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ULTRASONIC PULSE PROPAGATION IN THE COLD-WORKED 

LAYER OF RAILROAD RAIL

CHAPTER I 

INTRODUCTION

The d i s t in g u i s h in g  c h a r a c t e r i s t i c  of rai lway t r a n s ­

p o r ta t io n  i s  the f langed s t e e l  wheel r o l l i n g  over a s t e e l  

r a i l .  This simple f e a tu re  provides the  advantages of 

guidance and mechanical e f f i c i e n c y  which make rai lways 

uniquely su i ted  for  the  movement of a la rge  p o r t io n  of  the 

goods and people t r a n s p o r te d  i n  the United S t a te s  and the 

r e s t  of  the world.

The advantages in  energy consumption of the high 

mechanical e f f i c i e n c y  of  ra i lway  movement have been well  

documented in  the recen t  l i t e r a t u r e .  For examples of t h i s  

see Ref. [ 1 , 2 ] .  I t  i s  reasonable  to  expect th a t  more prudent 

use of our n a tu ra l  resources  w i l l  fo rce  an increase  in  the 

t r a f f i c  c a r r ie d  by the w o r ld 's  ra i lways .  Also, more e f f i ­

c ien t  rai lway o pe ra t io n s ,  such as an inc reased  emphasis on 

unit  con ta iner  t r a i n s  which bypass switching yards [ ] ]»

1



could a t t r a c t  an even g re a te r  amount of goods t r a f f i c .  A 

s im ila r  s i t u a t i o n  e x i s t s  fo r  passenger t r a f f i c  where, i n  

the  f u t u r e ,  h igh -po p u la t ion -d en s i ty  c o r r id o rs  w i l l  most 

l i k e l y  see an increase  in  t r a v e l  by r a i l  veh ic le  [2 ] .

An increase  in  the t r a v e l  speed and i n  the u t i l i ­

za t io n  of  r a i l  veh ic le s  must occur i f  the r a i l  systems are 

to  accommodate t h i s  p ro jec ted  inc rease  in  r a i l  t r a f f i c .  At 

the  presen t  time the f a s t e s t  passenger t r a i n  speed in  the 

United S ta te s  i s  near ly  161 km/hr (100 mi/hr)  fo r  the 

M etro l iners  opera t ing  between Washington and New York.

Speeds approaching and p o ss ib ly  exceeding the 210 km/hr 

( 130.5 mi/hr)  speed of  the Japanese Nat iona l  Railway's  

Shinkansen opera t ion  are l i k e l y  to occur i n  the United S ta te s .  

B e t te r  f r e i g h t  car u t i l i z a t i o n  as well  as the i n t e g r a l - t r a i n  

concept p rev ious ly  mentioned can g r e a t ly  inc rease  the f r e i g h t  

capac i ty  o f  United S ta te s  ra i lways .  At the present  t ime, 

the  average United S ta te s  f r e i g h t  car  spends only about 

twelve percent  (12^) of  i t s  time moving i n  t r a i n s .  The r e s t  

o f  the time i s  spent in  being loaded or unloaded,  in  te rm ina l  

movements, in  c l a s s i f i c a t i o n  o p e ra t ion ,  or in  standing s t i l l  

C^]. The p o t e n t i a l  fo r  handling increased  t r a f f i c  through 

g rea te r  car  u t i l i z a t i o n  i s  obvious.

The average load of a t y p i c a l  r a i l  f r e i g h t  car has 

d ram a t ica l ly  increased  in  recen t  years .  In  1955 t h i s  load 

was 38. 5( 10)^ kg (^2.^  to n s ) .  By 197^ i t  had r i s e n  to  

approximately 52.6 (10)8 kg (58 t o n s ) ,  r ep re sen t in g  an increase



of  near ly  t h i r t y - s e v e n  percent  (37%)•

The parameter which most d i r e c t l y  in d ic a te s  the 

u se fu l  work output of f r e i g h t  ra i lways i s  the revenue ton-mile,  

This inc reased  from 623.6 b i l l i o n  i n  1965 to  853*9 b i l l i o n  in  

197^5 a lso  rep resen t ing  an inc rease  of approximately t h i r t y -  

seven percent  (37^). The s i m i l a r i t y  of t h i s  increase  and 

tha t  f o r  car  loads alone i n d i c a t e s  th a t  in  the past  the 

increased  p ro d u c t iv i ty  has come about p r im ar i ly  because of 

the h e a v ie r  loading of c a r s .

In  most mechanical systems, increased  loadings can 

be accommodated through des ign  changes. This i s  p a r t i a l l y  

t r u e ,  a l s o ,  fo r  the f r e i g h t  c a r .  Track, however, cannot be 

quickly upgraded in  o rder  to  handle the increased fo rces  

brought about by the h e av ie r  c a r s .  Much of the main-line 

r a i l  i n  use today was i n s t a l l e d  before 1955 and, th us ,  was 

not s p e c i f i c a l l y  designed to  c a r ry  the g r e a t e r  loads of  

to d ay 's  ca rs .

There i s  reason to  be l ieve  th a t  the increased  load 

has had a s ig n i f i c a n t  e f f e c t  of  rai lway acc iden ts ,  as i n d i ­

cated i n  Ref. [53* More s p e c i f i c a l l y ,  the two components 

tha t  are engaged in  r o l l i n g  c o n ta c t ,  the wheel and r a i l ,  

showed the h ighes t  c o r r e l a t i o n  between changes in  the annual 

ra te  of  acc iden ts  and to n -m i le s .

I t  has been p o s tu la t e d  t h a t  these increased  loadings 

have led  to  a g r e a t e r  tendency fo r  r a i l  f a i l u r e  to  occur due 

to  s h e l l i n g .  She l l ing  in  r a i l  i s  a r e s u l t  of extreme p l a s t i c



flow and cold working of m a te r ia l  in  the upper layer  of the 

r a i l  head. The resea rch  d iscussed in  t h i s  d i s s e r t a t i o n  i s  

the r e s u l t  of an in v e s t i g a t i o n  of the u l t rasonic-w ave-propa­

ga t ion  c h a r a c t e r i s t i c s  of the cold-worked laye r  on the head 

of used r a i l .

The curren t  i n t e r e s t  i n  the worked zone o r ig ina ted  

with an e a r l i e r  study of the wave-propagation c h a r a c t e r i s ­

t i c s  of  the head and web of f u l l - s i z e d  r a i l  [6 ] .  In the 

e a r l i e r  study, surface waves were sent and received  along 

the surface of the head of the r a i l  by i d e n t i c a l  t ransducer  

assemblies .

Fig.  1 shows the arrangement of the  labora to ry  

equipment used in  the o r i g in a l  study. Although more d e t a i l  

regarding the equipment has been given i n  Chapter I I I ,  some 

genera l  comments w i l l  be u se fu l  at t h i s  t im e . The sending 

and receiv ing  surface  wave probes shown in  the centec of 

the photograph are  clamped on top of one of the several  

r a i l s  used in  the study. The sending t r a n s d u c e r ,  loca ted  on 

the r i g h t ,  was connected with a coaxial  cable to  the pulsing 

uni t  on the r i g h t .  A box for  adding a separa te  tuning c o i l  

to  the c i r c u i t  i s  shown in  f ron t  of the p u i s e r .  The u l t r a s o n ic  

pu lse ,  t r a v e l l in g  e s s e n t i a l l y  along the top of the r a i l ,  was 

de tec ted  by the rece iv ing  transducer  shown on the l e f t .  This 

received s ignal  was then d isplayed on the osc i l loscope  shown 

on the l e f t .  This apparatus i s  d iscussed in  more d e t a i l  in

1+



I ' ipnre 1. Appa ra t us  f o r  Sur f ace  Wave Measurement  
F u l l - S i z e d  R a i l  [6]



Chapter I I I  (see P igs .  12 and 13 and r e l a t e d  d i s c u s s io n ) .

The shape of  the  source pulse  i s  d iscussed in  g re a te r  d e t a i l  

i n  Appendix A.

When the surface waves were propagated along the head 

of used r a i l  a t  c e r t a i n  f r eq u e n c ie s ,  an unexpected event 

occurred.  An in d iv id u a l  wave appeared which could be r e l a t e d  

to  the presence of  the cold-worked zone on the top of the 

r a i l  head. The behavior of t h i s  wave was such t h a t ,  for  high 

frequencies  (approximately 1 .0 -2 .0  MHz) in  most of the used 

r a i l ,  i t  appeared qui te  d i s t i n c t l y  j u s t  ahead of the expected 

surface  wave a r r i v a l .  F igs .  2a and 2b show the smaller  e a r l y  

a r r i v a l  ju s t  ahead of the l a r g e r  Rayleigh ( su r face )  wave 

a r r i v a l  at a pu lse  frequency of 1 .7  MHz. Pulse a r r i v a l s  are 

shown at  t ransducer  spacings s t a r t i n g  a t  100 mm and inc reas in g  

i n  100 mm increments from the top t race  to the lower. Fig .

2b i s  an expansion of  the a r r i v a l s  shown i n  Fig. 2a. At high 

frequencies  in  new r a i l  (Figs. 2c and 2d) and a t  lower f requ en ­

c ie s  in  used r a i l  (Figs.  3a and 3b),  the e a r l y  a r r i v a l  was 

h a rd ly  n o t i c e a b le ,  i f  at  a l l .  Since the occurrence of the 

wave and i t s  v e l o c i t y  appeared to  be frequency r e l a t e d ,  i t  

could not be exp la ined  as a simple, bulk shear wave.

Chapter 11, which fo l low s,  p resen ts  a d iscu ss io n  of 

the  s t r e s s  d i s t r i b u t i o n  and the cold-worked area  in  the 

r a i l  head. This inc ludes  m a te r i a l  on the mechanism of cold 

working of metals  through small contact  a reas .  Chapter 111 

p re s e n ts  the development of a model, based on seismology.



’i g u r e  2 a .  ? u l = e  A r r i v a l s  a t  
I n c r e m e n t s ,  R a i l  No .  7 ,  1 19 =ed
R a i l ,  F r e q . ^ 1 ., 
50  M s / d i v .  [ 6 ]

MHz, Time B a s e

F i g u r e  2 : .  :
Increme'. ' . :  s 
R a i l ,  I r a q  
50  M s /  d:  .

. s e  A r r i v a l s  a t  11  
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. MHz, Time a a se  
■ J

iiew

F i g u r e  2 b .  P u l s e  A r r i v a l s  a t  1C 
I n c r e m e n t s ,  R a i l  No .  7 , I I 9 l b  
R a i l ,  F r e q .  1 . 7  MHz, Time B a s e  
5 P s / ^ i v .  [6 ]

. s e a

F i g u r e  2 d .  P u l s e  A r r i v a l  
I n c r e m e n t s ,  Ra'" ^ "
R a i l , F r e q . 1 .
5 M s / d i v .  [ 6 ]

R a i l  No.  8 ,  1 15  
F r e q .  1 . 7  MHz, Time
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Time B a s e

F i g u r e  2b .  P u i s e  A r r i v a i s  i 
I n c r e m e n t s ,  R a i l  Ho.  7 ,  1' 
R a i l ,  F r e q .  0 . 5  MHz, Time  
5 M s /^ iv .  [6 ]

-  . s e a

F i g u r e  3 d .  P u i s e  A r r i v a i s  ; 
I n c r e m e n t s ,  R a i l  No.  ",  
R a i l ,  F r e q .  0 . 5  MHz, Time  
5 M s / a i v .  [ 6 ]



which attem pts to  i d e n t i f y  and e x p la in  the wave-propagation 

p a t te rn s  observed in  the e a r l i e r  study [6 ] .  Following t h a t ,  

Chapter IV d iscusses  r e s id u a l  s t r e s s  and m a te r ia l  te x tu re  

(p re fe rred  o r ie n ta t io n )  r e s u l t in g  from the cold r o l l in g  of 

the r a i l  surface to  show how the observed wave speed changes 

could occur. The r e s u l t s  are  summarized in  Chapter V.



CHAPTER I I

THE RAIL HEAD AND THE COLD-WORKED LATER

The e a r ly  period of r a i l r o a d in g  saw the appearance of

a number of proposed r a i l  shapes [ 7 ] .  These included  a f l a t  

p l a t e ,  one resembling a conventional angle i ro n  ly in g  on i t s  

s id e ,  and the t e e - r a i l .  The t e e - r a i l  began to  resemble modern 

r a i l s  in  the middle of the I8 0 0 's .  By 19^7 the ty p ic a l  shape

shown in  F ig . ^ had become standard  in  the United S ta te s .

In  standard  p ra c t ic e ,  the p a r t i c u l a r  r a i l  s e c t io n  i s  

id e n t i f i e d  by the source o f  the  s p e c i f i c a t io n  and the nominal 

weight per yard . For example, the se c t io n  shown in  

F ig . 4-, AREA 115j i s  a 57*0 kg/m (115 lb /ya rd )  r a i l  as 

sp e c i f ie d  by the American Railway Engineering A ssoc ia tion  

(AREA).

R a ils  most commonly used range in  weight from 39-5 kg/m 

(80 lb /ya rd )  to  69.5 kg/m (1'+0 lb /y a rd ) .  The l i g h t e r  r a i l  i s  

ty p ic a l l y  used for branch and sw itch in g - l in e  se rv ice  while 

the h eav ie r  s e c t io n s  ( e .g . ,  *+9.6  kg/m (100 lb /y a rd  and over)) 

go in  m ain-line  t r a c k .  R a il  he igh t i s  the most s ig n i f ic a n t

1 0



(69 . 1)
-2 23 /32"  - 
|*-1 1 /4 " -;

(76 .2) ( 1 9 . 0 ^

6 5/8  
(1 6 8 . )

Area 11.3 T3/16" 
(96. 8)

( 28. 6)

(13

Figure 'i-. C ross-Section  of 57.0 kg/m 
(115 lb /y a rd )  R a il  
(Dimensions in  m il l im e te rs  are 
shown in  p a ren th es is )  [6]
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d if fe re n c e  in  the various s e c t io n s ,  since t h i s  g r e a t ly  a f f e c ts  

the sec tio n  modulus and, hence, the s treng th  in  bending. The 

head width v a r ie s  from 63*5 mm (2 .5  in) fo r  the 39*7 kg/m 

(80 lb /yard )  r a i l  to  76.2 mm (3 .0  in) for the 140 lb /y a rd  

s e c t io n .  S im ila r ly ,  the  head he igh t v a r ie s  from 38.1 mm 

(1 .5  in) to  52.^ mm (2.062 in )  fo r  these two s e c t io n s .

The chemical composition of r a i l  s t e e l  i s  shown in 

Table I .  Table I I  shows ty p ic a l  mechanical p ro p e r t ie s  of 

the  s t e e l  used fo r  conventional r a i l  in  the United S ta te s  [8 ] .

R ail  m anufacturing processes , as reviewed in  Ref. [6 ] ,  

can a f fe c t  the m a te r ia l  p ro p e r t ie s .  The cooling process and the 

r e s u l t in g  r e s id u a l  s t r e s s  p a t te rn s  are most p e r t in e n t  to  th i s  

work and w i l l  be b r i e f l y  summarized here . One of the  most s ig ­

n i f i c a n t  changes in  ra il-m ak ing  technology in  rec en t  years was 

the adoption of the co n tro l le d -co o lin g  process . This p rocess , 

which came in to  common use around 1937, v i r t u a l l y  e lim ina ted  

f a i l u r e  because of " s h a t te r  c ra ck s ."  These d e fe c t s ,  which 

are  minute cracks caused by ra p id  or uneven cooling during 

m anufacture, had been a se rious  th re a t  to  r a i l r o a d  s a fe ty .

The r e s id u a l  s t r e s s  p a t te rn  in  the co n tro l-co o led  

r a i l  i s  much more favorab le  than  th a t  of the n o n -c o n tro l-  

cooled type [9 , 10] .  The co n tro l le d -co o lin g  process begins 

sh o r t ly  a f t e r  the fo rged  r a i l s  have been cut to  len g th .  They 

l i e  on a "hot bed" u n t i l  t h e i r  temperature f a l l s  approximately 

between 538° C to  386° C (1000° F to  725° F ). Then the r a i l s  

are  placed in  sp e c ia l  r a i l  cars  used as c o n tro l le d -co o l in g

12



Table I .  Chemical Composition of R a il  S te e l  [?]

C onstituen ts

(Percent)

Nominal Weight i n  Kilograms per Meter 

(Pounds per Yard)

3^ .7 /39 .7  h 0 . 2 / h k . 6  ^5 .1 /5 9 -5  60.0 and over
(70/80) (81/90) ( 91/ 120) (121 and over)

Carbon 0.55-0 .68  0 .64 -0 .77  0 .67-0 .80  0 .69-0.82

Manganese 0 . 60- 0.90 0 . 60- 0.90  0 . 70- 1.00 0 . 70- 1.00

Phosphorous, 0.04
Max.

0.04 0.04 0.04

Sulphur, Max. 0.05 0 . 0 5  0 .0 5 0.05

S i l ico n 0 . 10- 0.25  0 . 10- 0 .25  0 . 10- 0 .25 0 . 10- 0.25

Table I I .  Typical Mechanical P ro p e r t ie s  of 

Control-Cooled R a il  S te e l  [8]

Y ield S trength 503.32 MN/m  ̂ (73,000 psi)

T ensile  S trength 937.69 MN/m̂  (136,000 psi)

E longation in  1 in .  (25.4mm) 1 2 . '

Reduction of Area 24.5#
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b in s .  A minimum of te n  (10) hours i s  req u ired  fo r  the r a i l s  

to  reach a maximum discharge  tem perature of approximately 

149° C (300° F).

A fter emerging from the cooling b in s ,  the r a i l s  are 

checked fo r  s t r a ig h tn e s s .  I f  s t ra ig h te n in g  i s  required , 

t h i s  i s  accomplished by a s e r ie s  o f blows by a drop hammer.

The f i n a l  r e s id u a l  s t r e s s  p a t te rn  i s  a r e s u l t  o f  

both the cooling and the s t ra ig h te n in g  p ro cesses .  The b u i ld ­

up of r e s id u a l  s t r e s s e s  from cooling  can be v isu a lized  by 

noting  th a t  both the web and base of the r a i l  are  thinner 

than  the head. As a r e s u l t ,  the  web and base cool quicker and 

achieve h igher s t r e n g th  le v e ls  while the s t i l l  hot head w ill  

r e a d i ly  y ie ld .  As the  head co o ls ,  however, no yielding can 

take place in  the r e s t  of the r a i l ,  and t e n s i l e  s t re s se s  due 

to  shrinkage occur i n  the head. A ty p ic a l  p a t t e r n  for lo n g i ­

tu d in a l  s t r e s s e s  in  newly manufactured r a i l  i s  shown by l ine  A 

in  F ig . 5 [11].

Cold Working of the R a il  Head During Service

The contact a rea  between the wheel and r a i l  in r a i l ­

way opera tions has been rep re sen ted  as being an e l l ip se  with 

a major diameter in  the d i r e c t io n  of t r a v e l  of 14.33 mm

(0.564 in )  and a minor diam eter o f 11.99 mm (0.472 in). The
2 z>r e s u l t in g  contact a re a  i s  approxim ately 135 mm (0 . 209 in  ).

A ty p ic a l  s t a t i c  fo rce  of 117.4 kN (26,400 lb s )  a c ts  on th is

a rea  [12]. The average con tac t s t r e s s  i s  87O MN/m  ̂ (126 k s i ) .

This i s  a ty p ic a l  H e r tz ian  co n tac t  s t r e s s  problem, and
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T e n s i o nC o m p r e s s i o n  100 100Running 0 surface

A -  New r a i l  made of s tandard-grade s te e l  

B -  Work-hardened r a i l  made o f standard-grade s t e e l

Figure 5* V a r ia t io n  in  the L ong itud inal Residual S tre ss  
P a t te rn  in  New and Used R a il  (M N/m^) 
(With the perm ission of the ORE [11])
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cold working r e s u l t s  in  both the wheel and r a i l .

Cold working of m etals through small con tac t areas i s  

a well known process in  mechanical m eta llu rgy . For d iscu ss io n  

o f  the deform ation zone geometry, Backofen defined the f o l ­

lowing terms [ 1 ] ] .  The metal th ickness  (h) and the  len g th  of 

the inden ter (L) are r e l a te d  by the ex p re ss io n  A = h/L. A 

value of A g re a te r  than one (1) i s  known to  cause cold work­

ing of a l a y e r  near to  the surface  of the m a te r ia l .  The h igher 

the value fo r  A, the c lo se r  the area  o f maximum cold  work 

approaches to  the su rface .

Fig. 6 shows the p l a n e - s t r a in  compression f i e l d  fo r  

A equal to  5 [133. In  the i l l u s t r a t i o n  on the l e f t ,  the 

f i e l d  i s  considered  to  c o n s is t  of fou r r i g i d  masses. Recog­

n iz ing  the v e r t i c a l  symmetry, m a te r ia l  movement fo llow s two 

general p a th s .  As in d ic a te d  by the hodograph on the  r i g h t ,

m ate r ia l  moving a t  the v e lo c i ty  of the  in d e n te r ,  Vq , can

flow a t  the  re sp e c t iv e  v e lo c i t i e s  e i t h e r  across  boundaries 

AB and AC or AB, BC and CD. V eloc ity  d i s c o n t in u i t i e s  e x i s t  

a t  each boundary. The r e s u l t in g  v e lo c i ty  of the  departing  

m ate r ia l  i s  v^ where v^ = Vq / A .

Using the r a i l  se c t io n  shown i n  F ig .  if as a ty p ic a l  

example, a value of 37 mm (1 .^6  in )  can be assumed for h .

From the p rev ious d e s c r ip t io n  o f  the con tact zone, L can 

be assumed to  be 12 mm r e s u l t in g  in  a  A of 3*08.

For th a t  value of A, the con tact p ressure  req u ired

to  produce m a te r ia l  motion i s  approxim ately th re e  times the
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Figure 6. P lane-S t ra in  Compression fo r  A = 5 
(With Perm ission [ I 3 ])
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y ie ld  s tre n g th  of the m a te r ia l  in  shear [ 133. The compressive

y ie ld  s tre n g th  for a ty p ic a l  r a i l  s t e e l ,  as shown :in Table 11,

i s  503*311 MN/m  ̂ ( 7 3 ,0 0 0  p s i ) .  C o n s id e r in g  y i e l d  s t r e n g th  in

shear to  be approximately o n e -h a lf  the compressive y ie ld

s tre n g th ,  the minimum contact p ressure  req u ired  for m ate r ia l

movement i s  75^*98 M/m^ (109,500 p s i ) .  Using the e a r l i e r

values for fo rce  and a re a ,  an es tim ate  o f a ty p ic a l  value of
2

pressure  caused by the  w h e e l / r a i l  con tac t i s  87O MN/m 

( 126,315 p s i ) .  This exceeds the value req u ired  for m a te r ia l  

movement as c a lc u la te d  above.

