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APOLOGIA

The nature of this work seems sufficiently out of the ordi-
nary to warrant an explanatory note.

No theory is developed herein and neither is an experiment
performed. What is attempted is the extension of a rather formidable
theoretical development purporting to represent the Phenomena of
transport at high density into tables of predicted results, through
numerical methods, and thus the establishment of a coherent, critical
link between equation and laboratory observation. Most properly this
effort might be called computational physics; it is left to the reader
to judge the merit of the name.

Being neither fish nor fowl, theory nor experiment, the
reader may not find, in the discussion which follows, the emphasis
in either area which he may desire. Theory is only sketched as is
necessary with little if any rigor. Experimental results from other
sources are merely quoted. The emphasis 1s elsewhere, in an area
which may excite little interest in either the pure theorist or the
pure experimentalist: in the discussion of the programming effort.

But this is the bridge between theory anq experiment (perhaps the only
viable link in this case) and it is part and parcel of this endeavor.

Concerning the organization: a particular equation will be en-
countered repeatedly in varying ways depending on the business at hand;
for instance, as a theoretical entity, as the basis for a numerical al-
gorithm, and as a topic for examination in the context of the numerical

X



results it produces. Additionally, there may be many asides into

the details of the programming effort devoted to it. The partition
of the narrative along these topical lines is an attempt to preserve
the simple flow of the discussion and the logical continuity of the
ideas developed, and hopefully to make more palatable the presenta-

tion.

xi



ABSTRACT

The predictions of the Rice-Allnatt Theory for shear viscosity
and thermal conductivity are evaluated by numerical techniques and
compared to experimental results for Argon and Nitrogen over a dens-
ity range of approximately 30 to 700 amagats and a temperature range
from 273°K to 600°K. The Kirkwood, Born and Green, Myer, and Yvon
radial distribution function was primarily used, and results using
Percus-Yevick and convoluted hypernetted chain formalism are also
reported. Lennard-Jones, Modified Buckingham and Barker-Boebetic
potentials were used.

All calculations led to substantial disagreement with observa-

tion. The nature of the disagreement is discussed.
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CHAPTER I
INTRODUCTION

It is well known that many thermodynamic parameters may be
expressed in terms of a statistical-mechanical quantity called the
radial distribution funetion, g(r). This quantity is related to
the probability that in a system of N particles a particle is
located at a scalar radial distance r from another particle. A
formal route to the definition of g(r) is as follows:(l)

Beginning with the N-particle distribution function
fN(zl,zz,---zN; t) (1-1)
where Zi=(qi’pi) , we define

fN(Zl,°°',ZN; t) le“'dZ (1-2)

N

as the probability that a system of N particles is in a state le,

...,dZN about a phase point Z .,Z,, at a time t. Next, define

) R

the reduced distribution function

£,(2,0 0025 1) = Jdezm---dzN : (1-3)



2
fZ is the probability that a system is in the state le,---,dZZ

about Z.,*-,Z

1 without regard to the values Z

1 417 oy
Order is implied in the definitions of fN and f;.

f(zl,z ---Zj; t) is distinct from f(Z Zl,---,zj; t) in the sense

2’ 2’
that in the former expression, it is "molecule number one'" which
has the_position and momentum Zy while in the latter expression,
it is "molecule number two'' which has Zl' The probability that

a system has the set of positions momenta {Zi} irrespective of the
specific permutation of this set among the molecules is obtained
by summing over the permutations. This summation gives the

l-tuple distribution function, FZ' For a homogeneous system, the

result is simply:

Foo= ll(T)f = N

Z 1T T Y (1-4)

Finally, the radial distribution function (or two-particle

distribution function) is:

2
-V = ¥ .
g(r) is proportional to the probability that a particle of the
system (any particle) is located at a radial distance r from some
other particle. By virtue of the term multiplying the integral,
the absence of any information as to the location of a second

particle is given by g(r) = 1.
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In a system of high density, we envision molecules
closely packed together with little opportunity for large dis-
placement. We expect molecules to be arrayed in close proximity
to their neighbors. It should be that there exists a relatively
large probability of encountering a molecule at slightly greater
than one molecular radius, o, and at approximately even integral
multiples thereafter. This is reflected by g(r)>1 at these
values of r. Additionally, the likelihood of a molecule at r im-
plies molecules will tend to be excluded from that immediate
vicinity Ar< o . In this region, g(r) <1 . As r is increased
(and hence, as the volume of the spherical shell of thickness Ar
increases) the certainty of our anticipation blurs, and g(r)
tends toward the value unity for large r. We call this situation
""short range ordering". The word correlation is also used to
characterize the situation where one molecule influences the
behavior (here, the position) of another.

In the opposite case, that of extreme low density, we
would expect little definitive knowledge as to the location of
particles, except perhaps at small values of r. In such systems
where no significant correlation exists, g(r) = 1 except for
values of r only slightly larger than r.

Typical g-curves are shown in Figures 1 and 2.



Figure 1. A typical family of radical distribution functions.
The curves showing most pronounced variation are for

highest density (here, approximately 900 amagats).
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Figure 2a. A perspective view of the data of Figure 1.






Figure 2b. A perspective view of the data of Figure 2a, rotated
180° about a vertical axis. The short period irre-
gularly in the data lines is an artifact of the

plotting device.






The value of the radial distribution function rests in
the fact that many thermodynamic properties of the system may be
written in terms of itﬁz) The representation of the equilibrium
properties in this fashion is well known. For instance, the
equation of state of a system in terms of g(r) and the inter-
molecular potential V(r) (assumed to be a 2-body potential, i.e.
neglecting any non-additivity) is:

A J r g—‘lf g(r)dr . - (1-6)
()

Recently, Rice and Allnatt (RA) developed a theory whereby the

transport properties of a non-equilibrium system might as well be repre-

(3) It was hoped that their theory might pro-

sented in terms of g(r).
vide an accurate description of the behavior of the diffusion, viscosity
and thermal conductivity of a dense fluid system, but the lack of know-
ledge of the functional form of g(r) or of accurate tables of its values
hindered a thorough analysis of the RA equations.
It is the purpose of this present work to develop (within a

given theoretical framework) accurate tables of g(r), to apply them to
the RA equations, and hopefully, to take some measure of the effective-

ness of the RA equations by comparing their predictions with experi-

mental results.



CHAPTER II

THE RADIAL DISTRIBUTION FUNCTION

General Remarks

The "derivation" of g(r) of the Preceding chapter is a
formalism; while it aids in our understanding of the nature of
the function, it furnishes no information as to the functional
form of g(r). Kirkwood}y)Born and Green}s)Mayefb)and Yvoﬂy)de-

veloped an integral expression involving g(r) which can be

written:
Ao (*
In[g(r)] = - Beby(x) + KJ K(x-s,€)s[g(s)-1]ds (2-1)
where
K(t,E) = BesJ I l(s"’-tz)g(s,s)[‘%ﬂ]ds : (2-2)
t

a and ¢ are respectively the length and energy characteristic of

a reduced intermolecular potential y defined by the equation
T
Vi) =er(x); x =g (2-3)

The parameter A, is proportional to density:



(2-4)

where N is Avogadro's number and v is the molar volume. 8 = (kT)'1
and & 1is a coupling constant relating to the intermolecular po-

tential:

N
V@8 =V v e ] V) (2-5)
k=1
#i
In what follows, it is assumed & = 1 . We call the integral
equation involving g(r) simply '‘the g-equation'".
The g-equation has never been solved analytically for the
functional form of g(r). However, it was used by Kirkwood, Maun

and Alder"8

)(KMA) and later by Kirkwood, Lewinson and Aldexca(KLA)
as the basis of a numerical solution. Although their results were
obtained subject to certain restrictive approximations and were of
limited accuracy (because of the limitations of data processing

devices available to them), their efforts and success in this en-

deavor are truly impressive.

The KMA-KLA Solution gf_ghg g—eguation

Because we aim in part to create improved tables of the
radial distribution function, it is appropriate to review the KMA-KLA
development:

KMA-KLA chose the Lennard-Jones 12-6 intermolecular

potential:
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V@) = evpx)

H

[y]

|

]
I

bl

(1]
o [

<12 &6

and modified it as Y = Yo + Y1 3

exp{-gev ()} =0, 0«1
=1, x21
y(x) =0, 0sx<1
=y ;(x), x21
By then defining:
fn g(x) = - Bey (x) + ¢§f)

and expanding the functions ¥(x), g(x), and K(t):

D) = by () + B () + (8) 0 (0) + o

2
l!)]_(x) +(8€]2[w1(X) . wz(x) .

X ZXZ X

g(x) =g, (x){1+ 8e
and

K(£) =Kot (2) + BeK) (£)+(Be) Ky () + +-

where

¥, (x)
g,(x) = exp {-Bey (x) +

}

(2-6)

(2-7)

(2-8)

(2-10)

(2-11)

(2-12)
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and 1
S exp{wgs) lds
] (2-13)

1
Jltls ds

k(1) = <gg> =

they created from the original g-equation a family of integral
equations involving these power series, and from which g, in terms
of its expansion, could be obtained.

The radial distribution function of a fluid composed of
hard spheres, which we denote by go(r), is found in the first

member of this family. This equation, simplest of the group, is:

v, (x) = % J Ko(x-s)s[go(s)-l]ds , (2-14)
where 2
K =t -1, |[tla,
= 0 P Itl>1 ’

and A is a parameter related to density:

X
1 J i . 42av (2-15)

I8, (LI o g (1,01 v

Here, Vo is the close packed volume of a system of spheres, and
g2(1,)) is the g at density A and x = 1.

By expressing the resolvent kernel of Ko(t) as

- _ A ® G(u) cos ut du _
K =-2 L T-3G(0) (2-16)
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where
21 ® iut, _ ucosu-sinu
Gu) = 7 K (t)e' du = ————
o © u3
- (2-17)
KMA replaced the go-equation with the following pair:
1 .
£ (x) = - x+ J~1 Ko(x-s)fo(s)ds , (2-18)
1
v (x) = - [ K, (x-s)f_(s)ds . (2-19)

-1

This pair of equations was more appropriate as the basis for the
generation of an algorithm for the data processing equipment at
their disposal.

Other ancillary analyses were incorporated into their
treatment, but for our purpose their pattern is clear; the resolvent
kernel Két) is evaluated, the fo(x) equation is solved iteratively
(see Appendix I), and tables of Ko(t) and fo(x) are used to eval-
uate ¢° . go(x) is then known.

The solutions may then be used in succeeding members of

the family of equations. These equations are of the form:

b, (x) = m (x) + % J e"Ko(x-s)go(S)wn(S)ds, n=1,2,3,"-". (2-20)

In principle, sufficient information is generated at each step to

proceed to the next family member; however, working one's way
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through these equations becomes progressively more difficult be-
cause of the ballooning complexity of the mn(x) terms. For ex-

ample,

A o)
my(x) = -xyy (x) + b (D (x) + ToJ le(X-S)SIgOCS)-lldS (2-21)

but

]

A
m(x) = U, (Wv () + 3 v 0 + J _Kylx-s)slg, ()-11ds

00

A

+ 39 J_QKI (x-s)g, (s)¥,(s)ds + ;H ) K, (x-s)g,(s)*

[ 254]ds + A —7 J-mKo(x-s)go(s)wl(s)ds . (2-22)

One need only realize that the solutions are obtained by iteration
(with each iteration demanding a number of numerical integrations

of some considerable intricacy) to appreciate the magnitude of the
practical problem involved in the calculation. Quite rapidly in
one's progress through the family, there will be reached a point at
which further solutions become prohibitively costly of time and ef-
fort. Indeed, even at the g, stage, certain theoretical considera-
tions led KMA to perform extensive preliminary analysis and numerical
manipulations to insure convergence of the fo(x) equation. KLA
obtained solutions through the gz(x) term at a number of densities,

and reported their results to three significant figures.
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The Extension of the Solutions
Originally this work was intended to extend the numerical
results of KMA (for go) and KLA (for the higher order terms) by
following their general development while also taking advantage of
improvements in data processing hardware and software. This line
of attack led to several alterations in the equations on which the

computational algorithms they used are based, and, finally, to a

radical departure from their technique altogether.

A. The go-equation: In the repetitive numerical evaluation of any
quantity, time spent in calculation becomes an important considera-
tion. It is advisable to make mathematical modifications in the
functional form of an equation on which the calculational algorithm
is based in order to reduce the number of individual arithmetic
operations involved and to transform more complicated, time consuming
operations into simpler, quicker ones. (It is quicker on a computer,
for example, to add the quantity A to itself rather than multiply it
by 2.)

In the evaluation (which must be done numerically) of the
resolvent kernal KMA found that a.single partial integration:

yielding

[3u6(u) +sinu] sin ut du

: A
K _(t) = - -J
0 ™o W22 G2 (2-23)

produced results faster than the original form. The effective
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upper limit u which replaces the « in the evaluation of the
above integral could be set lower than would be in the case in
the kernal's original form because the integrand becomes negli-
gible at smaller argumehts in comparison to the accumulating sum
which approximates the integral. Fewer evaluations of the inte-
grand were necessary and less time was consumed.

But an even more tractable modification can be made:
beginning with the original form of Ko(t), add and subtract the

quantity

J G(u)cosutdu ,
[0}

simplify, and obtain:

2 o 2 ol
__ A [ G (uwcosutdu A .
Ko(t) T ‘[o 1-1 G(u) T JOG(u)Losutdu (2-24)

Since G(u) is a function decreasing as uﬁz, it is seen that the
value of the first integrand of the above modified form is smaller
for a given argument u than in the original form. The second in-
tegral is analytic . The technique can be repeated any number of

times to obtain;

K (t) = - Aﬁ - ETLELEQEEEQE + Nil {- N G (u)cosutdu} 2-25
o T 1-36( 2 T, ¢ - (225)

0

The improvement in the evaluation of the first integral is dramatic.
In its original form the integrand required umg;400; with N = 5 in

Eq. (2-25), UmQLZO was required to achieve the same degree of accuracy.
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The series of integrals

I = J Gn(u)cos ut du
n o

are evaluated by first writing the trigonometric function in terms

of Bessel functions:

Glu) = - & {Sinu cosuy __ ()

I - ’
u2 u u

where jn(u) is the spherical Bessel function defined by:

. |
ANORNCHHR NG
Similary,

cosut = - (ut)n_(ut) = E%E-J_%(ut)

Then, for example,

” Jw T4/, J_g(ut)du

1 2 o u

For n >1, the powers of trigonometric functions are first reduced
by identities to products of first power functions prior to con-
version to Bessel functions.

These resulting integrals are of Weber-Schafheitlen type

whose solutions are given by

(2-26)

(2-27)

(2-28)

(2-29)

(10)



17

o u p+v=-A+l
J J, (at)J (bt)dt _ T (=) !
o tA zkbu-x+lr( l)r(v p+ A+1) 21 2
- - 2 -
M; \)+1, 2_), 0<a<b , (2 30)
2 a2
and
] u+v A+l
JwJu(at)Jv(bt)dt i b F( ) (u*v S+l
o tl zlav-k lr( l)F(u v+A+l) 2 1 2

2
vokl o Yy gpea
2l

2 ’ (2-31)
where 2F1 is the hypergeometric function:
n
. - T'(c) T(a+n)T(b+n) Z~
F,(a,bc,2) I‘(a)r(b)z T(cen)  nl
(2-32)

For our case, the series truncates and yields a polynomial in t.
There is an added windfall: it can be shown that the integrals

In have the property

For sufficiently large t, the polynomial vanishes in the evaluation.

Returning to thc cxample, we obtain:
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-5 &)

I, = - ﬂ{ t 1@ g *,-1;%,t2)}
1 2 2’1

- 2r(%)r(2)

- % (1-t2), 0<t<l

=0, t1
(2-33)

The analytic integrals, In’ were evaluated for n = 1,2,
-+,5. A more detailed example of the procedure and the results
for all the integrals are given in Appendix II. These analytic
results were checked by an alternate derivation involving Laplace
transforms. The results were confirmed numerically by comparing
ko(t) evaluated from its original integral expression with ko(t)
evaluated from the modified form.

The numerical integration involving G6(u) converged quite
rapidly. The table of ko(t) required for succeeding steps was
generated at an estimated accuracy of + 1 x 10-8.

As mentioned earlier, KMA took great care to insure the
convergence of the fo's in the iterative solution of its equation.
Certain arguments were offered that a solution could not be
directly obtained from the equation and KMA made elaborate analyses

to secure the fo values. However, when a direct iterative solu-

tion of the equation

1
fo(x) = - X +J-1ko(x-s)fo(s)ds

was attempted, no difficulty at all was encountered. The subsequent
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application of tabular fo(x) values in the 128 equation led to values
of go(x) in excellent agreement with those given by KMA.

This was mildly surprising; quite possibly the improved
accuracy of ko(t) values brought about by the modification of the
equation on which the computational algorithm was based and the
greater precision inherent to modern data processing equipment
made the fo-equation more tractable to a direct approach. But for
whatever reason, this modest success in spite of the arguments
that no direct numerical solution was possible generated an in-
triguing question: could it be that the entire manipulation of
the go(x) equation to form fo- and wo-equations was unnecessary?

The go-equation was altered slightly by the change of
variable s' = x-s to obtain

A Al
=t J_l[(s')z-ll (x-s')g, (x-s")ds’ . (2-34)

boc)
=]
—A—
oQ
o
~
te]
~
[
n

This form was used as the basis of the computational algorthm.
The table of go(x) obtained was in agreement with the one obtained
by use of the fo' and wo-equations. Almost as important, the time
spent in calculation of the tables was reduced by an order of

magnitude.

B. The g-equation:The surprising and quite pleasing discovery that
dramatic simplifications of the g calculation were possible sug-
gested--no, demanded--further investigation along these lines.

Perhaps the g-equation itself was a viable basis for an algorithm.

The entire tortuous process involving the expansions of ¢, g, and
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K could be avoided. Inaccuracies introduced by omission of
higher order terms of the expansions would be eliminated. Cer-
tainly the programming effort required to construct the algorithms
would be reduced. Constraints and approximations placed on the
functional form of the intermolecular potential (modifications
necessary in the earlier developments facilitate manipulation of
intermediate equations) could be disregarded. The machine time
devoted to the calculation would be reduced.

Only a small modification in the g-equation is necessary
to obtain a form suitable for the generation of the algorthm.

Recall that:

X @
2n{g(x)}=-—65y(x) +‘Z% J K(x-s)s[g(s)-1]ds ,
where

K(t) = eeJl l(52-1;2)g(s) % ds
t

With the assumption that g and y are even functions in x, a change
in variables s' = x-s allows us to write the integral portion of

the above equation as

0 oo
L= J Zds' + J ds', 7= K(s')(x-s")[g(x-s")-1] . (2-35)
- 00 o



21
The change in variables s = -s' in the first integral, and s = s'

in the second yields

I= J K(s)[(x-s)g(x-s)+(x+s)g(x+s)-2s]ds , (2-36)
0

and this form is used to create the algorithm.

The initial calculation gave results which were in good
agreement with those of KLA.

This opened the door to a broader line of investigation,
for the new algorithm permitted a far more convenient and straight-
forward interchange of intermolecular potentials in the calculation
than was possible using the KLA technique. Radial distribution
functions free from the limitations of the earlier procedures could
be generated at will for a variety of potentials, rendering the po-
tential itself a parameter of the calculation. The RA theory could
be examined in a broader sense, more flexibly than might other-

wise have been the case.

C. The Intermolecular Potential: The calculations were performed
for three different intermolecular potentials.

The Lennard-Jones (LJ) 12-6 potential is of the form:

o |

Vi R) = ev(x) = 4ef{x712 -x76}, x = (2-37)

in which a is the value for which V(a) = 0, and ¢ is the depth of

the potential well.
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The Modified Buckingham (MB) potential is of the form

) = G G emle(x)]-x8) , x> 2

T
= e, X$—/= ; x=o 2-38
T T (2-38)

T oax is the value of R for which V(R) as given by the upper relation
has a (spurious) maximum; o is the steepness of the exponential re-
pulsion, r_ is the location of the potential minimum.

The Barker-Bobetic(ll) (BB) potential is of the form

L 2 C

Vo (x) = e{exp[a(l-x)] ] A.(x—l)i -] 26 b,
5 = ! i=0 (s+x°1*®)

(2-39)

where L = 5, x = %;-, ¢ = well depth, o is the steepness of.the
exponzntial repulsion, T the location of the energy minimum, and
the A, C. and § are substance dependent constants. Argon and
nitrogen were analyzed with LJ and MB potentials, argon alone with

the BB potential (nitrogen values being unavailable for the BB po-

tential).



CHAPTER III

THE RICE-ALLNATT EQUATIONS

General Remarks

This discussion makes no presumption of rigor; for a detailed
treatment of the theory, the reader is referred to the papers and sub-
sequent summary discussions of the original authors. What follows is
a treatment of the cardinal points of the Rice-Allnatt development.

In a monatomic dense system, interactions between constituent
particles may be conceptually divided into two broad categories:

"hard core" collisions at close range, associated with the steep,
repulsive portion of the intermolecular potential, and "soft" inter-
actions at longer ranges, associated with the attractive tail of the
intermolecular potential. For the present, we exclude consideration
of hard core encounters between more than two particles. We might
imagine a typical molecule of the fluid moving about in an environ-
ment which is the aggregate of the soft, attractive potentials of its
neighbors and this motion being occasionally punctuated by close
range encounters with particular neighbors. Because of the con-
stantly changing configuration of the neighboring particles, the ag-
gregate soft potential itself exhibits a stochastic character, and

this motion between sharp encounters is of a quasi-Brownian nature.

23
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The assumption that there are two categories of inter-
actions allows us to make an inference regarding the nature of a
particle's motion: the random character of the soft interactions
tend to dissociate one hard core interaction from another. Con-
trast this to the situation encountered in a fluid of hard spheres,
where in principle at least we may expect first a definite know-
ledge of a particle's trajectory (in a two-body encounter) and,
secondly, the ability to extend the trajectory and anticipate sub-
sequent collisions. With the introduction of soft interactions,
however, we find the path between sharp collisions to be some what
of the nature of a random walk (this is the consequence of the
varying soft field) and the knowledge of the details of one collision
imply only a statistical subsequent behavior. Similarly, the know-
ledge of the details of one collision cannot be used to trace back
along the path to the preceeding one. The quasi-Brownian motion
between collisions has masked what otherwise would have been, in the
hard core fluid, the deterministic flow of events. Pursuing this
line of reasoning, Rice-Allnatt assume the existence of a time
interval t such that "...the dynamical events occurring in one
interval are indcpendent of those in the preceding interval.",(lz)
and it is in this fashion that they introduce the concept of irre-

versibility into their equations.

Derivation of the Kinetic Equations

The starting point of the RA derivation, as with many

other developments, is the Liouville Equation:

9
Frad

N
1
: {53.-v.+ ) F..-vpi}]fN(zl,.,.,zN;t)=0

1™t Y Fn=a Y

n S

(3-1)
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Assuming forces are functions of position only, integrations over

1,7 ZN

factor (N!)/(N-n)! casts the above in terms of an n-tuple distribu-

the variables Zn+ coupled with multiplication by the

tion function:

1 T,
{H 3i-V.+ X F..*¥
b=l Y

d

T: HF, (g5 0250)

nes-1g

i=1 Pi

nes-19

ool B eV Fdz ., 1snsN-l
i=1 J J i,n+l 'p; n+l "n+l (3-2)
Observe that this is a hierarchy of equations, linking the n-tuple
reduced distribution function to the (n+l)-tuple reduced distribu-
tion function.

Next, the time interval Tt 1is incorporated by defining

time coarse graining as the time averaging of Fn at each point in

phase space:

Coarse Graining

£ ({zh) =

A=

T
J F({Z};t+s)ds . (3-3)
on

Our equation for the lowest member of the hierarchy, coupling
f1 to f2 in terms of the coarse grained distribution function, be-

comes
213z = L [F . Fodzas (3-4)
it m 1 1 T o 12 %172 "7°277

and at this point we may divide the ?12, the force on molecule one
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by molecule 2, into its hard and soft componants:

i l [ £ - (3-5)
St nlE =g e
where
1 ("fzan
R = - = U Iy *Vp Fdzds (3-6)
and
1 [ 2(s)
95 = - - JOJ 12 'Vpl dezzds . (3-7)

It is required to cast Q, and Qs in a form suited for the

H

solution of the Liouville equation as modified. We happily omit

- the details of this process from the discussion, citing only the
assumptions made and functions introduced along the way. We will
return to these points for additional comments later, in our dis-
cussion of the results of our work.

We assume that the soft force F(s) does not influence
significantly the process or details of a hard core encounter.
This assumption is plausible since the time of a hard core encounter
T, can be expected to be much shorter than t and because the

interaction forces at play during the hard core collision process
are significantly greater than the aggregate soft force. Therefore,

it is possible to treat the Qs and QH expressions separately, and

in fact to disregard F(S) altogether during our manipulation of QH.
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The development of a viable functional form for SZH stems
from several intermediate definitions, assumptions and manipulations.

A phase space transition probability, Kn({Zn}I{Zr'l};S)

is defined as the probability density that a subsystem of n molecules
will undergo a transition of coordinates from {Zr'l} to {Zn} in the
time s. If the distribution function (of any type) for this sub-

system is fn({Zn};t) then

fn({zn};t+s) = J](n({zn}l{ZI'I};s)fn({Zr'l};t)dz'l...dz;,1 (5-8)

The functional form of K, is deduced, and the integration of QH ac-
complished.

Then the pair distribution function is expressed as
i‘:z(zl,zz;t) = fl(Zl;t) fl(ZZ;t) Gz(zl,zz;t) ) (3-9)

where G,is called the pair phase correlation function (a quantity
generally unknown). Next, RA assume it is possible to express
as:
6,(2,,2,5t) = gDz 1)
277172 172 =
(3-10)
i.e., the pair phase correlation function is independent of momenta

and, because of coarse time graining, and the restrictions placed

on gradients, approximately independent of time as well. Introduction
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g(Z)

into the QH expression truncates the hierarchy of equations

relating fn to f A change of variables and a power series expan-

n+l’

sion results in the following expression:

g(z)(; o)
_ %0 12 -++-++‘-++ > >
Q= J[f1(r1’P1*)f1(r1’P§) £,(x;5p)F, (7,P,)]

- -5 >
bdbdsdi;2 + cgéz) (;I,UJJ[fl(rl,pl)k 7. f (r ,pi)

(2)
> > > V180 61;0)
11131)I V (rl’Pz)]plzbdbdsdpz —Zm_—

*P12

-JK[EI(?I,B;)EI(?I,ﬁz) + £ (F,.8))F, @, ,B,)Ip, pdbdedp,  (3-11)
9, = J£(13-+J2(1) . J3(1) (3-12)

Here, K is a unit vector pointing from the center of molecule 1 to

the center of molecule 2, and the incremental volume into which

molecule 2 can be scattered is P;,7 P%i*—‘._ The asterisk denotes

pre-collision value of quantities, and ¢ is the hard core radius

of the molecules.

By applying the phase space transition probability to @ s?

RA obtain
g = - NO-1) J ﬁ(s) T, K ({23 (2 }i5)x
S T 1
o (3-13)
. (N-Z/Z) . . !
£ ({zg_ {23 10)E, (2,2, t){dzy oMz ds
(N-n/n) . ‘s .

where f is called the specific phase space probability

density and is defined by the equation

e o e(N-n/n) .
£, ({2 50) = £ ({2 L0)E ({zy iz bt (3-14)
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Again, as with QH’ a solution for KN is deduced; this time,
* - 3
however, the soft force F(S) is of the nature of a weak interaction,

and the solution to KN is in the form of a power series
Ky = ¥ ).l(KN)(i) (3-15)
i=0

with A an ordering parameter, to subsequently be set to one.

There results a series expression for Qs’ which when truncated

becomes
0 1
9, =l + ol (3-16)
where
© . _ N1 o Lo 2) @) g
By = - S [IOJEIZ £ (rs t)dry _ ds] (3-17)
and T s N
- 175 22
o T i=1
> (N)
°[F§s)[§(N)+(s'—s) §;a—)]f(N)(PN’o;t)drN_lds'ds .
(3-18)
Additional manipulation of the'F(s) terms in le) permits the

identification of the Qﬁl) expression as "...a Fokker-Planck
operator with momentum dependent friction coefficients." RA re-
places this equation with a simpler one, involving a constant
friction coefficient. The final equation obtained, the singlet

equation, is
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3
p(l)f(l) - .Z ng) . CSA(I)?(I) (3-19)
i=1
where
D)1 _ 13, *o z(1)
' HE (3? ﬁ'ﬁl A ASANE: ,
(3-20)
W) _ o . FLaem (1)
AV = (g WE +kTVp1f ) 5
and
* (S) (2)
Fy = J )go (K1z)dﬁlz
(3-22)
oo [, 6P @ R
_N-1
p = _v— ’

and ;s is the soft friction coefficient.

The doublet equation, ie, the integro-differential equation
deduced from the Liouville equation involving the doublet distribu-
tion function ?(2), is found in a similar manner to that used to
obtain the singlet [f(l)] equation.

These equations, the singlet and doublet equation, RA call
the kinctic equations. The task is now to solve them, and RA do so

by techniques similar to that of Enskog and Chapman,(ls) finding:
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[—— 1 Zno ]
$W) gy - f(l){1+ /AT 15 g0 x(2 - W2)W. +7anT
m 4 2.2, 45z 2 1’01
[42 4pmg(°)]
4no3 2
5[—= + —=1] W
pg(") 525 x (W, - % D) |, (3-23)
[40?® s —2 |
omg(o)
+ 2
(P, -m)
=(1) p 1
f = exp {- — s (3-24)
(2wka)3/2 2mkT
9(2:2) = (4_7:;_(_'1_‘_)1/2 02 ,
Pos p-mi 4 _ @ . (3-25)
1 _FE;IEF;, an glo) =g, "(Ry,=0)
A similar but more complicated solution for f(z) is found:
z(2) _ (2 _ 5 2N .
£ = £ 0,20 i=§ 2{Al(2 W)W, V. nT,
1), .o 2 7 (2)2F (3-26)
+ Byt + O UG
where
2
2(2) _ (D b (p;-ma.)
fo =g, (RIRZ) I i i i (3-27)

i=1,2 372 5P U g, }
i 1
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1 21ro
Al = - 15 (ZkT) [Dg(o) 455 ] [ 49(2’215
4 m C -
2:2), s @.2), s ]
(82 4pmg(o)] w0 sl ()
1 4103
B _[_8(0) 15 ] 1+ 49(2’2) (3-29)
(2,2), (2,2),
(82 F>mg(0)] 40 pmg(c)
c, = - /AN o (3-30)
(3-31)
b. = W W - l We 1
=1 i1 3 =
(2) F

= :
and Gi is the net mean force on molecule i when another molecule

is located at -R)j

(2)2F _%(2) =, (2)
Ei =F;%) - Fr - KT, 0ng (ﬁlﬁz)

(3-32)

Having obtained these expressions for singlet and doublet
equations, RA then proceed to utilize them in the molecular expres-

sions for transport of momentum and energy.

The Transport Equations

Phenomenologically we may define the transport coefficients

in terms of the respective fluxes of number, momentum and energy:
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if j,,is the flux of particles of the ith species in the z direction

and nj the number density of this species, then the coefficient of
diffusion, D, is defined by the equation

._ani
Jiz * "V 3

(3-33)
Similarly, if Pyz is the flux of the y-component of momentum in the
z-direction, vy the y-component of velocity, and n the coefficient

of viscosity, then

dv
P = Y

-n —= -34
yz N3z (3-34)

Finally, with q, the energy flux and T the temperature, the thermal
conductivity, y , is defined by
9, =~ X %% . (3-35)

In this context we see the transport coefficients in their
gross, macroscopic nature as nothing more than proportionality con-
stants between flux and gradient. This representation forms the
basis for the direct experimental measurements of these quantities.

These definitions, however, provide no insight into the
functional nature of the coefficients. In order to gain this under-
standing, a more precise set of macroscopic equations must be formu-
lated and linked to an analogous set constructed from a microscopic

point of view. The transport coefficients so formulated in terms of
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the distribution function, may be numerically evaluated and compared
to the corresponding experimentally determined quantities. Hope-
fully, a critical test of the theory upon which the microscopic
equations are based may then be made.

It is interesting to note at this point that, originally,
the more precise macroscopic equations concerning viscosity did
not agree with experiment and that modifications in the theory in-
volving the introduction of a second viscosity coefficient were re-
quired in order to account for certain anamolies observed in the

(14) Ihis additional

coefficients of absorption of sound in fluids.
coefficient (called the second visocity coefficient, u') leads to
the further definition of a bulk viscosity coefficient, K, defined

as

(=23 (3-36)
The bulk viscosity term relates to the viscous forces at play in
the pure compression of a fluid. Several mechanisms have been pro-
posed to explain the origin of K, all relating lag between ap-
plication of a compressive stress and re-establishment of equilibrium.

The one of Hertzfeld and F.O. Ricecls)

relates to the exchange of
energy between translational motion and internal degrees of freedom;
that of HalL(16) the rearrangement of molecules.

Although the calculation of the bulk viscosity is not a
direct object of this present work, a discussion of K is included
in what follows in the interest of completeness. Babb has extended

this present work to bulk viscosity, basing the calculations on the

architecture of the shear viscosity algorithm.
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A. The Macroscopic Equations. If P is the mass density of a
fluid and U is the fluid velocity, then the equation of continuity

of the fluid is

3

m ->.
at v (pmu) =0

(3-37)
If ¥ is the external force density and g is the stress tensor, we

may obtain the fluid's equation of motion as

3 - >,
T (Dmu) + Ve(ppuu) = £+ Veg (3-38)
By additionally defining e as the enternal energy per unit mass of

the fluid, and § as the energy conduction current, an energy trans-

port equation may be written as
K.? + Ve (go{;) - Voa =

Ty {[e+ —zlom} +9- {[e+ 7]"m} . (3-39)
It is through the Newtonian law defining the stress tensor that

the coefficient of shear and bulk (relaxation) viscosity are in-
troduced:

g = (+[Z neo] VWL + 2me
(3-40)

where IR g ~ ot
£° 'E(VU"'Vu) > (Vu)ij VUji
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p is the equilibrium pressure and ¢ is the coefficient of bulk

viscosity. The equation of motion becomes

-+
oy o= - W +G e TRy enva +
(3-41)

Using the definition of energy transport in phenomenological

terms as

(3-42)

the continuity equation, and some approximations,we may write the

energy equation as

3T _ xV2T
5;'= %—;‘ ’ (3-43)
v m

where CV is the specific heat at constant volume of the fluid.
Another form of the energy equation, in terms of the internal

energy density E = ppe » is

3E @) = o - 743

at (3-44)

These are the macroscopic equations used by RA in the formula-

tion of expressions for the transport coefficients.
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B. The Microscopic Equations. To obtain the expressions for the
transport coefficients in terms of the statistical mechanical vari-
ables, RA use. "...the procedure of Irving and Kirkwood; this is
quite general and consists simply in defining molecular equivalents
of, for instance, mass, momentum, and energy densities, and
establishing their equations of motion by suitable contractions of
the Liouville equation...".

Defining <o;f V> = Ia(FN)f(N)(FN;t)dFN , (3-45)

RA first use the Liouville Equation in the form

(N)
of [H,f(N)]
at (3-46)
to obtain
2 gy T + Fov asf®, 3-47
3t < = kgl 5 pk-Vka K pka, . (3-47)

Applying this expression to the conservation of mass, by defining

N > >
a = ) mé(R.-r) (3-48)
m . j
j=1
they show that
’n (F5t) = - Ve[p_(T;t)u(T;t
it (5t = - Tl mnuEmnl, (3-49)

which is the continuity equation. If instead there is defined



N
@, = Jp.6(R.-D) (3-50)
3520 )
J
.. . . L) .
and this is applied to the expression for pry <g;fV> = -0 it

is found that the equation of motion is:
NP, B
9 > 3> k = .k > > N
3t Ogl) + 7o) = T 0ol | meE DG DsE 760>

N
+% 1] <(vKujk)i€jks(RJ.-r):f(N)> .

j#k=1 (3-51)

Comparison of this with the macroscopic equation shows that

the stress tensor must be

ol R (3-52)
where
N P B
_ k > .k > > > N
o, = - ] m<(— -U)(= -8R, -1); £97> |
o P ‘ (3-53)
N R..R.
o, = 51) <IkIky @B M, (3-54)
v j#k=1 ik J

at least to the curl of an arbitrary function of T. The above
proves to be the correct form for g, and the two expressions may

be reduced to:
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[

g = - mJ(Fl ) (—“—} -'ﬁ)f(l)dﬁl (3-55)

and

12°12

_a (2) .2 > >
g, =7 JOIK v..uf dezdpldpzds (3-56)

Since the stress tensor is already known as

g=- (P*[% m+¢]V-u)L + 2ng

the evaluation of the integral expressions for gk and Z¥ s
using the singlet and doublet distribution functions already ob-
tained will, by comparison, permit n and ¢ to be expressed
in terms of the RA theory.

The evaluation of energy transport in microscopic terms
is done in two parts, first defining the internal kinetic energy
density

E = <0.k;f(N)> ’

k (3-57)

where

Q. =

k

o~ 2Z

m _l _+ 2 _+
5 (-0 a(iij ) (3-58)

j=1

and then the potential energy density, Ev’ using
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=% ZZ u G(K ) . (3-59)
j#k=1

There is obtained

N P B R
gE - @E) = g:7-ve [<k§ %(—m‘i - -u)a(ﬁk-r);fm)>
+ k< Z (u . Ry w ) (X De@® 1M (3-60)
ke k)"‘ Rgj ki” 'm K™’

which may be compared with

-g—E + Ve (EQ) = g:vﬁ v

By separating the conduction current (or heat flux) q into kinetic

and potential portions,

d-44, o
P P
> m k »>2 Kk 2. ¢(N)
g, = <kzl 3= W DR E0> (3-62)
N R R
22377 @ ,l_u 3 ESPTALIN 3-63
v jngl k= g s T

C. The Coefficients of Viscosity Equations.

Rice and Allnatt assume a potential which is truncated at
v(r) = 0; i.e., at r = o, with v(r) = = at r<o. This assumption
gives a well-defined radius. Further, the departure from equili-

brium of g(r) is expanded in a series of spherical harmonics,
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Ag = woP°+ w2P2+..., and then the derivation is carried through as
outlined below. The original papers must be consulted for the in-
tricate details.
Rice and Allnatt represent the coefficients of viscosity

as
6 = ek+ev(°) + eV(R12>0); 8 =n0 , (3-64)

where n is the coefficient of shear viscosity and ¢ is the coef-
ficient of bulk viscosity.
ek, the kinetic term, expresses the effect of hard-core

interactions. Substituting the expression for the singlet distri-

£

bution into

[

oy = -mj(;l B -hiBeg, (3-65)

by performing the necessary manipulations and integration, and by
then comparing the result to the Newtonian expression for the

stress tensor, they obtain

1+ 47po3g(a)
SKT 15 (3-66)

n -
k  8g(0) 5z ’
9(2’2)+ s

4 ng (o)
where 0 is the hard-core radius, p is the density, Cs is the soft

- . 2,2 . s e .
drag or friction coefficient, andﬂ( 2 is a collision integral term:

q(2:2) _ {5%51 }%oz
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As is to be expected, ¢y = 0
ev results from the attractive short-range potential inter-
action among molecules of the fluid. The identification of n, and

o, begins with
(12) > >
g = J Jﬁmvlzuf R, 8P, 8P ds (3-67)

and the insertion of the doublet expression previously determined.
The subsequent reduction of the expression which results is a much

and divides along mathematical

(3)

longer process than that with g

n @

lines into three terms, o, "+ 0, , and 9,

(1) _ _SKT pro {l npo g(o)}
o T 8g(o) 15

3

(3-68)
where
p {o(32), s -1, 49(%:%)
Somg(o) 5¢ ’
(2,2) s
O 49 TC) (3-69)
o, =0,
(2) _ 8mp205 g(o)kT (2) _5 (2 (3-70), (3-71)
My g5 N TIN
G) . 3. 2me o aye (o) (3-72)
4y, (c)-35y_ (o)
where
wo = a(x)[Q-3b(x)] + 3c(x) +d(x) + 3f(x) , (3-74)
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¥ (x) = d(x) - 3[a(x)b(x)-c(x)] + 6J [a(x)-a(s)]

X
"8(s)y,(s)ds, T (3-75)
| a(x) = J ds ) b(x) = J s2[g(s)-1]ds
x 5%(s) x
= ) 2 - = - _l__ - s
c(x) Jx s [ggs) 1]la(s)ds, d(x) Jx S[g(s) 1]ds
200 = | tatsr-am) % s (3-76)
x ,
Q= 03J1(352 9%%%% -s3 ggégl)ds . (3-77)

GV(R >r) results from long-range potential interactions among

molecules of the fluid: its functional form, like that of 8y, stems

from g,
g p2 e ;
- -2 [}
n, (R>0) = —5= Jov (s)g, (s)¥,(s)s"ds
(3-78)
and
Mg p2 (o ,
- !
¢V(R>o) = oKT ng (s)gwos ds . (3-79)

D. The Coefficient of Thermal Conductivity Equation.

A similar procedure to that used to develop the coefficients

of viscosity beginning with

> P > P > -

1 (3-80)
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and
a = - i L 603 b ..l > (3—81)
G k(e d ) kG )]
(k+p,,<0) -
12 f(z)dﬁldﬁzbdbde
[ expressions stemming from analysis of Equations (3-62) and (3-63)]

produces the following results for the coefficient of thermal con-

ductivity:
- 1) (2) (3)
X = Xk XXX, XV(R>0) (3-82)
1+ 2wp03ggc!
. = 75k2T 5
k 32mg(o) 9(2’2)+ 45‘;5 (3-83)

l6pmg (o)

I+ 2npc3g(o)
5

- 1) 75k2T  2mpo3

X, | = ( ) x
v 32mg (o) 5 (2,2) 45¢

29 +__S_

16pmg (o)
o(2,2)
x$] + ,
2,2y 4%
8 Toome ()
Pme (3-84)

(2) _ 75k®Tg(0)  2mpo3.2 32 -3/2 (3-85)
T (2,2) )G

),

X =0, (3-86)
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(2)
R o) = &I [T d [3““g (2 4r
Y129 = T ( 124w ), 37 Ipf% R12%R12
(2)

2
u )[ aT JR7,4Ry5

+'rrkT fw

Ls 3 12
c

(3-87)

In the integral

J (Ru'-w)gR® o (78] ar
g

the partial integration yielding

[—Eﬂg] gR3(Ru'-u)| J _&qu {R3(Ru'-u)%§

+ g(R%u"+3R3u'-3R%u}dR

permits one differentiation to be avoided. The LJ potential calcu-
lation was made both with and without the partial integration to
cross check the programming and to assess the accuracy of the results.
The differences were on the order of one per cent. This gives a
measure of the numerical precision which can be attached to these
procedures.

