adopted here

since the present work is only restricted to large deflection behavior
or geometric nonlinearity, hence solution to equation (5) is sought

and the approach for that is discussed in the following section.

2.3 Procedure for Nonlinear Analysis

The nonlinear stiffness equation (5) representing the behavior

of the structure may be solved numerically by the incremental method.
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Schematically, the nonlinear problem and solution is presented in
Figure 2-2. Of course,in the figure the difference between the incre-
mental and the exact solutions is exaggerated. By choosing proper size
for the increments the two solutions can be made to converge in most
instances. The following summarizes the procedure:

First,a small increment of load is applied and displacements
and stresses are computed using the small deflection matrix {Ko}; these
values are then used to compute the large deflection and geometric
matrices.

Next the equation

(KL + Kg) §q= &8F
is solved for the new increment of loads; solution yields & or incre-
ment of displacement. Total displacement at each stage is computed as

9 =93t 09y
and then the total strains and stresses may be found, KL and Kg updated
and the process repeated using another increment of load until total

load F is reached where

F=% §F
TIy-g %
The nonlinear stiffness matrix requires the computation of

&, v, &, 3u, 3v, Bw
8x 9x ox oy 3y dy

These values are numerically computed as

1
R R Vi etc.
& ox
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Fig. 2-2. Incremental Solution of Nonlinear Problem
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)

& =3I, w, i etc.
v i=1 i-—EE
where ny and n, are number of generalized displacements for in~plane

and bending action.
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CHAPTER III

FORMULATION APPLIED TO THE SELECTED ELEMENTS

3.1 Criteria for Selection of Elements

In Chapter II formulation was developed for combining bending
and membrane action, hence for numerical computations two types of
elements are needed. It is reasonable to select the two types of
elements with the same geometrical shape, otherwise, before assembling
the structural stiffness equation the different elements in each region
must be assembled to obtain an unique stiffness matrix for that region.
This requires an additional amount of computation. Also due to the
interaction part of the stiffness matrices, it is necessary to have
bending and membrane shape functions which apply to the same region.

In fgct, the two elements are not acting independently but they are
cast into one unique element, thus numerical integrations and other
operations for both must be performed in the same region. Comparing
the results obtained from different elements for member action, it has
been shown that with the same number of nodes complex elements produce
better results that simple elements (e.g., results obtained from

one rectangle are better than those when the same region is divided in
two triangles, the total number of nodes for the region being the saﬁe)
i63j. - Even a rectangle is better tham six triangles with addiﬁional

number of nodes.
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For bending, if a single polynomial expansion is assumed over
the whole element then, in order to gét a complete and compatible func~
tion, six degrees of freedom are needed at a non-right—angled corner.
Hence, a triangle will have a total of 18 and a quadrilateral will have
a total of 24 degrees of freedom [13]. For a triangle at least a
quintic polynomial expansion with 21 degrees of freedom must be used.
Obviously, this procedure gets very involved and few results are found
in the literature for these types of elements.

In another approach, a triangle is divided into three sub-
triangles and then a polynomial expansion is assumed over each sub-—-
region [14]. By imposing compatibility requirements a triangular ele-
ment with 12 degrees of freedom is obtained. Relating the single
degree of freedom at each mid-side node to the degrees of freedom at
the corner nodes, triangular elements with eleven, ten and nine degrees
of freedom are constructed. In this case every subtriangle has a
different set of shape functions. Considering the interaction part of
the element stiffness matrix, the incremental procedure necessary for
Jarge deflection analysis, and considering the better performance of
complex elements (rectangular or quadrilateral) for membrane action,
triangular elements are not efficient for the present work and are
eliminated from further consideration.

Extending the procedure of dividing an element into triangular
sub-regions, a compatible quadrilateral called Q-19 has been developed
[13]. The quadrilateral is divided inte four triangles and each

triangle is subdivided into three subtriangles. Every triangle has
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eleven degrees of freedom and a set of eleven shape functioms is
obtained for every subtriangle. The complete quadrilateral has 19
degrees of freedom, seven of them internal which must be condensed
out before assemblingthe structure stiffuess matrix. If a mewbrane
element with ten degrees of freedom is to be combined with the Q-19

element, then a 29 x 29 element stiffness matrix is required which must

be reduced to a 20 x 20 by condensation and the condensed out terms must .

be retained for later computation of stress and strain at the internal
nodes and integration points which must be used for calculation of
geometric and large deflection stiffness. Also considering the 12
subtriangular region, each governed by a different set of shape func-—
tions and the required numerical integration for the element stiffness
matrix, the tremendous amount of required numerical computations be-
comes apparent.

Since the thin walled steel sections which are of interest
in this study may be easily divided into rectangular elements and con-
sidering economical deficiencies of non-rectangular bending elements
for large deflection analysis, attention is here restricted to rec—
tangular bending and membrane elements. The two selected elements are

explained in the following sections.

3.2 Membrane Element

It is intended to select an element which does not have a large
number of nodes while at the same time produces . reasonable results.
Hence for membrane action quadrilateral and rectangular elements with

a total of four nodes (at the corners) or five nodes (one at the center)
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have been examined. In fact these are the displacement membrane
elements most widely used in the literature.

The element called 4CST is composed of 4 constant strain
triangles cannot represent a state of pure bending [19] and, as was
mentioned in Section 3.1, the more complex elements are superior to
this one. The original isoparametric element called Q-4, which has
4 corner nodes [63], produces better results compared to 4CST, but
its bending response is not satisfactory. Another isoparametric
element with 5 nodes, 4 at the corners and one at the center, produces
results which are slightly better than those of Q4, butlstill its
deflection under pure bending is not correct [16]. The incorrect
deflection of these elements is shown in Figure 3-2-a. According to
references [8, 21, 24, 27] the original isoparametric element (Q4) and
the one with a central node have shown improved performance when a
constant shear strain is imposed upon the entire element. The result-—
ing elements are called QM4 and QM5. The QM5 element is superior to
QM4 and it has given exact results under pure bending. Also, rectan-
gular QM5 element procedures exact results under axial load [16].
Here, element QM5 is selected to model the membrane action.

Element QM5 was first developed in reference [21] and has been
extensively used by other authors [8, 27, 28]. This element has 10
degrees of freedom, two at each node. The geometry of the element and
degrees of freedom are shown in Figure 3-1. As was mentioned earlier
in Section 3.1, the original element with five nodes has been shown to

be defective under bending [21], since it is not capable of attaining
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the correct deflected shape under pure bending. In this case the
presence . of some shear strain makes the element stiffer than a beam
segment by removing some shear energy, the bending performance of the
element has been greatly improved [21], Considering that shear ‘strain
is zero at the center of the element,in the integration of the element
stiffness matrix the terms which produce shear strain are evaluated
at the center regardless of the actual values of the Gauss points
tlé, 21,A2$]. The improvement is illustrated in Figure 3-2-b.

The displacementfield for the element is given by:

4 2 2
w=Z _, NU +@A@-8) a-nd)
ver L Nv.+a-£) a-ndyv

i=1 ii 5

where u and v are displacements at any point of the element in the x
and y direction. Ni's are shape functions and £ and n. are natural

coordinates. The shape functions are defined as

N, =1(1-8 Q-n)
%

N, =1 @Q+8 Q-
4

Ny =1 @+E) (1+n)
%

N, =1@Q-8 @+mn)
4

where £ and n are the local coordinatgs, which take + 1 values at the nodes.
Referring to the element stiffness matrix developed in Chapter

II, it is seen that derivations of shape functions with respect to
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cartesian coordinate system are needed. Here shape functions are given
in terms of natural coordinates, therefore a relationship is needed
for conversion. It is known that for isoparametric element the
following relationship exists between cartesian and natural coordinate

systems [24].

_ 4
x=1 N. x,. y—zi=1Niyi
where xi's and yi's are nodal coordinates and Ni's are shape functions.

Then applying the chain rule and writing in matrix form, the conversion

formula is obtained as

oM = 17t (e
ax X
an an
3y on

where [J] is the Jacobian matrix 8x 3y
3f 3

31 = ax 3y

an an

Performing the required substitution in the expression of
element's large deflection stiffness matrix (Chapter II) and noting that

dA =[J]d £ d n the following expression is obtained:

1 1
Ry, = [ [ t 83} (D} (B} [Jld& dn
-1 -1

where K., = submatrix for membrane action, t = thickness of the element,

11

Bu = displacement to strain transformation matrix and[J]= determinant
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of Jacobian matrix. The geometric stiffness matrix is developed using

the same displacement field as defined for the conventional stiffness

(consistent method). If membrane geometric stiffness is denoted by_Kgm then

the above form results from the following arrangement of in-plane nodal

displacements.

T _
{qp} —l_Ul,... Ugy Vis - VSJ
This arrangement simplifies both representation of the terms of the

geometric matrix and also numerical computations. KZ isabx5

matrix whose terms are computed as

(Km) L = (aNi 3N, Tx+ aNi 9N, T+ 8Ni 9N, T N
g :Fj A 9x 9x 9x v xy oy x
: aNi aN. T ) da
3y "oy 7
where Tx’ Ty’ Txy are stress resultants per unit length of the boundary

of the element.
Again derivatives are computed in terms of natural coordinates
and dA is replaced by J d £ d.n. Hence limits of integration are -1 -

and +1 for both & and n.

3.3 Bending Element

Two types of rectangular bending elements are mostly used in

literature: (1) A compatible element [10] which uses Hermitian
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interpolation functions and has 16 degress of freedom and (2) an
incompatible rectangle [12] called ACM, with 12 degrees of freedom.
It is seen that the incompatible rectangle [10, 19, i?, 63] gives
converging solutions and the obtained results are reasonable and in
good agreement with the other existing solutions. This element is
used here and the numerical results given in Chapter IV indicate the
usefulness of this element. ‘

The element has four corner nodes and three degrees of free~
dom at each node. Nodal degrees of freedom consist of one transverse
displacement and two rotations about the two perpendicular axis in the
plane of the element. Figure 3-~3 shows geometry and degrees of
freedom. The displacement field is expressed by a 12 term polynomial.
If displacement at every point is designated by w then w = Ya

where {u}T = e ... alZ set of coefficients of polynomial and

2 2 2 2 3 3
w=|_1,x,>'.x,xy,y,x3,xy,xy,y,xy.xy3_,

the nodal degrees of freedom are

w w
dw
3y )

—w
B o,

To obtain nodal deflections and rotations the above values are evalu-

ated at each node or :

W

SV G oy, 8 8 Ony Ty C 8 = 00 (x, )

Xy ¥
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Fig. 3-3.
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The vector of 12 nodal displacement for out-of-plane action is written

as

{qb}T = I:{,l, exl,eyl, ., exz, eyz, vy ex3, 93’3’ W, . ex4, ey‘J
@
substituting nodal coordinates in the expression for w and its deriva-
tives, 12 simultaneous equations in terms of o are obtained. Writing

equations in matrix form:

{q,} = {c} {a}

where {C} is a 12 x 12 matrix depending on nodal coordinates, and a
is the vector of unknown constants. The inverse relationship is
written as {a} = {C}_l {qb}- It follows that displacement at any

point in terms of noddl displacement is given by

w= {9} {c¥t {q}

Matrices {C} and {C} * are shown in Appendix B.

Considering strain due to bending

2 - 2 - 2
8x=23w, €y=Z_3__E, ‘ny=ZZaa;w
3K ay ’

fe,} =z {8} {q,}

it can be seen that



a2

A4
sz

2
{Bw} = 3w c31
B 2
ay
Zo2al,
3 %3y

B -1
or {Bw} = {qQ}{c}

The contribution of bending part to conventional stiffness matrix is

then
_ T
{Kzz}— l[{Bw} {D} {Bw} dA (2)

Out~of-plane geometric matrix is designated by {Kz}, it is a 12 x 12

matrix with texms

(Kg) = Gy 29y T+ 3¢; 394 T+ 30, 394 T+
13 A 9x ax 3x Yy Ay 8¥

2y %51y aa
ay oy 7

where {¢} is a row matrix of shape functions given by ¢ = {¢} I

and the arrangement of nodal displacement is given in expression (1).

