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This study is concerned with building an econometric model of
the American household demand for natural gas, fuel oil, and electri-
city needed for space-heating, lighting, cooking, and for the opera-
tion of other home appliances. In the process of making a choice among
alternative econometric specifications for empirical work, the disser-
tation reviews separability hypotheses, examines four of five chosen
econometric specifications Zor a utility function through application
of separability hypotheses, and provides an in-depth comparison of
five chosen specifications in terms of both their theoretical proper-
ties and results on the demand elasticities and on the Hicks-Allen
partial elasticities of substitution.

Five econometric specifications were chosen for this empirical
study of demand: the Cohb-Nouglas, the CES, the Uzawa CES, the Sato
two-level CES, and the translog utility functions. They were approxi-
mated by a Taylor series expansion about a fixed point to derive a
system of behavioral equations in forms suitable for econometric testing
and comparison. Parameters of these approximations were then estimated
by Zellner's efficient least-squares method. From these estimates, the
demand elasticities, the Hicks-Allen partial elasticities of substitu-
tion, and the Slutsky's price elasticities of the compensated demand
were computed and evaluated in terms of whether or not the empirical
results are in conformity with theoretical results on various kinds
of elasticities. Finally, an empirical assessment was made concerning
the performance of each of the five utility functions.

The assessment revealed that the translog utility function
dominates over the other four utility functions. Therefore, an econome-
tric model of the American household demand for energy fuels should be
built from the translog utility function. The choice of this utility
function implies that restrictions implied by separability hypotheses
on the parameters of the other four utility functions are invalid in
the case cf the American household demand for energy fuels; hence, the
separability hypotheses should be rejected.
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AN EMPIRICAL COMPARISON OF THEORETICAL MODELS FOR A UTILITY
UNDER SEPARABILITY HYPOTHESES: A SYSTEM OF DERIVED
DEMAND EQUATIONS OF FUELS FOR U.S. HOUSEHOLD USE,

1937 - 1970.

CHAPTER I

INTRODUCTION

It one were looking for a single criterion by which to dis-
tinguish modern economic theory from its classical precursors, he
would probably decide that this is to be found in the introduction of
the so-called subjective theory of value into economic theory.1
This revolution in thought broke out almost simultaneously along
three fronts, and with it are the names of Jevons, Menger, and Walras
associated.2 All three founders of the utility theory, in their
pioneering contributions, adopted the cardinal hypothesis with inde-
pendent utilities. On this assumption, the utility which the con-

sumer derives from each good consumed is a function of the quantity

of that good alone. The total utility of the whole col lection of goods

lP. Samuelson, Foundations of Economic Analysis (Cambridge:
Harvard University Press, 1971), p. 90.

2Ibid.



is simply the sum of these separate (or independent) utilities, i.e.,
noo i
U= ] U(x;) where U is the total utility and U~ is a sub-utility
i=1
function of the quantity of good X, consumed.
In fact, the consumer's behavior can be explained just as
well in terms of an ordinal utility function as in terms of a cardi-
n .
nal one, i.e., V= F(U) = F( ] Ul(xi)) where V is the total utility,
i=1
and F is an arbitrary function of the sum of independent utilities
and, hence, an ordinal concept. The consumer's choice is completely
determinate if he possesses a ranking of consumer goods according to
his preferences. It is not necessary to assume that he possesses
a cardinal measure of utility; the much weaker assumption that he

3

possesses a consistent ranking of preferences is sufficient.” J. R.

Hicks comments:

It is possible that it might be more convenient to
use the cardinal properties as a sort of scaffolding, useful
in erecting the building, but to be taken down when the
building has been completed. This is in fact what Marshall
very largely did, and there is not in principle any objec-
tion to it. The objection is merely that in practice it
does not seem to help. It is true that the more elemen-
tary parts of the theory can be established almost as well
by the one method as by the other: but in the more difficult
branches cardinal utility becomes a nuisance.

From the point of view of cardinalism, the rejection of the
cardinal hypothesis with independent utilities is a serious matter.

For if independence were to be maintained, the way would be clear

3J. M. Henderson and R. E. Quandt, Microeconomic Theory (New
York: McGraw-Hill Book Company, 1958), p. 8.

4J. R. Hicks, A Revision of Demand Theory (London: The Claren-
don Press, 1969), p. 9.




for the econometric determination of the main properties of the uti-
lity function.s Since the cardinal hypothesis was a very severe re-
striction on the preference field, its rejection led to contemplating
the possibility that utilities might be interdependent. That is to
say, the marginal utility of any good might depend not only upon the
consumption of that good but also upon the consumption of any other
good purchased. As a result, the idea of a completely generalized
utility function was introduced by F. Y. Edgeworth, i.e., ¢ = f(xl,
Xos wees xn) where ¢ is the total utility derived from the whole col-
lection of "n" goods, f is an arbitrary function of the quantities of

"n" goods consumed, and fij = 5%%%;7 % 0fori#j (i,j=1, 2, ...,
n).6 :

While some of the implications of the cardinal hypothesis
with independent utilities led to the rejection of the additive (or
cardinal) utility function and its replacement by a completely gen-
eralized utility function as, for example, in the works of Edgeworth
and Hicks,7 this in turn generated dissatisfaction because of the
relative paucity of its meaningful empirical implications. Conse-
quently, considerably increased attention has been paid in demand ana-

lysis to the concept of separability as a theoretical solution of

this empirical issue. W. Leontief comments:

>Ibid., pp. 11-12.

6F. v. Edgeworth, Mathematical Psychics (London: Routledge
and Kegan Paul, Ltd., 1881), p. 97.

3. R, Hicks, Value and Capital (Oxford: The Clarendon
Press, 1968), Chapters I, II and III, and A Revision of Demand Theory
(London: The Clarendon Press, 1969).




The analysis of consumer's choice offers what seems
to be a particularly illuminating example of a concrete
theoretical issue, the solution of which can be effectively
advanced through application of the concept of separable
functions. The evolution of theoretical thought on this
particular subject followed, as in many other similar
instances, a deviously dialectical path of development.
It started with the acceptance of conventional and supposed-
ly self-evident notions of the so-called common experience;
it went through the antithesis of a rigorous but essentially
destructive phase of negative criticism to move finally
toward the higher stage of positive synthesis which vindi-
cates again some valuable elements of the original common-
sense experience after distillgng it in the refining appara-
tus of exact logical analysis.

It can be admitted that the cardinal hypothesis with indepen-
dent utilities is the notion that the individual consumer is capable
of ordering ail conceivable alternatives presented to him--all the
positions represented by points on his indifference map. But all that
has to be assumed is that he can order those alternatives which he
actually does have to compare.9 In other words, given a collection of
consumer goods, a partition of those goods into the subgroups of at
least one good--a partition in which the sequence of subgroups is put
into an ordered relation, but in which there is no ordering within the
subgroups--is desirable in reality because the consumer commonly allo-
cates expenditure among broad groups of goods. If such a commodity-wise
partition is permissible, then the consumer will be capable of com-

paring and ordering the sequence of subgroups. Furthermore, to such a

commodity-wise partition there corresponds functional separability:

8y, Leontief, "Introduction to a Theory of the Internal Struc-
ture of Functional Relationships," Econometrica, Vol. 15 (1947), p. 371.

9J. R. Hicks, A Revision of Demand Theory (london: The Cla-
rendon Press, 1969), pp. 20-24. Also, see Section 2, Chapter III of
this dissertation.




A utility function of the quantities consumed of ''n' consumer goods will
be functionally separable with respect to a commodity-wise partition.
Functional separability is essential not only in explaining the consumer's
budgetary behavior, but also in making a generalized utility function
operationally manageable. The conditions for such functional separabi-
lity are referred to as the separability hypothesis, which is based on
the logical theory of ordering. The concept of separability has en-
riched the theory of consumer behavior in a number of directions, per-
haps the most celebrated of which has been the utility tree. It has
been used to analyze the internal structure of utility functions, and
its implications have been of primary importance to empirical studies
in demand analysis.

The primary purpose of this dissertation is to review the con-
cept of separability, examine the internal structure of utility func-
tions chosen for the present study of demand through application of
the separability hypothesis, and make an in-depth empirical comparison
among them in connection with U.S. households' demand for energy fuels
needed for heating, cooking, lighting, and other home appliances.10
Then, on an empirical basis of performances of the chosen utility func-
tions, an econometric model of demand for energy fuels will be built.
Finally, the demand elasticities and the elasticities of substitution
among energy fuels will be examined, both theoretically and empirically.

Chapter II centers on the analysis of historical records of
U.S. total energy consumption and of the changing level and pattern of

household energy use in the United States during the selected period

10/4¢ chosen utility functions are the Cobb-Douglas, the CES,
the Uzawa CES, the Sato two-level CES, and the transcendental logarith-
mic utility functions. See Chapter IV.



(1947-1965), so that an explanation of the statistics showing the con-
sumption of energy fuels, a hypothesis which will account for them, may
be found.ll The reason for selecting this particular period is that
dramatic shifts in the relative importance of individual energy fuels
were revealed during this period; and that U.S. energy total also
underwent important changes in its composition.

Chapter III makes an in-depth theoretical comparison of an addi-
tive utility function to a completely generalized utility function in
order to provide the theoretical background to the development of the
concept of separability. It also presents a detailed discussion of the
separability hypothesis, and reviews separability theorems. Chapter IV
deals with the analysis of the internal structure of chosen utility func-
tions through application of separability theorems, and seeks Taylor ap-
proximations to chosen utility functions in order to derive a system of
demand equations in forms suitable for econometric testing and comparison.

Chapter V discusses the derivation of a system of demand equations
from a Taylor's second order approximation, restrictions on the parame-
ters of demand equations, and the demand elasticities and the elastici-
ties of substitution among energy fuels. It also discusses the estima-
tion method used. Chapter VI presents empirical results, evaluates them
in terms of whether or not they are in conformity with the theoretical
results derived in Chapter V, and assesses how well each of the chosen
utility functions performs. The final chapter synthesizes the conclusions
drawn from the empirical analysis of Chapter VI, and the choice among

the utility functions will be made on an empirical basis.

llTime-series data for energy fuels used in this demand study
range from 1937 to 1970. See Appendix C.



CHAPTER II

BACKGROUND TO THE ANALYSIS OF DEMAND

FOR FUELS IN THE U.S.

The best way of approaching the econometric theory of demand
is from the point of view of the empirical problem which generates
the need for such a theory. The econometrist who seeks to make a
demand study contemplates certain factual data showing the consump-
tion of some good (or goods) purchased by a particular group of people
during certain periods of time. lie seeks an explanation of these
statistics, a hypothesis which will account for them. A number of
possible explanations may be suggested--hypotheses which cannot be
tested directly, but which can be used for the arrangement of empiri-
cal data in meaningful ways, and which are accepted or rejected ac-
cording to their success or failure as instruments of arrangement.l

The primary purposes here are: (1) empirical choice of fuel
variables which satisfy energy needs within U.S. households for heat-
ing, cooking, lighting and other home appliances; and (2) making some
assumption about the principles governing the consumer's behavior--

the preference hypothesis associated with consumer demand for energy

lJ. R. Hicks, A Revision of Demand Theory (London: The Cla-
rendon Press, 1969), p. 17.




fuels.

Total Energy Consumption in the U.S., 1947-1965

The abundant use of energy, mainly from mineral fuels, was
fundamental to the economic circumstances of mid-century America.

With a population accounting for slightly more than 6% of the world's
total in the early 1950'5,2 the amount of energy fuels consumed in the
United States was more than one-third of the world's total energy
supply, as shown in Table 2-1, and per capita consumption of the U.S.
energy fuels was roughly six times the world's average.

Much of the significance of the level of total energy use by
an economy, and of changes in that level over time, lies not in the
level itself, but in its relationship to such indicators of the
development of the economy as population and gross national product.
The historical path which the United States followed in reaching its
positions in total energy consumption, population, gross national
product, and per capita energy consumption is traced in Table 2-1.

Between 1947 and 1965, consumption of energy in the United
States rose by an annual average of 2.8% compounded. Although it
rose in all but five of these eighteen years, the rate of increase was
markedly below the 2.8% average in the first few years of the period
and markedly above it in the first half of the 1960's. During the same

two decades population rose by 1.7% per year, and gross national pro-

2U.S. population was 157,022,000; world population was
2,550,000,000. See U.S. Bureau of the Census, Statistical Abstract
of the United States (Washington, D.C.: U.S. Government Printing
Office, 1957).




Table 2-1

WORLD ENERGY PRODUCTION AND U.S. ENERGY
CONSUMPTION IN 1953

Energy World Production U.S. Consumption
Source in BTU Equivalent in BTU Equivalent
(trillions) (trillions)

Coal 45, 380 11,868
Petroleum 26,272 15,334
Natural Gas 9,212 7,550
Hydropower 1,365 382
Vegetable Fuels 15,695 1,125
Total 97,924 36,259
Per Capita (million BTU) 38.4 230.9

Sources: Department of Economic and Social Affiars, United
Nations. "World Energy Requirements in 1975 and
2000," Proceedings of the International Conference
on the Peaceful Use of Atomic Energy, Geneva,
1955, Vol. 1; Bureau of Mines, U.S. Department
of the Interior, Mineral Yearbook, Vol. 2 (Wash-
ington, D.C.: U.S. Government Printing Office,
1956).




10

duct, in real terms, by 3.9% annually. Thus, energy consumption fol-
lowed the historical pattern of rising substantially faster than pop-
ulation, but not quite as fast as gross national product.

This continuous long-term growth in total energy consumption
was followed by very great changes in the composition of energy supply,
due to availability of various sources and forms of energy, their
relative prices, advances in technology, changes in the structure of the
nation's output of goods and services, and shifts in consumer preferences.
Dramatic shifts in the relative importance of the individual energy
sources emerged during the period 1947-1965, and the remarkable pace of
growth in oil and natural gas was evident, as shown in Table 2-2.