Lennard Jones data appearing later was obtained using the
partial integration form of Eq. (3-87) while all others, the multi-

ple derivative form.
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E. The Soft-Drag Coefficient Equationms.

The soft-drag coefficient T, appears as a factor of the

Rice-Allnatt transport coefficients. Two representations of this

quantity are

¥

CZG = {5¥§9J v2 v(s)g(s)s2ds}
0

given by Rice and Grey, and

2
Cg = §2%— /mg ejw[g(s)-l][llflz(s)-5f6(s)]ds
0

where
n/2 2l-n
_ X 1
fn(x) =2 ] 21-1 ~ n-1 “n
1=1 X

x+1

x-1

given by Helfand.(17)

(3-88)

(3-89)

(3-90)

This latter expression for T is the result of the explicit

incorporation of a modified LJ 12-6 potential (Eq. 2-7) in a simpli-

fied linear approximation for Ly The soft-drag coefficient repre-

sents the molecular analogue to the Stokes drag coefficient for a

sphere falling in a viscous fluid.
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Rice and Grey also propose an alternate formulation of g
in which a the molecular fluid is replaced by an acoustic (inhomo-
geneous) continuum with a distributed force field.(lg) This was em-
ployed as a third attempt to obtain a viable Zg late in this work,
by Babb, and as a comparison to other formulations. Their result,

referred to here (somewhat loosely) as "the speed of sound zg'", is

2 (3-91)

4m m @ (S)
- 2 2
iy [jovlzu (R )8, (Ry5IRT9R, 5]



CHAPTER IV

ALGORITHMS AND PROGRAMMING CONSIDERATIONS

General Comments

The design of the algorithms by which the various quantities
were calculated was influenced by a number of sometimes competing
considerations. The programs which finally emerged represented acom-
promise among such factors as accuracy, speed, and the capabilities
of the hardware and software available.

Central to theme of this work is the accuracy of the radial
distribution function generated and the transport coefficients which
follow. These tabular values must be as free from errors originating
from computational technique or machine round off as possible. Pro-
pagation of such unavoidable errors as exist must be minimized. In
almost direct opposition to accuracy is the need for speed in accom-
plishment of the calculation. The generation of one tabular entry
requires tens of thousands of individual arithmetic operations; the
tables are themselves voluminous. And, finally, the capabilities of
the data processing facilities available must be taken into account.
A program which can generate millions of accurate entries efficiently
is useless on a machine whose storage permits retention of only
thousands of entries for future use.

The first compromise was on speed in favor of accuracy; all
calculations were made to 16 digits. This guaranteed a precision of

48
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14 digits in all individual arithmetic operations and compiler-
supplied subprograms. But the consequence of this decision was an
increase of the computational time. It then became necessary to
seek out every possible technique to reduce the time devoted to
computation. Techniques employed are given below in the descrip-
tion of specific algorithms.

From the theoretical outline of the preceeding chapters, it
should be clear that the pivotal effort of this work centers on the
efficient generation of the radial distribution function tables.
Having defined the standard of accuracy and fixed upon the basic
equations to be utilized, one must then proceed with almost maniacal
attention to detail to optimizé the algorithm, trimming from it every
wasted, repetitious, or inefficient operation or manipulation. The
FORTRAN IV programming language used was screened line by line to
avoid unnecessarily slow commands. Program architecture avoided sub-
routines to save time devoted to calls. Constants were defined in
DATA statements to create these values during compiling rather than
run time. It was a matter of bearing constantly in mind that the
unnecessary expenditure of 10 microseconds in the heart of the inte-
gration routine could cost 10 minutes in total run time, and only a
few such wasted commands could render the entire effort unfeasible.

First, an IBM 360 mod 50 and, latey an IBM 370 mod 158 was
used for these calculations. g-equation run times (through 20 den-
sities, at given substance, intermolecular potential, and temperature)
on the mod 50 averaged 15 hours and were generally accomplished in

block times of between five and eight hours. Run times on the mod 158

averaged three hours.
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Having once created the radial distribution function data
files, the remainder of the calculation is straightforward and much
faster.
For the reader unfamiliar with numerical techniques, a gener-
al discussion of the major points of the programming used here is

provided in an appendix.

The go-equation Algorithm

The hard sphere radial distribution function algorithm is of
interest pedagogically; many typical programming considerations and
techniques applicable throughout this work are used in its construc-
tion.

The KMA equation for g,(x) was modified by a change in vari-

ables and one integration to:
A A 1
=24+ L 2 - - -
zn{go(x)} Tt Ix J_I(S 1) (x s)go(x s)ds (4-1)

and this formed the basis for the computational algorithm.
Tables of singly subscripted variables equivalent to the
factors (S2-1) and (x-s) were initially generated, along with the

initial guess of go(x—s) {also a singly subscripted variable):
8o(8) =0, s<I; g (s) =1, s21.

Formulation of the integrand at the arguments became a manipula-
tion in integer arithmetic of indices accompanied by two floating
point multiplications; repetitive calculations were thus avoided.

It was required to have values of g, (s) for arguments beyond the
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range for which the solution is desired. In the limit of large
argument or low density, go(s) = 1, so the values of go(s) beyond

the maximum calculational argument, sp, were set and fixed:
gol(s) = 1, Sp>S -

In practice it was found that sp = 10 was an effective

upper limit, for

]go(sm)-l[ =1x107/

even for high densities.

The hard core distribution function, by virtue of its po-
tential, possesses a discontinuity at x-s = 1; in the calculation,
the evaluation of the integral always commenced with a lower limit
s] such that x-s3 = 1. Otherwise, by the nature of the numerical
scheme, an integration across this value of x-s; = 1 would be an
integration over a smoothed continuous function and an error would
be introduced.

A combination Simpson's and Trapezoidal rule was used.
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It proved wasteful of computational time to initially e\.lalu-
ate go(x) at all values of the argument. The initial argument
values and mesh size of integration h1 first chosen were much larger
than that finally desired. go(x) was evaluated at this mesh over
the entire range and an approximate table of values was created.
Next, the mesh size was halved, h2 = h1/2, and the évaluation re-
peated. The approximate solution go(x) at hl, together with inter-
mediate values determined by Lagrangian interpolation, constituted
the initial guess at this new mesh size. The process of halving
continued until the desired mesh size was reached.

The algorithm provided for an arbitrarily large range of
arguments over which go(x) was evaluated. In practice, an upper
limit X, = 10 was used.

An additional cyclic feature of the algorithm provided for
"stepping up" through the densities. Following the completion of
the calculation at some A, X was incremented and the calculation
reinitiated using the final set of go(x) obtained for the old dens-
ity as the initial guess at the new density. This process provided
"reasonable" first guesses to go(x) at each density except the
lowest, and far less time was spent in calculation.

Here, as in later g(x) calculations, it was found that as
the density increased and the variation in go(x) became more pro-
nounced, the number of iterations required to produce a specified

accuracy increased.
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The g-equation Algorithm

The algorithm for the evaluation of the g(x)-equation is

based on the expression:

)\ {+-]
n{g(x)} = -Bey(x) + ﬁj K(s) [(x-s)g(x-s)+(x+s)g(x+s)~2s]ds,
(o)

K(t)

sejl (£ &Yas
t

and Y is the reduced form of the intermolecular potential.

As in the programming for go(x), tables of singly sub-
scripted variables equivalent to the constituent factors of the
integrand were initially constructed to minimize time devoted to
repetitious calculations. These tables, together with the tabular
g(s) values to be used in the integrand, permitted the integrands
to be formed and integrals to be evaluated by relatively simple
and speedy fixed point indices manipulations and a minimum number
of floating point additions and multiplications.

Although the evaluation procedure was essentially the same
as with go(x), certain troublesome complications appeared.

In what follows, where it becomes necessary to distinguish
among g values, those used to construct the integrands will be de-
signated gIN and those obtained by evaluation of the integrals will
be designated goUT

An initial concern in assessing the possibilities for the
success of the algorithm centered on the multiple appearance of

g(x) explicitly and implicitly [through K(t)] in the integral. It
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was feared that in initial iterations the error in g(x) would be
of sufficient compound magnitude to produce a divergent series of
gOUT values. Indeed, some difficulties were encountered; conver-
gence was not so quickly obtained as had been the case with go(x),
and the tendency to diverge at all but the lowest densities was
very pronounced.
Again, solutions through the range of densities Ao were

stepped to provide good initial guesses of gIN. But at higher

OUT-gIN tended to be too large, and the matter

densities, the 4Ag =g
of securing convergent solutions at these large values of 1, became
a delicately balanced proposition. Consequently, a mixing parameter
a was introduced to reduce the size of Ag and proportion the
value of gIN at the n+l1 iteration between the gIN and gOUT values

of the nth iteration.

IN ouT IN 4-2
™), = e D) a-aEe™_ (4-2)

Trial and error led to setting
o= (Am-Ao)/Am (4-3)

where A is some maximum value of demnsity slightly above the highest
density to be calculated, and Ao the density at which the current
calculation is to be made. Although the effect of the use of a was
to increase the number of iterations required (and thus lengthen run
times) it permitted the extension of calculations to much higher

densities than was otherwise possible.
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But particularly at the higher densities came the marked
increase in the number of iterations required and a drastic
lengthening of run times. While convergence of the g(x) values
might be obtained for as few as twenty iterations at low densities,
as many as 10,000 or more might be required for high densities.
Even with the speed inherent to modern data processing equipment,
the situation was discouraging.

Fortunately, Ag exhibited a systematic behavior which en-
abled the number of iterations to be significantly reduced. It was
observed that after an initially erratic fluctuation in the early
iterative steps, the trend of differences between successive gIN

values could be represented to good approximation as
2n{Ag} = mn+b , (4-4)

n being the number of iterations, m and b, constants, and

bg = gifl(xo) - giN(xo) , where Xy is an arbitrary but particular

argument. (See Fig. 3 ) An approximate cumulative correction,

Ct: could be determined and applied, thus bypassing many iterations.
If i, j, k are three specific numbers of iteratioms, i j k,

and g;s 8; and 8y the respective g values calculated at these

J
stages then

AZ.. (k-
m = on (—-}-l)ll(k J)} (4-5)



Figure 3. Correction-per-iteration of g as a function of

iteration. 5g(1.8) changes sign.
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and
k .
b = (Agij) ] 1/(j-k) (4-6)
J' b
(8g;4) J
where
Agij =8 - gj

The cumulative correction becomes

Cp = be_km(1+e—m+e-2m+---) _ be ] (4-7)
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The rate of convergence of the g's was not found to be suf-
ficiently uniform over the range of arguments to permit the appli-
cation of a single blanket, averaged correction. A Cy was deter-
mined for the g corresponding to each argument.

In practice, the application of the full C; value proved too
traumatic to the delicately balanced family of g's, for it resulted
in a wild, erratic fluctuation of the g values in succeeding itera-
tions and ultimately, little progress toward a final result. How-
ever, the application of Cy/2 to those same g's resulted in a far
less pronounced fluctuation and the reduction of the Ag's by as much
as one order of magnitude (equivalent to 200 or more iterations).
The correction could be applied repeatedly as deemed necessary.

The criterion determining a final solution set of g values

was that

gOUT(xo) g™ (x,)

g (x,)

< g (4-8)

over the entire range of arguments x,, where

e=h (4-9)

h being the mesh size. It can be shown that the error E associated

with a Simpson's rule integration

X
2n

J f(x)dx

Xo

is

s5¢(4) 19
g - M)y e, Y (4-10)
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f(4)(£) was not analytically available by virtue of the unknown g;
however, from the smoothly varying nature of the integrand, and its
lack of precipitous change over the range of integration, it could

safely be assumed that
£y o

and was in fact probably much less. Linking the error criterion to
this power of the mesh scaled € to the accuracy possible at

that h and placed its value well within the order of magnitude range
of the maximum possible accuracy. Convergence criterion scans were
conducted only periodically, at intervals based on experience.

The evaluation of K(t) was itself a time consuming calculation
preliminary to that of g; in order to take advantage of any smoothing
effect which this integration might possibly have on g errors as they
influenced K(t) values, the option to hold K(t) as a fixed set
through a number of iterations in which the g's appearing explicitly
in the g-equation integral were improved was included in the program.
Although some limited use was made of this feature, experience showed
that in general the calculation proceeded most swiftly to completion
when K(t) was also calculated at each interation.

It was found that the largest absolute change in Ag occurred
at smaller argument values; the g's at larger arguments could be left
unadjusted over several interations. Although this mixed the sets of
g's, the saving in computational time outweighed any diminuition of

accuracy and hastcned convergence. Any scan of gIN(x) and gOUT

(x)

along ascending argument values (in the process of checking for
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convergence) halted at the first argument value, say xg, at which
the convergence test failed and the maximum value x; to which g(x)
was recalculated on succeeding iterations was set somewhat larger
than Xg- At intervals, xp was reset to insure that g(x) was calcu-

lated throughout the range of the arguments.

At the successful completion of a calculation at some
particular density, the solution set was read to (stored on) a
magnetic disk, and became a portion of the reference library to be
used in later calculations. Disk was chosen as the working library
receptacle because of its capability for rapid access to any segment

of the volume. Back-up magnetic tapes were also maintained.

The Equation of State Algorithm

The first use of the radial distribution functions was in

the equation of state:

NT o ! 3K

v 2N J r3v (r)g(r)dr

(o]

Being a simple, straightforward calculation, it acted as a convenient
introductory exercise in the manipulation of data files as well as a
routine cross check against earlier published results.

The above‘integral and all similar integrals of the transport
coefficient calculations separate at the upper limit of argument to
which g(x) is known (in this work, x, = 10); the range from 0 to xp
being evaluated numerically, and the range from xp to infinity, by
virtue of the assumption that in this region g = 1, being evaluated

analytically.
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The Soft-Drag Coefficient

The soft drag coefficient as given by Rice:

i+~

RG 4mm

tg = {——EE'J \72v(s)g(s)52ds}4‘r
o

formed the basis for one of the computational algorithms for this

quantity. It possessed the obvious advantage of the use of any of

a number of intermolecular potentials; the Helfand formulation,

0

2
cH - 8?; GTmB)%ej [g(s)-l][11f12(s)-5f6(5)]d5

S

0
where
n/2 2%-n
X 1-n X+1
fn(x) =27 | 22_1} - x fn ;TTI

directly incorporated the modified LJ 12-6 potential, (Eq. 2-7).

To say the least, the use of cg required an extensive pro-
gramming effort. This was seen at the outset, and in light of the
limited applicability of ;:, a forceful, if only pragmatic, argu-
ment was at hand to abandon this formulation altogether. But such
arguments carry their appropriate weight only in hind sight.

Helfand's use of the modified LJ 12-6 made the resulting
radial distribution function g(1) = 1 and permitted him to avoid
the problem of the singularity of the logarithmic term at x =1. The
aim here, however, was to relax as many such restrictions as possible.
The unmodified LJ potential used here caused g to take on a different

value. The problem of the singularity could not be avoided.
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After verifying that the ratio test, Raabe$ test and Gauss'
test for convergence all failed to give any hope that an analytic
path around the problem might exist, it was decided to formulate an
approximation which would pragmatically, if not esthetically, skirt
the problem.

The singularity at x, = 1 of the logarithmic term is essent-
ially a numerical problem brought on by the absence of an analytical
expression for g. Since it can easily be shown that Jxmznlx-1|dx
exists, it was decided to approximate the factor g(x)-1 of the inte-
grand as

g, (x)-1 = Ax+B

for a number of mesh sizes on either side of x=1. The problem

producing portion of the Helfand integral,

J[g(x)-l]lnlx-lldx ,

may then be handled as follows: add and subtract J[gl(x)-l]znlx-1|dx

from the above expression, obtaining
f{[g(x)-ll-[gl(x)-ll}znlx-lldx + f[gl(x)-l]znlx-lldx
The first of these two integrals,
J{g(X)-gl(X)Ilnlx-lldx ;

vanishes at the singularity for in the approximation gl(x) = Ax+B+],

A and B are determined such that gl(l) = g(1) and g1(1+h) = g(1+h),
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and the evaluation in this region (an interval of three mesh sizes
on either side of x =1) proceeds analytically. The second integra-
tion is numerical. - The linear approximation also assured that the
numerical contribution to this divided integral was small compared
to that contribution from the analytic portion. This enhanced the
precision of the result in this region.
The evaluation of ;g then naturally separated into four

segments:
i) 0<x<d, where d = 0.65 : In this region, experience showed g(x)=0

and the integral portion of the Helfand formulation reduces to

the expression.

3 d22-2

d @
Jo{llflz(X)-Sfé(ﬂ}dx =24 dazzl (22+1) (22+5) (20+11)

The infinite series could be straightforwardly evaluated to
a specified accuracy. Difference equations were used in evaluating

the polynomial appearing here and in later summations.

ii) d<x<1-3h: In this range, a direct numerical integration was
performed.

iii) 1-3h<x<1+3h: In this range, the singularity at x=1 is dealt
with as described above.

iv) 1+3h<x<xp: where xp is the numerical upper limit of integration.
In this region, the form of the integral stands unaltered, and a
Simpson’s rule evaluation is performed. Above x; it is assumed

g =1, so that the integrand vanishes.
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But the application of the Helfand formulation encounters an
immediate problem: if the portions of g for x<l are included in the
evaluation of ;g, the value of this function becomes negative, and
this is physically absurd. A cursory examination of the original
Helfand derivation indicates that the truncation of the potential is
crucial in the development which results in the final form of ;g,
and no obvious extension of the Helfand result is apparent wherein
this constraint is relaxed,

Pragmatically, it was decided to neglect all the contribution
of g for values of x<1 and to rely on special functions which are the
solution of the truncated potential for a critical test of this
Helfand formulation.

But it remains a fact that the application of the Helfand for-
mulation in conjunction with radial distribution functions calcu-
lated with the full potential to the evaluation of the transport coef-
ficients is flawed to an extent that such a procedure is not theore-
tically defensible; the Helfand formulation was used sparingly, and
then only from curiosity rather than need. This "flaw'" is in the same
spirit as the use of RA theory with g's from a full potential. Iron-

ically, it still gave better results than other formulations. See

Chapter V.
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The wz Equation Algorithm

The wz equation (Eq. 3-75) is an integral equation
solved by the same general techniques as those applied in connection
with the solution of any integral equation, but with the added

boundary condition that

lim ¢, (x) = i > P = const.
2 3
00 X

. (4-12)

The proper solution is obtained by selecting two values of
P, solving Eq. 3-75 for those two values by demanding wz(x) obey
Eq. (3-75) in the region where g(x) = 1; 1i.e., for X The

results are compared with a known condition on wz, namely
” 1
[ ey = 1 g1+ 2Q (413)
1

and extrapolating P to the proper value, so that this equation is

satisfied. With P so determined, the correct vy data is determined.
Although wz is explicitly a function of g, and therefore

implicitly a function of A, T, and the intermolecular potential,

the algorithm for its calculation was incorporated into the archi-

tecture for the calculation of the transport coefficients. This
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was done in almost flagrent disregard for the principle of conser-
vation of machine time; certainly the calculation of a particular
table of wz values could have been calculated once, stored as were
the radial distribution functions, and called and used as needed in
subsequent calculations. However, the transport calculations were
themselves relatively brief, and the ¥y calculation converged
rapidly; certain job control considerations--limitations on number
of perepheral job control commands--made advisable the inclusion

of this calculation in the larger algorithms.

The Viscosity and Thermal Conductivity Calculation

Inspection of Egs. 3-66, 3-68 through 3-77, 3-83 through 3-87
makes apparent that the calculation of the coefficients of viscosity
and thermal conductivity are so straightforward after the effort de-
voted to g as to be almost anticlimatical. Apart from the preliminary
determination of wz—through the numerical solution of a integral
equation--the operations are routine and quick.

Their directness, however, does not mean they do not possess
their own unique difficulties.

First of all, beyond a general qualitative idea regarding
the behavior of these calculated coefficients, one has little guid-
ance as to what to expect. If the theory is correct, the agreement
with experiment should be good; however, earlier calculations give
only approximate agreement and no indication of whether or not a
more precise data base (the g-values) will produce better or poorer
agreement. In short, the entire train of calculations is sufficiently

complex, and the results enough in question as to permit a programming
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error to pass completely gnrecognized. The nature of the calculation
does not lend itself to any automatic confirmation.

Babb has created a set of hypothetical, analytical g functions
which, when inserted in the equation for the viscosities and thermal
conductivities, permitted an analytic solution of the equations. A
numerical solution of the equations was made with the hypothetical
g-function and the results of both analytic and numerical techniques
agree within better than 1.per cent. This is reassuring and builds
confidence in the validity of the algorithms (Appendix III).

The thermal conductivity and bulk viscosity calculations pre-
sented a problem not encountered in earlier programs in that deriva-
tives of the radial distribution function occur in integrands of
xv(R>c) and ¢V(R>c). The lack of knowledge of the functional form of
g meant that these derivatives must ultimately be determined numeri-
cally.

In principle, this presented no difficulty since the aggregate
tables form a three-dimensional matrix g(x,T,A). Differentiation over
length, temperature and density could be performed a number of ways;
here, an IBM supplied scientific subroutine (DDGT3) calculating the
derivative of a Lagrangian interpolation polynomial of second degree
was used.

Nevertheless, there were awkward aspects to this calculation.
(ag/aT)p appears in the thermal conductivity term xv(R>c); the g-
matrix was not formulated so as to permit a direct calculation of

this quantity. But
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38y - 28y _ 3% -
(aT)p (aT)p ap(ap)T (4-14)
where
__1 o (4-15)
== 5 G,

and the difficulty shifts from the evaluation of (ag/aT)p to that
of (ap/BT)P. a could be evaluated from experimental data or from a

gas law. For example, we might write

p = P/(KkT)
and obtain

3 2 2
GPp = - P/ GT)

although at the high densities we consider here, this would be a
most inappropriate choice.

The equation of state expression (1-6) may be written in
terms of density and it might first appear that this equation could
be used to form (ap/aT)p; howeﬁer, the g appearing in the integrand

is itself a function of T and we are back where we started.

The method finally settled upon, after considerable experimenta-
tion with a variety of techniques was that of employing an equation
of state particularly suited to high densities. The Becker equation

of state(ZO)
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PV = RT[1+k'pexp(k'p)]-ap + xp® (4-16)

was derived to fit Amagat's high pressure data. Here, k', a and
x are disposable constants.

Sets of three calculated pressures were used to evaluate
the values of k, a, and x at the temperatures of this present work's
calculation. The resulting equations were interpolated to find the
density corresponding to a given pressure. Numerical techniques
were then used to obtain the derivatives at constant pressure from
the densities so obtained.

The results of this process were in some respects flawed.
It would have been possible, perhaps, to obtain the values of the
quantities needed by reference to the variety of experimental results
available in the literature. But the shifting ranges of densities
and temperatures adopted, the variety of experimental techniques
used, and the mere presence of experimental error occurring in this
data would have introduced a haphazard variation undesirable in this
present effort. The mixing of the experimental results of various
authors would tend to obscure the effort at hand: that of attempting
to evaluate various theoretical expressions on their own merit.

Since the Becker equation is not an exact fit for the data,
the constants vary slowly over the range for which they were evaluated.
However, the functional form is close and the derivatives were evalu-

ated at the central of the three points selected whereever possible.
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A Newton-Raphson iterative technique involving the derivatives
was used to evaluate the densities and in some cases, because of the
small value of these derivatives, convergence was siow, Where this
problem appeared, the technique was modified to increase the rate of
convergence.

Other troublesome problems were more specific. Certain iso-
therms of Nitrogen, particularly at 323°K and 328°K, misbehaved when
used in the derivative calculations. The problem appears to relate
to the proximity of these two curves and the inevitable errors of
numerical differentiation compound as a result--a nightmare of the
programmer's existence. The solution, however, was relatively simple:
the two offending isotherms were not used jointly in the same calcu-
lations. Thus the derivatives for 308°K incorporate the 273°K, 308°K,
and 373°K isotherms rather than 273°K, 308°K and 328°K. The solution
is not elegant but suffices although the first differences at higher
densities are not as smooth as one would prefer. It is not clear why

the problem does not appear elsewhere.



CHAPTER V
NUMERICAL RESULTS AND DISCUSSION

The Radial Distribution Function

The tables of the radial distribution function are quite
voluminous, amounting to over 220,000 individual 16-digit entries
arranged in sets of 401 values spanning a number of densities,
temperatures, substances and intermolecular potentials as listed
in Table 1. Obviously they cannot be individually listed, nor
would such a listing be of any particular benefit to the reader. A
reference data set can be obtained by coordinating with the High
Pressure Laboratory, Department of Physics and Astronomy, University
of Oklahoma, Norman, Oklahoma 73071 Here, we have contented our-

selves with graphical representations of the typical data sets,

Figures 4 through 7.

71
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Table 1, Pre€is of g Data

°K

POTENTIAL LJ MB BB
180 1,2,...,11 Argon Densities
273 0.5,1,...,13 0.5,1,...,16.5 0.5,1,...,9
308 05,1,...,13.5 0.5,1,...,6.5 0.5,1,...,9
323 0.5,1,...,7.0 0.5,1,...,8
328 0.5,1,...,11.5 0.5,1,...,7.0 0.5,1,...,9
373 0.5,1,...,10 0.5,1,...,7 0.5,1,...,9
500 0.5,1,...,12.5
600 0.5,1,...,14

Nitrogen Densities

180 1,2,...,13
273 0.5,1,...,13.5 0.5,1,...,8
308 0.5,1,...,13.5 0.5,1,...,8
323 0.5,1,...,8
328 0.5,1,...,14 0.5,1,...,8
373 0.5,1,...,14 0.5,1,...,8
500 0.5,1,...,14.5
600 0.5,1,...,14

The correlation between density in terms of XA and other common

systems is provided in Table 2 through 6.



Figure 4. g(r) isotherm (308°K) for Argon, Lennard-Jones

potential.
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Figure 5. Figure 4 data in perspective view.
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Figure 6. g(r) isotherm (328°K) for Nitrogen, Lennard-Jones

potential.
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Figure 7. g(r) isotherm (180°K) for Argon, Lennard-Jones

potential.
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Figure 8a. Figure 7 data in perspective, showing the anamolous

behavior of g(r) at mid-range densities.






Figure 8b. The same graph as Figure 8a, but here the lines indi-
cating the surface are drawn at constant r, instead of

constant A, making the anomolous ridge even more obvious.






Table 2. Correlation of Density in Ao with other Common Units.
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ARGON, Lennard-Jones

01 92 03
A particles 1027 moles _ 163 amagats x 102
0 m3 cm
0.5 0.9964 1.6545 0.3706
1.0 1.9928 3.3090 0.7411
1.5 2.9893 4.9635 1.1117
2.0 3.9857 6.6180 1.4823
2.5 4.9821 8.2725 1.8529
3.0 5.9785 9.9270 2.2234
3.5 6.9750 11.5815 2.5940
4.0 7.9714 13.2360 2.9646
4.5 8.9678 14.8905 3.3352
5.0 9.9642 16.5450 3.7057
5.5 10.9607 18.1995 4.0763
6.0 11.9571 19.8540 4.4469
6.5 12.9535 21.5084 4.8174
7.0 13.9500 23.1629 5.1880
7.5 14.9464 24.4817 5.5586
8.0 15.9428 26.4719 5.9292
8.5 16.9392 28.1264 6.2997
9.0 17.9356 29.7809 6.6703
9.5 18.9320 31.4354 7.0409
10.0 19.9285 33.0899 7.4115
10.5 20.9249 34.7444 7.7820
11.0 21.9213 36.3989 8.1526
11.5 22,9177 38.0534 8.5232
12.0 23.9142 39.7079 8.8937
12.5 24.9106 41.3624 9.2643
13.0 25.9070 43.0169 9.6349
13.5 26.9034 44.6714 10.0055
14.0 27.8999 46.3259 10.3760
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Table 3. Correlation of Density in ).o with other Common Units.
ARGON, Modified Buckingham

91 Dz 93
A particles , ,,07  moles ;4.3 amagats x 102
0 ) n®
0.5 0.9798 1.6268 0.3644
1.0 1.9595 3.2536 0.7287
1.5 2.9393 4.8805 1.0931
2.0 3.9190 6.5073 1.4575
2.5 4,.8988 8.1341 1.8219
3.0 5.8785 9.7609 2.1862
3.5 6.8583 11.3877 2.5506
4.0 7.8380 13.0145 2.9150
4.5 8.8178 14.6414 3.2794
5.0 9.7975 16.2682 3.6437
5.5 10.7773 17.8950 4.0081
6.0 11.7570 19.5218 4.3725
6.5 12.7368 21.1486 4.7369
7.0 13.7166 22.7754 5.1012
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Table 4. Correlation of Density in Ao with Other Common Units.

ARGON, Barker-Bobetic

! P2 . Py
A, 2335%9195 x 1027 MOLeS , 14-3  apmagars x 102
m cm3
0.5 1.0428 1.7307 0.3876
1.0 2.0855 3.4614 0.7753
1.5 3.1283 5.1921 1.1629
2.0 4.1711 6.9228 1.5506
2.5 5.2138 8.6535 1.9382
3.0 6.2566 10.3842 2.3259
3.5 7.2994 12.1149 2.7135
4.0 8.3421 13.8456 3.1011
4.5 9.3849 15.5764 3.4888
5.0 10.4277 17.3071 3.8764
5.5 11.4704 19.0378 4.2641
6.0 12.5132 20.7685 4.6517
6.5 13.5560 22.4992 5.0393
7.0 14.5987 24..2299 5.4270
7.5 15.6415 25.9606 5.8146
8.0 16.6843 27.6913 6.2023
8.5 17.7270 29.4300 6.5899
9.0 18.7698 31.1527 6.9776




Table 5. Correlation of Density in Ao with other Common Units.
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NITROGEN, Lennard-Jones
Pl P, Ps
Ay particles , jg27  BOI®S 193 apagats x 107
m cm
0.5 0.7751 1.2538 0.2809
1.0 1.5102 2.5076 0.5618
1.5 2.2654 3.7615 0.8427
2.0 3.0205 5.0153 1.1236
2.5 3.7756 6.2691 1.4045
3.0 4.5307 7.5229 1.6854
3.5 5.2858 8.7768 9.9663
4.0 6.0409 10.0306 2.2472
4.5 6.7961 11.2844 2.5281
5.0 7.5512 12.5382 2.8090
5.5 8.3063 13.7920 3.0899
6.0 9.0614 15.0459 3.3708
6.5 9.8165 16.2997 3.6517
7.0 10.5716 17.5535 3.9326
7.5 11.3267 18.8073 4,2135
8.0 12.0819 20.0611 4.4944
8.5 12.8370 21.3150 4.,7753
9.0 13.5921 22.5688 5.0562
9.5 14,3472 23.8226 5.3371
10.0 15.1023 25.0764 5.6180
10.5 15.9574 26,3302 5.8989
11.0 16.6126 27.5841 6.1798
11.5 17.3677 28.8379 6.4607
12.0 18.1228 30.0917 6.7416
12.5 18.8779 31.3455 7.0225
13.0 19.6330 32,5993 7.3034
13.5 20.3881 33.8532 7.5843
14.0 21.1433 35.1070 7.8652
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Table 6. Correlation of Density in )‘o with other Common Units.
NITROGEN, Modified Buckingham

. P, 02 03
A, Ea};tsilg x 1027 %g_s_ x 10-3 amagats x 102
0.5 ‘ 0.8293 1.3770 0.3085
1.0 1.6586 2.7540 0.6170
1.5 2.4879 4.1310 0.9255
2.0 3.3172 5.5080 1.2340
2.5 4.1465 6.8850 1.5425
3.0 4.9758 8.2620 1.8510
3.5 5.8051 9.6390 2.1595
4.0 6.6344 11.0160 2.4680
4.5 7.4637 12.3930 2.7765
5.0 8.2930 13.7700 3.0849
5.5 9.1223 15.1470 3.3934
6.0 9.9516 16.5240 3.7019
6.5 10.7809 17.9010 4.0104
7.0 11.6102 19.2780 4.3189
7.5 12.4395 20.6550 4.6274

8.0 13.2688 22.0320 4.9359
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Lists of the numerical values of constants and parameters
used in the generation of the tables of radial distribution func-
tions are provided in Tables 7 and 8.

The anomalous results for argon at 180 °K using the LJ
12-6 potential are of some tangential interest. While all other
families of radial distribution functions at given T showed a pre-
dictable consistency over the range of densities, this set ex-
hibited a peculiar variation from anticipated results in the mid-
range densities, 4<)<9. It is quite possible that these are spur-
ious solutions similar to those reported by Watts,(ZI) but a de-
finitive statement is not possible now.

These '"solutions'converge very slowly and were obtained
after extremely long run times. Neither financial or hardware
resources were sufficient to support the detailed examination
necessary to identify the nature of these anemalous results; for
the moment they are merely a curiosity, a puzzle for future ex-
ploration.

It is also ruefully noted that this data set caused a good
deal of consternation and wasted debugging effort at the time of
its generation, because quite by accident it was the first family
of g's to be generated. Its nature as an anomaly was not origin-
ally recognized, and it was thought to be the result of a pro-
gramming error. Later, the fear arose that it was the product of

some basic inadequacy in the algorithm or, worse yet, the thecry.



Table 7
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Constants and Parameters for Argon

Name

Symbol

Value

Source
[pibliography]

Char. Length
Char Energy

Char. Length
Char. Energy
Slope

Char. Length
Char. Energy
Slope
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant

Constant

Lennard-Jones

3.4180x10"10m
1.7120x10721j

Modified Buckingham

3.866x10"10p
1.7009x10°21j
14

Barker-Bobetic

3.7630x10"10n
1.9360x107215

12.5

0.29214

-4.41458

-7.70182
-31.9293
-136.026
-151.000

1.11976
0.171551
0.013748
0.01

(2)
124°K+k

(2)
123.2°K-K

(11)
140.23°KX
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Table 8 Constants and Parameters for Nitrogen

Source

Name Symbo1l Value [bibliography]
Lennard-Jones
Char. Length a = 3.749x10710p 2)
Char. Energy e = 1.1017x10721j = 79.8°K-k
Modified Buckingham

Char. Length r, = 4.040x10710m 2)
Char. Energy e = 1.5670x10721j = 113.5°K-k

Slope 16.2

=
"
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Throughout this examination of the program, algorithm and theory,
there loomed the possibility (really, the spectre) that the entire
scheme was inoperable and, after so much effort, would have to be

abandoned. Such paranoia must afflict all graduate students.

Viscosity and Thermal Conductivity Results

Beginning with the Kirkwood formulation of the radial
distribution function, the aim of this work has been the critical
examination of the Rice-Allnatt theory of transport. It may be
argued that this effort, based as it is on this single formulation
of g, and branching only on the choice of intermolecular potential,
is too narrow and falls short of the critical test envisioned.

But this perhaps represents only the beginning of a more broadly
based effort. As an accompanying portion of this total program
Babb has already extended its scope by calculating the RA coef-
ficient of bulk viscosity using the Kirkwood g, has generated other
distribution functions using Pervis-Yevick and Convoluted Hyper-
netted Chain theory and has used the molecular dynamics results of

(22) to further test Rice-Allnatt., Because this additional

Verlet
work extends as well as reinforces the Kirkwood based results, it

appears in tabular form here and in the accompanying discussion.
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Discrepancies and Their Sources

A cursory examination of the computed and observed values
for the transport coefficients shows a very serious disagreement
at all densities. The calculated values fall far below the ob-
served values, to so great an extent in the case of the coefficient
of shear viscosity, for example, as to predict the wrong sign. In
this regard, even the gross quantitative nature of the results is
at variance with the observations.

This is disturbing, particularly in light of the tentative
good agreement seen in earlier work.

The problem would now seem to be the isolation and identifi-
cation of the source or sources of the disagreement. We may ex-
amine and choose among such possibilities as the accuracy of the
programming effort, the suitability of the radial distribution
function formalism, that of the intermolecular potential, and

finally, the accuracy of the Rice-Allnatt theory itself.

A. Accuracy of the Programming Effort.

The accuracy of these results is very difficult to assess.
Normal procedures whereby accuracy of numerical calculations are
estimated rapidly lose their viability in extended chains of
operations such as those associated with the calculation of g,

n and y. However, the following comments are in order:

The decision to perform all calculations to sixteen signi-

ficant figures rendered machine round-off error completely negli-

gible. Sufficient care was taken in the design of the algorithms,
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the selection of commands and the order of execution to make
finite word length problems minimal if not altogether nonexistent.
Additionally, iterative solutions poséess the saving feature that
errors do not propagate beyond one cycle.

The integration techniques used throughout do not produce
inherently significant errors; the relatively small mesh size
guarantees errors no larger than 1x10-8, even when extravagantly
estimated.

0f far more significance in the g calculation is the approxi-
mation that, beyond some upper limit xp, g=l1. This is "tieing the
tail" of the radial distribution function, forcing on it a re-
striction warranted only by virtue of the practical limits of the
computing devices at hand. Still, choosing x = 10 extends the
value of g beyond that of earlier work, and a trial calculation
with xp = 20 resulted in variations in g only in the seventh or
eighth place. (It should also be noted that this more than doubled
the calculational time.) There are no other significant errors in
the radial distribution function algorithm.

But there are other errors. The least well-known portion of
the viscosity calculation involves the calculation of wz, which is
developed as a solution to an integral equation. The integrands
involve differences between the g's and 1, and then the integrals
themselves are differenced. This double differencing increases
errors markedly and these errors extend through each iterative
cycle. Comparison between numerical and analytic solutions of

Py using artifical distribution functions, indicate this error to
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be less than one per cent. This could be improved through more
stringent demands placed on the accuracy of the match of boundary
conditions, and on the value of the convergence criterion.