3.4 Coupled Bending ~ Membrane and Additional
" Terms Due to Large Deflection

Submatrices developed in the preceding sections are inde-
pendent of coupling effect. The conventional matrix compos~d of

bending and membrane part is represented as:
u °
° Ky2

K=
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This matrix is used in the first step of analys%s with only a small
portion of load applied to the structure. In the succeeding steps, the
combined geometric and large deflection matrix is formulated as fol-
lows.

The complete form of geometrically nonlinear large deflection

matrix may be written as:

K1 K2

KZZ + - KZZ

&} = K

In Chapter II, detailed derivatio; of submatrices is given.

Here their physical interpretation and their structure for numerical
computation is briefly overviewed.

Membrane stiffness matrix {Kll} is similar to {Klii of small
deflection matrix except for the effect of nonlinear terms in the strain-
displacgmgpt relationship. Matrix {K;Z} is the additional bending
stiffness due to large deflection and it depends on the first deriva-
tives of the displacement field, matrices KlZ and K21 are submatrices
resulting from coupled bending-membrane effect and also depend on the
first derivatives of in-plane and out-of-plane displacements in addition

to the shape functions.

3.5 Assembling Submatrices and Condensation

-

In the process of numerical computation,matrices Kll and K11

are arranged in the following order of in-plane displacements:
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{qp}T = lfl, Vs Ugs Vo, Ugy Vay Uy, V,, Ug, v%J
The in-plane geometric matrix has a different arrangement (mentioned
in Section 3.2), hence before assembling the submatrices into the
element stiffness matrix, a rearrangement of {K:} is necessary. The
complete stiffnéss matrix for ome element, denoted by (KL + Kg)e, is a
22 x 22 matrix. Before assembling this into structure stiffness
matrix, the internal degrees of freedom are condensed out which

requires yet another rearrangement conforming with
T} T + T _
{q} —Lsp E qu = {-ul’ Vys Wy exl’ Gyl, e Ups Vs W

e ,6_,U. V
LS PR 5_]
The condensed elements of load vector and stiffness matrix are saved

for later computation of deflectioms at the condensed nodes which are

needed to construct the updated geometric and large deflection matrices.

3.6 Numerical Integration

' Excep£ for submatrix K22 which may be integrated in the closed
form, the submatrices can be evaluated only by numerical integration. In
the present work only {Kzz} is integrated in closed form. For numeri-
cal integration of {Kll} a 2 x 2 Gauss rule is used, for all other
numerical integrations a 4 x 4 Gauss rule is used. For this reason
all expressions for in~plane and out-of-plane actions are obtained in
terms of natural coordinates.

Interpolation functions for numerical evaluation of
2

dw, 3W, azw, 9w, azw are listed in Appendix B. The functions are

3x 9y ax2 aYZ 9x3dy
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listed in terms of x and y again Jacobian matrix and its determinant

" is used for conversion of £ and n coordinates.
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CHAPTER IV

NUMERICAL STUDIES

The assemblage of two dimensional members is treated as a
general three dimensional structure. Thus it is possible for every
point of the structure to have rotations and translations in all three’
directions in the space. Of course, plane structures may be handled
by applying proper restraints at the nodes.

The method can cope with relatively complex geometry and
boundary conditions. There is no need for the members to have a
symmetrical cross section or for the loads to be applied in the plane
of symmetry of the.member. ..In contrast to the small deflection
procedure which needs different formulatioms for different classes of
problems, such as buckling, bending, membrane, the large deflection
formulation can be applied to a wide variety of problems involving
combined phenomena.

A computer program was developed for numerical computation of
the method discussed in the.previous chapters. The program is called
""NASM--Nonlinear Analysis of Structural Members.'" A macro flow chart
is shown in Figure 4-1 and thé program listing is in Appendix A.

Several problems are selected to illustrate the application and accuracy
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Read and print number of elements,
number of nodal points, element
incidences, nodal coordinates,
compute half band width, initialize
nodal displacements

A

Compute stiffness
matrix for small

deflection
Compute large
1] deflection matrices
Compute load vector A

Compute geometric
et matrices

Transform to global
and assemble

y

Apply boundary
conditions and solve

Y

Compute and store
total deflection at
each node

Desired
no. of increments
completed

Fig. 4-1. Flow Chart for Computer Program
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of the procedure. TFor some of these problems exact solutions using
classical methods are available. For other problems exact solutions do
not exist and the approximate solutions are usually based on the empi-
rical formulas. In each case the present solution is in reasonable
agreement with the previous ones.

For most of the problems studied herein, symmetry is utilized
and boundary conditions for nodes located on the axis of symmetry are
handled in the following manner: For plate problems, when single
symmetry is used, x and y are taken as the coordinate axes in
the plane of the plate and one~half of the plate is analyzed.

Zero displacement in the x-direction and zero rotation about the
y-axis are imposed along the line of symmetry. For double symmetry,
one-quarter of the plate is analyzed and displacements are assumed
zero in the x- and y- directions. Rotations about the x and y

axés are taken as zero as appropriate.

Example 1. Bending of a Clamped Plate

In this example a square plate, 20 in. by 20 in. by .08 in.
thick with all boundaries considered fixed is studied. Utilizing
symmetry, only one—quarter of the plate was analyzed. The loading was
uniform and applied in the transverse direction in increments of 0.4
1b/4nZ.

Since the finite element method is not an exact method, four
meshes were used to study convergence, Figures 4-2-b through 4-2-e.

For each mesh the plate was loaded to 2.0 lb/in2 and the resulting
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maximum deflection compared. Figure 4~3 compares maximum deflection
to mesh size and clearly shows that a 16 element mesh (4 elements per
quarter) is adequate for this problem.

Using the 4 x 4 mesh, the plate was loaded to 4.82 ll:v/:Ln2 which
corresponds to first yielding of material having a yield stress of
36000 psi. The resulting deflection and load-stress relationships are
plotted in non-dimensionalized form in Figures 4-4 and 4-5.

" Classical solutions given for this problem in references
[32] and [53] are also plotted in Figure 4.4. Both solutions are
approximate and as an example the one presented in reference [53] which
is based on the Ritz method will be described here. Applying the vir-

tual work principle, the equation
V-8 quwdxdy =0 (¢5)

is obtained, where V = total strain energy for a virtual displacement,
q= uniform load per unit area, w = deflection in the transv_.erse

direction. The displacements in the middle plane of the plate in the
X, ¥, 2 directions are denoted by u, v, w and the following functions

satisfying boundary conditions are assumed for the mentioned displace-

ments
u = (a2 - xz) (bz - y2) x (boo + b02 y2 + bZO x2 + b22 xzyz)
v = (32 - x2) (b2 - yz) y (c00 + C02 y2 4 020 x2 + C22 xzyz)
w = (a2 - 22 2 - yH?2 (300 + 202 ¥~ + a5y %)

where 2a and 2b are length and width of the plate and other coeffi-

cients are unknown constants. Substituting the above functions in
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Equation (1) and minimizing with respect to 307+ 022, eleven
nonlinear equations were obtained. Numerical solution of the equations
resulted in values of the unknowns. The unknowns depend on the shape
of the plate and on the value of q. In this manner displacements and
their derivatives can be obtained and strains and stresses can be com-
puted using derivatives of displacements. The results of the classical
analysis, as presented in reference [53], are plotted in Figure 4-3
and 4-4.

It is realized that deflections using the finite element
procedure converge to values slightly larger than those given in [53].

The deviation can be justified considering:

1. Both solutions are approximate, hence there is no reason
for getting exactly the same results:

2. According to reference [61] experimental investigations
give larger deflections than the values presented in [53];

" 3. Considering properties of the displacement method of

finite element analysis, the assumed function approximate
displacements cloéely but give less accurate values for
stresses [24]) since in the equation (X, + Kg) §q=8TF,
the solution is mainly affected by Kl‘which in turn depends
on the displacements. The value of [Kg] depends on
stresses and has a minor effect on the resulting

displacements [13, 27, 28].
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Example 2. Buckling of a Simply Supported Plate

A square plate 20 in. by 20 in. by 0.1 in. with all edges
considered si;ply_supported is studied. The loading consists of in-
plane uniform load acting on the two parallel edges in the x direction
in increments of 1900 1b. (total). Because of symmetry only one-gquarter
of the plate is analyzed. The uniform load is replaced by equivalent
concentrated loads at the nodal points. To obtain convergence, solu-—
tions were obtained for four different meshes, Figures 4—-6~b, 4-6-e.
For each mesh the plate was loaded to 9500 lb; maximum deflections are
compared in Figure 4-7. It is seen that a 64 element mesh results in
a good approximation. Then using an 8 x 8 mesh the plate was loaded
to 20900 1b. which is about four times the elastic buckling load. At
the last increment the maximum stress was more than 36000 psi and by
interpolation the load at first yield (36000 psi) was determined to
be 19850 1b.

The lodd-deflection diagram for maximum deflection is plotted
in Figure 4~8. A change in the slope of the curve correséonds to
elastic buckling load.

A classical solution is also available for this problem [9].

The solution is based on nonlinear differential equation given by Von

Karman
% + 2 3%+ 3%F = E (L2 - 2% %)
3x4 Bx?ByZ ay4 xdy axz ayZ
A% 42 o+ % = p o+ e 3% 2% + 3%F 3% - 28%F 22w )
an oxloy? sy D D 5232 52,72 oxdy txdy



where P = uniformly distributed load, D = rigidity, E = elastic modu-

Jus, F = stress function, w = out-of-plane displacement. Mean values

of stresses are defined by P, and PZ’ where

1

a b
2 2
- o dy
P, =1 =
2 3 y s Pl % crxdy,
-a -b
2 2

where a and b are length and width of the plate. The deflection is

assumed to be w = £ cos IIX cos II¥ where £ = max deflection.
a b

Substituting into the Von Karman's equations and applying boundary

conditions an approximate solution is obtained. Writing expression for

total potential energy, after some manipulation the equations'for a

square plate loaded in one direction is obtained as:

“mE2 =1 (@, - o)
Z E ¢
8b
o, =P - (Pl ~ 0.) cos 2:2
cy = (Pl - o&) cos ng

wvhere Uc is criticzal stress given by

o = HzEtz

c
3 (1-v)b2

and Ux, oy = stréssesEat any boint, b = sidé of the plate.
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Results of the classical analysis are also_ presented in
Figure 4-8. It is seen that finite element analysis yiélds deflections ’
which are slightly larger than those given by classical method. The
difference is explained as: first, both solutions are approximate,
second,and more important, the classical method assumes zero deflection
at the time of buckling and the plate starts deflection aftér bifur—
cation is reached, while in the finite element solution a considerable

amount of deflection exists at the time of buckling.

Example 3. Buckling of Plate Under

Shear and Bending

A square plate 8 in. by 8 in. by .05 in. thick, with gimply
supported boundaries was analyzed. The load consist of bending moment
and shear force, both in the plane of the plate. The loads were
applied in increments of-150 1b: shear force and 1920 in-1b bendiné
moment. The bending moment and shear force were applied as concen—
trated forces at the nodal points and the entire plate was analyzed.
Again to study convergence, solutiops were obtained for three different
meshes. Loading and geometry of the meshes are shown in Figures 4-9-a -
4-9~c. For each mesh, a 750 1b. shear force and 9600 in-1b bending
moment wés applied and in order to study out—of-plane behavior, a small
out-of-plane deflection was imposed on the plate by applying a concen-—
trated load of 0.5 1b. at each increment. The maximum out-of-plane
deflection for each mesh is plotted in Figure 4-10 and a 4 by 4 mesh

.was found to produce an acceptable approximation. The &4 by 4 mesh
was then used for additional stuﬁies.
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The plate was loaded to 23,040 in-1b bending moment and 1800
1b. shear force. The maximum deflection-versus applied load diagram is
plotted in Fiéure 4-11. A change in the slope of the curve corresponds
to elastic buckling load.