Much of th i s  a n a ly s is  i s  not r ig o ro u s ,  mainly because 

exact wheel and r a i l  geometry have been ignored , approximate 

va lues have been used, and dynamic fo rce s  have been neg lec ted . 

I t  does se rve , however, as a g enera l d e s c r ip t io n  of the d e v e l­

opment of the worked zone on the r a i l  head. A more complete 

d iscu ss io n  of these asp ec ts  o f the r a i l /w h e e l  contact prob­

lem has been given in  Ref. [ 1 2 ] ,  by M artin  and Hay [ l 4 ] ,  

Kalousek and K lein [ 15], and King and Kalousek L 16]. Paul 

has re c e n t ly  p resen ted  a summary of past and present work in  

t h i s  area  [17 3* The argument p resen ted  here  was f e l t  to be 

most u se fu l in  demonstrating the process o f cold working 

through small contact a reas .

M icrostruc tu re  of the Cold-Worked Zone

The m ic ro s tru c tu re  of new and used r a i l  has been 

s tud ied  by Block and rep o r ted  in  Ref. [ 6 ] .  Fig. 7 i s  a
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microphotograph of r a i l  number seven, a used 11() Ib/yafd 

r a i l .  Records show th a t  t h i s  r a i l  had seen 293*6 (10)'' kg 

( 323.6 m il l io n  gross tons)  of m ain-line  se rv ic e .  I t s  

appearance in d ic a te s  th a t  i t  was probably i n s t a l l e d  as the 

low r a i l  on a banked se c t io n  of curved t r a c k .  The change in  

m ic ro s tru c tu re  i s  v i s i b le  toward the top surface and toward 

the top co rn e rs .  The upper 1*5 mm of the cen ter  p o r t io n  of 

t h i s  r a i l  i s  shown in  F ig . 8. The depth of the very heavy 

d i s t o r t i o n s ,  d is t in g u is h a b le  by unequal axes of the 

g ra in s ,  ranges from approxim ately 1 .5  mm at the cen ter  to  

5 to 6 ram toward the co rn e rs .  Lesser d i s to r t io n s  appear 

a t  the cen te r  up to  approxim ately 4 mm.

This e s tim ate  o f the th ick n ess  of the cold-worked 

zone i s  in  general agreement w ith  previous work performed 

on the Pennsylvania R a ilroad  [18]. I n  th a t  study b rass  p in s  

were placed in  the head of new r a i l  which was then  i n s t a l l e d  

in  a t r a c k .  A fter approxim ately n in e ty  m il l io n  gross tons 

of se rv ic e ,  the flow of metal was found to  extend from 5 mm 

to  10 mm (0 .2  to  0 .^  in )  below the su rface . The h eav ily  

worked zone was found to  extend to  a depth o f  3 to  3*5 mm 

in  a study of r a i l  i n  the Soviet Union [ I 9] .  S im ila r ly ,  the 

in v e s t ig a t io n  in to  the cold-worked zone by the Office fo r  

Research and Experiments o f  the I n te r n a t io n a l  Union of 

Railways has shown th a t  the work hardening in  European r a i l  

i s  large  only up to  a depth o f  3 to  4- mm [20]. Some of the 

mechanical p ro p e r t ie s  of the worked zone on Soviet r a i l  have 

been given by L em pitsk ii ,  e t  a l .  [21 ] .
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Figure  8. Section Through the Top of the Used R a il  Head 

(100 X, N i t a l  E tch ) ,  Block [6]
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E ffe c t  o f the Cold-Worked Zone on Crack Growth

Growth r in g s  of a ty p ic a l  tran sverse  f r a c tu re  of a 

r a i l  a lso  i l l u s t r a t e  the  presence of t h i s  cold-worked zone 

(Fig. 9)* Here, a de fec t has been assumed to be loca ted  a t 

the cen ter of band number 1. Since the n e u tra l  ax is  during 

e l a s t i c  a c t io n  o f  the r a i l  s e c t io n  i s  ty p ic a l ly  a few inches 

below the flaw growth a re a ,  one would expect h igher s t r e s s  

magnitudes and, hence, f a s t e r  flaw growth in  the a rea  above 

the o r ig in .  The e f f e c t  of the compressive re s id u a l  s t r e s s e s  

re s u l t in g  from the cold working in  the upper lay e r  i s  c le a r ly

i l l u s t r a t e d  by the  fa c t  th a t  crack  growth i s  a r r e s te d  as i t

progresses toward the top o f  the r a i l .  This a r re s te d  crack 

growth i s  a lso  i l l u s t r a t e d  by the f a i l e d  r a i l  s e c t io n  shown 

in F ig . 10. A broken r a i l  s e c t io n  s im ila r  to  th a t  shown in

Fig. 10 has been observed, and the depth from the top of the

r a i l  to  the top of the fa t ig u e  crack was measured to  be 3-5 mm.

Texture of Cold-Worked S tee l  (P re fe rred  O rien ta tion )

Texture development during the cold-working process 

has been shown by many in v e s t ig a to r s  to  a f fe c t  the u l t r a so n ic  

wave p ropagation . This has been reviewed by Green [22].

Texture occurs in  m a te r ia l  when the g ra ins  develop a p re ­

fe rre d  ra th e r  th an  a random o r ie n ta t io n .  This can be caused 

by some e x te rn a l  process such as cold working. T yp ica lly ,  

s t e e l  p la te s  and bars  sub jec ted  to  cold ro l l in g  processes
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Figure 9- Growth Rings fo r  Transverse F ractu re  in  R ail 
(Courtesy Sperry R ail  Service)

l-'iguro 10. Transverse F rac tu re  in  R ail (Courtesy Sperry 
R a il  Service)



develop a tex tu re  in  which the [100} p lanes tend to  o r ien t  

themselves p a r a l l e l  to  the  plane of r o l l i n g ,  and the ^11 

d i r e c t io n s  approach w ith in  a few degrees of the d ir e c t io n  of 

r o l l in g  [ 13, 23]. These r e s u l t s  have u su a l ly  been obtained 

with low to  medium carbon s t e e l s  (O.O8 to  0.35%  0 and 0 .35  

to  0 . 50^ 0, r e s p e c t iv e ly ) .

Backofen reported work by Mathur which showed th a t  

the deformation te x tu re  i s  a f fe c te d  by the value of A and the 

amount of cold working [ I 3 ] .  The r e s u l t s  were reported fo r  

drawn m a te r ia l ,  r a th e r  than  r o l l e d ,  but they are useful in  

t h i s  p re se n ta t io n .  The i n t e n s i t y  of X-ray r e f le c t io n s  from 

(100) planes p a r a l l e l  to  the su rface  was seen to  increase in  

a nearly  uniform manner as the amount of cold working was 

in creased . This change in  i n t e n s i t y  fo r  values of A ranging 

from one to  four was grouped somewhat to g e th e r .  For the 

(110) p lanes , the i n t e n s i ty  decreased  w ith cold working. In  

t h i s  case , however the decrease  was considerab ly  less  fo r  

h igher values of A(A = k )  than  fo r  lower va lues .  I n t e n s i t i e s  

from the (111) p lanes behaved in  a d i f f e r e n t  manner. For 

A = 1, the i n te n s i ty  increased  l i n e a r l y  throughout the t e s t .  

For A = th i s  peak occurred a t  approximately a f i f t y  percent 

reduc tio n , and fo r  A = i t  occurred a t  approximately a 

t h i r t y - f iv e  percent red u c tio n .  I n  each case the i n t e n s i t i e s  

fo r  the (111) planes were lower fo r  the h igher  values o f  A.

Using a r o l l in g  machine sim ula ting  ra ilw ay  cond itions, 

Krause and Scholten have s ta te d  th a t  the  (135) plane tends
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to  o r ie n t  i t s e l f  p a r a l l e l  to  the ro l l in g  plane with the [ j l j ]  

d i r e c t io n  p a r a l l e l  to  the d i re c t io n  of r o l l in g  [24, 2^].

These r e s u l t s  were obtained using a medium-carbon (C 0.45^) 

s t e e l .  R o lle r-harden ed , medium-carbon s t e e l  has a lso  been 

stud ied  by B la n te r ,  e t  a l .  [26]. Their i n t e r e s t ,  however, 

was only in  the se p a ra t io n  of the (110) and (220) planes for 

s t r e s s  s tu d ie s .

As shown in  Table I ,  r a i l  s t e e l  has a carbon content 

ranging from 0.67%  to  0.80# fo r  the 119 lb .  s e c t io n  used 

in  t h i s  study. I t  i s  well known th a t  fo r  the h igher carbon 

s t e e l s ,  the p ro p en s i ty  fo r  the development of p re fe r red  

o r ie n ta t io n  ( i . e . ,  te x tu re )  decreases [ 27] .  R avitskaya, 

however, s ta te d  th a t  the worked layer of the  r a i l  head i s  

tex tured , a lthough no s p e c i f ic  da ta  were given [ I 9 ]. There i s  

an important r e l a t io n s h ip  of u l t ra so n ic  wave p ropagation  to  

te x tu re .  This r e l a t io n s h ip  w i l l  be d iscussed  l a t e r ,  and the 

tex tu re  o f the  r o l l e d  surface on the r a i l  head w i l l  be in v e s ­

t ig a te d .

Wave V e lo c i t ie s  and Iso tro p ic  P o is so n 's R atios 

fo r  New and Used R ail

Two new and f iv e  used r a i l  samples were used fo r  

much of the la b o ra to ry  work reported  in  Ref. [6 ] .  In  order 

to  gain in s ig h t  in to  the p ro p e r t ie s  of the va rious  r a i l s ,  

severa l  wave v e lo c i t i e s  were measured. These are l i s t e d  in
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Table I I I .  R a il  eleven had been i n s t a l l e d  in  the same main­

l in e  t ra c k  se c t io n  as r a i l  seven. I t  a lso  appeared to  have 

been a low r a i l  on a banked se c t io n  of curved t r a c k .  The 

h i s to r y  of the o th e r  used r a i l  i s  unknown.

The d i l a t a t i o n a l  wave v e lo c i ty ,  Ag, and the shear 

wave v e lo c i ty ,  Bg, were determined by p lac ing  an appropria te  

u l t r a s o n ic  transducer at the  end of the r a i l  and near to  the 

cen ter  of the  head. The v e lo c i ty  of a d i l a t a t i o n a l  wave p ro ­

pagating near to  the  surface of the r a i l  (P wave) was ob­

ta in ed  using a wedge where the in c id e n t  angle could be va ried  

from 0*̂  to  90°. This i s  denoted as v e lo c i ty  . The SV v e lo ­

c i t y ,  , i s  the v e lo c i ty  of a c r i t i c a l l y  r e f r a c te d  shear 

wave, a lso  obtained  with a v a r ia b le  angle wedge. The primary 

d if fe re n c e s  in  each r a i l  are  seen to  occur in  the  shear wave 

v e lo c i t i e s  B̂  and Bg. V eloc ity  Bg i s  lower th an  B̂  in  a l l  cases 

except fo r  r a i l s  seven and e leven . In  c o n t r a s t ,  Â  and Ag 

are near ly  the same in each case . A ll of the a r r iv in g  pulses 

were qu ite  strong, and the v e lo c i t i e s  were ob ta ined  using the 

f i r s t  a r r i v a l s  of each pu lse .

The i s o t r o p ic  P o is s o n 's r a t i o s ,  and ^2 , can be c a l ­

cu la ted  fo r  the upper surface  and the body of the r a i l  head, 

r e s p e c t iv e ly .  P o is so n 's r a t i o  i s  given by :

.
V =   ( 2 . 1 )

:
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Table I I I .  Wave V e lo c i t ie s  and Iso tro p ic  P o is s o n 's 

Ratios for the R ail  Head

R a il 4 4 =2
V
1

V
2 ®2/b , Remarks

m/s m/s m/s m/s

1 5878 3361 5879 3205 0.257 0.288 0.954 1.000 NEW

2 5868 3224 5854 3212 0.284 0.285 0.996 0.998 USED

6 5851 3243 5854 3177 0.278 0.291 0.980 1.000 USED

7 5872 3120 5868 3195 0.303 0.289 1.024 0.999 USED

8 5880 3375 5875 3202 0.254 0.289 0.949 0.999 NEW

10 5853 3217 5843 3205 0.284 0.285 0.996 0.998 USED

11 5890 3013 5855 3195 0.323 0.288 1.061 0.994 USED
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where Aj_ and are the re s p e c t iv e  d i l a t a t i o n a l  and shear 

wave v e lo c i t i e s .  These r e s u l t s  are a lso  shown in  Table 111.

The un ifo rm ity  of Vg in  the range from 0.285 to  0.291 

i s  re a d i ly  observed. These a re  values ty p ic a l ly  used fo r  

s t e e l .  The range of i s  not q u i te  so uniform, however,

going from 0.254 to  0.323* Even though the expected an iso tropy  

of the worked la y e r  i s  acknowledged, t h i s  range of again 

in d ic a te s  changes in  m a te r ia l  cond itions  a t the surface of 

the r a i l .  I t  should be noted th a t  new r a i l s  one and e igh t  

show the lowest value fo r  , while heav ily  worked r a i l s  

seven and e leven  show the g r e a te s t  va lues.

Shear Wave V e lo c i t ie s  and C r i t i c a l  R efrac tion  

Angles in  the  Cold-Worked Layer

The v e lo c i ty  of a shear wave (SV) propagating p a r a l l e l  

to  the r a i l  su rface  along the  le n g th  of the r a i l  was d iscussed  

in  the e a r l i e r  re p o r t  fo r  new and used r a i l  [6 ] .  These waves 

were exc ited  w ith  a v a r ia b le  angle p l a s t i c  wedge, and the angle 

of e x c i ta t io n  was a lso  recorded . A p lo t of the observed v e lo ­

c i ty  and the sine of the e x c i t a t io n  angle y ie ld  f u r th e r  u se fu l  

observations about the cold-worked la y e r .

As in d ic a te d  in  F ig . 11, the r e f l e c t io n  and r e f r a c t io n  

of u l t ra so n ic  waves i s  g e n e ra l ly  governed by S n e l l ' s  law:

£ l _  = (2 .2)
s in  9-] s in  Gg
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Here, and are  the wave v e lo c i t i e s  in  the  p l a s t i c  wedge 

and the s t e e l ,  r e s p e c t iv e ly .  S im ila r ly ,  6  ̂ and 8^ are the i n ­

c ident and r e f r a c te d  angles of the beam. I f  8  ̂ i s  the angle 

which e x c i te s  the  s tro n g e s t  SV pulse along the surface a t  

82 = 90° ,  the p rev ious equation  can be w r i t te n  simply as:

C.
s in  8̂  = — (2.2a)

The d o tte d  l in e  i s  a p lo t  o f Eq. (2.2a) fo r  a value of 

equal to  2730 m/s.

A p lo t  of v s .  s in  8^, using values taken from Ref.

[6 ] ,  i s  shown by the  c i r c l e s  in  F ig . 11. As p rev iou s ly  s t a te d ,  

r a i l s  one and e ig h t  a re  new,while the r e s t  a re  used and have 

COId-worked la y e r s  on the upper su rface . The decrease in  the 

v e lo c i ty  of the SV wave near to  the  surface i n  used r a i l  i s  

c le a r ly  dem onstrated.

The slope of the  so l id  l in e  drawn through the da ta  i s  

considerab ly  d i f f e r e n t  from the slope p re d ic te d  by S n e l l ' s  law. 

This behavior i s  most l i k e l y  due to  an a n iso tro p ic  e f f e c t  in  

the worked l a y e r .  D iscussion  to  fo llow  in  Chapter IV w i l l  show 

th a t  fo r  a n is o tro p ic  m a te r ia l  the d i r e c t io n  o f  energy f lu x  can 

d ev ia te  from the d i r e c t io n  of the wave normal [22]. S n e l l ' s  

law d e fin es  the r e l a t i o n s h ip  of the  wave normal, and the da ta  

fo r  8-] were ob ta ined  fo r  maximum pulse  energy.

The p o s s i b i l i t y  e x i s t s  th a t  the v a r i a t i o n  in  shear wave 

v e lo c i ty  in  the upper p o r t io n  of the  head could account fo r  some 

o f  the d i f f i c u l t y  which o c ca s io n a l ly  occurs i n  the u l t r a s o n ic  

in sp e c t io n  o f  r a i l r o a d  r a i l  [28, 2? ]. Conventional r a i l
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flaw  d e te c to r s  e x c i te  a shear wave in  the r a i l  through a 

f ix ed  p l a s t i c  wedge or a l i q u i d - f i l l e d  wheel ac ting  on the 

r a i l -h e a d  su rface .  The exact angle o f  incidence i s  f ixed  

according to  the  d e s i re d  r e f r a c t io n  angle of the shear wave 

in to  the  r a i l .  Any number of fixed in c id en t  angles are p o s s i ­

b le ,  depending on the p h y s ic a l  l im i ta t io n s  o f the ca rr iage  

system. Shear wave r e f r a c t i o n  angles i n  the r a i l  are u su a l ly
0 O

in  the range from 30 to  90 .

The l i k e l y  e f f e c t  of v a r ia t io n s  in  shear wave (SV) 

v e lo c i ty  can be demonstrated with the  extreme values from 

Table I I I .  According to  Ref. [29], the nominal ^5 shear
0

wave i n  the r a i l  i s  e x c i te d  with an in c id e n t  angle of 35«8 

in  a p l a s t i c  wedge. Using v e lo c i ty  fo r  r a i l s  e igh t and 

e le v en , i t  can be shown w ith  S n e l l 's  law th a t  at the 35*8° 

in c id en t  angle the r e f r a c te d  angle fo r  those two r a i l s  w i l l  

be 4y.36 and ^ 1 .0 5 ° , r e s p e c t iv e ly .  However, since t h i s  

beam quick ly  e n te r s  in to  the body of the r a i l  head, a second 

r e f r a c t i o n  occurs because o f the e f f e c t  of v e lo c i ty  B2* Using 

the angles j u s t  ob ta ined  as the new in c id en t  ang les , and B  ̂

as the shear wave v e lo c i ty  in  the body of the r a i l ,  i t  can 

be fu r th e r  shown th a t  the entrance angles in to  the body of 

the r a i l  are now approxim ately 44-° fo r  each r a i l .  The r e s u l t  

i s  not se r io u s ly  d i f f e r e n t  from the expected 4-5° angle.

Using the  same analogy for the  nominal 70° beam, the 

e f f e c t  i s  shown to  be l a r g e r .  This beam would be exc ited
o

with a 51 in c id e n t  angle in  the p l a s t i c  wedge. For t h i s
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case , the immediate r e f r a c t io n  angle would be 79.2° fo r 

r a i l  e igh t  and 61.3° fo r  r a i l  e leven . The change in  the 

angle o f the r e f r a c te d  wave could have a pronounced e f fe c t  

on the in s p e c t io n ,  since a t the h igher r e f r a c t i o n  angle , t h i s  

r e f ra c te d  beam would t r a v e l  in  the upper a rea  of the r a i l  

during a la rge  p o r t io n  of i t s  journey. Upon e n te r in g  the 

body of the r a i l  head, the r e f ra c te d  beam angles would be 

68. 9° fo r  r a i l  e ig h t  and 68.'+° fo r  r a i l  e lev en .

I f  a la rg e  number o f probes a t v a r io u s  angles near
0

to  70 were used , the l ik e l ih o o d  of not d e te c t in g  a r a i l  

flaw because of t h i s  e f f e c t  could be minimized. Since the 

head of a used r a i l  i s  most l i k e ly  h ig h ly  a n is o t ro p ic ,  i t  

i s  f e l t  th a t  the  o v e ra l l  e f f e c t  on h igh er  beam angles should 

be considered i n  designing r a i l  flaw d e te c t io n  systems.
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CHAPTER I I I  

WAVE PROPAGATION IN THE COLD-WORKED LAYER

The previous study, which showed the presence of the 

"ea r ly  a r r iv a l s "  ahead of the surface wave, concen tra ted  on 

the measurement of changes in  the lo n g i tu d in a l  r a i l  s t r e s s e s  

r e s u l t in g  from temperature f lu c tu a t io n s .  V a r ia t io n s  in  

Rayleigh wave v e lo c i t i e s  on the r a i l  head, which were not 

e n t i r e l y  understood during th a t  work, demonstrated th a t  these  

waves could not be r e l i a b l y  used fo r  th a t  purpose. Data in  

th a t  study were obtained  mostly to  demonstrate the Rayleigh 

wave v e l o c i t i e s ,  and only b r i e f  a t t e n t io n  was paid  to  the 

e a r ly  a r r i v a l s .  As a r e s u l t ,  the data  had not been c lo se ly  

analyzed to in v e s t ig a te  the d isp e rs io n  p a t te r n  fo r  the e a r ly  

a r r i v a l s .  Although the apparatus and techniques used fo r  

ob ta in ing  the d a ta  have been reported  in  Ref. [6] , some of 

the in fo rm ation  i s  repeated  here fo r  the sake o f completeness.

The basic  apparatus used fo r  ob ta in ing  wave v e lo c i t i e s  

in  the head of f u l l - s i z e d  r a i l  i s  shown in  the photograph in  

Fig. 1. The schematic i s  shown in  F ig . 12. The pulse e x c i ­

t a t i o n  c i r c u i t  con s is ted  of a modified Sperry UR R eflec to sco pe ,
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a sep ara te  probe tuning  box and the source tran sd u ce r .  The 

prim ary transducer  design  was a 25.*+ mm (1 in ) square p iez o ­

e l e c t r i c  p la te  mounted on a p l a s t i c  surface wave wedge as 

shown in  F ig . 13 . The le a d - z i r c o n a te - t i t a n a te  p ie z o e le c t r ic  

p l a t e s  were made of HDT-3I m a te r ia l ,  purchased from Gulton 

I n d u s t r i e s ,  and the p l a s t i c  wedges were purchased from Comco. 