For thermal conductivity or bulk viscosity, errors are in-
troduced through the operation of numerical differentiation.
Comparison of results using three-term differentiation and five-
term differentiation indicates the errors introduced are again
small. Differentiations with respect to range (r) or reduced
range (x) are essentially error free, because qf the small mesh
size, and those across density (A or p) are also probably
negligible. Errors in differentiation across temperature are
also small but of a less certain nature. Here, it is simply a
matter of not having available all the isotherms of g desired;
one can realistically calculate only so much and so long.

But conservatively, each transport coefficient should be
known to an accuracy of the order of one per cent, and most re-
sults, particularly for the shear viscosity, would be better than
this figure by at least one order of magnitude. The results
listed in the tables are given to four figures, through con-
ceivably not every entry is good to the full four figures.

In view of the generally poor agreement between calculation
and observation, a more precise statement of the error seems

superfluous.
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B. Radial Distribution Function Formalism.

The Kirkwood formulation of g is to some extent flawed; it
is known to possess weaknesses from the standpoint of prediction
of thermodynamic properties(zs). However, the RA work relied on
this form through the KMA and KLA results, They were after all
essentially the only radial distribution function data base avail-
able and some agreement had been achieved with their use., Prece-
dent dictated the Kirkwood formulation of g to be the first used.

The original KMA-KLA results, however, are weak in that at
relatively high densities they predict negative pressures. But
this data is given to a precision of only +0.002 in the exponential
form, or about +0.02 in g itself. It was anticipated that a data
base (i.e., g-tables) of higher precision would yield better agree-
ment.

The results are in poor agreement with observation. It is
possible that the Kirkwood g is at the bottom of the disagreement
between calculation and observation. Recently Babb applied radial
distribution functions derived from Percus-Yevick and Convoluted
Hypernetted Chain formalisms, and g's obtained by Verlet from molecu-
lar dynamics calculations as well to the RA equations. These results
are essentially in agreement with those deriving from Kirkwood but
exhibit the negative sign at even lower densities. it does not
appear likely, in light of this work, that the form of the radial
distribution function is the root of the difficulty.

C. Intermolecular Potential Formulation.
The Lennard-Jones intermolecular potential as modified (Eq.

2-7) formed the basis of earlier calculations. It was énvisioned
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that easing the restrictions on the absolute hard core,

V(r) == r<a,

would render the calculation more realistic and the results more
accurate. With regard to the results, such was obviously not the
case. Replacement of the LJ potential with the Modified Buckingham
and the Barker Bobetic potentials did not result in any particular
improvement. Although not determined with reference to transport
phenomena, and formulated without the Axilrod-Teller three body
term, the Barker-Bobetic potential could be expected, by virtue

of its many substance dependant constants, to accurately reflect
the geometry of the potential curve. In this regard the BB poten-
tial merely confirmed that the conventional potentials such as the
LJ and MB produced consistent results and that the calculation was
not sensitive to the potential used. This conclusion is reinforced
by other independant results.(24) Although one may wonder what
undetected dependancy on density may exist in any of these expres-
sions'-(ind this is a point for future examination) it db;s not
appear that the functional form of the intermolecular potential,
asconventionally formulated, is the source of the discrepancies

encountered.

D. The Rice-Allnatt Theory.

Thus we come, by the process of elimination, to the Rice-
Allnatt theory itself, and ask if some oversight or inadvertent
error in the development might produce the divergence from obser-

vation. But the main features of the development, while intricate,
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follow standard, well-defined techniques (for instance, the sing-
let and doublet distribution functions are obtained by techniques
developed by Enskog and Chapman), and we may conclude that this
possibility is highly unlikely.

But certain basic concepts of the theory are of note even
from the brief descriptions presented here. In particular, the
analysis of the reduced Liouville equation, where interactions
of a "hard" and "soft" nature are cleanly separated and treated
independently seems, at least at high densities, to be suspect.
The related distinctioh between times, where it is assumed that
the quasi-Brownian motion between two collisions is of a duration
arders of magnitude longer than the collision time, seems question-
able. Independent calculations based on molecular dynamics would
seem to indicate that the distinction in these times blurs at

(25) Certainly it is possible at these densities,

high density.
given a realistic core for the potential, to envision that no con-
stituent molecule is ever effectively free of a strong repulsive

influence of its neighbors. But never in the calculation does it

appear that the proper balance between n, and Nyo for example,

is achieved.

But the problem does not end with the preceding qualita-
tive remarks. A more detailed examination of the theory, cast
against experimental results, contrasts the shortcomings of the

theory even more vividly.
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Production of Comparison Experimental Results

The results of these calculations employing the Rice-Allnatt
theory are so poor in some cases as to be at complete variance with
physical reality and on that basis alone can be rejected out of
hand. So stated, there seems little point in comparing theﬁ with
experimental results. But there is some merit, for example, in com-
paring the pressures calculated from the various radial distribu-
tion functions generated as a measure of the accuracy of these g's.
Additionally, an effort should be made to quantitatively assess
the disaéreement at the lower ranges of pressure or density (where
disagreement is generally smallest) to determine how badly and in
what manner the theory fails.

Babb has surveyed the experimental results and compiled
comparison data sets from them. The collection of equation of
state, shear viscosity, thermal conductivity and bulk viscosity
data for both argon and nitrogen over so broad a range of tempera-
tures and densities quite naturally required bridging gaps and
smoothing disagreements between various sets of results as well
as extending the ranges of others. In this process of blending
and extending, precision was not the primary aim, but, rather,
the accumulation of a viable body of reference data against which
a measure of the RA-theory and other incidental comparisons could
be made. Efforts directed toward refinement of the experimental

data proceeded only so far as was needed for the purpose at hand.



94

A. The Equation of State.

Jacobsons' work@6) in nitrogen is very extensive and the
equation of state which results reproduces the experimental values
over a wide range of pressures and temperatures. This equation
was programmed and calculations were made for densities and temper-
atures of interest. These and other results all appear tabulated
in the tables for shear viscosity

The same comprehensive work is apparently not available

(27-33) were extra-

for argon and the results of a number of workers
polated by a variety of techniques, as appropriate to cover the
ranges of pressures required. Virial expansions, Lagrangian
interpolations, least squares fits of a variety of functions
[including those specifically developed for high pressure repre-
sentation of PVT data(34)] were all used. The sources are not

all entirely consistent with each other and so on the boundaries
between the various investigations, some smoothing was done. Some
irregularities in first differences may still be present; however,

these differences are less than the disagreement between calculated

and observed pressures in practically all cases.

B. The Shear Viscosity.

Trappenier, et aZ.(SS) performed a searching corresponding
states examination of the noble gases, including argon, which re-
sulted in a double expansion in reduced temperature and reduced
density with evaluated coefficients., This result was extrapolated
by Mr. Jerome Kaiser, to whom the author is indebted for his work,

over the range of temperatures and densities encountered here.
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No similar study seems to have been performed on nitrogen
so one was improvised when polynomial fits attempted across iso-
therms resulted in non-smooth behavior. The concept of corres-
ponding states was employed to improve the validity of the expan-

sion. The expansion is

- *i ]
n=n gjaij p ~(log; ) T*)° ,

where the parameters which reduce the observed viscosities, dens-
ities and temperatures to those which are a best fit must be
determined. The ajj are those for argon from Trappeniers et al.
A least-squares analysis of combined data runs of Michels and

(36) (37) was used for the evaluation of other

Gibson and Vermesse
constants. The inconsistencies produced by this technique were
small in comparison to the divergence of the RA predictions.
Obviously, the concept of corresponding states is not
strictly applicable to nitrogen, for the reducing parameters found
for the high and low density expansions which were made are not
the same. But the technique uses the 'best' values of reducing
parameters which map the nitrogen behavior onto the noble gas be-
havior, and in so doing, achieve predicted experimental values
approximately in as good agreement as was obtained for argon. For
the high density expansion, the error in fit was approximately
9.1 per cent. The expansion based on low density data was not

sufficiently more accurate and therefore was not used. Because

the range of values of p were so large, it was the sum of the
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squares of the percentage errors which was minimized in this
treatment of nitrogen.
C. The Thermal Conductivity.

Polynomial expansions of the van der Waals Laboratory data

data(38’39)

was exclusively used. The fit proved good and the
rapidly diminishing size of the coefficients of the higher order
density terms supported the possibility of extensive extrapolationms.
Four isotherms for argon and three for nitrogen were available.
Although the extrapolations were extensive, confidence in
their merit was gained by noting that these results agreed quite
well with the atmospheric values for thermal conductivity for ni-

trogen and were only somewhat high for argon(40).

D. The Bulk Viscosity.

There is no extensive experimental data for bulk viscosity;
for a survey, the reader is referred to Cowan and Ba11(41). The
only data directly applicable to this investigation was that of
Madigosky(42), but this is an isotherm at -38.6°C. Since the
temperature dependence of bulk viscosity appears weak (at least
for small temperature ranges), these results are used without any
temperature correction for a comparison at 0°C and are so listed

as "observed" at that temperature in the tables.

Comparisons

From the experimentally based data we may draw a reason-
ably concise picture of the actual behavior of the specific quanti-
ties of interest here, and a comparison of this behavior with the

RA predictions can then afford the viable test we desire. It would also be
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possible to compare in detail the various RA predictions as they
are influenced by the variety of intermolecular potentials and
other quantities used in these calculations. For instance, Babb
has already extended this work by certain calculations of the RA
transport coefficients using other radial distribution functions.
But this sort of detailed comparison will be made only sparingly
in light of the very serious disagreement of the data generated
by nearly all the calculational paths to the experimental results.
Rather, we take here the view that the discrepancies between the
individual calculational paths are minor compared to the serious
disagreement with RA, so minor, in fact, to be of almost paren-
thetical comment. Much more relevant to the examination at hand
is the bleak fact that no matter what path was followed, it was not
possible to achieve good agreement.

It surely must be possible to detect, in what follows, some
of the disappointment of the author for the disagreement found. The
RA formulation represents an imposing intellectual effort. It
seemed at the outset of this work that agreement would be obtained.
But as the work progressed and the prospects for agreement were
diminished, it began to appear that the theory as formulated was in

trouble. The comparisons below only too clearly bear this out.

A. The Equation of State.
The results of these calculations, using the virial equa-
tion of state and the Kirkwood formulation for g is in good agree-

ment with other similar calculations appearing in the literature.
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It is to be noted that the calculations using the trunc-
ated potential, equation (2-7), are in slightly worse agreement
than those obtained here, using the full LJ potential. This could
be expected, for the parameters of the potential were obtained by
fitting calculations using the full potential to experimental data.
The introduction of these parameters so obtained into the truncated
potential function would alter the results slightly.

At low densities, the results are in good agreement with

experiment.

B. The Shear Viscosity.

This calculation was, perhaps, the major undertaking of
this work. Certainly it was the most thoroughly examined because
it was the first transport coefficient calculated and as discre-
pancies between its predictions and experimental results began to
appear, all aspects of its formulation were intensely examined.

Furthermore, it is tsimpler' than either thermal con-
ductivity or bulk viscosity in that it incorporates none of the
numerical differentiations across density or temperature and can
therefore be assumed free of the entanglements of numerical error
associated with these operations.

The characteristics of all the calculations were similar:
the results have very low values of viscosity at low density, in-
crease too rapidly and at high densities pass through a maximum

and then fall to negative values.
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The failure at low densities, while surprising, could be
understood from the fundamental equations. The theory was de-
signed to approach the Enskog limit when the potential is taken to
be that of a hard sphere for which the soft drag coefficient van-
ishes. For a more realistic potential, however, the soft drag
coefficient vanishes as density (in the normal calculation). It
appears in the Enskog terms in the denominator, itself divided by
¢, so that the terms which are supposed to predict the correct
low density limit in fact vanish.

But since in the low density range the behavior of ;S is
critical, this function was further examined. It might be that the
particular formulation used in the majority of these calculations
was at fault. This was checked by using other formulationms.

The speed of sound ;s’ Equation (3-91), also makes the
viscosity prediction go negative, but at a different density. The
low density value for this T gives even poorer results for n. But
perhaps most discouraging of all is that the g, S0 formulated drops
with increasing density. Since T is supposedly related inversely
to the diffusion coefficient this is a most unphysical behavior.
The previous assertion "We wish to suggest that Eq. (12) [the speed
of sound formulation of z] be recognized as the best available
estimate of the molecular friction constant"(43) is apparently no
longer tenable.

The Helfand formulation gives the best low density result,

being off by a factor of 2; but as seen from the extensive tables,

it also gives negative results at high densities.
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For these reasons, it was only in the case of shear viscos-
ities that the Helfand and sound speed ;s's were used, for other
than a truncated LJ potential.

As a final zttempt to secure a workable T and to examine
the viscosity formulation, Babb considered it an unknown in the
viscosity formulation and evaluated it by force fitting to experi-
mental data. So obtained, cs becomes negative at high density,
and this in turn causedthe total friction coefficient to fall. If
correct, this would imply, for instance, that the diffusion coef-
ficient would at some point commence increasing with increasing
density. This is contrary to expectation.

This work is not the first to point out the difficulties
imvolving the friction constant formulation. Collings(44’45) has
stated that the conclusions of the correctness of the RA formalism
is premature and that serious problems still exist.

The fall to negative viscosities at high density is related
to the calculation of wz; at these densities the dominant terms
are r\,(s) and nv(R>c), equations (3-72) and (3-78). Both terms be-
come strongly negative here in consequence of the value of wz.

It was then natural to suspect that the iterative solution
of ¥, contains some programming error. But when original KLA rad-
ial distribution function values were substituted for those gener-
ated here, the ¥y calculation performed, and the results com-

pared with those of Rice et al., the results were in good agree-

ment. But most encouraging was Babb's creation of artifical
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functions which permitted the solution of the wz equation ana-
lytically. It was possible to then check programming by com-
paring an analytic solution with the numerical solution. The re-
sults were quite good, giving an rms deviation between the two
functions of 0.8 per cent, and this could have been improved by
making the convergence criterion of the numerical solution more
stringent.

As a last resort, the formulation of wz was checked for
some mathematical error trivial or otherwise, but none was found.
The result using artifical functions, the lack of consistency (the
failure of the L obtained from force fitting the shear viscosity
expression to predict a consistent diffusion behavior) and the
accumulated other analyses all pointed to the same conclusion:
nothing seems to help and the theory with regard to shear viscosity
is not viable as presently formulated. The numerical results sup-
porting this conclusion are contained in Tables

Davis et aZ.(46) considered a square well fluid in con-
nection with the RA theory. The results are often cited as sup-
portive. The original paper must be consulted for the details of
their rather complex calculation; however, they avoid much of the
RA formalism, in fact obtaining the values of g(o) by force fitting
one of the viscosity equations to the experimental value., They
avoid the entire wz and L formalism, discussing T by showing
their formulation is in reasonable agreement with diffusion con-
stants which have been measured. This calculation has very little

impact on the present work.
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C. The Bulk Viscosity.

An effective comparison of theory and experiment here is
difficult since experimental results are so few, and in some ways
contradictory. For example, some low-temperaturevwork indicates
a dramatic rise in bulk viscosity with decreasing density while
the work (at higher temperature) of Madigosky shows a smooth rise;
however, this could indeed be a bonafide temperature effect. In
any event, the theory predicts a lowering of bulk viscosity with
decrease in density. at all temperatures and must therefore be con-
sidered not in agreement with observations at low temperature.

Additionally, bulk viscosity calculations exhibit the same
behavior as determined for shear viscosity, the prediction of nega-
tive values at sufficiently high density. Here, the calculations
of wo and wz are the cause. Again, the programming was checked by
artificial functions and found correct.

That problems would arise could be seen from the Rice and
Grey discussion of earlier work(3 ). The function Q, Equation
(3-77), relates to the limiting behavior of wo’ and it can be

shown from (3-77) that

2
q= -3 DBy + Plg(@-1l - (5-1)

The former expression (3-77) is amenable to evaluation by calcula-
tion (Qgsp) and the latter, by use of experimental data (Qexp) -

But Rice and Grey point out that while Qgxps<0O, Qcpp>0. Their
somewhat drastic compromise was simply to set Q =0, and thus ignore

a portion of the theory.
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This discrepancy has been partially resolved by the present
work. While the KLA g(0) used earlier was generally g(o)<l1, we
find generally, that g(o)>1. Additionally, in this work, the ex-
perimental values used here were obtained from two sources: real
argon(zs) and from virial expansions to the pressures calculated
for the truncated LJ potential. These results are shown in Table
4-87, page 227, and there the signs agree at higher densities. The
further discrepancy results from the failure of argon to conform
to the truncated LJ potential and from inconsistencies in the
Percus-Yevik approximation used in this particular calculation:
the viral pressures do not agree with those obtained from the com-
pressibility equation used in deriving Equation (5-1).

The signs now agree, and undoubtedly could be made even if
better agreement by closer attention to the details of calculations
in Equation (5-1). It is to be noted that a sufficiently positive
Q guarantees negative values of ¢.

Even the artifice of setting Q=0 does not suffice. In the
special table (p.227) comparing I formulations; one entry was
with the normal ¢g but with Q =0. The predictions still become
negative at sufficiently high density. It is assumed that this
would happen as well for other T formulations, but this has not

been directly checked.
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One of the early encouraging aspects of the RA theory
came from the apparent agreement obtained with experimental re-
sults after the publication of the theoretical calculations, But
the calculations were obtained at the expense of neglecting Q
and, hence, using an inaccurate wo' Further, the variation in g and
wo with increasing density was neglected; the results at one
temperature were thus scaled by their coefficients without proper
regard to the major effects of increasing density.

Changing the method by which L is found does not materi-
ally improve the agreement; however, the Helfand formulation is
somewhat better than the other expressions. Once again the basic

theory fails,

D. The Thermal Conductivity.

Since the calculation of this transport coefficient does
not depend on either ¢o or wz, it does not become negative as the
viscosities; however, the results are still at wide variance with
observation. For example, the RA thermal conductivity at the
lowest density, using the truncated LJ potential (which corresponds
to the theory's basic assumptions) rises 18 per cent in value from
0C to 100T and the experimental values climb some 24 per cent;
however, the RA values are low by a factor of eight, The increase
with density is at variance with experiment: from a factor of .81
too low at the lowest density to a factor of 3.3 too low at the

highest. Variation with both parameters are poorly represented.
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Again, changing the Z;S used in this calculation; the
Helfand formulation remains the best as an order of magnitude
estimation, but gives results low by a factor of % at low
densities and (surprisingly) increasing to a factor of 2 at the
highest density.

Considering the change in thermal conductivity as a
function of density, and examining the influence of the drag
coefficient Cs as it influences this variation, the Helfand formu-
lation gives too small an increase while the speed of sound and
normal calculations give to great an increase. All fail to give
a sufficiently high increase with temperature although here, in
comparison with other results, the agreement, off by only a factor
of two, is better.

Thermal conductivity presents the best of all the calcula-
tional agreement, but still the results fall far wide of the mark.
Thus, one must regafd the statement.(“)

"It is our opinion that the available equilibrium

distribution functions for this themodynamic state

are unreliable and that the discrepancy between

theoretical and experimental thermal conductivity

arises from this discrepancy"
as being half true. The radial distribution functions were weak,
but increasing their accuracy worsens rather than improves the
agreement., It is the tentative conclusion of the author that the

discrepancies in the earlier functions made the theory appear

better than it is.
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Final Conclusions

This work was above all else a pragmatic inquiry. The RA
theory purported to represent the transport behavior of a simple,
dense fluid. The philosophy was to take this theory as it exists
and to inquire: do the equations in fact give a reasonably accur-
ate description of what has been observed?

The results are particularly disappointing.

Based on earlier work it was presumed that the results
would be reasonably close, and this presumption dictated the quest
for precision which permeated the formulation of the algorithms used.

But not only do the results not accord very closely to
physical reality, they defy even qualitative physical intuition.
This most funiamental disagreement seems independent of the source
of the radial distribution functions used, even those which are pre-
sumably exact solutions of the appropriate (in this case Lennard-
Jones) intermolecular potential. What ever might be the relevancy
of the Lennard-Jones potential to the representation of a real gas,
it is quite certain that even a Lennard-Jones gas cannot possess a
negative shear or bulk viscosity.

From the variety of problems, checks, manipulations and
alternate attempts taken, one is led to the final conclusion that
there must be a fault either in the mathematical procedure used for
the derivation of these equations, or in the basic assumptions
under which the equations were derived. The mathematics is

straightforward enough to seem to preclude the former possibility,
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and one is left with the depressing conclusion that the basic
assumptions of the RA approach, and, hence, their equations, are

flawed, and not in any sort of accord with reality.



. Figure 9. A typical shear visociety isotherm for Argon.
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Figure 10. A typical set of shear viscosity isochores for

Argon. Density is in amagats.
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Figure 11. A typical bulk viscosity isotherm for Argon.
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Figure 12. A typical thermal conductivity isotherm for Argon.
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Figure 13. A typical set of thermal conductivity isochores

for Argon. Density is in amagats.
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APPENDIX I
NUMERICAL TECHNIQUES

A. Iteration

Iteration is a standard technique for the location of the
roots of an equation f(x) = 0. In its simplest form, the technique
involves the following steps:

The original equation is transformed by appropriate mani-
pulation into the form x = g(x). A trial value, say X, is selected
and g(xo) evaluated to yield X = g(xo). The process is repeated,

X

n+1 = 8(x)), in hopes that the series x , x

1+ X, PoOssesses

successive differences such that

|x =%, [> %)%, [> oo [x %, >
and that at some stage:

X ==X
n n+l

to the limits of the precision of our calculating device or our
needs for accuracy. Then by definition X 41 is a root of the
equation f(x) = 0.

There is no guarantee that our method will succeed. Many

forms of x = g(x) are possible from any specific £(x) = 0. Some

116
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forms may give roots while others fail. For example, two possible

forms of the equation

5x2 - 2xtn|x|-8 = 0

are
_ 5x2-8
X = 2en[x|
and
X = {sznsx +8}%

Using a trial solution X, = 2, it is found the first form fails and
the second form succeeds in giving a root.

Many improvements in the technique are possible, but the
point is made: iteration is a cyclic process performed in hopes
that a modified form of the function being examined will refine our
guess and ultimately deliver a solution.

The problem at hand is of this basic cyclic nature. The
values of a function h(x) at certain specified arguments are re-
quired. The functional form of h(x) is unknown, but it is known
that h(x) satisfies the integral equation:

b
hix) = A(x) + J K(x-s)B(sYh(s)ds
a
where A, K, and B are of known form. Although analytically this
can be a difficult if not impossible task, numerically the proce-
dure is straightforward: a set of values {ho(si)} at appropriate
values of the argument are chosen, the function evaluated for a

designated x, say Xy and hl(xl) is obtained. The process is
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repeated at X,,Xy,..., until a new set {hl(xi)} is obtained. The

3"
iterate set {hl(xi)} replaces {ho} and the process repeated to
form {hz(xi)}.

Again, we hope for a diminishing set of successive dif-
ferences Ahn(xi) = |hn(xi)-hn+1(xi)| such that each member of the

set is less than some prescribed accuracy criterion; we then have

our answer.

B. Numerical Integrationms.
It was desired to obtain values of the radial distribu-
tion function at regularly spaced intervals of its argument. The
length of the interval over which the integrals were to be evalu-
ated varied. The first requirement narrowed the choice of basic
integration schemes, and the second further limited the choice
within viable categories by requiring a great deal of flexibility.
Ultimately, a simple combination of Simpson's and trape-
zoidal-rules was chosen. The integrands encountered, being smoothly
varying functions, were compatible to such a simple choice, and

the interval between argument values

could be adjusted to sufficiently small size to insure retention
of accuracy.

Simpson's rule gives the evaluation of an integral as

.

b
I = J £()dx = 3 {£(2)+E (b))}

a 2
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where

This can be extended to

I

n

% {E0x))+48 () 426 (x5) +4£ (x,) +2£ (x)

+...+4f(xn_1)+f(xn)} >

b-a

where x, = a, xn =b, and h = ; by the scheme, n must be odd.

1

The trapezoidal rule gives:
h
I=3 {f(x1)+2f(x2)+2f(x3)+...+2f(n_1xn_1)+f(xn)}

Here, n may be odd or even.

A definite upper limit was chosen in the integrals to replace
the « normally appearing there. This cut off value in some cases
implied the number of points at which the integrand was to be evalu-
ated could be either odd or even. When even numbers of arguments
were encountered, a trapizoidal rule segment was appended to the basic
Simpson's rule to account for the final points. The fineness of the
mesh, h = 0.025 in units of the reduced radial distance x, insured

that accuracy was maintained.
C. Difference Equations.
Consider the quadratic function
f(x) = ax? + bx + ¢

and assume that it is required to evaluate f(x) at regularly spaced
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intervals x, x+Ax, x+2Ax,.... Direct substitution of any argument
requires three multiplications and two additions.

An alternate technique for evaluation of the function at
regularly spaced intervals exists, one which reduces the number and

complexity of the operations to be performed:

f(x) = ax? + bx + c,

f(x+4x) = a(x+Ax)2 + b(x+Ax) + ¢,
= ax? + 2axAx + Ax2 + bx + bAXx + ¢,
f(x+28x) = ax? + 4axAx + 440x2 + bx + 2bAx + c,
f(x+34x) = ax? + 6axAx + 9Ax2 + bx + 3bAx + c.
We note:
A)p = £lx+bx) - £(x) = 2axix + Ax? + bhx,
A12 = f(x+20x)-f (x+AX) = 2axAx + 3Ax% + bAx,
b5 = £(x+38x)-£(x+28x) = 2axx + 54x2 + bAx,
and
bpy = Bpp - by = - 2
Ay, = A, - A = - 28x% .

22 13 12

Thus, if the value of f(x) is known, f(x+Ax) may be ob-
tained by adding 2ax2 to (2axAx-Ax2+bAx2) and then adding the re-
sult to £(x). Now f(x+Ax) is known. To find £(x+2Ax), add 2ax?
to (2axAx+Ax2+bAx) and that to f£(x+Ax). Note that the differences

A,. are the same, and hence A,, is obtained by adding

8912850500855
by; to B

12

by adding 4,. to A 12° and so on. At every stage,

11’ 413 2i
the function and first difference is ready to form the evaluation
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of the function at the next argument with only two additionms.
The time spent in this latter technique is far less than
the former on IBM computers because multiplications on such data
processing equipment require between five to seven times more
time than additions.
Where ever practical in the design of programs, differ-

ence equations were used to evaluate polynomials.



APPENDIX II

DERIVATION OF THE K,(t) POLYNOMIALS

As an example of the K,(t) polynomials, write

. _ A °°G(u)cosutdu : _ ucosu-sinu
Ko(t) = - J 17 6@ where G(u) = ————;5————
0

By adding and substracting Jw G(u)cosutdu.twice, we obtain
)

A3 [ G3(u)cosutdu A2 A

Ko(t)"n_r 12 6@ ~r 2 rh o
0

where

rm
I, =| G2%(u)cosutdu |,

0
and

ra)
I = G(u)cosutdu

By substituting for G(u), expanding and using trigonometric

identities, the second integral becomes

1 1 cos2u sin2u cos2u
I,= I — ¢ + - - Jcosutdu .
2 o[(Zu“ 5" u’ 2ub °

122
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It is further modified by use of the identities

sinp = /129_ J%(p) and cosp =/% J_!é(p):

I, = m(—1-+—1—)/ﬁJ tydu » 2 [ DT O
2 b a8 2 % IEN N N

YV
wE fw (Zu)J (ut)du 1 /T J_%(Zu)J_%(ut,iu
1
2t 23/2 o us

Each of these integrals may now be treated according to the Weber-

Schafheitlen result:

. B o u+v-A+1
I Ju(at)Jv(bt)dt 3" I'(—=—) ; (u+v-x+1
0 £} 2 M ey S 21
U'V'A‘Fl < y+l ﬁ) 0<a<b
2 ’ ’ 32 3 b4
or
2n (HHV=-A+1
_ b F( 2 ) (u+v-x+1 \)-LI"A"'I_ u+1 b )
= = ) 1 > o)
zlav A+1P(v+1)rﬂiltéili 2 1 2 2 a2
O<b<a
where

n
JFp(a,bsc,2) = G ) Z T(a+n)T(b+n) Z~

r(a)r(b I'(c#n) n!
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Consider the second integral of I,, for example; if O0<t<2

T J_%(Zu)J_%(ut)du
23/2 3
)

u
3
L VTP s 1wy
372 232‘5/21,(%)1,(2) 21V 27222
3¢
=3

If, for this same integral t>2, we have

2 [ OIS s s
]

1

t3 ¢t
"t Y

The third and fourth integrals of I, are treated in a similar

fashion.
For a = 0, Jy(au) = 1. Multiply the first integral of

I, by J,(au) and obtain for the first term of this integral

@ J (au)J , (ut)du
t 0 - _
T Io u772 = A

By applying the Weber-Schafheitlen result, and setting a = 0,

2
A= E- R 0<t<2

233
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The second term of this integral is treated in a similar fashion.

When all integrals of I, are evaluated and the results col-

lected in powers of t, we find

_m 2 t2 3 ¢S
i5-% 17"z 0

This technique was applied to Ij,...,Is so that the
algorithm on which the evaluation of the resolvent kernal k,(t)

was based was

5
_ A% [7 6% (u)cosutdu A
K =-3 s A6 nzl(' T I

where
n
In = Jm G (u) cosutdu
0

The results of the evaluation of the I, are as follows

=-T 122
I1 3 (1-t9), 0<t<1

=0, t>1

T2 ot t3 ot
L=gG-7T*7T g 0t
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m 141 5t2  t% 6 8
L@ -6 *7 "% =0 > st
_ w81 .27t 9t2  et3 ¢ t5 6 8
g @t Tt T T e wa o S
=0, t>3
ORI (1A U S s LA AN L LA Ll
4~ 15 ‘2079 378 T84 T 2880 1792 32256 64512 = 14192640’ °
0<t<2
.o (64 16t 44t 3 th £S5 7t6  t7 t8
45 ‘693 35 63 3 28 48 960 1792 ~ 10752
t9 tll
* G512 T Tai9z6a0) 0 2t
=0, t4
2 L 6 10
I - T 6891623 . 40?4?t ) 14§g7t . 221t 8 4 9;5
21584 © 3.7%11 ' ‘
t12 tll{»
" 385 * Trsizg) 0 0stsd
___m . 97-35507 3727t _ 127-l167t? 23.199t3 373"
2%23.7 © 2%3%7.11  3%5.11.13 223" 3411 60
_ 562t5  7.461t6 _ 10t7 _t8 19t ¢10 ¢l
81 2,3 7 108 = 405 ~ 180 = 4455
22335
12 14
t t ) 1<t<3

+ -
253%5.11  2%3%527.11.13
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T 7421845 95625000t  734375t%2  3275000t3

= + -
1655, L 77 143 T 11
7 9 q
+ 16875t% + 26000t5 - 8925t + 6—431"— + 93t8 - 15? ¢ 32l
8 .1ttt
tes v - Tt 750290 0 <t



APPENDIX III

ARTIFICIAL FUNCTIONS

The complexity associated with certain particular programs
of this calculation and the uncertanty as to just what might consti-
tute "correct" answers for some of the more abstract functions [wz,
Eq. (3-75), for example] made desirable the existence of an alter-
nate check specifically designed to examine the correctness of the
programming effort. This was accomplished by the creation of arti-
ficial functions, by Babb.

These artifical functions are useful because they permit the
analytic solution of the equation which, in the actual program and
using 'real' functions, must be solved numerically. The results of
the analytic solution may be compared to those of the numerical
solution (where, of course, the artifical function has replaced the
'real' function). Added confidence is thus gained in the correctness
of the programming effort by agreement of these two values. Ob-
viously, this procedure does not supplant other analysis, but rather

enlarges the library of precautionary procedures.

The wz Function

In reduced units x = r/o, if g is defined as

g(x) =x, 0sx<5

128
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g(x) = 15-2x 5<x<7

gx) =1, x27 ,

it becomes possible to solve the wz equation analytically:

vV7-1 2

- -7-1  x
wz = Clx + C2x S 02x35
A 2
—_1 2 Xz
llJZ = 3 FA + Azx FB + 5 5<x<7 ,

where the F's are hypergeometric functions
- ’ : s
Fy = 21=1(-2+»/7', -2-/7; 1, 1 =)

- . e 2X
Fy = ZFI(S-/7_, 3+/7; 6, R

and wz = f% , x27

Here Cl’ CZ’ Al, AZ’ and P must be evaluated from boundary conditionms,
at 1, 5 and 7. Their values were obtained by numerical techniques
(as opposed to the use of the algebraic solutions which involve

transcendental hypergeometric functions) as

C1 = - 0.419555 , C2 = 0.0848981
A1 = 476.984 , A2 = - 0.0125097 ,
and P = 3266.72.

The wo Function

In addition to defining g for the analytic solution, one

must have an expression for 34ng/3p as well and it was taken quite
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arbitrarily to be

mg. = l 5 05xs7
ap X
=0, x7

It can then be easily shown that:

wo=-é+%-%znx+cz, 0<x<5

b, = f%.{jEE%ZElE -30(15-2x) +225¢n(15-2)}+ > en(15-2x)
e At e 2 BB, 5<x<7

wo=%’ x27

The various constants may be evaluated numerically or
analytically. From matching boundary conditions and evaluating the

logs, the results are

Q = 804
=N
Al T3
A2 = 113.047
c2 = 121.340

The Thermal Conductivity

The ¢ functions are not required for the evaluation of the

thermal conductivity and a different set of g's were chosen
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= £, T ¢(x)
g(x) = (I+ “Flexp(- 37535
where ¢(x) was either the Lenmard-Jones (x~12-x76) or x~3. This
latter form of permitted full, simple analytic integrations of the

integrals appearing in the expressions for x,(R>0) and thus was

very useful in the checking process.



APPENDIX IV

DATA TABLES for n, ¢, X



Table 4.1 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: 180°K
Remarks: ¢RG

RG

A P Pear  Poss s "k v ny (R>0) "cAL  "oBS
Amagat bar bar x103kg/sec  +———-—— x10% kgm/m sec »
1.00  74.11  39.70  40.68 1.144 1.426  .414 1641 2.003  16.9
2.00 148.2 62.71  67.76 1.638  2.063 1.536 .9353  4.535  20.4
3.00 222.3  73.24  87.37 2.124  2.515  3.292 3.924  9.731  25.4
4.00 296.5 95.02  105.3 2.704 2.860 4.819 13.40  21.08 31.3
5.00 370.6  114.3  128.5 2.978 3.389  6.939 18.59  28.91 38.4
6.00 444.7  132.1  169.3 3.195 3.928  9.460 22.09  35.48 47.7
7.00 518.8  149.4  250.2 3.382  4.469 12.51 23.76  40.74 60.7
8.00 592.9  168.1  411.5 3.553  5.006 15.95 23.60  44.56 79.3
9.00 667.0  201.1  715.6 3.743  5.526 19.03 23.25  47.81 106
10.00  741.1  279.7  125.6 4.003 6.005 19.27 26.57  51.88 144
11.00 815.3  401.8  21.61 4.308 6.460 14.06 33.27  53.78 197

TANS




Substance: Argon

Table 4.2

Coefficient of Shear Viscosity.

Intermolecular Potential:

Lennard-Jones

Radial Distribution Function: Kirkwood Temperature: 273°K
Remarks:
s
A p P P t 6 n (R>0)
CAL OBS s k v Ny "cAL "oBs
Amagat bar bar x1013kg/sec 4———————— x10% kgm/m sec -+
0.5 37.06 36.16 36.38 .7378 1.629  .1553 .0106 1.795 21.6
1.0 74.11 69.95 70.84 1.048 2.305 .5583 .0573 2.921 22.9
1.5 111.2 102.0 104.1 1.289 2.843 1.197 .1510 4.190 24.9
2.0 148.2 133.1 137.1 1.495 3.313 2.066 .2967 5.676 26.4
2.5 185.3 163.9 170.6 1.681 3.744 3.164 .4971 7.405 28.5
3.0 222.3 195.1 205.7 1.852 4.149 4.484 .7536 9.389 30.9
3.5 259.4 227.7 243.4 2.013 4.536 6.026 1.067 11.63 33.6
4.0 296.5 262.6 285.4 2.167 4.909 7.773 1.440 14.12 36.7
4.5 333.6 300.9 333.1 2.317 5.271 9.715 1.873 16.86 40.3
5.0 370.06 343.8 389.0 2.464 5.626 11.83 2.369 19.82 44.4
5.5 407.06 392.6 455.6 2.608 5.976 14.09 2.928 22.99 49.1
6.0 444.7 449.0 536.5 2.752 6.321 16.44 3.552 26.32 54.6
6.5 481.7 514.5 635.8 2.895 6.663 18.85 4.238 29.75 60.9
7.0 518.8 591.0 758.8 3.039 7.004 21.22 4.980 33.21 68.3
7.5 555.9 680.3 912.0 3.184 7.344 23.48 5.766 36.59 77.0
8.0 592.9 784.2 1102 3.330 7.686 25.50 6.579 39.76 87.4
8.5 630.0 904.4 1338 3.477 8.028 27.13 7.393 42.55 99.8
9.0 667.0 1042 1630 3.627 8.374 28.19 8.179 44.75 114
9.5 704.1 1199 1991 3.778 8.722 28.49 8.901 46.11 144
Table to be continued

¢el



Table4-2 continued

RG

A P Pea  Poss ts g v ny (R>0) "cAL  "oBs

Amagat bar bar x1013kg/sec +——————— x10% kgm/m sec >
10.0 741.1 1375 1991 3.930 9.073 27.78 9.526 46.37 165
10.5 778.2 1571 2433 4.085 9.426 25.75 10.03 45.20 189
11.0 815.3 1783 2971 4.241 9.781 22.07 10.40 42,25 216
11.5 852.3 2011 3622 4.399 10.14 16.35 10.69 37.18 247
12.0 889.4 2248 4406 4.560 10.49 8.069 11.03 29.58 282
12.5 926.4 2488 8341 4.722 10.83 -3.471 11.73 19.09 321
13.0 963.5 2720 6451 4.888 11.17 -19.32 13.53 5.381 366
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Table 4-3. Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: 308°
Remarks: RG

' RG
A o PeaL Poss Zs Nk ny ny (R>0) NCAL "oBS
Amagat bar bar x10!'3kg/sec +—————— x10% kgm/m sec. >
0.5 37.06 41.35 41.56 .7245 1.861 .1697 .0081 2.039 24.1
1.0 74.11 81.13 81.96 1.030 2.626 .6078 .0436 3.278 - 25.4
1.5 111.2 120.0 122.0 1.268 3.230 1.301 .1154 4.646 26.9
2.0 148.2 158.8 162.5 1.473 3.757  2.245 .2277 6.230 28.6
2.5 185.3 198.3 204.5 1.657 4.237 3.439 .3836 8.060 30.6
3.0 222.3 239.4 249.1 1.828 4.687 4.878 .5852 10.15 33.0
3.5 259.4 283.2 297.7 1.990 5.115 6.557 .8348 12.51 35.6
4.0 296.5 330.6 351.8 2.145 5.578 8.465 1.134 15.13 38.6
4.5 333.6 383.0 413.5 2.296° 5.929 10.59 1.486 18.01 42.1
s.0 370.6 441.9 485.1 2.444 6.321 12.90 1.892 21.11 46.1
5.5 407.6 508.7 569.6 2.590 6.706 15.37 2.351 24.43 50.8
6.0 444.7 585.2 670.8 2.735 7.087 17 .96 2.862 27.90 56.2
6.5 481.7 673.3 793.1 2.880 7.466 20.59 3.420 31.48 62.6
7.0 518.8 775.0 941.9 3.025 7.844 23.21 4.016 35.07 69.9
7.5 555.9 892.3 1124 3.170 8.222 25.70 4.634 38.56 78.5
8.0 592.9 1027 1347 3.317 8.601 27.95 5.255 41.81 88.4
8.5 630.0 1182 1619 3.465 8.982 29.80 5.850 44.64 99.9
9.0 667.0 1357 1951 3.614 9.367 31.07 6.387 46.83 111.
9.5 704.1 1555 2356 3.765 9.756 31.55 6.826 48.13 128.