A closed form solution to this problem was not found in the

literature, however, sclution for the elastic buckling load is available

in reference [54]. According to that reference the eritical shear

r = K HZD, where h = thickness

stress T must first be computed from T
cr 5
bh

c

of the plate, b = width of the plate, K depends on the length to width

ratio and D is given by D = Eh3 » where E = modulus of elasticity

121 - v%)
and V = poisson's ratio. WNext the ratio of T/Tcr is computed where T =

actual shear stress. With this number and using a graph presented in
reference [54]), a value for K is found which must be substituted in the
formula Oer = K.EEQ to find the critical bending stress which causes
5. vk

buckling. This stress was found to be 24,480 psi and is plotted in
Figure 4-11. The solution is restricted to elastic buckling load and a
solution is not presented for the post-~buckling behavior. The finite
element method was used to obtain a load~deflection relationship beyond

the elastic buckling point.

Example 4. Buckling of a Plate with One Free Edge

In this example a rectangular plate 4 in. by 8 in. by .06

in. thick with three sides simply supported and one side free is
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studied. - Geometry of the plate and boundafy conditions are illustrated

in Figure 4-12-a. In~-plane loads in iﬁérements of 272 1b. was applied
to the plate, an out-of-plane deflection was produced by applying a
concentrated load at the cenﬁer of the plate, this load was applied in
increments of 0.272 1lb. Utilizing symmetry only one-half of the plate
was analyzed.

To study convergence of the procedure, four different meshes
were used and the plate loaded to 1360 ib. The maximum deflection for
the different meshes is plotted in Figure 4-13. It is seén that a 4
x 8 mesh provides adequate results for this problem.

Using the 4 by 8 mesh, the plate was loaded to 3264 1b. (12
increments). Again, the .failure load of the plate is approximated
considering that it occurs at the first yield of the material which
again was assumed to be 36000 psi. The load~deflection diagram is
plotted in Figure 4-14. The buckling and failure loads are indicated
in the same figure. -

-F;r t£is problem classical- solution for elastic buckling load
is available in reference [54] where the critical stress may be
obtained from ocr = gg;g., where K is a factor depending on the load and
bk
edge conditions and other notations were defined previously. The
buckling load computed from this formula and the value obtained from
finite element solution are shown in Figure 4-14. Classical solutions
for post -buckling behavior are not available, however, an approximate

value of the failure load may be obtained using the effective width
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w = maximum deflection
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concept [20]. Based on the method of referemce [201,, o " is substi-
c

tuted in the formula be =&l cr (1.0 - 0.25\’Ucr ), where o =
- b o c . max
max max o
maximum stress (in this case yield stress of the material), be =
effective width, b = actual width. Then computing effective width and
effective area and multiplying by O ax the failure load is obtained

which is indicated in Figure 4-14.

Example 5. Elastic Buckling and Failure

of a Thin-Walled Stub Column

For this example a lipped Z section was selected. The
dimensions are shown in Figure 4-15-a: the length is three times the
maximum dimension of the cross section, the lip angle is 45 degrees,
and the thickness is .06 in. Utilizing symmetry only one=half of "the

- column was analyzed. At the nodes located on the center of the column
x— disp;acement and y- and z- rotation were set equal to zero. Lips,
flanges and web were divided lengthwise and the web was divided through
the width into two equal segments. Thus, between transverse element
lines there are 6 elements — two for the lips, two for the flanges and two
for the web. The load was applied in the x- direction in increments
of 2000 1b., distributed to the nodal points to produce uniform com-
pression. A small load was also applied in the y~ direction at the
center of the column in increments of 0.5 1b. to study out-of-plane
behavior. A convergence study was first performed using the three
meshes shown in Figures 4-15-b, 4-15-d. The meshers have 24, 48, and

96 elements, respectively. Maximum deflection versus mesh size for
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a 1000 1b. load is plotted in Figure 4-16 and it is seen that an ade-
quate result is obtained using 48 elements.

The mesh with 48 elements was then loaded to 26000 1b. and
the resulting load-deflection relationship plotted in Figure 4-17.
The change in the slope of the cur;e defines the elastic buckling load.
Stress distribution over a cross section near the centerline for two
different loads is plotted in Figures 4~18-a and 4-18-b. Figure 4~18-a
illustrates the stress before elastic buckling and Figure 4-18-b
shows the distribution after elastic buckling. To determine the yield
load linear interpolation was made between the increments just before
and after the assumed yield stress, 36000 psi, was reached.

The elastic buckling load may be obtained [54] using

g =K HZD where Ucr = buckling stress and K = 4.0 for a plate with

cr
v?n

all boundaries simply supported (flanges and web), K = 0.456 for a
long plate three sides simply supported and one side free glips).
Other notations in the above formula have been defined previously.
Applying the above formula tothe flange, web, lip it is found that only
the web buckles in the elastic range and the buckling load obtained in
this manner is shown in Figure 4-17 and it is seen that this load is
slightly lower than the load obtained by the finite element solution.
The discrepency is caused by the factor K. The value 4.0 is conserva-
tive for stiffened elements since it is defined for simple supports
and the effect of adjacent elements increases K.

A closed form solution for post-buckling behavior and failure

load does not exist, however the effective width method can be used
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to compute a failure load in the following manner [20]:
For each part of the section (1lip, flange, web) the effective

width is computed from

b, = 0.95‘:% (1.0 o.zg9t ‘J;_:Ei_)
where be = effective width, E = elastic modulus, t = thickness, b =
actual width,-Oﬁax = yield stress (36000 psi), K = 4.0 for stiffened
elements and K = 0.456 for unstiffened elements. The sum of the
effective width multiplied by O ax results in the failure load. The
result of effective width computation is also shown in Figure 4-17.
It is seen that failure load by the finite element method is .lower
than that given by effective width method. The effective width
method includes the effect of post yielding resistance which is not

included in the finite element method.

Example 6. Bending of Thin-Walled Beam

Having Lipped Z Section

In this example a thin-walled beam having a lipped Z cross
section was analyzed. Again symmetry is utilized and boundary condi-
tions at the nodes located on the center of the beam are similar to
those mentioned for Example 5. Geometry of the beam is illustrated in
Figure 4~19-a. The beam is 18 ft. long simply, supported and
subjected to a uniformly distributed load over the length of the top
flange. The load was replaced by equivalent concentrated loads which
are also shown in Figure 4-19. In this example it was intended to

study simple bending, hence to avoid torsion and lateral bending,
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supports were provided by restraining the displacements of the web in
the y-direction and also rotations about the x—- and z- axes at the
web nodes. The above treatment models the beam as a purlia which is'
laterally supported and is free to bend in the plate of the web.

Convergence oZ the procedure was studied using three different
meshes of 24, 48, and 96 elements, Figures 4-19-b, 4-19-d. A load
of 6.75 1b/in was applied in increments of 1.35 1b/in and deflections
calculéted. Comparison of maximum deflection in the z- direction with
the mesh size is shown in Figure 4~20.

The mesh with 48 elements was selected and loaded to 16.20
1b/in in 1.35 1b/in increments. The load deflection relationship for
the center of the beam is plotted in Figure 4-~21 together with the
load at the first yield (36,000 psi). Deflection obtained from the

beam theory using the formula A = 5wlA is also shown in Figure 4-21.
384EL

In this formula w = uniform load, 1 = length, E = modulus of elasti-
city, I = moment of inertia. Stress distributions over the cross-
section at the centerline for three different loads are plotted in
.Figure 4-22.

The ultimate bending moment capacity of the beam is found
using the method described in reference [2]. In this method the post-
buckled strength of unstiffened elements is estimated using a stress
reduction factor and post-buckled strength of stiffened elements is
estimated using the effective width concept. The predicted failure
load 11.28 1b/in agrées quite closely with 12.22 1b/in obtained using

the proposed finite element procedure.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The purpose of this study was to investigate post—buckiing
strength of thin-walled sections. A survey of the literature was
performed to determine the state—of-the—art. It is found that
classical solutions for post-buckling problems are very limited and
are usually based on Von Karman's equation. The Von Karman equation
is mathematically complex and a closed form solution cannot be
obtained. Approximate solutions are available for a few simple plates
with either fixed, simple or. free boundary conditions. These solutions
were usually obtained using one of the approximate energy methods.

The finite element method has a broad potential for applica-~
tion to post-buckling problems but a survey of the literature indi-
cated that post-buckling analyses using the finite element method have
not been extensively studied. Because of the suitability of the finite
element method it was selected here for a study of post-buckling
strength of thin-walled cross-~sections. The displacement approach
was selected and nonlinearity was considered using the nonlinear
strain-displacement expressions through the Lagrangian definition of
the strain tensor. The traditional eigenvalue approach was discarded
and both buckling and post-buckling phenomenon was studied using

nonlinear analysis. To obtain complete formulation for the interaction
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of in-plane and out-~of-plane behavior in the large deflection range,
standard stiffness matrices were modified. The development resulted
in the formulation of three submatrices of the element stiffness

matrix, which to the knowledge of the author are new. Matrices K12
and K21’ K12
membrane load on the transverse deflection and the effect of the

is the transpose of K21, account for the effect of the

transverse load on the membrane deflection, respectively. The third

matrix is K'- which is the additional stiffness for a bending element

22
due to large deflection behavior. The procedure developed here is
equally valid for bending, buckling and post-buckling studies, and
unlike the effective width method which uncouples the different modes
and considers the plate components of the cross-section separately,
the member is treated as a whole.

A computer program was developed for numerical studies and
a wide variety of problems were solved. The selected results were
presented here and reasonable agreement was obtained with existing
solutions either expérimentél and empirical or theoretical. Several
solutions were presented for the problems never before sol&ed in the
literature.

Results obtained for a plate bending problem show very good
approximation even using very few elements. Results of the post—
buckling analysis of thin plates compared to other available solutions
showed good correlation. As was mentioned earlier very few solutions
exist in the literature for post~buckling problems, but the close
agreement obtained indicated that the proposed method is satisfactory.

Thin-walled members having lipped Z cross-sections were analyzed
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and compared to an analysis using the effective width method. These
problems were selected because of their complex geometry and also
their practical usefulness.

The overall result of the study is indicative of the possi-
bility for further improvement in the field of post~buckling analysis
and large deflection behavior for bending and buckling problems using .
the finite element method. First, it may be possible to develop a mo?e
efficient software to increase the practical usefulness of the sug-
gested method; the present work is considered mainly as a research
tool. Secondly, for the class of problems considered here, inclusion
of combined material and geometric nonlinearity is not efficient with
the proposed method. Develdpment of a more efficient constitutive
law for the méterial behavior is needed before the proposed method

can be expanded.
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APPENDIX A

COMPUTER PROGRAM




A~l. Description of Computer Program

For the numerical studies described, a computer program was

developed. The program consists of a main subprogram and a number of

subroutines described as follows:

Main

ASMBL1

STIF

BNDRY

SOLVE

LARGE

STRESS

ARANG

Reads and prints the input data; computes half-band-width for
the structural stiffness matrix.

Assembles element stiffness matrices into the structural
stiffness matrix; computes displacements at the condensed
degrees of freedom; computes total displacements; transforms
from local to global coordinates and vice-versa.

Computes élement stiffness matrix for small deflection
(first increment).

Imposes boundary conditions.

Solves system of equation faking advantage of the banded
matrix.

Computes element stiffness matrix for large deflection.
Computes stresses at the integration points and at the nodal
points.

Arranges element stiffness matrices in a proper form for

condensation and assemblage.
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ARANG2 - Rearranges the displacements which are then used in the

computation of the element stiffmess matrix for the next

increment.

CONDNS ~ Condenses internal degrees of freedom for each element.
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A-2. Tnput Data .

Type 1 General Parameters
cols. 1-30 Material constants

31~35 Number of prescribed boundary conditions
36~40 NWumber of concentrated loads

41~45  Stress printing interval

46-50 Number of elements

51-55 Number of nodes

56-60 Number of increments

Type 2 Concentrated Loads
cols. 1-4 Load index

5-16 Load value; one card for each load.