The in c id en t beam angle was 6*f°. The p ie z o e le c t r ic  p la te  was 

" a i r  backed,” i . e . ,  i t  was not mounted with a h igh ly  damped 

backing m a te r ia l  as i s  o f ten  the  case. Some of the p la te s  were 

bonded w ith  epoxy to  the p l a s t i c  wedge. Most, however, were 

simply l a i d  on a piece of th in  aluminum f o i l .  The a c o u s t ic a l  

coupling was provided by a lay e r  of o i l  between the p la te  and 

the  f o i l ,  and the  f o i l  and the p l a s t i c .  A spring  clamp h e ld  

the  p la te  in  place and fu rn ished  the e l e c t r i c a l  connection.

This mounting achieved a longer r ing ing  tim e, which was d e s i r ­

ab le  in  t h i s  s i t u a t io n .  With t h i s  design , the primary c o n tro l  

o f the e x c i ta t io n  frequency was the th ickness  of the p ie z o e le c ­

t r i c  p l a t e .  Peak tuning was achieved by using e i t h e r  an appro­

p r i a t e  i n t e r n a l  tuning  c o i l  of the Reflectoscope or a separa te  

e x te rn a l  c o i l .

The rece iv in g  c i r c u i t ,  i n  most cases , co n s is ted  of a 

12.7 mm ( 0 .5  in )  d iam eter Panametrics VIO9 transd ucer  mounted 

on a p l a s t i c  wedge i d e n t i c a l  to  the one used a t the sending 

t ran sd u ce r .  This was a h ig h ly  damped transducer  having a very  

broad frequency response . When req u ire d ,  a p re -a m p li f ie r  was 

used on the received  s ig n a l .  The s ig n a l  was d isp layed  on 

e i t h e r  a Tektronix  Type 535A or a Hewlett-Packard I 707B
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Figure I 3 . Probe and Guide Arrangement fo r  Surface Wave
Measurements [6]
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o sc i l lo sc o p e ,  the o sc i llo sco p e  t r a c e  being t r ig g e re d  by the 

source pulse of the R eflec toscope.

For the e a r l i e r  s tudy , wave transm iss io n  tim es were 

u su a l ly  obtained by keeping the rece iv in g  tran sd u ce r  a t  a 

f ix e d  lo c a t io n  and s i t u a t i n g  the source tran sd u ce r  a t  six  

lo c a t io n s  along the r a i l .  These lo c a t io n s  were 600 mm, 500 

mm, ^00 mm, 300 mm, 200mm, and 100 mm from the r e c e iv e r .  An 

aluminum d is tance  and alignment frame was co n s tru c ted  with 100 

mm increments in sc r ib e d  th e reo n . This i s  not shown in  Fig.

1, but i t  i s  p a r t i a l l y  shown in  F ig . 1]. A v e lo c i ty  averag­

ing technique was used to  o b ta in  surface  wave v e lo c i t i e s  in  

the previous study. This method was not used to  o b ta in  the 

v e lo c i t i e s  h e re in  r e p o r te d .

Since most of the da ta  to  be used i n  th i s  study e x is te d  

in  the  form of photographs, as shown in  F ig s .  2a and 3a, the 

req u ire d  v e lo c i t i e s  were e x tra c te d  d i r e c t l y  from them. This 

s a c r i f i c e d  some accuracy , but the in fo rm ation  ob tained  was 

s t i l l  qu ite  s a t i s f a c to r y .  I t  was n ecessa ry  to  adopt th i s  method 

of v e lo c i ty  d e te rm in a tio n  in  order th a t  a l l  da ta  would be ob­

ta in e d  in  a s im ila r  manner. Appendix A fu rn ish e s  more d e ta i l  

on the  shape of the source pulse used in  these  experim ents.

The methodology used fo r  determ ining the a r r i v a l  tim es i s  d e s ­

c r ib ed  in  Appendix B.

In  the photographs shown in  F ig s .  2 and 3, the top and 

lower a r r iv a l s  are  those ob ta ined  a t  tran sd u ce r  spacings of 

100 mm and 600 mm, r e s p e c t iv e ly .  In  the top  re c o rd ,  i . e ,  at
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100 mm, the e a r ly  a r r iv a l  and the surface waves are i n d i s t i n ­

gu ishab le . This was assumed to  be the zero re fe rence  time. 

Travel times from the 100 mm to  the 600 mm s ta t io n s  were 

obtained  merely by using a sca le  and measuring the d is tance  

between the 100 mm a r r iv a l  and those at 600 mm.

In  order to  minimize e r r o r ,  each photograph was placed 

on a d ra f t in g  t a b le ,  and the  d is ta n c e s  were c a r e f u l ly  marked. 

Some e r ro r  p o s s ib i l i t y  e x i s t s  in  the photograph i t s e l f  because 

of the space e x is t in g  between the face o f  the cathode-ray  

tube showing the pulse a r r i v a l s  and the g ra t ic u le  of the 

o sc i l lo sc o p e .  E rror could a ls o  occur i n  reading the d is tance  

w ith  the sc a le .  The combined e r ro r  of the measurement was 

be lieved  no t to  exceed ±1.5  t±s, or approxim ately ±1^ of the 

t ran sm iss io n  time.

The d is tance  of the tran sduce r  spacing was determined 

from the marks on the aluminum alignment frame, and these  

were be lieved  to  be accura te  to  o n e -h a lf  o f a m il l im e te r .

For the 500 mm d is ta n c e ,  t h i s  could rep re sen t  a poss ib le  e r ro r  

of ±0.1^. As w i l l  be demonstrated l a t e r ,  t h i s  e r ro r  did not 

s e r io u s ly  a f f e c t  the r e s u l t s .

A summary of the t r a v e l  tim es ob tained  from four of 

the  used r a i l  samples i s  shown in  Table IV. The nominal f r e ­

quency was obtained d i r e c t l y  from the expanded pulse d isp la y ,  

as shown in  Fig. 3b fo r  r a i l  number seven. D ispersion  

was evident to some ex ten t in  a l l  pu lses  which could induce 

some e r ro r  in  the value used fo r  frequency. This was not
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Table IV. Wave A rr iv a l  Times and V e lo c i t ie s

R ail
No.

Freq.
(MHz)

(W^) (m/s) (Ms) (m/s)

7 0 .5 167 299^ - -

0.7 168 2976 - -

1.0 166 3012 Ilf 8 3378

1.7 168 2976 156 3205

2.0 169 2958 157 3185

9 1.5 172 2906 156* 3205

2.0 166 3012 150 3333

10 0 .5 170 29^1 -

1.7 169 2958 151 3311

2.0 166 3012 151 3311

11 0 .5 169 2958 ** -

0.7 168 2976 - -

1.0 168 2976 152 3289

1.7 171 292^ 160 3125

2.0 170 29^1 160 3125

* This a r r iv a l  was followed by o th e rs  a t  160 Ps and I 7I M s 
besides the surface wave.

** A very f a in t  a r r iv a l  was noted a t  I5 5 l^ s .
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f e l t  to  be s ig n i f ic a n t ,  however. In  each case , t^  i s  the 

t r a v e l  time fo r  the su rface  wave, and tg  i s  th a t  o f the e a r ly  

a r r i v a l .  The values fo r  and Cg are the r e s u l t in g  v e lo c i ­

t i e s .

The o r ig in a l  d a ta  were somewhat incomplete i n  th a t  a 

f u l l  se t  of da ta  fo r  a wide range of frequencies  had not been 

ob ta ined . To supplement t h i s ,  a d d i t io n a l  d a ta  at 0 .7  MHz and

1.0 MHz were taken fo r  r a i l s  seven and e leven .

The s e r ie s  of photographs shown in  F ig . 1^ demonstrate 

the behavior of the a r r i v a l s  fo r  severa l  f req uencies  fo r  

r a i l  e leven . Each t r a c e  shows the a r r i v a l  a t  600 mm and 

was cut from a separa te  photograph. The l e f t  end o f each 

t ra c e  has been cut o f f  a t  the zero time base e s ta b l is h e d  by 

the 100 mm a r r i v a l  in  the o r ig in a l  photograph. The s l i g h t l y  

wider spacing between the Rayleigh wave a r r i v a l  and the e a r ly  

a r r i v a l  i s  ev iden t a t  1.0 MHz when compared to  the t ra c e s  

shown fo r  both 1.7 MHz and 2 .0  MHz. This d i f fe ren c e  in  

a r r i v a l  time was e s t im ated  to  be approximately 8 p s , as shown 

in  Table IV.

The r e l a t i v e  decrease  i n  0^ w ith  inc reas in g  frequency 

can be r e a d i ly  observed fo r  r a i l s  seven and eleven. The 

va lues fo r  Cg behave s im i l a r ly .  In  the case of r a i l s  nine 

and te n ,  can be seen to  grow la r g e r  with in c reas in g  f r e ­

quency. Although more d isc u ss io n  on t h i s  i s  to  fo llow , the  

f a c t  th a t  B^/B^ in  Table I I I  i s  g r e a te r  than  one fo r  r a i l s  

seven and e leven  and l e s s  than  one fo r  r a i l  te n  would in d ic a te
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2 .0  MHz 
(0 .2  v /d iv . )

1 .7  MHz 
(0 .2  v /d iv . )

1 .0  MHz 
(0 .2  v /d iv . )

0 .7  MHz 
(0 .5  v /d iv . )

0 .5  MHz 
(0 .05  v /d iv .)

Figure 14-. F i r s t  Shear and Fundamental Rayleigh Mode
A rr iv a is  in  R a il  11 a t  0 .5  MHz, 0 .7 MHz, 
1.0 MHz, 1.7 MHz. and 2 .0  MHz, Time 
Base 50 l^s/div. (Retouched Composite)
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th a t  the change in  shear wave v e lo c i ty  through the r a i l  

s e c t io n  might be r e l a te d  to  t h i s  observed behavior in  the 

surface waves. U nfo rtun a te ly , no shear wave data  were 

obtained  fo r  r a i l  n ine.

The a r r iv a l s  between tg  and t^  fo r  the 1.5 MHz da ta  

fo r  r a i l  nine and the very  weak e a r ly  a r r i v a l  a t 0 .5  MHz fo r  

r a i l  e leven  are most l i k e l y  due to  o ther  modes which 

were not id e n t i f i e d .

Wave Propagation  i n  Layered Media

The discovery o f  seism ic waves t r a v e l l in g  in  the 

e a r t h ' s  c ru s t  brought the  a t t e n t io n  of some of the more 

no tab le  p ioneers  in  wave propagation  to  bear on the problem 

of waves in  layered  media. F i r s t  among these  were Love [ 30] 

and Lamb [3I ] .  Stone le y  [32] and Sezawa [333 a lso  made 

e a r ly  and important c o n tr ib u t io n s  to  the study of t h i s  prob­

lem. In  more recent y e a r s ,  T ols toy  and Usdin [ 3^] p resen ted  

so lu t io n s  to  the equations  of motion fo r  a v a r ie ty  o f layered  

com binations. Much of t h i s  e a r l y  work has been reviewed by 

Ewing, Ja rd e tzk y  and P re ss  [353*

L arge-sca le  usage of computers was a major event in  

the in v e s t ig a t io n  of t h i s  very  complex p a t te rn  of wave prop­

ag a t io n .  This perm itted  the s o lu t io n  of the equations of 

motion fo r  a la rge  number of m a te r ia l  p roperty  combinations.

In  the work rep o r te d  i n  Ref. [63, the dependence of 

the  e a r ly  a r r iv in g  wave upon the  ex is ten ce  of the cold-worked
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l a y e r  was f e l t  to  be q u i te  conclusive. The exac t i d e n t i t y  

o f the wave and the m a te r ia l  p ro p e r t ie s  governing i t s  appear­

ance remained undetermined. An in v e s t ig a t io n  in to  the p o s s i ­

b i l i t y  th a t  they  might be Stoneley waves showed th a t  t h i s  

was u n lik e ly  because o f  the p a r t i c u la r  se t  of m a te r ia l  

p ro p e r t ie s  requ ired  fo r  the ex is tence  of S toneley  waves. The 

conclusion  th a t  these were shear waves was reached in  Ref. 

[ 6 ] ,  but no p roo f was given.

The work which was of g re a te s t  importance in  correctly- 

id e n t i fy in g  th ese  e a r ly  a r r i v a l s  was th a t  of B o lt  and Butcher 

[ 3 6 ] and Mooney and B olt L 37, 38]. Using the work of Sezawa 

[33] as t h e i r  source, Bolt and Butcher showed th a t  so lu t io n s  

to  the equa tions  of motion fo r  Rayleigh surface waves e x is t  

fo r  a s ing le  surface la y e r  when k 0, C < < B^ and B̂  <

C ^ Bg. No r e s t r i c t i o n  a p p lie s  to  A-j or Ag o th e r  than  the 

requirement th a t  P o is s o n 's r a t i o  must l i e  between 0 and 0 .5 . 

The param eters are  de fin ed  as follows fo r  the equa tions  of 

motion and fo r  the  s t ru c tu re  shown in  F ig . 15:

uu
^  = C

C = phase v e lo c i ty
i

= d i l a t a t i o n a l  wave v e lo c i ty  
i n  layer  i" i=

i \  +  2 t i . )

Bi - Hi 
P" 1-*

= shear wave (SV) v e lo c i ty  in  la y e r  i  

= d e n s i ty  in  la y e r  i

^ 3



H

Figure 15. S t ru c tu ra l  Model fo r  Layered Wave Propagation
Studies



li^ = Lame'parameters i n  laye r  i

1 = 1 for upper l a y e r ,  = 2 for underlying 
s t ru c tu re

H = th ickness  of la y e r  1

The so lu t io n  demands th a t  the determ inant defined  by 

the fo llow ing  m atrix  elements must equal zero . Following 

the genera l d e f in i t io n s  used by Bolt and B utcher, these 

elements a re :

D(1,1) = T^Sr^/CTg)? + T iC ri/C T ]): - 2(Tl̂ )2Ss^

- 2CSi/(Tq,)&

D(1,2) = 2Cr^ + 2 (T g )2 S ry (T ^ )?  - T^Cs^ 

T^Ss^/|2(T^)^(Ti^)^]

D(2,1) = 2 T^(1 - M) Cr^ + |_2M -  2 + 

P l /E ijC si

D(2,2) = 4(Tg)^(1 -  M)Sr^ + T^(2M - 2 

+ P /E ^ )8 s i / (T ^ .)^

D(2,3) = (MP J / E g

(3 .1 )
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D ( 3 , 1 )  = ( T ^ ) ^ 8 r / ( T g ) ^  + MT^T^Cr^/(T^)^' -  

{ \ ) ^ S s ^  -  ZMT^Cs/CT^)^

D ( 3 , 2 )  = 2T (C r ,  -  Cs^)  + 2 M T ^ ( T g ) ^ 8 r / ( T ^ )

MT,
D

D ( 3 , 3 )  = M[(T -  T ^ / ( T ^ ) ? j

Computational and m a te r ia l  param eters fo r  t h i s  equation are 

defined as fo llow s:

= cf/A^

?2 = c2 /a|  

= B^/Af

Eg = B^/A^

Cr  ̂ = Cosh[kH( 1 - ? • ) ) ]

Sr^ = Sinh [kH(1 - P^)]

Cs  ̂ = Cosh[kH(1 -  P^ /E ^)]  

Ss^ = Sinh[kH(1 -  P ^ /E ^)]  

= 2 -  P^/E^

Tg = 1 - P,
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= 1 -  Pg

= 1 - P-,/E^

Tj = 1 - Pg/Eg

= 2 - Pg/Eg 

M = ^g /^ ii  = (B^p2)/(B^P^ )

As s ta te d  by Bolt and Butcher, the value of the 

determ inant remains r e a l  fo r  a l l  o f  the p rev io u s ly  defined  

co n d it io n s .  Where C ^  Bg, Cs  ̂ i s  r e a l ,  but Ss^ i s

imaginary. Since Ss^ always occurs in  the determ inant in  

con junc tion  with and both exp ress ions  w i l l  be sim­

u lta n eo u s ly  imaginary when C > B^, the r e s u l t  i s  a r e a l  value 

fo r  the determ inant fo r  the whole range of co n d it ions  prev­

io u s ly  s t a te d .  A l im i t in g  case e x i s t s  when C = B^, which 

r e s u l t s  in  = 0.

There are se v e ra l  p o ss ib le  so lu t io n s  to  t h i s  de te rm inan t. 

Those of i n t e r e s t  to  t h i s  in v e s t ig a t io n  are the fundamental 

Rayleigh mode and the  f i r s t  shear mode. The l a t t e r  i s  o f te n

i d e n t i f i e d  as the or Sezawa mode.

I t  i s  c le a r  from the foregoing th a t  any p a ir in g  of 

two m a te r ia ls  can be completely defined  by the re sp e c t iv e

va lues  fo r  A^, B̂  and p^. So lu tions fo r  C w ith in  the bounds

p rev io u s ly  given e x i s t  fo r  a range of values fo r  kH g re a te r  

than  zero . There i s  a minimum value of kH fo r  the  f i r s t
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shear mode above which so lu t io n s  of C e x i s t  fo r  the equations 

of motion.

A F ortran  IV computer program was w r i t te n  using the 

Newton-Raphson i t e r a t i o n  process to  f in d  so lu t io n s  for 

both modes fo r  a f u l l  range of va lues fo r  kH and C. Complex 

double p re c is io n  computations were used. I n  order to s t a r t  

the i t e r a t i o n ,  i n i t i a l  so lu t io n s  of C a t  small values of kH 

were requ ired . For the fundamental mode, i n i t i a l  values of 

kH were 0.01 and 0 .1 ,  and i n  each case C was incremented in  

small values from a s t a r t i n g  point o f 0.9B-]. The search fo r  

C was term inated when e i t h e r  the successive  values of C were 

in  agreement to seven s ig n i f ic a n t  f ig u re s  or the value of the 

determinant became l e s s  than  (10)"^.

Once these  two i n i t i a l  so lu t io n s  were found, the 

Newton-Raphson process was a c t iv a te d  to  f in d  a so lu t io n  fo r  

C at succeedingly la rg e r  values of kH. For each i t e r a t i o n  

a t a constant kH^, the  new value of C was determined by:

Cm+1 = -  W  (3 .2)

where 0%+̂  = new es tim ate  o f  C

Cjjj = previous e s tim ate  of C

Dm = value of the determinant 
a t Cm and kH^
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ap = Dm -  Dm-1
BCm Cfn -  Cjh-I

m = i t e r a t i o n  in te g e r  = 1 ,2 ,3 ,  • • • 

n = roo t in te g e r  = 1 ,2 ,3 ,  . . . .

The e v a lu a t io n  of was performed in  a subroutine separa te

from the main program. I t e r a t i o n s  continued u n t i l  successive 

values of C were i n  agreement to  e igh t  s ig n i f i c a n t  f ig u re s .

Group v e lo c i t i e s  were ca lcu la ted  by f i r s t  w r i t in g  the 

equation :

| 2  dC + d{kH) = 0 '3 .3 )

This equa tion , as given by Mooney and Bolt [ 38] ,  i s  merely 

the r e s u l t  of ch a in - ru le  d i f f e r e n t i a t i o n  of the o r ig in a l  

determinant fo r  the  equation  of motion when w r i t te n  in  the 

form:

D(C, kH) = 0 (3 .^ )

Eq. ( 3 . 3 ) can be r e w r i t t e n  as :

dC . ( 3 . 3a)
d(kH) ■ m ]

The e v a lu a t io n  of the p a r t i a l  d e r iv a t iv e s  was c a r r ie d  out in  

the follow ing manner. For the numerator, Py i s  the  value of 

the determ inant a t  the value of ju s t  found to  be a roo t 

a t  KH .̂ The fo llow ing param eters are de fined :
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Cj - Cj_i = Cm+1 - Cn

kHj = kHn (3-5)

kHj_^ = kH^- CKH

where CKH i s  a su i ta b le  decrementing co n s tan t .  The numer­

a to r  can now be w r i t te n :

( _ M  = Dj -  Dj-1 (3.6)
VôkH/c kHj - kHj_i

A sim ila r  procedure i s  follow ed fo r  the denominator where

“ ^ k - 1  “ ^ n  

6k = 6^+1

^k-1 " ^m+1

and CDT i s  a su i ta b le  increm enting c o n s tan t .  The denominator 

in  Eq. (3"3a) can now be w r i t te n :

M  .  %  - °k - l  _ (3 .7)
V6/kH 6]̂  - Ck_i

The usual ex p ress ion  fo r  the group v e lo c i ty  (U) is

U = C + k ^  . (3 .8 )dk

M ultip ly ing  the numerator and denominator o f the d e riv a tiv e  

by the constan t H y ie ld s
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u  = c + (kH) dC
d(kH) (3 .8a)

and s u b s t i tu t in g  the exp ress ion  from Eqs. (3 -3a), (3 .6) and 

( 3 . 7 ) g ives

TJn = C% -  (KHn)

■ -  O j -1
kH. 
■ J

■ Dk_l

L ' k -  V l

( 3 . 8b)

As noted by Mooney and Bolt [ 38] ,  t h i s  method of computing 

the group v e lo c i ty  produces much g re a te r  accuracy in  reg ions 

of rap id  change in  phase v e lo c i ty ,  near the cu to ff  p o in ts  of 

the h igher modes and near the  beginning and end of the range 

of computation. The u n ifo rm ity  of the change in  group v e lo c i ty  

can be g re a t ly  a f fe c te d  by the  choices fo r  CKH and CDT. These 

were determined by t r i a l - a n d - e r r o r .

The r e s u l t s  o f  a more recen t in v e s t ig a t io n  in to  the 

layered  wave problem has  been given by Munasinghe [393- 

Using a f i n i t e  d if fe re n c e  fo rm u la tio n , he showed the r e s u l t s  

fo r an aluminum lay e r  over fused q u a rtz .  Phase v e lo c i ty  

curves fo r  the fundamental Rayleigh mode and the f i r s t  shear 

mode followed a form s im ila r  to  those of Bolt and Butcher 

and Mooney and B olt. Amplitude c o e f f i c i e n t s  and energy 

transm iss io n  f r a c t io n s  were developed fo r  the fundamental 

Rayleigh mode fo r  the aluminum and qu a rtz  model.
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Computation of Phase and Group V e lo c itie s  

fo r  the Fundamental and F i r s t  Shear Mode 

(Geophysical and R a il  Models)

The f i r s t  computational e f f o r t  was to dup lica te  the 

r e s u l t s  fo r  one of the models o f Mooney and Bolt [3 7 ,3 8 ]«

For t h i s ,  the values shown in  Table V were used. These 

correspond to  case 448? i n  Ref. [37] and model 2 in  Ref. [38]. 