Table . To be continued.
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Table 4-3. Cont inued

RG .
A P PeaL Poss Zs nx Ny n, (R>a) NCAL NoBS
Amagat bar bar x10!3kg/sec  ~—————— x10® kgm/m sec +
10.0 741.1 1775 2848 3.917 10.15 30.98 7.128 48.25 146
10.5 778.2 2019 3433 4.071 10.54 29.07 7.256 46.86 165
11.0 815.3 2284 4137 4.226 10.94  25.47 7.185 43.59 188
11.5 852.3 2567 4973 4.384 11.34 19.77 6.919 38.03 213
12.0 889.4 2865 5959 4.543 11.74 11.48 6.520 29.74 242
12.5  926.4 3169 7115 4.704 12.13  -.011 6.169 18.24 274
13.0  963.5 3470 8466 4.868 12.52 -15.78 6.300 3.037 309
13.5 1001 3753 1004 5.036 12.89 -37.17 7.892 -16.39 349
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Table 4-4 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Pg&ential:

Radial Distribution Function: Kirkwood Temperature:
Remarks: ;§G

Lennard-Jones

P < RG

A P PeaL 0BS s "k ny ny (R>0) NCAL "oBs
Amagat bar bar »0!3kg/sec ~—— — x10% kgm/m sec >
0.5 37.06 44.31 44 .52 .7183 1.993 1.778 . 0070 2.178 25.4
1.0 74.11 87.48 88.27 1.021 2.808 .6352 .0380 3.481 26.7
1.5 111.2 130.2 132.1 1.258 3.449 1.358 .1006 4.808
2.0 148.2 173.4 176.9 1.463 4.007 2.344 .1994 6.550 29.7
2.5 185.3 217.9 223.8 1.647 4,515 3.590 .3370 8.442 31.7
3.0 222.3 264.6 273.9 1.818 4,989 5.093 .5161 10.60 34.0
3.5 259.4 314.6 328.6 1.980 5.441 6.848 .7389 13.03 36.6
4.0 296.5 369.2 389.6 2.135 5.875 8.844 1.008 15.73 39.7
4.5 333.6 429.6 459.1 2.287 6.297 11.06 1.324 18.69 43.2
5.0 370.6 497.5 539.6 2.435 6.710 13.49 1.690 21.89 47.3
5.5 407.6 574.4 634.3 2.581 7.116 16.08 2.104 25.30 52.1
6.0 444.7 662.3 746.8 2.727 7.517 18.79 2.565 28.87 57.6
6.5 481.7 763.1 881.9 2.872 7.916 21.57 3.065 32.55 64.1
7.0 518.8 878.8 1045 3.017 8.314 24.32 3.594 36.23 71.6
7.5 555.9 1012 1247 3.163 8.713 26.96 4.138 39.81 80.2
8.0 592.9 1164 1483 3.310 9.113 29.35 4.674 43.14 90.2
8.5 630.0 1338 1776 3.458 9.516 31.35 5.174 46.04 102
9.0 667.0 1534 2131 3.607 9.922 32.76 5.605 48.29 115
9.5 704.1 1754 2558 3.757 10.33 33.37 5.927 49.63 130
10.0 741.1 2000 3075 3.909 10.75 32.93 6.099 49.78 146
10.5 778.2 2270 3687 4.062 11.16 31.14 6.079 48.39 166
11.0 815.3 2564 4420 4,217 11.59 27.65 5.836 45.07 187
11.5 852.3 2879 5288 4.374 12.01 22.05 5.359 39.41 212
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Table 4-5. Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Lennard-Jomes
Radial Distribution Function: Kirkwood Temperature: 373°K
Remarks: ;EG

A p Pca  Poss ef6 oy ny n, (R>0) NCAL "oBs
Amagat bar bar x1013kg/sec +——————— x10% kgm/m sec =
0.5 37.06 50.96 51.15 .7071 2.287 .1954 .0053 2.489 27.9
1.0 74.11 101.7 102.4 1.007 3.213 .6947 . .0288 3.936 - 29.2
1.5 111.2 153.1 154.8 1.241 3.936 1.483 .0769 5.496 30.5
2.0 148.2 206.1 209.2 1.444 4,561 2.557 .1533 7.272 32.1
2.5 185.3 261.6 266.8 1.628 5.129 3.917 .2610 9.307 34.0
3.0 222.3 320.8 329.0 1.799 5.658 5.559 .4028 11.62 36.2
3.5 259.4 384.9 397.4 1.961 6.160 7.477 .5809 14.22 38.9
4.0 296.5 455.2 473.8 2.117 6.643 9.662 .7975 17.10 42.0
4.5 333.6 533.4 560.7 2.269 7.111 12.10 1.054 20.26 45.6
5.0 370.7 621.2 660.8 2.418 7.569 14.76 1.351 23.68 49.9
5.5 407.1 720.6 777.5 2.565 8.019 17.61 1.686 27.32 54.9
6.0 444.7 833.5 915.0 2.711 8.465 20.61 2.057 31.13 60.7
6.5 481.7 862.2 ‘1078 2.856 8.908 23.69 2.455 35.05 67.4
7.0 518.8 1109 1273 3.002 9,351 26.76 2.869 38.98 75.1
7.5 555.9 1276 1506 3.148 9.795 29.74 3.283 42,82 83.9
8.0 592.9 1466 1785 3.294 10.24 32.48 3.676 46.40 93.9
8.5 630.0 1681 2121 3.441 10.69 34.84 4.019 49.55 105
9.0 667.0 1923 2525 3.590 11.14 36.63 4.278 52.05 118
9.5 704.1 2193 - 2992 3.739 11.60 37.62 4.415 53.64 132
0.0

741.1 2493 3563 3.889 12.06 37.57 4,386 54.02 148

8¢l




Table 4-6 Coefficient of Shear Viscosity.

Substance: Argon . Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: S00°K
Remarks: ;gc

RG
A p PeaL Poss ts " ny n, (R>0) NCAL "oBS
Amagat bar bar x1013kg/sec “— x10% kgm/m sec -
0.5 37.06 69.64  70.14 6871 3.108 .2424 .0028 3.353 34.3
1.0 74.11  141.6  142.1 9800 4.330 .8509 .0157 5.196 35.5
1.5  111.2 212.1  218.2 1.211 5.272 1.807 .0427 7.222 36.7
2.0 148.2 297.2 299.1 1.412 6.080 3.109 .0868 9,275 38.2
2.5  185.3 383.3  386.6 1.594 6.806 4.758 .1504 11.71 39.9
3.0  222.3 476.9  482.0 1.764 7.480 6.753 .2359 14.47 42.2
3.5  259.4 579.6  587.4 1.926 8.117 9.091 .3451 17.55 44.9
4.0  296.5 693.4  704.6 2.082 8.727 11.76 .4794 20.97 48.3
4.5  333.6 820.2  836.2 2.234 9.318 14.75 .6391 24.71 52.3
5.0 370.6 962.4  984.8 2.383 9.805 18.04 .8235 28.76 57.2
5.5  407.6 1122 1154 2.530 10.46  21.59 1.030 33.08 62.7
6.0  444.7 1303 1379 2.675 11.03 25.35 1.254 37.63 69.1
6.5  481.7 1506 1615 2.820 11.50 29.27 1.487 42.35 76.3
7.0  518.8 1736 1893 2.964 12.14  33.26 1.720 47.13 84.4
7.5  555.9 1995 2206 3.108 12.70 37.23 1.937 51.87 93.3
8.0  592.9 2285 2580 3.252 13.27 41.05 2.119 56.44 103
8.5  630.0 2610 3023 3.306 13.84 44.37 2.232 60.44 113
9.0  667.0 2973 3544 3.541 14.41 47.62 2.279 64.31 125
9.5 704.1 3374 4154 3.686 14.99 49.99 2.195 67.17 136
10.0  741.1 3817 4866 3.832 15.57 51.42 1.953 68.94 149
10.5  778.2 4302 5691 3.980 16.16 51.64 1.509 69.31 162
11.0  815.3 4828 6645 4.128 16.76 50.29 .8177 67.86 175
11.5  952.3 5394 7745 4.278 17.36 46.97 -.1693 64.16 189
12.0°  889.4 5996 9009 4.429 17.96 41.21 -1.496 57.68 202
12.5  926.4 6630 10460 * 4.583 18.57 32.41 -3.197 47.78 216
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Table 4-7. Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: 600°K
Remarks:
A o P P X6 g n (R>0)
CAL OBS s k v vy "caL "oBs

Amagat bar bar x10!3kg/sec +———————— x10% kgm/m sec -
0.5 37.06 84.29 83.89 .6775 3.742 2772 .0019 4.021 38.9
1.0 74.11 172.9 172.7 .9673 5.188 .9647 .0109 6.164 40.0
1.5 111.2 267.0 267.0 1.196 6.295 2.040 .0301 8.365 41.1
2.0 148.2 368.1 368.8 1.396 7.237 3.504 .0618 10.80 42.5
2.5 185.3 477.7 479.2 1.577 8.081 5.358 .1083 13.55 44.3
3.0 222.3 597.7 599.8 1.747 8.861 7.603 .1714 16.64 46.5
3.5 259.4 730.0 731.6 1.908 9.597 10.27 .2525 20.09 49.5
4.0 296.5 876.8 876.2 2.063 10.30 13.25 .3526 23.91 53.1
4.5 333.6 1041 1054 2.215 10.98 16.64 .4718 28.09 57.4
5.0 370.6 1224 1237 2.363 11.65 20.38 . 6087 32.63 62.6
5.5 407.6 1429 1474 2.509 12.30 24 .43 .7610 37.49 68.5
6.0 444 .7 1660 1755 2.653 12.95 28.76 .9240 42,63 75.1
6.5 481.7 1919 2026 2.796 13.59 33.30 1.091 47.98 82.4
7.0 518.8 2210 2348 2.938 14.23 37.88 1.248 53.36 90.2
7.5 555.9 2537 2734 3.080 14.88 42.59 1.380 58.85 98.6
8.0 592.9 2901 3176 3.222 15.52 47 .27 1.498 64.30 107
8.5 630.0 3307 3694 3.363 16.18 51.76 1.553 69.49 126
9.0 667.0 3758 4298 3.505 16.83 55.84 1.527 74.20 141
9.5 704.1 4256 5000 3.647 17.50 59.28 1.390 78.16 158

Table to be continued.
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Table 4-7 continued.

A P PeaL Poss £g0 " ny n, (R>0) NCAL "oBs
Amagat bar bar x10Bkg/sec +———————— x10% kgm/m sec -+
10.0 741.1 4803 5810 3.790 18.17 62.24 1.131 81.54 176
10.5 778.2 5401 6739 3.933 18.84 63.92 .6838 83.44 197
11.0 815.3 6050 7807 4.077 19.52 64.21 .0183 83.75 219
11.5 852.3 6749 9026 4.23 20.21 62.73 -.9110 82.03 244
12.0 889.4 7496 10420 4.370 20.91 59.02 -2.152 77.78 271
12.5 926.4 8285 12010 4.519 21.61 52.53 -3.755 70.38 300
13.0 963.5 9110 13820 4.671 22.30 42.54 -5.760 59.09 332
13.5 1001 9958 15890 4.827 23.00 28.13 -8.191 42.94 367
14.0 1037.6 10810 18240 4.986 23.70 8.03 -11.02 20.71 404
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Table 4-8 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: 180°K
Remarks:
ts
RG
A P PeaL Poss ts M ny n, (R>0) NcAL NoBs
Amagat bar bar =108 kg/sec — x10® kgm/m sec >

1.0 56.18 35.16 33.60 .6392 1.322 .3173 .0303 1.669 19.0
2.0 112.4 67.33 61.38 .9128 1.898 1.173 .1569 3.228 - 22.9
3.0 168.5 99,31 86.42 1.131 2.375 2.548 .3994 5.322 27.9
4.0 224.7 134.4 112.2 1.325 2.808 4.416 .7653 7.990 33.8
5.0 280.9 176.8 143.3 1.507 3.217 6.722 1.262 11.20 40.6
6.0 337.1 231.8 186.5 1.683 3.612 9.347 1.897 14.86 49.3
7.0 393.3 305.5 253.1 1.850 4.002 12.07 2.662 18.73 60.7
8.0 449.4 405.3 360.8 2.038 4.391 14.50 3.511 22.40 76.4
9.0 505.6 538.0 535.4 2.220 4.784 16.45 4.347 25.18 98.4
0.0 561.8 708.5 813.5 2.406 5.183 15.84 5.023 26.04 129
1.0 618.0 917.0 1247 2.596 5.587 12.66 5.407 23.66 171
2.0 674.2 1155 1900 2.791 5.992 4.827 5.587 16.41 228
3.0 730.3 1397 2848 2.991 6.385 -10.45 6.627 2.561 303
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Table 4-9. Coefficient of Shear Viscosity.

Sub§tance: Nitrogen Intermolecular Potential: Lennard-Jones
Radial Disﬁfibution Function: Kirkwood Temperature: 273°K

Remarks: ;g

RG

A P Pcar  Poss Zs "% ny ny (R>0) "CAL "oBS
Amagat bar bar x103kg/sec +———————— x10% kgm/m sec >

0.5 28.09 28.53 28.16 .4272 1.463 .1200 .0022 1.586 17.5
1.0 56.18 57.48 55.98 .6087 2.048 .4241 .0123 2.484 - 18.4
1.5 84.27 87.31 83.90 .751S 2.502 .9034 .0330 3.438 19.6
2.0 112.4 118.5 112.4 .8751 2.893 1.557 . 0664 4.516 20.9
2.5 140.4 151.7 142.0 .9872 3.247 2.384 .1139 5.744 22.4
3.0 168.5 187.3 173.3 1.092 3.576 3.383 L1771 7.136 24.0
3.5 196.6 226.3 206.9 1.191 3.887 4.553 .2572 8.697 25.8
4.0 224.7 269.2 243.9 1.287 4.186 5.887 .3550 10.43 27.9
4.5 252.8 317.1 285.0 1.380 4.476 7.377 .4713 12.32 30.2
5.0 280.9 370.8 331.7 1.471 4.759 9.008 .6058 14.37 32.7
5.5 309.0 431.3 385.3 1.561 5.038 10.76 .7573 16.55 35.7
6.0 337.1 500.0 447.6 1.651 5.314 12.61 .9234 18.85 39.1
6.5 365.2 577.7 520.7 1.740 5.589 14.52 1.100 21.21 42.9
7.0 393.3 666.0 607.1 1.829 5.863 16.45 1.280 23.59 47.4
7.5 421.3 765.9 709.6 1.918 6.138 18.33 1.454 25.92 52.5
8.0 449.4 878.9 831.9 2.007 6.414 20.10 1.612 28.13 58.5
8.5 477.5 1006 977.7 2.097 6.692 21.67 1.739 30.10 65.4
9.0 505.6 1148 1152 2.187 6.973 22.94 1.815 31.73 73.3
9.5 533.7 1307 1360 2.277 7.257 23.78 1.822 32.86 82.5

Table to be continued.

348



Table 4-9 Continued.

RG

A o PeaL PoBs Zs % ny ny (R>0) NCAL "oBS

Amagat bar bar x1013kg/sec %106 kgm/m sec ’
10.0 561.8 1482 1608 2.368 7.544  24.06 1.734 33.34 93.0
10.5 589.9 1674 1903 2.460  7.834 23.61 1.528 32.97 105
11.0 618.0 1882 2252 2.553 8.126 22.23 1.176 31.53 119
11.5 646.1 2106 2665 2.646  8.421 19.69 .6559 28.76 135
12.0 674.2 2343 3148 2.741 8.717 15.71 -.0485 24.38 152
12.5  702.2 2592 3710 2.838 9.013 9.961 -.9404 18.03 172
13.0 730.3 2845 4361 2.935 9.307 1.981 -1.981 9.308 195
13.5 758.4 3098 5108 3.036  9.598 -8.842 -3.052 -2.296 220
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Table 4-10 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: 308°K
Remarks: z
s
A P Pear Poss £ &6 Nk ny ny (R>0) CAL "oBS
Amagat bar bar x10kg/sec “—— %106 kgm/m sec -+

0.5 28.09 32.57 32.06 .4202 1.667 .1314 .0016 1.800 17.5
1.0 56.18 66.38 64.29 .5994 2.324 .4621 .0090 2.795 18.3
1.5 84.27 102.0 97.18 .7408 2.831 .9822 . 0245 3.838 19.3
2.0 112.4 ~140.0 131.2 .8636 3.266 1.691 .0498 5.006 20.4
2.5 140.4 181.0 167.1 .9752 3.657 2.589 .0864 6.332 21.7
3.0 168.5 225.8 205.3 1.079 4.020 3.674 .1356 7.830 23.2
3.5 196.6 275.2 246.8 1.179 4,364 4.946 .1985 9.508 24.8
4.0 224.7 330.2 292.4 1.274 4.693 6.399 .2760 11.37 26.6
4.5 252.8 391.7 343.4 1.367 5.012 8.023 .3681 13.40 28.7
5.0 280.9 461.0 401.0 1.458 5.324 9.806 .4744 15.60 31.1
5.5 309.0 539.1 466.9 1.548 5.631 11.73 .5933 17.95 33.9
6.0 337.1 627.4 542.9 1.637 5.936 13.76 .7220 20.42 37.1
6.5 365.2 727.3 631.3 1.726 6.239 15.87 .8562 22.97 40.7
7.0 393.3 840.1 734.7 1.814 6.541 18.01 .9892 25.54 44.9
7.5 421.3 967.5 856.2 1.902 6.845 20.13 1.113 28.09 49.6
8.0 449.4 1111 999.4 1.990 7.150 22.06 1.210 30.42 55.1
8.5 477.5 1271 1168 2.078 7.458 24.01 1.283 32.75 61.4
9.0 505.6 1450 1368 2.167 7.768 25.46 1.292 34,52 68.6
9.5 533.7 1648 1603 2.255 8.082 26.77 1.245 36.09 76.8

Table to be continued
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Table 4-10 Continued

RG

A e Peca  Poss ts nk ny ny (R>0) "cAL  Mos
Amagat bar bar x10l1%kg/sec +——————— x10% kgm/m sec -+
10.0 561.8 1867 1882 2.345 8.399 27.42 1.098 36.91 86.1
10.5 589.9 2107 2209 2.435 8§.719 27.37 .8322 36.93 96.7
11.0 618.0 2368 2594 2.525 9,043 26.45 .4204 35.91 109
11.5 646.1 2648 3044 2.617 9.369 24 .42 -.1656 33.62 122
12.0 674.2 2947 3567 2.709 9.698 21.01 ~-.9528 29.75 137
12.5 702.2 3055 4172 2.816 9.993 15.74 -.1624 24.11 154
13.0 730.3 3356 4866 2,912 10.32 9.407 -2.774 15.95 173
13.5 758.4 3661 5658 3.011 10.64 -1.657 -4.077 4.909 194
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Table 4-11 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperature: °K
Remarks: CRG
s
A P P P g RG n n n. (R>0)
CAL OBS s Kk v v "cAL "oBs

Amagat bar bar x10tkg/sec ~——— x10% kgm/m sec >
0.5 28.09 34.51 34.28 .4224 1.761 .1369 .0016 1.900 17.4
1.0 56.18 69.98 69.03 .6023 2.454 .4803 . 0090 2.944 18.2
1.5 84.27 106.9 104.7 .7442 2.989 1.019 .0244 © 4.032 19.2
2.0 112.4 145.8 142.0 .8675 3.447 1.753 .0484 5.250 20.2
2.5 140.4 187.4 181.3 .9781 3.859 2.683 . 0855 6.627 26.4
3.0 168.5 232.4 223.5 1.084 4.241 3.808 .1337 8.182 22.8
3.5 196.6 281.4 269.4 1.183 4.602 5.126 .1953 9.923 24.3
4.0 224.7 335.5 320.0 1.278 4.947 6.634 .2709 11.85 26.1
4.5 252.8 395.5 376.4 1.371 5.282 8.322 .3607 13.97 28.1
5.0 280.9 462.5 440.2 1.463 5.609 10.18 .4645 16.25 30.4
5.5 309.0 537.8 512.9 1.553 5.931 12.19 .5810 18.70 33.1
6.0 337.1 662.4 596.6 1.642 6.249 14.32 .7076 21.27 36.1
6.5 365.2 717.8 693.6 1.731 6.565 16.54 .8403 23.94 39.7
7.0 393.3 825.3 806.5 1.819 6.880 18.81 .9734 26.66 43.7
7.5 421.3 946.2 938.5 1.907 7.197 21.07 1.099 29.36 48.3
8.0 449.4 1082 1093 1.996 7.515 23.25 1.206 31.97 53.6
8.5 477.5 1234 1274 2.085 7.835 25,27 1.283 34.39 59.6
9.0 505.6 1403 1488 2.174 8.158 27.03 1.314 36.50 66.5
9.5 533.7 1591 1739 2.263 8.484 28.42 1.280 38.18 74.3

Table to be continued
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Table 4-11 Continued

RG

A e Pcar  Poss ts "k v ny (R>0) "cAL  "oBS

Amagat bar bar x0!3kg/sec +————————— x10% kgm/m sec -

10.0 561.8 1797 2034 2.353 8.813 29.29 1.161 39.26 83.0

10.5 589.9 2024 2379 2.444 9.146 29.47 .9340 39.55 92.9
11.0 618.0 2269 2783 2.535 9.482 28.79 .5757 38.85 104
11.5 646.1 2533 3254 2.627 9.820 27.01 .0594 36.88 116
12.0 674.2 2813 3798 2.721 10.16 23.86 -.6359 33.38 130
12.5 702.2 3313 4425 2.803 10.54 19.17 -1.844 27.86 146
13.0 730.3 3641 5143 2.899 10.88 12.26 -3.010 20.13 163
13.5 758.4 3974 5960 2.997 11.22 2.682 -4.368 9.547 182
14.0 786.5 4304 6885 3.087 11.56 -10.37 -5.817 -4.626 202
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Table 4-12 Coefficient of Shear Viscosity.

Substance: Nitrogen . Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood Temperature: 373°K
Remarks: ;g

RG
A p PeaL PoBs Es Ny n n, (R>0)

v 1 "cAL "oss

Amagat bar bar x10'3kg/sec “—— x10% kgm/m sec -

0.5 28.09 39.65 39.27 .4160 2.018 .1509 .0012 2.170 17.4
1.0 56.18 81.20 79.65 .5938 2.800 .5260 .0065 3.333 18.1
1.5 84.27 125.3 121.7 .7344 3.400 1.114 .0179 4.531 18.9
2.0 112.4 172.5 165.9 .8566 3.911 1.913 .0368 5.860 19.8
2.5 140.4 - 223.6 213.2 .9679 4.369 2.925 .0643 7.359 20.8
3.0 168.5 279.5 264.2 1.072 4.793 4.152 .1016 9.045 22.0
3.5 196.6 341.2 320.0 1.171 5.192 5.590 .1495 10.93 23.4
4.0 224.7 409.5 381.4 1.266 5.575 7.237 .2086 13.02 25.0
4.5 252.8 485.7 450.1 1.359 5.945 9.084 .2790 15.31 26.9
5.0 280.9 571.0 527.5 1.450 6.307 11.12 .3599 17.79 29.1
5.5 309.0 666.8 615.4 1.539 6.663 13.33 .4500 20.44 31.6
6.0 337.1 774.4 715.9 1.627 7.015 15.68 .5467 23.24 34.5
6.5 365.2 895.4 831.6 1.715 7.364 18.15 .6460 26.16 37.8
7.0 393.3 1031 965.1 1.803 7.714 20.69 . 7425 29.15 41.7
7.5 421.3 1184 1120 1.890 8.064 23.19 .8268 32.08 46.0
8.0 449.4 1354 1300 1.977 8.416 25.69 .8929 35.00 50.9
8.5 477.5 1545 1509 2.064 8.771 28.08 .9285 37.78 56.4
9.0 505.6 1756 1753 2.151 9.128 30.22 .9184 40.28 62.5
9.5 §33.7 1989 2036 2.239 9.489 32.01 .8446 42 .34 69.4

Table to be continued.
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Table 4-12 Continued

A P Pea.  Poss g oy v ny (R>0) "caL  "os
Amagat bar bar x1013%kg/sec 4———————— x10% kgm/m sec -+
10.0 561.8 2246 2366 2.326 9.854 33.54 .7024 44.10 77.2
10.5 589.9 2527 2750 2.415 10.22 34.31 .4505 44,98 85.7
11.0 618.0 2831 3194 2.503 10.59 34.28 .0732 44 .95 95.1
11.5 646.1 3159 3708 2.593 10.97 33.24 -.4554 43.76 106
12.0 674.2 3509 4298 2.683 11.35 30.93 -1.162 41.12 117
12.5 702.2 3879 4974 2.776 11.73 27.03 -2.074 36.69 130
13.0 730.3 4265 5743 2.869 12.10 21.15 -3.212 30.04 143
13.5 758.4 4661 6614 2.965 12.49 12.74 -4.584 20.64 158
14.0 786.5 5059 7594 3.064 12.86 10.99 -6.158 174

7.804
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Table 4-13 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Lennard Jones
Radial Distribution PFunction: Kirkwood Temperature: 500°K
Remarks: cgg

RG
A P Peal Poss ts "k v ny (R>a) "car’”  -"os
Amagat bar bar x103kg/sec +— x10% kgm/m sec -
0.5 28.09 53.71 53.31 .4084 2.705 .1873 . 0006 2.893 17.3
1.0 56.18 111.1 109.4 .5836 3.725 .6435 .0037 4.372 17.9
1.5 84.27 172.9 169.0 .7225 4.496 1.353 .0103 5.859 18.4
2.0 112.4 240.0 232.9 .8434 5.148 2.315 .0216 7.484 19.1
2.5 140.4 - 313.4 301.9 .9536 5.728 3.532 .0384 9.299 19.8
3.0 168.5 394.2 377.2 1.057 6.263 5.008 .0614 11.33 20.7
3.5 196.6 483.5 460.0 1.154 6.764 6.741 .0913 13.60 21.9
4.0 224.7 582.7 §51.6 1.249 7.244 8.732 .1282 16.10 23.3
4.5 252.8 693.1 653.7 1.340 7.707 10,98 .1721 18.85 24.9
5.0 280:9 816.4 768.0 1.430 8.159 13.46 .2222 21.84 26.8
5.5 309.0 954.2 896.9 1.518 8.602 16.18 .2774 25.06 29.2
6.0 337.1 1108 1043 1.605 9.041 19.07 .3348 28.45. 31.8
6.5 365.2 1280 1208 1.690 9.477 22.17 .3926 32.04 34.8
7.0 393.3 1472 1396 1.776 9.911 25.43 .4462 35.79 38.1
7.5  421.3 1686 1611 1.860 10.35 28.83 .4914 39.67 41.7
8.0  449.4 1924 1857 1.944° 10.78 32.26 .5197 43.56 45.8
8.5  477.5 2187 2138 2.028 11.22° 35.67 .5234 47.41 50.1
9.0  505.6 2478 2459 2.112 11.66  38.96 .4922 51.11 54.8
9.5  533.7 2798 2827 2.196 12.11  42.11 .4169 54.64 59.8

Table to be continued.
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Table 4-13. Continued

A P PeaL Poss £l " ny n (R>0) NCAL "oBs
Amagat bar bar x10'%kg/sec  4————— x10% kgm/m sec -+
10.0 561.8 3149 3248 2.280 12.56 44,81 .2762 57.64 65.1
10.5 589.9 3532 3729 2.364 13.01  46.95 .0544 60.02 70.6
11.0 618.0 3946 4278 2.449 13.47 48.87 -.2452 62.10 76.4
11.5 646.1 4394 4902 2.534 13.93  49.86 -.6650 63.12 82.4
12.0 674.2 4872 5609 2.619 14.40 49.86 -1.221 63.04 88.5
12.5 702.2 5382 6409 2.706 14.87 48.58 -1.940 61.51 94.7
13.0 730.3 5919 7310 2.794 15.34 45.70 -2.850 58.19 101
13.5 758.4 6479 8318 2.884 15.81 40.78 -3.980 52.61 107
14.0 786.5 7055 9443 2.977 16.28 33.24 -5.358 44, 113
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est



Table 4-14 Coefficient of Shear Viscosity.

Substance: Nitrogen

Intermolecular Potential:

Lennard Jones

Table

to be continued.

Radial Distr*&ytiou Function: Kirkwood Temperature:
Remarks:
RG
P PcaL Poss (A "k y \ caL NoBs
Amagat bar bar x10'%kg/sec  +————— x10% kgm/m sec -
0.5 28.09 64.75 64.33 .4047 3.234 .2144 3.449 17.2
1.0 56.18 134.5 132.7 .5786 4,433 .7294 5.165 17.7
1.5 84 .27 210.1 206.0 .7164 5.332 1.526 6.865 18.2
‘2.0 112.4 292.6 285.0 .8366 6.087 2.603 8.706 18.7
2.5 140.4 383.2 370.9 .9459 6.758 3.966 10.75 19.3
3.0 168.5 483.0 464.9 1.048 7.373 5.616 13.03 20.1
3.5 196.6 593.5 568.4 1.145 7.950 7.558 15.58 21.2
4.0 224.7 716.1 682.9 1.239 8.500 9.789 18.38 22.5
4.5 252.8 852.5 810.4 1.329 9.031 12.31 21.47 24.1
5.0 280.9 1004 952.8 1.418 9.548 15.08 24.80 25.9
5.5 309.0 1174 1112 1.505 10.06 18.15 28.41 28.1
6.0 337.1 1362 1292 1.590 10.56 21.46 32.26 30.5
6.5 365.2 1572 1495 1.674 11.05 25.03 36.37 33.2
7.0 393.3 1806 1724 1.758 11.55 28.85 40.72 36.1
7.5 421.3 2065 1983 1.841 12.04 32.79 45.19 39.3
8.0 449 .4 2353 2277 1.923 12.54 36.85 49.77 42.7
8.5 477.5 2670 2610 2.005 13.04° 40.83 54.24 46.1
9.0 505.6 3019 2988 2.086 13.54 44,99 58.87 49.6
9.5 533.7 3403 3417 2.168 14.05 49.00 63.31 53.2
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Table 4-14 Continued

A (o] PCAL POBS CSRG nk : ﬂv nv (R>°) nCAL nOBS
Amagat bar bar x013kg/sec 4 x10® kgm/m sec +
10.0 561.8 3822 3904 2.249 14.56 52.88 .1508 67.59 56.7
10.5 589.9 4279 4455 2.330 15.07 56. 26 -.0298 71.30 60.1
11.0 618.0 4773 5078 2.412 15.59 59.05 -.2905 74 .35 63.2
11.5 646.1 5307 5781 2.494 16.11 61.68 -.6252 77.17 65.0
12.0 674.2 5879 6574 2.576 16.64 63.34 -1.075 78.91 72.2
12.5 702.2 6490 7463 2.660 17.17 63.98 -1.655 79.49 81.4
13.0 730.3 7135 8458 2.744 17.70 63.29 -2.390 78.60 90
13.5 758.4 7813 9567 2.830 18.24 60.92 -3.308 75.84 100
14.0 786.5 8517 10800 2.918 18.77 56.37 -4.440 70.70 110
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Substance:
Radial Distribution Function:

Remarks: ch

Table 4-15 Coefficient of Shear Viscosity.

Argon

Percus-Yevick

Intermolecular ﬁ?tential:Lennard—Jones
Temperature: 273

P * P PcaL Poss 550 Nk Ny ny (R>0) NCAL oBS
Amagat bar bar x0Bkg/sec “——————— x10% kgm/m sec -
0.15 139.7 126.5 142 .4 1.444 3.211 1.850 .2479 5.309 26.2
0.30 279.4 258.3 293.9 2.113 4,718 6.960 1.112 12.79 35.3
0.45 419.1 485.1 490.7 2.719 6.016 14.45 2.332 22.80 50.1
0.60 558.8 982.9 853.2 3.355 7.285 19.45 1.990 28.73 76.4
0.75 698.5 2058 1674 4.041 8.674 3.764 -8.658 3.780 124
0.90 838.2 4188 4075 4.770 10.31 -87.38 -57.69 -134.8 205
1.05 977.9 8128 8340 5.510 12.28 -403.7 -221.5 -612.9 338
1.20 1118 14740 16000 6.210 14.66 -1372 -725.2 -2082 543
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Substance:
Radial Distribution Function:

Remarks: CgG

Table 4-16 Coefficient of Shear Viscosity.

Argon

Percus-Yevick

Intermolecular Potential:

Temperature: 328°K

Lennard-Jones

p * e PeaL Poss 6 "k Ny ny (R>0) CAL "oBs
Amagat bar bar x1013kg/sec e — x10% kgm/m sec -
0.15 139.7 164.0 166.5 1.418 3.883 2.099 .1680 6.150 29.3
0.30 279.4 355.6 360.6 2.082 5.646 7.931 .7977 14.38 38.2
0.45 419.1 676.0 667.0 2.689 7.158 16.66 1.729 25.55 53.7
0.60 558.8 1315 1261 3.314 8.640 23.63 1.393 33.66 80.9
0.75 698.5 2593 2487 3.977 10.25 12.26  -6.855 15.65 127
0.90 838.2 4999 4945 4,670 12.11 -65.05 -43.09 -96.04 202
1.08 977.9 9260 9492 5.362 14.31 -335.2 -159.5 -480.4 317
1.20 1118 16310 17520 5.997 16.91 -1135 -484.5 -1602 486
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Table 4-17 Coefficient of Shear Viscosity.

Substance: Argon . Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Percus-Yevick Temperature: 373°
Remarks: CRG
s
RG

o* P PeaL Poss ts Nk Ny ny (R>0) NCAL "oBS

Amagat bar bar x1013kg/sec —————— x10% kgm/m sec -
0.15 139.7 194.2 196.4 1.401 4.421 2.290 .1296 6.841 31.7
0.30 279.4 433.4 437.5 2.063 6.386 8.668 .6374 15.69 40.5
0.45 419.1 827.2 817.6 2.668 8.066 18. 35 1.403 27.82 56.6
0.60 558.8 1576 1523 2.286 9.712 26.88 1.077 37.67 84.7
0.75 698.5 3009 2914 2.932 11.49 18.86 -5.758 24.60 130
0.90 838.2 5627 5597 4,599 13.52 -48.69 -34.79 -69.96 199
1.05 977.9 10150 10420 5.258 15.88 -286.4 -124.6 -395.1 299
1.20 1118 17610 18780 5.855 18.66 -988.6 -366.9 -1337 439
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Table 4-18 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential:

Radial Distribution Function: Verlet
Remarks: p* = 0.85

Density = 791.6 Amagats

Lennard-Jones

RG
or Pear Poes Zs Mk Ny n, (R>0) NTOTAL
¢ bar bar x10'3kg/sec “————— x10% kgm/m sec
157.86 1476 1434 4.582 5.793 -35.79 -35.98 -65.98
273.05 3409 3194 4,432 9.775 -24.68 -24,88 -39.79
358.11 4595 4381 4.313 12.44 -9.541 -17.53 -.4.63
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Table 4-19 Coefficient of Shear Viscosity.

Substance: Argon ) Intermolecular Potential: {gﬁgg?ﬁfgones
Radial Distribution Function: Percus-Yevick Temnerature: 273.2°K
Remarks: RG
s
RG
o P Pea Poss Zs "k ny ny (R>0) NTOTAL
Amagat bar bar x10!3 kg/sec e x10% kgm/m sec -
0.15 139.7 133.1 142.4 1.459 3.193 1.838 .2480 5.279
0.30 279.4 287.1 293.9 2.150 4.658 6.715 1.127 12.50
0.45 419.1 564.1 490.7 2.807 5.900 12.58 2.289 20.77
0.60 558.1 1170 853.2 3.529 7.111 9.047 .6787 16.84
0.75 698.5 2495 1674 4,355 8.446 -47.59 -18.88 -58.02
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Substance:

Argon

Table 4-20 Coefficient of Shear Viscosity.

Intermolecular Potential:

Lennard-Jones

Radial Distribution Function: CHNC Temperature: 273.2°K
Remarks: CR
s
p P P g X6 n n n,, (R>0) n n
p* CAL OBS s k v v CAL OBS
Amagat bar . bar x1013kg/sec o x10% kgm/m sec -
0.15 139.7 126.6 142.4 1.450 3.211 1.852 . 3498 5.313 26.2
0.30 279.4 260.9 293.9 2.114 4.717 6.994 1.132 12.84 35.3
0.45 419.1 513.5 490.7 2.728 6.018 14.49 2.292 22.80 50.1
0.60 558.8 1134 953.3 3.370 7.329 18.22 1.150 26.70 76.4
0.75 698.5 2604 1674 4.031 8.852 -5.332 -12.50 -8.983 124
0.90 838.2 5717 4075 4.640 10.72 -114.1 -61.13 -164.5 205
1.05 977.9 11590 8340 5.089 12,95 -383.7 -165.5 -536.3 338
1.20 1118 21670 16000 5.264 15.41 -782.0 -297.9 -1064 543
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Table 4-21 Coefficient of Shear Viscosity.

Substance: Argon

Intermolecular Potential:

Lennard Jones

Radial Distribution Function: CHNC Temperature: 328.2°
Remarks: _RG
s
P P RG R>

o* e CAL 0BS Zs "k v ny (R>0) "CAL "oBs

Amagat bar bar x1013kg/sec “—————— %106 kgm/m sec >
0.15 139.7 164.1 166.5 1.419 3.882 2.101 .1690 6.152 29.3
0.30 279.4 360.3 360.6 2.085 5.640 7.959 .8030 14.40 38.2
0.45 419.1 715.8 667.0 2.701 7.151 16.64 1.646 25.43 §3.7
0.60 558.8 1502 1261 3.332 8.679 22.16 .5618 31.40 80.9
0.75 698.5 3217 2487 3.963 10.43 3.814 -~9.901 4.339 127
0.90 838.2 6655 4945 4,531 12.52 -83.73 -44.38 ~-115.6 202
1.0  977.9 12960 9492 4.941 14.95 -290.0 -114.1 -389.2 317
1.20 1118 23670 17520 5.093 17.61 -564.2 -195.9 -742.5 486
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Table 4-22 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Lennard Jones
Radial Distribution Function: CHNC Temperature: 373.2°
Remarks: ;RG
S
] P P ¢RG n n n,, (R>c) n n

* CAL OBS s k \Y% v CAL OBS
e Amagat bar bar x10Bkg/sec ~————— x10% kgm/m sec >
0.15 139.7 194.4 196.4 1.402 4.419 2.292 .1303 6.841 31.7
0.30 279.4 439.1 437.5 2.068 6.376 8.692 .6379 15.71 40.5
0.45 419.1 874.1 817.6 2.683 8.052 18.32 1.313 27.68 56.6
0.60 558.8 1787 1526 3.304 9.746 25.47 .3231 35.54 84.7
0.75 698.5 3692 2914 3.914 11.66 11.49 -8.272 14.89 130
0.90 838.2 7387 5597 4.455 13.92 -61.17 -35.17 -82.14 199
1.05 977.9 13940 10426 . 4.842 12.97 -26.13 -118.2 -366.6 299
1.20 1118 25350 18780 4.982 19.33 -43.37 -146.0 -560.3 439
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Table 4-23 Coefficient of Shear Viscosity.

Substance: Argon .. Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperature: 273°
Remarks:
A P PeaL Poss g5 K ny ny (R>0) "CAL "oBs
Amagat bar bar x0!3kg/sec o — x10® kgm/m sec -+
0.5 36.44 35.80 35.79 .7184 1.642 .1553 . 0096 1.807 22.0
1.0 72.87 69.98 69.71 1.024 2.312 .5598 .0518 2.924 23.3
1.5 109.3 103.6 102.5 1.267 2.137 1.203 .1371 4,177 24.8
2.0 145.7 137.6 134.9 1.479 3.291 2.081 2723 5.644 26.5
2.5 182.2 173.4 167.8 1.672 3.703 3.189 .4623 7.354 28.5
3.0 218.6 212.2 202.0 1.854 4.087 4.516 L7111 9.314 30.8
3.5 255.1 255.6 238.8 2.028 4.452 6.044 1.0210 11.52 33.4
4.0 291.5 305.3 279.4 2.198 4.804 7.742 1.392 13.94 36.3
4.5 327.9 362.9 325.5 2.365 5.147 9.567 1.821 16.53 39.6
5.0 364.4 430.4 379.0 2.529 5.484 11.46 2.299 19.24 43.4
5.5 400.8 509.8 442 .4 2.693 5.819 13.32 2.813 21.96 47.7
6.0 437.2 603.0 518.9 2.857 6.153 15.06 3.341 24.56 52.7

6.5 437.7 711.6 612.4 3.021 6.487 16.53 3.858 26.87 58.6
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Table 4-24 Coefficient of Shear Viscosity.