Type 3 Prescribed Boundaries
cols. 1~80 Indices of prescribed boundaries; 20 indices

per each card.

Type 4 Element Information
cols. 1-20 Nodal numbers in a clockwise sense about the

z—~axis of the element; five columns for each

number.

100



cols.

21-30

31-40

1-80

Uniform load per inz of the area of the sur-
face of the element. These are the loads
uniformly distributed over the surface of the
element. -

Thickness of the element.

Nodal Coordinate

X, ¥, Zz coordinates of each node in the
order of nodal numbers; 10 columns for each

value.
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N RN N N N N Ns NeRa e NalaNeNalla)

20

10

15

S0

IMPLICIT REAL%B(A-t1,C-2)

COMMON AK(210442),0K(22:22) s UM( 28422) sQGI215) +C(22) +X(35)sY(35) »
$Z(35)9X0(3)oY0(4) PLCAD(24) s TH(24) s DEL(210)sF(E13) 4 VEBDY(ES) ¢iloP2,
SNOD(24+4) e IBDYC(ES) s NEL sNNP ¢ NHEW s NEQ sNBOY o NRVAX ¢ RCMAX s NOF o KTN

DIMENSION CCK (28, 2,22)

DEFINITICN CF VARIABLES: :

AKeoees GLOBAL STIFFNESS MATRIX FOR STRUCTURE

OKee ELEMENT STIFFNESS MATRIX (LOCAL)

UM, DISPLACEMENTS AT NODAL PCINTS (LCCAL}

QGeeeesGLIBAL DISPLACEMENTS AND GLOBAL .LOADS FCR STRUCTURE

QeseeslL CAD VECTOH FOR ELEMENT (LOCAL)

XsYsZesooeGLOBAL CCORDINATES CF NODES

XQsYQ eeeel.CCAL CCORCINATES OF NUDES

DELeese o« DISPLACEMENTS AT NCDES

NOC s ees o GLOBAL POSITION OF LOCAL NODES (BCOLEAN MATFIX)

NEL e s NUMBER OF SLEMENTS

NNP o NUMBER CF NODAL POINTS

NFEW «HALF~EANC-WIDTH .

NEG. NUMEER OF ZOQUATIONS

COKeose s ARRAY TO STORE PART OF STIFFNESS MATRIX FOR LATER USE IN

CCMFUTATION OF DISPLACEMENTS AT INTERQNAL NOIDES

READ AND PRINT NUM3ER OF ELEMENTS NUMEER OF NCCES STEPS OF LOAD'NG

REAC 1+E+PRNBDY NNy KTNe NEL ¢ NNP KM

PRINT 1020+ NEL oNRP KM

DO £S5 I'l=1,210

FOI1)=0.0 .

DO £ NI=14NN -

REAC E&sNyF(N) . -

REAC 7, (I8DY(I)s1=1,NBDY.)

NPMAX=210

NCMAX=42

NDF=6

DO 20 I=1.NBDY

VECY(1)=G.0

CCNFUTE NUMEER QOF ZQUATIONS

NECG=NNP *NDF .

INITIALIZE LOADING STEPS *

KT=1 .

INITIAL IZE NODAL DISPLACEMENTS :

00 10 M=1.2a

OO 10 II=1.22

UMM IT)I=0 .0

DO 15 M=1,.24

DO 15 I=1.4 :

NCC(Ne1)=0

PRINT 105 o - . .

INPUT NOD NUMBEFS +LOAD PER UNIT AFEA AND ELENMENT THICKNESSES .
READ 3¢ ((NOD(MyI)oI=148) s FLOAD(M) ¢THI(M) oM=1,WNEL) :
DO S0 M=1.NEL . .
PRINT 103+ Ms(NODIMs 113 I=134 ), FLCADIM) JTH(M)

CCHPUTE HALF-BANDWIDTH
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30

Coons

40

AN

1 300

o
1
3
4
6

7
w2
103
104
105

106

anannanAa

MAXCIF=0

DC 30 A=1,NEL

00 30 1=

00 30 u=

LE1ABSINCDIN, 1) -NEDENL I .

IF(L «GE «MAXDIF ) MAXDIF=L .

CCNTINUE .

NHEBW=NDF*( MAXDIF+1)

«INPUT NOCAL CCORDINATES

REAGC 43 (XC ) Y{I)eZ(I)el=1,NNP)

PRINT 106 .

DO 40 I=1.NNP

PPINT [06sTeXC1)eviIdsZCX)

COMPUTE ELEMENT, STIFFNESS MATRICES TRANSFOKM TC GLOBAL ASSEMALE TC

STRUCTURAL STIFFNESS AND SOULVE TO GET DEFLECTIONS

CALL ASMBL1 (COK.KT)

KT=KT+1

CHECK TC SEE IF TOTAL NUMBER OF STEPS COMPLETED

IF(KT.LE.KM) GG TO 300

sTCP

FCRVATI2F15.54615)

FORMAT(415.2F10.3)

FORMAT(EF10.3)

FCRMATU(I4WF12.3) B

FORMAT(2014)

FORMAT(1Xs *NUMBER OF ELEMENTSY. 1S//1X,*NUMBEF CF NODS®3aXs15//1 %"
SNUNMBER OF LCADING!,2X.14)

FORMAT(SX, I13,4(E%4152+2F14.3)

FCRMAT(14410X sF12.3+2(5XF12.3))

FORMATCIHO g SELEMERT® 3SX o NCE=17 45X *NCD=J® ¢ SX ¢ *NID~K* ¢ 5X ¢ *NCO-L %y
$10X s 'LOAD 45X ¢ *THICKNESS ¢ /SEXL * (LB/IN2)® 28X * (IN) ')

FCRMATOIHD o "NOD® ¢ 10X ¢ * X2CCCROINATE® 45X, *Y-CUDREINATE ¢ 5Xs ¢ Z-CDOCFROI
AINATE )

ENC

SUBROUTINE ASMBL1 (CGCKKT)

THIS SUBRIUTINE COMPUTES ELEMENT STIFFNESS MATFICES AND LOAD VECTC

TRANSFORMS FROM LOCAL TC GLCEBAL ASSEMBLES AND SCLVES EQUATIONS

IMPLICIY REAL®B8(A=H!C=2)

CCNNCN AK{ 210 ¢42)+AK(22+22),UML24422)+QGL21C) +GL22) +X{3S)oY(3S)
$2(3S5) e XA(4) e YOUA}sPLOAD(24 ) +TH(24 )+ DELI210)+F(210)+sVECY(65)1E5.PP,
SNOD(2644)s IBDYIES5) s NEL + NNP 3 NHEW s ANEQ ¢NEDY « NF MAX JRCMAX A NOF o K'TN

DIFERSION AG(26+24)+TG(2C+24),DUG(24)40R{24)1226(4)sYG(A)

DIMENSION UL22) .0U(22) +COK(2642¢22)+8A(204201CINV(LIR012])

DEFINITICNS OF VARIABLES:

«GLOBAL STIFFNESS FQR ThE ELEMENT

TRANSFOFMATION MATRIX (FCR LOCAL GLGBAL TRANSFCRMAT ICN)

= « INCREMENT OF DISPLACEMINTS{GLO3AL)

OR LOAD VECTOR FOR THE ELENVENT (GLGEAL)

ZGeY¥Gss o s ELEMENT NODAL COCRODINATES (GLOBAL)

V. VECTDR CF TCTAL DISPLACEMENTS AT NODES FCR THE ELEMENTS
DU«esaeVECTOR OF INCREMENTAL DISPLACEMENTS AT NCDES (ELENENT LDCAL

ce—m——— [N ——
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Qat181==c(12)
a(16)=0(16)
a¢z0)=aL
ata1)=0181.
atz2)=a(13)
COMPUTE TR ANSFORMAT TON MATRIX
TG(141)=1.0
TG(Z+2)=YPY
‘TGL243)=YPZ
TG(242)=-YP2Z
TGL2,3)=YPY
TGl4+4)=1.0 '
* TGL(EeS)=YPY . o - .
TC(5:6)=YP2Z
TG(6e7)=140
TGL(?2:0)=YPY
TG(7+$)=YPZ
TGlEsR) ==YPZ . :
TGL8+9)=YPY .
TGL9+10)=140
TG(10+11)=YPY :
TG(10412)=YPZ . : .
TG(11l413)=1.0 .
. TG(12414)=YPY
TG(12415)=YPZ
TG(12,14)=-YP2Z
TG(13,15)=YPY
TG{14,16)=140
TG(15.17)=YPY .
TG(15+18)=YPZ : : )
TG(16¢19)=140" . .
TG(17.20)=YPY
TG(17.21)=YPZ
16(18,20)=~YPZ
TG(18421)=YPY
T6(19+22)=1.0
TGL20,23)=YPY
TG(20,24)=YPZ "
SELECT GLOBAL DISPLACEMENTS FOR THE ELEMENT
IF(KTEQe1) GO TO 72
'DC 85 I=1.4
00 ES IL=1NOF
JJ= (NCD(Me I)=1)WNDF+IL
"11=C1-1)*NDF+IL
55 DUG(II1)=DEL(JJ)
TRANSFORM ELEMENT NODAL DISPLACENENTS TG LOCAL COORODINATES
DO 301 131,420 ’
OU(I)=0.0 .
. .00 301 J=m1.24 )
301 DUCI)I=DUCLI+TG(IJI*DUGLIY = ~-

105



no a 00

Cesees ASSVMBLE TO GLOBAL

RECOVER CONDENSED DISPLACEMENTS AT TNE CENTRAL NDD CF THE ELEMENT

DUL213=0.0

L DUL22)=0.0

80

90

72

2cs

85

s

155

DO 80 K=1.,2

"EK2K+19

JK=IK+1

DO .80 L=1.1K

CULJIK)I=SDUC JK)=CAK My KoL) NDULL ) .

ARRANGE INCFEMENTAL DISPLACEMENTS FIRST 'IN PLANE +THEN QUT 3OF PLANE
CALL AFANG2(DU,22)

D0 90 II=1,22 :

COMPUTE TOTAL DISPLACEMENT AT THE NODES

UMIMoIT)=UMIM, 1T )I4DUCTIY)
UCI1)=UMIM IT)

CCMPUTE ELEMENT STIFFNESS MATRI'X FOR LARGE DEFLECTICN

CALL LARGE(UsQKsALIBLeTHMeEsPRyNODsMiKT s KTN),

60 1O 208 . .

CONT INVE * .
CCNPUTE ELENENT ST!FFNESS MATRIX FOR SMALL CEFLECTICN

CALL STIF(QKsCINVIAL¢BLsTHME PRI MeKT)

CCATINVE

TAKE ADVANTAGE OF SYMMETRY TC COMPLETE ELEMENT STIFFNESS MATRIX

DO 85 T1=11.22 . *
0C B8S 41410

QKEITsdJII=AK{JIJeIT)

ARRANGE ELEMENT STIFFNESS MATRIX IN TERMS OF NCDAL DISPLACENENT AT
EACH NODE

CALL ARANG(OK+0.22)
CCNDENSE I NTERNAL DEGREES. cF FREEDOM

CALL. CONDNS (QK»+Qe2242) .

STORE PARTS OF CONDENSED ELEMENT STIFFNESS MATRIX FOR LATEF USE

IN CCMPUTATION OF DISPLACEMENT AT INTERNAL NOCES .

DO §S 1=1.2

DO 95 Jmi,22

1131420

CAK{MeT ¢ JImQKIIT )

TAKE THE CONDENSED PART FOR TRANSFORMAT!QN OF STIFFNESS MATFIX TO GLCOAL
DO 158 1:o1,20 .