D ispersion  curves c a lc u la te d  fo r  t h i s  model are shown in  

F ig . 16. Values fo r  CKH and CDT used in  c a lcu la t in g  the 

group v e lo c i t i e s  fo r  t h i s  model were 0.01 and 1 .0 , r e s p e c t iv e ly .

Several notable c h a r a c t e r i s t i c s  e x is t  fo r  these d i s ­

pers ion  curves. F i r s t ,  considering  the fundamental mode, 

the r a t i o  o f phase v e lo c i ty  to  the shear wave (SV) v e lo c i ty ,  

(C/B^), in  the upper lay e r  i s  seen to  approach I .8388 fo r  

the lower freq u e n c ie s ,  i . e . ,  B^T/H g re a te r  than ten .  Here,

B.] and H are as p rev ious ly  defined  and T i s  the period . This 

re p re se n ts  a value of C/Bg of 0 .919^ ,which corresponds to  

the v e lo c i ty  of Rayleigh waves which would be expected i n  

medium two without the l a y e r .  As the frequency i s  inc reased  

and the wave leng th  becomes s h o r te r ,  C/B-] approaches 0.919^ 

which corresponds to the expected Rayleigh wave v e lo c i ty  in 

a h a lf -sp ace  having the p r o p e r t ie s  o f lay e r  one. The group 

v e lo c i ty  curve i s  seen to  have a minimum at B^T/H = 2.3- 

This d isp e rs io n  curve fo r  the fundamental mode would a lso  

e x i s t  but would be in v er ted  fo r  the case B.| > Bg.
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Table V. Computational Parameters fo r  
Geophysical and R a il  Models

Mooney and Bolt 
Case 4487 [ 36] 7

R ail
7A

Number
11 11A

(m/s) 6235 5872 6255 5890 6134

(m/s) 3600 3120 3185 3012 3125

0.250 0.303 0.325 0.323 0.325

Ag(m/s) 12,471 5868 6319 5855 6153

8 2 ( 0 / 5 ) 7200 3195 3378 3195 3289

^2
0.2%) 0.289 0.300 0.288 0.300

B2/B1 2.0 1.024 1.06 1.061 1.052

Ag/A, 2.0 0.9993 1.01 0.994 1 . 0 0 3

P2/P1 1 . 5 1 . 0 1.0 1 . 0 1 . 0
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There i s  a " c u to f f"  l e v e l  shown fo r  the f i r s t  shear 

mode. For B^T/H g re a te r  than a c e r ta in  v a lu e , no energy 

propagates in  t h i s  mode. This " cu to ff"  i s  e s ta b l ish e d  for 

the value of B^T/H which gives a value of C/B^ equal to  

B2/B^• That i s  to  say th a t  no shear wave energy can propagate 

in  t h i s  f i r s t  mode a t  a v e lo c i ty  h igher  than Bg. An ana ly s is  

of S n e l l ' s  law fo r  shear waves r e f l e c t in g  a t  the in te r fac e  

can demonstrate the c o r re c tn e ss  of t h i s  behavior. As the 

frequency of the pulse i s  in c re ased ,  and consequently B^T/H 

i s  decreased , the  phase v e lo c i ty  fo r  the  in d ic a te d  curve de­

creases  u n t i l  i t  approaches C/B^ = 1 in  the l im i t .  The phase 

v e lo c i ty  curve i s  seen to  have sev e ra l  changes in  slope which 

r e s u l t  in  a group v e lo c i ty  curve having two minima and one 

maximum between the l i m i t s .  The f i r s t  minimum occurs s l ig h t ly  

below the c u to f f ,  and the  second near to  B^T/H = 0 .8 . The 

maximum occurs near to  B^T/H = 1.55*

The d isp e rs io n  p a t te rn s  shown by these  curves and 

the exact num erical v a lu es  obtained  w ith  t h i s  program showed 

p rec ise  agreement w ith the  r e s u l t s  of Mooney and Bolt [37,38]. 

From the appearance of these  two curves one can e a s i ly  

a sso c ia te  the fundamental and f i r s t  shear modes with the 

behavior of the su rface  waves and the e a r ly  a r r iv a l s  seen in  

the case of the used r a i l .

An a n a ly s is  o f p a r t i c l e  d isp lacem ents a t  d i f f e r e n t  

depths and wave len g th s  can a id  in  the fu r th e r  understanding 

of the behavior of these  two waves. Kanai has c a lcu la ted
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these  displacem ents in  a con tinua tio n  of the in v e s t ig a t io n s  

of Sezawa [4o]. K anai 's  model assumed e l a s t i c  con stan ts  

which y ie ld  Ag/A^ = Bg/B^ = 2.83 and Pg/P^ = 1. Figure 17 

shows an approximate r e p re s e n ta t io n  of the displacem ents 

c a lc u la te d  by Kanai a t a w ave-leng th - to - th ickness  r a t i o  

corresponding to  B^T/H 2.5* In  th i s  f ig u r e ,  u and v r e p ­

resen t  h o r iz o n ta l  and v e r t i c a l  d isp lacem ents, r e s p e c t iv e ly .  

The s o l id  l in e s  show the fundamental Rayleigh mode while the 

dashed l in e s  show the f i r s t  shear (Sezawa) mode.

At approximately o n e -h a lf  the lay e r  dep th , the h o r i ­

zo n ta l  displacement o f the f i r s t  shear mode i s  a t  a maximum 

and n e a r ly  nine times g re a te r  than  the corresponding h o r i ­

zo n ta l  displacement of the  fundamental Rayleigh mode. These 

d isp lacem ents are in  phase. The v e r t i c a l  displacem ents 

behave d i f f e r e n t l y .  Not only are they in  opposing phase, the 

displacem ent of the fundamental Rayleigh mode i s  near ly  f ive  

times as la rg e  as th a t  o f  the f i r s t  shear mode.

At the boundary, the displacements of the fundamental 

Rayleigh mode are q u ite  sm all. For the f i r s t  shear mode, the 

h o r iz o n ta l  displacement i s  l e s s  than a t  the su rface  but s t i l l  

four tim es as g rea t as the h o r iz o n ta l  displacement of the 

fundamental Rayleigh mode. They are s t i l l  in  phase. The 

v e r t i c a l  displacement of the f i r s t  shear mode reaches a 

maximum ju s t  above the boundary, i s  out o f phase with the 

v e r t i c a l  displacement o f the fundamental Rayleigh mode and 

i s  approxim ately e ig h t  tim es g re a te r  in  magnitude. Below
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Figure 1?. Displacements fo r  the Fundamental Rayleigh and F i r s t
Shear (Sezawa) Modes fo r  B-iT/H = 2 . 5  [40]
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the boundary, the amplitudes become qu ite  small fo r  a l l  

displacem ents except the v e r t i c a l  component o f  the f i r s t  

shear mode.

Although no d isc u ss io n  i s  g iven in  Ref. [4o] fo r 

sho rte r  wave le n g th s ,  i t  seems reasonable  to  assume th a t  the 

displacem ents of the fundamental Rayleigh mode become n early  

independent of the underlying s t ru c tu re  as the  wave len g th  

i s  decreased f u r th e r .  The displacem ents o f  the f i r s t  shear 

mode at sh o r te r  wave len g th s  were i l l u s t r a t e d  in  an e a r l i e r  

paper [4-1 ]. They become le s s  a f fe c te d  by th e  underlying 

s t ru c tu re  but never completely f ree  from i t s  e f f e c t s .

For the f i r s t  attem pt a t  c o r r e la t in g  the observed 

surface wave a r r i v a l s  in  the r a i l  w ith the behavior p red ic te d  

by the a n a ly s is  of Mooney and B o lt,  va lues fo r  A-̂ , B-], A2 ,

Bg and pg/p^ shown in  Table V were assumed fo r  r a i l s  seven 

and e leven . The d e n s i ty  r a t i o  was measured and rep o r ted  in  

Ref. [6] to  be near to  1 .0 which i s  c o n s is te n t  w ith  the 

statement by D eite r  th a t  cold working of m etals decreases 

the d e n s i ty  on the order of 0.1# [233. The curves shown in  

F igs. 18a and 18b are the p red ic ted  d is p e r s io n  curves based 

on these assumed v e lo c i ty  and d en s i ty  v a lu e s .

The very low r a t i o s  of Bg/B^ fo r  the  r a i l s ,  as 

compared to  th a t  of the geophysical model, should be no ted , 

since the range of so lu t io n s  i s  very  g r e a t ly  a ffe c te d  by t h i s  

r a t i o .  For the geophysical case, the range o f  v e lo c i ty  r a t i o s ,  

from the minimum group v e lo c i ty  po in t fo r  the  fundamental to  

the c u to f f  po in t fo r  the f i r s t  shear mode, i s  approximately

58



1.050

(/)
p  1.000
<oe.

U
0  0.950_jLU
>

0.900

E R R O R
B A N D i  IX

FIRST SHEAR 
MODE

06 @5

FUNDAMENTAL
MODE

_L J I I I..1 1.1. J. J I I
0.4 4 .0  6 .0  8 .0

°  « “ ® '  ® S,T/H ® °
Figure I8a. Phase and Group V e lo c i t ie s  and Experimental

Data fo r  R ail  Seven

1.050

lO
o
I—
<QC

1.000

u
o  0.950
LU
>

0 .9 0 0

$  L' m

FIRST SHEAR 
MODE E R R O R  ±1X 

B A N D

W  C? W  ,  ^00^ 3 0

or

FUNDAMENTAL
MODE

J I L _ I_ L ± I I I I I I

0.4 4 .0  6.0 8.0
= ® "  ® '•»  8,T/H ® ®

Figure I8b. Phase and Group V e lo c i t ie s  and Experimental
Data fo r  R a il  Eleven

59



1 .4 . The range i s  considerab ly  l e s s  in  the r a i l  case , namely 

0 .146, or about o n e - te n th  of the geophysical range. This 

caused some com putational d i f f i c u l t y  which was p a r t l y  overcome 

by using increm enting and decrementing va lues  th a t  were 

d i f f e r e n t  from those  used fo r  the geophysica l model. Even 

w ith  these m o d if ica t ions  a f u l l  s o lu t io n  of the  f i r s t  shear 

mode toward lower va lues of B^T/H was not ob ta ined . This does 

not se r io u s ly  a f f e c t  the r e s u l t s  of the in v e s t ig a t io n .

The experim ental d a ta  p rev ious ly  given in  Table IV 

have been converted to  v e lo c i ty  r a t i o s  C^/B^ and Cg/B^ fo r  

r a i l s  seven and e lev en  and are shown in  Table VI. In  order to  

p lo t  these da ta  ve rsu s  the parameter B^T/H, as shown on the 

graphs in  F igs . I8a  and I8b, a lay e r  th ic k n e s s ,  H, must be 

assumed. The v e lo c i ty ,  B^, and the p e r io d ,  T, are a v a i la b le  

from the d a ta .  E stim ates  of the depth of the  worked zone on 

the  r a i l  head range from 1.5  mm to  10 mm or g r e a te r .  Most of 

the  e s t im ates  tend  to  be concentra ted  in  the  range from 3 to  

5 mm. Table VI l i s t s  B^T/H c a lc u la te d  fo r  the B̂  and f r e ­

quency values from Tables V and IV, r e s p e c t iv e ly ,  and a 

range of laye r  th ic k n e s se s  from 1 mm to  6 mm.

Open c i r c l e s  shown in  F ig s .  18a and 18b are experim ental 

d a ta  fo r  the fundamental mode, and the s o l id  c i r c l e s  are ex per­

im ental da ta  fo r  the  e a r ly  a r r i v a l .  The small number near 

each c ir c le  r e p re s e n ts  the assumed lay e r  th ic k n ess  in  m i l l i ­

m eters fo r  th a t  p o in t .  For a p a r t i c u l a r  frequency , va lues fo r  

C^/B^, Cg/B^, and B^T/H are obtained from Table VI. Using

1 .0  MHz and r a i l  seven as an example. Table VI l i s t s  values o f
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T a b l e  V I .  a n d  f o r  R a i l s  S e v e n  a n d  E l e v e n
H Bi Bi

R a il  7 Bi = 3120 m/s

B^T
T

Freq. Layer T h i c k n e s s  1(mm) %

Bl

Co
(MHz)

1 2 3 k 5 6 Bl

0 .5 6.2^- 3.12 2.08 1.56 1 . 2 5 1 .Ok 0 . 9 6 0 -

0 .7 k-,^-6 2.23 1.1+8 1. 11 0 . 8 9 0 . 7k 0 . 951» -

1 .0 3.12 1.56 1.0k- 0.78 0 . 6 2 0 . 5 2 0 . 9 6 5 1 . 0 8 3

1.7 1.8k. 0 . 9 2 0.61 O.k-6 0 . 3 7 0.31 0 . 9 5 ^ 1 . 0 2 7

2.0 1.56 0.78 0 .52 0 . 3 9 0.31 0 . 2 6 0 . 91+8 1 .0 2 1

R a il  11 B̂  = 3012 m/s

B-iT
I T

Freq.
(MHz)

1

Layer Thickness (mm)

2 3 1» 5 6
Cr

5 7

0 .5 6.0k- 3.02 2.01 1.51 1.21 1.01 0.982 **

0 .7 k .31 2.16 1 .kk- 1.08 0.86 0.72 0.988 ---

1.0 3.02 1.51 1.01 0.76 0.60 0.50 0.988 1.092

1.7 1.77 0.88 0.59 O.kk 0.35 0.29 0.971 1.038

2.0 1.51 0.76 0.50 0.38 0.30 0.25 0.976 1.038

** A very f a in t  a r r i v a l  was noted a t  155 s.
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B^T/H ranging from 3*12 fo r  an assumed H of 1 mm to  0.52 fo r  

H = 6 mm. Each frequency was p lo t te d  in  t h i s  manner fo r  both 

r a i l s .  The e r r o r  band (±1^) was described e a r l i e r  in  th i s  

chap ter .

In  a l l  cases , the  observed da ta  f a l l  considerab ly  

above the p red ic ted  va lues fo r  both r a i l s .  I t  appears th a t  

some agreement could be a t ta in e d  i f  the p re d ic te d  values fo r  

the fundamental and f i r s t  shear mode could be merely sh i f te d  

upward by the same amount. The slopes o f l i n e s  which could 

be drawn through the p o in ts  fo r  the assumed la y e r  th ickness  

seem to  be i n  g enera l agreement with the s lopes of the p re ­

d ic te d  v e lo c i ty  changes.

A c lo se r  e v a lu a t io n  of the  c o m p a tib i l i ty  of the s t r i c t  

geophysical v e lo c i ty  d e f in i t i o n s  and the r e a l  case fo r  the 

r a i l ,  and f u r th e r  use of the d iscu ss io n  of Mooney and Bolt 

[ 3 8 ] ,  gave h i n t s  as to  where adjustm ents could be made to  the 

assumed values th a t  would bring the p red ic ted  va lues  more i n  

l in e  with the experim ental d a ta .  Param eters , B^, Â  and Bg 

in  the  geophysical case were assumed to be uniform in  t h e i r  

p a r t i c u l a r  s t ru c tu re  and to  be t r u l y  "bulk” v e lo c i t i e s .  In  

the r a i l  case , Â  and B̂  are u n l ik e ly  to  be t ru e  bulk v e lo c i ­

t i e s  since t h e i r  wave leng ths are not sho rt  compared to the 

assumed range of lay e r  th ic k n ess .  Ref. [6 ] g ives  nominal wave 

leng th s  o f 4-.7 mm and 2.4- mm fo r  these va lues o f  Â  and B^, r e s ­

p e c t iv e ly .  Because o f  wave-guide e f f e c t s ,  one could expect 

the t ru e  bulk value o f  Â  to  be considerably  g r e a te r  than the
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value which has been used h e re . The same could be said fo r  

B p  although not to  the same ex ten t  because of i t s  sh o r te r  

wave len g th . An increase in  would have the double b e n e f i t  

o f  r a i s in g  the predic ted  curves and lowering the v e lo c i ty  

r a t i o s  fo r  the experimental da ta .

The values for A2 and Bg were obtained a t  the cen ter  

of the r a i l  head. It might be reasonable  to  expect th a t  the 

va lues of Ag and Bg ju s t  below the  worked zone could be d i f ­

f e r e n t  from those obtained near t o  the c e n te r .  This would be 

c o n s is te n t  with the changes in  y ie ld  po in t and u ltim ate  s t r e s s  

values found through the r a i l  c ross  se c t io n  by the re sea rch e rs  

a t  the ORE [20].

Several v a r ia t io n s  of the v e lo c i t i e s  were used in  an 

attempt to  bring about c lo se r  agreement. The best f i t  

was obtained by concentra ting  on the behavior o f the f i r s t  

shear mode. As prev iously  d iscussed  fo r  the geophysical 

case , the v e lo c i ty  of t h i s  wave would be expected to  range 

from being equal to  69 a t  the c u to f f  po in t and equal to  B̂  

a t  very  high frequencies . T herefo re , B-| fo r  each r a i l  was 

assumed to  be the observed v e lo c i ty  at the h igh es t  frequency 

used, namely 2 .0  MHz. S im ila r ly ,  Bg was assumed to  be the 

observed v e lo c i ty  at the lowest frequency where the e a r ly  

a r r i v a l  was detected. These va lues were taken from Table IV 

and are l is te d  fo r  r a i l s  ?A and 11A in  Table V. The new 

r a t i o s  of B2/B-] are not g re a t ly  d i f f e r e n t  from the o r ig in a l  

v a lu es .
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The remaining values to  be e s tim ated  are Ai and A2- 

Since Aj_ and Bĵ  are r e la te d  to  the i s o t r o p ic  P o is so n 's 

r a t i o ,  , as given by Eq. (2 .3 ) ,  s e v e ra l  models were 

construc ted  based on assumed values of Vj_. The o r ig in a l  data  

showed c a lc u la te d  values of to  be considerab ly  h igher than 

V2 fo r  both r a i l s  seven and eleven. The te c h n ic a l  l i t e r a t u r e  

genera lly  g ives a range of O.283 to  O.3OO for acceptable 

values of P o is s o n 's r a t i o  fo r  i s o t ro p ic  s t e e l  [^2,^3^- 

B rad fie ld  has shown th a t  v in  cold-worked metal can be 

h igher than in  the i s o t ro p ic  case due to  a s ig n if ic a n t  

decrease in  the  r i g i d i t y  modulus [Mf]. The bulk modulus he 

notes i s  not measurably changed by cold-working.

The best agreements between experim ental and p red ic ted  

r e s u l t s  in  t h i s  study were obtained by using  assumed values 

of = 0.325 and = O.3OO. With th e s e ,  new values fo r  

Â  and Ag are 6255 m/s and 6319 m/s fo r  r a i l  seven and 613̂ + 

m/s and 6153 m/s fo r  r a i l  e leven . In  both cases Ag/A  ̂ i s  

g rea te r  than  one but s t i l l  near to  the r a t i o s  obtained 

from the o r ig in a l  da ta .  As noted by Mooney and B o lt ,  

changes in  A-] and, hence, , have a very  g rea t e f f e c t  on 

the r e s u l t s  while changes in  Ag a f fe c t  th e  r e s u l t s  only 

s l ig h t ly  [ 38].

The param eters C^/B^, Cg/B-  ̂ and B-]T/H must be r e c a lc u ­

la te d  fo r  these  new values of B-|. They are l i s t e d  in  Table VII.

P lo ts  o f the computer r e s u l t s  fo r  models 7A and llA  

are shown in  Figs. 19a and 19b. Also shown are the experim ental
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T a b le  V I I .  % ;  a n d  £ s  f o r  New V a l u e s  o f  B-|
H B-] B-|

R a il  7A B̂  = 31S5 m/s

B^T

Freq. Layer Thickness (mm) C„ Cq
(MHz) ^

1 2 3 ^ 5 6

0 .5  6.37 3.18 2.12 1.59 1.27 1.06 0 . 9^0

0.7  ^ .55 2.27 1.52 1. 1^ 0.91 0.76 0 . 93^

1.0 3.18 1.59 1.06 0.80 0.64 0.53 0.946 1.060

1.7 1.87 0.94 0.62 0.47 0.37 0.31 0.934 1.006

2.0 1.59 0.80 0.53 0.40 0.32 0.27 0.929 1.000

R a il  11A B̂  = 3125 m/s

B_̂ T

H

Freq. Layer Thickness (mm) Cd Ce
(MHz)

1 2 3 4 5 6
R

Bl
S

BT

0.5 6 .25 3.12 2.08 1.56 1.25 1.04 0.946 **

0.7 4.46 2.20 1.49 1.12 0.89 0.74 0 .952 --

1.0 3.13 1.56 1.04 0 .78 0.63 0 .^2 0.952 1 .05

1.7 1.84 0 .9 2 0.61 0.46 0.37 0.31 0.936 1.000

2.0 1.56 0 .78 0.52 0 .39 0.31 0.26 0.941 1.000

** See1 note , Table! IV.
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v a lu es  obtained  for C^/B^ and Cg/B^, based on the new 

assumed value of B^. Only experim ental va lues fo r  layer 

th ick n esse s  of 3 mm, 4- mm, and 5 mm are shown in  these  

f ig u re s .

In  both models 7A and 11A, the e a r ly  a r r i v a l s  for an 

assumed *+-mm layer  th ic k n ess  are seen to  be in  good general 

agreement with the p re d ic te d  v e lo c i ty  r a t i o s .  The lowest 

frequency a r r i v a l  th a t  would be expected from a 3-mm th ickness  

f a l l s  somewhat above the c u to f f  value fo r  B^T/H but s t i l l  in  

the genera l a rea . The lowest frequency a r r i v a l  th a t  would 

be expected from a ^-mm la y e r  i s  near to  the p red ic ted  phase 

v e lo c i ty  curve fo r  the f i r s t  shear mode. The h ig h es t  frequency 

a r r i v a l s  fo r  a 5-mm lay e r  f a l l  c lose  to  the expected phase 

v e lo c i ty  curve while the 3-mm p o in ts  are nearer  to  the group 

v e lo c i ty  curve. Considering experim ental e r r o r ,  a layer in  

the range of 3-5 mm would produce r e s u l t s  qu ite  agreeable 

w ith  the p red ic te d  v e lo c i ty  r a t i o s .  This d isc u ss io n  

regarding  the f i r s t  shear mode i s  eq ua lly  v a l id  fo r  e i th e r  

model 7A or 11 A.