The heavy predominance of oil and natural gas was a relatively
new development. Up to a couple of years following World War II, coal
accounted for about one-half of the nation's total energy consumption,
oil for about one-third, and natural gas for slightly more than one-
tenth. The enrgy total had since undergone important changes in its
composition. Among them were: (1) shifts among primary energy sources,
such as the major shift in relative importance from coal to oil and
natural gas; (2) the long-term trend away from the direct consumption
of raw energy materials to the use of processed and converted energy
products, such as the switch from coal to diesel oil as a railroad fuel
and the growth of electric power generation; and (3) in the field of
mechanical energy, the replacement of steam power by electricity.3

These shifts were dependent on and closely interconnected with changes

3Schurr and Netschert, Energy in the American Economy, 1850-
1975 (Baltimore: The John Hopkins Press, 1960), p. 174.
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Table 2-2

DISTRIBUTION OF U.S. ENERGY CUNSUMPTION BY PRIMARY FUELS,
SELECTED YEARS, 1947-1965

Natural Hydro-

Year Bituminous Anthracite Natural Gas Electric Crude
Coal Gas Liquids Power 0il
1947 43.5% 3.7% 13.8% 1.7% 4.4% 32.9%
1950 34.8 3.0 18.0 2.3 4.7 37.2
1955 27.8 1.5 23.1 3.0 3.8 40.8
1960 22.0 1.0 28.4 3.2 3.6 41.6
1961 21.5 0.9 29.0 3.3 3.7 4]1.6
1962 21.3 0.8 29.4 3.4 3.8 41.3
1963 21.6 0.7 29.9 3.4 3.6 40.8
1964 21.6 0.7 30.2 3.5 3.7 40.0
1965 22.4 0.6 30.0 3.5 3.9 39.6

Sources: Department of Statistics, American Gas Association, Gas
Facts: 1971 Data, 1972 issue; American Petroleum Insti-
tute, 1970 Petroleum Facts and Figures, 1971 issue; Bureau
of Mines, U.S. Department of the Interior, Mineral Yearbook,
various issues; Department of Commerce, Historical Statis-
tics of the United States: Colonial Times to 1957, (Wash-
ington, D.C.: U.S. Governemnt Printing Office); U.S. De-
partment of Commerce, Statistical Abstract of the United
States, 1950-1970 issues, (Washington, D.C.: U.S. Govern-
ment Printing Office).
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in the equipment in which the various sources and forms of energy were
utilized.

Coal ceased to be the dominant source of energy, being sur-
passed at the beginning of the 1950's by oil and, less than a decade
later, by natural gas. By the mid-1960's these changes seemed to be
leveling off, and an approximate pattern had emerged. The changes
were due mainly to coal's loss of railroad and space-heating and, to
a lesser extent, industrial markets for technological, economic, or
performance reason.4 While both oil and natural gas moved heavily
into the space-heating market, natural gas made rapid gains as a hoiler
fuel especially in electric power generation and simultaneously made
heavy inroads on oil especially in the residential heating market,
due mainly to the non-price attributes of the fuel such as cleanliness,
convenience and dependability.5

Energy consumption in large amounts is typical of many differ-
ent aspects of American life. As would be expected of the world's
highly-industrialized and energy-intensive nation, the United States
used much of its energy consumption to provide heat and power for mills
and factories. Indeed, the industrial sector was foremost among the
energy-consuming sectors, accounting for 41.6% of all energy consumed
in 1965, as shown in Table 2-3. The transportation sector accounted
for 30.4% of all energy consumed, or about three-fourths as much as the

amounts consumed by the industrial sector. The household sector with

4Texas Eastern Transmission Co., Competition and Growth in
American Energy Market, 1947-1985, (1968), p. 12.

SIbid., p. 20.
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Table 2-3

DISTRIBUTION OF U.S. ENERGY CONSUMPTION BY SECTORS,
SELECTED YEARS, 1947-1965

Year Industrial Transportation Residential Commercial

1947 41.8% 32.1% 19.2% 6.9%
1955 44.2 29.4 20.5 5.9
1960 42.0 29.8 21.9 6.3
1965 41.6 30.4 21.0 7.0

Sources: See sources in Table 2-2.

Table 2-4

DISTRIBUTION OF INDUSTRIAL ENERGY CONSUMPTION,
SELECTED YEARS, 1947-1965

Year Natural Gas Coal 0il Electricity
1947 20.8% 56.8% 18.9% 3.5%
1955 31.6 38.7 23.6 6.1
1960 39.7 30.3 22.1 7.9
1965 42.9 28.3 20.5 8.3

Sources: See sources in Table 2-2.



14

its energy requirements for heating, cooking, lighting, and numerous other
household tasks consumed 21.0% of the nation's energy total. Industry,
transportation and household together used almost nine-tenths of all
energy consumed, with the remainder accounted for mainly by commercial
establishments.

Changes in the composition of energy consumed within the sec-
tors are more pronounced than changes in sectoral shares of total
energy consumption. As shown in Table 2-4, the industrial energy
picture was characterized by a marked shift in the relative importance
of coal and natural gas in direct fuel use between 1947 and 1965: coal
declined and natural gas rose. Each energy fuel, however, retained a
significant share in industrial consumption largely because of coal's
firm roots in the metal industry and a few other large industries.6

In the transportation sector, oil almost preempted coal, as
shown in Table 2-5. Coal's loss to oil of its rail market and its
disappearance from the transportation scene was virtually completed
by mid-1950's. The rapid expansion in road and air transport markets
favored o0il, not coal; what little demand coal provided was for
nonmotive purposes and, through its indirect use as a fuel source for
the electricity consumed by railroads.7 There was no cushion in the
transportation market that softened coal's decline. In both household
and commercial sectors, oil and natural gas virtually eliminated direct
burning of coal, as shown in Tables 2-6 and 2-7. Coal's maintenance of

its relative position in the face of losses to o0il and natural gas in

6Schurr and Netschert, op. cit., pp. 224-225.

"Ibid., pp. 284-285.
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Table 2-5

DISTRIBUTION OF TRANSPORTATION ENERGY CONSUMPTION,
SELECTED YEARS, 1947-1965

Year Natural Gas Coal 0il Electricity

1947 - % 31.6% 68.2% 0.2%
1955 - 3.0 96.3 0.1
1960 - 0.3 99.6 0.1
1965 - 0.2 99.7 0.1

Sources: See sources in Table 2-2.

Table 2-6

DISTRIBUTION OF HOUSEHOLD ENERGY CONSUMPTION,
SELECTED YEARS, 1947-1965

Year Natural Gas Coal 0il Electricity
1947 19.3% 47.5% 30.1% 3.1%
1955 33.5 18.7 41.4 6.4

1960 41.1 9.C 41.4 8.5

1965 45.4 4.2 39.8 10.6
Sources: See sources in Table 2-2.
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Table 2-7

DISTRIBUTION OF COMMERCIAL ENERGY CONSUMPTION,
SELECTED YEARS, 1947-1965

Year Natural Gas Coal 0il Electricity
1947 18.2% 59.4% 13.4% 9.0%
1955 34.0 30.0 18.7 16.7
1960 47.7 14.7 18.0 20.6
1965 50.1 6.0 17.2 26.7

Sources: See sources in Table 2-2.

Table 2-8

DISTRIBUTION OF AVERAGE ANNUAL RATE OF CHANGE
IN RESIDENTIAL ENERGY CONSUMPTION,
SELECTED YEARS, 1947-1965

Year Natural Gas Coal 0il Electricity
1947-65 8.2% -9.8% 4.8% 10.5%
1955-65 6.3 -11.1 2.7 8.4
1960-65 4.9 -11.6 2.0 7.5

Sources: See sources in Table 2-2.
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direct fuel consumption was thus tied to the growth of electricity and
to coal's role in providing fuel for the power plants.8
In sunmary, natural gas, electricity and fuel oil retained
the significant shares in household and commercial consumption of
energy and virtually eliminated the direct burning of coal from both
household and commercial sectors during the period 1947-1965. Coal,
nevertheless, maintained a significant share in industrial consumption
of energy. The extent to which particular forms of energy were applied
to particular uses depended in part upon changing supply conditions
and prices of various energy sources and in part upon changing techno-
logies which established preferential efficiencies in various uses.
In some cases a single source of energy entirely displaced another.
More commonly, however, two or three of energy sources were in use at
the same time for the same purposes, as for space-heating and industrial

boiler fuel.

The Changing Level and Pattern of
Household Energy Use, 1947-1965

The most significant supply change in the residential energy
market during the period 1947-1965 was the replacement of coal by
natural gas, electricity and fuel o0il (see Table 2-6).9 The average
annual rates of growth in consumption of natural gas, electricity and

fuel oil are shown in Table 2-8. The negative rates of growth for

8Ibid., pp. 279-281.

9The residential energy market represents the sum of energy
needs within individual households for heating, cooking, lighting,
and other home appliances. This market does not include the trans-
portation energy needs connected with household operationms.
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coal reveals a decline in the relative importance of coal in direct
fuel use. Coal no longer plays a significant role as a supplier of
household energy.

Close examination of considerably decreased rates of growth
since the 1940's reveals the difficulty of any given energy source
maintaining an accelerated growth rate as high levels of market pene-
tration are realized and that here must be an element of competition
among fuel 0il, natural gas and electricity. Closeness in the magni-
tudes of the long-term growth rates for natural gas and electricity
(i.e., 8.2% and 10.5% during the period 1947-1965, respectively) suggests
further that they are very close substitutes. However, it is not possi-
ble at this stage to explain which fuel U.S. households most prefer,

or rank most highly, over any other alternative open to them.

The Hypothesis about the Preferences of U.S. Households

Common sense suggests a number of possible explanations of the
statistics showing the quantities of energy fuels consumed within U.S.
households during the period 1947-1965: nonprice-explanations and
price-explanations. But what the demand theory, considered from the
econometric point of view, has to do is to find a hypothesis which
will account for the ways in which U.S. households would be likely to
react if variations in prices and incomes were the only causes of
changes in consumption. It proceeds by making some assumption about
the principles governing their behavior. The assumption of behavior
according to a scale of preferences comes in here as the simplest,

although not necessarily the only possible, hypothesis, and therefore
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the one which, initially at least, seems to be the most sensible one
to try.lo

There are two forms of the preference hypothesis in the theory
of demand: a strong ordering hypothesis and a weak ordering hypothesis.
If a collection of consumer goods is strongly ordered, it is such that
each good has a place of its own in the order; it is, in principle,
given a number ( or a utility), and to each number there corresponds
one good, and only one good. Accordingly, the preferences of the con-
sumer will exhibit consistency and transitivity. It is not necessary
that there should be any indifferent positions. If the whole order is
a strong one, it is sufficient to say that he always chooses the most
preferred position open to him, and his choice is explained; preference
is always sufficient to explain choice.11

Weak ordering, on the other hand, allows for the possibility
that some consumer goods may be incapable of being arranged in front
of one another and put into an ordered relation with the ordered
goods, that is, the possibility of indifferent positions exists. A
weak ordering consists of a partition of a collection of goods into the
subgroups of at least one good, in which the sequence of subgroups is
strongly ordered, but in which there is no ordering within the sub-
groups. If the consumer's ordering is weak, it is possible that there
may be two (or more) positions which stand together at the top of his

list. His choice between two such positions remains unexplained purely

105, R. Hicks, op. cit., pp. 16-17.

llIbid., pP. 20. Also see Section 2, Chapter III of this
dissertation.



20

on the basis of preference.12

A problem arises as to which kind of preference hypothesis
the present study of demand ought to be based on to be the most
useful. To deny the preference hypothesis in its weak form is to
accept the other extreme--the preference hypothesis in its strong
form. In fact, the consumers do sometimes find themselves confronted
with alternatives between which they are indifferent. As seen in
Table 2-8, the tempting hypothesis is that energy fuels between which
choice is actually made are strongly ordered, due to the fact that the
long-term growth rates for electricity, natural gas, and fuel oil for
1947-1965 were 10.5%, 8.2%, and 4.8% in that order. But there is no
reason to assume a priori strong ordering to be the case for U.S.
households. Thus, the present empirical study of demand will adopt the
preference hypothesis in both strong and weak forms, and investigate
which form of the preference hypothesis provides a substantially
realistic picture of U.S. households' choice among electricity, natural
gas, and fuel oil.13 Coal will be eliminated from the present study
of demand because of its insignificant role as a supplier of household

energy.

IZIbid., p. 21. Also see Section 2, Chapter III of this
dissertation.

B5ee Chapters III and IV.



CHAPTER III

SEPARABILITY OF UTILITY FUNCTIONS

To describe a choice process in a manner faithful to reality,
a utility function must include a large number of consumer goods as
its arguments, while a partition of the collection of those consumer
goods into the subgroups of at least one good--a commodity-wise parti-
tion in which the sequence of subgroups is strongly ordered, but in
which there is no ordering within the subgroups--is desirable. For
such a commodity-wise partition is essential not only in'making that
utility function operationally manageable, but also in adequately
explaining the consumer's budgetary behavior in allocating expenditure
among broad groups of consumer goods. Any utility function for which
commodity-wise partitioning is permissible will be functionally separa-
ble with respect to that partition. The conditions for such functional
separability will be referred to as the separability hypothesis, which
is based on the ordering (or preference) hypothesis.

The primary purposes of this chapter are to present a detailed
discussion of the preference hypothesis in both strong and weak forms
and to review separability theorems, so that the assumptions underlying
different utility functions chosen for the present study of demand

and the internal structure of those utility functions can be thoroughly

21
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investigated. (See Chapter IV for different utility functions chosen
for this empirical study of demand.) In addition, an in-depth compari-
son of an additive utility function to a completely generalized
utility function will be made in order to provide the theoretical
background to the development of the concept of separability and
reveal the significance of the concept of separability, both theoreti-
cal and empirical.

An additive utility function assumes that utility is cardinal
and additive. The cardinal hypothesis with independent utilities
places very severe restrictions on the preference field and the
empirical data and, hence, limits the field of its applicability. Its
strong implications, both theoretical and empirical, may possibly lead
to the replacement of an additive utility function by a completely
generalized utility function. The great increase in generality,
however, generates dissatisfaction because of the relative paucity
of its meaningful empirical implications. The theoretical solution
of this empirical issue has been sought through the application of
the concept of separability. Therefore, a comparison of an additive
utility function to a completely generalized utility function is
essential to a discussion of the concept of separability and will
aid the understanding of the significance of the concept of separa-

bility.