00 1S€ Jm1,20 : . *

CAlled)mOK (1)

TRANSFORM STIFFNESS NATRIX TC GLOBAL

. CALL MATMLT(TGy20+24+C00TGs244AG)

TRANSRGRM .LCAD TG GLCHAL

DO 185 J=1,26, . N
OR(JI=O.Q ., .,

0C 185 [wf .20 o
GREJISOR(JI+TG(T4JI%G(])

NOs=g | . c

00 75 =1, 4 '

NR= {NOD (¥s 1)=1 ) OND .
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60
65
70
7S

1

500

DO 75 11I=1.ND

NR=N&+1

L=C(I-1)%ND+1II

QGINR )=QG( NR) +OR (L)

D8 70 J=1,4

NCL=(NOD(M,4J)=1 )%ND

D0 65 JJ=1.ND * .
AN=(J=1) *NO+JJ ’
NC=NCL+JJ+1-NF

IFINC)ES+65+60

AK(RRINCI=AKINR yNCI+AG(L+N)

CCNTINUE .

CCNT INUE .

CCATINUVE

CCNTINUE

DO 500 II=1.NEQ

OG(II)I=0G(II)+F(II)

IF (KTeGTe1l) GO TC 115 -
PRINT 160

160 FCRMAT(///4+1Xs*EQUIVALENT NCDAL LJALS FOR EACH. STEP'//5SX» *NOC®, 10X
$9 "LOAD=X"%y 1CX s "LOAD=Y® 310X s *LOAD—Z® 38X, * MOMENT=X® ,8Xs®* MCNENT=-Y" o
$8X 9 * NCMENT =27 )

280
1o
115

118

" 150
200

250

350
210

DO 280 II=1,NNP -
YJI=(II=-1)*%NOF + 1 ’
VI=II+S

PRINT 110,114 (QG(KJ)sKI=IIsMI)
FCRNAT(S5Xs I316(4X9Z1205))
CCNTINUE

IMPOSE BOUNCAFY CONDITIONS

OC 118 1=1 +NBDY

IE=IBDY( 1)

VE=VBDY (1)

CALL BNDRY(NRMAX ,NCMAX sNEC+sNHEW y AK+»QGs IE,VE)

SOLVE EQUATIONS

1FES=0 .

CALL SOLVE (NRMAX,NCMAX yNEQ+NHBW s AK »QG s IRES)

STORE DISPLACEMENTS

DC 1S5S0 I1=1,NEQ

DEL{II)=QG(11)

PRINT 200,KT

FORMAT(1H1 ,*STEP® ,13)

PRINT 250

FCRMAT(/// +5X « "NOC® +5X » *CEFLECT ION=X"® s 53Xy *DEFLECT ION=Y * 4 5X 4 *DEF LEC

STION=Z® s 7X »*ROTATION=X® 47X ¢ *RLTATICN=Y* 4 7Xs*RCTATICN=~Z"*)

DO 350 II=1.NNP

JJI=S(IT~1 )% NOF+1

MJI=JJI+5

PRINT 210+11'(0GIKI)KI=IIoMI)
FORMAT(SX s I346(5XsE125))

FETURN

END -
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SUBROUT INE FATMLT(A«¥sNsCeEsL»ATCEB)

IMPLICIT FEAL*B8{A-H,0-2)

THIS SUBROUTINE MULTIPLIES TRASPCSE OF MATRIX “A" TIMES MATRIX “C*®
ANC "THEN TINMES MAYRIX “B%

DINENSIUN A(M.N).C(M.M)-B(N-L)oATC(ZAaZO)-A7CE(N‘L)
0C 2 I=1.N

DD 2 J=1..M -

ATC{1+J)=0.0 . *
DO 2 K=1 .M -

2 ATC(I-J)—ATC(I-J)+A(K.I)*C(K-J)

DC 1 I=1,.N

DO 1 LL=1,L

ATCB(1.,LL)=C.0 °

DO 1 J=1.M

1 ATCBUILL)=SATCE( I LLIFATC(I v 2@ Jot L)

RETURN

ENEC

SUBROUT INE BNDRY (NRMAX s NCMAX  NEQsNHBW S +SL s IE+SVAL)
IMPLICIT REAL*8{A-H,0-2)

DINMENSICN S(NRNAX.NCNAX)-SL(NRMAX)

ITSNHBW-1

I=1E-NHBw

DC 100 I1=1,IT
T1=1+1

IF(Ie.LT.1) GO TC 100

J=1E-I+1

SLEII=SLC(I)I-S(I+JIRSVAL

S(1,J)=0.0

109 CCNTINUE .

S(IEs1)=1.0 .

SLLIE)=SVAL . .
I1=1€

CO 200 II=2,NHBW .
1=I+1 .
IF( I «GTJNEQ)IGO TO 200

SLEI)=SL(I)}=-SC(IEsI11)4SVAL

S(IE,411)=0.0

200 CCNTINUE

RETURN

END : ’
SUBROUT INE SDLVE(NRM.VCM.NEGNS'NHN.BANDoRHS.IRES)
IMFLICIT REALXB(A-H,C=2Z)

DIMENSION BAND{NRMsNCM) ;RHS(NRM)

MECANS=NEONS -1

IF{IRES«GT«Q)GC TC 99

DO SGC NPIV=1,MEONS

NPIVCT=NPI V+1

LSTSUB=NPI VENBW~1

IF(LSTSUB. GT «NEQNS)ILSTSUB=NEQNS

DO 400 NROWS=NPIVCT.LSTSUB

NCCL=NEOWN-NPIV#1
IF(DABS(BAND(NPIVs1))eLTe1.0D~4)BANDI(NP IVs1)=1.0
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200

‘400

500

90

110
100

FACTOR=BAND(NPIV,NCOL)/BAND(NPIV,1 )
DC 20C NCOL=NROW,LSTSuB
1CCL=NCOL~NROW+1

JCCL=ACOL~NPIV+1

BAND{(NROW s I COL )=BAND(NROW, ICOL)-FACTOR®BAND(NPIV,JCOL)
RHS(NRCW)=RNS(NFCK)~FACTCR*RHS (NPIV)

CCNT INUE

GC TC 101

DO 100 NPIV=1,MEQNS

NP IVOT=NPIV+1

LETSUB=NPI V+NBW~1 R
IF(LSTSUB.GT.NEQNS)LSTSUB=NEONS

DC 110 NROW=NPIVOT,LSTSUB

NCCL=NREOW=~NPIV+1

IF{CABS (BAND(NPIVs1))eLT ¢ 1+0D=4)BANDINPIV,y1)=
FACTOR=BAND(NPIVsNCOL)/BANDINPIV,1)
RHS(NROW)=RHMS{NRCW) =FACTCR®RHS(NPLIV)

CONT INUE

CeoeoeBACK SUBST ITUTION . .

b ANAD

101

700
800

.lF(DABS(BAND(NPIV-l))oLT.l-OD—A)BAND(NDIVQI)_I-O

00 800 IJK=2,NEGNS
NPIV=AEONS—1J4K+2

RHS(NPIV)=F H3(NPIVI/BANDINPIV,1)

LSTSUB=NPI V=NBW+1

IF(LSTSUB«LTe1)LSTSUB=1

NPIVOT=SNPIV-] : N

DO 700 JKI=LSTSUB(NPIVOT

NROW=NP IVOT~JKI+LSTSUB

NCCL=NP IV-~NROW+1 .

FACTOR=BAND(NROWsNCOL)

RHS (NFOW)=RHS{NROW)=FACTOR®RHS(NPI V) .

CCATINUE

IF(DABS(HAND(1+1)3}eLTe1s0D=G)BANC(1+1)=140 .
RHS(1)=RHS(1)/7BANDC(1s1)

RETURN °

€ND

SUBROUT INE ser(ou.cxNv.AL.EL.THM.E.PR.M.KT)

THIS SUBROUTINMNE COMPUTES STIFFNESS MATIIX FOF THE ELEMENT IN LOCAL
COORDINATE SYSTEM AND IN THE FIRST STEP OF ANALYSIS 'WHICK IS THF
LINEAR PART

DEFINITICN CF VARIAELES

#p" AND mCINVS® RELATE NODAL DISPLACEMENTS TO STRAINS AT ANY POINT
(FCR BENDING) : N

XAsYA NATURAL -LOCRDINATES AT NODES

XI»ETA NATURAL COORDINATES AT INTEGRATIGCN PCINTS

w . VALUE OF WEIGHT FUNCTION AT INTEGRATION POINTS
DNDX¢ONDY ¢DONXsDNY s0s s o DERTVATIVES CF SHAPE FUNCTIONS FOR IN PLANE
AINMPLICIT REAL®B8(A~H,0=2)

DINENSIDN QK{22+22)+sCINVII2:12),E8L12422)

DIVENSION XAC4)sYACA4) e XIC2)sETAL2Z2) oWl 2) 4BM(3410)AKELL1D,10)
DIFENSION DNDXI5) ¢ONDY(5) s DNX{S ) DNYLS) s EMI393)raK2(12,12)
DATA XA oYA su/=14D0014D00s14000e~2eDIs=1e009=1400414¢0Cs1eD%514+0041 400
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10

s/
DATA XI+ETA/QeS77D04=0.S77C0+0+57700+~0 57700/
A2=AL AL
B2=BL*PL
AB=AL*BL
A3=AL*AL ®AL
B3=EL*BL*3L
A383=A3%B3
AZB=A2%BL
AB2=AL*82
A3B=AZ2B*AL
AE3=AB2*BL
AB22=s2%82 .

A3B2=A3B*8L
A2E3=AB3%AL
A4B=A 3B *AL
AE4=AB3 *BL

ASB=AA4B*AL
ABS=ABS*BL .
IF{KT.GT.1) GO TO 35 .
THR=THM*TH MXTHM/ 1 2, :

TF2=THM/2.

ELENENTS OF RIGIDITY MATRIX FDR SENDING
D1=TH3%E/( 1.0-PR*PR)

D2=D1 %PF

D3=D1%(1+9~PR) /2.

COMPUTE CONSTITUTIVE MATRIX - -
EMEI «2)=STHMRE/ (1 e —PR*PF)

EMC1+2)=EM(1,1)%FR .
EME3+3)=EM(L,1)%{1.~PR) /2.

ENM(Z+y1)=EM(1,.2)

EM(2s2)=EM(1,1} * .
EN(1+3)=0.0
EM{243)=0.0
EMC341)=0C.0
EM(3.2)20.0
PERFORM NUMERJCAL INTEGRATIGCN FOR IN PLANE PART OF STIFFNESS MATRIX
DC 25 J=1,2 . . '
00 25 K=1,2
DO 10 I=1,4 .
CCMPUTE DERIVATIVE OF SHAPE FUNCTION AT INTEGRATION FGINTS
DNDX(I) =0+ S*XA(I)%(1++YALI)RETA(K)I/ZAL
ONDY(I)=0CS*YA{I)*(1.¢XA{1)4XI(J)I/BL
DNX({I)=0.5#XA(I)/aL
ONY(2)=0.5*YA{]')/BL i
CCATINUE
ONDX{S) =~a o= XT ()% (1 ~ETAIKI*ETALK) I/AL
DNDY(S)==4 o *ETAIK IX{1e=XI(JI*XI(JII/BL
DAX(S)=0.0
DNY(%)=Cs0
‘DO 20 I=1e9e2
Ki=I+1
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20

12
25

K2=K1/2

CCVMPUTE DISPLACEMENT TO STRAIN TRANSFORMATION
ACTIGN

BM( 1+1)=DNDX(K2)

BM(1eK1)=0 <0

BNM(2.1)=0.9

BM{2,K1)=DNDY(K2)

EN{3+1)=DNY(K2)

BM(3+K1)=DNX(K2) .