Some s l ig h t  d i f fe re n c e s  e x i s t  in  the  fundamental mode 

p a t te rn s  fo r  the two r a i l  models. With the excep tion  of one 

p o in t ,  the experim ental d a ta  fo r  e i t h e r  a 3-mm or *+-mm 

la y e r  produce a very good f i t  to  the  phase v e lo c i ty  curve 

p red ic te d  fo r  model 7A. The lower e r r o r  l im i t  fo r  the o u t­

ly in g  po in ts  i s  very close to  the p re d ic te d  phase v e lo c i ty  

curve so th a t  no c o n tra d ic t io n  appears to  e x i s t .  This da ta
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p o in t  was i n  the supplemental set ob ta ined  almost e ig h teen  

months a f t e r  the o r ig in a l  da ta , and t h i s  could account fo r  

p a r t  of the e r r o r .  Most of the fundamental mode da ta  fo r  

r a i l  e leven  f a l l  above the p red ic ted  v e lo c i ty  curves. A 

3-mm laye r  appears to  provide the b e s t  f i t .  The slope of a 

l in e  drawn approximately through the experim ental v e lo c i ty  

d a ta  fo r  the fundamental mode in  both models i s  reasonably  

co n s is te n t  with the slope of the p red ic ted  v e lo c i ty  change.

These s l ig h t  disagreem ents between observed and p re ­

d ic te d  v e lo c i t i e s  fo r  the fundamental Rayleigh mode could 

derive  from sev era l  sources. F i r s t ,  the assumed value of B-j 

i s  poss ib ly  s t i l l  lower than  i t  is i n  the t ru e  case . There 

i s  a lso  the p o s s ib i l i t y  th a t  the assumed values fo r  and 

Bg are not s t r i c t l y  c o r r e c t .  These disagreements do not 

p resen t  a c o n tra d ic t io n  to  the method of a n a ly s is  b u t ,  r a t h e r ,  

suggest th a t  the true-wave ve lo c ity  values in  the upper la y e r  

are  s t i l l  h igher  than  the assumed v a lu e s .

An a d d i t io n a l  e r r o r  source could be the assumption of 

a  well defined  boundary between the upper lay e r  and the 

underly ing  s t r u c tu r e .  Prev ious d iscussion  r e l a t i v e  to  

p a r t i c l e  d isplacem ents has shown th a t  the f i r s t  shear mode 

remains a f fe c te d  by the underlying s t ru c tu re  even a t  h igh  

f req u e n c ie s .  I f  the p ro p e r ty  changes take place over a f i n i t e  

th ic k n e s s ,  say a h a l f  of a m illim eter or g r e a te r ,  then  the 

e f f e c t  on the f i r s t  shear mode would be d i f f e r e n t  than  fo r  

the  abrup t, d iscon tinuous change assumed by the geophysical
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model. Thus, the choice of B2 used in  the model might not 

ex ac tly  agree with the one requ ired  to o b ta in  a more proper 

f i t  fo r  the fundamental Rayleigh mode.

I t  i s  i n t e r e s t i n g  to  note th a t  the slopes o f the 

experimental d a ta  c a lcu la te d  fo r  the fundamental Rayleigh 

mode at fixed  layer  th ick nesses  appear to  be increas ing  fo r  

la rg e r  th ick nesses .  The r e la t io n s h ip  of these  slopes and 

the lay e r  th ick nesses  can be demonstrated by v isu a l iz in g  two 

l in e s  drawn through two of the 1-mm and 6-mm data  p o in ts  

shown in  Fig. 18b. The slopes of these  two l in e s  may be 

expressed as

0. ‘?MHz

0 . 5MHz

2.0MHz

2.0MHz H=1mm

and (3-9)

^l°P®H=6mm
(ij - i,0.5MHz . \ y  _2_.0MH_z

fB-iTl

^ /0.5MHz I ^ /2.0MHz
H=6mm

Using values from Table VI, the r a t i o  of these  slopes i s :

Slope(H=6 mm) _ 6.04- -  1.51 = 5 95 
Slope(H=1 mm) 1 . 0 1 - 0 . 2 5

(3 . 10)
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Thus, the  r a t i o  of the slopes o f the l in e s  i s  approximately 

equal to  the r a t i o s  of the th ic k n e s se s .

The p red ic ted  values are based on the dimensionless 

parameter B^T/H which can a lso  be w r i t te n  X/H. Since a c tu a l  

values o f  H do not e n te r  in to  the s o lu t io n  of the wave 

equa tion , the f i t  of the slope o f  the p re d ic te d  values and 

the slope of the a c tu a l  da ta  appear to  have a s ig n i f ic a n t  

meaning. The slopes of assumed 3 nim - ^ mm th icknesses  

show a very good f i t  to  th a t  of the  phase v e lo c i ty  curve.

Fundamental Rayleigh wave v e l o c i t i e s  are dominated 

a t  high frequencies by the value of B.|. One of the more impor­

ta n t  observations of t h i s  chap ter  i s  the reasonably  good 

agreement obtained between the  experim enta l and p red ic ted  

v e lo c i t i e s  of th i s  fundamental mode a t  h igh frequencies  when 

the assumed value of B̂  i s  taken  from the v e lo c i ty  da ta  of the 

h ighest frequency e a r ly  a r r i v a l s .

No attempt was made in  the previous d isc u ss io n  to  

c o r re la te  the observed a r r i v a l s  with group v e lo c i ty  curves 

as d is t in g u ish ed  from phase v e lo c i ty  curves. The number of 

d a ta  p o in ts  was too lim ited , and the frequency de te rm ination  

was too imprecise to  permit t h i s  d i s t i n c t io n  to  be made to 

any s ig n i f ic a n t  degree. D ispersive  p u lse s  are normally considered 

to  propagate according to  the group v e lo c i ty .  However, 

pulse t r a i n s  con ta in ing  many o s c i l l a t i o n s  of n e a r ly  constan t 

period may be observed a t a r r i v a l  times more c lo se ly  c o r re ­

la te d  with the phase v e lo c i ty .  The method used fo r  determining
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the a r r i v a l  times l a rg e ly  determines whether the  phase v e lo ­

c i ty  or the group v e lo c i ty  i s  measured. Brune, Nafe and 

Oliver have proposed a technique fo r  determ ining the phase 

v e lo c i ty  in  d isp e r s iv e  pu lses [‘+53- In  order to  apply t h i s ,  

wave forms must be obtained  a t c lo se ly  spaced s t a t io n s  

so th a t  the d isp e r s io n  can be continuously  observed.

E x ce llen t  agreement between observed Rayleigh wave 

a r r iv a l s  and the  p red ic te d  group v e lo c i t i e s  have been obtained 

fo r  a layered  s t ru c tu re  by Gregson [^ 6 ] .  In  t h i s  experiment, 

a 0 . 3-inch  (7.62 mm) copper lay e r  was a t ta c h e d  to  a 6 -inch  

rad ius (152.^ mm) s t e e l  sphere by an e lec tro fo rm in g  process . 

Pulses were genera ted  by an impacting b a l l  bearing  swinging 

on a s t r i n g .  The r e s u l t in g  pu lses  were of the  broad-band 

type and, th e r e f o r e ,  h igh ly  d is p e r s iv e .  Group v e lo c i ty  curves 

s im ila r  in  shape to  those shown in  F ig s .  16, 18 and 19 were 

c a lcu la te d  fo r  the  model. The v e lo c i ty  minimum p red ic te d  for 

a w av e- len g th - to - lay e r  th ickness  r a t i o  s l i g h t l y  le s s  than two 

was very c l e a r l y  shown in  t h e i r  d a ta .  Data a t  o ther  wave- 

l e n g th - to - la y e r  th ic k n ess  r a t i o s  a lso  f i t t e d  q u ite  w ell with 

th e i r  group v e lo c i ty  curve. The h ig h er  order shear modes 

were not seen in  th e i r  experiment.

I t  would be o f  i n t e r e s t  to  f u r th e r  in v e s t ig a te  the 

propagation  c h a r a c t e r i s t i c s  of the pu lses  used in  obtain ing  

the r a i l  d a ta .  Since the primary concern of t h i s  an a ly s is  

was to  c o r r e c t ly  id e n t i fy  the e a r ly  a r r i v a l ,  f u r th e r  work to 

d is t in g u is h  between group and phase v e l o c i t i e s  was considered 

to  be beyond the scope of the p resen t in v e s t ig a t io n .

71



Summary and Conclusion

The primary conclusion  of t h i s  chapter i s  th a t  the 

i d e n t i ty  of and the p ro p e r t ie s  a f fe c t in g  the observed e a r ly  

a r r i v a l  in  used r a i l  have been d e f in i t e ly  e s ta b l ish e d .  Assum­

ing th a t  cold working of the  upper layer of the r a i l  i s  a 

gradual process with t im e, and th a t  the shear wave (SV) v e lo ­

c i t y  i s  a f fe c te d  by t h i s  cold working, one should be able to 

p red ic t  the appearance of t h i s  f i r s t  shear mode. This should 

occur when the r a t i o  of 62/ 6  ̂ approaches a value of I .05 to  

1.06 for a work-hardened la y e r  th ickness  o f 3 to  5 mm. In  

the next ch ap te r ,  the  cause fo r  t h i s  v e lo c i ty  change in  the 

upper lay e r  w i l l  be d iscussed .
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CHAPTER IV

WAVE VELOCITY CHANGES IN COLD-WORKED MATERIAL

Wave v e lo c i t i e s  a re  u su a l ly  considered to  be constant 

in  any given m a te r ia l ,  and t h i s  assumption i s  adequate fo r  

most s i tu a t io n s .  A m a te r ia l  which has the same v e lo c i ty  

fo r  a p a r t i c u la r  wave type in  any d i re c t io n  i s  i so t ro p ic  

w ith  respec t to  wave p ropagation .

Two p a r t i c u la r  excep tions  to  the i s o t r o p ic  assump­

t io n  occur when a m a te r ia l  i s  s t r e s s e d  or m echanically worked. 

S tre sses  may r e s u l t  from the a p p lica t io n  of an e x te rn a l  fo rce  

f i e l d .  In  t h i s  case , the wave speeds may change with the 

a p p lic a t io n  of the e x te rn a l  fo rce  b u t ,  in g en e ra l ,  w i l l  

r e tu rn  to  the o r ig in a l  value i f  the e la s t i c  l im i t  i s  not 

exceeded. This r e l a t io n s h ip  of app lied  s t r e s s  and wave speed 

change i s  known as the a c o u s to e la s t ic  e ffe c t  and has been 

d iscussed by numerous a u th o rs .  A review of recen t work in  t h i s  

f i e l d  has been given in  Ref. [ 6 ] .  The a c o u s to e la s t ic  and 

t h i r d  order e l a s t i c  c o n s tan ts  fo r  r a i l  s te e l  have been given 

in  Ref . [^ 7] .
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Mechanically working a m a te r ia l  may a f f e c t  the wave 

v e lo c i t i e s  in  severa l  ways. Two of the primary ways are 

through changes in  the r e s id u a l  s t r e s s  and te x tu re  p a t te rn s .  

Residual s t r e s s e s  may be developed in  the working process 

which can cause the wave v e lo c i t i e s  to  vary according to  the  

a c o u s to e la s t ic  e f f e c t .  A lso, m a te r ia l  tex tu re  (p re fe rred  

o r ie n ta t io n )  may occur i n  the m a te r ia l ,  and th i s  can a lso  

cause wave v e lo c i ty  changes. A combination of these  two 

e f f e c t s  may occur. The remainder o f t h i s  chap ter w i l l  show 

the possib le  e f f e c t s  of both re s id u a l  s t r e s s  and p re fe rred  

o r ie n ta t io n .

E ffec t  of R esidual S tre s s  on V elocity  

Change in  the Cold-Worked Layer

Figure 5 shows the change in  the lo n g i tu d in a l  r e s i ­

dual s t r e s s  through the s e c t io n  of a used, work-hardened 

r a i l  [11]. The maximum s t r e s s  d i f f e r e n t i a l  occurs in  

a depth range of 8 mm to  20 mm and upwards toward the 

top  of the r a i l .  In  the  8 mm to  20 mm a re a ,  the s t r e s s  

i s  shown to  be t e n s i l e  and measuring approximately 

Wo MN/m^(5.8 k s i ) .  The s t r e s s  change i s  near ly  l in e a r  

from 10 mm to the top su r fa c e ,  where i t  was measured to 

be -160 MN/m^(-23.2 k s i ) .  The r e s u l t in g  t o t a l  s t r e s s  

change would be -200 MN/m^(29.0 k s i ) .  The eq u iv a len t  

s t r a i n  d if fe ren c e  (e) between these  two lo c a t io n s  can be
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c a l c u l a t e d .  T h i s  i s

, 2
e = ■.■-2.00. M/m  = -1000 |Um/m (^ .1 )

200,000 MN/m̂

2 6
where 200,000 MN/m (29(10) p s i)  i s  Young's modulus fo r  r a i l  

s te e l  as given by Ref. [20]. This c a lc u la t io n  has assumed 

th a t  Young's modulus i s  constant through the m a te r ia l .  Al­

though t h i s  i s  known to  be in c o r r e c t ,  the induced e r ro r  i s  

not s ig n i f ic a n t  fo r  t h i s  argument [^^] .

For the above s t r a in ,  the wave v e lo c i ty  changes can 

be p red ic ted  fo r  both the d i l a t a t i o n a l  and the v e r t i c a l  

shear (SV) waves when propagating along the  r a i l  ax is  ['+?]• 

The value of AC/C° fo r  â d i l a t a t i o n a l  wave at 1000 lum/m i s  

2.'+59(10)'^. For the  v e r t i c a l  shear (SV) wave, AC/C° would 

be 0.35(10) Here, AC i s  the  wave v e lo c i ty  change, and 

0° i s  the o r ig in a l  va lue .

I f  the va lues of and ob tained  a t  the  middle 

of the r a i l  head a re  compared to the expected v e lo c i t i e s  

in  the upper laye r  caused by r e s id u a l  s t r e s s  (shown as A-| 

and ) ,  the  fo llow ing values r e s u l t

- 2  =  1  = 0.9976 (^ .2 )
a ' (1. + 2 .4^(10)"^)

g
_ i  = ---------------1------------ = 0.9996 . (^ .3 )
BÎ (1. + 0 .35(10)"^)
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A comparison of these r a t i o s  w ith  those shown in

Table V fo r  the o r ig in a l  and modeled va lues  fo r  both r a i l s

seven and e leven  shows th a t  A^/A^ i s  not g re a t ly  d i f f e r e n t

from Ag/A^ fo r  e i t h e r  r a i l .  Thus, r e s id u a l  s t r e s s  cannot

be dism issed a t  t h i s  point as a c o n tr ib u to r  to  the change

in  v e lo c i ty  of the d i l a t a t i o n a l  wave. The shear wave v e lo c i ty
!

r a t i o s ,  on the o ther  hand, are h igher than  the r a t i o  Bg/B^ 

by n ea r ly  f iv e  percent fo r both the a c tu a l  va lues and the 

modeled v a lu es .  Moreover, the r e s id u a l  s t r e s s  e f f e c t  i n d i ­

ca te s  an in crease  in  the shear wave v e lo c i ty  in  the upper 

la y e r ,  which i s  opposite  to  the observed occurrence. Since 

a Bg/B^ value g re a te r  than one i s  req u ire d  to  e x c i te  the  f i r s t  

shear mode, th e re  must be some o ther  ex p lan a t io n  fo r  the 

observed v e lo c i ty  changes in  the upper la y e r .

The a n t ic ip a te d  e f f e c t  o f v e r t i c a l  r e s id u a l  s t r e s s e s  

in  the work-hardened lay e r  can a lso  be c a lc u la te d  from 

Ref. [1 1 ,  ^7 ]. V e r t ic a l  r e s id u a l  s t r e s s  was rep o r te d  in  R e f . [11] 

fo r  a v e r t i c a l  plane running along the len g th  of the r a i l  

and lo ca te d  at the sec tio n  cen te r  l i n e .  These d a ta  showed a 

n e g l ig ib le  v e r t i c a l  s t r e s s  l e v e l  fo r  the  top  f iv e  m il l im e te rs  

o f new and used r a i l .  Below the ^-mm l e v e l ,  the v e r t i c a l  

s t r e s s e s  fo r  new r a i l  become in c re a s in g ly  compressive, rea ch ­

ing a maximum of -80 MN/m^(11.6 k s i )  a t a depth of 23 mm. The 

c h a rac te r  o f the  change for used r a i l  i s  s im ila r .  From the 

approximate zero l e v e l  at 5 mm, the r e s id u a l  s t r e s s  becomes 

in c re a s in g ly  compressive u n t i l  reaching a maximum of 

-1^0 MN/m^(20.3 k s i )  a t a 1$-mm depth.
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The change in  wave speed caused by these s t r e s s  

changes fo r  a shear wave propagating along the a x is  of the 

r a i l  and po la r ized  in  the v e r t i c a l  d i r e c t io n  (SV wave) can 

be c a lc u la te d  in  the same manner used to  evaluate  the e f f e c t  

of lo n g i tu d in a l  s t r e s s .  The eq u iva len t s t r a in  d i f fe re n c e  be­

tween the upper and lower se c t io n s  of the head of the  used 

r a i l  i s :

e =  = _yoo nm/m . ( h . k )
200,000 MN/m2 ^

The r e l a t i v e  v e lo c i ty  change fo r  t h i s  le v e l  of s t r a i n  i s  

AC/C° = 1 .0 (1 0 )”  ̂ r e s u l t in g  i n  a v e lo c i ty  r a t i o  of

1—  = --------------------  = 0.999 • (‘+•5)
(1.+ 1. (10)"3)

This e f f e c t  i s  n e g l ig ib le  when compared to  the observed v e lo ­

c i t y  r a t i o s  shown in  Table V.

I f  the  combined e ffe c ts  of lo n g i tu d in a l  and v e r t i c a l  

s t r e s s e s  on the  SV wave are considered , the  v e lo c i ty  r a t i o  

would be:

g
—  = ------------- ]------------- = 0.9986 . (^.6)

(1.+ i .35 (10 )-3 )

This i s  a lso  small, and a s t r e s s  d if fe re n c e  can be dism issed 

as a c o n tr ib u to r  to  the  observed shear wave v e lo c i ty  change. 

The e f f e c t  o f  s t r e s s  changes across  the r a i l  head can
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be neg lec ted  since t h i s  has been showi to  have a very small 

e f f e c t  upon waves propagating in  the  manner of the SV wave [^ 7],

E ffe c t  o f P re fe rre d  O rien ta tio n  (Texture)

on the V elocity  Change in  the Cold-Worked

Layer

Numerous authors have d iscu ssed  propagation  of 

waves and the general e l a s t i c  p ro p e r t ie s  of c r y s ta l s .  The 

summary p resen ted  by Green w i l l  be most u se fu l  fo r  the 

p resen t  in v e s t ig a t io n  [22].

The so lu t io n s  fo r  wave propagation  in  bulk, i s o t ro p ic  

s o l id s  are r e c a l le d  to  be

= ((X + 2 H )/p )^  

and  ̂ (I+.7)

Vg = v^ = (l^/p)^

where v  ̂ - v e lo c i ty  of a pure lo n g i tu d in a l  mode having 

p a r t i c l e  motion in  the  d i r e c t io n  of the wave 

f ro n t  normal

V25V3 - v e lo c i t i e s  of pure t ra n sv e rse  modes having 

p a r t i c l e  motions pe rpend icu lar  to the wave 

normal and a lso  m utually  perpendicu lar 

-  Lamé con stan ts

P - d en s i ty
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In  a l l  three cases , the energy fro n t  t r a v e ls  in  the same 

d i r e c t io n  as the wave normal.

A general express ion  fo r  the equation  governing the 

waves propagating in  an a n iso tro p ic  medium, given by Green, 

i s :

where c . , = second order e l a s t i c  constan ts  ijkt-

-bj= d i r e c t io n  cosines o f the normal to the 

plane wave 

V = v e lo c i ty  

and = Krone eke r  d e l t a

Now, l e t

S O  th a t  b y  changing from ten so r  n o ta t io n  to  m atrix  n o ta t io n  

fo r  the e l a s t i c  co n s tan ts ,  assign ing  = b, = m and

= n and recognizing c e r t a in  c h a r a c te r i s t i c s  of the c r y s ta l s ,  

one can ob ta in  s im p lif ied  exp ress ions  as fo llow s.

For cubic c ry s ta l s  i t  has been shown th a t  there  are 

only twelve non-zero e l a s t i c  constan ts  c^^, i . e . ,

'"ll " ^22 " °33

" 1 2  =  "21  =  "13  =  "31 "  '2 3  '3 2

"44 = = "66
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where a l l  o ther are zero . T herefore , Eqs. ('+•9) 

become :

N1 "
2 2

+ (m -t- n )cĵ j_̂

^12 = ^21 4m(ci2 ^ ^44^

^13 n^(Ci2 +

S 2 ' (̂ 44)

^22 ”

( l ^  + 2\ , 2n )c j^  + m c^^

^33 "
+ 2, , 2 m )c^^ + n c , i

Also, by s u b s t i tu t in g  Eqs. (4 .9)

w rite  the follow ing m atr ix  equation :

N l  ■

2
PV ^^2 ^13

^21 ^22 " ^23

^31 ^ 2  ^23 "

=  0 (4.10)

I t  can now be shown th a t  the  assumption of a se t  of d i r e c t io n  

cosines fo r  the wave normal and e l a s t i c  cons tan ts  w i l l  r e ­

s u l t  in  so lu t io n s  fo r  the  th re e  wave v e lo c i t i e s .

Consider the cubic c r y s t a l  shown in  F ig . 20. A plane 

wave propagating in  the  [100] d i r e c t io n  w i l l  have d i r e c t io n  

cosines -t = 1, m = n = 0. S u b s t i tu t in g  these  values

* The use of M ille r  in d ic e s  i s  d iscussed  in  most bas ic  m etal­
l u r g ic a l  and m a te r ia ls  t e x t s .  See B a r re t t  and M assalsk i, 
fo r  example [2?].
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Figure 21. S tereograph ic  P ro je c t io n  System Centered About [100]
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in to  Eqs. (4-.9a) and (4-.10), one o b ta in s  the so lu tio n s :

( c i i  -  pv^)(c^^. - p v^ )(c i^  - pv^) = 0 . (4.10a)

The r e s u l t in g  wave v e lo c i t i e s  in  the [100] d i re c t io n  are 

th e re fo re  :

Vi = (0^-,/p)^
1 (4.11)

= (c^^ /p )?