Substance: Argon

Intermolecular Potential: Modified Buckingham

::g;:is?t;é;ibution Function: Kirkwood Temperature: 308°
s

A ° Pca  Foss oy v v (R>0) "cAL  "oss

Amagat bar bar xnﬂ3kg/sec - x10% kgm/m sec -
0.5 36.44 40.90 40.88 .7056 1.875 .1698 .0073 2.052 24.2
1.0 72.87 80.94 80.62 1.008 2.632 . 6096 .0400 3.282 25.5
1.5 109.3 121.2 120.0 1.247 3.222 1.308 .1070 4.637 26.8
2.0 145.7 162.9 159.8 1.457 3.729 2.264 .2141 6.207 28.5
2.5 182.2 207.3 200.9 1.649 4,188 3.471 .3662 8.026 30.5
3.0 218.6 256.0 244.5 1.830 4.615 4.922 .5667 10.10 32.7
3.5 255.1 310.6 291.8 2.003 5.021 6.597 .8176 12.43 35.3
4.0 291.5 372.9 344.2 2.172 5.412 8.468 1.118 15.00 38.2
4.5 327.9 444.9 403.6 2.337 5.793 10.49 1.465 17.75 41.5
5.0 364.4 528.7 472.3 2.501 6.168 12.61 1.850 20.63 45.4
5.5 400.8 626.5 553.0 2.663 6.539 14.73 2.258 23.53 49.9
6.0 437.2 740.5 649.0 2.826 6.910 16.76 2.669 26.34 55.1

437.7 872.5 764.5 2.988 7.282 18.55 3.057 28.88 61.1
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Table 4-25 Coefficient of Shear Viscosity.

Substance: Argon . Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperature: 323°

Remarks:cRG
s

A o Pcar Poss T K y ny (R>0) "CAL "oBS

Amagat bar bar x1013kg/sec “———————— x10% kgm/m sec >
0.5 36.44 43.08 43.05 .7010 1.975 .1759 .0062 2.157 25.0
1.0 72.87 85.61 85.26 1.002 2.769 .6304 .0362 3.435 26.2
1.5 109.3 128.7 127.4 1.240 3.385 1.352 .0971 4,834 27.7
2.0 145.7 173.7 170.4 1.449 3.915 2.339 .1951 6.449 29.3
2.5 182.2 221.8 215.1 1.640 4,394 3.588 .3345 8.316 31.3
3.0  218.6  274.6 262.6 1.821 4.839 5.088 .5188 10.45 33.5
3.5 255.1 333.9 314.4 1.994 5.262 6.824 .7498 12.84 36.0
4.0 291.5 401.6 371.8 2.162 5.669 8.766 1.027 15.406 39.0
4.5 327.9 479.7 437.0 2.327 6.066 10.87 1.346 18.28 42.4
5.0 364.4 570.4 512.1 2.490 6.456 13.08 1.699 21.24 46.3
5.5 400.8 675.9 600.0 2.652 6.843 15.32 2.072 24,23 50.8
6.0 437.2 798.6 704.2 2.813 7.230 17.46 2.445 27.14 56.1
6.5 473.7 940.4 828.9 2.975 7.617 19.39 2.791 29.79 62.2

7.0 510.1 1103 979.2 3.137 8.006 20.91 3.077 31.99 69.3
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Table 4-26 Coefficient of Shear Viscosity.

Substance: Argon ) Intermolecular Potential: Modified Buckingham
Radial Disﬁz&ibuti,on Function: Kirkwood Temperature: 328°
Remarks: Lg

A P PeaL Poss CEG "k Ny ny (R>0) "cAL "oss

Amagat bar bar x1013kg/sec “—————— %105 kgm/m sec -+
0.5 36.44 43.80 43.78 .6996 2.008 1.799 .0064 2.192 25.2
1.0 72.87 87.17 86.82 . 9996 2.814 6.372 . 0351 3.486 26.5
1.5 109.3 131.2 129.9 1.238 3.439 1.366 .0942 4,900 27.9
b0  145.7 177.2 173.9 1.447 3.977  2.364 .1893 6.530 29.6
o5 182.2 226.6 219.8 1.638  4.462  3.626 .3249 8.413 31.5
3.0 218.6 280.8 268.7 1.818 4.914 5.143 .5043 10.56 33.8
3.5  255.1 341.7 321.9 1.991 5.342 6.898 .7292 12.97 36.3
a0 2915 41L.1 381.1 2.159  5.754  8.864 .9990 15.62 39.2
as 327.9 4913 448.1 2.324 6.156  11.00 1.310 18.46  42.6
s o 364.4 584.3 525.4 2.487 6.552  13.24 1.653 21.44 46.6
5.5 400.8 692.3 615.7 2.649 6.944 15.51 2.015 24.47 51.1
6.0 437.2 817.8 722.7 2.810 7.336  17.70 2.376 27.41 56.4
6.5 A473.7 962.9 850.6 2.971 7.728  19.66 2.710 30.10 62.6
7.0 510.1 1129 1004 3.133 8.122 21.24 2.983 32.35 69.7
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Table 4-27 Coefficient of Shear Viscosity.

Substance:  Argon Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperature: 373°
Remarks: T
A P Pea  Foss e "k ny ny (R>o) "caL  "oss
Amagat bar bar x10!3kg/sec +——————— x10% kgm/m sec —
0.5 36.44 50.33 50.29 .6885 2.305 .1957 . 0049 2.506 27.8
1.0 72.87 101.1 100.7 .9848 3.220 .6969 .0269 3.944 29.0
1.5 109.3 753.7 152.1 1.229 3.925 1.492 .0728 5.499 30.4
2.0 145.7 209.3 205.5 1.427 4,528 2.579 .1476 7.255 32.0
2.5 182.2 269.6 262.0 1.617 5.072 3.957 . 2552 9.284 33.8
3.0 218.6 336.2 325.5 1.796 5.576 5.618 .3984 11.59 36.0
3.5 255.1 411.0 389.6 1.968 6.054 7.546 .5786 14.18 38.5
4.0 291.5 496.3 463.0 2.134 6.513 9.715 . 7949 17.02 41.5
4.5 327.9 594.3 546.7 2.298 6.962 12.09 1.043 20.10 45.0
5.0 364.4 707.4 643.1 2.459 7.402 14.60 1.316 23.32 49.2
5.5 400.8 838.2 754.5 2.619 7.839 17.18 1.599 26.62 53.9
6.0 437.2 989.1 885.3 2.779 8.275 19.72 1.876 29.87 59.5
6.5 473.7 1163 1040 2.938 8.712 22.10 2.121 32.93 65.9
7.0 510.1 1361 1224 3.096 9.152  24.13 2.303 35.59 73.2
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Table 4-28 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperature: 273°
Remarks:
N P Pea Poss 6"y y ny (R>0) "cAL  "oss
Amagat bar bar x1083kg/sec “———————— x10% kgm/m sec -
0.5 30.85 30.89 30.90 .5709 1.226 1.165 . 0053 1.348 17.6
1.0 61.69 61.53 61.44 . 8153 1.726 .4200 .0292 2.175 18.7
1.5 92.55 92.66 92.21 1.009 2.116 .9029 .0788 3.098 19.9
2.0 123.4 125.1 123.9 1.178 2.453 1.563 .1594 4.175 21.4
2.5 154.2 159.8 157.1 1.333 2.759 2.394 .2756 5.429 23.1
3.0 185.1 197.8 192.8 1.479 3.044 3.390 .4312 6.865 25.1
3.5 215.9 240.2 231.9 1.619 3.315 4.536 .6294 8.480 27.2
4.0 246.8 288.4 275.8 1.756 3.576 5.808 .8722 10.26 29.7
4.5 277.6 343.7 326.0 1.889 3.831 7.175 1.159 12.16 32.4
5.0 308.5 407.8 384.3 2.022 4.081 8.590 1.487 14.16 35.6
5.5 399.3 482.1 453.1 2.153 4.330 9.990 1.850 16.19 39.4
6.0 370.2 568.2 535.1 2,285 4.579 11.29 2,237 18.11 43.7
6.5 401.0 667.8 633.7 2.416 4,827 12.40 2.633 19.86 48.7
7.0 431.9 782.0 753.0 2.548 5.078 13.17 3.018 21.27 54.7
7.5 462.7 911.9 897.8 2.681 5.330 13.46 3.370 22.16 61.6
8.0 493.6 1058 1074 2.814 5.585 13.06 3.669 22.31 69.8
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Table 4-29. Coefficient of Shear Viscosity.

Substance: Nitrogen ) Intermolecular Potential: Modified Buckingham
Radial Distd-ibution Function: Kirkwood Temperature: 308°

Remarks: ;5

A o PeaL Poss g0 Mk ny ny (R>0) NCAL "oBS

Amagat bar bar x10!3kg/sec o x10% kgm/m sec -
0.5 30.85 35.21 35.21 .5617 1.399 L1272 .0041 1.530 17.5
1.0 61.69 70.80 70.69 .8030 1.962 .4570 .0227 2.442 18.5
1.5 92.55 107.6 107.1 .9948 2.399 .9812 .0618 3.442 19.6
2.0 123.4 146.5 145.1 1.163 2.776 1.698 .1262 4.600 20.9
2.5 154.2 188.6 185.5 1.317 3.116 2.604 .2198 5.940 22.3
3.0 185.1 235.0 229.3 1.462 3.433 3.690 .3462 7.470 24.1
3.5 215.9 286.9 277.7 1.602 3.734 4.944 .5079 9.186 26.0
4.0 246.8 346.0 332.0 1.737 4.024 6.344 . 7062 11.07 28.3
4.5 277.6 413.6 393.9 1.870 4.307 7.856 .9404 13.10 30.8
5.0 308.5 49.16 465.6 2.002 4.585 9.436 1.207 15.23 33.8
5.5 339.3 581.7 549.5 2.133 4.861 11.02 1.499 17.38 37.3
6.0 370.2 685.6 648.6 2.263 5.136 12.53 1.806 19.47 41.4
6.5 401.0 805.0 766.5 2.394 5.412 13.86 2.112 21.38 46.1
7.0 431.9 941.5 907.3 2.525 5.691 14.88 2.399 22.97 51.6
7.5 462.7 1096 1076 2.656 5.971 15.43 2.642 24 .04 58.0
8.0  493.6 1270 1278 2.789 6.254 15.33 2.816 24.40  65.4
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Table 4-30. Coefficient of Shear Viscosity.

Substance: Nitrogen . Intermolecular Potential: Modified Buckingham
Radial Distg&bution Function: Kirkwood Temperature: 323°
Remarks: &g

N P Pea  Poss AN y ny (R>0) NcaL  "oss

Amagat bar bar x«013kg/sec ————— %106 kgm/m sec —

30.85 37.05 37.05 .5584 1.472 .1317 .0037 1.607 17.5
1.0 61.69 74.76 74.64 .7986 2.062 .4724 .0206 2.555 18.4
1.5 92.55 114.0 113.4 . 9897 2.520 1.014 .0563 3.590 19.5
2.0 123.4 155.6 154.1 1.157 2.913 1.154 .1153 4.782 20.7
2.5 152.2 200.8 197.6 1.311 3.268 2.690 .2013 6.159 22.1
3.0 185.1 250.8 244.9 1.456 3.5938 3.814 .3178 7.730 23.7
3.5 215.9 306.8 297.1 1.596 3.912 5.113 .4671 9.492 25.6
4.0 246.8 370.5 355.8 1.730 4.214 6.565 .6504 11.43 27.8
4.5 277.6 443.3 422.8 1.863 4,508 8.138 .8666 13.51 30.3
5.0 308.5 527.2 500.1 1.915 4.797 9.786 1.112 15.70 33.2
5.5 339.3 623.9 590.4 2.125 5.085 11.45 1.381 17.91 36.6
6.0 370.2 735.2 696.6 2.255 5.371 13.04 1.661 20.08 40.6
6.5 401.0 863.0 822.5 2.385 5.659 14.47 1.938 22.07 45.2
7.0 431.9 1009 972.2 2.516 5.949 15.60 2.192 23.74 50.6
7.5 462.7 1174 1151 2.647 6.241 16.27 2.400 24 .91 56.8
8.0 493.6 1360 1364 2.779 6.536 16.30 2.537 25.37 63.9
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Table 4-31 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Temperature: 328°
Remarks: ,;RG

s

A P PeaL Poss AN ny ny (R>0) NCAL "oBS

Amagat bar bar x10!3kg/sec “——————— x10% kgm/m sec -
0.5 30.85 37.66 37.66 .5574 1.497 .1332 .0036 1.633 17.5
1.0 61.69 76.08 75.95 .7972 2.096 .4774 .0199 2.593 18.4
1.5 92.5S 116.1 115.5 .9881 2.560 1.024 . 0546 3.639 19.5
2.0 123.4 158.7 157.1 1.155 2.959 1.772 .1119 4.843 20.7
2.5 154.2 204.9 201.6 1.309 3.319 2.718 .1957 6.232 22.0
3.0 185.1 256.1 250.0 1.454 3.653 3.854 .3092 7.817 23.6
3.5 215.9 313.4 303.6 1.593 3.971 5.168 .4547 9.593 25.5
4.0 246.8 378.6 363.8 1.728 4.276 6.637 .6333 11.55 27.6
4.5 277.6 453.2 432.4 1.861 4.575 8.230 .8441 13.65 30.1
5.0 308.5 539.0 511.6 1.992 4.868 9.901 1.083 15.85 33.0
5.5 339.3 637.9 603.9  2.113  5.159 11.59 1.344 18.09 36.4
6.0 370.2 751.7 712.5 2.253 5.449 13.21 1.616 20.28 40.3
6.5 401.0 882.3 841.0 2.383 5.541 14.67 1.884 22.30 44.9
7.0 431.9 1031 993.7 2.513 6.034 15.83 2.129 24.00 50.2
7.5 462.7 1200 1176 2.644 6.330 16.55 2.327 25.20 56.4
8.0 493.6 1390 1393 2.775 6.629 16.62 2.453 25.70 63.4
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Table 4-32 Coefficient of Shear Viscosity.

Substance: Nitrogen Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperature: 373°
Remarks: ¢RG

RG

N P PeaL Poss &s Nk Ny n, (R>0) NcAL "oBs

Amagat bar bar x1013kg/sec +————————— x10% kgm/m sec -
0.5 30.85 43.19 43.18 .5494 1.716 .1463 .0027 1.865 17.5
1.0 61.69 87.92 87.76 . 7865 2.395 .5218 .0154 2.932 18.2
1.5 92.55 135.1 134.5 .9757 2.918 1.117 .0425 4.078 19.2
2.0 123.4 185.9 184.1 1.142 3.365 1.932 .0879 5.385 20.1
2.5 154.2 241.5 237.7 1.294 3.768 2.964 .1549 6.887 21.3
3.0 185.1 303.2 296.4 1.438 4.141 4.207 .2462 8.595 22.8
3.5 215.9 372.6 361.5 1.577  4.495 5.649 .3637 10.51 24.5
4.0 246.8 451.3 434.7 1.711 4.836 7.268 .5081 82.61 26.5
4.5 277.6 541.3 518.0 1.843 5.163 9.036 .6780 14.88 28.8
5.0 308.5 644 .4 613.8 1.973 5.494 10.91 .8700 17.27 31.6
5.5 339.3 762.8 724.7 2.102 5.818 1.282 1.077 19.71 34.8
6.0 370.2 898.5 854.1 2.231 6.141 1.470 1.290 22.13 38.5
6.5 401.0 1054 1006 2.360 6.466 1.645 1.494 24 .41 42.8
7.0 431.9 1230 1184 2.489 6.792 1.794 1.671 26.40 47.7
7.5 462.7 1429 1395 2.618 7.121 1.901 1.798 27.93 53.4
8.0 493.6 1653 1644 2.748 7.454 1.950 1.850 28.80 59.8
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Table 4-33 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Percus Yevick Temperature: 273.15°
Remarks: ¢RG

s

o* P PeaL PoBs tg0 oy ny ny (R>0) NCAL "oBS
Amagat bar bar x101%kg/sec —————— x106 kgm/m sec >
0.25 160.9 150.6 148.4 1.537 3.513 2.490 .3322 6.335 27.23
0.50 321.8 336.9 317.2 2.264 5.199 9.328 1.466 15.99 39.01
0.75 482.7 727.9 638.7 2.296 6.691 18.24 2.622 27.55 61.17
1.00 643.6 1676 1438 3.709 8.241 16.05 -2.592 21.70 101.7
1.25 804.6 3789 3420 4.514 10.06 -48.03 -41.64 -79.62 181.4
1.35 868.9 5153 4757 4.843 10.89 -119.79 -82.71 -191.6 229.5
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Table 4-33 Coefficient of Shear Viscosity.

Substance: Argon . Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Percus Yevick Temperature: 273.15°
Remarks: RG

p* P Peat Poss CsRG N ny ny (R>a) NCAL "oBs
Amagat bar bar x1013kg/sec 4—————— %106 kgm/m sec >
0.25 160.9 150.6 148.4 1.537 3.513 2.490 .3322 6.335 27.23
0.50 321.8 336.9 317.2 2.264 5.199 9.328 1.466 15.99 39.01
0.75 482.7 727.9 638.7 2.296 6.691 18.24 2.622 27.55 61.17
1.00 643.6 1676 1438 3.709 8.241 16.05 -2.592 21.70 101.7
1.25 804.6 3789 3420 4.514 10.06 -48.03 -41.64 -79.62 181.4
1.35 868.9 5153 4757 4.843 10.89 -119.79 -82.71 -191.6 229.5
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Table 4-34.

Modified Buckingham

Substance: Argon Intermolecular Potential:
Radial Distribution Function: Percus Yevick Temperature: 328.15°
Remarks:cz
p* e PeaL  Poss g0y ny ny (R>0) "CAL "oBS
Amagat bar bar x103kg/sec ———————— x10% kgm/m sec -
.25 160.9 193.6 192.7 1.506 4.240 2.823 .2272 7.290 30. 39
.50 321.8 449.0 436.1 2.232 6.208 10.64 1.062 17.91 41.93
.75 412.7 949.4 885.8 2.922 7.947 21.27 1.894 31.11 64. 30
.00 643.6 2053 1899 3.648 9.750 22.41 -2.196 29.96 106.2
.25 804.6 4358 4198 4,409 11.82 -30.64 -30.86 -4.,968 180.8
.45 933.3 7661 7752 4,963 13.87 -206.1 -101.9 -294.2 275.1
.50 965.5 8760 8969 5.166 14.32 -272.2 -142.4 -400.3 304.8
.55 997.6 9993 10370 5.310 14.87 -371.5 -185.5 -542.1 337.3
.60 1030 11360 11970 5.450 15.45 -498.3 -239.5 -722.3 322.8
.65 1062 12890 13780 5.584 16.04 -610.0 -307.0 -901.0 411.4
.70 1094 15170 15830 5.626 16.81 -903.6 ~-366.9 -1253 455

[ T R )
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Table 4-35 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Percus Yevick Temperature: 373.15°
Remarks: CSG

o P Pea  Poss ooy ny ny (R>0) "ca  "oss

Amagat bar bar xj0Bkg/sec “——————— x10% kgm/m sec -+
0.25 160.9 228.3 228.5 1.487 4,822 3.077 .1763 8.076 32.72
0.50 321.8 538.9 531.9 2.212 7.013 11.630 .8520 19.50 44,42
0.75 482.7 1125 1083 2.895 8.948 23.59 1.522 34.006 67.64
1.00 643.6 2352 2252 3.603 10.94 27.47 -1.885 36.53 109.8
1.25 804.6 4280 4791 4.336 13.21 -17.12 -24.70 -28.60 180.0

1.35 868.9 6340 6436 4.627 14.23 -69.08 -47.28 ~102.1 218.3
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Table 4-36 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential: Barker Bobetic
Radial Distribution Function: Kirkwood Temperature: 273°
Remarks: CRG

s

A P PeaL Pops Ly’ "k Ny ny (R>0) NCAL Noss
Amagat bar bar x10!3kg/sec +————— x10% kgm/m sec >
0.50 38.78 38.32 38.01 .9165 1.389 .1501 .0147 1.554 21.7
1.00 77.56 75.23 73.94 1.302 1.975 .5470 .0789 2.601 23.1
1.50 116.3 111.5 108.7 1.603 2.442 1.179 .2073 3.828 24.8
2.00 155.1 148.2 143.2 1.861 2,852 2.041 .4071 5.301 26.8
2.50 193.9 186.0 178.5 2.095 3.229 3.127 .6829 7.039 29.0
3.00 232.7 226.2 215.8 2.312 3.583 4.428 1.038 9.049 31.6
3.50 271.5 270.0 256.4 2.517 3.922 5.929 1.476 11.33 34.5
4.00 310.2 318.6 302.2 2.715 4,249 7.610 1.999 13.86 38.0
4.50 349.0 373.7 355.2 2.909 4.567 9.438 2.610 16.62 41.9
5.00 387.8 437.1  418.2 3.099  4.880 11.37 3.305 19.55 46.5
5.50 426.6 510.8 494.5 3.289 5.188 13.34 4.081 22.61 51.8
6.00 465.3 596.9 588.8 3.478 5.494 15.27 4,922 25.68 58.0
6.50 504.2 697.9 706.2 3.667  5.799 17.04 5.807 28.65 65.2
7.00 542.9 816.0 8535 3.859 6.104 18.52 6.700 31.32 73.8
7.50 581.7 953.5 1039 4.051 6.411 19.52 7.553 33.48 84.1
8.00 620.5 1113 1271 4.247 6.720 19.82 8.304 34.85 96.5
8.50 659.3 1295 1562 4.444 7.031 19.17 8.881 35.08 107
9.00 698.1 1501 1924 4.643 7.346 17.23 9.207 33.78 123
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Substance: Argon Intermolecular Potential: Barker-Bobetic

Table 4-37 Coefficient of Shear Viscosity

Radial Distribution Function: Kirkwood Temperature: 308°
Remarks: ch

RG

A P PeaL Poss ts Nk Ny ny (R>a) NCAL NoBs
Amagat bar bar x1013kg/sec 4————— x10% kgm/m sec -
0.50 38.78 43.80 43.46 .9012 1.587 .1637 .0112 1.762 24.1
1.00 77.56 87.10 85.68 ©1.282 2.249 .5948 .0606 2.904 25.5
1.50 116.3 130.8 127.6 1.580 2.775 1.281 .1601 4.216 27.1
2.00 155.1 176.0 170.2 1.837 3.234 2.218 .3165 5.769 29.0
2.50 193.9 223.6 ‘ 214.6 2.070 3.655 3.400 .5346 7.589 31.2
3.00 232.7 275.0 262.2 2.287 4.049 4.817 .8184 9.684 33.7
3.50 271.5 331.5 314.6 2.494 4.425 6.454 1.171 12.05 36.5
4.00 310.2 394.7 373.8 2.694 4.788 8.289 1.595 14.67 39.8
4.50 349.0 466.6 442.1 2.889 5.142 10.29 2.089 17.52 43.7
5.00 387.8 549.0 522.6 3.081 5.489 12.40 2.651 20.54 48.2
5.50 426.6 644.3 619.1 3.271 5.831 14.56 3.271 23.66 53.5
6.00 465.3 754.9 736.1 3.462 6.172 16.68 3.931 26.79 59.7
6.50 504.2 883.4 879.5 3.653 6.512 18.64 4.606 29.76 66.9
7.00 542.9 1032 1056 3.845 6.852 20.30 5.256 32.41 75.4
7.50 581.7 1204 1274 4.038 7.195 21.46 5.830 34.49 85.3
8.00 620.5 1402 1543 4.233 7.541 21.91 6.262 35.71 96.8
8.50 659.3 1620 1876 4.430 7.891 21.35 6.477 35.72 110
9.00 698.1 1879 2284 4.629 8.244 19.47 6.389 34.11 126
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Table 4-38 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential: Barker-Bobetic

Radial Distribution Function: Kirkwood Temperature: 323°

Remarks: RG
CS

N P PeaL Poss oo Ny ny (R>0) NCAL "oBs
Amagat bar bar x1013kg/sec —————— x10% kgm/m sec »
0.50 38.78 46.13 45.78 . 8957 1.671 .1694 .0101 1.850 25.2
1.00  77.56 92.17 90.67 1.275  2.366  .6146 . 0547 3.035 26.5
1.50 116.3 139.0 , 135.6 1.572 2.916 1.323 .1449 4.384 28.1
2.00 155.1 187.8 181.7 1.829 3.396 2.291 .2873 5.975 29.8
2.50 193.9 239.6 230.0 2.062 3.835 3.512 .4867 7.834 31.8
3.00 232.7 295.7 282.0 2.279 4.246 4.977 .7470 9.971 34.3
3.50 271.5 357.6 339.4 2.486 4.638 6.671 1.071 12.38 37.1
4.00 310.2 427.1 404.3 2.686 5.016 8.570 1.461 15.05 40.5
4.50 349.0 506.0 479.0 2.881 5.385 10.64 1.917 17.94 44 .6
5.00 387.8 596.5 566.9 3.074 5.746 12.83 2.432 21.01 49.1
5.50 426.6 700.8 671.8 3.265 6.103 15.07 2.999 24.18 54.5
6.00 465.3 821.7 798.4 3.456  6.458 17.28 3.597 27.34 60.8
6.50 504.2 961.7 952.6 3.647 6.813 19.33 4.201 30.34 68.1
7.00 542.9 1124 1141 3.839 7.169 21.07 4.770 33.01 76.6
7.50 581.7 1310 1373 4.032 7.527 22.32 5.253 35.10 86.6
8.00 620.5 1523 1658 4.227 7.888 22.84 5.584 36.32 98.1
8.50 659.3 1765 2007 4.423  8.253  22.37 5.687 36.31 111
9.00 698.1 2037 2435 4.622 8.623 20.56 5.474 34.66 127
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Substance:

Table 4-39.

Argon

Coefficient of Shear Viscosity

Intermolecular Potcntial:Barker-Bobetic

Radial Distribution Function: Kirkwood Temperature: 328°
Remarks: ch
RG

A P Pea  Foss 5 K "y ny (R>0) "cAL  "oss

Amagat bar bar x1013kg/sec 4———————— x106 kgm/m sec ~
0.50 38.78 46.92 46.55 . 8940 1.699 .1713 .0098 1.880 25.5
1.00 77.56 93.86° 92,32 1.272 2.405 .6211 .0529 3.079 26.8
1.50 116.3 141.8 138.2 1.569 2.963 1.337 .1404 4.441 28.3
2.00 155.1 191.7 185.5 1.826 3.450 2.315 .2786 6.044 30.1
2.50 193.9 244.,9 235.1 2.059 3.895 3.549 .4723 7.916 32.1
3.00 232.7 302.6 288.6 2.276 4.312 5.030 . 7255 10.07 34.5
3.50 271.5 366.3 347.6 2.483 4.709 6.743 1.041 12.49 37.4
4.00 310.2 437.8 414.4 2.683 5.092 8.663 1.421 15.18 40.8
4.50 349.0 519.1 491.3 2.879  5.465 10.76 1.864 18.09  44.8
5.00 387.8 612.2 581.6 3.072 5.832 12,97 2.366 21,17 49.5
5.50 426.6 719.6 689.3 3.263  6.194 15.24 2.916 24.36  55.0
6.00 465.3 843.9 819.0 3.454  6.553 17.48 3.496 27.53  61.3
6.50 504.2 987.7 976.8 3.645  6.913  19.56 4.078 30.55  68.5
7.00 542.9 1154 1169 3.837 7.273.  21.33 4.622 33.23 77.0
7.50 581.7 1345 1406 4.030  7.636  22.61 5.078 35.32  87.0
8.00 620.5 1564 1696 4.225  8.003 23.16 5.379 36.54 102
8.50 659.3 1811 2050 4.421  8.373 22.71 5.449 36.54 112
9.00 698.1 2090 2485 4.619  8.748  20.94 5.200 34.89 127
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Table 4-42 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential: Barker-Bobetic
Radial Distribution Function: Kirkwood Temperature: 373°
Remarks: ;RG

s

A P PeaL Poss tgC oy v ny (R>0) "CAL "oBs
Amagat bar bar x1013kg/sec “———— %106 kgm/m sec -+
0.50 38.78 53.92 53.50 .8811 1.951 ©.1878 .0074 2.146 28.0
1.00  77.56 109.0 107.2 1.255  2.752  .6782 .0404 3.471  29.3
1.50 116.3 166.3 162.2 1.550 3.383 1.458 .1079 4.949 30.8
2.00 155.1 227.0 219.5 1.806 3.931 2.524 .2159 6.671 32.5
2.50 193.9 292.4 280.7 2.038  4.429 3.871 .3688 8.669  34.4
3.00 232.7 364.2 347.2 2.256  4.895 5.489 .5701 10.95 36.8
3.50 271.5 440.0 421.0 2.463  5.339  7.364 .8226 13.53 39.7
4.00 310.2 533.8 504.5 2.664  5.767 9.470 1.127 16.36 43.1
4.50  349.0 635.8 600.4 2.860  6.183 11.77 1.480 19.44 47.2
5.00 387.8 752.4 712.3 3.053 6.592 14.22 1.878 22.69 52.0
5.50 426.6 886.4 844.3 3.245 6.997 16.74 2.306 26.04 57.7
6.00 465.3 1041 1002 3.436  7.400 19.24 2.748 29.38 64.4
6.50 504.2 1218 1190 3.627  7.801 21.60 3.173 32,57 72.0
7.00 542.9 1422 1418 3.818  8.205 23.66 3.543 35.41 80.8
7.50 581.7 1655 1693 4.010  8.612  25.25 3.807 37.66 90.8
8.00 620.5 1919 2027 4.204  9.023 26.11 3.903 39.04 102
8.50 659.3 2218 2431 4.439  9.439 25,99 3.754 39.19 115
9.00 698.1 2552 2910 4.595  9.859 24.55 3.275 37.68 130
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Substance: Argon

Table 4-41 Coefficient of Shear Viscosity.

Intermolecular Potential:

Barker-Bobetic

Radial Distribution Function: Percus-Yevick Temperature: 273.15°K
Remarks: .RG
s
P P RG (R>a)
p* e CAL 0BS ts % Ny ny (8> NCAL "oBs
Amagat bar bar x0Bkg/sec e x10% kgm/m sec -+
0.15 104.7 97.24 98.35 1.350 2.506 .9264 .1508 3.584 24.50
0.30 209.4 188.0 193.1 1.935 3.575 3.545 .7274 7.847 30.24
0.45 314.1 298.5 307.2 2.424 4.425 7 .855 1.717 14.00 38.29
0.60 418.8 468.5 478.2 2.894 5.156 13.70 2.962 21.82 50.08
0.75 523.5 767.6 776.0 3.382 5.821 20.23 3.738 29.79 68.20
0.90 628.2 1301 1325 3.901 6.470 24.66 1.540 32.67 96.47
1.05 732.9 2221 2325 4.456 7.150 19.96 -10.22 16.89 139.9
1.20 837.5 3733 4079 5.042  7.904 -9.884  -46.51 -48.49 204.6
1.35 942.2 6099 6968 5.648 8.764 -98.70 -138.3 -228.3 298.1
1.50 1047 9659 11580 6.257 9.758 -317.9 -348.6 -656.8 429.0
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Table 4-42 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential: Barker-Bobetic
Radial Distribution Function: Percus-Yevick Temperature: 328.15°K
Remarks: RG
s
p P P zRG n n n, (R>c) n n

o * CAL OBS s k v v CAL OBS

Amagat bar bar x10!3kg/sec —————— x10% kgm/m sec >
a.15 104.7 123.3 124.4 1.315 3.053 1.044 .1006 4.198 27.76
0.30 209.4 251.0 255.9 1.896 4.312 4.011 .5023 8.825 33.17
0.45 314.1 411.5 421.4 2.387 5.297 8.933 1.232 15.46 41.28
0.60 418.8 650.9 665.8 2.859 6.144 15.67 2.168 23.99 53.67
0.75 523.5 1044 1068 3.343 6.917 23.39 2.695 33.01 72.59
0.90 628.2 1703 1759 3.850 7.675 29.45 .8305 37.96 101.0
1.05 732.9 2783 2947 4.382 8.467 27.36 -8.331 27.50 142.5
1.20 837.5 449.5 4927 4.938 9.334 2.878 ~35.51 -23.30 201.6
1.35 942.2 7105 8066 5.504 10.31 -72.96 -101.9 -164.5 283.1
1.50 1047 10970 12890 6.065 11.42 -259.6 -248.7 -496.9 392.9
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Substance:

Remarks: ;g

Table 4-43 Coefficient of Shear Viscosity.

Argon
Radial Distribution Function:

Percus Yevick

Intermolecular Potential:

Temperature: 373.15°

Barker Bobetic

o e PeaL Poss g m ny ny (R>0) NCAL NoBs
Amagat bar bar x10!3kg/sec +——— x10% kgm/m sec ~+
0.15 104.7 144.5 145.5 1.295 3.493 1.135 .0766 4.705 30.22
0.30 209.4 302.1 306.6 1.872 4.903 4.364 .3922 9.659 35.41
0.45 314.1 503.8 513.6 2.363 5.996 9.744 .9828 16.72 43.65
0.60 418.8 800.0 816.3 2.835 6.933 17.16 1.746 25.84 56.59
0.75 523.5 1270 1299 3.313 7.793 25.82 2.141 35.75 76.20
0.90 628.2 2030 2103 3.810 8.636  33.21 .5163  42.36 104.7
1.05 732.9 3147 3424 4,327 9.514 33.35 -7.078 35.79 144.7
1.20 837.5 5112 5577 4.861 10.47 13.39 -29.00 -5.144 198.9
1.35 942.2 7924 8915 5.400 11.53 -52.06 -89.19 -121.7 270.5
1.50 1047 12030 13970 5.928 12.72 -213.7 -193.7 -394.6 362.9
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Substance: Argon

184

Table 4-44 Coefficient of Shear Viscosity.

Intermolecular Potential:

Radial Distribution Function: Kirkwood

Lennard-Jones

Remarks: ¢SS Temperature: 273°K
A T "k y ny (R>0) " 0T
x1013kg/sec  +———————— x106 kgn/m sec >
0.5 2.612 4832 1136 .0375 .6344
1.0 5.170 .5043 .4015 . 2828 1.189
1.5 7.412 .5444 .8225 . 8683 2.235
2.0 9.142 .6066 1,331 1.814 3.752
2.5  10.27 .6952  1.893 3.037 5.625
3.0 10.80 .8158  2.481 4.394 7.692
3.5 10.82 .9761  3.144 5.734 9.854
4.0 10.44 1.185 3.877 6.937 12.00
4.5 9.812 1.453 4.743 7.929 14.12
5.0 9.033 1.792 5.798 8.681 16.27
5.5 8.193 2.214 7.103 9.197 18.51
6.0 7.358 2.734 8.722 9.496 20.95
6.5  6.563  3.363 10.71 9.607 23.68
7.0 5.831 4.112  13.14 9.556 26.80
7.5 5.171 4.988 16.05 9.366 30.41
8.0 4.585 5.996 19.52 9.058 34.57
8.5 4.068 7.134  23.58 8.648 39.36
9.0 3.615 8.394 28.28 8.151 44.83
9.5 3.218 9.765 33.67 7.584 51.02
10.0 2.874 11.23 39.77 6.965 57.97
10.5 2.573  12.77 46.58 6.315 65.66
11.0 2.310 14.35 54.10 5.665 74.11
11.5 2,080 15.96 62.25 5.054 83.28
12.0 1.879  17.58 70.97 4.544 93.10
12.5 1.704 19.19 80.07 4.232 103.5
13.0 1.551  20.76 89.27 4.291 114.3
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Table 4-45 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential:
Radial Distribution Function: Kirkwood Lennard-Jones
Remarks: 7SS Temperature: 308°K

S
A CSSS nk nV nV (R>U) nTOT

x1013kg/sec =~ «—————— x105 kgm/m sec

0.5 2.027  .6975  .1288 .0226 .8489
1.0 4.027  .7251  .4567 .1707 1.353
1.5 5.797  .7796  .9541 .5274 2.261
2.0 7.182  .8646 1.584 1.110 3.559
2.5 8.103  .9859 2.316 1.875 5.178
3.0 8.562 1.151  3.136 2.740 7.027
3.5 8.617 1.369  4.051 3.614 9.035
4.0  8.361 1.651  5.094 4.421 11.17
4.5  7.892 2.012  6.316 5.108 13.44
5.0  7.297 2.464  7.778 5.647 15.89
5.5  6.646 3.023  9.551 6.032 18.61
6.0  5.989 3.703 11.71 6.267 21.68
6.5  5.359 4.517 14.31 6.365 25.19
7.0  4.774 5.474 17.44 6.338 29.25
7.5  4.242 6.578 21.16 6.202 33.94
8.0  3.767 7.826 25.53 5.968 39.33
8.5  3.346 9.211 30.61 5.649 45.47
9.0  2.975 10.72  36.43 5.257 52.40
9.5  2.650 12.32  43.04 4.805 60.17
10.0  2.366 13.99  50.46 4.306 68.76
10.5  2.118 15.72  58.68 3.775 78.17
1.0 1.901 17.46  67.70 3.231 88.39
11.5  1.711 19.19  77.47 2.701 99.36
12.0  1.545 20.90  87.91 2.218 111.0
12.5  1.400 22.57  98.88 1.836 123.3
13.0  1.273 24.19 110.2 1.648 136.0
13.5  1.163 25.75 121.4 1.823 149.0



186

Table 4-46 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential:

i i i i ion: Kirkwood Lennard-Jones
Radial Distribution Function Temperature: 328°g
Remarks: Gg

. M My ny (R>0) ot
x103kg/sec  +————— x105 kgm/m sec _—
0.5 1.782 .8407 .1378 .0174 .9959
1.0 3.549 .8723 .4863 .1320 1.491
1.5 5.120 .9356 1.021 .4096 2,367
2.0 6.356 1.035 1.711 .8664 3.613
2.5 7.188 1.177 2.527 1.471 5.175
3.0 7.162 1.370 3.456 2.161 6.988
3.5 7.679 1.625 4.509 2.866 9.000
4.0 7.466 1,955 5.718 3.523 11.20
4.5 7.061 2.373 7.136 4.090 13.60
5.0 6.541 2.896 8.827 4.540 16.26
5.5 5.967 3.540 10.86 4,865 19.27
6.0 5.385 4.318 13.32 5.065 22,71
6.5 4.824 5.243 16.28 5.148 26.67
7.0 4.302 6.323 19.81 5.125 31.26
7.5 3.826 7.558 23.98 5.005 36.54
8.0 3.399 8.941 28.85 4.799 42.59
8.5 3.019 10.46 34.47 4.518 49.45
9.0 2.685 12.09 40.90 4,173 57.16
9.5 2.391 13.81 48.15 3.713 65.73
10.0 2.135 15.58 56.26 3.331 75.17
10.5 1.911 17.39 65.21 2.859 85.46
11.0 1.714 19.19 75.00 2.372 96.57
11.5 1.542  20.97 85.59 1.890 108.5
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Table 4-47 Coefficient of Shear Viscosity.