PERFORM MATRIX MULTIPL ICATION ¢
CALL MATMLT(BM+3:+10.5M,8Ms10,AK1)
DO 22 I1=1,10 -

0C 12 Ju=1,10 '

VATRIX FCR IN PLANE

QK(TITI4JII=QK(TTI 23 JI)+02SHALXBLXAKLI (I Lo SJ)%W(K I®W(JI)

CONT INUE | L.
END OF NUMEFRICAL INTEGRAYICN
COMPUTS MATFRIX #8" FCR BENDING STIFFNESS
DC 1. I=1,12

DO 1 J=1,12

B(le.J)=0.0 .
B€444)=9 +C %Dl *AB
Bl4,6)=4.0%C2%AD .
E(4:7)=€.0%D1*A2B : -
B(4+8)=2.0%C1%*AB2
Bl4,9)=R.0%D2%A2B

B4 ,10)=6.C*D2*AB2
B(4a+11)=3,0%D1%AB22
BC4,12)=3.0%D2%A822
BlS+5)=4.0%C3*AB
BIE+8)=4.7%D3*%A2B .
Bi559)=4.0 *D3%AaB2
B(Se11)=4.0*D3%A38
BlSs12)=8.0%D3%AB3
B(644)=4.0%02%AB
B(E16)I=4,D%D1%AB
B(6+s7)=€.0%D2%A2B

B(6+8)=2 .0 %D2%AB2
B(€s5)1=2.0%A2B*D1
B(64+10)=¢.0%D1%AB2
B(6+11)=3.0%D2%xAB22
8(&6,12)=3. 02D 1*4322
B(7,4)=6.C2D1*A28
BL7.,£)=6.2%D2%A28
B(7.7)=12.,0*A3B*D1
B(7+8)=3.,2 %D1 ¥AB22
B(7+5)=4,0%D2%A3B
BU7+20)=9.C#D2%AB22
B(7+11)=6.0%D1 *A3B2
B(7412)=¢€.0%02%A382
B(81242)=2.,0%C1%AB2
B(&8,5)=4.22D3%a2€e
B(8,6)=2,0*D2*AB2
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B(B8,7)=3.5%D1%AB22
E(Bs8)=(a.0%D1%A53/3.0)4+{16.C*D3*A36/3.C)
B(8+9)=D2%AB22+4 .0%D3%AB22

B(8s 1C)=4.0%D2%AB3

B(8s11)=2.0%D1 %4283 46.0*D3%A40
B(Es12)=2.0%D2%A2B344,0%D3%xA283 .

B(9+8)=2.C *D2%A28

B(9+5)=6.0%D3%AB2 .

B(S+6)=2.0%D1%A2B . .

B(S+7)=48.C *D2%A3B

B(S+8)=D2%AB22+0.0*D3%AB22

B(939)=(4.0%D1%A38/3.0)+( 16.%D3%AB3/3.)
B8(S+10)=3.0xD1%AB22

B(Ss 11)=2.0%D2*ASE2+4,C*D3*xA3B2

8(9412)=2.0%D1 *A3B2+6.04D3*AB4

B(10:4)=6.0%D2%AB2

B(10+6)=6. 04D 1 *AB2

B(10+7)=9.0%D2%xAB22 .
B(10:,8)=4.C*D2%AB3 *
B(10+9)=3.0%D1%AB22 co
B{10,10)=12.0%D1%AB3 ~ - -
Bl10+11)=6.0kD2%A2B3

B(10+12)=6.0%D1 %A2:33

B(11+4)=3.0%D1%AB22

B8(11+5)=4.C*D3*A3B

B(11+6)=3.0%D2%AB22

B(1147)=€46*D1%A3B2

B(11+8)=2.0%D1%A2B34+6.C*C3*A48
‘Bl11+9)=2.0%D2%A3B2+4.0%D3*%A3B2

81110 )=6.0%D2*A2B3 ‘
Bl11+11)=4.C%xD1%A3B3+(36.,0%D3%A5B/5.0) .
‘BUI1,12)=(4e0%D2%43B3)44.0*D3*A3BS
B(12+.4)=3.0%D2%AB22
B(12:5)=6.,0%D3%AB3

B8(1246)=3.0*D1%AB22
B8¢12,7) =€, 0%xD2*A3B2
B(12+8)=2.04D2%A2B3+4,04D3+A2683 . .
£¢12,9)=2.0%D1 %A3E2+6.0*D3*AB4
B(1Z+1C)=6.,CkD1%A283

B(12+,11)=4 .C*kD2*A3B3+44.0%D3%A333
B(12+12)=4 ¢C*xD]1 *A3B3+(360*DI*ABS5/35.0)

35 CONTINUE

CCNFUTE CINV FOR THE ELEMENT

THIS IS INVERSE OF MATRIX “C" , TRANSPOSE OF MATRIX “CINV®
MULTIPLIED BY “B" THEN MULTIPLIED BY CINV GIVES ELEMENT STIFFNESS
_MATRIX FGR EENDING

bo"271=1,12 o

;0D 2 J=1.12

2 CINV(1,J)=0.0

CINV(1s1)=1.0
LCIAV(233)==1.0 . .
CINV(3,2)=1.0 :
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CINV(4s1)=-3.0/A2
CINV(A+.3)=24/AL
CINV(4s8)=3./A2
CINV(4.6)=1.0/4L
CINV(Ss1)=~1.0/AH
CINV(Se.2)=-1.0/AL
CINV(S:3)=1.3/8L
CINV(S:4)=1./A8
CINV(5.5)=1.0/AL
CIAV(S.7)=—1.0/A8
CINV(Ss1G) =1.G/A8
CINV(Se12)==1.0/BL
CINV(6+1 )==3,0/B2
CINV(Ge2)==2.0/8L
CINV(6+1C)=3,C/B2
CINV(EL11)=-1.06/BL
CINV(7:1)=2,0/A3
CIANV(7+3)=—-1.0/42
CINV(7+2)==2,0/A3
CINV(7+6)=
CINV(8,1)=
CINV(8,3)=
CINV(6s4)=
CINV(8.6)=
CINV(B,7)=
CINV(B,+9)
CINV(S,
CINV(8+12)=2.,0/A8
CINV(941)=3.2/A8B2
CINVI9, 2)=
CINV(9:4)=
CINV(S.S)
CINV(S, 7)=
CINV(9.8)=
CINV(9,10)
CINV(Ss11)=
CIAV(IT 1) =
CINV(10,2)=1.CrB2
CINV(IC 412 )==2,0/83
CINV(1Gs11)=1.0/82
CINV(1141)==2.0/A39
CINV(11+3)=1,0/A28
CINV(11,8)=2.0/A38
CINVI11,6)=1.0/A28
CINV(11.7)=-2,0/A38
CINV(11+9)=-1.0/A28
CINV(11,412)=2.G/A38
CINV(11.12)=-1.0/A28
CINV(12,1)=-2,0/A8B3
CINV(12.+2)=-1,0/AB2
CINV(12,4)=2,0/A3
CINV(12:5)=1.C/AB2
CINVI12.:7)==2.0/AB3
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50

60

CINV{12.8)=1.0/AB2
CINV(12.103=2.0/A83
CINV(12.11)==1.0/282
IF(KT .GT+1) GC TD SO
CALL MATMLT(CINV.12412,8¢CINVe12,AK2)
DO 15 lI=1s12
DO 15 JJI=1,12 .
11=11+10 .
J1=II410
GKII14J1)=0K(114J1)4AK2(TI,Jd) .
RETURN
ENC .
SUBROUT INS LAFGE(UesQKeALsBLeTHFMEsPRsNICoMeKT 4 KTN)
THIS SUBFOUTINE COMPUTES LARGE DEFLECTICN MATFRICES FOR THE ELEMENT
LtcaL syYsTEM .
INFLICIT FEAL¥B(A~H,C—Z)
DIMENSION STSMEM(3,1C) +STRMOP(3,12) BMIM(351C) yEMOP(3,12)
DIMENSION AKL(1D,10),AK2(12,12)0AK3(10+12) s XAC4)sYA(L) e XI(E) s
SETA(G) s WI4) +DNDX(S5) yDNDYLS) sDNX (5) s CNY (524 DFDX (12) »-CFDY (12)
DIVMENSION U(22)+QK(22+:22)+EM({ 3, 3)sGK(12+12)+BADG(3+12) +D(3+3)
DINENSICN CINV(12+12)+8(12+12)eSTAP(3):SEOT(I,.NGL(24,4) -
DATA XA +YA/=1eD04s 1eD031aD0s~1eD09—1¢D0y=1eD0s1.D%514D07
CATA XIsETAW/0¢861100,0¢335900+~048611D0+—04+3359D0+~10051.D0,
$0.8611D0+% 336500 +=0e8621D0+~0e339900 s=1e00.01 oLiie 0 +3478L0,0.65210D0
$,0.3478D0, 0.6521D0/
_BEFINITICN CF VAFRIABLES
STRMEMySTRMOP se e e o DEFLECTICN TO STRAIN TRANSFCRNATICN MATFICES FOF
TOTAL STRAIN )
BMEM ¢BMDP ees « DEFLECTION TO STRAIN TRANSFORMATICN MATRICES FOR
INCRENMENTAL VALUES X
AKI:AK23AK3ee40 s TEMPCRARY STORAGE LGCAT ICN FCR SUBMATRICES
DFCXs DFDY. o« +DERIVATIVES OF SHAPE FUNCTIONS FCF CUT 3F PLANE
CEFLECTICNS
BNDG +e ¢ +DEFLECTION TO STRAIN TRANSFORMATICN NATFIX FIR BENDIMG
STOP, SBOT e =es « STRESSES AT THE TOP AND 3SO0OTTCM FIBERS JF THE NIDAL PCINTS
NCDes oo s ARRAY REPRESENT ING BOCLEAN MATRIX
KT 1=KT=1 R '
KTT=KTN* (KT 1/KTN) .
IFRINT=2 .
CALL STIF(QKsCINV,AL 4BLs THM4EsPReMoKT) | .
INITIALIZE VALUES FQOP DISPLACEMENT TO STRAIN TRANSFORMATION MATRIX
FOR BENDING
DO 50 J=1.12
DD 50 '1=1,3
BNCG(1,0)=040
DC 60 I1=1412
DO 66 .u=1,12
B(I+eJ)=0.0
IF ISTRS=1 COMPUTE STRESSES : IF ISTRS=2 COMPUTE STIFFNESS MATF IX
I1STRS=1
NN=6
¥N=5
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S1T -

o*2=(S e yodNa T

AX#**9=(214Z)0aNa - 7

el TStTAxeg=(ovéZyoaNe -7
x*x*2=(6°Z19AN8
©* 2=(9*Z)ySONg
AXx*D= ﬁ-—.-uwuzm

Ax<ZZ(a*1Y0aNg . .
TLxme9=(241)9aNg
" 9*2=tv*1)oON8
XTalviW NDILVWHOISNYHL NIVHIS Gl IN2WIDVIISIAU 309 m|34<> S1NdADD ]

X*2X=EX

A¥2A=EA
. . : AXAX=ZAX
- : XEAX=AZX
ARX=AX
. AAZZA
X#X=2ZX

TEHIVLII+*1 )£ 18+5°D=A_
S CEFYIX+® 1) % 1vaSe0=X" "
R Jvsca=cay
- T9*EV=8EY . -
v x2@=2av -
. - : Jgszv=tzy " "
S ’ " 71es2e=ed - ¢
Ovs2Sv=gyY
Jss1gses .
8« Y=gv
CAVE VY=Y
. 0°0=(S)ANG
. s ; ' 0°0=(S)XNG
’ B/ ((FIIXR(r)I x|.-a.x.«pu*.<:|.mv>azo
.4<\..x~<pm*.x.<hwl._.u.ﬂvux*.eu (S IXONG
IANTINDD S
M8/ C1IVAXS*a={1)ANG
W01 VXE S 0=CI )XNGD
B/ (L IIXH(IIVX 4 1 34CI)VAXS*0O=(1IAONG
IV/CERIVAISRIIITALS I (1) VXS 0=11IXANG
. ve1=1 S 04
: : NN*NW=3 02 ©a
. NN*NA=F 0T DQ
- . SNOILVY¥OSLINI I¥DIN3IWNN 804 <007 04 b -
. 3NNILNGD SE
. . T=NR
: . . NN
: INILNGD S2
SE€ 0L 09 "
(4 SSIULS-AINDTs *XS*s AX—SSIHS
1Ss %X 8% sh- wmmukm..x 6% 4 X~SSIYLS+*X¥SS//2 1% +°0ON INSW3TI34* GHI D LVYWNOL 121
WeIZ2T AININd i
(s/7)1vnWe0d 228
221 LNIad SEt
SE Q4 0D (ILM*L177°14%)dl SE2
SEZ*SET*GE( T~LNIndI VL