Theoretical Background to the Development

of the Concept of Separability

As observed in the introductory chapter, early contributions

to the theory of consumer behavior were characterized by the assumption
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that utility was measurable and a cardinal concept. Such a utility
function could be written as
.
(3.1) U= J U(x)
i=1
where U is a sub-utility function of the quantity of good X, and U
is the total utility of the whole collection of goods, xi's, and the
sum of separate utilities, U''s. In the function (3.1), the prefer-
ences of the consumer exhibit consistency and transitivity, because
its formulation employs "strong ordering" as the maintained preference
o o . 1
hypothesis (i.e., a set of goods, xi's, is strongly ordered).
The indifference differential equation of the utility function

(3.1) under the hypothesis of independent utilities may be written as

n
(3.2) du = J Uj (x;)dx; =0
i=1

where U, is the first order partial derivative of the utility function
U with respect to good X5 and a function of good X3 alone. Equation
(3.2) is always integrable in the effective region of a given commodity
space because the utility function (3.1) employs strong ordering hypo-
thesis and what corresponds to transitivity, in the mathematical theory,
is integrability.2 The general integral of the equation (3.2) will be

of the form

(3.3) V= U, (x;)dx;

1

nHes1 3

i

|
R
= ;{ Uy (x))dx; + { Uy(x,)dx, + ... +£ U (x )dx

Isee Section 3 in Chapter II and Sections 2 and 3 in Chapter III.

2. R. Hicks, op. cit., p. 23; W. Rudin, Principles of Mathema-
tical Analysis, (New York: McGraw-Hill Book Co., 1964), Chapter 6 en-
titled "The Riemann-Stieljes Integral'.
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Ui + 0Py + e 0P C

i

1,4

F(U)

where V is the total utility, a function of the utility function (3.1)
(or, alternatively, a function of the sum of '"n" sub-utility functions,
Ui's, of good Xs alone), and F is an additive function and R represents
the effective region of a given commodity space.

The function (3.3) states that even if the utility function
exists at all, it is by no means unique and any other function F(U) can
equally well be taken as the utility function. The fact that the uti-
lity function is indeterminate to this extent shows that it is a
function index of utility, and not a measure of utility.3 However,
even under the assumption that utility is an ordinal concept, the
additive utility function (3.1) can be justified if it is interpreted
as the normalized utility index of the function (3.3), which is
obtained only if the marginal rate of substitution between any two
independent goods depends on the quantities of those goods alone.4

Since the cardinal hypothesis with independent utilities was
a very severe restriction on the preference field, it generated dis-
satisfaction and led to contemplating the possibility that utilities
might be interdependent. That is to say, the marginal utility of

any good might depend not only upon the consumption of that good but

3R. G. D. Allen, "The Nature of Indifference Curves,'" The Re-
view of Economic Studies, Vol. 1 (1933-1934), pp. 110-121.

43ee Section 3 in Chapter III.
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also upon the consumption of any other good purchased. As a result,
the idea of a generalized utility function was introduced by F. Y.

Edgeworth:5

(3.4) ¢ = f(xl, Xgs <ets xn)

where ¢ is the total utility and f is an arbitrary function of the
quantities of "n" goods, xi's.

The difference between functions (3.1) and (3.4) is that the
utility function (3.4) concedes the interdependence between any pair
of goods, X and xj (i # 3), and the nonadditivity of utility functions.
According to the Edgeworth-Pareto definition associated with the uti-
lity function (3.4), a pair of goods are complementary, independent,
or substitutive, depending upon the sign of the second order partial

derivative of the utility function (3.4):

2

__9%¢
(3.5) fij - axiaxj

0fori#j (i,j=1, 2, ..., n).

AV

In case of the additive utility function (3.1),

32U

ij = 5;;3;; = 0 for i # j because the consumer goods, xi's, in (3.1)
are independent goods. In other words, any pair of goods are neither
complementary nor substitutive. Thus, the definition (3.5) appears
substantially realistic, and the generalized utility function (3.4)
seems to be of the greatly improved form in comparison with the addi-
tive utility function (3.1). The theoretical and empirical implications

of the definition (3.5) are investigated below.

First, the definition (3.5) depends on the notion of utility as

SF. Y. Edgeworth, op. cit., p. 97.
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a determinate function. Even if the definition assumes the existence
of the utility function, the function ¢ is not to be taken, in general,
as unique, that is, F(¢) can equally well be taken as the utility
function.

Second, the form and sign of fij in the definition (3.5) are

not determinate; in other words,

2
3 F( ) -t "
(3.6) MO PR M OINS

axiaxj

does not, in general, have the same sign as that of ¢ij in (3.5), even
though F'(¢), 93 and ¢j are assumed to be positive. For F''(¢) can be
either positive or negative, depending entirely upon the functional
form of F. Thus, the only case in which the second order partial deri-
vative in (3.6) is invariant in sign is when either ¢, or ¢j is zero,
i.e., when the individual consumer is saturated with one of the goods,
x; and X i#13).

‘tThird, even if ¢ij in (3.5) can be made determinate, its value
and sign vary according to the position of the individual consumer, i.e.,
according to the amount of the various consumer goods he happens to pos-
sess.6 It would seem either that Edgeworth and Pareto intended their
definition to apply only in the special cases when ¢ij preserves a uni-
form sign in all situations, or that they allowed a pair of goods fcr a
given individual to be complementary in one set of circumstances and

substitutive in another.7 In the former case the definition loses in

SR, 6. D. Allen, "A Comparison Between Different Definitions

of Complementary and Competitive Goods," Econometrica, Vol. 2 (1934),
Pp. 168-169.

"bid.
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generality, while in the latter case it does not fit in with the every-
day notion of the meanings of the terms "complementary" and "substitu-
tive" when applied to goods.8

It was from equations (3.4), (3.5) and (3.6) that the works of
Slutsky, Johnson, Hicks, and Allen9 proceeded to design the criterion
of complementary and sbustitutive goods, which are independent both of
the existence of a ‘utility function and of indeterminateness in a uti-
lity function, if it can be assumed to exist.

While some of the implications of the cardinal hypothesis with
independent utilities led to the rejection of the additive utility
function (3.1) and its replacement by a completely generalized utility
function (3.4), this in turn generated dissatisfaction because of the
relative paucity of its meaningful empirical implications. The solution
of this theoretical issue has been sought through the application of the
concept of separability, which is based on the strong and weak forms

of the preference hypothesis.

The Preference Hypothesis in Strong and Weak Forms

The demand theory, which is based on the preference hypothesis,
turns out to be nothing else but an economic application of the logical

theory of ordering.lo Therc are two forms of preference hypothesis--the

8Ibid.

9E. E. Slutsky, "On the Theory of Budget of the Consumer."” In:
Stigler and Boulding, Reading in Price Theory (Chicago: Richard D. Ir-
win, Inc., 1952), Vol. 6, pp. 27-56; W. E. Johnson, "The Pure Theory of
Utility Curves," The Economic Journal (December 1913), pp. 483-513; J.
R. Hicks, Value and Capital (Oxford: The Clarendon Press, 1968), Chap-
ters 1-3; R. G. D. Allen and J. R. Hicks, "A Reconsideration of the
Theory of Value," Econometrica, Vol. 1 (May 1934), pp. 196-221.

1OJ. R. Hicks, A Revision of Demand Theory, p. 19.
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assumption of consumer behavior according to a scale of preference. One
is the strong ordering hypothesis, and the other the weak ordering hypo-
thesis.

Given the collection of consumer goods, which is sought to be
put into an order, the first necessity is that any good X should be se-
lected as the basis, and, according to the relation which exists be-
tween X and the remaining goods, all goods other than X should be
arranged with respect to the basis X. It is at this point that the
distinction between strong and weak ordering should be drawn. If the
ordering is to be strong, all goods other than X must be placed either
on the left of X, implying that X is superior to all other goods, or
on the right of X, implying that X is inferior to all other goods.

As a result, those goods are partitioned into two mutually exclusive
commodity groups, one censisting of goods having a sort of relation

to the basis X, the other of goods having a different sort of relation.
That is to say, the two commodity groups must fulfill the following
preliminary condition of strong ordering:11

(1) Two commodity groups must include all goods other

than X;
(3.7)

(2) two commodity groups must not overlap, so that

some goods are in both groups.

Once the preliminary conditions of strong ordering are ful-
filled, it must be established that partitions with respect to differ-

ent bases are consistent with one another; in other words, two-term

consistency conditions and the transitivity condition must be fulfilled

llIb1d., p. 25.
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in order to achieve a final strong ordering. Two-term consistency
conditions12 are such that
(1) if Y is on the left of X, Y being a basis
different from the basis X, then X must be
(3.8) on the right of Y;
(2) if Y is on the right of X, then X must be
on the left of Y.
Even if two-term consistency conditions are fulfilled, for every possi-
ble pair of bases, the whole set of goods are not necessarily capable
of being put into an order in a straightforward unidirectional manner,
because there may exist the possibility of circular ordering. Hence,
in addition to the preliminary conditions and two-term consistency
conditions, the transitivity condition must be fulfilled:
If Y is on the left of X, and Z is on the left of
(3.9) Y, Z being a basis different from X and Y, then
Z is on the left of X.

An alternative interpretation of the transitivity condition in
terms of tvo-term consistency conditions is that if X is on the right of
Y, and Y is on the right of Z, then Y is on the left of X, and Z is on
the lett of Y (second consistency condition), then Z is on the left of
X (transitivity condition), then X is on the right of Z (first consis-
tency condition). As a result of the transitivity condition, there are
three nonoverlapping commodity groups. The same process can be continued
by introducing additional bases, until the whole set of goods are put in-

to an ordered relation. Thus, strong ordering depends upon the prelimi-

2ni4., p. 26.
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nary conditions, two-term consistency conditions, and the transitivity
condition.

If the ordering is to be weak, there may be goods other than the
basis X, which will be placed neither on the left of X nor on the right
of X in the ordering. This situation does not fulfill one or the other
of the preliminary conditions of strong ordering in (3.7); there is only
one preliminary condition of weak ordering, as against the two prelimi-
nary conditions of strong ordering. With weak ordering, there is a
further important deduction to be drawn from two-term consistency. It
is possible that X may be neither on the left of Y nor on the right of
Y, which is called '"neutral to Y" for brevity. The neutrality of tran-
sitivity is reversible, and it occurs with weak ordering, because, with
respect to any basis, the remaining goods can be partitioned into two
possibly overlapping commodity groups. Thus, in addition to the transiti-
vity condition (3.9), the neutralitf of transitivity can be deduced:13

If X is neutral to Y, and Y is neutral to Z,
(3.10)
then X is neutral to Z.

However, wholly unordered goods, which belong to the intersec-
tion of two overlapping commodity groups, cannot occur, because if X is
neutral to Y, and Y is on the lett of Z, then X is on the left of Z.
Hence, any good X which is not ordered with respect to Y is nevertheless
ordered with respect to such goods as are ordered with respect to Y.

The situation of strong ordering is described in Figure 1, in
which the qughtities of two goods, X and Y, are measured along the axes.

With given prices and income, the quantities available to the consumer

L31piq., p. 28.
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are limited by a budget line "aa'", and the available alternatives are
represented by points within the triangle 'a0a" and on the boundary of
the triangle. Suppose that the consumer is not affected by anything
else than current market conditions, and the choices he makes always
express the same ordering. With strong ordering, the assumption of
indivisibility (or discontinuity) of the goods is required, i.e., the

goods are available in discrete units.

Figure 1

STRONG ORDERING

Source: J. R. Hicks, A Revision of Demand Theory (London: The
Clarendon Press, 1969), p. 39.

If the available alternatives are strongly ordered, then the
consumer reveals his preference for the position A over any othar posi-
tion within the triangle a0a or on the boundary of the triangle. Thus,
under strong ordering the chosen position is shown to be preferred to
all other positions within and on the triangle only by assuming indivi-
sibility of the goods.

However, the strong form of the preference hypothesis cannot
be maintained if divisibility of the goods is assumed. With weak

ordering, one more assumption is needed in addition to divisibility:
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a positive marginal utility of the good. Suppose that good Y is
finely divisible, has a positive marginal utility, and the consumer
prefers a larger amount of Y to a smaller amount of Y, provided that
the amount of X at his disposal is unchanged. As seen in Figure 2,

any point on one of the vertical lines is an effective alternative.

Figure 2

WEAK ORDERING

Y
a
\A
B
p
S
q
0 a X

Source: J. R. Hicks, A Revision of Demand Theory (London:
The Clarendon Press, 1969}, p. 41.

But such alternatives cannot be strongly ordered, unless the whole
set of alternatives on one vertical line is preferred to the whole
set of alternatives on the next vertical line, and so on. For if
there are two alternatives, p and q, on the same vertical line,
which are such that p is preferred to r on the next vertical line,
while r is preferred to q , then an alternative, s, between p and q
which is indifferent to r can be found, so that strong ordering must
be abandoned. Moreover, it cannot be shown that the chosen position
on the line "aa'" is preferred over any other position which lies on
the same line, i.e., A is preferred over B, or B is preferred over A.

As observed above, the difference between the consequences
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of strong and weak forms of the preference hypothesis amounts to no
more than this: that under strong ordering the chosen position is
shown to be preferred over any other positions open to the consumer
and rejected, which lie within and on the triangle a0a, while under
weak ordering the chosen position is preferred over all positions with-
in the triangle, but may be indifferent to other positions on the
boundary of the same triangle.

A question arises as to which ordering of the preference
hypothesis the demand theory ought to remain based. But it must be
noted that the weak ordering is the less restrictive assumption. The
weak form of preference hypothesis implies most of the results of
demand theory, but does not imply the integrability conditions that
the matrix of substitution effects is symmetric, conditions needed to
construct a utility function.14 These conditions are, however, implied
by the strong form of the preference hypothesis; the strong form of the
preference hypothesis implies a consistent set of preferences, so that
the integrability conditions needed to construct a utility function are
met, if continuity (or divisibility) is assumed (i.e., the strong ordering

approach commits itself to discontinuity or indivisibility).ls

Separability

According to the separability hypothesis, there corresponds

to a commodity-wise partition, achieved by either strong or weak order-

14M. D. Intriligator, Mathematical Optimization and Economic
Theory (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1971), p. 165.

15

Ibid., p. 166.
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ing, a functional separability. A continuously twice differentiablc
utility function is functionally (i.c., strongly or weakly) separable
with respect to a commodity-wise partition, and, hence, can be written
with two or more of its independent variables (i.e., consumer goods)
grouped in an aggregate. The separability hypothesis was first advanced
by W. Leontief16 and M. Sono.17 Leontief showed that if F(xl, Xys x3)
is continuously twice differentiable, then there exists a function
¢(xl, xz) and a function G(¢, xs) such that

F(x)s Xy, Xg) = G{¢(xl, X5 XS)

if, and only if,

(3.11) S (F | /F )

X,
d

=0

where Fl and F2 are first order partial derivatives with respect to
X, and Xy, respectively.