Substance: Argon Intermolecular Potential:

Radial Distribution Function: Kirkwood %ennard-Jones
Remarks: Te Temperature: 373 K

A 5 M ny ny(R>0) nTOT
x1013kg/sec  +—————— x10% kgn/m sec

0.5 1.380  1.220 .1589 .0103 1.389
1.0 2.759  1.261 .5516 .0790 1.891
1.5  3.998  1.346  1.164 .2475 2.757
2.0  4.985  1.482 1.972 .5289 3.983
2.5  5.660 1.677  2.957 .9076 5.542
3.0 6.019 1.942  4.112 1.348 7.402
3.5  6.095 2.289  5.452 1.805 9.547
4.0 5.948  2.736  7.013 2.241 11.99
4.5  5.644  3.299  8.852 2.622 14.77
5.0 5.244  3.996 11.04 2.930 17.97
5.5  4.797  4.843 13.66 3.153 21.65
6.0 4.338  5.855 16.78 3.291 25.93
6.5 3.893  7.038 20.50 3.346 30.89
7.0  3.476  8.395 24.89 3.322 36.60
7.5  3.09%  9.916 30.01 3.227 43.15
8.0 2.750 11.58  35.93 3.068 50.58
8.5 2.443 13.37  42.70 2.853 58.92
9.0 2.173 15.25  50.35 2.589 68.19
9.5 1.93 17.18  58.92 2.284 78.38
10.0  1.726 19.12  68.41 1.946 89.48
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Table 448 Coefficient of Shear Viscosity

Substance: Argon Intermoledular Potential: Lennard-Jones

Radial Distribution Function: Percus-Yevick

Remarks: c:s Temperature: 273.15°

. ze My ny ny (R>0) "ot

x105kg/sec ——— x105 kgm/m sec —
0.15 8.779 .5919 1.192 1.501 3.285
0.30 10.96 1.059 2.825 5.769 ’ 9.653
0.45  8.749 2.201  3.068 7.502 12.77
0.60  6.217 4.473  1.598 3.688 9.750
0.75  4.392 8.185  -2.485 -9.409 -3.709
0.90  3.159 13.13  -12.67 -38.20 -3.773
1.05 2.290 18.57 -36.71 -92.05 -110.2
1.20 1.637 23.77 -94.68 -191.1 -262.1
328.2°

0.15 6.115 1.008 1.529 .7243 3.262
0.30 7.846 1.747 4.683 3.006 9.436
0.45 6.351 3.521 8.736 4.085 16.34
0.60 4.498 6.890 15.60 1.890 24.38
0.75 3.129 11.94 27.88 -5.393 34.43
0.90 2.203 17.88 47.50 -20.33 45,04
1.05 1.560 23.63 74.91 -46.39 52.15

1.20 1.081 28.67 108.6 -87.33 49.92



Table 4-8 Coefficient of Shear Viscosity

Substance: Argon

189

Intermoledular Potential:

Radial Distribution Function: Percus-Yevick

Lennard-Jones

1.20

"Remarks: c’: Temperature: 373.2°K

p* Csss "k y ny (R>0) ToT

x101%kg/sec —— x10% kgm/m sec >

0.15 5.797 1.444 1.764 .4438 3.651
0.30 6.242 2.452 5.946 1.928 10.33
0.45  5.079 4.827  12.61 2.670 20.11
0.60 3.584 9.137 24.75 1.174 35.06
0.75 2.465 15.13 46,36 -3.611 57.87
0.90 1.709 21.56  81.13 -12.93 89.76
los  1.189 27.33  132.8 -28.17 131.9
.8103 32.15 203.9 -50.77 185.2
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Table 4-50 Coefficient of Shear Viscosity

Substance: Argon Intermoledular Potential: Lennard-Jones,
. . . . . Truncated
Radial Distribution Function: Percus-Yevick
Remarks: ;gs Temperature: 273.15°
, ts N ny 1, (R>0) "roT
x1013g/sec ———— x10% kgm/m sec >
0.15  9.011 .5775 1.044 1.532 3.153
0.30 11.74 . 9958 .5437 6.159 7.698
0.45 9.940 1.981 -7.023 8.102 3.060
0.60 7.613 3.849 -29.92 1.464 -24.61

0.75 5.923 6.781 -94.40 -2.568 -113.3
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Table 4-51 Coefficient of Shear Viscosity

Substance: Argon Intermoledular Potential:

Radial Distribution function: Kirkwood Barker-Bobetic

. °
Remarks: ;:S Temperature: 273°K

§:S "k v ny (R>0) 0T
x1013kg/sec —— x10% kgm/m sec >
0.5 5.941 .2248 .1020 .0952 .4220
1.0 11.74 .2351 .3360 .7113 1.282
1.5 16.75 .2551 .5893 2.167 3.011
2.0 20.53 . 2865 . 7306 4.491 5.508
2.5 22.89 .3314 .6448 7.461 8.438
3.0 23.87 .3932 .2601 10.72 11.38
3.5 23.72 .4759 -.4401 13.91 13.95
4.0 22.74 .5848 -1.424 16.74 15.90
4.5 21.22 L7261 -2.623 19.04 17.14
5.0 19.43 .9072  -3.956 20.72 17.67
5.5 17.55 1.136 -5.330 21.78 17.58
6.0 15.71 1.423 -6.661 22.23 16.99
6.5 13.98 1.777 -7.864 22.14 16.05
7.0 12.40 2.209 -8.859 21.54 14.89
7.5 10.99 2.728 -9.565 20.49 13.66
8.0 9.743 3.344 -9.908 19.05 12.49
8.5 8.646 4.065 -9.816 17.28 11.53
9.0 7.686 4,896 -9.219 15.24 10.92
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Table 452 Coefficient of Shear Viscosity

Substance: Argon Intermoledular Potential:

Radial Distribution function: Kirkwood Barker-Bobetic

re: e
-Remarks: C:S Temperatu 308°K

£s°° Tk Ny ny (R>0) ToT
A x10!3kg/sec 0 x105 kgm/m sec >
0.5 4.634 .3241 .1155 .0576 .4972
1.0 9.200 .3374 .4002 .4347 1.172
1.5 13.20 .3643 .7618 1.337 2.463
2.0 16.26 .4070 1.083 2.801 4.291
2.5 18.22 .4685 1,252 4.705 6.426
3.0 19.10 .5530 1.195 6.835 8.583
3.5 19.08 .6661 .8910 8.958 10.52
4.0 18.37 .8145 .3699 10.88 12.06
4.5 17.22 1.007 -.2989 12.45 13.16
5.0 15.83 1.252 -1.022 13.62 13.85
5.5 14.34 1.561 -1.695 14.34 14.20
6.0 12.87 1.945 -2.214 14.62 14.35
6.5 11.48 2.418 -2.477 14.48 14.42
7.0 10.20 2.990 -2.388 13.95 14.55
7.5 9.052 3.674 -1.856 13.07 14.89
8.0  8.028 4.477  -.1923 11.88 15.56
8.5  7.126 5.408 .8729 10.42 16.70

9.0 6.334 6.466 3.213 8.742 18.43



Substance:

Radial Distribution function: Kirkwood

Table 4-53 Coefficient of Shear Viscosity

Argon

193

Intermoledular Potential:

Barker-Bobetic

Remarks: ;:s Temperature: 323°K
i L ny ny (R>0) "roT
x1013%g/sec —  x105 kgm/m sec >
0.5 4.212 .3734 .1209 .0475 .5417
1.0 8.377 . 3880 L4237 .3594 1.171
1.5 12.04 .4182 .8234 1.110 2.352
2.0 14.86 .4663 1.208 2.335 4.010
2.5 16.69 .5358 1.471 3.939 5.946
3.0 17.53 .6313 1.540 5.744 7.916
3.5 17.53 .7590 1.393 7.556 9.707
4.0 16.91 .9265 1.061 9.200 11.19
4.5 15.87 1.143 .6158 10.56 12.32
5.0 14.60 1.419 .1544 11.56 13.13
5.5 13.25 1.766 -.2154 12.17 13.72
6.0 11.90 2.197 -.3841 12.39 14.20
6.5 10.62 2.726 -2.453 12.23 14.71
7.0 9.441 3.364 .3010 11.73 15.40
7.5 8.378 4,123 1.352 10.92 16.39
8.0 7.431 5.012 2.993 9.818 17.82
8.5 6.595 6.036 5.303 8.479 19.82
9.0 5.862 7.195 8.348 6.943 22.49



Substance:

Radial Distribution function: Kirkwood

Table 4-54 Coefficient of Shear Viscosity

Argon

Remarks: c:s

194

Intermoledular Potential:
Barker-Bobetic

Temperature: 328°K

A ts® Mk Ny ny (R>0) 1ot
x10%g/ sec “————— x105 kgn/m sec >
0.5 4,085 .3907 .1227 .0446 .5580
1.0 8.130 .4058 .4312 .3381 1.175
1.5 11.69 .4371 . 8428 1.046 2.326
2.0 14.44 .4871 1.248 2.203 3.938
2.5 16.22 .5594 1.541 3.721 5.821
3.0 17.05 .6587 1.649 5.433 7.741
3.5 17.06 .7915 1.553 7.153 9.498
4.0 16.46 .9656 1.283 8.718 10.97
4.5 15.46 1.191 L9117 10.01 12.11
5.0 14.23 1.477 .5369 10.96 12,97
5.5 12,91 1.838 .2676 11.54 13.64
6.0 11.60 2.285 .2148 11.74 14.24
6.5 10.35 2.833 .4862 11.58 14.90
7.0 9.027 3.494 1.183 11.09 15.77
7.5 8.170 4.279 2,404 10.30 16.98
8.0 7.247 5.197 4.234 9.227 18.66
8.5 6.432 6.252 6.754 7.927 20.93
9.0 5.716 7.445 10.03 6.435 23.91



Substance:

Radial Distribution function: Kirkwood
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Table 4-55Coefficient of Shear Viscosity

Argon

Intermoledular Potential:
Barker-Bobetic

-Remarks: C:s Temperature: 373°K
e e ny n, (R>0) roT
x10Bkg/sec 4————— x106 kgm/m sec >
0.5 3.177 .5683 .1385 .0266 .7334
1.0 6.353 .5874 .4934 .2043 1.285
1.5 9.180 .6299 . 9999 .6391 2.269
2.0 11.39 .6988 1.566 1.362 3.626
2.5 12.85 .7988 2.100 2.325 5.223
3.0 13.56 .9365  2.539 3.427 6.903
3.5  13.62 1.120 2.871 4.548 8.540
4.0 13.19 1.361 3.132 5.577 10.07
4.5  12.42 1.670 3.400 6.428 11.50
5.0 11.46 2.063 3.778 7.046 12.89
5.5 10.45 2.554 4.384 7.404 14.34
6.0 9.372 3.159 5.337 7.494 15.99
6.5 8.373 3.894 6.757 7.324 17.98
7.0 7.448 4,772 8.750 6.910 20.43
7.5 6.610 5.803  11.42 6.274 23.49
8.0 5.861 6.991 14.85 5.440 27.28
8.5 5.199 8.33¢  19.13 4.436 31.90
9.0 4.617 9.826 24.32 3.290 37.43
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Table 4-56 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential:

. . . Lennard-
Radial Distribution Function: Kirkwood . Jones

Remarks: c‘: Temperature: 180°K
&4 " ny ny (R>0) 0T
x101%g/sec —  x105 kgm/m sec >
1.0 .1682 6.878 .7933 .0241 7.6955
2.0 .3381 7.239 2.334 .1930 9.7656
3.0 .5591 7.065 4.775 .1.032 12.87
4.0 .8853 6.604 8.346 4.386 19.34
5.0 1.060 7.275 12.14 6.612 26.03
6.0 1.209 8.003 16.40 8.355 32.75
7.0 1.345 8.732 21.15 9.441 39.33
8.0 1.476 9.435 26.38 9.800 45.62
9.0 1,631 10.02 31.91 10.13 52.06
lo.0  1.865 10.33  36.82 12.38 59.54

11.0 2.177 10.47 38.99 16.81 66.27



Table 4-57

Substance:

Argon

Coefficient of Shear Viscosity

197

Intermolecular Potential:
Lennard-Jones

Radial Distribution Functioh: Kirkwood

Remarks: g? Temperature: 273°K

| e M ny ny (R>0) oT

A x10'%g/sec —— x106 kgm/m sec >
0.5 .0501 12.52 .5196 .0001 13.04
1.0 1001 12.86 1.271 . 0055 14.14
1.5 1502 13.21 2.260 .0176 15.48
2.0 2008 13.53 3.492 .0398 17.07
2.5 .2519 13.85 4.976 .0745 18.90
3.0 3040 14.16 6.717 .1237 21.00
3.5 3572 14.45 8.726 . 1893 23.37
4.0 .4118 14.73 11.01 .2735 26.02
4.5 4682 15.00 13.58 .3783 28.96
5.0 5266 15.26 16.44 .5061 32.31
5.5 5874 15.50 19.61 .6593 35.77
6.0 .6510 15.74 23.08 . 8402 39.66
6.5 7175 15.96 26.86 1.050 43.87
7.0 7874 16.18 30.94 1.290 48.41
7.5 .8610 16.39 35.31 1.559 53.26
8.0 9384 16.60 39.93 1.854 58.34
8.5 1.020 16.81 44.76 2.169 63.74
9.0 1.106 17.01 49.73 2.495 69.24
9.5 1.198 17.21 54.75 2.822 74.78
10.0 1.295 17.41 59.68 3.138 80.23
10.5 1.398 17.61 64.34 3.432 85.39
11.0 1.509 17.80 68.52 3.700 90.02
11.5 1.628 17.98 71.88 3.955 93.82
12.0 1.757 18.14 74.03 4.250 96.41
12.5 1.900 18.27 74.33 4,720 97.32
13.0 2.060 18.36 71.89 5.700 95.95



Substance:

Radial Distribution Function:

Table 4-58 Coefficient of Shear Viscosity

Argon

198

Kirkwood

Intermolecular Potential:
Lennard-Jones

Remarks: ;SH Temperature: 308°K
o g Ty ny (R>0) "ToT
x1013kg/sec ———— x10% kgm/m sec >
0.5 .0044 14.52 .5929 .0005 15.12
1.0 .0880 14.89 1.433 .0037 16.32
1.5 .1325 15.24 2,527 L0121 17.78
2.0 1777 15.58 3.884 .0275 19.49
2.5 .2237 15.90 5.513 .0518 21.47
3.0 .2707 16.21 7.423 .0867 23.72
3.5 .3191 16.51 9.628 .1338 26.27
4.0 .3690 16.89 12.14 .1951 29.13
4.5 .4207 17.07 14.97 .2723 32.31
5.0 .4745 17.33  18.13 .3672 35.83
5.5 .5306 17.59  21.63 .4816 39.70
6.0 .5892 17.83  25.48 .6165 43.93
6.5 .6505 18.07  29.69 .7726 48.53
7.0 .7148 18.31 34.25 .9491 53.51
7.5 .7823 18.54 39.15 1.144 58.84
8.0 .8532 18.78 44.37 1.352 64.50
8.5 .9277 19.01 49,86 1.566 70.44
9.0  1.006 19.25  55.57 1.778 76.60
9.5  1.089 19.49  61.41 1.974 82.87
10.0 1.176 19.73  67.26 2.141 89.13
10.5 1.269 19.98 72.96 2.262 95.19
11.0 1.368 20.21 78.30 2.326 100.8
11.5 1.474 20.45 83.01 2.327 105.8
12.0 1.589 20.66 86.71 2.281 109.6
12.5 1.715 20.86 88.86 2.249 112.0
13.0 1.854 21.02 88.71 2.400 112.1
13.5 2.011 21.13 85.03 3.152 109.3
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Table 4-59 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential:

. . ) . Lennard-Jones
Radial Distribution Function: Kirkwood

Remarks: ¢ é" Temperature: 328°K
C‘; K Ny nv(R>°) "toT
A01%g/sec —— x10% kgm/m sec >
0.5 .0411 15.62 .6329 .0004 16.25
1.0 .0825 15.98 1.521 .0031 17.51
1.5 .1245 16.34 2.672 .0100 19.02
2.0 .1672 16.68 4.097 .0228 20.80
2.5 .2108 17.01 5.804 .0431 22.86
3.0 .2556 17.32 7.807 .0725 25.20
3.5 .3016 17.62 10.11 L1126 27.85
4.0 .3493 17.91 12.75 .1648 30.83
4.5 .3988 18.19 15.72 .2310 34.14
5.0 .4503 18.46  19.04 .3125 37.81
5.5 .5039 18.71 22.73 .4108 41.85
6.0 .5600 18.97 26.78 .5267 46.28
6.5 .6188 19,22 31.22 .6603 51.10
7.0 .6802 19.46 36.04 .8104 56.32
7.5 . 7447 19.71 41.23 .9742 61.92
8.0 .8123 19.96 46.77 1.147 67.88
8.5 . 8833 20.21 52.63 1.322 74.16
9.0 .9578 20.47 58.74 1.489 80.70
9.5 1.036 20.73  65.02 1.635 87.39
10.0 1.119 21.00 71.37 1.746 94.12
10.5 1.207 21.27 77.64 1.806 100.7
11.0 1.300 21.53 83.63 1.799 107.0
11.5 1.400 21.79 89.08 1.715 112.6
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Table 4-60 (Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential:

. d-Jo
Radial Distribution Function: Kirkwood Lennar nes

Remarks: ;? Temperature: 373°K
o Y Ny n, (R>0) "roT
x1013kg/ sec —— x10% kgm/m sec >
0.5 .0361 17.95 .7182 .0003 18.66
1.0 .0728 18.32 1.709 .0021 20.03
1.5 .1101 18.68 2.982 .0068 21.67
2.0 .1484 19.02 4,550 .0157 23.59
2.5 .1876 19.36 6.425 .0301 25.81
3.0 .2281 19.67  8.623 L0511 28.35
3.5 .2700 19.98 11.16 .0800 31.22
4.0 .3135 20.27 14.05 .1181 34.45
4.5 .3586 20.56 17.32 . 1666 38.05
5.0 .4057 20.84 20.98 .2266 42.05
5.5 .4548 21.11 25.05 .2990 46.46
6.0 .5061 21.38 29.54 .3840 51.31
6.5 .5596 21.66  34.47  .4809 56.61
7.0 .6156 21.93 39.84 .5884 62.36
7.5 .6741 22.21 45.64 .7033 68.55
8.0 .7354 22.49 51.86 .8206 75.17
8.5 .7995 22.78 58.47 .9336 82.19
9.0 .8666 23.08 65.44 1.033 89.55
9.5 L9370 23.39 72.68 1.106 97.17

.0 1.011 23.70 80.10 1.140 104.9

[
(=]
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Table 4-61 Coefficient of Shear Viscosity

Substance: Argon Intermolecular Potential:

. . . . . . Le d-J
Radial Distribution Function: Kirkwood nnard-Jones

Remarks: cfs’ Temperature: 500°K

zd! M ny ny (R>0) "ot
x10'3kg/sec ~——— x10% kgm/m sec >
0.5 .0276 23.71 .9298 .0001 24.64
1.0 .0559 24.08 2.174 .0009 26.26
1.5 0851 24.45  3.749 .0030 28.20
2.0 .1154 24.80 5.673 .0071 30.47
2.5 .1467 25.14 7.964 .0138 33.18
3.0 .1793 25.47 10.65 .0240 36.14
3.5 2131 25.79  13.74 .0382 39.57
4.0 .2484 26.12 17.28 .0572 43.45
4.5 .2851 26.44 21.28 .0816 - 47.79
5.0 .3234 26.76  25.77 L1117 52.64
5.5 .3632 27.08 30.77 .1479 58.00
6.0 .4047 27.42  36.32 .1897 63.92
6.5 .4480 27.76  42.43 .2363 70.42
7.0 .4929 28.11 49.11 .2860 77.51
7.5 .5396 28.47 56.39 .3363 85.19
8.0 .5882 28.85 64.25 .3832 93.48
8.5 .6387 29.24 72.66 .4197 102.3
9.0 .6911 29.65 81.70 .4448 111.8
9.5 .7457 30.07  91.23 .4441 121.7
10.0 .8027 30.50 101.2 .4090 132.1
10.5 .8622 30.94 111.6 .3270 142.9
11.0 .9247 31.40 122.3 .1832 153.9
11.5 .9907 31.86 133.1 -.0392 164.9
12.0 1.061 32.33 143.9 -.3583 175.8
12.5 1.136 32.79 154.3 -.7923 186.3
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Table 4-62 Coefficient of Shear Viscosity

Intermolecular Potential:
Lennard-Jones

Substance: Argon

Radial Distribution Function: Kirkwood

Remar'ks: c? Temperature: 600°K
A Cg Nk My ny (R>0) 10T
x10 3% g/sec —————— x105 kgm/m sec -
0.5 .0236 27.60 1.073 .0001 28.68
1.0 .0480 27.98 2.491 .0005 30.47
1.5 .0734 28.35 4.272 .0019 32.62
2.0 .0998 28.71 6.438 .0044 35.15
2.5 1272 29.06 9.014 . 0087 38.08
3.0 .1557 29.41 12.02 .0153 41.45
3.5 .1855 29.76 15.50 .0245 45.28
4.0 .2165 30.11 19.47 .0370 49.61
4.5 .2488 30.47 23.96 .0530 54.48
5.0 .2824 30.83 29.00 .0727 59.90
5.5 L3173 31.20 34,63 .0963 65.93
6.0 .3536 31.58 40.88 L1232 72.58
6.5 .3913 31.98 47.76 .1527 79.89
7.0 .4304 32.39 55.29 .1829 87.86
7.5 .4709 32.81 63.52 .2125 96.55
8.0  .5128  33.26  72.45 2385 106.0
8.5 .5562 33.72 82.08 .2568 116.1
9.0 .6011 34.20 92.40 .2619 126.9
9.5 .6476 34.70 103.4 .2469 138.3
10.0 .6958 35.21  115.1 .2077 150.5
10.5 .7460 35.74 127.3 .1297 163.2
11.0 .7984 36.29 140.1 .0036 176.4
11.5 .8532 36.84 153.2 ~-.1841 190.0
12.0 L9111 37.41 166.7 -.4488 203.7
12.5 .9727 37.97 180.2 -.8080 217.4
13.0 1.039 38.54 193.6 -1.281 230.8
13.5 1.111 39.10 206.3 -1.885 243.5
14.0 1.190 39.64 217.9 -2.629 254.9
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Table 4-63 Coefficient of Shear Viscosity

Substance: Nitrogen Intermolecular Potential:
. . . . . . Lennard-Jones
Radial Distribution Function: Kirkwood
Remarks: ¢ sH Temperature: 180°K
H n n n, (R>a) n
N Ls k v v TOT
10 13%kg/sec ———— x10% kgm/m sec >
1.0 .0597 7.407 L7275 .0028 8.137
2.0 1199 7.783 1.993 .0206 9.796
3.0 .1818 8.133 3.829 .0642 12.03
4.0 . 2466 8.456 6.272 .1424 14.87
5.0 .3157 8.750 9.366 .2646 18.38
6.0 .3906 9.019 13.15 .4404 22.61
7.0 .4729 9.269 17.64 .6770 27.58
8.0 .5638 9.508 22.79 .9714 33.27
9.0 .6648 9.744 28.41 1.302 39.46
10.0 .7779 9.978 34.16 1.624 45.75
11.0 .9060 10.20 39.33 1.887 51.42
12.0 1.055 10.41 42.72 2.112 55.24
13.0 1.235 10.54 41.99 2.736 55.27
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Table 4-64 Coefficient of Shear Viscosity

Substance: Nitrogen Intermolecular Potential:

e . _ o]
Radial Distribution Function: Kirkwood Lennard-Jones

H

Remarks: 5 Temperature: 273°K

CsH Mk Ny n, (R>0) ToT
x1013kg/sec ~——— 105 kgm/m sec >
0.5 .0196 11.39 .4513 .0001 11.84
1.0 .0396 11.60 1.065 .0008 12.67
1.5 . 0600 11.80 1.847 .0026 13.65
2.0 .0811 12.00 2.807 .0062 14. 81
2.5 .1028 12.18 3.953 .0119 16.15
3.0 .1254 12.36 5.296 .0203 17.68
3.5 .1487 12.54  6.845 .0321 19.41
4.0 .1730 12.71 8.614 .0477 21.37
4.5 .1982 12.87  10.61 .0677 23.55
5.0 .2246 13.04 12.85 .0925 25.99
s.s  .2520 13.20  15.35 11222 28.68
6.0 .2807 13.37 18.11 .1570 31.64
6.5 .3106 13.54  21.65 .1963 34.88
7.0 .3418 13.71 24.46 .2391 38.41
7.5 .3743 13.88  28.06 .2838 42.22
8.0 .4802 14.06 31.93 .3279 46.31
8.5 .4435 14.25 36.06 .3678 50.67
9.0 .4805 14.44 40.44 .3989 55.28
9.5 .5191 14.64  45.04 .4153 60. 09
0.0  -5595 14.84  49.81 .4098 65. 06
10.5 .6020 15.05  54.69 .3739 70.11
11.0 6468 15.26  59.61 2980 75.16
11.5 .6944 15.47 64.44 L1721 80.09
12.0 . 7453 15.68  69.07 -.0135 84.74
12.5 . 8002 15.89 73.26 -.2652 88. 89
13.0 8602 16.09  76.75 -.5804 92.27
13.5 .9267 16.28  79.13 -.9317 94.47
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Table 4-65 Coefficient of Shear Viscosity

Substance: Nitrogen Intermolecular Potential:
. . . . . . Lennard-Jones
Radial Distribution Function: Kirkwood

Remarks: ;('; Temperature: 308°K
Zg' M y ny (R>0) "ToT
x1013%g/sec ———— x105 kgm/m sec >
0.5 .0171 12.82 .5035 .0001 13.32
1.0 .0347 13.02 1.179 .0005 14.20
1.5 .0530 13.21 2.034 .0017 15.25
2.0 .0718 13.40 3.080 .0041 16.48
2.5 .0913 13.58  4.328 .0081 17.92
3.0 .1116 13.76 5.788 .0140 19.56
3.5 .1327 13.94  7.475 .0224 21.43
4.0 .1548 14.11 9.401 .0335 23.54
4.5 .1776 14.28 11.58 .0478 25.91
5.0 .2015 14.46  14.03 0655 28.55
5.5 .2263 14.63 16.76 .0867 31.48
6.0 .2522 14.81 19.78 L1112 34.70
6.5 2791 15.00  23.10 .1385 38.24
7.0 .3071 15.19  26.74 1675 42.10
7.5 3362 15.39  30.70 1967 46.29
8.0 .3664 15.59 34.95 .2228 50.77
8.5 .3978 15.81 39.56 .2457 55.61
9.0 .4305 16.03 44.42 .2568 60.70
9.5 .4644 16.26 49.61 .2565 66.12
10.0 .4998 16.49  55.01 .2341 71.74
10.5 .5367 16.74 60.62 .1835 77.54
11.0 . 57558 16.99 66.37 .0958 83.45
11.5 .6164 17.24 72.18 -.0390 89.37
12.0 . 6598 17.49 77.92 -.2321 95.18
12.5 .7221 17.65 82.69 -.4165 99.92
13.0 .7745 17.89 87.57 -.7377 104.7

13.5 . 8321 18.12 91.62 -1.127 108.6
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Table 4-66 Coefficient of Shear Viscosity

Substance: Nitrogen ‘ Intermolecular Potential:

. . . Lennard-Jones
Radial Distribution Function: Kirkwood

Remarks: 81 Temperature: 328°K
S te M Ty ny (R>0) o1
1013k g/ sec ~————— x105 kgm/m sec >
0.5 .1700 13.38 .5246 .0001 13.90
1.0 .3445 13.60  1.227 .0005 14.83
1.5 .5242 13.81  2.116 .0017 15.93
2.0 .7098 14.01  3.200 .0040 17.22
2.5 .9020 14.21  4.492 .0078 18.71
3.0 1.102 14.40  6.004 .0136 20.42
3.5 1.309 14.59  7.747 .0216 22.36
4.0  1.525 14.78  9.737 .0323 24.55
4.5 1.750 14.96  11.99 .0460 27.00
5.0 1.984 15.14  14.52 .0630 29.72
5.5  2.228 15.33  17.33 .0834 32.74
6.0  2.482 15.51  20.45 .1070 36.08
6.5  2.747 15.70  23.89 .1334 39.73
7.0  3.023 15.90  27.66 .1618 43.72
7.5  3.310 16.10 31.75 .1907 48.05
8.0  8.609 16.32 36.18 .2181 52.72
8.5  3.919 16.53 40.9%4 .2412 57.72
9.0 4.242 16.76  46.02 .2564 63.04
9.5  4.479 16.99  51.39 .2590 68.65
10.0  4.931 17.24  57.04 .2434 74.52
10.5  5.299 17.48  62.90 .2027 80.59
11.0  5.686 17.74  68.92 .1291 86.79
11.5  6.095 18.00 75.01 .0138 93.02
12.0 6530 18.26  81.06 -.1526 99.16
12.5  6.845 18.60  87.66 -.4502 105.8
13.0 7-332 18.87  93.27 -.7613 111.4
13.5  7.867 19.12  98.19 -1.147 116.2
14.0  8.463 19.36  102.0 -1.589 119.7
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Table 4-67 Coefficient of Shear Viscosity

Substance: Nitrogen Intermolecular Potential:
Radial Distribution Function: Kirkwood Lennard-Jones
Remarks: ¢ :1 Temperature: 373°K
\ H M ny ny (R>0) "ot
x013kg/sec ——————— x10° kgm/m sec >
0.5 .0149 14.99 .5837 4x. 55 15.57
1.0 .0303 15.20 1.356 .0003 16.56
1.5 .0462 15.41 2,328 .0011 17.74
2.0 .0628 15.61 3.512 .0027 19.12
2.5 .0800 15.80 4.919 .0053 20.73
3.0 .0979 15.99 6.565 .0092 22.57
3.5 .1166 16.19 8.464 .0149 24 .66
4.0 .1361 16.38 10.62 .0224 27.03
4.5 .1563 16.57 13.09 .0321 29.69
5.0 1774 16.77 15.84 .0441 32.66
5.5 .1994 16.97 18.92 .0583 35.95
6.0 .2222 17.18 22.33 .0746 39.59
6.5 .2459 17.39  26.09 .0926 43.58
7.0 .2704 17.62 30. 22 .1114 47.84
7.5 .2959 17.85 34.70 .1295 52.68
8.0 .3223 18.09 39.57 .1456 57.80
8.5 .3497 18.34 44.82 .1573 63.32
9.0 .3780 18.60 50.44 .1614 69.20
9.5  .4074 18.87  56.41  .1537 75.44
10.0 .4379 19.15  62.77 .1322 82.05
10.5 .4696 19.43  69.41 .0876 88.93
11.0 .5028 19.72  76.32 .0147 96. 06
11.5 .5376 20.03 83.43 -.0944 103.4
12.0 .5744 20.33 90.66 -.2488 110.7
12.5 .6135 20.63  97.89 -.4584 118.1
13.0 .6556 20.94 105.0 -.7338 125.2
13.5 .7015 21.24 111.6 -1.084 131.8
14.0 .7521 21.53 117.5 -1.512 137.5
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Table 4-68 Coefficient of Shear Viscosity

Intermolecular Potential:

Substance: Nitrogen
Lennard-Jones

Radial Distribution Function: Kirkwood

Remarks: ;? Temperature: 500°K

o5 "k Ty ny (R>0) "ot
x1013kg/sec ——  x10% kgm/m sec >
0.5 .0118 18.74 .7221 2x15° 19.46
1.0 .0241 18.96 1.663 .0001 20.62
1.5 .0369 19.18  2.835 .0005 22.01
2.0 .0503 19.39  4.255 .0013 23.65
2.5 .0643 19.61 5.939 .0026 25.55
3.0  .0789 19.83 7.904 .0046 27.74
3.5 .0941 20.05  10.17 .0074 30.23
4.0  -1009 20.28  12.75 .0113 33.05
4.5 .1264 20.52 15.68 .0162 36.22
5.0 1435 20.76 18.97 .0223 39.75
5.5 .1612 21.02 22.63 .0295 43.68
6.0  -1796 21.28  26.70 .0375 48.08
6.5  .1986 21.55  31.19 .0461 52.79
2.0  -2181 21.84 36.12 .0548 58.01
7.5 .2383 22.14  41.50 .0639 63.71
.0  -2592 22.45  47.36 .0693 69.88
8.5 .2806 22.77  53.69 .0724 76.54
0.0  -3026 23.10 60.51 .0705 83.69
0.5 .3252 23.45 67.83 .0617 91.34
10.0 .3486 23.81 75.61 .0422 99.46
10.5 .3727 24.18 83.85 .0086 108.0
11.0 .3976 24.56 92.61 -.0398 117.1
1.5  -4234 24.95  101.8 -.1111 126.6
12.0 .4504 25.34  111.3 -.2100 136.5
12.5 .4787 25.74  121.3 -.3433 146.7
13.0 .5087 26.15  131.4 -.5188 157.1
13.8 .5408 26.55  141.8 -.7462 167.6
14.0 .5756 26.95  152.0 -1.036 178.0
14.5 .6139 27.3¢  162.0 -1.399 188.0



Substance: Nitrogen

Radial Distribution Function: Kirkwood

Table 4-69

Coefficient of Shear Viscosity
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Intermolecular Potential:

Lennard-Jones

Remarks: cg Temperature: 600°K
\ z SH M n, n, (R>0) “oT
x101% g/sec ~—————— x108 kgm/m sec >
0.5 .0103 21.27 .8160 1x1075 22.09
1.0  .0211 21.51 1.871 .0001 23.38
1.5  .0324 21.74  3.181 .0003 24,92
2.0 .0442 21.98 4.763 .0008 26.74
2.5  .0565 22.22  6.636 .0017 28.85
3.0  -0693 22.46  8.820 .0030 31.29
3.5 .0827 22.72 11.33 .0049 34.06
4.0  -0967 22.98  14.20 .0074 37.19
4.5 1111 23.25  17.44 .0107 40.70
5.0 -l262 23.53  21.08 .0147 44.63
5.5 .1417 23.83  25.14 .0193 48.99
6.0 L1577 24.13 29.64 .0245 53.80
6.5 .1742 23.45 34.61 .0301 59.09
7.0 .1912 24.78 40.07 .0356 64.89
9.5  .2087 25.13  46.03 .0404 71.20
8.0 L2267 25.49 52.51 .0440 78.04
8.5 .2450 25.87 59.51 .0446 85.42
9.0  .2639 26.25  67.09 .0422 93.38
9.5 .2831 26.65 75.21 .0346 101.9
0.0  -3029 27.07  83.92 .0203 111.0
0.5  -3232 27.50  93.17 -.0041 120.7
11.0 .3440 27.93 103.0 -.0414 130.8
11.5 .3655 28.38 113.34 -.0916 141.7
12.0  .3877 28.84  124.3 -.1618 153.0
12.5 .4109 29.30 135.7 -.2557 164.8
13.0 .4352 29.77 147.7 -.3791 177.0
13.5 4609 30.24  160.0 -.5388 189.7
14.0 .4884 30.70 172.6 -.7431 202.6
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Table 4-70 Coefficient of Shear Viscosity

Substance: Argon

Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Lennard-Jones
Temperature: 273.2°K, 328.2°K

Remarks: 5g
H

o s "k v ny (R>0) "ot

x10!3g/ sec — x105 kgm/m sec »>

273.2°
0.15 .1891 13.44 3.191 .0323 16.66
0.30 .3866 14.49 10.04 .2035 : 24,73
0.45 .6127 15.25 21.41 .5254 37.18
0.60 . 8765 15.99 38.06 .5200 54.57
0.75 1.159 17.04 57.91 -2.484 72.47
0.90 1.407 18.69 70.43 -17.01 72.12
1.05 1.525 21.15 51.44 -61.30 11.39
L20  1.368 24.66  -19.30  -159.8 -154.4
328.2°

0.15 . 1577 16.55 3.746 .0186 20.31
0.30 .3293 17.56 11.62 .1262 29.30
0.45 .5282 18.34 24.74 .3397 43.41
0.60 .7522 19.16 44,36 .3182 63.84
0.75 .9976 20.35 69.77 -1.719 88.40
0.0  1.203 22.15  94.56  -11.10 105.6
Los  1.29 24.76  103.9 ~38.50 90.20

1.20 1.166 28.32 86.87 -94.23 20.96
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Table 4-71 Coefficient of Shear Viscocity

Substance: Argon’

Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Lennard-Jones
Temperature: 373.2°K

Remarks: ;g

H

.20

\ s My My ny (R>0) "ot
x1013kg/sec ———— x105 kgm/m sec >
373.2°
.15 .1400 18.87 4,163 .0130 23.05
.30 .2958 19.87 12.79 .0914 32.75
45 L4772 20.67  27.20 .2509 48.12
60 6845 21.56  48.95 .2243 70.74
.75 .8992 22.86 78.12 -1.317 99.66
.90 1.080 24.77 110.5 -8.172 127.1
s 1.160 27.47  135.8 -27.48 135.8
1.043 31.11 148.3 -65.37 114.1
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Table4-72 Coefficient of Shear Viscosity

Substance: Argon

Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Lennard-Jones, Truncated
Temperature: 273.15°K

Remarks: ;S”

H

Cs Nk Ny ny (R>a) "ot
p* x101%g/sec ————  x10°% kgm/m sec —>
015 -1924 13.27 3.183 .0327 16.49
0.30 .4045 14.07 10.03 L2121 24,31
0.45 .06648 14.55 21.29 .5419 36.38
0.60 . 9941 15.00 36.18 L1912 51.38
0.75 1.389 15.78 43.60 -6.019 53.36
0.90 1.807 17.12 -9.748 -39.51 -32.14
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Table 4-73 Coefficient of Shear Viscosity

Substance: Argon - . Intermolecular Potential: Lennard-Jones

Radial Distribution Function: Percus-Yevick

Remarks: Comparison of Drag Coefficients Temperature: 273.2°K
* g n n z
P x1013kg/sec x108kg/msec 0BS TOTAL
Normal ¢

0.15 1.459 5.279 26.2

0.30 2.150 12.50 35.3

0.45 2.807 20.77 50.1

0.60 3.529 16.84 76.4

0.75 4,355 -58.02 124

Sound Speed t

0.15 9.011 3.153 26.2
0.30 11.74 7.698 35.3
0.45 9.940 3.060 50.1
0.60 7.613 -24.61 76.4
0.75 5.923 -113.3 124

Helfand ¢
0.15 .1924 16.49 26.2
0.30 .4045 24.31 35.3
0.45 .6648 36.38 50.1
0.60 .9941 51.37 76.4
0.75 1.389 53.35 124
0.90 1.807 -32.14 205

Force Fit

%s %y

0.15 .0342 .0328 .067
0.30 - .0726 . 0656 .138
0.45 .0966 .0984 .195
0.60 .0319 L1312 .163
0.75 -.116 .1640 .048
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Table 4-74 Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential: Lennard Jones
- Temperatures: 180°K,

Remarks: ;};G

T = 180°%K T =
A ¢v ¢v (R>0) ¢TOT ¢v by (R>0) ¢'.I‘O'I‘
«x10® kgn/m sec> «x106 kgm/m sec+

1 1.269 -1.408 -.1388

2 -31.23 63.84 32.61

3 -428.8 751.3 322.4

4 -1111 1620 509.3

5 452.3 -562.0 -109.7

6 1514 -1925 -411.1

7 2763 -3469 -705.8

8 3725 -4596 -870.8

9 3082 -3694 -611.7
10 1054 -1264 -209.7

11 -1503 1260 -243.7



Table 4-75,
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Coefficient of Bulk Viscosity

Substance: Argon .
Radial Distribution Function: Kirkwood
Intermolecular Potential: Lennard Jones

- Temperatures: 273°, 308°
Remarks: CEG
T= 273° T = 308°
X b, ¢ (R0) dr0r  bops o,  6,(R0) bror
«x105 kgm/m sec +x105 kgm/m sec>

0.5 .0977 .0964 .1942 - .1201 .0711 L1911
1.0 .3015 .4990 .8005 - .4104 .3626 L7729
1.5 .5720 1.239 1.811 .1 .8407 .8931 1.734
2.0 .9326 2.254 3.187 1.3 1.414 1.629 3.043
2.5 1.434 3.436 4.870 3.2 2.121 2.531 4,652
3.0 2.111 4.676  6.787 5.6 2.903 3.586 6.489
3.5 2.914 5.931  8.846 8.6 3.602 4.840 8.442
4.0 3.641 7.279 10.92 12 3.925 6.412 10.34
4.5  3.867 8.949 12.82 17 3.417 8.495  11.91
5.0 2.926  11.31  14.23 21 1.459  11.32 12.78
5.5 -.0773 14.78 14.70 27 -2.732 15.13 12.40
6.0 <-6.215  19.78  13.57 33 -10.08 20.14 10.06
6.5 -16.69 26.63  9.938 39 -21.63 26.50 4.867
7.0 -32.82 35.49  2.670 47 -38.60 34.28 -4.320
75 -56.05 46.40  -9.654 55 -62.35 43.47  -18.88
8.0 -88.05 59.29 -28.77 63 -94.49 54.00 -40.49
8.5 -130.8 74.03 -56.80 71 -137.0 65.77 -71.23
9.0 -186.9 90.52 -96.38 82 -192.3 78.66 -113.6
9.5 -259.7 108.8 -150.9 92 -263.6 92.60 -171.0
10.0 -353.9 129.0 -224.9 103 -355.2 107.6 -247.5
10.5 -476.4 151.9 -324.5 - -473.1 124.0 -349.1
11.0 -638.1 179.1 -459.0 - -626.7 142.5 -484.2
11.5 -857.2 213.7  -643.5 - -830.4 164.6 -0065.8
12.0 -1167 262.6 -904.4 - -1110 193.8 -195.8
12.5 -1635 341.6 -1294 - -1513 237.7 -1275
13.0 -2303 455.2 -1848 - -2140 314.6 -1826
13.5 -3054 429.5 -2024
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Table 4-76 Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential:

Lennard Jones -

- Temperatures: 328°K, 373°K
Remarks: RG
T = 328° T = 373°
4 ¢, 6, (R>0) - b 4, (R>0) bror
+«x10% kgm/m sec+ +x105 kgm/m sec*
0.5 .1309 .0610 .1919 .1520 .0451 L1971
1.0 .4607 .3103 L7710 .5549 .2299 .7848
1.5 .9589 L7856  1.725 1.174 .5739 1.748
2.0 1.616 1.408 3.023 1.978 1.079 3.056
2.5 2.399 2.219 4.618 2.895 1.756 4.651
3.0 3.217 3.213 6.429 3.792 2.644 6.436
3.5 3.880 4.451 8.331 4.443 3.814 8.257
4.0 4.077 6.051 10.13 4.517 5.368 9.885
4.5 3.350 8.179 11.53 3.566 7.430 11.00
5.0 1.089 11.03 12.13 1.023 10.13 11.15
5.5 -3.420 14.78 11.36 -3.802 13.58 9.779
6.0 -11.08 19.60  8.516  -11.72 17.88 6.160
6.5 -22.90 25.59 2.6806 -23.67 23.08 -.5933
2.0 -40.04 32,79  -7.247  -40.75 29.19  -11.56
7.5 -63.84 41.19  -22.64 ~64.22 36.17  -28.06
8.0 -95.87 50.71  -45.16 -95.60 43.94  -51.65
8.5 -138.1 61.25 -76.81 -136.7 52.41 -34.28
9.0 -192.8 72.67 -120.1 -189.8 61.44  -128.3
9.5 -203.1 84.89 -178.2 -257.7 70.90 -186.8
10.0 -353.2 97.89 -255.4 -343.8 80.64 -263.2
10.5 -468.9 111.8 -357.1
11.0 -618.5 127.1 -491.4
11.5 -809.5 143.4 -666.1
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Table 4-77 Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Xirkwood
Intermolecular Potential: Lennard Jones
- Temperatures: 500°K, 600°K

Remarks: ;gG

T = 500°K T = 600°K
* 6, 4,0 bror 6,  ¢,(R0) bror
«x10% kgn/m sec «x106 kgn/m sec+
0.5  .1976 .0236 .2212 .2258 .0162 .2420
1.0 .749 .1243 .8739 .8679 .0876 .9555
1.5  1.611 .3249 1.936 1.877 2367 2.114
2.0 2.715 6470 3.363 3.178 .4871 3.665
2.5 3.949 1.122 5.072 4.648 .8697 5.518
3.0  5.140 1.795 6.935 6.111 1.423 7.535
3.5  6.041 2.722 8.763 7.327  2.192 9.519
4.0 6.327 3.967  10.29 7.989  3.223 11.21
4.5  5.587 5.594 11.18 7.717  4.560 12.28
5.0 3.322 7.664 10.99 6.059  6.242 12.30
5.5 -1.061 10.22 9.161 2.482 8.296 10.78
6.0 -8.253 13.30 5.044 -3.633  10.74 7.102
6.5 -19.06  16.90 -2.161 -13.00 13.56 .5595
7.0 -34.41 21.00 -13.40 -26.42 16.74 -9.675
7.5 -55.39  25.58 -29.82 44.89  20.25 -24.63
8.0 -83.29  30.54 -52.75 -69.52  24.03 -45.48
8.5 -119.6  35.83 -83.79 -101.6 28.01 -73.63
9.0 -160.3  41.29  -125.0 -142.9 32.08  -110.8
9.5 -225.7  46.83  -178.9 -195.2 36.16  -159.0
10.0 -300.8  52.31  -248.5 -261.2 40.11  -221.1
10.5 -395.5  57.58  -337.9 -344.2 43.81  -300.4
1.0 -515.3  62.52  -452.7 -448.5 47.11  -401.4
11.5 -667.7  67.01  -600.7 -580.3 49.87  -530.4
12.0 -863.9  71.04  -792.8 -747.9 51.91  -696.0
12.5 -1113 73.96  -1039 -936.9 53.11  -910.8
13.0 1247 53.42  -1194
13.5 -1628 53.10 -1575
14.0 -2130 51.01 -2079
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Table 4-78, Coefficient of Bulk Viscosity

Substance: Nitrogen

Radial Distribution Function: Kirkwood
Intermolecular Potential: Lennard Jones
- Temperatures: 180°K

Remarks: _RG
Ts

T = 180°K T-=
¢y ¢, (R>0) 70T ¢y ¢,,(R>0) 10T
«x10® kgm/m sec> +x10% kgm/m sec>
1. .1821 .2600 .4421

10.
11.
12,

13.