BAECG(348)=8 e *X
BNDG(3+9)=0a4%Y
BNCG(3s11)=6+%X2
BNCG(3412)56.%Y2
- 4 COMPUTE. DERIVATINE OF SHAPE FUNCTICNS FOR BENCING
. OFCX(1)==6 . ¥Xs A2~ YIABfo.IXZ/ABOC.txY/AZd#J-lYZIAUZ—t.iXZV/ABB-Z.RY
$3/A83
DFDX(2)=~Y Z7AL+2.%Y2/AB~Y3/A82 - *
- OFDX(3)==1 a44 a #X/AL+Y/BL=3 o %X 2/ A2=3 ¢+ ¥XY/AD+ 3¢ *X2Y/2 2D
OFDX(4) = 60 KX/A2HY/AB=6 X 2/A3=6 e KXY/ A2RB=3 0 WY2/ ALZ+6 ¢ ¥X2Y/A3H
$+2.4¥Y3/A83
=Y/ AL-2.%Y2/AB+Y3/AB2
e BX/AL =3 e X X2LA2- 2 *¥XY/AB+ 32 X2Y /A28
OFDX(7)2=Y/AB+6 « XY/ A2D43 o AY Z/ACB2=- 6 e ¥X2Y/A 3B~ 2. %¥Y3/AB3
DFBX(8) ==Y2/AB+Y3/AB2
DFCX(9)=2. 6XY/ AB=3.2X2Y/A 20 . . .
. DFDX(1C)I=Y/AR=6e%xXY/A2R~3 ¢ XY2/AB246 «XX2Y/A3B+ZenV3/AB3
OFDX(11)=Y2/AB~Y3/AB2 .
DFDX(12)=-Y/BL 448 o »XY/AB=3.#X2Y/A2B
DFDY (1) ==X/AB=6.2Y/B82+3.¥X2/A2B+0 + 4XY/AH240 %Y 2/03-2.2X3/A 38
$~6#XY2/AB3 .
DFDY(2)=1 ¢ =X/AL=8 e 2Y/HL4A « kXY/AB43 AY2/8223 . mXY2/AB2 «
- . DFDY(3) =X/BL~2 +*X2/AB+X3/A208
: DFOY(4)= XIAE-J.tx2/Azs-6.mxv/Auzoz.«x31A35+c.-xv2/AaJ
. DFOY(S) =X/AL=8 « ¥XY/AB+3. kX Y2/7AB2
DFDY(6)==-X2/AB4+X3/7A20
DFDY(7)= —x/ABo:.~x21A28+6.—xv/Aaa-z.txJ/Azs—e.oxvzlAaa
DFDY(8) ==2 s *XY/AB+3 . xXY2/AB2
. . DFCY(9)=X2/AB~X3/A28
. . OFDY(1C)I=X/AB+GnY /B2 3.:x2/A28-6.txY/AE2-e.nvzzn:’z.-xslAJB
e . S+6.2XY2/7AE3
' DFOY(11315-2¢#Y/BL42 e XXY/ AB43 o AY2/ 023 « $XY2/ABZ
. DFDY(12)==X/8L+2.%X2/AB=X3/A28B
1 [+ CCNPUTE DER IVATIVES OF DrspLACEMhNTs AT INTEGRATION PUINTS
. PUDX=0,0
. . bUCY=0.0
DVDX=040 - - .
. DVOY=C.0
OWDX=0 .0
DwDY=C.0 . .
DUX=0 .0 .
DUY=a0 .0
- DVX=0.0 *
‘ DVY=0.G -
. DC 1 1158.942
' . Ja=L1+1
° tI=a9/72
DUCX=DUUX +UCTI 2 I*ONOXL(TJ)
DUDY=DUDY+UCIT )*DNDY (T J)
#  DVCX=DVOX+U(JJ)ISONDX{1J)
. ovVDY=DVDY+U(JIJI)*ONDY (L J)
' D : DUX=DUX+U( 1T)*DMX(1J)
ouYesuUY +U( L1 8ONY(LSS ‘




© e e

DVX=DVX4U( JJ) *DNX (T J)
OVY=DVY4+UCJJ) *DNY (1)
1 CCNTINUE
0D 2 1J=1,+9.2 .
1t=19+1 .
Ju=llrsz . .
COMPUTE OISPLACEMENT TD STRAIN TRANSFCRMATION MATRICES FCF TCTAL
ANC INCREMENT AL VALUES
STRVEN{ 141 J)=(C+SADUCX+1 « }*CNDX(IJ)
STRMEM( 2+ 1 J)=C+S+DUDY*DNDY( JJ)
STRMEM(3,14 S ACUYADNX (JJ )4 (0 «S*OUX+1 ) *PNY(JJI)
STRMEM( 1411 «S*DVOXDNDX ( JJ)
STRMEM(2.11 0.5*DVOY+14 ) #ONDY (JJ)
STAMEM(3+II)=(0.5%DVY+14) %xCNX(JI )40 «SEOVXRONY(JI )
BMEM(14+1J)=(DUDX+1¢)%DNDX(JJ)
BNEN{ 2+ IJ)=CUDY*CNDY(JJ)
BMEM(3+IJ4)=DUY*CNX{JJI}H(DUX+1.) *DNY (JJI)
BMEM{ 1, I1)=DVDX*CNDX(JJ)
BMEN(2, 1T)=(DVDY+1.)4ONDY (JJ) o
BMEM( 3+ 11)=(DVY+1 .) *DNX{ JJ) +CVXXCNY (JJ)
2 conTINnvE . . - .
D0.3 [I=1,12 ’
JI=TI41C
DWOX=DWDX+U(JJ)*DFDX(I1) .
OWOY=DWDY+U(JJ)*DFDY(II)
3 CCRTINUE
DO 4 Ju=1.12
STRMOP( 11JJ)=C + S*DWDX®DFDX( JJ)
STRVOP(2.JJ)=0.5*0rDYXDFDY (JJ) .
STRMOP( 3+1JI)=C+5%NDWD YADFOX(JJI)+3+.S*¥OWDX®CFDY (JJ)
BNCPC1+JJ)=DNDX*DFOX(JIJ), .
"BNCP( 2+ 4J) =DWDY*DFDY (JJ)
BMOP(3+JJ)=DWDY*DFDX(JJ) +DWDXDFDY( JJ)
4 CCATINUE .
COMPUTE STFESSES ; IF ISTRS=1 CCMPUTE STRESSES AT- THE NOCAL POINTS
IF 1STFS=2 COMPUTE STRESSES AT THE INTEGPATICM FOINTS
CALL STRESS(UsSTEMEMSTRVOF +BNDGeEMeDs SHOT s STCF,CINVTX o TY ¢ TXY,
STHMJE oPR )
SET=DS5QRT(STOP(1)*STOP(1)+STOP(2)eSTORP(2)-STOP(1)XSTORP(2)+3.%ST LR
$¢3)%STOP(3))
SEB=DSORT(SBOT(1)*SBOT(1)+SBOT(2)=SBOT(2)=-SBOT(1)xSBCT(2)+3,%SBCT
S(3)IXSBOT(3)) . ! .
IF(ISTFS.NE.1)GC T2 €S
IFCIPFINT~1) 20,1004+200

200 IF(KTT.LT.KT1) GO TO 20
100 CONTINUE

IN=JIr6
INTI=K
IF(JM)IE5,95.105

85 KL=4a

GG TO 1SS

105 KL=2

GC YO 155

S 117 . ) ..




95 IF(JN-1)115,125,125
115 KL=1
GO TO 155
125 KL=3.
155 PRINT 145+NCD(MKL)s (STOPCII)+I1=1+3)+3ET+(SBCTCIT) +11=143) 4558
145 FORMAT(1XsTNOC »13,6X, 'TOP® 48 (5X+E12.5)/13Xs *BCT *44 (5XeE1245))
G0 TO 20
c CCMBUTE SUBMATRICES FOR LARCE DEFLECTION MATRIX . .
65 CONTINUE .
CALL MATMLT (BNDG»3+120 DsBNDGs 12+ AKZ)
DO 55 II=1,12
DO £5 JJ=1.12
55 BUILeJJI=B(ITeJIIHAK20 1, JIDI*WIKI %W (J) *AL*BL/ G
CALL MATMLT (BMEMs3.193EMsBNEN154K1)
DO S1 11=1,10
DO 51 JJ=1.10C
51 QK(IT+JII=OKCITsJUI+AKICLT s JII*WEK) *W (JIRALKBLS S o
CALL MATMLT (BMEM, 3, 10sZMsBMOP+ 12+ AK3)
DO 52 II=t.+10
DO 52 JJ=1,12
LL=JJ+10
52 GKCITLLL)=QKETToLL)+AKI (1T +Jd )%w (J) %4 (K)XALKBLSG «
CALL MATMLT(BMOP:3+12+EMsBMOP 4125,AK2)
DO 53 1I=1.12
00 &3 Jsu=1,12
IL=11+10
JL=JJ+10
53 OK(IL +JLISOK(TL o JLI+AK2(IT s JIIEWCKI*W(J)RALKBLSS o
Ceees.COPUTE AND ASSMBLE GEOMETRIC MATRICES
DC 14 II=1,S
DO 14 JJ=1+E : .
GSONDX( IT)*DNDX (JJ) *TX+DNDX (I1) #DNDY(JJ ) #T XY +DNDX(JJ) ¥DNDY( I 1)+ TXY
S+DNDY(II)*ONDY(JII*TY .
12=2%1L : .
1n=12-1
J2=2%39 . :
Ji=Je-1
OK(I1+J1)=0K(I1vJLl)+GRkWIKI*W(J)*ALXBL/S .
* QKLI2,J2)=QK{I2+J2)+GxW(K} *W( J) XAL*¥BL/3 .
14 CCATINVE
DO 30 II=1,12
b0 30 JU=1,12
30 GK(II+JJII=DFDX(II)*DFDX{(JJI*TX+DFDX(II)RXDFOY(JJI)I*=TXYH+DFDX(JJI)I*DFDY
SCII)*TXY+DFOV(II)*DFDY(JJ) % TY
DC 40 II=1,12
00 40 JJ=1,12
IL=I1+10
JL=JI+10 .
80 OK(ILsJL)I=QK(IL s JLIHGKIIT s JI)*W(II . WC(K)RALKBL/ 4o
20 CONTINUE
£8 CCATINUE
ISTRS=SISTRS+1 :
| IF(ISTRS-2) 45,25.45
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45 CONTINUE
c COMPUTE BENDING PART OF ELEMENT STIFFNEZSS MATFRIX

CALL MATMLT(CINV,22412.B¢CINVs124AK2)

DO 12 11=1,12

DO 1S Ju=1.+12

11=11+10

J1=JJ+10
15 OK(I1+J1)= OK(!I|J1)+AK2(II-JJ)

RETURN

END N

SUBROUT INE STF&SS(U'STPMEM.STRMDP-BNDG.EM-D.SBCT-STCP CINVeTXsTY

STXY s THMLE, PR)

IMPLICIT QEAL*B(A-H,C—Z)

DINENSION U(22) ¢STRMEM(3,10C)s STRMOIP(3,12)+EM(3+3)+5(3)+SHUENC3)

DINENSITN ECNE(3)+STWC(3) sD(3+315EBNC3) +BNDG(3,12) 4 SBUT(3),STIP ()

DIMENSION CINV(12,12),3BEN(3,12)
c DEFINITICN CF VASIAELES
< BBEN <« ««.DEFLECTICN TO STRAIN TRANSFORMATICN FCR SBZNDING
c EBN AXIAL STRAIN DUE TO BENDING .
c EGNE AXIAL STRAIN OUE TO IN PLANE ACTION
c
c

ETWO AXIAL STRAIN DUE TO OUT OF PLANE ACTION
ees « o CTHER VART AELES CEFINED PREVIOUSLY )
DO S0 II=1.3
D0 .50 JJFils12
BBEN(II +4J)=0.0 )
D3 E0 KK=1412 -
S0 BEEN(TI+JJI=BBEN(II,JII+BNDGIIIKKI*CINV(KK,JJ)
c CCMPUTS AXIAL STRAIN FGR MEMBRANE ACTION
Do S II=1,3

1,10 ° -
5 SEONE(II)+STRMEM( L1 ,0J) £U(JJ)
4 CCMPUTE AXIAL STFAIN FCR LARCGE CEFLECTICN .