Sono also derived the same results as Leontief's. But Leon-
tief's work was presented in the context of the theory of production,
while Sono's work in the context of the theory of utility. As observed
in (3.11), Leontief's functional separability is valid "locally" in the
neighborhood of a particular point; that is to say, Xz in (3.11) is
excluded from the preference field, and only two goods, ) and X,, are

left to choice, and, hence, the group of x; and X, is said to be locally

separable from the whole set of Xps Xy and X3 Thus, S. M. Goldman and

16w. Leontief, "A Note on the Interrelation of Subsets of
Independent Variables of a Continuous First Derivatives," Bulletin of
the American Mathematical Society, Vol. 53 (1947), pp. 343-350.

17M. Sono, "The Effect of Price Change on the Demand and

Supply of Separable Goods," International Economic Review, Vol. 2 (1961),
PP. 239-269.
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H. Uzawa examined Leontief's necessary and sufficient conditioms for
functional separability and, as a result, introduced separability theo-
rems which are proved ”globally".18

The following assumptions and notations are required for the
separability theorems introduced below.

(1) The utility function U(x) is a continuous mapping from the
set of all nonnegative commodity bundles onto the set of nonnegative
utility level with U(0) = 0; that is to say, the utility function U(x)
assumes ''one-to-one and onto" mapping, so that the utility function
has an inverse function.

(2) The utility function U(x) is continuously twice differen-
tiable and its symmetric Hessian matrix is negative definite, implying
that the utility function is strictly concave.

(3) The set N = {xl, Xoy ouny xn} is the collection of 'n"

2)

consumer goods; the set N = {N . Nr} with r < n is the class

1’ NZ’ ..
of "r" commodity groups, each consisting of at least one consumer good,
X3 (i=1,2, ..., n), from the set N.

Under the assumptions (1) and (2), the indifference surfaces
are convex toward the origin, and the demand functions for the consumer
goods are uniquely determined and stable within the effective region of
a given commodity space.lg The following theorems for weak and strong

separability were introduced and proved by Goldman and Uzawa.20

1SS. M. Goldman and H. Uzawa, "A Note on Separability in Demand
Analysis," Econometrica, Vol. 32 (1964), pp. 387-398.

19R. G. D. Allen, Mathematical Analysis for Economists (London:
Macmillan, 1938), pp. 509-513.

20

S. M. Goldman and H. Uzawa, op. cit.
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Definition 1 (weak separability): A utility function U(x) is
weakly separable with respect to a partition {NI, Nos e Nr} if the

utility function U(x) has the property

U. (xh
9 i
(3.12) g;;" (U;T;ﬂ = 0 for all x, JE N, and x ¢ Ny

(i,j,k=1, 2, ..., n;

where U; and Uj are the first order partial derivatives of U(x) with
Tespect to Xx; and xj, respectively; Nh is any one of "r" commodity

groups.

Theorem 1 (weak separability): A utility function U(x) is

weakly separable with respect to a partition {Nl’ Ny ooes Nr} if, and

2,
only if, U(x) is of the form
(3.13) u) = F ulxdy, 0¥y, ..., uROD)

where Ul(xl) (i=1,2, ..., r) is a sub-utility function of subvector

i c s . . .
X~ consisting of at least one Xy (i=1 2, ..., n); Fis a monotoni-

cally increasing function of "r" sub-utility functions, ults.

Definition 2 (strong separability): A utility function U(x) is
strongly separable with respect to a partition {Nl, NZ’ ceey Nr} if the
utility function U(x) has the property

s o [l
(3.14) o |lTr] =0 forx; e N, Xs € N

- Uj(x) , and Xy ¢ Nh U Nt

t

(h#t hyt=1,2, ..., 1).

Theorem 2 (strong separability): A utility function U(x) is
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strongly separable with respect to a partition {Nl’ N, o0y Nr} with

2’
r>2 if, and only if, U(x) is of the form

(3.15) u(x) = Fulexdy + 0263 + L.+ UT)

where F is a monotonically increasing function of the sum of "r' sub-
utility functions, each Ui being a function of subvector xi.

As observed in Definition 2 for strong separability, the con-
dition (3.14) reduces to the condition (3.12) for weak separability when
the whole set of '"n" consumer goods is partitioned into two subgroups,
Nl and N2 with r=2. That is to say, if r=2, then X; € Nl and X, € NZ’
and hence, xj € Nl' Therefore, X and xj must belong to Nl’ and X must
belong to N,. This means that strong separability implies weak
separability.

In Chapter IV, the internal structure of the chosen utility
functions will be analyzed through application of separability
theorems introduced above, while the implications of separability
restrictions on the parameters of utility functions will be examined

in Chapter V, in relation to demand elasticities and elasticities of

substitution derived from the chosen utility functions.



CHAPTER IV

DIFFERENT THEORETICAL MODELS UNDER SEPARABILITY

In empirical studies of demand functions under utility assump-
tion, a problem arises as to which of a number of alternative specifi-
cations of the theoretical model for a utility is to be regarded as a
correct one. On theoretical grounds, none of the models dominates
its competitors. The choice of specification must then be made on an
empirical basis: Which model performs best?1

Two issues involved are: (1) the choice of specification of the
theoretical model for a utility; and (2) the empirical verification of
that particular model in terms of its usefulness. These two issues are
equally important because if it is true that the chosen model ought to
be theoretically sound, then it is also true that its usefulness can be
measured in terms of its ability to explain facts. However, no microeco-
nomic data ever give an exact fit to linear or nonlinear forms of the
utility function since they are only an approximation to possibly complex
but unknown forms. Thus, the following functional forms for a utility
are selected to determine the most useful one which will yield a substan-

tially realistic picture of U.S. households' choices among electricity,

g, s. Parks, "Systems of Demand Equations: An Empirical Com-
parison of Alternative Functional Forms," Econometrica, Vol. 37
(October 1969), pp. 629-650.

38
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natural gas and fuel oil.

(1) Cobb-Douglas (CD for short) utility function,2

(2) CES utility function,3

(3) Uzawa's CES (Uzawa for short) utility function,4

(4) Sato's two-level CES (Sato for short) utility function,S

(5) Transcendental logarithmic (translog for short) utility

function.6

These utility functions are selected for three reasons. First,
the CD and CES are strongly separable utility functions, while the Uzawa
and Sato are weakly separable utility functions. The translog utility
function does not employ separability as part of the maintained hypothe-
sis, and it is the unrestricted (or generalized) functional form for
utility. The choice of these specifications will enable this demand
study to cover three possible cases: the case of strong separability,
the case of weak separability, and the case of neither strong nor weak

separability. Second, while there may be reasons to suspect the impli-

2P. H. Douglas, "Are There Laws of Production?,” The American
Economic Review, Vol. 28 (1948), pp. 1-41.

5¢. J. Arrow, H. B. Chernery, B. S. Minhas, and R. M. Solow,
"Capital-Labor Substitution and Economic Efficiency,' The Review of
Economics and Statistics, Vol. 63 (1961), pp. 225-249.

4H. Uzawa, "Production Functions with Constant Elasticities
of Substitution," The Review of Economic Studies, Vol. 29 71962),
Pp. 291-299.

3K. Sato, "Two-Level Constant-Elasticity-of-Substitution
Production Function," The Review of Economic Studies, Vol. 34 (1967),
pp. 201-217.

6L. R. Christensen, D. W. Jorgenson, and L. J. Lau, "Transcen-
dental Logarithmic Utility Function," The American Economic Review,
(June 1975), pp. 367-383.
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cations of the properties of any particular utility function, there is
no reason to assume a priori that this particular function is applicable
to the case for individual households. Third, nothing can be said
about the quality of the estimates of parameters if one, and only one,
function is selected a priori.

The primary purpose here is to derive the chosen utility func-
tions from the generalized utility function through application of
separability theorems, so that the internal structure of each of the

chosen utility functions will be investigated.

Strongly Separable Utility Functions:

CD and CES Utility Functions

Suppose that an arbitrary utility function of the quantities

demanded of three consumer goods is given:

4.1) U-= F(xl, X x3)

where U 1s the total utility, and F is an arbitrary function which is
27 and x3
represent the quantities demanded of fuel oil, natural gas, and electri-

assumed to be continuously twice differentiable. Let X X

city, respectively. To derive the three-good CD and CES utility func-
tions, assume that a set of three goods has ordering among themselves,
and is capable of being put into an ordered relation with the ordered
goods; that is to say, a set of three goods is strongly ordered. Then
in principle, there is given an ordinal utility measure (or a number),
and to each utility measure (or each number) there corresponds one and
only one good.

Because of the strong ordering hypothesis, utilities are inde-
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pendent of one another and, hence, additive. Thus, by Theorem 2 (strong

separability), function (4.1) can be written as

1 2 3
(4.2) U= F(xl, Xy x3) = G(U (xl) +U (xz) + U (XS))

where G is a monotonically increasing function of the sum of sub-utility
functions Ui (independent utilities), and each Ui is a monotonically
increasing function of the quantity demanded of one good X -

The three-good CD utility function can be derived from function
(4.2) Since sub-utility functions Ui in (4.2) are monotonically in-

creasing, define ults as logarithmic functions which are monotonically

increasing:
Ul(xl) = In elxil
4.3) U%(x) = In ezxz2
US(X3) = 1n 63x23

where Gi's and bi‘s are constants. Substitution of (4.3) into (4.2)

yields
1 2 3
U=G Ui(x;)) + U%(x,) + U7(x,)
b b b
- 1 2 3
= G(1n elxl + In 62x2 + In 63x3 )
(4.4) bl bz b3
= G(ln(616263 TXp Xyt Xg ))
b b b.
_ 1 2 3
= G(In(e X0 %" xg ))

where 6 = 916263. Since G is a monotonically increasing function, define

G as an exponential function which is monotonically increasing. Then,
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function (4.4) becomes

b b

b
- . l . 2 . 3 = l .
(4.5) U = EXP|In(8 xl X, x3 )} =9 x1 x2 x3

Function (4.5) is the three-good CD utility function. Since it assumes
strong separability, the CD utility function is the strongly separable
utility function. Furthermore, function (4.5) is linearly homogeneous
when by + by + by = 1.7

The three-good CES utility function can also be derived from
function (4.2). Since sub-utility functions Ui and function G are

monotonically increasing, define u' and G as power functions which are

monotonically increasing:

1, _ -p
U \Xl) = Glxl

2, -
US(xy) = 8yx, 7P
(4.6)
3 -
U (x5) = 8357
G = (a.U)P

where §;'s and p are constants, and a represents any level of utility

U. Substitution of (4.6) into (4.2) yields

@y P=5x"P.ss xz'p +§5x, P

171 2 33

(4.7) or 1
U=8 - (clxl’p +6,x, P+ 5.x . P) P

2 33 ot

, where 8 = a

Function (4.7) is the three-good CES utility function. Since it assumes

strong separability, the CES utility function is the strongly separable

7See the latter part of Section 3 in Chapter IV for the validity
of homogeneity restrictions on the form of the utility function.
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utility function. Furthermore, this function is linearly homogeneous.

Weakly Separable Utility Functions:

Uzawa and Sato Utility Functions

H. Uzawa, in his 1962 paper,8 proposed a generalization of the
n-good CES utility function. The characteristic of this function is
a hybrid of the CD and CES utility functions; that is to say, sub-
utility functions possess CES properties, and they are combined with
an overall CDutility function. K. Sato, in his 1967 paper,9 proposed
a function which generalizes Uzawa's n-good CES utility function; that
is to say, sub-utility functions possessing CES properties are combined
with an overall CES utility function. Thus, this function is called the
two-level CES utility function.

To derive the three-good Uzawa and Sato utility functions, as-
sume a partition of a set of three goods into two subgroups, in which
the subgroups are strongly ordered, but in which there is no ordering
within the subgroups. Thus, the set of three goods is weakly ordered.
Assume further that the one subgroup consists of X, alone, and the
other subgroup consists of X, and x3.10 Then, there is given a uti-
lity, and to each utility there corresponds one and only one subgroup.

Because of the weak ordering hypothesis, utilities corresponding
to the subgroups are independent of each other and, hence, additive.

Thus, by Theorem 1 (weak separability) and Theorem 2 (strong separabi-

8H. Uzawa, op. cit.

9K. Sato, op. cit.

10This type of commodity grouping is one of the possible cases
discussed in Chapter II.
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lity), function (4.1) can be written as
(4.8) U -=F(x,, x,, Xo) = G[Ul(x ) + Uz(x X ))
: 12 72> 73 1 22 73

where G is a monotonically increasing function of the sum of sub-utility

lisa monotonically increasing

functions Ui (independent utilities), U
function of the quantity demanded of good x,» and u® is a monotonically
increasing function of the quantities demanded of goods Xy and Xz

The three-good Uzawa utility function can be derived from
function (4.8). By Uzawa's definition, sub;utility functions Ui in
(4.8) possess CES properties. This implies that the subgroup of X, and
Xz is strongly ordered; and that there exist such utility functions as
U21 and UZZ’ and they are additive by Theorem 2 (strong separability).
Thus, function (4.8) becomes

U= 6(U' ) + UP(x,, xg)

(4.9)
= G Ul(xl) s 02 uPlxy) + Uzz(xs))}.

1 and U2 are, by Uzawa's definition, CES sub-utility functions

Since U

and combined with an overall CD function, define U and U? in (4.9)
as the logarithm of CES utility function:
-1

Ul(xl) =by + In(s, - (8,x,0) P),

(4.10) )

2 . . -p Py P
U%(x,, x5) = b, 1n(e2 (8,%, " + 8:x:7) )
where the definitions of U2 and U in (4.6) are substituted into U21
and u22 in (4.9). Since G in (4.9) is a monotonically increasing

function, define G as an exponential function which is monotonically

increasing. Then, function (4.9) becomes, by substituting (4.10) into
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(4.9),
1 1
- . . -p p . . -p -p p
u EXP[b1 In(o,-(8;x; ) 7} +byeln(B,y0 (8%, © + 85x577) ¥)
Py 113 ! P Py rlhbz
@.11) = (8008, T) F) Te(By6,x, T+ xg ) )
b 2
= gox. e(6.x.P Py P
60, (sz2 + 63x3 )
by by -3
where § = 9 + 0 .5 P Function (4.11) is the three-good

Uzawa utility function, which is a hybrid of the CD and CES functions.
Since it assumes weak separability (see (4.8)), the Uzawa utility func-
tion is the weakly separable utility function. Furthermore, this func-
tion is linearly homogeneous.