With the s u b s t i tu t io n  of Eqs. (4 .9a) in to  an equa­

t io n  fo r  the d i r e c t io n  cosines of the p a r t i c l e  displacements 

(e igenv ec to rs )  and using d i r e c t io n  cosines '£-= 1, m = n = 0, 

Green showed th a t  the p a r t i c l e  motions a sso c ia ted  with the 

v e lo c i t i e s  in  Eq. (4.11) are i d e n t i c a l  to  those assumed fo r  

Eqs. (4 .7 ) .  Here Vg and v^ are defined  to have p a r t i c le  

motions in  the [010] and [001] d i r e c t io n s ,  r e s p e c t iv e ly .

Also, the  energy f lu x  v ec to r  can be shown to  be in  the

d i r e c t io n  of the  wave normal fo r  t h i s  case.

For plane waves propagating  in  the [110] d i r e c t io n ,  

the d i r e c t io n  cosines w i l l  be 't = m = 1 / / 2  and n = 0. The 

r e s u l t in g  v e lo c i t i e s  a re :

v^ = [ ( c i i  + c-12 + 2 c i ^ ) / 2 p ] ^

Vg = [(C11 -  c ^ g j /z p l^  (4.12)

^ 3  =
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An an a ly s is  o f p a r t i c l e  displacem ents shows th a t  again  i s  

a pure lo n g itu d in a l  mode, V2 i s  a pure t ra n sv e rse  mode 

with p a r t i c l e  motion in  the LllO] d i r e c t io n ,  and i s  a lso  

a pure tran sv e rse  mode but with p a r t i c l e  motion in  the 

[001] d i r e c t io n .  Moreover, the energy flow i s  in  the same 

d i re c t io n  as the wave normal.

In  the [111] d i r e c t io n ,  the d i r e c t io n  cosines of the 

wave normal are '£'=m = n = 1 / / 3  and the v e lo c i t i e s  are :

vi =
+ 2cio + ^cVf

Vg = Vj =

3 p

c^l - C12 + 01̂ 14.

3P

Here again , v^ i s  a pure lo n g itu d in a l  mode, and v^ and v^ 

are pure t ran sv e rse  modes. For the lo n g i tu d in a l  mode, the 

energy f lu x  i s  again i n  the  d i r e c t io n  o f  the wave normal, but 

fo r  the t ra n sv e rse  modes, Green showed th a t  the energy f lu x  

dev ia te s  from the wave normal by an angle

_1 *̂ 11 ^12à = t a n '

In  o rder to  f u l ly  d iscuss wave propagation  in  c r y s ta l s  

a t a r b i t r a r y  d i r e c t io n s ,  the s te reograph ic  p ro je c t io n  i s  

employed. S tereographic  p ro jec tio n s  were described  by B a r re t t  

and Massalski [ 2 ? ] .  These are merely g rap h ic a l  p re s e n ta t io n s
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of  some geometric parameter of a c r y s t a l ,  v e lo c i ty  in  t h i s  

case . Green [22] and Gold 0+8] have used t h i s  technique in  

wave v e lo c i ty  c a lc u la t io n  fo r  various c r y s ta l s .

A s te reographic  t r ia n g le  fo r  cubic c r y s ta l  i s  shown in  

F ig . 21. In  c ry s ta l lo g ra p h ic  n o ta t io n ,  a l in e  over 

an index in d ic a te s  a negative  d i r e c t io n .  Following Green, 

the [100] d i r e c t io n  i s  seen to  come d i r e c t ly  out of the paper 

while the [110] and [111] d i re c t io n s  are a t the o ther corners 

o f  the darkened t r i a n g le .

Wave v e lo c i t i e s  a t  va rious  angles can be c a lc u la te d  

from Eqs. ('+.9a) and (^.10) once a se t of d i r e c t io n  cosines 

(-t, m and n) have been assumed. A computer program was 

w r i t te n  to  ob ta in  these so lu t io n s .  C onstan t-ve loc ity  (isospeed) 

contours fo r  the th ree  types of waves in  an i ro n  c ry s ta l  are 

shown in  F ig s .  22a, 22b and 22c. These r e s u l t s  are s im ila r  

t o  those given by Gold D+8]. Table VIII l i s t s  the m a te r ia l  

co n s tan ts  used in  these c a lc u la t io n s .

P rec ise  v e lo c i t i e s  are shown fo r  v ^ , ^2 and v^ along 

each o f  the [100], [110] and [ i l l ]  d i r e c t io n s .  The v e lo c i ty  

o f  v  ̂ i s  seen to be d i f f e r e n t  along each d i r e c t io n .  The 

v a lu es  fo r  v^ and v^ are seen to  be equal to  each o ther on 

the  [100] and [111] ax is  and unequal along the [110]. From 

the  isospeed  con tours , v^ i s  seen to  be g re a te r  than Vg, 

except at the poles [lOO] a n d [ l1 l]  where they are equal.

Musgrave has p lo t te d  v e lo c i ty  contours fo r  a l l  th ree  waves 

propagating  i n  the [oo l ] and [1103 p lanes in  an i ro n  c ry s ta l  ['+93.
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T a b l e  V I I I .  M a t e r i a l  C o n s t a n t s  f o r  I r o n

cii 23.7(10)10 N/tn̂

c^2 Ilf. 1(10)10 N/m2

1 1 . 6 ( 1 0 ) 1 0  N/m^

7 . 826( 10)3 kg/m3

Note: Density i s  f o r  0.9^0 S te e l
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For a cubic c r y s t a l ,  symmetry demands th a t  a complete 

d e sc r ip t io n  o f  wave v e lo c i t i e s  in  the c r y s ta l  can be obtained 

from the in fo rm ation  i n  the t r i a n g l e .  That i s  to  say th a t  

any d i r e c t io n  found ou ts ide  of the  t r ia n g le  has a counter­

pa rt  which i s  c r y s ta l lo g r a p h ic a l ly  r e la te d  to  a d i r e c t io n  

w ith in  the t r i a n g le .

S u ll iv an  and Papadakis, among o th e rs ,  have shown th a t  

the accura te  measurement o f  u l t r a s o n ic  v e lo c i t i e s  can be 

used to  determine the  e x is te n ce  of p re fe r re d  o r ie n ta t io n  in  

ro l le d  m etals C50] .  I t  was f i r s t  observed th a t  fo r  a m a te r ia l  

s t ru c tu re  having completely random o r ie n ta t io n ,  the two t r a n s ­

verse waves would have e x a c t ly  the  same v e lo c i ty  when passing 

through the th ick n ess  o f the t e s t  specimen. On the other 

hand, i f  a ro l le d  te x tu re  e x is te d  in  the specimen, such as the 

one p rev ious ly  descr ibed  fo r  the r a i l ,  a d if fe ren c e  in  v^ and 

v^ would be noted a t  c e r t a in  propagation  d i r e c t io n s .  Pole 

f ig u re s  fo r  ro l le d  i r o n  have been produced, using t h i s  te c h ­

nique, by ro ta t in g  the t ran sd u ce rs  through a v e r t i c a l  ax is  

passing through the specimen th ic k n e s s .  A lers and Liu [ 51] 

and Tittman and A lers [52] have a lso  rep o rted  r e s u l t s  on the 

u l t r a s o n ic  e v a lu a t io n  of m a te r ia l  t e x tu re .  Markham has 

repo rted  u l t r a s o n ic  wave v e lo c i t i e s  at orthogonal d i r e c t io n s  

in  severa l  a n iso tro p ic  m a te r ia ls  including  a sample of 0.9^C 

( p e a r l i t i c )  s t e e l  [531*

Rayleigh-wave c r i t i c a l - a n g le  r e f l e c t i v i t y  has been 

app lied  to  determ ining the amount o f cold work in  m etals.

Using water as the coupling medium, Reimann and Cason showed
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th a t  f o r  a piece of 3I 6 s t a in l e s s  s t e e l ,  the Rayleigh-wave 

c r i t i c a l  angle increased  from approximately 30*5° to  g rea te r  

than 3^° as the  percentage of cold work increased  from 0 to 

50 [5^ ] .  Becker and Richardson have developed an accura te  

mathematical model descr ib ing  Rayleigh-wave c r i t i c a l - a n g le  

r e f l e c t i v i t y  using v ib ra t io n s  in  so l id s  and h y s te r e s i s  

between s t r e s s  and s t r a in  to  account fo r  the behavior [55]- 

Later work showed the e f f e c t  of m a te r ia l  d en s ity  and wave 

v e lo c i t i e s  on the c r i t i c a l  angle [56j.

Texture Models fo r  Determining P re fe r re d  

O r ien ta tio n  in  Used R a il

U ltra so n ic  in v e s t ig a t io n s  in to  m a te r ia l  tex tu re  are 

dependent upon knowing which te x tu re s  are to  be expected and 

what the v e lo c i ty  v a r ia t io n s  are fo r  each. Table IX l i s t s  

f ive  te x tu re s  which have been reported  in  worked s t e e l .  As 

b e fo re ,  the numbers i n  pa ren theses rep resen t the plane 

p a r a l l e l  to  the  ro l l in g  plane, and the numbers in  square 

b rackets  give the c ry s ta l lo g ra p h ic  d i r e c t io n s  which are a ligned 

with the  d i r e c t io n  of r o l l i n g .  The comparative X-ray in te n ­

s i t i e s  fo r  te x tu re s  I through IV are fo r  cold-drawn mild- 

s te e l  s t r i p .

In the present case , the top surface of the r a i l  

head i s  considered to be the plane of ro l l in g ,  and the  lo n g i­

tu d in a l  ax is  o f the r a i l  i s  considered to  be the r o l l in g  

d i r e c t io n .  Case IV would be u n l ik e ly  to  occur in  the r a i l
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T a b l e  I X .  T e x t u r e s  i n  W o rked  S t e e l

Case Texture Comparative X-ray Remarks References
I n t e n s i t i e s  from 
R eflec ting  Plane

High à Large amount 
o f m ate r ia l  
reduc tion

I (100) [001] Increased  Increased    [13^

I I  (100) [O il]  Same as Same as Sim ilar to  [ I ] ] ,
case I case I  case I  but [2?] ,

ro ta te d  ^5° [5 0 ] 
in  r o l l in g  
plane. Very 
common.r o l l ­
ing te x tu re .

I l l  (110) [001] Increased  Decreased   [13]

IV (111 ) [112] Decreased Decreased   [13]
f o r  High à

V (531 ) tl 12] Increased  Increased  Approxi- [S 4 ] ,
mation of [ 25]
(135) [313]
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case because o f the decrease in  X-ray i n t e n s i t i e s  with 

h igher  values of A. A ll  o the rs  could occur.

In  order to  experim enta lly  in v e s t ig a te  the tex tu re  

of the cold-worked la y e r ,  v e lo c i ty  p r o f i l e s  were c a lcu la te d  

fo r  the r o l l in g  plane and for the v e r t i c a l  plane containing 

the r o l l in g  d i r e c t io n .  This was done only fo r  cases I ,  I I ,  I I I ,  

and V, and the r e s u l t s  are p lo t te d  in  F ig s .  23 through 26, 

r e s p e c t iv e ly .  The top i l l u s t r a t i o n  shows the v e lo c i t i e s  of 

the lo n g itu d in a l  and the  two t ra n s v e rse  waves in  the r o l l in g  

p lane . The same in form ation  i s  shown in  the lower i l l u s t r a ­

t io n  fo r  the v e r t i c a l  p lane. In  each case , the  c r y s t a l l o ­

graphic  d i r e c t io n  which i s  expected to  be a l igned  with the 

r o l l i n g  d i r e c t io n  i s  in d ic a te d  to  be downward.

The path  of the  end of the v e c to r  in d ic a t in g  the prop­

aga tion  d i r e c t io n  i s  shown by the heavy l in e  on the s te re o ­

graphic  t r ia n g le  a t  the r ig h t  o f the f ig u re .  Since a f u l l  

360° p lo t  of the v e lo c i t i e s  invo lves d i r e c t io n s  out of the 

shaded t r ia n g le  shown i n  F ig . 21, the  n o ta t io n  of " d i re c t io n s  

of the form" has been adopted fo r  the  small t r i a n g l e .  This 

i s  in d ic a te d  by the c a r e t s ^ ^  where, fo r  example, the d i r e c ­

t io n s  of the form 4^11^ have i d e n t i c a l  v e lo c i ty  p ro p e r t ie s .  

T ypical 4^11^ d i r e c t io n s  are [ O i l ] ,  [101], [TiO], e tc .

The v e lo c i ty  p a t te rn s  in  F ig .  23 fo r  the (100)[001] 

te x tu re  show fo u r - fo ld  symmetry fo r  d i r e c t io n s  in  both the 

r o l l i n g  plane and the v e r t i c a l  p lane . In  each case , the 

d i r e c t io n s  remain in  a plane defined  by 4^0"^ and 4*11> .
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[0101
Ëio3m/k horizontal PLANE

RD [OOO

R o c o o n

Æ  VERTICAL PLANE

F i g u r e  23* V e l o c i t i e s  f o r  (100)C001] T e x t u r e  i n  H o r i z o n t a l
a n d  V e r t i c a l  P l a n e s
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HORIZONTAL PLANE

4 -

VERTICAL PLANE

2  -

6 - Ciii]

RDID11]
+

F i g u r e  2 ^ .  V e l o c i t i e s  f o r  ( 1 0 0 ) [ 0 1 1 3  T e x t u r e  i n  H o r i z o n t a l
a n d  V e r t i c a l  P l a n e s
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x % ,„  HORIZONTAL PLANE

2 -

RD [001]

RD,

&  VERTICAL PLANE

2 -

[1Ï1]

6 -

F i g u r e  25* V e l o c i t i e s  f o r  ( 1 1 0 ) [ 0 0 1 ]  T e x t u r e  i n  H o r i z o n t a l
a n d  V e r t i c a l  P l a n e s
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F i g u r e  2 6 .  V e l o c i t i e s  f o r  ( 5 3 1 ) [ 1 1 2 ]  T e x t u r e  i n  H o r i z o n t a l
a n d  V e r t i c a l  P l a n e s



I f  v e lo c i ty  measurements fo r  t h i s  te x tu re  were made in  the 

r o l l in g  plane a t  d i re c t io n s  0° , and 90° to  the r o l l in g  

d i r e c t io n ,  Vg would he found to  equal v^ a t  the 0° and 90° 

d i r e c t io n s .  They would be unequal a t  4^°. Also, the lo n g i ­

tu d in a l  wave v e lo c i ty  would e x h ib i t  a maximum at 45° and 

have the same lower value at 0° and 90°. I d e n t ic a l  behavior 

would be expected from measurements taken in  the v e r t i c a l  plane. 

Solu tions fo r  v e lo c i t i e s  in  each of these  d i r e c t io n s  are 

tab u la te d  in  Table X fo r  a l l  cases .  The expected v e lo c i ty  

d iffe ren ce  (v^ - Vg) i s  a lso  l i s t e d .

The v e lo c i ty  p ro f i le  shown in  F ig . 24 fo r  the r o l l i n g  

plane of the (100) [O i l ]  te x tu re  i s  e x a c t ly  the same as in  the 

r o l l in g  plane of case I except fo r  [ O i l ]  now being in  the 

r o l l in g  d i r e c t io n .  As b e fo re ,  the path  fo r  the v e c to r  in  

t h i s  plane i s  between ^0]> and <&1l)‘ . The v e r t i c a l  plane 

behaves d i f f e re n t ly ,  since i t  i s  now in  (O i l ) .  This p ro f i le  

shows two-fold symmetry, and i t s  p ropagation  vecto r l i e s  

between <(01l]> and <(llt>. For v e lo c i t i e s  in  the r o l l i n g  p lane , 

Vg would be equal to  v^ a t the 45° d i r e c t io n  but unequal a t 

the 0° and 90° d i r e c t io n s .  The lo n g i tu d in a l  wave would 

in d ic a te  a maximum a t  0° and 90° and a minimum at 45°. In  

the v e r t i c a l  p lane , Vg i s  equal to  v^ a t 35.3° (corresponding 

to  <111>) and a t  90°. A la rge  d if fe ren c e  e x i s t s  between 

these  two v e lo c i t i e s  at 0°. The lo n g i tu d in a l  wave shows a 

maximum at 35.3'^? a lower value a t 0° and a minimum a t  90°.

These v e lo c i t i e s  are a lso  ta b u la te d  in  Table X. B a r re t t  and
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Table X. P red ic ted  V e lo c i t ie s  from Various 

Id e a l  Textures (m/s)

CASE I (100)[001]

H orizon ta l Plane V e r t ic a l  Plane

e 1̂ ^2 ^3 (V3-V2 ) V, ^2 ^3
(V3-V2)

0° 38$0 38$0 0 $503 38$0 38$0 0

6243 2476 38$0 1374 6243 2476 38$0 1374

9 0 ° ^^03 38$0 38$0 0 $$03 38$0 38$0 0

CASE I I ( l o o ) C o i i ]

H orizon ta l Plane V e r t ic a l  Plane

e ?1 ^2 ^3 (v^-Vg) V-| V2 ^3 (v^-V2)

0° 6243 2476 38$0 1374 6243 2476 38$0 1374

^5° ^^03 3850 38$0 0 6410 2883 3242 3$9

90° 6243 2476 38$0 1374 $$03 38$0 38$0 0

CASE I I I (110)[001]

H orizon ta l Plane V e r t ic a l  Plane

e V. (v^-v„) V. (v^-v^)
1 2 3 3 2 1 2 3 3 2

0° $$03 38$0 38$0 0 $$03 38$0 38$0 0

^ 5 ° 6410 2883 3242 3$9 6410 2883 3242 3$9

90° 6243 2476 38$0 1374 6243 2476 38$0 1374
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Table X (continued) 

CASE V (531)[112]

H orizon ta l Plane V e r t i c a l  Plane

e
^2 ^3 (V3-V2 ) ^ 2 ^3 (Vg-Vg)

0° 6263 2899 3507 608 6263 2899 3507 608

+1+5° 627^ 271+5 3609 864 6040 2936 3850 914

-^ 5 ° 59*+^ 3173 3805 632 6380 2664 3483 819

90° 6280 2818 351+2 724 6180 2730 3779 1049
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Massalski stated th a t  t h i s  i s  the c h ie f  te x tu re  found in 

ro l le d  s t e e l .  They f u r th e r  stated th a t  d e v ia tio n s  up to 55° 

can occur in  the o r i e n ta t io n s .  These v a r ia t io n s  are re la te d  

to the amount of m a te r ia l  red uc tion  [2?] .

As was true  fo r  case I ,  the r o l l i n g  plane and v e r t i ­

ca l plane show id e n t i c a l  v e lo c i ty  p r o f i l e s  fo r  case I I I ,

(110)[001]. This i s  shown i n  F ig . 25. Moreover, these 

p ro f i le s  are the same as shown fo r  the v e r t i c a l  plane in 

case I I  w ith the r o t a t io n  of 90°. A ll propagation  vectors 

l i e  in  the path from ^01^ to  <01 ^  to  ^ 1 1 ^ .  For th is  

te x tu re ,  V2 equals v^ a t  0° and 5^.7°) but v^ i s  consider­

ably g re a te r  than v^ a t  90°. The maximum lo n g i tu d in a l  wave 

v e lo c ity  occurs a t  5^.7°, and the minimum occurs a t  0°. The 

value of v-] a t 90° i s  g r e a te r  than  the value found a t  0°.

The p ro f i le s  fo r  case V are considerab ly  more compli­

cated than fo r the o th e r s .  The pa th  fo r  a 180° ro ta t io n  in  

the ro l l in g  plane (135) i s  shown in  the s te reo g rap h ic  t r i ­

angle. The d i r e c t io n s  in d ic a te d  by the lower case l e t t e r s  

were not reduced to  M il le r  in d ices  but are  provided as an 

aid  in  viewing the v e lo c i ty  p r o f i l e s .

The (531)[112] te x tu re  i s  s l i g h t l y  d i f f e r e n t  from the 

d3 5 )[3 1 3 ]  reported  by Krause [253. The [ 313] d ire c t io n  i s  

approximately s ix tee n  degrees from the (531) p lane . The 

choice of [112] fo r  the  r o l l i n g  d i r e c t io n  s l i g h t l y  a f fe c ts  

the v e lo c i ty  va lues , but the p a t te rn  fo r  the  r o l l in g  plane 

i s  s im ila r  to  th a t  expected from a r o l l i n g  plane passing
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through [313] .  T h e ,v e r t ic a l  plane passing  through [112] 

a lso  passes through [ 313] .  The [ 313] d i r e c t io n  i s  approxi­

mately fo u r tee n  degrees from the [101] d i r e c t io n  th a t  i s  

used in  case I I  as a r o l l i n g  d i r e c t io n .  The normal to  the 

(531) plane l i e s  32. 3° from the normal to  the  (100) plane. 

The ( 531)[112] tex tu re  has been shown by A lers and Liu to  

provide a reasonable  f i t  to  observed Young's modulus data  

fo r  a c o ld - ro l le d  copper-zinc bar [5 1 ] .  Copper i s  a face-  

cen tered-cubic  s t ru c tu re  so th a t  the c o r r e l a t io n  w ith  body- 

cen tered-cubic  s t r u c tu r e s ,  such as i r o n ,  i s  not ex ac tly  

c o r r e c t .

The most s ig n i f ic a n t  fea tu re  of t h i s  te x tu re  i s  

th a t  the two shear wave v e lo c i t i e s  a re  never equal. The 

minimum d if fe re n c e  occurs a t  approximately 20° (coun te r­

clockwise) and -160° (c lockw ise). The f a s t  shear wave 

(v^) reaches a maximum a t  s ix  lo c a t io n s  while the l e a s t  

value occurs only twice (+20° and -160°) . The slow shear 

wave (Vp) shows a more i r r e g u la r  p a t t e r n ,  reaching a 

minimum a t  -70° and +110°. The g re a te s t  d if fe re n c e  in  

the two va lues occurs a t  these  lo c a t io n s .  The lo n g itu d in a l  

wave v e lo c i ty  shows a more reg u la r  p a t te rn  reaching a maxi­

mum a t +20° and -160°. V e loc ity  values shown in  Table X are 

fo r  0°, +4 5 ° ,  -45°, and 90° in  the r o l l i n g  plane and 

0°, +4 5 °, -45° and 90° i n  the  v e r t i c a l  p lan e .
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Experimental In v e s t ig a t io n s  of 

V e lo c i t ie s  i n  Cold-Worked Samples

In  order to  gain  some in s ig h t  in to  the m a te r ia l  

s t ru c tu re  in  the cold-worked lay e r  o f used r a i l r o a d  r a i l ,  

v e lo c i ty  measurements were made on se v e ra l  se c t io n s  removed 

from the r a i l  head. The lo ca tio n  of each sample in  the 

r a i l  head i s  shown in  F ig . 27, and a d e s c r ip t io n  of each 

i s  given in  Table XI. Samples T1 and T2 were used to  e v a l ­

uate  the experim ental technique.