.5797 1.176 1.755

1.268 2.475 3.743
2.025 3.995 6.021
1.375 6.404 7.779
-3.987 11.17 7.188
-18.96 19.68 L7197
-49.79 32.40 -17.39
-105.0 49.06 -55.93
-198.4 69.60 -128.8
-358.2 96.40 -261.8
-659.6 142.2 -517.3

-1208 219.4 -988.3



Table 4-79 .
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Substance: Nitrogen _
Radial Distribution Function: Kirkwood
Intermolecular Potential: Lennard Jones
- Temperatures: 273°K, 308°K
Remarks: ;R0

Coefficient of Bulk Viscosity

T = 273% T= 308°K

A by ¢, (R>0) broT ¢, ¢, (R>0) $ror

+x10% kgn/m sec> +x10% kgn/m sec>
0.5 .0962 .0188 .1150 .1079 .0135 .1214
1.0 .3587 .0971 .4557 .4090 .0712 .4801
1.5 . 7655 . 2467 1.012 .8772 .1867 1.064
2.0 1.288 .4756 1.764 1.474 .3732 1.847
2.5 1.874 . 7981 2.672 2.135 .6495 2.784
3.0  2.435 1.240  3.674 2.761 1.042  3.803
3.5  2.835 1.838  4.673 3.216 1.583  4.799
4.0 2.889 2.639 5.528 3.317 2.310 5.626
4.5  2.354 3.695  6.049 2.834 3.259 6.093
5.0 .9294 5.056 5.986 1.492 4.464 5.956
5.5 -1.745 6.767  5.022 -1.039 5.952  4.913
6.0 ~-6.091 8.856  2.765 -5.142 7.738  2.59
6.5 -12.60 11.34  -1.262  -11.26 9.826  -1.436
7.0 -21.85 14.21  -7.637  -19.81 12.20  -7.709
7.5 -34.50 17.45  -17.05 -31.70 14.85  -16.85
8.0 -51.34 21.01  -30.33 -47.31 17.72  -29.59
8.5 -73.33 24.84 ° -48.49 -67.65 20.76  -46.99
9.0 -101.6 28.86  -72.77 -93.68 23.92  -69.76
9.5 -137.7 33.01 -104.7 -126.8 27.10  -99.66
10.0 -183.5 37.21 -146.3 -168.5 30.25 -138.3
10.5 -241.6 41.40 -200.2 -221.1 33.26 -187.8
1.0 -315.6 45.56 -270.1 -287.5 36.07 -251.4
11.5 -410.7 49.71 -361.0 -371.8 38.60 -333.2
12.0 -534.8 54.06 -480.7 -575.8 47.75 -528.0
12.5 -701.0 59.14 -641.9 -754.1 52.20 -701.9
13.0 -932.7 66.27 -866.4 -848.8 48.75 -800.1
13.5 -124.6 75.15 -1171 -111.7 51.87 -1065



220

Table 4-80, Coefficient of Bulk Viscosity

Substance: Nitrogen

Radial Distribution Function: Kirkwood
Intermolecular Potential: Lennard Jones
- Temperatures: 328°K, 373°K

. Remarks: ;RC

T= 328° T = 373°
. b, 4R b o, b,(R0) bror
«x10® kgm/m sec> +x105 kgn/m sec>
0.5 L1106 .0136 .1242 .1231 .0097 .1328
1.0 .4193 .0711 .4904 .4720 .0522 .5243
1.5 .9022 .1844 1.087 1.020 .1401 1.160
2.0 1.524 .3642 1.889 1.725 .2867 2.011
2.5 2.226 .6266 2.853 2.519 .5094 3.029
3.0 2.912 .9956 3.908 3.305 .8306 4.135
3.5 3.446 1.502 4.948 3.946 1.276 5.222
4.0 3.646 2.182 5.828 4,269 1.874 6.143
4.5 3.278 3.073 6.351 4,058 2.650 6.709
5.0  2.061 4.210  6.270 3.058  3.629 6.686
5.5 -.3442 5.619 5.275 .9612 4.826 5.787
6.0 -4.332 7.321  2.989 -2.584  6.250 3.667
6.5 -10.36 9.320 -1.041 -7.985 7.902 -.0828
7.0 -18.96 11.61 -7.357 -15.71 9.770 -59.45
7.5 -30.77 14.16  -16.60 -26.31  11.83  -14.48
8.0 -46.50 16.94 -29.56 -40.44 14.05 -26.38
8.5 -67.05 19,91 -47.14 -58.85 16.39 -42.46
9.0 -93.50 22,99 -70.51 -82.49 18.80 -63.69
9,5 -127.2 26,13 -101.1 -112.5 21.21 -91.29
10.0 -169.9 29.25  -140.6 -150.4 23.55  -126.8
10.5 -223.9 32.27  -191.6 -198.0 25.76  -172.3
11.0 -292.4 35.15 -257.2 -258.0 27.74 -230.2
11.5 -379.7 37.83 -341.9 -333.7 29.41 -304.3
12,0 -397.1 33.78 -363.3 -430.4 30.70 -399.7
12.5 -509.1 34.04 -475.0 -555.2 31.54 -523.6
13.0 -806.0 42.07 -763.9 ~-719.5 31.95 -687.6
13.5 -1069 44 .87 -1025 -914.8 32.15 -909.6
14.0 -1427 48.04 -1379 -1236 31.52 -1205
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Table 4-81, Coefficient of Bulk Viscosity

Substance:

Radial Distribution Function: Kirkwood

Nitro

gen

Intermolecular Potential:

Lennard Jones

- Temperatures: 500°K,  600°K
Remarks: RO
T= T
A ¢y ¢V(R>°) $roT % ¢V(R>°) $ror
+x106 kgn/m sec+ «x10% kgm/m sec>
0.5 .1493 . 0054 .1547 .1667 . 0038 .1705
1.0 .5814 .0307 .6121 .6537 .0224 .6761
1.5 1.269 . 0866 1.355 1.435 .0651 1.500
2.0 2.167 .1853 2.352 2.468 .1423 2.610
2.5 3.208 .3411 3.549 3.688 .2659 3.954
3.0 4.299 .5700 4.869 5.009 .4488 5.458
3.5 5.319 .8893 6.208 6.320 .7040 7.024
4.0 6.114 1.316 7.429 7.487 1.043 8.530
4.5 6.503 1.864 8.367 8.348 1.478 9.826
5.0 6.271 2.545 8.816 8.721 2.015 10.74
5.5 5.171 3.367 8.538 8.384 2.658 11.04
6.0 2.921 4,333 7.254 7.100 3.409 10.51
6.5 -8.125 5.437 4.625 4,586 4.264 8.851
7.0 -6.398 6.671 .2731 .5313 5.213 5.745
7.5 ~-14.27 8.018 -6.252 -5.406 6.245 .8391
8.0 -24.51 9.454  -15.46 -13.64 7.341  -6.298
8.5 -38.91 10.95 -27.96 -24.62 8.480 -16.14
9.0 -56.96 12.47 -44 .49 -38.97 9.634 -29.33
9,5 -79.94 13.98 -65.96 -57.32 10.77 -46.55
10.0 -108.9 15.42 -93.44 -80.55 11.86 -68.69
10.5 -145.1 16.75 -128.4 -109.7 12.86 -96.83
1.0 -190.6 17.89 -172.7 -146.1 13.72  -132.4
11.5 -247.5 18.79  -228.7 -191.7 14.39 -177.3
12.0 -319.2 19.34 -299.8 -248.9 14,80 -234.1
12.5 -410.2 19.46 -390.7 -321.0 14.88 -306.1
13.0 -527.0 19.04 -508.0 -412.8 14,53 -398.3
13.5 -679.3 17.96  -661.3 -531.0 13,66 -517.4
14.0 -881.3 16.19 -865.1 -681.2 11.95 -669.3
14.5 -1145 13,13  -1132
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Table 4-82, (Coefficient of Bulk Viscosity

Substance: Argon
Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Lennard Jones
- Temperatures: 273.15°, 328.15°K
. Remarks: ,RG

T = 273.15°
P by ¢, (R>0) bror  %0BS
+x10% kgn/m sec>

0.15 1.244 1.503 2.474 .9
0.30 4.967  4.298 9.265 11
0.45 -4.380  12.28 7.899 28
0.60 -87.81  30.31 -57.50 55
0.75 -361.9  16.00  -345.9 90

0.00 -1009  -155.5  -1164 ]

1.0S ~-2260  -681.9  -2942 .

1.20 -4807 -2002 -6809 -
328.15°

0.15 1.630 1.057 2.687

0.30 4.852 4.151 9.004

0.45 -7.285 12.76 5.475

0.60 -86.83 27.06 -59.77

0.7s -333.8 17.47 -316.3
0.90 -894.3 -98.53 -992.8
1.05 -1956 -444.1 -2400

120 ~-3912 -1184 -5096
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Table 4-83, Coefficient of Bulk Viscosity
Substance: Argon

Radial Distribution Function: Percus-Yevick
Intermolecular Potential; Lennard Jones

- Temperatures: 373.15°
Remarks: RC
T= 373.15°
o ¢y ¢, (R>0) $10T
+x105 kgm/m sec>
0.15  1.884 .8475 2.731
0.30  5.132  3.837 8.969
0.45 -7.415 11.97 4.559
0.60 -83.11 24.23 -58.87
0.75 -310.4 17.42 -293.0
0.90 -816.6 -69.43  -886.0
1.05 -1731 -317.2 -2048
1.20 -3292 -800.3 -4092
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Table 4-84, (Coefficient of Bulk Viscosity

Substance: Argon
Radial Distribution Function: CHNC
Intermolecular Potential: Lennard-Jones
- Temperatures: 273.15°K, 328.15°K

. Remarks: ,;EG

Ts= T = 273.15°K
¢v ¢v(R>°) ¢'I‘O'I‘ by ¢V(R>°) ¢'i‘0'l‘ ®0Bs
+x106 kgm/m sec+ +«x106 kgm/m sec*>
0.15 1.146  1.638 2.783 -9
0.30 4.493 4,973 .  9.466 11
0.45 -4.075  12.C3 7.956 28
0.60 -87.96  26.13 -61.83 55
0.75 -348.7 6.118  -342.5 90
0.90 -858.5  -108.4 -966.9 -
1.05 -1383 -274.7 -1658 -
1.20 -828.7  -228.5 -1057 -
328.15°
0.15 1.609 1.081 2.690
0.30 4.607 4.369. 8.976
0.45 -8.576 12.86 4.284
0.60 -89.17 23.61 -65.57
0.75 -314.5 9.458  -305.1
0.90 -710.8 -63.83 -774.6
1.05 -1046 -161.5 -1208
1.20 -456.0  -123.9 -579.9
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Table 4-85, Coefficient of Bulk Viscosity

Substance: Argon
Radial Distribution Function: CHNC
Intermolecular Potential: Lennard-Jones
- Temperatures: 373.15°K
. Remarks: CRG
s

T= T = 373.15°K

¢, ¢, (R>0) 1ot by ¢, (R>0) $roT

+x10% kgm/m sec+ «x10® kgm/m sec>

0.15 1.862 .8612 2.723
0.30 4.867 3.991 8.858
0.45 -8.711 12.01 3.302
0.60 -84.33 21,13 -63.20
0.75 -285.1 10.77 -274.3
0.90 -622.9 -42.34 -665.3
1.05 -832.5 -107.7 -940.2
1.20 -89.76 -72.96 -162.7



Table 4-86 .
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Substance: Argon

Coefficient of Bulk Viscosity

Radial Distribution Function: Percus-Yevick
Intermolecular Potential; Truncated Lennard-Jones

- Temperatures: 273.15°

. Remarks: Comparison of ¢'s

T = 273.15° T= 273.15%
p* oy ¢, (R>0) SroT by ¢, (R>0) ¢ror %oBs
+x105 kgm/m sec* +x105 kgm/m sec*
Normal Sound Speed ¢
0.15 1.120  1.417 2.537 -6.255  8.752 2.496
0.30 1.454  4.535 5.989  -42.05  24.77 -17.27
0.45 -30.74 15.08  -15.67  -182.9 53.38 -129.5
0.60 -217.4 29.19  -188.2 -541.8 62.97 -478.8
0.75 -956.9 -49.42 1006 -1346 -67.22 -1413
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Table 4-87 Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Truncated Lennard-Jones
Temperature: 273.15°K

Remarks: Comparison of z's

P oy &R0 dpor bops P QP ¢

«x108 kg/m sec>  * X106 kg/m +  <«— units of 02—

Helfand ¢
0.15 2.357 .1869 2.543 .6877 .037 -.014
0.30 9.366 .8534 10.22 .3304 -.051 -.062
0.45 14.97 3.570 18.54 .5239 .153 .196
0.60 -16.09 8.223 -7.864 1.047 .540 571
0.75 220.8 -15.76 -236.6 1.728 1.02 1.04

Normal z; Q=0

0.15 3.340  .0685 = 3.408 0.9

0.30  8.429  1.219 9.648 11
0.45  6.976  2.968 9.945 29
0.60 -11.94  -1.327  -13.27 S5
0.75 -116.8  -25.76  -142.6 90

3Calculated from Integral Equations
bCalculated from Eq. (5-1) from Argon Viral Expansion

Calculated from Eq. (5-1) from Viral Expansion fitted to pressures
calculated from these g values.
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Table 4-88 (Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential: Modified Buckingham
- Temperatures: 273°, 308°

Remarks: ¢RG

T = 273° T = 308°
A ¢V ¢v (R>0) ¢TOT ‘ 4’035 ¢V ¢V(R>°) ¢TOT
«x10% kgm/m sec> +«x10% kgm/m sec+
0.5 . 1055 .0798 .1853 - . 1250 .0604 .1854
1.0 .3536 .3950 . 7486 - .4374 .3037 .7411
1.5 .6906 .9788 1.659 0.1 .8741 .7621 1.636
2.0 1.033 1.817 2.850 1.2 1.334 1.467 2.801
2.5 1.212 2.993 4.204 3.0 1.632 2.478 4,109
3.0 .9400 4.592 5.532 5.3 1.475 3.881 5.356
3.5  -.2085  6.743 6.535 8.2 .4455  5.782 6.228
4.0 -2.814  9.584 6.770 12 -2.014 8.285 6.270
4.5 -7.629  13.24 5.608 16 -6.618  11.48 4.858
s.0 -15.60  17.79 2.188 20  -14.26 15.41 11.52
5.5 -27.93  23.29 -4.639 26 -26.06 20.11 -5.947
6.0 -46.14 29.75 -16.39 32 -43.42 25.55 -17.87
6.5 =-72.33 37.21 -35.12 38 -68.25 31.72 -36.52
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Table 4-89, Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential: Modified Buckingham
- Temperatures: 323°, 328°

Remarks: C?G

T = 323° T= 328°
¢ ¢, (R>0) StoT ¢, ¢, (R>0) $ror
«x108 kgm/m sec> +x105 kgn/m sec>
. 1325 .0542 .1867 .1348 .5024 . 1872
.4691 .2747 .7438 .4792 .2660 .7452
. 9439 .6957 1.640 .9662 .6757 1.642
1.450 1.353 2.802 1.488 1.318 2.805
1.799 2.304 4.103 1.854 2.251 4.105
1.698 3.634 5.332 1.772 3.558 5.330
. 8291 5.332 6.161 1.700 4.511 6.211
-1.645 7.813 6.168 -1.519 7.665 6.150
-6.133 10.83 4,699 -5.966 10.63 4.664
-13.60 14,54 9.395 -13.38 14.27 8.937
-25.14 18.96 -6.186 -24.83 18.59 -6.232
-42.11 24.04 -18.07 -41.66 23.57 -18.09
-66.24 29.72 -36.51 -65.59 29.12 -36.47
-99.81 35.94 -63.86 -98.86 35.18 -63.68
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Table 4-90, Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential: Modified Buckingham
- Temperatures: 373°

Remarks: ;§G

Tz 373° CT=
A ¢, ¢, (R>0) broT by ¢, (R>0) -
«x10% kgm/m sec+ «x108 kgn/m sec+

0.5 .1543  .0395 .1938

1.0 .5618  .2048 . 7666

1.5  1.150 .5330  1.683

2.0  1.802  1.065 2.866

2.5  2.322  1.857 4.178

3.0 2,420 2.980 '5.400

3.5  1.700  4.511 6.211

4.0  -.3546  6.519 6.164

4.5  -4.392  9.055 4.662

5.0 -11.22  12.15 .9294

5.5 -21.81  15.79 -6.030

6.0 -37.41  19.93  -17.48

6.5 -59.56  24.51  -35.05

7.0 -90.24  29.44  -60.80
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Table 4-91 Coefficient of Bulk Viscosity

Substance:

Nitrogen
Radial Distribution Function: Kirkwood
Intermolecular Potential: Modified Buckingham
- Temperatures: 273°K, 308°K

- Remarks: £RG

T = 273°K T = 308°%
A ¢y oy (R>0) ot 9, o (R>0) $roT

+x108 kgm/m sec> «x108 kgm/m sec>
0.5 .1026 .0509 .1535 .1186 .0389 .1575
1.0 .3496 .2604 .6100 .4178 .2027 .6206
‘1.5 .6752 .6643 1.340 .8255 . 5296 1.355
2.0 .9790 1.298 2.277 1.229 1.060 2.289
2.5 1.087 2.219 3.307 1.443 1.853 3.296
3.0 .7295 3,512 4.241 1.192 2.982 4.173
3.5 -.4801 5.274 4.794 .0917 4.530 4.622
4.0 -3.055 7.609 4.553 -2.359 6.578 4.219
4.5 -7.656 10.61 2.951 -6.797 9.193 2.396
5.0 -15.11 14.33 -.7733 -14.02 12.42 -1.597
5.5 -26.43 18.82 -7.612 -24.99 16.27 -8.724
6.0 -42.91 24.07 -18.85 -40.94 20.72 -20.22
6.5 -66.15 30.02 -36.12 -63.37 25.73 -37.64
7.0 -98.22 36.63 -61.59 -94.20 31.19 -63.02
7.5 -141.9 43,83 -98.07 -136.0 37.02 -98.96
8.0 -200.5 51.50 -149.0 -191.7 43.04 -148.7
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Coefficient of Bulk Viscosity

Substance: Nitrogen

Radial Distribution Function: Kirkwood
Intermolecular Potential: Modified Buckingham
- Temperatures: 323°

Remarks:

T = 323°

¢

\4

¢, (R>0)

+x10% kgm/m sec>

T =

bror by ¢ (R>0) bTor
+x106 kgn/m sec+

[« Y IR 7, T -~ 7% B - B S B N R e =
. N . . . . . . . . .
.O i O T O T O U O vy O U

~5 O
. .
[ TN, |

7.5
8.0

.1247
.4439
. 8834
1.327
1.586
1.385
.3418
-2.039
-6.386
-13.48
-24.27
-39.95
-61.99
-92.26
-133.2
-187.7

.0350
.1842
.4859
. 9816
.728
.797
. 265
. 206
.680
.72
.35
.52
.19
.27
.64
.15

.1598
.6282
1.369
2.308
3.315
4.182
4.607
4.167
2.284
-1.753
-8.925
-20.43
-37.80
-62.99
-98.56
-147.6



Table 4-93

233

Substance: Nitrogen

Radial Distribution Function: Kirkwood

Coefficient of Bulk Viscosity

Intermolecular Potential: Modified Buckingham

- Temperatures: 328°, 373°
. Remarks: ;1510
T = 328° T= 373°
A ¢y ¢, (R>0) bror ¢y ¢, (R>0) 10T
«x106 kgm/m sec+ +x108 kgn/m sec>

0.5 . 1267 .0339 .1606 .1431 .0258 .1688
1.0 .4523 .1787 .6310 .5213 .1392 .6605
‘1.5 .9019 4727 1.375 1.056 .3774 1.434
2.0 1.358 .9576 2.316 1.625 .7820 2.407
2.5 1.633 1.690 3.323 2.035 1.405 3.440
3.0 1.449 2.740 4.189 2.010 2.307 4.317
3.5 .4255 4.183 4.608 1.182 3.550 4.732
4.0 -1.931 6.090 4.159 -.9254 5.190 4.264
4.5 -6.244 8.519 2.275 -4.907 7.269 2.362
5.0 -13.29 11.51 -1.784 -11.50 9.811 -1.684
5.5 -24.02 15.06 -8.962 -21.59 12.81 -8.773
6.0 -39.61 19.15 -20.46 -36.28 16.25 -20.03
6.5 =-61.51 23.71 -37.80 -56.92 20.05 -36.87
7.0 -91.59  28.67 -62.92 -85.22  24.13  -61.09
7.5 -132.3  33.91 -98.34  -123.4 28.33  -94.97
8.0 -186.4  39.26 -147.1 -173.9 32.62  -141.3
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Table 4-94, Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Percus Yevick
Intermolecular Potential; Modified Buckingham

«x108 kgn/m sec>

- Temperatures: 273.15°K, 328.15°K
Remarks: ;g
T = 273.15%K T= 328.15%

«x10% kgm/m sec>

0.25
0.50
0.75
1.00
1.25
1.35
1.50
1.55
1.60
1.65

1.70

1.645

2.455
-44.65
-287.1
-1156

-1923

1.833 3.479
6.790 9.245
23.25 -21.40
28.58 -258.5
-137.0 -1292
-350.8 -2274

2

15

40

75

2.027 1.393 3.421
1.660 6.573 8.234
-47.93 21.22 -26.72

-282.0 26.78 -255.2

-1046 -86.39 -1132
-2949 -590.5 -3540
-3119 -718.8 -3837
-2744 -777.4 -3522
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Table 4-95, Coefficient of Bulk Viscosity

Substance: Argon
Radial Distribution Function: Percus Yevick
Intermolecular Potential: Modified Buckingham
- Temperatures: 373.15°K

- Remarks: RG

T =373.15°K T=

p* o ¢, (R>0) broT ¢y ¢, (R>0) 10T
«x10% kgm/m sec «x10% kgm/m sec>

0.25  2.324 1.148 3.473

0.50  1.542 6.154 7.696

0.75 -48.26 19.35 -28.92

1.00 -269.7 24.59 -245.1

1.25 -975.1  -60.77 -1036

1.35 -1544  -164.9 -1709

1.50

1.55

1.60

1.65

1.70



Table 4-96,

236

Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood

Intermolecular Potential: Barker-Bobetic

- Temperatures: 273°, 308°K

Remarks: ¢
T = 272.0°K T = 308.0%
A & B0} bpgr dgps | 0 4y(R0) *ror
«x10% kgm/m sec +x10% kgn/m sec*

0.5 .0980 .1168 .2148 - .1209 .0869 .2078
1.0 .3075 .5857 .8933 - .4118 4361 .8479
1.5 .5988  1.420 2.019 .2 .8341 . 1.069 1.903
2.0 .9754  2.560 3.536 1.6 1.352 1.976 3.327
2.5 1.406 3.959 5.365 3.7 1.871 3.174 5.044
30 1.758 5.648 7.406 6.4 2.189 4.744 6.932
3.5 1.735 7.778 9.513 9.7 1.957 6.843 8.801
4.0 .8327  10.62 11.46 14 .6575  9.692 10.35
4.5 -1.680  14.55 12.87 18 -2.415  13.54 11.13
5.0 -6.758  19.95 13.19 24 -8.148  18.64 10.49
5.5 -15.56  27.16 11.60 30 -17.62 25.17 7.562
6.0 -29.44  36.40 6.962 36 -32.07 33.26 1.181
6.5 ~-49.98  47.77 -2,209 43 -53.03 42.90 -10.13
7.0 -79.03  61.21 -17.82 52 -82.26 54.01 -28.25
7.5 -118.9  76.58 -42.29 60 -121.9 66.43 -55.52
8.0 -172.4  93.68 -78.68 70 -174.8 79.94 -94.91
8.5 -243.4 122.4 -131.0 80 -244.6 94.33  -150.3
9.0 -337.4 132.8 -204.6 90 -336.2 109.4 -226.7
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Coefficient of Bulk Viscosity

Substance: Argon .
Radial Distribution Function: Kirkwood
Intermolecular Potential: Barker-Bobetic

; Tempefat%zfs: 323°, 328°
emarks: Lg
T = 323° = 328°

A ¢ ¢, (R>0) SToT oy $,,(R>0) ot

«x108 kgm/m sec* «x10% kgm/m sec+
0.5 . 1294 .0776 .2070 .1321 .074¢ .2069
1.0 .4492 .3907 .8299 .4609 .3773 .8382
1.5 .9.64 .9647 1.881 .9421 .9340 1.876
2.0 1.482 1.802 3.284 1.522 1.751 3.274
2.5 2.033 2.936 4.969 2.084 2.866 4,950
3.0 2.350 4.555 6.805 2.403 4.368 6.770
3.5 2.074 6.511 8.584 2.115 6.407 8.522
4.0 .6824 9.303 9.985 .7015 9.176 9.877
4.5 -2.516 13.05 10.54 -2.528 12.89 10.26
5.0 -8.388  17.96 9.574  -8.434  17.73 9.299
5.5 -17.98  24.19 6.211 -18.05 23.86 5.807
6.0 -32.53  31.82 -.7116 -32.62 31.34 -1.272
6.5 -53.50  40.84  -12.66  -53.58 40.17 -13.41
7.0 -82.64 "S51.15 -31.49 -82.67 50.27 -32.43
7.5 -122.1 62.59 -59.51 -122.0 61.38 -60.65
8.0 -174.6 74.94 -99.63 -174.3 73.38 -101.0
8.5 -243.6 87.96 -155.6 -243.1 85.99 -157.1
9.0 -334.0 101.5 -232.5 -333.1 99.02 -234.1
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Table 4-98, Coefficient of Bulk Viscosity

Substance: Argon

Radial Distribution Function: Kirkwood
Intermolecular Potential: Barker-Bobetic
- Temperatures: 373°

Remarks: L
T= 373° T-=
¢, 9, (R>0) broT 9, ¢, (R>0) $roT
«x108 kgm/m sec> «x10% kgn/m sec>
.1538 .0558 .2097
.5543 .2852 .8396
1.146 .7224 1.868
1.847 1.396 3.243
2.506 2.362 4.868
2.869 3.715 6.583
2.560 5.580 8.140
1.065 8.108 9.173
-2.276 11.45 9.170
-8.274 15.72 7.446
-17.90 20.01 3.111
-32,32 27.35 -4.964
-52.88 34.69 -18.19
-81.24 42,93 -38.31
-119.4 51.90 -67.50

-169.8 61.37 -108.5
-235.8 71.11 -164.7

-321.7 80.83 ~240.9



Table 4-99,

Substance:

Radial Distribution Function:

Coefficient of Bulk Viscosity

Argon

Intermolecular Potential: Barker-Bobetic

Percus-Yevick

- Temperatures: 273.15°K, 328.15°K
Remarks; ;RG
T = 273.15°K T = 328.15°%K
p* by ¢y (R>0) *ror %oBs b ¢v(R>°) ot
+x10% kgm/m sec> +x108 kgn/m sec>

0.15 .4357 1.079 1.515 - . 7531 .6831 1.436
0.30 2.113 3;304 5.417 5 2.648 2.582 5.230
0.4S 3.298 6.089 9.387 14 2.242 6.331 8.573
0.60 -10.58  15.26 4.677 29  -13.85  15.14 1.290
0.75 -68.33  31.73  -36.60 47  -70.94  28.06 -42.88
0.90 -212.5 38.27 -174.1 72 -211.0 33.30 -177.7
1.05 -513.3 -3.744  -517.1 100 -499.0 3.134 -495.8
1.20 -1193  -1764  -1369 - -1108  -119.2 -1227
1.35 -2709 -713.9  -3421 - -2402 -474.6 -2876
1.50 -5326 -2016 -7342 - -4742 -131.3 -6055
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Table 4-100 Coefficient of Bulk Viscosity

Substance: Argon
Radial Distribution Function: Percus-Yevick
Intermolecular Potential: Barker-Bobetic
- Temperatures: 373.15°
. Remarks: ;§G

T = 373.15° T =
p* o ¢, (R>0) bror b, ¢, (R>0) -
+x10° kgn/m sec» +x106 kgn/m sec*
0.15 .9316 L5171 1.449
0.30 3.021 2.205 5.227
0.45 2.150 5.970 8.120
0.60 -14.50 14.05 -.4471
0.75 ~-70.45 25.13 -45.32

0.90 -206.0  29.94  -176.0
1.05 -481.4 6.695 -474.7
1.20 -1043  -87.01  -1130
1.35 -2186  -349.1  -2535

1.50 -4226 -955.8 -5182



Substance: Argon

Table 4-101 Coefficient of Thermal Conductivity

Intermolecular Potential:

Lennard-Jones

[ 424

Radial Distribution Function: Kirkwood Temperature: 180°K
Remarks: CSG
= 180°K T =
A Xk Xy xy (R>0) XcAL  XoBs Xg Xy X, (R>0) XCAL XoBS
x103 watts/m °C x103 watts/m °C

1.0 .5312 .1522 15244 1.208 14.1

2.0 .8042 .5708 1.483 2.859 17.1

3.0 1.029 1.356 2.967 5.353  21.0

4.0 1.241 2.791 4.331 8.363  25.9

5.0 1.510 4.242 5.807 11.56 37.4

6.0 1.785 5.893 7.787 15.46 41.2

7.0 2.065 7.748  10.09 19.91  53.5

8.0 2.347 9.828  12.87 25.04  71.2

9.0 2.631 12.28 16.74 31.65  96.6
10.0 2.916 15.46 23.81 42.19 133
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Table 4-1Q2 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard Jones
Radial Disﬁribution Function: Kirkwood Temperatures: T = 273°; T = 308°
Remarks: C G
S
T = 273°K T = 308°K
A Xy Xy x, (R>0) XcaL  XoBs Xk X, Xy(R>0) XCAL XoBS
x103 watts/m °C x103 watts/m °C
0.5 .5963 . 0599 .1563 .8125 17.8 .6834 .0661 .1431 .8926 19.7
1.0 . 8699 .2085 .4328 1.511 19.6 .9952 .2290 .3966 1.621 21.5
1.5 1.101 .4419 .7800 2.322 21.6 1.257 .4840 .7158 2.457 23.5
2.0 1.313 .7610 1.181 3.255 23.8 1.498 .8326 1.086 3.416 25.7
2.5 1.516 1.168 1.630 4,315 26.1 1.727 1.278 1.501 4.506 28.1
3.0 1.714 1.668 2.125 5.507 28.7 1.951 1.825 1.959 5.735 30.8
3.5 1.910 2.264 2.668 6.8341 31.6 2.172 2.479 2.461 7.111 33.7
4.0 2.105 2.963 3.263 8.331 34.8 2.392 3.246 3.009 8.647 36.9
4.5 2.300 3.770 3.916 9.987 38.4 2.613 4.135 3.605 10.35 40.5
s.0 2.497 4.694 4.633 11.82 42 .4 2.836 §5.153 4.255 12.24 44 .4 -
5.5 2.697 5.743 5.420 13.86 46.8 3.062 6.312 4.962 14.34 48.8
6.0 2.899 6.927 6.286 16.11 51.9 3.291 7.621 5.734 16.65 53.8
6.5 3.104 8.257 7.242 18.60 57.8 3.524 9.094 6.581 19.20 59.4
7.0 3.314 9.744 8.301 21.36 54.6 3.763 10.74 7.517 22.02 65.8
7.5 3.529 11.40 9.486 24.41 72.4 4.007 12.57 8.560 25.14 73.2
8.0 3.748 13.24 10.82 27.81 81.5 4.257 14.61 9.738 28.60 81.6
8.5 3.973 15.27 12.36 31.60 92.2 4.514 16.86 11.08 32.45 91.4
9.0 4.203 17.50 14.14 35.84 104.4 4.776 19.33 12.65 . 36.75 103
9.5 4.439 19.94 16.26 40.63 118.4 5.045 22.03 14.51 41.58 116
0.0 4.679 22.59 18.70 45,97 135.8 5.320 24.97 16.64 46.93 131

e



Table 4-103 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood ‘Temperatures: T = 328°K; T = 373°K
Remarks: R

[

T = 328°K T = 373°K
Aoy o xR XcaL  XoBs xx Xy Xy(Re0) XcaL  XoBs
x103 watts/m °C x103 watts/m °C

0.5 .7330 .0697 .1341 .9368 20.7 . 8444 .0775  .1215 1.043 23.1
1.0 1.066 .2405 L3719 1.679 22.5 1.226 .2659  .3376 1.829 25.0
1.5 1.346 .5076 .6720  2.526 24.5 1.545 .5595  .6110 2.715 27.1
2.0 1.602 .8726 1.021 3.496 26.8 1.837 .9605  .9287 3.727 29.3
2.5 1.847 1.339 1.413 4.599 29.2 2.115 1.473 1.288 4.876 31.9
3.0 2.085 1.912 1.845 5.843 31.9 2.385 2.103 1.683 6.172 34.6
3.5 2.321 2.598 2.319 7.238 35.0 2.652 2.858 2.116 7.626 37.7
4.0 2.555 3.403 2.835 8.793 38.3 2.918 3.744  2.585 9.248 41.1
4.5 2.790 4.336 3.397 10.52 41.9 3.185 4.774  3.092 11.05 44.8
5.0 3.028 5.407 4.006 12.44 46.0 3.455 5.955  3.640 13.05 49.1
5.5 3.268 6.625 4.668 14.56 50.6 3.729  7.300 4.233 15.26 53.9
6.0 3.513 8.002 5.389 16.90 55.8 4.007 8.820 4.875 17.70 59.3
6.5 3.762 9.551 6.179 19.49 61.8 4.291 10.53 5.576 20.40 65.4
7.0 4.017 11.28 7.050 22.35 68.7 4.581 12.44  6.345 23.37 72.6
7.5 4.277 13.21 8.019 25.51 76.6 4.878 14.57  7.200 26.65 80.7
8.0 4.545 15.35 9.112 29.01 86.0 5.183 16.93 8.160 30.28 89.6
8.5 4.819 17.72 10.36 32.90 96.6 5.496 19.54 9.254 34.29 100

9.0 5.099 20.31 11.81 37.22 110 5.817 22.40 10.52 . 38.73 112

9.5 5.387 23.15 13.52 42.06 124 6.145 25.53 12.01 43.69 126

0.0 5.681 26.25 15.48  47.41 141 6.481 28.94 13.72 49.14 141

eve



Table 4-1D4 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood ‘Temperatures: T = 500°K; T = 600°K
Remarks: cﬁG

T = 500°K T = 600°K
A Xk Xy xy (R>0) XcAL  XoBS Xk Xy Xy(Rea) XCAL X0BS
x103 watts/m °C x103 watts/m °C