The three-good Sato utility function can be derived from func-
tion (4.9), which is weakly separable. By Sato's definition, sub-utility
2

functions U' in (4.9) possess CES properties. Thus, define Ul and U

in (4.9) as

1
vl =0 6h P
(4.12) 1
Uz(xz, X3) = 8, ° (szz’p + 63x3-p) P
where the definitions of U and u3 in (4.6) are substitutde into p2l
and U% in (4.9). Since u! and u? are, by Sato's definition, combined
with an overall CES function, define G in (4.9) as a CES function of
CES sub-utility functions, U1 and U°. Then, function (4.9) becomes,

by substituting (4.12) into (4.9),
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1 1
U=6(0,-(8;% Py P, 6, (8,%, F + 63x3'pJ- 5)

21 P S
(4.13) = o0e{a (6,6, F) P 4 a(0,06,0, P v 6Ty B)T Y

w_1

=8+ (byx, ™"+ byt (6,%,7F + 6 x PP Y

-
where b, = alel-wd P and b, = azez-w

Function (4.13) is the three-good Sato utility function, which
is weakly separable (see (4.8)). Furthermore, this function is linearly

homogeneous.

Transcendental Logarithmic Utility Function

The transcendental logarithmic (translog for short) utility func-
tion proposed by Christensen, Jorgenson, and Laull is nothing but an
approximation by a Taylor series expansion about a fixed point different
from zero to a generalized utility function in logarithmic form of n
variables. That is to say, it is a generalized Taylor series expansion
in n variables, truncated after the second order term for an arbitrary
function of n variables.

To see this, suppose that an arbitrary utility function of the
quantities demanded of n consumer goods, xi's i=1,2, ..., n) is
given:

(4.14)  UX) = F(x}, x5, ..uy xp)

where x is a commodity vector consisting of n goods. Applying loga-

rithmic transformation to (4.14) yields

1y, R, Christensen, D. W. Jorgenson, and L. J. Lau, op. cit.
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(4.15) In U(x) = G(In x, In Xys wees In X,

1’
where G is a logarithmic transformation of F in (4.14).

Assume that the utility function U(x) is continuously twice
differentiable in the effective region of a given commodity space.
Then, the logarithmic utility function (4.15) can be approximated by

a Taylor series expansion about a fixed point different from zero, i.e.,

(In il, In iz, veey In X ):

n
In U(x) = G(ln il, In ’_‘2’ ..., In ;n)
)
* (In x; - In X.)
i=1 1n Xi 1 i
(4.16)
, b 2 ) )
t3 Zl le T;’;‘*Ta-;; (In Xi~ln xi)~(ln xj-ln xj)

+

higher order terms.

Truncating (4.16) after the second order term and evaluating

itatlnx#0 (i.e., ln x = In il = In 22 =...=1n in) yields

"

n
In U(x) = Inay + izl a;+(In x; - In X)

1 n n
+ 7. 7 Z B .*(In X; - In X)+(ln X, - In X)
? n
=Ilna + ) a-lnx, +Inx- | (-a)
0 i=1 1 1 ic1 i
(4.17) , non
+ 7. Z Z Bijvln xi-ln xj

1j=
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n L " ;0
+ ] InxInx|5 ] B..+> J B
=1 ZyE U2y M
n n
+ %-(ln i)z . Z Z B1
i=] j=1 )
n
= In a, + _Z a; + Inx; +a, - 1nA
i=]
- n
+2 1 1 Bij + Inx; « In x5 + ] Cpclnx; - InA
i=] j= 1=]
1 2
+30Cpy v (InA)
where In a,; = G(1n xl, In xz, , In xn) ,
LY
1 aln X. (1=1, 2, ,n) ’
i
2
_ 3% .
1J = 3ln Xialn xj (133 l: 2, seey n) >
(4.18)
n n n
a, = ) (-a;),InA=lnx,C,= 7] ] B.., and
Aoyt Mgz Y
, . " n
Cch =35 J B+ 35 z B,. = Z B.. fori=1, 2 n
A . 2 b ’
W20 1 2y kg

(since Bij's are the second order partial derivatives which

are symmetric).

Function (4.17) is the translog utility function, which is
just a generalized Taylor series expansion in n variables, truncated
after the second order term for an arbitrary utility function of n
variables, and evalauted at a fixed point In x different from zero.

However, it is both possible and valid to evaluate the truncated Taylor
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expansion (4.16) at ln x = 0, because a set of data can always be
scaled such that the actual data points include any points of expan-
sion. If function (4.16) is truncated after the second order term
and evaluated at In x = 0, then the translog utility function (4.17)
will be of the form

n
} 1
(4.19) InU(x) = Ina; + izl a;-lnx; + 3 A

1

[ [ =1
|~ 3

B..+1ln x.-1n x.
1j= )
which is quadratic in the logarithms of the quantities demanded of n
consumer goods X;'s. Function (4.19) is the simplified version of the
translog utility function (4.17); both functions in (4.17) and (4.19)
are the translog utility functions. Therefore, this empirical demand
study will employ function (4.19) as the translog utility function,
instead of function (4.17).

The three-good translog utility function will be of the form

3
] Bi:eln x;+1ln x, .
1j=1 ¥ 1

n &~ G

(4.20) InU(x) = In ay + g a.-1n X; * % _
=] i
As observed in (4.17) and (4.19), restrictions implied by
homogeneity and separability are not imposed on the form of translog
utility function, while the CD, the CES, the Uzawa, and the Sato utility
functions employ homogeneity and separability as part of the maintained
hypothesis. Since homogeneous utility functions are selected for this
demand study, a question arises as to the validity of homogeneity re-
strictions, which are a very severe restriction on the preference
field and cn the form of the utility function.

In the traditional approach to demand analysis, the additive
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and homothetic utility functions have played an important role in
formulating the following tests of the theory of demand. If the uti-
lity function is homothetic, expenditure proportions are independent
of total expenditure.12 If the utility function is additive and
homothetic, elasticities of substitution among all pairs of goods
are constant and equal.13 An example is a linear logarithmic utility
function which is both additive and homothetic and employed in the

demand studies by H. Wold and R. Stone.14

In their 1975 paper,15

L. R. Christensen, D. W. Jorgenson,

and L. J. Lau have developed tests of the theory of demand that do not
employ additivity or homotheticity as part of the maintained hypothesis.
For this purpose they introduce new representations of the utility
function: the '"direct" and "indirect" translog utility functions.

The direct translog utility function is quadratic in the logarithms

of the quantities demanded of n goods, and, hence, exactly identical

to the translog utility function in (4.19). Employing parallel treat-

ment, the indirect translog utility function is defined as quadratic

in the logarithms of ratios of prices to total expenditure:

121¢ the utility function is homothetic, it can be written as
Iny-= H[G(ln X{ in Xy, «.., In xn)), where G is homogeneous of degree

one and H is a monotonically increasing function.

13A. Bergson, "Real Income, Expenditure Proportionality, and
Frisch's New Methods," The Review of Economic Studies, Vol. 4 (1936),
pp. 33-52.

14H. Wold, Demand Analysis: A Study in Econometrics (New York:
McGraw-Hill Book Company, 1953); J. R. N. Stone, Measurement of Con-
sumers' Expenditures and Behavior in the United Kingdom, 1920-1938,
(London: Oxford University Press, 1954), Vol. 1.

15L. R. Christensen, D. W. Jorgenson, and L. J. Lau, op. cit.
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P.

n P, P.
(4.21) InV=1Ina, + ) a.-ln-

1 1 . 1 J
_—+ B..*In — « 1ln —=-
0 1 1 M 2 i1 j= 1) M M

| o~
[ =]

where M is total expenditure, and pi's are prices of consuﬁer goods.
Furthermore, they have exploited the duality between the direct and
indirect translog utility functions, and presented statistical tests
of restrictions on the form of the utility function implied by addi-
tivity or homotheticity.

A statistical test is made of the validity of restrictions
on the direct and indirect tramslog utility functions (i.e., functions
(4.19) and (4.21)) implied by linear homogeneity, given that they are
homothetic. The test statistics are computed on the basis of the
likelihood ratio--the ratio of the maximum value of the likelihood
function with restriction to the maximum value of the likelihood
function without restriction. The computed values of test statistics
for the direct and indirect translog utility functions are 1.47 and 4.73,
respectively. At a level of significance of 0.01 with one degree of
freedom the critical value is 6.63. Since the critical value is
greater than the computed values of test statistics, the null hypo-
thesis that linear homogeneity is valid is accepted. Furthermore, the
result from the test leads to the conclusion that the direct translog
utility function is homothetic (or linearly homogeneous) if, and only
if, the indirect translog utility function is homothetic (or linearly
homogeneous), and, hence, the duality between them is established.

Thus, both functions, direct and indirect, represent the same prefer-

16The empirical results are based on time-series data (1929-
1972) which include prices and quantities of the services of consumers'’
durables, nondurable goods, and other services.
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ences.17

Throughout this dissertation, linear homogeneity is thus
employed as part of the maintained hypothesis, and restrictions im-
plied by linear homogeneity are imposed on the translog utility function
(4.19). And, due to the duality established between the direct and
indirect translog utility functions, a system of demand equations

will be derived from the former, instead of the latter. (See Chapter

V.)

Taylor Approximations to the Chosen Utility Functions

A major advantage of using the translog utility function in
(4-19) is that a system of demand equations can be derived in forms
suitable for econometric testing. Since the translog utility function
is a generalized Taylor series expansion truncated after the second
order term, Taylor approximations to other utility functions will be
of the same form as the translog utility function in (4.19). The
only difference between them is that the coefficients of the Taylor
approximation to one utility function are different from those of
Taylor approximations to other utility functions. In other words,
Taylor approximations to chosen utility functions other than the
translog utility function are nothing but the constrained translog
utility function. Thus, a system of demand equations derived from
the translog utility function can be treated as systems of demand
equations derived from other utility functions, provided that appro-

priate restrictions are imposed on parameters of the translog utility

17This was theoretically proved by L. J. Lau. See L. J. Lau,
"Duality and the Structure of Utility Functions,' Journal of Economic
Theory, Vol. 1 (1970), pp. 374-396.
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function. (See the latter part of this section, Section 1 in Chapter
V, and Table 0-2 in Chapter VI.) Accordingly, econometric testing for
utility functions other than the translog utility function can also
be performed, using estimates of parameters of the translog utility
function and imposing appropriate parameter restrictions on them.
(See Section 1 in Chapter V and Table 6-2 in Chapter VI.)

The chosen utility functions will be approximated by a Taylor

series expansion about ln X; = 0 (i =1, 2, 3), paralleling the

treatment of the translog utility function in (4.19).18

(a) Taylor approximation to the CD utility function (4.5):19

3
(4.22)  InU(x) =Ine6 + iz=l by » Inx, .
(b) Taylor approximation to the CES utility function (4.7):

2 13 2 2
InU(x) = 1ln 8 + 'Z 6.7Inx, + > Z_ pr(8; - §;)+ (In x;)
i=1 i=]
(4.23)
;33
+ = Pes:ef:oln x.01n x; .
2iz=l ) R A
i#j

(c) Taylor approximation to the Uzawa utility function (4.11):

3
InU(x) = In ¢ + bl « In X; + b2 . 'Z Gi e In X,
i=2
3,
1 2
-5 (pb 5,8, In x,
(4.24) 2 2"%2"%3) izz( i

18Logarithmic transformation is applied to the chosen utility

functions prior to Taylor approximations.

19As seen in (4.22), no appeal to approximation by a Taylor
series expansion is required.
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(d) Taylor approximation to the Sato utility function (4.13):

InU(x) = In 6 +b, » In X+ b2 . : 6. * In Xg

1 i

0Nt~

2

1 2
5" b2 . [w-bl-(ln xl) + 62 . (p°63 + w-bl-Gz)

2

2
(In x))< + 63 © (pS, ¢ weby*82) ¢ (In Xg) ]

(4.25)
+ w-b1°b2°62 * In X)* In X,

+ w'bl'b2'63 + In x; * 1n X3

+

b2-62-63 *(p-wby) - Inx, - Inxg .

The derivation of Taylor approximations to the chosen utility
functions are contained in Appendix A. Functions (4.22), (4.23),
(4.24), (4.25), and (4.20) are the alternative functional forms for
the CD, the CES, the Uzawa, the Sato, and the translog utility func-
tions, and they will be used to derive a system of demand equations.
It must be noted that the alternative functional forms for the CD,
the CES, the Uzawa, and the Sato utility function are nothing else
but the constrained translog utility function. In other words, they
are derived from the translog utility function (4.20) by imposing re-
strictions implied by linear homogeneity and separability on the trans-
log parameters and by identifying the restricted translog parameters

with the original parameters of other chosen utility functions.



CHAPTER V

DEMAND UNDER HOMOGENEITY AND SEPARABILITY

To build an econometric model of U.S. households' demand for
energy fuels, the (direct) translog utility function employs linear
homogeneity but not separability as part of the maintained hypothesis,
while other chosen utility functions embody both linear homogeneity
and separability in their systems of preferences.l As discussed in
Chapter IV, the alternative functional forms for utility--Taylor ap-
proximations to the chosen utility functions--will be used to derive
the system of demand equations. However, it is not necessary to derive
the demand equations separately from each of alternative forms. What
is required is to derive the system of demand equations from the
translog utility function (4.19) and utilize it as the system of demand
equations for other chosen utility functions, taking into account

parameter restrictions implied by separability.2 This is the very

lFor this demand study, the CD utility function is assumed to
be linearly homogeneous.

2The translog utility function (4.19) is treated as an alter-
functional form, due to the fact that it is a Taylor approximation to
a generalized utility function. This estimating method was suggested
by E. R. Berndt and L. R. Christensen. See E. R. Berndt and L. R.
Christensen, "The Translog Production Function and Factor Substitution
in the U.S. Manufacturing, 1929-1968,'" Journal of Econometrics, Vol. 1
(1973), pp. 81-113.
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reason that the Taylor Approximation is preferred, particularly in

this demand study.