Shear wave v e lo c i ty  measurements were made using the 

u l t r a s o n ic  goniometer shown i n  F ig .  28. Two Panametrics 

Type V222 normal in c id en t  shear-wave tran sd u ce rs  were used 

fo r  sending and rece iv ing  the pulse across  the specimen. 

These were h ig h ly  damped transducers  w ith  a nominal resonant 

frequency of 20 MHz. Inform ation fu rn ish ed  by the manufac­

tu r e r  showed the two transducers  to  have peaks a t  10 MHz and 

15 MHz, r e s p e c t iv e ly .  The p ie z o e le c t r ic  element was one- 

q u a r te r  o f an inch (6.35 mm) in  d iam eter. A 2.05 Ms, quartz  

delay  se c t io n  was b u i l t  in to  each t ra n sd u c e r .  The face of 

t h i s  se c t io n  was in  con tact w ith  the specimen.

Longitud inal wave v e lo c i t i e s  were obtained  with two 

on e -h a lf  inch  (12.7 mm) diameter Panametrics VI09 h igh ly  

damped tra n sd u c e rs .  The nominal resonant frequency of these 

was 5.0 MHz.

Pulses were e x c i te d  and rece ived  with a Panametrics 

5052PR P u lser/R ece ive r  having a bandwidth of 10 kHz to
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Figure 27. Specimens fo r  R a il  Texture Studies
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Table XI. D esc r ip t io n  of Laboratory Samples Used 

in. Texture In v e s t ig a t io n

Sample Thickness Length Width Remarks
mm mm mm

T1 9.^96 75*0 65.0 Mild s t e e l  p l a t e ,

annealed

T2 9.350 63 .5  76.0  C o ld -ro lled  4-140

s t e e l  bar

T3 8.255 45 .7  54.0 S ec tion  of used

r a i l  ju s t  below 

cold-worked layer

T7 16.13 22.9  16.13 Middle of used r a i l

w ith cold-worked 

lay e r  a t  top

TIO 4.712 23.0 20.0 Top layer o f  used

r a i l

TI3 4.712 23.0 20.0 Top layer o f new

r a i l

TI5 2.527 31.7 19.0 45° se c t io n  of used

r a i l  with cold- 

worked la y e r  at 

top
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Figure 28. U l t ra so n ic  Goniometer
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30 MHz, A Tektronix  535A osc illo scop e  w ith  a Type CA ampli­

f i e r  was used to  d isp lay  the  received  s ig n a ls .  The bandwidth 

of the o sc i l lo sc o p e  was 2 Hz to  12 MHz. V e lo c i t ie s  were 

determined from the a r r i v a l ( s )  a t  the rece iv in g  transducer 

in  a th rough-transm iss ion  arrangement. M ultip le  echoes as 

seen by the re c e iv e r  were used fo r  g re a te r  accuracy when 

p o ss ib le .  Quite o f ten  the strong  echoes a r is in g  w ith in  the 

transducer  delay sec tio ns  made i t  impossible to  d is t in g u is h  

the m ultip le  echoes occurring w ith in  the t e s t  specimen.

A c o i l  spring was placed w ith in  the tran sduce r  ho lders  

and behind each tran sd u ce r.  The transducer  h o ld ers  were 

movable in  the v e r t i c a l  d i r e c t io n  and could be ro ta te d  for 

proper alignm ent. Shear-wave p a r t i c l e  motion was in  the 

d i r e c t io n  in d ic a te d  by the cable connections. A viscous 

shear-wave couplant was used between each transducer  and the 

specimen. Each specimen was clamped between the transducers  

before the se t screws on the  specimen holding arm were secured. 

By doing t h i s  w ith care , no d iscernab le  misalignment occurred 

between the specimen and the  transducer  fac es .  Once the 

t ran sd u ce rs  and the specimen were f ix ed ,  the goniometer 

could be ro ta te d  f r e e ly .  Angular p o s i t io n  was marked at 5° 

in te r v a l s  on the p la te .  Zero was at the p o s i t io n  such 

th a t  the shear-wave p a r t i c l e  motion was p a r a l l e l  to  the ho ld ­

ing arm. A small sec tio n  from +167 to  -167° could not be 

reached because of goniometer and holding arm in te r f e r e n c e .

I f  in form ation  was needed in  t h i s  a rea , the specimen was 

ro ta te d  90° in  the ho lder .
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The annealed specimen T1 was f i r s t  checked in  order 

to  d e te c t  any b ia s  r e s u l t in g  from the apparatus or from 

specimen misalignment. In  a 167° scan, a t  5° i n t e r v a l s ,  the 

lowest shear wave v e lo c ity  (3219 m/s) was observed a t  0° 

o r ie n ta t io n ,w h i le  a maximum of 3226 m/s was found at two 

lo c a t io n s ,  75° and 160°. The average v e lo c i ty  was 3222.6 

m/s with a standard  dev ia tion  of 1.71 m/s. The p iece was 

then  ro ta te d  90°, and a second 167° scan was made. In  th i s  

case , the low v e lo c i ty  (321^ m/s) occurred a t 80° which is  

equal to  -10° a t  the o r ig in a l  o r ie n ta t io n .  The v e lo c i ty  

average fo r  the piece ro ta te d  90° was 3217 m/s w ith  a s ta n ­

dard d ev ia tio n  of 1.75 m/s. The genera l agreement of the 

lo c a t io n  of the minimum v e lo c i ty  and the c loseness  of the two 

standard  d ev ia tio n s  ind ica ted  th a t  the goniometer i t s e l f  

was not i n f l i c t i n g  any se rious  b ia s  on the measurement. The 

v e lo c i ty  averages d if fe re d  by 0.17# (5.6 m /s ) . I n  g en era l ,  

the v e lo c i t i e s  with the piece ro ta te d  90° were lower than 

those obtained a t f i r s t .  This could have been caused by a 

s l ig h t  s h i f t  of the specimen as i t  was ro ta te d  or by a s l ig h t  

misalignment in  the reclamping p rocess . The maximum i n s t r u ­

m entation e r ro r  was f e l t  to  be ± *+ ns or 0.07#. I t  i s  

u n l ik e ly  th a t  a uniform e r ro r  would be made throughout one 

f u l l  s e r ie s  of t e s t s ,  so the most lo g ic a l  cause o f  t h i s  

e r r o r  appears to  be re la te d  to  specimen s h i f t  or m isa lig n ­

ment. V elocity  v a r ia t io n s  w ith in  each se t most l i k e l y  

r e s u l te d  from an incomplete annealing of the sample.
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A range of v e lo c i ty  v a r ia t io n s  to  be expected in  

c o ld - ro l le d  m a te r ia l  was determined by the experim ents.on 

sample T2. The zero-degree lo c a t io n  was along the 

d i r e c t io n  of r o l l i n g ,  and the d i r e c t io n  of propagation  was 

along the v e r t i c a l  ax is .  Maximum v e lo c i t i e s  ranging from 

3233 m/s to  32^8 m/s were found to  e x is t  from -60° to  +^5° 

and ±120°. Minima from 3203 m/s to  3211 m/s were found 

between the maxima. This produced a  symmetric p a t te r n  with 

the axes roughly a ligned w ith the r o l l in g  and tran sv e rse  

d i re c t io n s  of the sample. The v e lo c i ty  v a r i a t io n  from min­

imum to  maximum was ^5 m/s or 1 .4^ . These da ta  were con­

s i s t e n t  w ith  those of Firestone and F rederick  fo r  a cold- 

r o l le d  s t e e l  p la te  [ $ / ] .  With p a r t i c l e  motion p a r a l l e l  and 

tran sv e rse  to  the r o l l in g  d i r e c t i o n ,  they found v e lo c i ­

t i e s  of 32^3 m/s and 311^ m/s, r e s p e c t iv e ly .  This r e p re ­

sen ts  a v e lo c i ty  red uc tion  of approximately With the 

agreement obtained  between the r e s u l t s  on the goniometer 

and those of F irs to n e  and F re d e r ic k ,  and the s ig n i f ic a n t ly  

la rg e r  v a r ia t io n s  observed fo r  the c o ld - ro l le d  sample as 

compared to  the annealed sample, i t  was f e l t  th a t  the use­

fu ln ess  of the goniometer had been w ell e s ta b l is h e d .

Experimental I n v e s t ig a t io n s  of V elocity  

V aria t io n s  in  R a il  Samples

Experimental in v e s t ig a t io n s  to attempt to  determine 

the tex tu re  of the cold-worked zone consis ted  of tak ing
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v e lo c i ty  d a ta  in  the r o l l i n g  plane ( i . e .  h o r iz o n ta l  plane) 

at angles of 0°, ^5° and 90° to  the lo n g i tu d in a l  r a i l  a x is .  

V elocity  d a ta  in  the v e r t i c a l  plane were taken  a t  0° and 

90°. The 0° measurement in  each plane would obviously 

be along the ro l l in g  d i r e c t i o n  and thus would be the same 

measurement.

The technique used to  o b ta in  these  v e lo c i t i e s  was 

e s s e n t i a l l y  the same as p rev ious ly  descr ibed  for work with 

samples T1 and T2. To o b ta in  the v e lo c i t i e s  Vg and v^, the 

goniometer was ro ta te d  u n t i l  a d e f in i t e  minimum or maximum 

was found. They did occur a t  90° to  each o th e r .  Because 

of the sm aller s iz e s  and i r r e g u la r  shapes o f  some of the 

r a i l  samples, the clamping method was m odified. Samples - 

T3, T10 and T13 could be f i t t e d  in  the ho lder  used fo r  the 

e a r l i e r  work. T7 and T15 were e i t h e r  taped or hand-held 

f lu sh  ag a in s t  the h o ld e r .  Experimental v e lo c i t i e s  fo r  a l l  

samples are repo rted  in  Table XII.

Data fo r  the worked lay e r  were ob tained  from specimens 

T7, T10 and T15- Sample T10 provided d a ta  fo r  propagation 

in  the v e r t i c a l  plane a t  90° to  the r o l l i n g  d i r e c t io n .  For 

da ta  along the r o l l in g  d i r e c t io n  and at 90° to  the r o l l i n g  

d i r e c t io n  in  the h o r iz o n ta l  p lane , the probes were moved to  

the top of specimen T7 so th a t  pu lses  were e s s e n t i a l l y  p ro­

pagating in  the worked la y e r .  A s im ila r  technique was used 

with TI5 to  ob ta in  d a ta  in  the  h o r iz o n ta l  plane a t  to

the r o l l i n g  d i r e c t io n .
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Table XII. Experimental R esu lts  of V e lo c i ty  

Measurements in  R a i l  Samples (m/s)

TOP LAYER-USED RAIL 

H orizon ta l Plane V e r t ic a l  Plane

e ^1 ^2 ^1 V2 ^3 (V^-Vg)

0° 5948 3142 3368 226 5948 3142 3368 226

^5° 6097 3105 3347 242 --- --- --- ---

90° 5908 2935 3202 267 604-1 3173 3366 193

CENTER SECTION - USED RAIL

H orizon ta l Plane V e r t ic a l  Plane

e ^1 ^2 V3 ( V j - V j ) "1 ^2 "3
(V3-V2 )

0° 5938 3237 3246 9 5938 3237 3246 9

^5° 6068 322^ 3240 16 --- --- --- ---

90° 5908 3133 3158 25 6021 3190 3212 22

TOP LAYER - NEW RAIL

H orizon ta l Plane V e r t ic a l  Plane

e ^1 V2 V3 ( , 3-Vg) ^1 V2
^3

(V3-V2 )

0° ---

^5° NOT OBSERVED ---

90° 5964 33I 8 3366 48

0.9^0 ( P e a r l i t i c )  Rolled S tee l - Markham [ 5 3 ]

0 ^1 ^2 "3
(V3 -VJ )

0° 5943 3216 3216 0

90° 5928 3210 3218 8

90° 5933 3205 3216 9
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The cen ter s e c t io n  of the r a i l  was in v e s t ig a te d  with 

specimens T3, T7, and T15* V e lo c i t ie s  at 90° in  the v e r t i c a l  

plane were provided by T3. The v e lo c i t i e s  i n  the h o rizon ta l  

plane were obtained  w ith  the same method as used fo r  the 

worked layer  except th a t  the probes were moved to the lower 

p o r t io n  of each sample. The d if fe ren c e  in  a r r iv a l s  in  the 

cen ter  se c t io n  and the worked layer were very  obvious.

Because of the r e l a t i v e l y  large  diameter of the probes, i t  

was not poss ib le  to  e s t a b l i s h  the lo c a t io n  of an exact 

boundary between the worked laye r  and the underlying la y e r .

A sample of the  upper layer  of a new r a i l  (T13) 

i s  a lso  included in  the  da ta .  Only v e lo c i t i e s  in  the v e r ­

t i c a l  plane a t 90° to  the r o l l in g  d i r e c t io n  were obtained 

with t h i s  sample.

Pulse a r r i v a l s  through the various samples are shown 

in  the photographs in  F igs . 29, 30a, and 30b. An expanded 

d isp lay  (time base 0 .2  ps/cm) of pulses propagating in  the 

h o r iz o n ta l  plane and a t  90° to  the r o l l in g  d i r e c t io n  are 

shown in  F ig . 29- The lower t race  shows the r e l a t i v e ly  

u n d is to r te d  f i r s t  r e f l e c t e d  pulse t r a v e l l i n g  through the 

cen te r  se c t io n ,  j u s t  below the worked la y e r .  By moving the 

sample so th a t  the pulse  t r a v e l s  through the upper la y e r ,  

the pulse becomes s l i g h t l y  d i s to r te d  and moves ahead by 

ju s t  over 100 ns. This would be equ iva len t to  approximately 

70 ns fo r  a s ing le  pass through the specimen and i s  the 

pulse a r r i v a l  a s so c ia te d  w ith v^ in  the h o r iz o n ta l  plane at 

90° in  Table XII.
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Figure 29. Fast Shear Wave 
A rr iv a ls  Propagating in  the 
H orizon ta l Plane a t 90° to  
the Rolling  D irec t io n .  Top 
T race-Propagation Through 
Worked Layer, Bottom Trace- 
Propagation Through Center 
Section . (Time Base 0.2 
kis/div. )

Figure 30a. Fast and Slow 
Shear Wave A rr iv a ls  Propa­
gating  Through the Worked 
Layer in  the V e r t ic a l  Plane 
and at 90° to  the Rolling 
D irec t io n  (Specimen TIG)
Top Trace - 0° P o la r iz a t io n ,  
Bottom Trace - 90 P o l a r i ­
z a t io n .  (Time Base 0 .5  ^ s / d iv . )

Figure 30b. l''ar;l. and Clow 
Shear Wave Arriva.I Propa­
gating t.hrougb t.he ilppor 
Layer oT New liai! in I ho 
VerticaJ 10.ana and a t  90 
to the Rolling D irec tion  
(Specimen T13) Top Trace ■ 
0° P o la r iz a t io n ,  Bottom 
Trace - 90° P o la r iz a t io n .  
Time Base 0 .5  M-s/div.)
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The upper and lower t r ac e s  in  Figs. 30a and 30b show 

the f a s t e s t  and slowest waves in  samples T10 and TI3 , respec­

t i v e l y .  In  these  photographs the f i r s t  a r r i v a l  i s  the large 

s igna l  at approximately 1 .2  p.s. The f i r s t  r e f l e c t e d  pulse 

i s  shown near to  ^ u s ,  depending on the t ran sd uce r  ro ta t io n .  

The high frequency a r r i v a l  ahead of the f i r s t  r e f l e c t i o n  i s  

the delay r e f l e c t i o n  in  the t ransducer .  In  each case ,  the 

top t race  i s  f o r  a goniometer o r i e n t a t i o n  of  0°,  and the 

lower t race  i s  fo r  90°. These are pu lses  propagating in  the 

v e r t i c a l  plane a t  90° to the r o l l i n g  d i r e c t i o n .  Goniometer 

o r i e n t a t i o n  at  0°  i s  along the r o l l i n g  d i r e c t i o n .  For piece 

T10, used r a i l ,  the s ig n i f i c a n t  decrease i n  v e lo c i ty  when 

the goniometer i s  r o ta t e d  90° i s  ev iden t .  This i s  shown 

in Fig. 30a. The pulse  a r r i v a l  i s  delayed by over 200 ns 

by the 90° r o t a t i o n .  The a r r i v a l s  fo r  the  upper laye r  of 

the new r a i l ,  piece TI3 , are shown in  Fig .  30b. A very 

small d i f f e ren c e  i s  seen between the 0° and 90° r o ta t io n s .

A comparison of the data  with in  Table XII shows the 

s t r i k in g  d i f fe ren c e  between the upper lay e r  i n  used r a i l ,  

the center  s e c t io n  in  used r a i l ,  and the upper por t ions  of 

new r a i l .  Most no t iceab le  are the la rge  va lues  shown for 

(v - Vg) fo r  the worked l a y e r .  This would most l i k e l y  be 

a r e s u l t  of the amount of cold working in  the upper layer  as 

well  as any tex tu re  d i f f e re n c e s .  The va lues  shown for  the 

center  sec t io n  are those obtained by Markham for  a high c a r ­

bon r o l l e d  s t e e l .  These have been l i s t e d  in  Table XII, for
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comparison purposes [53^- Two v e lo c i ty  se t s  are shown at 

90° since he made no d i f f e r e n t i a t i o n  between a v e r t i c a l  and 

h o r i z o n ta l  plane.

Any determination  of  m a te r ia l  t ex tu re  must be made by 

comparing the da ta  shown i n  Table XII with the da ta  in  Table 

X and the pole f ig u re s  shown in  F igs .  23 through 25. For 

convenience, the experimental  and p red ic ted  v e l o c i t i e s  in  the 

h o r i z o n ta l  plane have been p l o t t e d  for  a 90° r o t a t i o n  in  

F igs .  31 through 3^* Only i n  a m a te r ia l  where a l l  c r y s t a l s  

were p e r f e c t l y  a l igned to c rea te  a p a r t i c u l a r  tex tu re  would 

exact  v e lo c i ty  agreements be expected. The d i f f e ren c e s  

(V3-V2) can y i e l d  some i n d ic a t i o n  of a predominance of a 

s p e c i f i c  t e x tu r e .  As p rev iou s ly  c i t e d  by B a r re t t  and Massal- 

s k i ,  some v a r i a t i o n  around p a r t i c u l a r  o r i e n t a t io n s  i s  to  

be expected in  most r o l l e d  m a te r i a l .

Considering the experimental  da ta  fo r  the used r a i l ,  

the small d i f f e r e n c e s  in  the  two shear wave v e l o c i t i e s  at  

each lo c a t io n  i n  the center  s e c t io n  are apparent .  This i s  

shown i n  both Table XII and F ig s .  3I through 3^- The v e l o c i ­

t i e s  a t  45° are s l i g h t l y  h igher  than those a t  0°, and those 

a t  90° are lowest of a l l .  The same i s  t rue  fo r  the l o n g i t u ­

d in a l  wave v e l o c i t i e s .  The e f f e c t  of  r o l l i n g  in  the upper 

laye r  i s  to  separa te  the two shear wave v e l o c i t i e s .  The 

v e lo c i ty  of the f a s t e r  wave, a s so c ia te d  with v ^ , r i s e s ,  and 

th a t  of  the slower v e lo c i ty ,  a s so c ia ted  with Vg, decreases .  

This i s  t rue  fo r  0°, ^5° and 90° lo c a t io n s .  At 90°, the
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v e lo c i ty  inc reases  only s l i g h t l y  while the v^ v e lo c i ty  

decreases by a r a th e r  la rge  amount. In  the worked l a y e r ,

Vg decreases from 0° to  to  90°. The same th ing occurs

fo r  V2 except t h a t  the change from 0° to ^5° i s  very  s l i g h t .

I t  i s  ev iden t  th a t  the t ex tu re  of case I does not p red ic t  

the spreading of the two shear wave v e l o c i t i e s  a t  0° and 90° 

lo ca t io n s .  This removes t h i s  t ex tu re  from c o n s id e ra t io n ,  

despi te  the general  agreement fo r  shear wave v e lo c i ty  changes 

a t  ^5° and a l l  th ree  lo n g i tu d in a l  wave v e l o c i t i e s .

Case I I  i s  the  t e x tu re  most commonly a s so c ia ted  with 

r o l l e d  s t e e l .  This i s  shown i n  F ig .  32. Although the s e p a r ­

a t ion  a t  0° and 90° i s  p re d ic te d ,  t h a t  a t  ^5° i s  n o t .  More­

over, the p red ic ted  behavior of  the lo n g i tu d in a l  waves i s  

opposite to  th a t  shown by the da ta .  Therefore ,  t h i s  t e x tu re

must be r e j e c t e d  fo r  the  cold-worked zone. I t  i s  poss ib le

th a t  more accurate  measurement techniques could confirm t h i s  

t ex tu re  i n  the cen ter  (or underlying)  l a y e r .  This was not 

done since the primary purpose of these  experiments was to  

in v es t ig a te  the cold-worked l a y e r .

Case I I I  (Fig. 33) shows the most se r ious  d i s a g r e e ­

ment between experimental  and p red ic ted  v e lo c i t y  changes a t  

0° for the shear waves. I t  appears th a t  the v a r i a t i o n  a t  

90° should be l a r g e r  than  th a t  seen a t  45°, but t h i s  does 

not occur i n  the experimental  da ta .  The lo n g i tu d in a l  v e lo c i t y  

should show a l a r g e r  value a t  90° than at  0°. This does not 

occur. The disagreement i n  shear wave v e l o c i t i e s  a t  0°
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is the primary reason for  r e j e c t i n g  t h i s  t ex tu re  from consid­

e ra t io n .

The ( 5 3 1 ) n i 2 ]  t ex tu re  shown in  Fig 3^ p re d ic t s  the 

separa t ion  of  shear wave v e l o c i t i e s  a t  the 0°,  *+5° and 90° 

lo ca t io n s .  Two p red ic ted  v e l o c i t i e s  are shown fo r  a l l  waves 

because of  the asymmetry of the v e l o c i t i e s  around the r o l l i n g  

t ex tu re .  With these l imited d a ta ,  i t  i s  d i f f i c u l t  to say 

whether b e t t e r  agreement e x i s t s  with r o t a t i o n  in  the p o s i ­

t iv e  or negat ive  d i r e c t i o n .