DO 6 11=1,3

EBN(II1)=EBN(I1)+0 5 4THMXEBENC I+ ) #U(JI+1D)
6 ETWOCIII=ETWO(II)+STRNOP (I ,J0J)%U(JIJI+10) . .

c CONSTITUTIVE MATRIX FOR PLANS

EM(141)=THVXE/ (1 +~PR*PR)

EM(1,2)=PR*¥EM(1:1)

EMI2,1)=EM(1,2)

EM{3,3)=EM(1+1)4(1e=-PR}/2.

EM(2,2)=EM(1.1)

EM(1,3)=¢C.0 . . -

EM{2,3)=C.0

EM(3,1)=0,0

EM(3,2)=0,0

THM2=THMATHM/12.
[4 * CCNSTITUTIVE MATFIX FOR BENDING

DO 10 I1=1,.3

DO 10 JJU=1.+3
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10
(4
8
20
25
c
<
C
<
<

DOI1eJJI=EMITIT«JJIIKTHM2

COMPUTE STFESSES FOR THE MIDDLE PLANE TCP AND EGTTOM FIBER
00 8 II=1,3

S(11)=C.0

DD 8 JU=1.3 8
S(i!)=S(IK)4EM(II.JJ)*(EDNE(JJ)+ETHO(JJ))

DO 20 11=1,.,3 .

SARENCII })=0.0 . .
DC 20 JJ=1,3 :
SBEN(II)=SBEN(IIJ+EM(II ,JJI*EBN(II) N

DO 25 11=1,3

STCPCII)=(S{ITI+SBEN(IIII/THM
SBOTU(II)=(S(IT)~SBEN(IL1))/THM

CONT INUVE

TX=8(1)

Tr=58(2) .

TXY=S(3)

RETURN

END .
SUBROUT INE ARANG(QK.Qe M)

THIS SUBFOUTINE FREARANGES ELEMENT STIFFNESS MATRIX AND LJAD VECTOFR
BEFORE CONDENSATION

INPLICIT REAL*S(A-H,C—Z)

DINMENSIGN OK(MsM),Q(M) .

,REARRANGEMENT OF ROWS

L=3

KL=S

N=ga

DC 3 LL=1,4

DO LOOP GN THE COLUMNS . -

00 1 I=L.KL ’

TENP1=0(1) .

11=1+N

afI1)=a(11)

DO LGCP CN THE RCWS ) ’ .
DO 8 J=1.M £
TENP=OK (1+J) :

QKIT+J)=GK (114J)

N1=N~1 .

DO 2 K=1sN1} . .
IK=II-K .

IK1=IK+1 .

IF(JeLT M) GO TO 2

QCIK1)=0(IK) ’

OK{IK1e JI=QKCIK,d)

QK141+ JI=TEMP

Qt{I+1)=TEMP1L

- CONTINUE

L=L+5

KL=KL+5
N=N-2 .
CCNTINUE o .
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REARRANGEMENT OF THE CCLUMNS
L=3

KL=5

N=g

DO 4 LL=1.4

DO LCCP GN THE ROWS .
DO S5 JsL KL .
RNENTIN . -

00 LCOP ON THE COLUMNS

DO S I=1.M

TENMP=CK (T4 4)

QK1 +J)=CK{Is3d) -

N1=N-1

DC 6 K=1,N1

JK=JgJd-K .

JK1=JK+ 1

QKL s K1 I=0KCTaIK)

QK1 sJ+1)=TEMP .
L=L+5 :
KL=KL+S

N=N=2

CONT INUE

RETURN

END .

SUBROUT INS ARANGZ2(UsM)

INFLICIT REAL*B(A~H,Q=2Z)

REARRANGEMENT OF INCEEMENTAL CEFLECTION TO PUT It PLANE VALUES ¢
ANEC OUT OF PLANE VALUES NEXT

DINENSIGN UM}

L=2

N=32 -

DO 1 LL=1,4 . ‘
Li=L+1

DD 2 I=L.bL 1

TENP=U(T)

K=I+N

UCI)=UuCK)

NI=N-1

PO 2 J=1.N1

KJ=K=J

K1=KJ+1

U(K1)I=UIKYS )

IL=T+1

UCIL)=TEMP

L=L+2

N=N+3

CONTINUE

RETURN

END

121 .

re
“



SLERQUTINE CONDNS(QKeGQoLIsKK)

[+ THIS SUBROUYINE COMDENSES INTERNAL DEGREES OF FREZDCM FCFR EACH
c ELENMENT .
. IMPLICIT REAL*¥E(A-HB,C-2)

DIMENSION OKILleLIdeQ(LI)
DO 1 J=1+KK
1J=L1-0
IK=1J+1 :
PIVOT=QKC(IK,TIK)
00 2 K=1,10
F=CK(IK +K)/PIVOT

* OK(IKWKI=F

DO 3 I=1.14

OK(IeK)=CK (TsK)~F*QK (T, IK)

COATINUE

G(KI=Q(KI-CGKI{K+IKI*Q(IK) /PIVOT .

QCIK)I=QUIK )/PIVOT

RETURN

ENC .
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NUMBER JF ELEMENTS 4
NUNBER OF NODS 9

NUMBER OF LOADING S

ELEMENT NOD=1 NOD=J
1 1 4
2 2 S
3 4 7
4 5 8
NOD X=COORDINATE
1 0.0 .
2 0.0
3 L0
4 5.000
8 5000
6 5000
7 10,000
-] 10.000
9 10.000

* EQUIVALENT NODAL LDADS FOR EACH STEP

NOD LOAD-X
C.0

0.0

0.0

0.0

0.0

0.0
-0.237500 03
«0447500D 03
~0423750D 03

VNN PS AN -

Gef
0.0
0.0
0.0
0.0
0.0

.00

0.0

NOD~K NOD-L. LGAD THI CKNF5S
(LB/IN2) (IN)
5 2 0.0 0.100
6 ‘3 040" 04109 -
3 5 c.0 0,100
9 6 0.0 0,100
Y-COORDINATE = Z-COCRDINATE
0.0 0.0
54000 0,0
10,000 . c.0
0.0 0.0
5,009 0.0,
10,000 040
0.0 0.0 °
54000 0.0
10.000 049
LOAD-Y LOAD-Z MOMENT=X
0.0 «0.,95000D 00 0.0 7
0.0. 040 0.0
0.0 0.0 0.0
0.0 0.0 0.0
040 2.0 0.0
0.0 S 040 0.0
0.0 0.0 0.0
0.0 040 0.0
0.0 9.0 0.0

0.0

MOMENTeY

0e0
040
0.C
O
0.0
0.0
040
0.0
Ce0

MOMENT=2
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APPENDIX B
MATRICES [c] AND [c]'1 AND INTERPOLATION

FUNCTIONS FOR BENDING ELEMENT




-1
a ‘- a2 a3
a a2 a3
-1 -2a -3a2
a :412 ab bZ .:-13 a2b ab2 b3 a3b ab 3
a| 2 a?  |zab | 3% | a® | 3ap?
-1 -2a -b —3a2 —2ab —1:)2 —Bazb -b 3
b2 b3
2b 31:2
-1 -b '—b2 -b 3
[el
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Interpolation Functions

w= {6} fq} = {9} Le¥? {q}

then {6} = {y} eyt

2 2 3 2 2 3 .3 3
{y}r = {l,x,y,x, Xy, ¥, X, XY, Xy, stYs.xY]'

by =1-3x" -xy -3y + 20 +3x’y +3my° + 290 - 20y - 2y
32 ab b2 a3 azb ab2 b3 a3b ab 3

2 2 3 3

¢, =y ~xy - 2y + 2xy + y_ -~ x_

a b ab 2 2

b ab
3 3

¢3=—x+2x2+:_:z—§__—2x22+xz
a b a2 ab 2%

¢, = 3x2 + xy - 2x3 - 3x22 - 3H2 + 2x3z + 2x—z3

a2 ab a3 azb ab2 a3b ab3
2 3
bg = Xy - 2%y° + xy
a ab 2
ab
b =§3—§3-_1x2 +_zx3
a 2 ab 2
a ab

ab azb ab a3b ab3
2 3
ab 2
ab
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2 3
¢9=xy_-—xx
ab 2

a'b

2
$0 = E *3y_-
0 I 3

b

2 2
b5y x4+

11 b ab

3xzz - 3)_:22 - 23 + 2x3x + .Zﬂs_

azb ab2 b3 a3b ab3
3

y_ - ’_f}'_z.

b2 ab

131




APPENDIX C

PLASTICITY THEORIES




Deformation Theory of Plasticity

The following relationship is given [26] between total stress

and total strain

14+v o,. -

s = .-V o S.. + J S
iy ==%— 13 F pp 1ij & 3y

E

ij

where € = strain, ¢ = stress, V = Poisson's ratio, J2 = second invariant
of stress deviator tensor, E = modulus of elasticity, Sij = Kronecker

delta, and

P 1" 22 33
S,,=0..-10 &
1] ij 3 pp 1ij
g(3)=3E€ -1

2 Eg
J, = 5,: S

Assuming plane stress, then 033 = 0’13 = 023 = 0, hence

(L+2g) 0. -1L@V+go
3 11 E 3 22

W0
[

{

m=

&= 1 -
22 E(1+%g_) 99 %(\) +_§) 011

The ipnverse relationship may be written as
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12='1+\"+g 12
where E 22 7 E11 = a_ ElZ = -b
2.2 2 2
a-b a -b
and a=1(1+2g¢g)- b==-1(v+g
E 3 E 3

Flow Theory of Plasticity

For small increments the strain is decomposed into elastic

and plastic parts.

s¢ = 8% + 5€P

Then the stress increment 80 is related to elastic strain increment by

86 =D 6
where D = constitutive matrix. Equation of the yield surface is

represented by £ (o0,e) = 0, then according to the normality rule

oe T = &g

9o
Taking the first variation of £ (o,e) = 0
- -P
{3£} 8¢ = H” &8¢
3o
where S\ is a non-negative scalor and H” = slope of equivalent strain
curve.
Isotropic material behavior is assumed, hence the yield

criterion for subsequent yielding becomes
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£= s-H(EDH =0
where O = effective stress and H is a function of equivalent plastic

strain. The incremental form of equivalent plastic strain is given by
1
-P P P 5
Se =J_§ {Gsij 8¢ 1_1}2
Writing the elastic strain as

e © = Ge—GeP

ThenSG=D65e=D(65 -ﬁeP)

Premultiplying the above equation by {3f}
90

{9} 60 = {8£} {p} {&e} - (3£} (D} {sc¥}
90 °0 £l

B e P = {35} {0} {se} - {33} {p} {33} {se T}
1o 20 o0

Since GS-P is a scalor

tse "B} _ {_'g_g} {p} {6e}

H+ {3g} {D} {30}
' 3¢ 9o

Manipulation yields

{35} {p} {35}
80 = D 6e -~ D _00 90 se

H + {30} {p} {3a}
3 3o

or
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{23} {p} {ag}

D =D- D _J00C g
ep H + {3c} {D} {a3g}
3g 90

where Dep = Iincremental elasto-plastic constitutive matrix.
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