A System of Equations for Budget Shares3

The neoclassical problem of the household is that of choosing
a commodity bundle, given the utility function in (4.20) and given

the budget constraint:

(5.1) max in U(x) subject to px SMand x 20
where
) S
InU(x) = Ina, + a. « lnx. + = B...ln x.ln x. ;
0 a1t o2y g5 M
(5.2) xl} P

X=Xl 3 P =Py 3 M= Pix) +pyXy ¥ PoXg

p

X5 Xy and X; are the quantities demanded of fuel oil, natural gas,

electricity, respectively; P;s Py, and ps are prices of fuel oil,

natural gas, and electricity, respectively; and M is total expenditure.
Differentiating In U(x) in (5.1) with respect to In X and

rearranging gives

(5.3 Qi. e lnx., i=1,2,3

3Dr. C. K. Liew, Associate Professor of Economics, the University
of Oklahoma, gave valuable assistance to the author in the completion of
this section.

41t is assumed in Chapter IV that the translog utility function
is continuously twice differentiable, so that the Hessian matrix of
this utility function is symmetric. See Taylor approximations.
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By the rulc of differentiating the logarithmic function with

respect to variables in the logarithms, function (5.3) can be written

as

0 Y X.
dnU _ U _ 3y i .
(5.4) A X, " i=1, 2, 3.
X

U
;. oX. U’

1

When utility U is maximized subject to the income constraint,

the consumer will spend his income so that
(5.5) T = }\P. N i= 1, 2, 3

where A is the Lagrangian multiplier. Substituting (5.5) into (5.4)

yields

X.
aln U = p. i

(5-6) 3ln X i u

Since the translog utility function employs linear homogeneity
as part of the maintained hypothesis, Euler's theorem holds for any

values of STRY) and Xz on a linearly homogeneous surface:

- U , du oU
(5.7) U(x) = xl Bxl + Xy E + Xg e EFG .

Substituting (5.5) into (5.7) yields
3
(5.8) U(x) = AX; * P} + AXy * Py + AXg = Pz = A Z X; *p; =M.

Then, by substituting (5.8) into (5.6), function (5.6) can be written as

. X.
pl 1

3ln U = —y— » since U(x) = M .

=Ap, .
aln xi 1

(5.9)

> ta
x|,
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Accordingly, substituting (5.9) into (5.3) yields

Mn U _ Yi%i -
(5-10) ——-aln x-; = —M ai + J

U | . i = .
, Q1J n xJ , 1 1, 2, 3

[ ace N3]

Function (5.10) is the system of equations for budget shares such that

P1Xg
M- 3t Qp cInxg ¢ Q,y c Inxy + Qg0 In xg
Po%,
(5.11) VI QZl « 1In X, ¥ Q22 + In Xy * Q23 + In Xz
P3X3
M3t Qg Inxp Qg s Inxy 4 Qg v dn xg

pP:X.
where —%ri is recognized as the budget share spent on good X; . Hence,

a complete econometric model for the (direct) translog utility function
is provided by three equations for the budget shares, as scen in
(5.11).

Restrictions on the parameters of equations in (5.11) implied

by linear homogeneity are:

] ;
a, =1 : Q.=0, j=1,2 3;
i=1 * i=]
(5.12)
;
Q.=0, i=1,2,3
=1 M

The logarithm of the (direct) translog utility function is
continuously twice differentiable in the logarithms of the quantities
demanded, so that the Hessian of this function is symmetric. Thus,
the parameters of equations in (5.11) satisfy equality and symmetry

restrictions, in addition to restrictions in (5.12):

(5.13) Qij = jS fori #j (i,j=1, 2, 3).
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Hence, the system of equations in (5.11) for the (direct) translog
utility function requires parameter restrictions in (5.12) and (5.13)
implied by linear homogeneity, equality, and symmetry. However, the
system of equations in (5.11) for the CD, the CES, the Uzawa, and
the Sato utility functions requires at least one restriction implied
by either strong separability or weak separability, in addition to
restrictions in (5.12) and (5.13).

One additional restriction is required for the Sato utility

function:
(5.14) a, - le =ag e le .

Two additional restrictions are required for the Uzawa utility
function:

3 Q333" Qs

(5.15) . _ . _ . _ B
3, le = a3 le =0 implies le = le =0 .

Two additional restrictions are required for the CES utility
function:
3 Q3 =23 Q.
(5.16)
33 Qpp = 3y Q3 -
Three additional restrictions are required for the CD utility

function:

3 - Q3 a5 Qy.
(5.17) ag *+ Q), = a, * Qs >

Q2 =Q3=Q;=0.
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The paramcters of the behavioral equations (5.11) for each
of the chosen utility functions will be estimated, taking into account
the parameter restrictions outlined in (5.14), (5.15), (5.16), and
(5.17). A summary of the parameters which are to be estimated is

presented in Table 6-2 in Chapter VI.

Demand Elasticities and Partial

Elasticities of Substitution

The purposes here are: (1) to obtain the theoretical results
on the Hicks-Allen partial elasticities of substitution for each of
the chosen utility functions, using the definition of the Hicks-Allen
partial elasticity of substitution and the system of the behavioral
equations for budget shares in (5.11); (2) to obtain the theoretical
results on price-, cross-, and income-elasticities of demand for each
of the chosen utility functions and express those results in terms of
the Hicks-Allen partial elasticities of substitution and the budget
shares; and (3) to obtain the theoretical results on the price elas-
ticities of the compensated demand--Slutsky's price elasticities of
demand--for the translog utility function.

The Hicks-Allen partial elasticity of substitution between

two goods, x; and xj (i # j), is defined as5

. X\ Up * xUp + eee + x U . Eii
ij XX D ’
(5.18) J
°ij = °ji fori#j (d,j=1, 2, ..., n)
5

R. G. D. Allen, Mathematical Analysis for Economists (London:
Macmillan, 1938), p. 512.
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where Ui is the first order partial derivative of the (direct) trans-
log utility function with respect to X;» Dij is the determinant of the
cofactor matrix of the element Uij of the negative definite bordered

Hessian matrix of U(x), and D is the bordered Hessian determinant such

that
0 U1 U2 Un
Ul Ull U12 Uln
D=1U, Uy Uy Uon
Un Unl Un2 Unn

The chosen utility functions discussed in Chapter IV are
strictly quasi-concave homogeneous utility functions.6 Since the
duality between the direct and indirect forms of the utility function
is established (see p. 51), it follows that a strictly quasi-concave
homogeneous direct utility function is strongly (weakly) separable
with respect to a commodity-wise partition if, and only if, the in-
direct utility function is strongly (weakly) separable price-wise.7
Berndt and Christensen investigated the relationships between the

Hicks-Allen partial elasticities of substitution and separability,

bstrict quasi-concavity is a condition which is equivalent to
the utility function having convex indifference surface. In fact, for
any member of the translog family there exist configurations of goods
such that neither monotonicity nor convexity is satisfied. This
follows simply from the quadratic nature of the translog function (i.e.,
a Taylor approximation). On the other hand, there are regions in a
commodity space where these conditions are satisfied. See E. R. Berndt
and L. R. Christensen, op. cit. :

7This was proved by L. J. Lau. See L. J. Lau, op. cit.
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and introduced the following three theorems:8

Theorem 3: A strictly quasi-concave homogeneous direct utility
function and its (dual) indirect utility function are weakly separable
with respect to a partition {Nl, Nys ey Nr} if, and only if,
ik = 95k for i # j # k and for Xi» Xj € Neo e Ny (h=1,2, ...,

T).

Theorem 4: A strictly quasi-concave homogeneous direct utility
function and its (dual) indirect utility function are strongly

separable with respect to a partition N, N, s Nr} if, and only

2’
if, o5 = o5k for i # j # k and for X; e Nps X5 € Ni» and x € N N,

(h#t:ht=1,2, ..., 1).

Corollary to Theorem 4: For any strictly quasi-concave homo-
geneous utility function and its (dual) indirect utility function
with each good or price forming its own subset, strong separability
with Tespect to a partition {N,, Ny ooy Nr} is necessary and suffi-
cient for all Hicks-Allen elasticities of substitution °ij fori#j

to be equal.

The CD utility function requires that the Hicks-Allen partial
elasticities of substitution are all equal to unity by Theorem 4 and

its Corollary and because of the assumption of linear homogeneity:
(5.19) 015 = 0y3=0p3=1.

The CES utility function requires that the Hicks-Allen partial

85. R. Berndt and L. R. Christensen, op. cit.
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elasticities of substitution are all equal by Theorem 4 and its Corolla-
ry:

(5.20) O1p 03 =0

By Theorem 3, the Uzawa utility function requires that

5.20) o, =051,

since the Uzawa utility function is a hybrid of the CD and CES func-

tions.
By Theorem 3, the Sato utility function requires that
(5.22) 0)p =03 -
The income-elasticity of demand for a good X4 is defined a59
M . Efi i x1U1 + x2U2 + ...+ xnUn . Ei
X. oM X. D
(5.23) ! 1

i=1,2, ..., n)

where D4 is the determinant of the cofactor matrix of the element Ui
of the negative definite bordered Hessian matrix of U(x), and D is
the bordered Hessian determinant (see (5.18)). Since the chosen utili-
ty functions are linearly homogeneous, the income-elasticity of demand
for any good X, (i=1, 2, 3) is unity, i.e., the consumption of each
good increases in the same proportion as income.

The price- and cross-elasticities of demand for a good xj
can be defined in terms of the Hicks-Allen elasticity of substitution

in (5.18) and the income-elasticity of demand in (5.23):10

9R. G. D. Allen, op. cit., p. 520.

P1bid., pp. 510-513.
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(5.24) ]
(i,j =1, 2, > 1)
i*i

where ki =

M
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X,
M j M 9x.
—_— ___) =k. *0.. - — )
xj oM i 1) xj M

is the budget share spent on a good X; .

The price- and cross-elasticities of demand implied by separa-

bility are as follows:11

(1) The CD utility function

o 9X.
(5.25) - =2 =
i P

-1 fori=j

(1,j =1, 2, 3).

0 fori#j

(2) The CES utility function

-o* « (1 - ki) = ki fori=j,

k.« (o* - 1) for i #

P: 9X.
(5.26) xl R
i °Pi
(i,j=1,2,3)
where ¢* = 019 =013 = 053 (see (5.20)).

(3) The Uzawa utility function

( -l1fori=j=1,
-(kl + kz + k3 . 023) fori=j=2,
p. ax. -(k1 + k2 * Ot ks) fori=j=3,
(5.27) 2.3 ..
X:  3p: 0 fori,j =1, 2,
J 1 :
0 fori,j =1, 3,
k1 . (cij -1)fori#jandi,j=2,3.

lgee Appendix B for the

derivation of the price- and the cross-

elasticities of demand implied by separability.
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(4) The Sato utility function

[(-o** . (1=k) -k fori=j=1,
- * 0 0 - i =4 =
b, ifi (kl 1t k3 23) k2 fori=j=2,
(5.28) _-..Bp-= oL
j i -(kl T op3t k2 . 023) - k3 fori=3=3,
| ki . (qij -1)fori#jandi,j=1, 2,3
where g** = 015 % 03 (see (5.22)).

(5) The translog utility function

P.  9X.
(5.29) ;f—-a—p%=ki- (035 = 1) for i #jand i, =1, 2, 3
] 1

which is obtained by imposing linear homogeneity, but not separability,
on the definition (5.24).

Using price-, cross-, and income elasticities of demand, the
price elasticities of the compensated demand--Slutsky's price elasti-
cities of demand--can be computed:

X, 9X, 3X.
(5.30) =L= (L comp = %i (mJ-) (the Slutsky equation)

3p.  “ap.
! ! i,j=1, 2, 3

9X. 9X.

where —L is the total effect of a change in price on demand, ( J)

9P api comp
is the substitution effect of a compensated change in price on de-
X
J

mand, and X; * (§M_) is the income effect of a change in income on

P.
demand. Multiplying (5.30) through by 'xi and multiplying the last

J
. M
term on the right by M
Pi %% Py K Pi M (a"j)
_. e 7 = _'_ . (a ) . __. o __ a___
; api xJ p; - comp 1 xJ M M



(4]

(5.31) _ (Ei . 3xj pixé v X

Y
xj api comp xj M

This is the Slutsky equation which is expressed in terms of the price
and income elasticities, and it states that the price elasticity of
demand equals the price elasticity of the compensated demand less the
corresponding income elasticity of demand multiplied by the proportion

of the total expenditurc spent on x;. From (5.31):

e N S BN s SO I §
xj api comp xj api M X; oM
(5.32) p;
=;(—"a-— k1 i-=1,2 3,
i

since the income elasticity of demand is unity. Equation (5.32) is
the price elasticity of the compensated demand (or Slutsky's price

elasticity of demand).

Estimation
The behavioral equations in (5.11) for budget shares generated
by the (direct) translog utility function are estimated by the method
of Zellner's efficient least-squares (ZELS for short), using restric-
tions in (5.12) and (5.13) implied by linear homogeneity, equality,
and symmetry.12 Then, on the basis of the estimates of the parameters
of the behavioral equations for the translog utility function, the

parameter estimates of the behavioral equations for other chosen utili-

ty functions are derived, taking into account the parameter restrictions

12A. Zellner, "An Efficient Method of Estimating Seemingly
Unrelated Regressions and Tests for Aggregate Bias,' Journal of the
American Statistical Association, Vol. 57 (June 1962), pp. 348-368.
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outlined in (5.14), (5.15), (5.16), and (5.17). ‘The estimation is
based on time-series data which show prices and quantities of fuel oil,
natural gas, and clectricity for 1937-1970, and there are thirty-
four observations for each behavioral equation.13

The ZELS method is an application of the generalized least-
squares estimation, which occurs in the estimation of a group of
euqations. To apply the ZELS method, two conditions must be fulfilled:
(1) the equations do not have the same list of regressors: and (2)
there must be nonzero correlations between disturbance terms in two
OoTr moTe equations.l4 If these two conditions are fulfilled, then
the ZELS estimators will be asymptotically more efficient than single-

15 even if

equation least-squares estimators. According to Zellner,
the correlation in the second condition is unknown, an estimate of
the correlation from an equation-by-equation application of the ordi-
nary least-squares is quite likely to improve the efficiency of esti-
mation. On the other hand, if the first condition is not fulfilled,
the ZELS estimators will collapse to yeild single-equation least-
squares estimators (OLSQ estimators) even when the second condition

is fulfilled. As seen in (5.11), the system of the behavioral equa-
tions does not satisfy the first condition, because the equations have
the same set of explanatsry variables {i.e., in X; i=1, 2, 3.