0.5 1.157 .0988 .0926 1.348 29.2 1.401 .1150 .0612 1.577 33.8
1.0 1.672 .3342 .2585 2.264 30.4 2.018 .3855 L1726 2.577 34.0
1.5 2.099 .6984 .4702 3.267 31.9 2.529 .8017 .3165 3.647 34.5
2.0 2.488 1.194 .7183 4.400 33.6 2.993 1.366 .4873 4.847 35.2
2.5 2.857 1.827 .9980 5.683 35.5 3.432 2.086 .6818 6.201 36.2
3.0 3.216 2.605 1.306 7.128 37.7 3.859 2.970 .8981 7.727 37.4
3.5 3.571 3.536 1.642 8.749 40.0 4.280 4.027 1.135 9.441 38.9
4.0 3.924 4.632 2.004 10.56 42.7 4.698 5.269 1.390 11.36 40.6
4.5 4.278 5.902 2.392 12.57 45.7 5.119 6.708 1.665 13.49 42.6
5.0 4.636 7.361 2.807 14.80 48.9 5.544 8.358 1.957 15.86 44.9
5.5 4.999 9.020 3.253 17.27 52.6 5.974 10.23 2.268 18.48 47.6
6.0 5.369 10.90 3.732 20.00 56.5 6.414 12.35 2.601 21.36 50.6
6.5 5.746 13.00 4.249 23.00 61.1 6.859 14.72 2.958 24.54 53.9
7.0 6.132 15.35 4.814 26.30 66.1 7.316 17.37 3.344 28.03 57.8
7.5 6.527 17.97 5.435 29.93 71.6 7.783 20.30 3.767 31.85 62.1
8.0 6.932 20.86 6.128 33.92 77.8 8.262 23.55 4,235 36.04 66.8
8.5 7.347 24.04 6.910 38.30 84.7 8.752 27.11 4.762 40.63 72.1
9.0 7.773 27.54 7.809 43.12 92.2 9.254 31.02 5.363 45 .64 77.8
9.5 8.209 31.35 8.858 48.42 101 9.768 35.28 6.058 S1.11 83.9
0.0 8.655 35.51 10.06 54,22 110 10.29 39.92 6.849 57.06 90.5

ot
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Table 4-1Q5 Coefficient of Thermal Conductivity

Intermolecular Potential: Lennard-Jones

Substance: Nitrogen
Radial Distribution Function: Kirkwood Temperatures: 180°K
Remarks: ch
T = 180°K T = -
A X X X/(R0) XcAL  XOBS Xk Xy Xy(R>0) XcAL  XoBs
x103 watts/m °C x103 watts/m °C
1.0 .7118 .1692 .2724 1.153 23.8
2.0 1.074 .6170 . 7509 2.441 28.5
3.0 1.401 1.352 1.204 3.958 33.9
4.0 1.720 2.403 2.126 6.248 40.3
5.0 2.040 3.809 3.022 8.871 48.0
6.0 2.368 5.624 4.081 12.07 57.4
7.0 2.708 7.915 5.343 15.97 68.7
8.0 3.063 10.76 6.884 20.70 82.4
9.0 3.435 14,22 8.846 26.50 98.3
10.0 3.824 18.36 11.50 33.69 118
11.0 4,226 23.21 15.38 42.81 140
12.0 4.631 28.70  21.57 54.90 166
13.0 5.022 34.66 34.58 74.26 196
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Table 4-1Q6 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood Temperatures: T = 273°K; T = 308°K
Remarks: CEG

T = 273°K - T = 308°K
A Xk Xy Xy (R>0) XcaL  XoBs xk X, X, (R0) XcAL XoBs
x103 watts/m °C x103 watts/m °C

0.5 .7729 .0686 .0299 .8715 26.7 .8837 .0761 .0928 1.053 28.5
1.0 1.120 .2341 .0830 1.437 29.0 1.277 .2580 .2591 1.795 30.8
1.5 1.409 .4911 .1501 2.050 31.3 1.664 .5400 .4711 2.615 33.2
2.0 1.673 .8417 .2283 2.743 33.9 1.902 .9235 .7196 5.545 35.6
2.5 1.924 1.290 .3163 3.530 36.6 2.186 1.414 .9996 4.599 38.3
3.0 2.168 1.840 .4119 4.420  39.4 2.460 2.017 1.309 5.785 41.3
3.5 2.409 2.500 .5180 5.427 42.6 2.731 2.739 1.645 7.115 44 .4
4.0 2.649 3.276 .6326 6.558  46.0 3.002 3.589 2.008 8.599 47.9
4.5 2.890 4.177 .7559 7.823 49.9 3.274 4.576 2.399 10.25 51.7
5.0 3.134 5.211 .8853 9.233  54.0 3.548 5.708 2.819 12.08 56.0
5.5 3.381 6.388 1.032 10.80 58.6 3.827 6.997 3.270 14.09 60.6
6.0 3.632 7.719 1.188 12.24 63.7 4.111 8.453 3.754 16.32 5.7
6.5 3.889 9.215 1.360 14.46 69.3 4.400 10.09 4.277 18.77 71.4
7.0 4.151 10.89 1.553 16.59 75.4 4.697 11.92 4.843 21.46 77.5
7.5 4.420 12.75 1.771 18.94 82.1 5.000 13.95 5.461 24.41 84.3
8.0 4.696 14.81 2.024 21.53 89.6 5.312 16.19 6.143 27.65 91.4
8.5 4.979 17.08 2.321 24.38 97.5 5.631 18.67 6.904 31.20 100

9.0 5-268 19.57 2.676 27.52 106 5.958 21.38 7.766 35.11 109

9.5 5.565 22.31 3.106 30.98 116 6.293 24.35 8.758 39.40 118

Table to be continued
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Substance: Nitrogen

Table 4-106 Coefficient of Thermal Conductivity

Intermolecular Potential: Lennard-Jones

Radial Distribution Function: Kirkwood Temperatures: 273°K, 308°K
Remarks:  RG
is
T = 273°K T = 308°K
Ao x®a) XcaL  XoBS Xk, X, Xy(R>0) XcAL  XoBs
x103 watts/m °C x103 watts/m °C

10.0 5.869 25.28  3.637 34.79 126 6.636 27.58  9.918 44.13 128
10.5 6.179 28.50 4.297 38.98 136 6.986 31.08 11.30 49 140
11.0 6.495 31.98  5.133 43.61 148 7.344 34.86 12.98 sszi; 151
11.5 6.816 35.71 6.213 48.74 161 7.707 38.93 15.08 61.71 165
12.0 7.139 39.69  8.142 54.97 175 8.075 43.28  22.40 73.76 179
12.5 7.464 43.92 16.45 67.83 190 8.401 47.70  22.19 78.29 193
13.0 7.787 48.37 24.60 80.75 206 8.769 52.58  22.11 83.46 210
13.5 8.104 53.01 32.62 93.73 223 9.133 57.69 24.88 91.71 228
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Table 4-1Q7 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular Potential: Lennard Jones

Radial Distribution Function: Kirkwood Temperatures: T =
Remarks:
Cs
T = 323°K - T = 328°K
Ao x4 (Ra) XcaL  XoBS Xk Xy X% (R0) XcAL  XoBs
x103 watts/m °C x103 watts/m °C

.9350 .0797 .0745 1.089 29.6
1.351 .2693 .2085 1.829 31.9
1.697 .5625 .3798 2.639 34.2
2.012 .9613 .5811 3.554 36.7
2.311 1.470 .8089 4.590 39.4
2.601 2.095 1.061 5.757 42.4
2.887 2.843 1.336 7.067 45.5
3.172 3.723 1.634 8.530 49.1
3.459 4.743 1.956 10.16 52.9
3.748 5.914 2.302 11.96 57.2
4.041 7.245 2.673 13.96 61.9
4.339 8.750 3.072 16.16 67.0
4.644 10.44 3.503 18.59 72.7
4.955 12.33 3.970 21.25 78.9
5.273 14.42 4.482 24.18 85.7
5.600 16.75 5.048 27.39 93.1

5.934 19.30 5.683 30.92 101.

6.277 22.11 6.406 34.79 111

6.628 25.17 7.244 39.05 120

to be continued
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Table 4-1Q7 Coefficient of Thermal Conductivity

Substance: Nitrogen

Intermolecular Potential:

Lennard-Jones

Radial Distribution Function: Kirkwood Temperatures: 328°K
Remarks: ;RG
S
T = 323°K T = 328°K
A Xk Xy xy (R>0) XcaL  XoBs Xk Xy Xy(R>0) XcAL XoBS
x103 watts/m °C x103 watts/m °C

6.988 28.51 8.232 43.73 131
7.354 32.13 9.431 48.90 142
7.728 36.03 10.88 54.63 154
8.108 40.23 12.69 61.03 167
8.492 44.71 10.95 64.15 181
8.826 49.71 12.40 71.04 196
9.318 54.81 19.94 84.07 212
9.708 60.18 23.44 93.32 230
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Table 4-108 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood Temperatures: T = 373°K; T = 500°K
Remarks: CEG

T = 373°K T = 500°K
A Xk Xy xy (R>0) XcaL  XoBS X Xy xR0 XcAL XoBS
x103 watts/m °C x103 watts/m °C

0.5 1.076 .0890 .0895 1.254 32:1 1.456 .1136 .0473 1.617 38.8
1.0 1.s551 .2987 .2504 2.100 34.5 2.090 .3760  .1334 2.600 41.2
1.5 1.944 .6218 .4563 3.022 36.8 2.612 .7762  .2445 3.632 43.7
2.0 2.301 1.061 .6982 4.060 39.4 3.083 1.317 .3755 4.775 46.4
2.5 2.640 1.620 .9712 5.231 42.2 3.529 2.003 .5233 6.055 49.3
3.0 2.969 2.307 1.272 6.548 45.2 3.961 2.843 .6846 7.488 52.3
3.5 3.293 3.129 1.599 8.021 48.5 4.386 3.846 . 8605 9.092 55.7
4.0 3.616 4.095 1.953 9.664 52.0 4.809 5.020 1.050 10.88 59.4
4.5 3.940 5.214 2.334 11.49 56.0 5.233 6.379 12.53 12.87 63.5
5.0 4.268 6.498 2.742 13.51 60.2 5.661 7.933 1.470 15.06 68.0
5.5 4.600 7.958 3.179 15.73 65.0 6.095 9.695 1.700 17.49 72.9
6.0 4.938 9.605 3.648 18.19 70.2 6.535 11.68 1.944 20.16 78.4
6.5 5.283 11.45 4.152 20.89 76.1 6.983 13.89 2.204 23.08 84.4
7.0 5.635 13.51 4.695 23.84 82.3 7.441 16.36 2.481 26.28 91.4
7.5 5.995 15.80 5.286 27.08 89.6 7.909 19.09 2.780 29.78 98.3
8.0 6.365 18.33 5.933 30.63 96.6 8.387 22.09 3.104 33.59 106
8.5 6.743 21.11 6.652 34.51 105 8.875 25.39 3.460 37.73 115
9.0 7.131 24.16 7.460 38.75 114 9.375 28.99 3.857 42.23 124
9.5 7.528 27.48 8.304 43.40 124 9.886 32.92 4.307 47.11 134

Table to be continued
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Table 4-108 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Kirkwood Temperatures: 373°K, 500°K
Remarks: RG :

s

T = 373°K T = 500°K
A Xy Xy Xy (R>0) XcAL  XoBS Xk Xy Xy (R>0) XcAL XoBS
x103 watts/m °C . x103 watts/m °C
10.0 7.934 31.10 9.459 48.50 134 10.41 37.17 4.828 52.41 145
10.5 8.348 35.02 10.73 54.10 146 10.94 41.78  5.440 58.16 158
11.0 8.771 39.26 12.27 60.30 158 11.48 46.75 6.172 64.40 170
11.5 9.201 43.81 14.16 67.17 171 12.04 52.09 7.064 71.20 184
12.0 9.638 48.70 15.86 74.19 185 12.60 57.83 8.169 78.60 198
12.5 10.08 53.91 16.43 80.42 201 13.17 63.97 9.563 86.70 215
13.0 10.52 59.46 17.20 87.18 218 13.75 70.52 11.35 95.62 231

13.5 10.97 65.33 19.16 95.46 235 14.33 77.50 13.30 105.1 250

1S¢



252

Table 4-109 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular Potential: Lennard Jones
Radial Distribution Function: Kirkwood
Remarks: (RG Temperature: 600°K
s
T = 600°K
A
X Xv Xy (R>0) XcAL XoBS

x103 watts/m °C

0.5 1.753 .1324 .0320 1.917 1.1
1.0 2.510 .4341 .0910 3.035 46.6
1.5 3.129 ,8913 .1678 4.188 49.2
2.0 3.688 1.506 .2592 5.454 52.0
2.5 4.216  2.284 .3628 6.863 54.9
3.0 4.726  3.235 .4821 8.442 58.1
3.5 5.227  4.366 .6012 10.19 61.6
4.0 5.726  5.690 L7272 12.14 65. 4
4.5 6.225  7.217 .8594 14.30 69.6
5.0 6.728  8.960 .9976 16.69 4.2
5.5 7.237  10.93 1.141 19.31 79.4
6.0 7.754  13.15 1.291 22.19 84.9
6.5 8.279  15.62 1.447 25.34 91.4
7.0 8.815  18.36 1.612 28.79 98.3
7.5 9.361  21.39 1.788 32.53 105
8.0 9.918  24.71 1.978 36.61 113
8.5 10.49  28.36 2.189 41.03 123
9.0 11.07  32.33 2.429 45.83 132
9.5 11.66  36.65 2.707 51.02 143
10.0 12.27  41.32 3.039 56.63 154
10.5 12.89  46.38 3.441 62.70 166
11.0 13.52 51.82 3.938 69.27 179
11.5 14.16  57.67 4.562 76.39 193
12.0 14.81 63.94 5.358 84.11 209
12.5 15.47 70.66 6.388 92.51 225
13.0 16.14 77.83 7.744 101.7 243
13.5 16.82 85.48 8.602 110.9 261




Table 4-110 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Percus-Yevick
Remarks: CEG Temperatures: 273.15°K, 328.15°K
T = 273.15°K T = 328.15°K

p¥ Xk Xy xy (R>a) XcAL  XoBS Xk Xy o Xy (Re9) XCAL X0BS

x103 watts/m °C x103 watts/m °C
0.15 1.267 .6823 1.044 2.993 23.2 1.546 .7827 .9542 3.283 26.3
0.30 2.014 2.680 2.617 7.311 33.3 2.443 3.073 2.411 7.928 36.7
0.45 2.763 6.456 4.418 13.64 48.3 3.345 7.402 4.047 14.79 52.1
0.60 3.602 13.01 6.331 22.94 73.0 4.353 14.82 5.662 24.84 77.4
0.75 4.619 23.98 8.161 36.76 117 5.561 27.00 6.961 39.52 122
0.90 5.904 41.82 9.425 57.15 193 7.059 46.33 7.372 60.76 200
1.05 7.547 69.86 9.652 87.06 325 8.938 76.08 6.078 91.09 336
1.20 9.659 113.0 8.185 130.8 543 11.28 119.9 3.380 134.6 559
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Table 4-111 Coefficient of Thermal Conductivity

vsT

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: Percus-Yevick
Remarks: ,RG Temperature: 373°K
s
= 373°K T =
o* Xk Xy Xy (R>0) XcAL  X0BS XK Xy (R>0) XCAL X0BS
x103 watts/m °C x103 watts/m °C
0.15 1.771 .8616 . 7669 3.400 28.8
0.30 2.790 3.377 1.980 8.147 39.5
0.45 3.813 8.116 3.281 15.21 55.4
0.60 4.955 16.17 4.428 25.55 81.4
0.75 6.310 29.20 4,989 40.50 124
0.90 7.969 49,55 4,311 61.83 207
1.05 10.02 80.25 .4747  90.73 346
1.20 12.54 124.9 -4.319 133.1 574



Table 4-112 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard-Jones
Radial Distribution Function: CHNC . o
Remarks: RG Temperatures: 273,15°K, 328.15°K
S
T = 273.15°K T = 328.15°K
p* Xk Xy xy (R>0) XcAaL  XoBS Xk Xy %y (R>0) XCAL X0BS
x103 watts/m °C x103 watts/m °C
0.15 1.266 .6829 1.024 2.974% 23.2 1.545 .7835 .9496 3.278 26.3
0.30 2.016 2.693 2.318 7.027 33.3 2.444 3.093 2.175 7.712 36.7
0.45 2.776 6.584 3.376 12.74 48.3 3.359 7.565 3.195 14.12 52.1
0.60 3.666 13.62 4.105 21.40 73.0 4.425 15.52 3.762 23.70 77 .4
0.75 4.810 25.83 3.841 34.49 117 5.765 28.83 3.300 37.89 122
0.90 6.301 45,32 1.552 53.18 193 7.453  49.24 .4966  57.19 200
1.05 8.132 72.36  -4.629 75.87 325 9.468 76.51 -6.438  79.54 336
1.20 10.15 102.3 -19.55 92.93 543 11.63 105.5 -20.74 96.43 559
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Table 4-113 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential:
Radial Distribution Function: Percus-Yevick o
Remarks: . RG Temperature: 373°K
s
T = 373°K T =
*
P Xk Xy xy (R>0) XcAL XoBs Xy (R>a) XcAL
%x103 watts/m °C x103 watts/m °C
0.15 1.771 .8626 .7792 3.413 28.
0.30 2.790 3.400 1.822 8.013 39.
0.45 3.828 8.298 2.572 14.70 55.
0.60 5.032 16.89 . 2.809  24.73  81.
0.75 6.521 30.98  1.812  39.31 124
0.90 8.360 52.02 -1.393 58.99 207
1.05 10.51 79.38 -9.609 80.28 346
1.20 12.80 108.0 -23.70 97.10 574

9s¢



Table 4-114 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard-Jones,
Radial Distribution Function: Percus-Yevick Temperatures: %;g.igi% Truncated
Remarks: Normal ¢RG 373.15°K
T = 273.15°K T = 328.15°
p* Xy Xy xy (R>0) XcaL  XoBs Xk Xy Xy (R>0) XcAL XoBs
x103 watts/m °C x103 watts/m °C
0.15 1.260 .6858 1.062 3.009 23.2 1.535 .7881 . 9728 3.295 26.3
0.30 1.994 2.725 2.735 7.454 33.3 2.412 3.140 2.518 8.070 36.7
0.45 2.727 6.677 4.719 14.12 46.3 3.292 7.724 4,326 15.34 52.1
0.60 3.552 13.75 6,891 24.20 73.0 4,285 15.90 6.220 26.40 77.4
0.75 4.562 26.09 9,662 40.31 117 5.492 30.01 8.605 44,10 122
373.15°K

0.15 1.756 .8686 .7859 3.411 28.8

0.30 2.749 3.463 2.081 8.292 39.5

0.45 3.746 8.528 3.582 15.86 55.4

0.60 4.871 17.53 5.075 27.48 81.4

0.75 6.233 32.97 6.908 46.11 124
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Table 4-115 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard-Jones, Truncated

Radial Distribution Function: Percus-Yevick Temperatures: ggg.%§:§

Remarks: £3s 373.15°K

T = 273.15°K T = 373.15°k
o* X X X(Ra) XcAL  XOBS X, Xy o X (Re0) XcAL  XoBs
x103 watts/m °C x103 watts/m °C

N
R

0.15 .2148 .4887  .1720 .8755  23.2 &

0.30 .3928 2.121 .5007  3.015  33.3

0.45 .8376 5.609 1.333 7.780  46.3

0.60 1.780  12.42 3.195 17,39 73.0

0.75 3.514 25.10 7.104 35.72 117

328.15°K
0.15 .3652 . 5677 .2194 1.152 26.3 .5232 .6362 . 2219 1.381 28.8
0.30 .6456 2.474 .6244 3.744 36.7 .9057 2.768 .6351 4.309 39.5
0.45 1.341 6.622 1.624 9.587 52.1 1.849 7.456 1.638 10.94 55.4
0.60 2.787 14.77 3.800 21.36 77.4 3.773 16.71 3.759 24.24 81.4

0.75 5.346 29.87 8.322 43.54 122 7.059 33.75 8.100 48.91 124



Table 4-116 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Lennard-Jones,
Radial Distribution Function: Percus-Yevick Temperatures: 273.15°K Truncated
Remarks: Helfand ¢ %%g: }‘rs’°§
T = 273.15°K T = 328.15°K
o* Xk Xy Xy (R>0) XcaL  XoBs X X X (R0) XCAL X0BS
x103 watts/m °C - x103 watts/m °C
0.15 6.858 1.741 8.056 16.66 23.2 8.887 2.174 8.608 19.67 26.3
0.30 7.711 4.880 14.53 27.13 33.3 9.804 5.927 15.33 31.06 36.7
0.45 8.461 9.920 19.93 38.31 48.3 10.64 11.88 20.66 43.18 52.1
0.60 9.296 18.09 24.46 51.84 73.0 11.63 21.44 24.79 57.87 77.4
0.75 10.47 31.66 30.31 72.43 117 13.03 37.11 30.17 80.31 122
373.15°K

0.15 10.49 2.515 7.705 20.71 28.8

0.30 11.45 6.743 13.87 32.06 39.5
0.45 12.36 13.40 18.59 44 .36 55.4
0.60 13.47 24.02 21.89 59.38 81.4

0.75 15.03 41.26 26.16 82.44 124
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Table 4117 Comparison of Drag Coefficients

Substance: Argon

Intermolecular Potential: Lennard-Jones, Truncated
Radial Distribution Function: Percus Yevick

ss

Remarks: Cs

T = S§5°C gss oH T = 100°C ss H
o*  Pcar  Poss s s PeaL Poss ¢ 5
bars bars +x1013kg/sec bars bars <« x1013kg/sec -
0.15 178.6 166.5 6.347 .1618 204.9 196.4 5.017 . 1445
0.30 395.3 360.6 8.588 .3499 484.0 437.5 6.941 .3178
0.45 787.8 667.0 9.457 .5862 971.6 817.6 6.114 .5385
0.60 1583 1261 5.776 .8852 1923 1523 4.764 .8179

0.75 3194 2487 4.504 1.242 3782 2914 3.716 1.151

092




Table 4-1L8 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Modified Buckingham

Radial Distribution Function: Kirkwood Temperatures: 273°K, 308°K

Remarks: - RG
s

T = 273° T = 308°
A X Xy Xy (R>0) XcAL  XOBS Xk Xy Xy(Re9) XCAL X0BS
x103 watts/m °C x103 watts/m °C

0.5  .6018 .0601  .1555 .8174  17.8 .6896 .0664  .1419 .8978  19.7
1.0 .8745 .2100 .4275 1.512 19.5 1.000 .2307 .3904 1.621 21.4
1.5 1.103 .4476 .7671 2.317 21.4 1.259 .4903 . 7005 2.450 23.4
2.0 1.311 .7769 1.159 3.247 23.6 1.495 .8497 1.058 3.403 25.6
2.5 1.511 1.204  1.598 4.313 25.9 1.721 1.316 1.456 4.493 27.9
3.0 1.705 1.736  2.085 5.526 28.5 1.941 1.896 1.896 5.732 30.5
3.5 1.898 2.382  2.625 6.905 31.2 2.159 2.601 2.379 7.139 33.3
4.0 2.091 3.151 3.227 8.470 34.4 2.378 3.441 2.912 8.731 36.5
4.5 2.287 4.056  3.905 10.25 37.8 2.600 4.428 3.507  10.54 39.9
5.0 2.486 5.107  4.678 12.27 41.6 2.825 5.575 4.180  12.58 43.7
5.5 2.680 6.316  5.575 14.58 46.0 3.055 6.895 4.952  14.90 48.0
6.0 2.897 7.696  6.633 17.23 50.8 3.291 8.400 5.856 . 17.55 52.7
6.5 3.110 9.257  7.065 20.23 56.5 3.534 10.10 6.902  20.54 58.1
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Table 4-119 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential:Modified Buckingham
Radial Distribution Function: Kirkwood Temperatures: 323°K, 328°K
Remarks: ;’;G

T = 323° T = 328°
A Xk Xy xy (R>0) XcaL  XoBs Xk Xy Xy (Rea) XCAL XoBS
x103 watts/m °C x103 watts/m °C

0.5 .7271 . 0691 .1342 .9304 20.5 .7396 . 0696 .1323 .9419 20.7
1.0 1.054 .2394 . 3696 1.663 22.2 1.072 .2423 .3644 1.678 22.5
1.5 1.326 .5082 .6638 2.498 24.2 1.348 .5142 .6545 2.517 24.5
2.0 1.574 .8802 1.003 3.457 26.4 1.600 .8902 . 9886 3.479 26.6
2.5 1.810 1.362 1.380 4.553 28.8 1.840 1.377 1.361 4.579 29.1
3.0 2.041 1.963 1.795 5.799 31.4 2.075 1.984 1.770 5.829 31.7
3.5 2.271 2.692 2.251 7.213 34.3 2.308 2.721 2.218 7.247 34.6
4.0 2.500 3.560 2.752 8.812 37.5 2.541 3.600 2.710 8.851 37.7
4.5 2.733 4,581 3.308 i0.62 41.0 2.777 4.362 3.256 10.66 41.3
5.0 2.969 5.767 3.934 12.67 44.8 3.017 5.830 3.871 12.72 45.3
5.5 3.211 7.131 4.652 14.99 49.2 3.263 7.209 4.573 15.04 49,7
6.0 3.459 8.688 5.489 17.64 54.1 3.515 8.782 5.392 . 17.79 54.7
6.5 3.714 10.45 6.455 20.62 59.7 3.773 10.56 6.337 20.67 60.4
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Table 4-120 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperatures: 373°K
Remarks: CRG

S

T = 373° T =
A Xk Xy xy (R>0) XcaL  XoBS Xk Xy Xy (R>0) XcAL XoBs
x103 watts/m °C %103 watts/m °C

0.5 .8521  .0778  .1125 1.042 23.1
1.0 1.232  .2677 .3107 1.810 24.9
1.s 1.547  .5663 .5592 2.673 27.0
2.0 1.835  .9786 .8453 3.658 29.2
2.5 2.108 1.512 1.163 4.783 31.6
3.0 2.375 2.176 1.509 6.060 34.4
3.5 2.639 2.982 1.886 7.507 37.3
4.0 2.905 3.942  2.295 9.142 40.6
4.5 3.173  5.068 2.746 10.99 44.2
5.0 3.447 6.376 3.248 13.07 48.3
5.5 3.726 7.879 3.817 15.42 52.9
6.0 4.013 9.594 4.477 18.08 58.1
6.5 4.307 11.53 5,233 21.07 64.1
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Substance: Nitrogen

Table 4-121 Coefficient of Thermal Conductivity

Intermolecular Potential: Modified Buckingham

Radial Distribution Function: Kirkwood Temperatures: 273°K, 308°K
Remarks: RG
Ls
T = 273°K T = 308°
A Xk Xy xy (R>0) XcAL  XoBS Xk Xy Xy(R>9) XCAL XOBS
%103 watts/m °C x10% watts/m °C

0.5 .7423 . 0692 .1266 .9381 27.0 .8487 .0766 .1154 1.041 28.7
i.O 1.075 .2387 .3520 1.666 | 29.4 1.227 .2626 .3208 1.810 31.2
1.5 1.353 .5052 .6379 2.496 32.1 1.541 .5541 .5813 2.676 33.9
2.0 1.605 .8726 .9720 3.450 34.9 1.827 .9554 .8849 3.667 36.6
2.5 1.846 1.347 1.349 4.542 37.9 2.098 1.473 1.226 4.798 39.7
3.0 2.080 1.937 1.767 5.784 41.3 2.363 2.117 1.602 6.082 43.0
3.8 2.312 2.651 2.226 7.189 44.9 2.624 2.896 2.014 7.535 46.7
4.0 2,545 3.500 2.732 8.776 49.0 2.886 3.823 2.464 9.173 50.8
4.5 2.779 4.495 3.290 10.56 53.5 3.151 4.910 2.958 11.02 55.3
5.0 3.017 5.650 3.913 12,58 58.6 3.419 6.170 3.506 13.10 60.6
5.8 3.259 6.977 4.617 14.85 64.1 3.693 7.618 4.122 15.43  66.1
6.0 3.507 8.490 5.427 17.42 70.3 3.974 9.269 4,825 18.07 72.4
6.5 3.762 10.20 6.374 20.34 77.2 4.262 11.14 5.645 21.04 79.4
7.0 4.023 12.12 7.466 23.61 84.8 4.557 13.24 6.586 24,38 87
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Table 4-122 Coefficient of Thermal Conductivity

Substance: Nitrogen Intermolecular P(itential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperatures: 323°K, 328°K
Remarks: cIS!G

T = 323° T = 328°K
A Xy Xy xy (R>a) XcaL  XoBS Xk X, Xy(R>a) XCAL XoBS
x103 watts/m °C x103 watts/m °C

0.5 .8943  .0797 .1091 1.083 29.5 .9094  .0807 .1075 1.098  29.8
1.0 1.292 .2726 .3036 1.868 32.0 1.313 .2759 .2993 1.889 32.3
1.5 1.621 .5746 .5502 2.746 34.6 1.647 .5813 .5425 2.772 35.0
2.0 1.921 .9900 .8378 3.749  37.5 1.952  1.001 .8259 3.780  37.8
2.5 2.206 1.526 1.160 4.892 40.6 2.241 1.543  1.144 4.929  40.8
3.0 2.483 2.192 1.516 6.191 43.9 2.523  2.217 1.494 6.233  44.2
3.5 2.757 2.998  1.904 7.659 47.7 2.801 3.032 1.876 7.709  48.0
4.0 3.032 3.957  2.327 9.316 51.8 3.080 4.001 2.292 9.372 52.0
4.5 3.309 5.081 2.791 11.18  56.4 3.361 5.137  2.747 11.25 56.7
s.o0 3.590 6.384  3.304 13.28  61.5 3.647 6.454  3.250 13.35 61.8
5.5 3.878 7.881 3.879 15.64  67.1 3.939  7.968  3.814 15.72 67.4
6.0 4.172 9,588  4.534 18.29  73.5 4.238 9.693  4.456 18.39 73.8
6.5 4.473 11.52 5.297 21.29  80.5 4.544  11.64  5.203  21.39 80.7
2.0 4.783 13.69 6.171 24.64 87.9 4.858 13.84  6.061 24.75 88.8
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Table 4-123 Coefficient of Thermal Conductivity

Substance: Nitrogen ' Intermolecular Potential: Modified Buckingham
Radial Distribution Function: Kirkwood Temperatures: 373°K
Remarks: CEG

T = 373°K T =
A Xk Xy x, (R>0) XcAL  XoBS Xk Xy Xy(R>9) XCAL XoBS
x103 watts/m °C x103 watts/m °C
0.5 1.046 .0899 .0914 1.227  32.3
1.0 1.507 .3054 .2548 2.067 34.9
1.5 1.888  .6412 .4623 2.991  37.6
2.0 2.233 1.102 .7039 4.039 40.5
2.5 2.561 1.696 .9742 5.232  43.6
3.0 2.881 2.433 1.270 6.584 47.8
3.5 3.196 3.325 1.592 8.113 50.9
4.0 3.512. 4.385 1.940 9.837 55.1
4.5 3.831 5.626 2.318 11.78  59.7
5.0 4.155 7.065 2.732 13.95  64.9
5.5 4.486 8.716 3.194 16.40  70.7
6.0 4.824 10.60 3.719 19.14  77.1
6.5 5.171 12.72 4.326 22.22  84.2
2.0 5.527 15.11 5.021 25.66  92.2
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Table 4-124 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Modified Buckingham
i i i i ion: Percus Yevick
:aeg;:isl?lial(‘;lblltlon Function: Temperatures: 273.15°K, 328.15°K
* &g

T = 273.15° T = 328.15°
p* Xk Xy Xy (R>0) XcAL  XoBs Xk X X, (R>0) XCAL XoBS
x103 watts/m °C : x103 watts/m °C
0.25 1.385  .7895  1.145 3.319  24.5 1.684 .9067 1.057  3.647 27.7
0.50 2.225  3.126 2.703 8.053  37.2 2.687 3.584  2.492  8.762 40.7
0.75 3.094  7.725 4.431  15.25 58.0 3.725 8.815  3.972 16.51 62.0
1.00 4.116 16.11 6.128  26.35 96.6 4.936 18.15  5.201 28.29 101

1.25 5.410 30.75 8.270 44.43 171 6.437 34.00 6.479 46.91 178
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Substance:

Argon

Table 4-125 Coefficient of Thermal Conductivity

Intermolecular Potential: Modified Buckingham

Radial Distribution Function: Percus Yevick Temperature: 373.15°K
Remarks: z

T = 373.15°K T =
ot % X R XcaL  XoBS Xx X% X/(R>a) XcAL  Xoss
x103 watts/m °C x103 watts/m °C

0.25 1.926  .9991 .8402  3.765  30.2 .
0.50 3.060 3.936  1.979 8.974  43.6 A
0.75 4.233 9.636  2.987  16.86 65.6
1.00 5.590 19.66 3.468 28.72 104
1.25  7.249 36.35 3.382  46.98 173



Table 4-126 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Barker-Bobetic
Radial Distribution Function: Kirkwood ‘Temperatures: 273°K, 308°K
Remarks: ch

T = 273° T = 308°
A Xk Xy X, (R>0) XcAL  XOBS Xk Xy Xy (R>0) XCAL XoBS
x103 watts/m °C x103 watts/m °C

0.5 .5199  .0570  .1721 .7489  17.9 .5960  .0628 .1568 .8156  19.8
1.0 .7597  .2014 .4733  1.434 19.8 .8693  .2207 .4314  1.521 21.7
1.5 .9622  .4303  .8477  2.240 21.8 1.099 .4707  .7729  2.343 23.8
2.0 1.149 .7456  1.276 3.171 24.1 1.311 .8150 1.164 3.290 26.1
2.5 1.327 1.151  1.751 4.229 26.7 1.513  1.258 1.597 4.368 28.7
3.0 1.501 1.651  2.271 5.423 29.5 1.710 1.806 2.070 5.586 31.6
3.5 1.674 2.252  2.837 6.762 32.6 1.905 2.465 2.583 6.953 34.7
4.0 1.846 2.290  3.455 8.261 36.1 2.099 3.244  3.140 8.484 38.2
4.5 2.018 3.785  4.130 9.934 39.9 2.295 4.153 3.744  10.19 42.0
5.0 2.193 4.737  4.872  11.80 44.4 2.494 5.203 4.403  12.10 46.4
5.5 2.370 5.825  5.692  13.89 49.3 2.695 6.404 5.127  14.23 51.3
6.0 2.551 7.063  6.607  16.22 50.1 2.901 7.772 5.929  16.60 56.8
6.5 2.735 8.462  7.636  18.83 61.8 3.111 9.318 6.829  19.26 63.2
7.0 2.924 10.04  8.811  21.77 69.5 3.327 11.06 7.853 22,24 70.5
7.5 3.118 11.80  10.17  25.09 78.6 3.548 13.00 9.038  25.59 78.9
8.0 3.317 13.37  11.78  28.86 88.8 3.776  15.17 10.44  29.38 88.8
8.5 3.521 15.93  13.73  33.17 102 4.010 17.57 12.12  33.70 100
9.0 3.729 18.31 16.00 38.04 117 4.249 20.20 14.09 - 38.54 114
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Table 4-127 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Barker-Bobetic
Radial Distribution Function: Kirkwood "Temperatures: 323°K, 328°K
Remarks: ;gG

T = 323° T = 328°
A Xk Xy x, (R>0) XcAL  XoBs Xk Xy Xy(R>0) XCAL X0BS
x103 watts/m °C x103 watts/m °C

0.5 .6286  .0652  .1482 .8420  20.5 6394  .0660  .1461  .8515  20.8
l.0 .9161  .2289  .4081  1.553 22.4 9317 .2315  .4023 1.566 22.7
1.5 1.158 .4876 .7317 2.377 24.6 1.177 .4932 .7215 2.392 24.9
2.0 1.380 8441  1.103 3.327 27.0 1.403  .8537 1.085  3.344 27.2
2.5 1.592  1.303  1.514 4.409 29.6 1.618 1.318  1.493  4.429 29.9
3.0 1.799  1.871  1.964 5.633 32.5 1.828 1.892  1.936  5.656 32.8
3.5 2.003 2.554  2.450  7.008 35.7 2.036 2.583  2.416  7.035 36.0
4.0 2.208 3.362 2.977 8.547 39.3 2.244 3.401 2.935 8.579 39.6
4.5 2.413  4.305  3.548 10.27 43.2  2.453 4.355  3.497  10.30 43.5
5.0 2.622  5.395  4.169 12.19 47.6 2.664 5.458  4.108  12.23 48.0
5.5 2.833  6.642  4.850 14.33 52.7 2.879  6.720  4.777 14.38 53.2
6.0 3.050 8.062  5.605 16.72 58.4 3.080 8.157  5.516 16.77 59.0
6.5 3.271 9.667 6.450 19.39 65.0 3.324 9.782 6.344 19.45 65.8
7.0 3.498  11.47  7.410 22.38 72.7 3.555 11.61  7.285 22.45 73.7
7.5 3.731  13.49  8.519 25.74 81.7 3.792 13.65  8.373  25.82 82.9
8.0 3.971 15.74  9.825 29.54 9.2 4.036 15.93  9.655  29.62 94.0
g5 4.217 18.23  11.40 33.84 104 4.286  8.44 11.20 33.93 106
9.0 4.470 20.96 13.24 38.67 119 4.543 21.21 13.00. 38.75 122
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Table 4-128 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Barker-Bobetic

Radial Distribution Function: Kirkwood Temperatures: 373°K
Remarks: CRG
S
T = 373 T =
A Xk Xy x, (R>0) XcaL  XoBs Xk Xy Xy (R>0) XCAL X0BS
x103 watts/m °C x103 watts/m °C
0.5 . 7369 .0733 .1240 .9342 23.2
1.0 1.072 .2554 .3423 1.669 25.2
1.5 1.352 .5426 .6156 2.510 27.4
2.0 1.609 .9382 .9298 3.477 29.9
2.5 1.854 1.448 1.279 4.581 32.5
3.0 2.093 2.078 1.660 5.831 35.5
3.5 2.329 2.839 2.070 7.238 38.7
4.0 2.566 3.739 2.511 8.816 42.5
4.5 2.804 4.790 2.988 10.58 46.6
5.0 3.045  6.004  3.503 12.55 51.2
5.5 3.291 7.396 4.065 14.75 56.6
6.0 3.542 8.978 4.684 17.20 62.7
6.5 3.799 10.77 5.376 19.94 69.6
7.0 4.063 12.78 6.156 23.00 77.7
7.5 4.335  15.03 7.058  26.42 86.9
g.0 4.614 17.53 8.116 30.26 97.5
8.5 4.901 20.29 9.387  34.58 110
9.0 5.195 23.34 10.87 39.40 124
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Table 4-129 Coefficient of Thermal Conductivity

Substance: Argon Intermolecular Potential: Barker Bobetic
Radial Distribution Function: Percus Yevick Temperatures 273.15°K, 328.15°K
Remarks: zRG
T = 273.15°K T = 328.15°K

p* XK Xy Xy (R>0) XcAL  XoBs Xk Xy Xy(Reo) XCAL X0BS

x103 watts/m °C x103 watts/m °C
0.15 1.466 .4704 .5205 2.457 21.2 1.804 .5253 .4896 2.819 24,2
0.30 2.299 1.734 1.343 5.376 27.8 2.787 1.916 1.302 6.005 31.1
0.45 3.094 3.860 2,384 9.338 36.5 3.712 4,252 2.309 10.27 39.9
0.60 3.898 7.029 3.566 14.49 48.3 4.642 7.728 3.388 15.76 52.0
0.75 4.739 11.54 4.640 20.92 65.4 5.611 12.64 4,378 22.63 69.6
0.90 5.648 17.80. ‘ 5.504 28.96 91.4 6.650 19,37 5.188 31.20 96.6
1;05 6.650 26.29 6.169 39.11 131 7.786 28.34 5.776 41.90 138
1.20 7.771 37.49 6.619 51.88 192 9.043 39,99 6.058 55.09 200
1.35 9.032 §1.84 6.751 67.62 285 10.44 54,67 5.914 71.08 294
1.50 10.46 69.57 6.794 86.81 419 11.99 72.47 5.316 89.79 432
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Substance: Argon

Radial Distribution Function: Percus Yevick Temperature: 373.15°K
Remarks: clslG

Table 4-130 Coefficient of Thermal Conductivity

Intermolecular Potential: Barker Bobetic

T = 373.15°K T =
& X% % %®0)  xcn  Xops Xk X% %®0)  xear  Xops
x103 watts/m °C x103 watts/m °C

0.15 2.078 .5708 .3872 3.036 26.7

0.30  3.181 2.065 1.054  6.300 33.7

0.45  4.210 4.567 1.964  10.72  42.8

0.60  5.239 8.275 2.934  16.44  55.4

0.75  6.308 13.48  3.829  23.62  73.5

0.90  7.449 20.56  4.517  32.52 100

1.05  B8.689 20.90 ° 4.954  43.54 138

1.20 10.05 41.91  4.983  56.94 192

1.35  11.55 56.85  4.529  72.93 267

1.50 13.22 74.78  3.331  91.33 367
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