In  a tex tu red  m a te r i a l ,  only a c e r t a i n  p o r t io n  of the 

c ry s t a l s  w i l l  be p e r f e c t l y  a l igned .  The r e s t  w i l l  be in  

varying s tages  of  randomness along with a few other  t e x tu r e s .  

As s ta ted  by Papadakis,  the a p p l i c a t io n  of  Waterman's s i n g l e - 

c ry s ta l  theory  to  an aggregate s t r u c tu r e  i n d i c a t e s  th a t  the 

observed shear wave v e l o c i t i e s  should l i e  between the l i m i t ­

ing values found in  the c r y s t a l  [58,593- Very accurate  

techniques,  as descr ibed  by S u l l ivan  and Papadakis [50], 

can be used to  determine the percentage of g ra ins  al igned 

in  any p a r t i c u l a r  t e x t u r e .  The mult ip le  echoes t h a t  occurred 

in  the delay sec t ions  of the probes used in  t h i s  experiment 

prevented t h e i r  techniques from being adopted. N ever the less ,  

the ( 531) [ 112] t e x tu re  does appear to provide the best  

agreement with the experimental  da ta  observed in  the h o r i ­

zonta l  p lane .

The shear-wave v e lo c i ty  d i f f e re n c e  a t  the 90° lo ca ­

t io n  in  the v e r t i c a l  plane a lso  shows a l a r g e r  value in  the
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worked zone than in  the cen te r  po r t io n  of the  r a i l .  The v a r ­

i a t i o n s  are  comparable to  those found in  the ho r izon ta l  

plane. This i s  of i n t e r e s t  s ince the upper port ion used for  

sample T10 was n e c e s s a r i ly  taken from lo ca t ion  on the r a i l  

d i f f e r e n t  from where T7 was ob ta ined .  The spread of v e lo ­

c i t i e s  i n  the worked layer  a l so  shows more consis tency with 

the ( 531) [ 112] tex tu re  than with  the o thers .

The slowest shear-wave v e lo c i t y  observed along the 

r o l l i n g  d i r e c t i o n  i n  the worked laye r  of sample T7 was 

31^2 m/s and was found at  22° from the v e r t i c a l  ax is .  The 

h ighes t  va lu e ,  3368 m/s, was found a t  112°. Since t h i s  

minimum was close to  the v e r t i c a l  ax is  of the r a i l ,  i t  

appears q u i te  l i k e l y  th a t  the v e lo c i t y  reduct ion  required  

fo r  the ex is tence  of the observed e a r ly  a r r i v a l  in  the 

surface wave s tud ies  was a r e s u l t  of  a tex ture  quite  close 

to (531) [ 112].

Summary and Conclusions

Residual  s t r e s s  and m a te r i a l  t ex tu re  have been in v e s ­

t ig a t e d  as probable causes of the shear-wave v e lo c i ty  reduc­

t i o n  th a t  occurs in  the worked laye r  of  used r a i l .  In  

genera l ,  the changes p red ic ted  as a r e s u l t  of r e s id u a l  s t r e s s  

in  the worked layer  were qu i te  small.  Veloci ty  changes p r e ­

d ic ted  from an an a ly s i s  of the t ex tu re  of the worked layer  

were qu i te  large and are the most l i k e l y  cause of  the appear­

ance of  the observed a r r i v a l  j u s t  ahead of a Rayleigh wave 

propagating along the r a i l  head.
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CHAPTER V

SUMMARY, SUGGESTIONS FOR FURTHER 

WORK, AND CONCLUSIONS

There were two primary o b jec t iv e s  of t h i s  i n v e s t i g a ­

t io n .  One ob jec t ive  was to  c o r r e c t ly  i d e n t i f y  the pulse 

a r r i v a l s  th a t  had been observed ahead of  a Rayleigh wave 

propagating on the top surface  of a used r a i l .  The second 

objective  was to  in v e s t ig a t e  the poss ib le  causes of the she a r -  

wave v e lo c i ty  change i n  the  worked layer  which was necessary  

to support the propagat ion of  t h i s  e a r l y  a r r iv in g  pu lse .  The 

two in v e s t ig a t io n s  are independent,  fo r  the  most p a r t .

Chapter I I I ,  dea l in g  with the propagat ion of waves in  

layered media, paid  l i t t l e  a t t e n t i o n  to  the p ro p e r t i e s  of the 

worked layer  and the underlying l aye r  of  the r a i l  o ther  than 

to assume c e r t a i n  v e lo c i ty  r e l a t i o n s h i p s  of  bulk lo n g i tu d in a l  

and shear waves propagating along the leng th  of  the r a i l .

Chapter IV, on the other hand, delved i n to  sp ec i f i c  s t r e s s  

condit ions and m ate r ia l  p roper ty  d i f f e re n c e s  in  the upper 

and lower p o r t ions  of the used r a i l  head.

The primary conclusion of  Chapter I I I  was th a t  the 

e a r ly  a r r iv in g  pulses are comparable to  the  f i r s t  shear mode, 

Sezawa waves, o f ten  observed in  the propagat ion  of  seismic waves.
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Both the e a r ly  a r r iv in g  pulses  and the fundamental Rayleigh 

pulses  were shown to  be d i sp e r s iv e ,  i .  e . , t h e i r  v e l o c i t i e s  are 

f requency dependent over a c e r t a i n  range of frequency values .  

Moreover, e a r ly  a r r i v a l  was not observed at  very low f requen­

c i e s ,  i n  accordance with the theory.

The bes t  agreement between the t h e o r e t i c a l  and the 

exper im en ta l ly  observed v e l o c i t i e s  was obtained by assuming 

v e l o c i t i e s  in  the upper l ay e r  and the underlying s t ru c tu re  

which were s l i g h t l y  d i f f e r e n t  from the. i n i t i a l  va lues  repor ted  

i n  Ref. [6 ] .  The new assumptions,  which were der ived  from 

experimental  da ta  r e l a t e d  to the e a r ly  a r r i v a l ,  were f e l t  to  

be more computable with the requirements of the geophysical  

model. Even with these  new v a lu es ,  agreement between p r e ­

d ic te d  and exper imenta l ly  observed v e lo c i t i e s  was not e x ac t ,  

but i t  was f e l t  to  be s u f f i c i e n t l y  good to  show t h a t  the 

e a r l y  a r r i v a l s  could be i d e n t i f i e d  as the f i r s t  shear  mode.

In  order  for  the f i r s t  shear mode to  e x i s t  i n  layered-media 

wave propagat ion ,  the shear wave v e lo c i ty  in  the  upper l ay e r  

must be l e s s  than  the shear wave v e lo c i ty  i n  the underlying 

s t r u c t u r e .  The most l i k e l y  cause of t h i s  decrease i n  v e lo ­

c i t y  in the work-hardened upper layer was f e l t  t o  be e i t h e r  a 

d i f f e r e n t i a l  in  the r e s id u a l  s t r e s s ,  a change i n  the m a te r ia l  

t ex tu re  or a combination of the  two. Veloci ty  changes r e s u l t i n g  

from s t r e s s  d i f f e r e n t i a l s  r epor ted  by o ther  r e s e a rc h e r s  were 

not of  s u f f i c i e n t  magnitude to  expla in  the r a t h e r  large  

(nea r ly  6^) decrease requ ired  to f i t  the experimental  and
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pred ic ted  v e l o c i t i e s .  The s t r e s s  d i f f e r e n t i a l  would a lso  

produce an increase  in  the shear wave v e lo c i ty  in  the upper 

l a y e r ,  opposi te to  the req u i red  change. Although the r e s i d ­

ual  s t r e s s  d i f f e r e n t i a l  must be a f f e c t i n g  the v e lo c i ty ,  i t  

was not f e l t  to be the primary cause of  the v e lo c i ty  change

Experimental  i n v e s t i g a t i o n s  of shear and lo n g i tu d in a l  

wave v e lo c i t i e s  propagating a t  d i f f e r e n t  d i r e c t i o n s  in  the 

worked layer  and in  the underlying laye r  in d ic a te d  th a t  large  

v e lo c i ty  changes could occur as a r e s u l t  of cold working of 

the m a te r ia l .  The observed v e lo c i ty  p a t t e r n s  were compared 

with the v e lo c i ty  changes p red ic ted  by severa l  i d e a l  t e x tu r e s  

known to e x i s t  i n  r o l l e d  s t e e l .  The bes t  agreement between 

observed and p red ic ted  v e lo c i t y  changes was found to  e x i s t  

fo r  a (53'!)C112] t e x tu r e .  This tex tu re  i s  not  the one most 

commonly repor ted  fo r  r o l l e d  s t e e l ,  but the amount of cold 

working found in  the r a i l  head i s  considerab ly  g rea te r  than 

th a t  found in  most metal-working problems.

Since the wave propagat ion  s tu d ie s  and the tex tu re  

s tud ies  were performed s e p a r a t e ly ,  a comparison of the exper­

imental  r e s u l t s  from each study i s  of i n t e r e s t .  Table XIII 

shows v e lo c i ty  d a ta  which are comparable. Rail  7 has been 

used in  t h i s  example, but a s im i la r  p r e s e n t a t i o n  could be 

made fo r  r a i l  11. For r a i l  7 and r a i l  model 7A, the values 

have been taken from Table V. Texture v e lo c i ty  da ta  have 

been taken from Table XII .
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Table X III .  Summary of Comparable Wave V e lo c i t i e s  

from Studies  of  Layered-Media Wave 

Propagat ion and Material  Texture

Rail Rail  Model Texture

7 7A Data

A-| (m/s) 5872 6255 59^8

B^(m/s) 3120 3185 31^2

A^/m/s) 5868 6319 5938

Bg/m/s) 3195 3378 3237

Veloc i ty  values from the tex ture  experiments taken 

at 0° to  the r o l l i n g  d i r e c t i o n  are f e l t  to  be comparable to  

the v e lo c i ty  d e f i n i t i o n s  for  A-|, , A2 and B2 from the

layered study, In  the case of  the shear wavs, the lowest 

value (a s so c ia ted  with v^) i s  shown, since t h i s  occurred with 

a t ransducer  o r i e n t a t i o n  such th a t  p a r t i c l e  motion was 

near to the pe rpendicu lar  to the ro l l in g  plane.

The shear wave v e l o c i t i e s  obtained in  the t ex tu re  

i n v e s t i g a t io n s  fo r  both the worked layer  and the underlying 

laye r  are h igher  than the values shown fo r  r a i l  7 . They are 

not as high as the va lues  assumed for r a i l  model ?A, however. 

In a l l  cases ,  B2 i s  g r e a t e r  than B^. S im i la r ly ,  the lo n g i tu d ­

i n a l  wave v e l o c i t i e s  obtained in  the tex tu re  s tu d ies  are 

g re a te r  than the values fo r  r a i l  7 but l e s s  than  the va lues  

used in  r a i l  model 7A.
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The fac t  t h a t  the values found in the tex ture  s tud ies  

are a l l  h igher than those o r i g i n a l l y  found for  r a i l  7 i n d i ­

ca te s  th a t  the assumption of h igh e r  v e l o c i t i e s  for  r a i l  models 

7A and 11A was c o r r e c t .  The t e x tu r e  data  were obtained using 

probes having a much higher frequency than those used to 

ob ta in  any of the data  used fo r  the  layered-media wave pro­

pagat ion s tud ies .  This i s  c o n s i s t e n t  with the observation 

i n  Chapter I I I  t h a t  waveguide e f f e c t s  could account for  the 

f a c t  tha t  the v e l o c i t i e s  o r i g i n a l l y  observed were lower than 

the bulk v e l o c i t i e s  requ ired  fo r  the  geophysical model.

The lack of  agreement between the assumed values fo r  

r a i l  model 7A and the t ex tu re  d a ta  could have several  causes. 

The samples used i n  the t e x tu re  s tu d ie s  were n e ce ssa r i ly  

taken from a small sec t ion  of the used r a i l .  I t  i s  l i k e l y  

th a t  the p ro p e r t i e s  could vary along the length  of the r a i l .  

The top surface of the used r a i l s  showed a s l ig h t  wavy p a t t e r n  

most l i k e l y  the r e s u l t  of uneven cold working ( i . e .  mild 

co rru g a t io n s ) .  The small p ieces  used in  the tex tu re  study 

were a lso  r e l a t i v e l y  s t r e s s - f r e e  because of the removal of 

the surrounding m a te r i a l .  None the less ,  the general  agreement 

o f  the da ta  was encouraging.

Suggestions fo r  F u r the r  Work

Several new areas of i n v e s t i g a t i o n  have been opened 

by t h i s  study.  These are b r i e f l y  ou t l ined  in  the following 

paragraphs.
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I .  Experimental in v e s t ig a t io n s  of wave propagat ion 
in  l a y e r s  with s l i g h t l y  d i f f e r i n g  p ro p e r t i e s

An experimental  in v e s t i g a t i o n  u t i l i z i n g  a l a rg e  number 

of  f requencies  ranging from approximately 80 KHz to  5 MHz could 

more c o r r e c t l y  e s t a b l i s h  the  apparent th ickness  of the co ld-  

worked l a y e r .  More prec ise  frequency c o n t ro l  and d a ta  g a t h ­

e r in g  techniques should produce r e s u l t s  which would very 

c lo se ly  fo l low the p red ic te d  v e lo c i ty  curves.  This i n v e s t i ­

ga t ion  could a lso  y i e l d  a more exact  d e s c r ip t io n  of  the 

boundary between the worked laye r  and the underlying s t r u c tu r e .

I I .  Experimental i n v e s t i g a t io n  using a la rge  number 
of  r a i l  samples to  show the r e l a t i o n s h i p  of the 
appearance of the f i r s t  shear mode and the degree 
of cold working in  the upper lay e r

This i n v e s t i g a t i o n  could be c o r r e l a t e d  with s tu d ies  of 

r a i l  s h e l l i n g ,  c o r rug a t io n  and other  f a t ig u e  and wear charac­

t e r i s t i c s  to  see i f  the appearance of the f i r s t  shear mode 

could be used in  r a i l  in sp e c t io n  as an in d ic a to r  of  the r a i l  

condit ion .

I I I .  Experimental i n v e s t i g a t io n  of the t e x tu r e  of the 
cold-worked laye r

The use o f  more p rec ise  v e lo c i ty  ana ly s is  techn iques ,  

as d iscussed in  Chapter IV, could y ie ld  very accura te  i n f o r ­

mation concerning the  tex tu re  of  the cold-worked l a y e r .  By 

in v e s t ig a t in g  the v e l o c i t i e s  in  samples cut at  smaller  o r i e n ­

t a t i o n  i n t e r v a l s ,  e .  g. 10°, and by using samples removed 

from r a i l s  having varying degrees of cold working, the gradual  

development of  the f i n a l  t ex tu re  could be in v e s t ig a t e d .
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This might have an important r e l a t i o n s h ip  to  the ousel of 

fa t igue  damage. X-ray d i f f r a c t i o n  s tu d ie s  of rai 1 samp tes. 

could a s s i s t  in  the tex tu re  i n v e s t i g a t i o n .

IV. Study of the r e l a t i o n s h i p  o f  r a i l  f a t ig u e  and 
the gradual development of the cold-worked 
la y e r ,  i n  conjunction with paragraphs I I  and I I I

V. In v e s t ig a t io n  of the a n i s o t ro p ic  e f f e c t  of the 
cold-worked la y e r  upon u l t r a s o n i c  r a i l  flaw 
d e te c t io n

VI. Study of the cold-worked laye r  in  wheels 

Railway wheels experience cold working in  a manner 

s im i la r  to  the d e s c r ip t io n  given for  r a i l s .  In  some cases the 

carbon content  of the wheels may be lower than  for  the r a i l .  

Most wheels experience la rge  inputs  of hea t  as a r e s u l t  of 

t read  braking.  The e f f e c t  o f  t h i s  thermal input  upon the 

charac te r  of the cold-worked laye r  and the r e s u l t i n g  e f f e c t  

on wheel- t read fa t ig u e  damage could be i n v e s t i g a t e d .

Conclusions

The in v e s t ig a t i o n s  repo r ted  h e r e in  have shown tha t  

the cold-worked lay e r  on h e a v i ly  used r a i l  i s  a reasonably  

well  defined a rea .  An u l t r a s o n ic  pulse  appears qu i te  d i s ­

t i n c t l y  ahead of a Rayleigh wave propagating along the surface 

of the head of a used r a i l .  The appearance of t h i s  pulse i s  

frequency dependent. Texture in  the cold-worked laye r  i s  the 

most reasonable explana t ion  o f  why the  e a r l y  a r r i v in g  pulse  

appears in  used r a i l .
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APPENDIX A

PULSE CHARACTERISTICS 

AND ULTRASONIC CIRCUITRY

A conventional  u l t r a s o n i c  puls ing  c i r c u i t  was used 

throughout the present  study. These c i r c u i t s  are descr ibed  

i n  sev e ra l  t e x t s  ( e .g . ,  see Ref. [60 ] ) .  The d iscuss io n  

which i s  to  fo l low has been excerpted  from Ref. [61] '

In  t h i s  c i r c u i t ,  as shown in  Figure 35, the p iez o ­

e l e c t r i c  t ransducer  i s  seen p r im ar i ly  as an e l e c t r i c a l  cap­

a c i t a n c e ,  Cq. a high vol tage  e l e c t r i c a l  spike from a source 

(Ug) causes the p i e z o e l e c t r i c  ceramic to  o s c i l l a t e .

A -

Figure 35. Basic U l t ra so n ic  Pulse C i rcu i t  [61]
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When exc i ted  by the e l e c t r i c a l  sp ike ,  the transducer  w i l l ,  

i n  the id e a l  case ,  o s c i l l a t e  a t  the  resonant frequency d e t e r ­

mined by:

 ̂ (A.1)
r e  2 ï ïv/ L C o

where L i s  the inductance of the c o i l  in  Figure 35- A p iezo­

e l e c t r i c  t ransducer  a lso  has a mechanical  resonant frequency 

determined by the equation:

f  = —  (A.2)
rm 2rr V M

where s i s  the mechanical s t i f f n e s s  of the t ransducer  m ate r ia l  

and M i s  the mass. Optimum performance occurs when the e l e c ­

t r i c a l  resonant frequency i s  matched to  the mechanical resonant 

frequency ( i . e . ,  f^^ = f^ ^ ) .  Since, fo r  a p a r t i c u l a r  t r a n s ­

ducer ,  s ,  M and C are f ixed ,  t h i s  tuning i s  obtained by 

varying the inductance L. The e l e c t r i c a l  damping and, hence, 

the pulse  leng th ,  ad jus ted  through the v a r ia b le  re s i s tan c e  r 

and s l i g h t  adjustments i n  the c i r c u i t  capac i tance ,  can be 

made through v a r ia b le  capac i to r  c.

Some of the work d iscussed  in  t h i s  repor t  was done 

u s ing ,a s  the u l t r a s o n ic  source,a  Sperry Model UR Ref lec to-  

scope. I t  d e l iv e r s  an e l e c t r i c a l  spike of  approximately 

500 v o l t s  and conta ins  four tuning inductances which are 

in d iv id u a l ly  s e lec te d  by a f ro n t  panel  switch.  This se lec t iv e
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type o f  tuning ( i . e . ,  narrow bandwidth) l im i t s  i t s  adapta­

b i l i t y ,  since optimum matching of  e l e c t r i c a l  and mechanical 

resonant f requencies  req u i re s  small adjustments in  the 

inductance over a large range of va lues .  This d i f f i c u l t y  may 

be overcome by the ad d i t io n  of a second tuning c o i l  connected 

across  the terminals  of the c r y s t a l ,  i . e . ,  p a r a l l e l  to  C .

A t y p i c a l  output pulse obtained  by t h i s  technique has 

a decaying, almost s in u so id a l ,  shape, as i s  shown a t  the r i g h t  

of F ig .  35» The pulses propagating on new r a i l ,  and shown 

in  F igs .  2d and 3d, are very s im i la r  in  shape to  the usual 

pulse generated by t h i s  system. As p rev ious ly  s t a t e d ,  the 

pulse shape can be optimized by changing the values of the 

r e s i s t a n c e ,  inductance, and capaci tance  in  the c i r c u i t .

Each source t ransducer  used in  work r e l a t e d  to  the 

propagation on the top of  the r a i l  was tuned so th a t  the 

pulse had the smoothest poss ib le  shape and the longest  pulse 

l en g th .  This was done by observing the change in  the pulse 

shape with a Panametrics VI09, wide-band, highly-damped 

t ransd u ce r ,  which was mounted on the same type of wedge as 

was used fo r  the source. The wave form was s tudied  as it 

propagated down the length  of a new r a i l  in  the send-receive 

mode p rev ious ly  descr ibed.  Pulse frequency was obtained i n  

each case by ex t rac t ing  the pe r iod  d i r e c t l y  from the o s c i l l o ­

graph of the  received pu lse .
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APPENDIX B 

ARRIVAL TIME DETERMINATION

The methodology fo r  a r r i v a l  time de te rmina t ion  can 

he demonstrated with the t r a c e s  shown in  F ig .  36. This 

o sc i l lo g rap h  shows pulse a r r i v a l s  a t  100 mm, 200 mm, 300 mm, 

^00 mm, 500 mm, and 600 mm, top to  bottom. The 600 mm t race  

i s  a lso  shown as the top t r ac e  in  F ig .  14, with the 100 mm 

a r r i v a l  used as the zero re fe ren c e .  The re sp ec t iv e  a r r i v a l  

times and t r a v e l  times ( tg  and t^)  are marked below the 

osc i l logram. As prev ious ly  noted i n  Chapter I I I ,  the large 

pulse emerging from the base l in e  was used as the a r r i v a l  

t ime, and the smaller  s igna ls  ju s t  ahead of the la rge  pulse 

were ignored. This choice was s u b je c t iv e ,  but i t  led  to  

meaningful r e s u l t s  when c o n s i s t e n t l y  followed.
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100 mm 

200 mm 

300 mm 

4-00 mm 

500 mm 

600 mm

Figure 36. Shear Wave and Rayleigh Wave A rr iv a is  a t
2.0 MHz on Rail  11, V e r t i c a l  0 .2  v / d i v . , 
Time Base 50 |us/div.
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