An exceptional case to which the ZELS estimators are not

13ihe data are contained in Appendix C.

4y, Johnston, Econometric Methods, 2nd ed. (New York: McGraw-
Hill Book Company, 1972), p. 238.

152, Zzeliner, op. cit.
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applicable is, however, the one whcre the sct of equations have the
same list of regressors and there are no restrictions on the regression
coefficients.16 That is to say, if there arc restrictions on the
regression coefficients, the ZELS estimators will be applicable even
when the first condition is not fulfilled. Now that the linear homo-
geneity and symmetry conditions in (5.12) and (5.13) have been imposed
on the coefficients of the behavioral equations in (5.11), the ZELS
estimators are applicable to the system in (5.11) and can realize a
gain in efficiency by taking into account the correlation between the
disturbances. Hence, the ZELS estimators are preferrcd over the or-
dinary least-squares estimators (OLSQ).

th

Suppose that the i~ behavioral equation in the system (5.11)

is
(5.33) Yi = Xi . Q.1 *ug, i=1,2,3.

Then, the system of the behavioral equations can be set out in matrix

th

notation: Letting M; be total expenditure for the i™" year, and
n= 33,17

t ) Yy !

Y, X, 0 0 Q uy
(5.34) Yol =0 X 0l Q)+ |y,

‘.YS lo 0 X QSJ ug
where

16

E. R. Berndt and L. R. Christensen, op. cit.

17There are thirty-four observations, but they are reduced to
thirty-three observations, due to the data transformation. This is
explained in the next section.
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Using the estimates of the variance-covariance for the dis-
turbances, u;'s, in (5.34) obtained from the single-equation least-
squares residuals and, also, using restrictions in (5.12) and (5.13),
the constrained ZELS estimators, Q*, can be obtained:18

loem vv ~lyy-1.,1-
=+ LR R L0 R) M - RY

(5.35)

ven = Al ot e 8 Al o

where r is a known column vector of order 7x1 (the number of restric-

tions) and R is a known matrix of order 7x12 such that

18The method of Lagrangian multipliers is applied. See J.
Johnston, op. cit., pp. 157-158.

!



(1) (1 0 0 01 000 100 0
0 01 110 000U0O0TUO0TU0O
0 000001110000

0 00 100-10000200
0 000 10000O0-100
) 0 00000011 0 O0-10
(5.36) (X, 0 0]
X=10 X, 0] (see (5.34)) :
0 0 X
Jlp g2, (13

z*'l = 521.1 s22,; 8.1 , which is the inverse matrix

32 33.1

lssl.I s %I s

of the estimates of the variance-covariance for the disturbance terms,

ui's, with the identity matrix of order 4x4; X' is the transpose of

1

X matrix; A =1 - (X'X)-IR'(R(X'XJ-IR']- R; Q is the unconstrained

ZELS estimators such that

v 1 12 13 y-1 3 1j s
( [} [ ( v
Ql s )(1 X1 s Xl'X2 s )(1 X3 j£1 s )(1 Yj
N = .2t 22 23 132
= Q, SRy ST, ST X j§1 s XZ‘Yj
31 32 33 3 33
LQSJ Ls Xs')(1 s x3'x2 s X3'XSJ \jgl S XS'YjJ

and Qi (i=1, 2, 3) is the column vector of order 12xl1 such that

T 21 (%
Q= {Qal » Q= |y » G = {4,

Qs Q3 Qs
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(see (5.34) for X; and Yi); and V(Q*) 1s the variance-covariance ma-
trix for Q*.
F-statistics for testing overall homogeneity (i.e., HO = Qi =

Q2 = Qg where Hy is the null hypothesis) is given by

- T-V(Q*)C' (C-V(Q*)-C') "tc.v(Q¥)-T! . (n-m)

(5-37) Fq’n_m Y'Y - T.V(Q*).Tl q

where m is the number of independent variables; q is the number of
restrictions; T = Y'Z;lx and T' is the transpose of T; C is such that
I -I o0
C-= » I and 0 being the identity and null matrices of order
0 I -I
4x4, respectively. F-statistics for testing the hypothesis of linear
homogeneity can be obtained by replacing C matrix in (5.37) with R

matrix in (5.36).19

Data Description

The consumption of different types of energy fuels consumed
in households, to a large extent, is governed by the stock of home
appliances in existence. To the extent that these appliances are not
replaced, there is a "committed demand" for a particular fuel. But
some appliances will be replaced and new ones will be added. Those
new home appliances can institute 2 shift in the demand for fuels,
creating a "new demand" for one or the other.

The concept of "new demand" refers to the demand for fuels
arising from both "replacement demand" due to the retirement (and the

replacement) of old home appliances and "incremental demand" due to

19gee A. Zellner, op. cit.
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net increases in the stock of home appliances and, hence, purges the
"committed demand" of the total demand for fuels.20 This concept de-
scribes the behavior of a consumer not committed by past contracts to
any form of technique or any type of service. To generate the new
demand by the total demand, the concept of new demand incorporates

a stock effect and permits some assumptions about the adjustment of

the stock of home appliances over time, that is, the rate of utilization
of home appliances and the rate of depreciation.

This empirical study employs the concept of new demand. Time-
series data for the quantities consumed of fuel oil, natural gas, and
electricity for 1937-1970--total demand--are converted into "new demand"
data (the sum of replacement demand and incremental demand). The

method of conversion is as follows:?'1

N_ T T
Fi=Fe-0-1)- Fry
N _ T . T
(5.38) G =G, -(1-1)-G,
N _ T o eT
Et =E - (1 -71)*E
N N N .
where Ft’ Gt’ and E; are new demand (N) for fuel oil (F), natural gas
(G), and electricity (E) in period t, respectively; FZ, GI, and EI are

total demand (T) for fuel oil, natural gas, and electricity in period

t, respectively; FI_I, GI-I’ and Ez_l are total demand for fuel oil,

20As for the concept of new demand, see P. Balestra and M.
Nerlove, '"Pooling Cross Section and Time Series Data in the Estimation
of a Dynamic Model: The Demand for Natural Gas,'" Econometrica, Vol. 34
(July 1966), pp. 585-612.

2ps for the algebraic derivation of (5.38), see P. Balestra
and M. Nerlove, op. cit.
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natural gas, and electricity in period (t-1), respectively; and r is
the depreciation rate. Since the lagged variables are involved in
(5.38), the original thirty-four observations (1937-1970) for each
behavioral equation in (5.11) are reduced to thirty-three observa-
tions (i.e., n = 33).

As for the rate of depreciation, Balestra and Nerlove argue,
on an empirical basis, that 11% depreciation rate for all fuel-consuming
appliances is not unreasonable.22 According to M. L. Bernstein, 10%
depreciation rate for household refrigeration in the United States
is preferred, even though such depreciation rates as 10%, 20%, and 25%
have produced the similar estimates of regression coefficients.23
Because of these similar results in two different empirical studies,

the 10% depreciation rate is chosen for present purposes.24

22144,

23M. L. Berstein, "The Demand for Household Refrigeration in
the United States.” In: A. C. Harberger, The Demand for Durable Goods,
(Chicago: The University of Chicago Press, 1960).

24The cases which involve depreciation rates ranging from 5%
to 20% were tested in this empirical study by the author. But only
those cases with such depreciation rates as 5%, 7%, 8% and 10% pro-
duced similar and reasonably satisfactory results. This led to the
choice of 10% depreciation rate.



CHAPTER VI

EMPIRICAL RESULTS

A summary of the empirical results obtained by the ZELS
method with 10% depreciation rate is presented in Table 6-1. 'The
values of the ai's and Qij's are the restricted estimates of the para-
meters of hehavioral equations (5.11) for the (direct) translog uti-
lity function. As seen in Table 6-1, the standard errors of regres-
sion coefficients are much smaller in magnitude than the values of ai's
and Qij's,and the F-value for testing the hypothesis of regression-
coefficient vector equality (i.e., H.:

0
much greater than the critical value at any level of significance.

Q, = Q, = Q) is 92.9101 and

These two results lead to the conclusion that there does exist a
functional relationship between the variables--a relationship between

. P: X
budget shares (—%Iia and the quantities demanded of fuel oil (xl),

natural gas (xz), and electricity (xj). R%'s for three behavioral equa-
tions are greater than 0.8, and the standard errors of estimates are
small in magnitude. These imply that more than 80% of the variation of
budget shares is explained by the quantities demanded of three energy
fuels. In addition, the F-value for testing the hypothesis of linear

homogeneity is 0.000403. This value is smaller than the critical value
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Table 6-1

SUMMARY OF RESULTS OF CONSTRAINED ZELS ESTIMATION OF EQUATIONS (5.11)
FOR THE TRANSLOG FUNCTION WITH 10% DEPRECIATION RATE,
SELECTED YEARS, 1938-1970

3 Qi Qi Qs
Q 0.567702 0.059862 -0.014707 -0.045154
SER 0.001884 0.000294 0.000186 0.000325
Equation R® 0.861046
I Ad. R® 0.846671
SEE  0.027062
Q, 0.307138 -0.014707 0.083437 -0.068729
SER 0.000087 0.000013 0.000026 0.000024
Equation R 0.809923
I a4, R? 0.790259
SEE  0.053558
Q; 0.125160 -0.045154 -0.068729 0.113884
SER 0.000023 0.000003 0.000003 0.000005
Equation R% 0.837169
Il 2
Ad. R® 0.820324
SEE  0.049165
Number of
F-Value Restrictions
Overall Homogeneity 92.910100 8
Linear Homogeneity 0.000403 7

Note: Qi is the column vector 4xl; SER is the standard error of re-
gression coefficients; Ad. R2 is the adjusted Rz; SEE is the
standard error of the estimates (see (5.11)) for the notation).
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at any level of significance, and, hence, the parameter estimates satis-
fy the hypothesis of linear homogeneity. Therefore, the parameter
estimates can be regarded as qualitatively satisfactory. Furthermore,
these parameter estimates can be used to determine the values of the

parameters of the (direct) translog utility function itself, because

1,

Qg; =7 " (By; +By;) and By, = B, for i £ j (see (4.20) and (53.)).

J
This is an advantage of using a Taylor approximation to a utility

ij

function.

The restricted estimates of the parameters for other chosen
utility functions are presented in Table 6-3. They are derived from
the parameter estimates for the translog utility function. First,
alternative functional forms (Taylor approximations) for the CD, the
CES, the Uzawa, and the Sato utility functions are differentiated with
respect to ln xi(i =1, 2, 3). The parameters of the derivative
equations are summarized in Table 6-2. Equating the unknown parameters
of the derivative equations with the known parameters for the translog
utility function in the last column of Table 6-2 and solving them simul-
taneously yield the solutions to the parameters for other chosen uti-
lity function.l For example, the alternative functional form (a
Taylor approximation) for the CES utility function is treated as a
special case of the translog utility function (a Taylor approximation to
an arbitrary utility function). Then, the following restrictions on
the translog parameters are obtained:

=3 (i=1,2,3

l'I'his estimating method was introduced by Berndt and Christen-
sen. See E. R. Berndt and L. R. Christensen, op. cit.
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‘table 6-2

PARAMETER RESTRICTIONS ON A SYSTEM OF EQUATIONS
(5.11) UNDER HOMOGENEITY AND SEPARABILITY

Cb CES Uzawa Sato Translog
b1 61 bl b1 a,
b, s, b,8, b,5, a,
b, 5 bySs b,S, a
0 p(s,% - 6 0 -wb,b,, Q,
0 (5,2 - 8))  pbB,8y by, (p6g + Wb 8,) Q,,
0 (82 - 6,0 -PboSniy  b,85(pd, + Wby8y) Qs
0 ps 8, 0 wb,b.8, Q= O,
0 P86, 0 Wb b3, Qs = Q,
0 LLPAE Pb28,83 by8283(p - wby) Qs = U,
Note: The translog utility function does not employ separability;

the parameters of the CD, the CES, the Uzawa, and the Sato
utility functions are obtained by imposing restrictions in
(5.14), (5.15), (5.16), and (5.17) on the behavioral equations
in (5.11), in addition to restrictions implied by linear homo-
geneity, equality, and symmetry ((5.12) and (5.13)), and are
identified with the parameters of the alternative functional
forms (Taylor approximations) in (4.22), (4.23), (4.24), and

(4.25).
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Table 6-3

PARAMETER ESTIMATES OF CONSTRAINED ZELS ESTIMATION OF EQUATIONS (5.11)
FOR ALL CHOSEN UTILITY FUNCTIUNS WITH 10% DEPRECIATION RATE,

SELECTED YEARS, 1938-1970

cD CES UZAWA SATO TRANSLOG
PARAMETER p=-0.24392 p=-0.77291 E:Zg:géiggg
a 0.567702 0.567702 0.567702 0.567702 0.567702
Q; 0.0 0.059862 0.0 0.020701 0.059862
Q;, 0.0 -0.042531 0.0 -0.014707 -0.014707
Q5 0.0 -0.017331 0.0 -0.005994 -0.045154
a, 0.307138 0.307138 0.307138 0.307138 0.307138
Q,, 0.0 -0.042531 0.0 -0.014707 -0.014707
Q,, 0.0 0.051907 0.068730 0.091493 0.083437
Qs 0.0 -0.009377  -0.068730  -0.076786  -0.068729
as 0.125160 0.125160 0.125160 0.125160 0.125160
Qs 0.0 -0.017331 0.0 -0.005994 -0.045154
Qs, 0.0 -0.009377  -0.068730  -0.076786 -0.068729
Q3 0.0 0.026708 0.068730 0.082778 0.113884

Note: See Appendix D for the computation of a;'s, p , and w.
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(6'1) QlJ = p.(di = ai) (1

Ql] = p°61'6j (1

1, 2, 3)

1, 2, 3)

In (6.1), there are nine equations in total, each equating the unknown
parameters of the derivative equation with the known parameters in the
last column of Table 6-2. The solution can be obtained by solving nine
equations simultaneously for p. This is another advantage of using
Taylor approximations to utility functions. Inspection of Table 6-2
indicates that the CES, the Uzawa, and the Sato utility functions
have multiple solutions to such unknown parameters as p and w. Parti-
cular solutions to them must be found and the manner in which that
was accomplished is discussed in Appendix D. The particular values
determined are: p = -0.24392 for the CES utility function; p = -0.77291
for the Uzawa utility function; p = -0.084352 and w = -0.911384 for the
Sato utility function. Using these values, the parameters in the first,
the second, the third and the fourth columns of Table 6-2 were de-
termined (see Appendix D). These parameter estimates satisfy restric-
tions implied by linear homogeneity, equality, symmetry, and separabi-
lity outlined in (5.12), (5.13), (5.14), (5.15), (5.16), and (5.17).
The demand elasticities and the elasticities of substitution
for the chosen utility functions are presented in Tables 6-4, 6-5, 6-6,
6-7, and 6-8. As expected, the CD utility function exhibits unitary
price-elasticities, zero cross-elasticities, and unitary elasticities
of substitution. These empirical results are in conformity with the
theoretical results outlined in (5.19) and (5.25). The former two
results imply that the relative changes in quantity of any fuel, X

(i=1, 2, 3), and its price are equal, and, hence, budget share on



Table 6-4

ELASTICITIES OF DEMAND AND PARTIAL ELASTICITIES OF
SUBSTITUTION OBTAINED FROM THE CD FUNCTLON,
SELECTED YEARS, 1938-1970

q ED in 1938 q ES in 1938
) FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG 1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 --

q ED in 1940 q ES in 1940
p FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG 1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 -~

q ED in 1945 q ES in 1945
P FO NG E q FO NG E
FO  -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG 1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 -~

q ED in 1950 q ES in 1950
p\ FO NG E q FO NE E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG 1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 -~
Note: (1) ED represents elasticities of demand, on-diagonal terms

in ED represent price-elasticities of demand, and off-
diagonal terms in ED represent cross-elasticites of demand;
(2) p and q represent price and quantity, respectively,

(3) ES repr~sents the Hicks-Allen partial elasticities of
substitution; and (4) FO, NG, and E represent fuel oil,
natural gas, and electricity, respectively.
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Table 6-4 (Continued)

q ED in 1955 q ES in 1955
P FO NG E q FO NG E
FO  -1.0000 0.0000 0.0000 FO -~ 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG  1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 --

q ED in 1960 q ES in 1960
P FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG  1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 --

q ED in 1965 q ES in 1965
P FO NG E q FO NG E
FO  -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG  1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 --

q ED in 1970 q ES in 1970
P FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO .- 1.0000 1.0000
NG 0.0000 -1.0000 0.0000 NG 1.0000 -- 1.0000
E 0.0000 0.0000 -1.0000 E 1.0000 1.0000 --
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that fuel is unaffected by changes in its price and the demand is
unitary; and that there cxists no measurable interdependence between
energy fuels, Xi's. Unitary elasticities of substitution indicate
that there are substitution possibilities among energy fuels.

For the CES utility function, the magnitudes of price elas-
ticities of demand for any fuel range from -1.0439 to -1.9255, and
the magnitudes of cross elasticities of demand of any fuel range from
0.0106 to 1.1896, except those for the year 1945. However, since the
1950's, the ranges have narrowed. Price elasticities are between
-1.0509 and -1.5688, and cross elasticities between 0.0106 and 0.4479.
Moreover, the magnitudes are very close to one another. These results
imply that the percent change in quantity of any fuel, xi(i =1, 2, 3),
exceeds the percent change in its price. Hence, the budget share
of that fuel would increase for a price decline and the demand would
be elastic. In 1945, the price elasticity of deménd for fuel oil, X5
was positive, and some cross elasticities of demand were negative.
These are inconsistent with the price- and cross-elasticities for other
years, as observed in Table 6-5. As for elasticities of substitution,
the magnitudes are not identical and, hence, do not satisfy restrictions
implied by strong separability (see (5.20)). Therefore, it is conclu-
ded that nothing can be said either about elasticities of substitution
or about price- and cross-elasticities of demand, because price- and
cross-elasticities are not independent indices, i.e., they are a
function of elasticity of substitution and income elasticity of demand
(see (5.24) and (5.26;). Accordingly, the CES utility function will

be ruled out of consideration for use in the present demand study.
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Table 6-5

ELASTICITIES OF DEMAND AND PARTIAL ELASTICITIES OF
SUBSTITUTION OBTAINED FROM 'THE CES FUNCTION,
SELECTED YEARS, 1938-1970

q ED in 1938 q ES in 1938
p FO NG E q FO NG E

FO -1.9255 1.1896 0.0330  FO - 7.6155 1.1836
NG 0.7971 -2.2527 0.0109 NG  7.6155 = 1.0901
E  0.1285 0.0631 -1.0439 E 1.183  1.0901  --
\\q ED in 1940 \1 ES in 1940

p FO NG E q FO NG E

FO -1.3678 0.5372 0.0354  FO -- 2.8757 1.1236
NG 0.2993 -1.6019 0.0186 NG  2.8757 —  1.1169
E  0.0685 0.0647 -1.0541  E 1.1236  1.1169  --
\\q ED in 1945 \q ES in 1945

p FO NG E q FO NG E

FO 1.9882 -0.5699 -0.0401 FO -10.8306 0.1669

NG -2.3616 -0.6756 0.0651 NG  -10.8306 -~ 1.3264
E  -0.6266 0.2455 -1.0250  E 0.1669  1.3264  --
\\q ED in 1950 \\q ES in 1950

P FO NG E q FO NG E

FO -1.4483 0.3207 0.0437 FO 2.4220 1.1939

NG 0.3451 -1.3497 0.0132 NG  2.4220 -~ 1.0544
E  0.1031 0.0289 -1.0569 E 1.1939  1.0544  --
yl ED in 1955 q ES in 1955

p FO NG E q FO NG E
FO -1.3897 0.3244 0.0429 FO -- 2.2934 1.1714
NG  0.3012 -1.3584 0.0154 NG  2.2934 --  1.0659

E 0.0885 0.0340 -1.0583 E 1.1714 1.0659 --
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Table 6-5 (Continued)

\\? ED in 1960

P FO NG E

FO -1.4525 0.3921 0.0450

NG 0.3466 -1.3288 0.0130

E 0.1059 0.0267 -1.0581
q ED in 1965

P FO NG E

FO -1.3945 0.2863 0.0456

NG 0.3016 -1.3154 0.0151

E 0.0928 0.0292 -1.0607
q ED in 1970

P FO NG E

FO  -1.5688 0.4434 0.0402

NG 0.4479 -1.4749 0.0106

E 0.1208 0.0315 -1.0509

q ES in 1960
q FO NG E
FO -- 2.3591 1.2026
NG .3591 -- 1.0510
E .2026 1.0510  --

q ES in 1965
q FU NG E
FO -- 2.1709 1.1865
NG .1709 -- 1.0585
E .1865 1.0585 --

q ES in 1970
q FO NG E
FO -- 3.2226 1.2018
NG .2226 -- 1.0526
E .2018 1.0526 --
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For the Uzawa CES utility function, the price elasticities of
demand for fuel oil and cross clasticities of demand (on- and off-
diagonal terms in the first row and the first column of Table 6-6) are
unity and zero, respectively. These results are in conformity with
theoretical results outlined in (5.27), and they are expected from the
Uzawa function, since the relation between the partitioned subgroups
in the Uzawa CES utility function is of the Cobb-Douglas form, i.e.,
two sub-groups of goods are combined with an overall CD function (see
(4.11)). On the other hand, the magnitudes of price elasticities of
demand for natural gas (or electricity) range from -1.1619 to -2.7215,
and the magnitudes of cross elasticities of demand of natural gas (or
electricity) for electricity (or natural gas) range from 0.1619 to
1.7215. However, since the 1950's, the ranges have narrowed. Price
elasticities are between -1.2108 and -1.6266, and cross elasticities
between 0.2108 and 0.6266. These results imply that the demand for
natural gas (or electricity) is elastic and that there does exist mea-
surable interdependence between natural gas and electricity, i.e.,
they are substitutes.

Elasticities of substitution between fuel oil and natural gas
and between fuel oil and electricity were unity for all years. These
results are in conformity with theoretical results outlined in (5.21),
and they are expected from the Uzawa utility function for the same
reason mentioned above. But elasticities of substitution between
natural gas and electricity range from 1.8111 to 3.4604. Since the
1950's, the range has narrowed. They are between 1.8608 and 2.0462.

The magnitude of ¢ is an indication of the ease with which natural
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Table 6-06

ELASTICITIES OF DEMAND AND PARTIAL ELASTICITIES OF
SUBSTITUTION OBTAINED FROM THE UZAWA FUNCTION,
SELECTED YEARS, 1938-1970

ED in 1938 q ES in 1938

FO NG E q FO NG E

-1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
0.0000 -2.7215 0.2965 NG 1.0000 -- 3.4604
0.0000 1.7215 -1.2965 E 1.0000 3.4604

q
P
FO
NG
E
q ED in 1940 q ES in 1940
P FO NG E q FO NG E
FO
NG
E
Y
P
FO
NG
E
q
p

-1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
0.0000 -1.9674 0.2786 NG  1.0000 -- 2.7461
0.0000 0.9674 -1.2786 E 1.0000 2.7461 --

ED in 1945 q ES in 1945
FO NG E q FO NG E

-1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
0.0000 -1.6101 0.1619 NG  1.0000 -- 1.8111
0.0000 0.6101 -1.1619 E 1.0000 1.8111 --

ED in 1950 q ES in 1950
FO NG E q FO NG E
FO  -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.4819 0.2199 NG 1.0000 -- 1.9064
E 0.0000 0.4819 -1.2199 E 1.0000 1.9064 --
q ED in 1955 q ES in 1955
P FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.5162 0.2328 NG  1.0000 -- 1.9997

E 0.0000 0.5161

]
[

.2328 E 1.0000 1.9997
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q ED in 1960 q ES in 1960
P FO NG E q FO NG E
FO  -1.0000 0.0000 0.0000 FO - 1.0000 1.0000
NG 0.0000 -1.4499 0.2195 NG .0000 -~ 1.8608
E 0.0000 0.4499 -1.2195 E .0000 1.8608 --

ED in 1965 q ES in 1965

p FO NG E q FO NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.4483 0.2319 NG .0000 -- 1.9005
E 0.0000 0.4483 -1.2319 E .0000 1.900S --

q ED in 1970 q ES in 1970
p FO NG E q Fo NG E
FO -1.0000 0.0000 0.0000 FO -- 1.0000 1.0000
NG 0.0000 -1.6266 0.2108 NG .0000 -~ 2.0462
E 0.0000 0.6266 -1.2108 E .0000 2.0462 --
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gas and electricity can be substituted in consumption to maintain a
given level of indifference.2 There are two limiting cases. If they
are perfect substitutes, then o is infinite. If they are perfect
complements, then o is zero. Accordingly, it is concluded that
substitution possibilities between natural gas and electricity do
exist, but substitution is not easy.

The evaluation of performances of Sato's two-level CES utility
function is similar to that of the CES utility function. As seen in
Table 6-7, elasticities of substitution between fuel oil (xl) and
natural gas (xz) and between fuel o0il and electricity (XS) are not
equal, and, hence, they do not satisfy restrictions implied by weak
separability (see (5.22)). Accordingly, nothing can be said about
elasticities of substitution and, also, about the quality of the para-
meter estimates for the Sato CES utility function. Moreover, since
price- and cross-elasticities are a function of elasticity of substi-
tution and income elasticity of demand, nothing can be said about
price~ and cross-elasticities. Therefore, Sato's two-level CES utility
function will be ruled out of consideration for use in the present
demand study. As far as the present study of energy demand is concerned,
the CES family cannot be used to explain U.S. households' demand for
energy fuels.

For the translog utility function, the magnitudes of price
elasticities of demand for any fuel range from -1.2959 to -4.2684,

and the magnitudes of cross elasticities of demand (off-diagonal terms

2J. R. Hicks and R. G. D. Allen, op. cit.
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Table 6-7

ELASTICITIES OF DEMAND AND PARTIAL ELASTICITIES OF
SUBSTITUTION OBTAINED FROM THE SATO FUNCTION,
SELECTED YEARS, 1938-1970

q ED in 1938 q ES in 1938
p FO NG E q FO NG E
FO -1.2066 0.8666 -0.0961 FO -- 5.8192 0.4653
NG 0.5807 -6.6152 0.8177 NG 5.8192 -- 7.7867
E -0.3741 0.4749 -1.7216 E 0.4654 7.7867 --

q ED in 1940 q ES in 1940
p FO NG E q FO NG E
FO  -1.0921 0.2699 -0.0301 FO - 1.9422 0.8949
NG 0.1504 -2.9088 0.4721 NG 1.9422 - 3.9583
E -0.0582 1.6389 -1.4419 E 0.8949 3.9583 --

q ED in 1945 q ES in 1945
p FO NG E q FO NG E
FO -1.8936 0.2673 -0.137 FO -- 6.5491 0.7154
NG 1.1077 -2.1662 0.2386 NG 6.5491 -- 2.1951
E -0.2140 0.8989 -1.2249 E 0.7154 2.1951 --

q ED in 1950 q ES in 1950
p FO NG E q FO NG E
FO -1.1088 0.1099 -0.0039 FO - 1.4873 0.9823
NG 0.1183 -1.7695 0.3010 NG 1.4873 -- 2.2403
E -0.0094 0.6596 -1.2970 E 0.9823 2.2403 --

q ED in 1955 q ES in 1955
p FO NG E q FO NG E
FO  -1.0972 0.1172 -0.0056 FO -- 1.4672 0.9777
NG 0.1088 -1.8339 0.3233 NG 1.4672 - 2.3882

E -0.115 0.7168 -1.3177 E 0.9777 2.3882
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Table 6-7 (continued)

ED in 1960 q ES in 1960
P FO NG E q FO NG E
FO -1.1100 0.1010 -0.0025 FO -- 1.4545 0.9887
NG 0.1159 -1.7093 0.2968 NG  1.4545 -- 2.1638
E -0.0059 0.6083 -1.2943 E 0.9887 2.1638 --
ED in 1965 q ES in 1965
P FO NG E q FO NG E
FO -1.0989 0.0984 -0.0023 FO -- 1.4025 0.9905
NG 0.1037 -1.7052 0.3139 NG 1.4025 -- 2.2187
E -0.0048 0.6068 -1.3116 E 0.9905 2.2187 -~
q ED in 1970 q ES in 1970
P FO NG E q FO NG E
FO -1.1284 0.1581 -0.0104 FO -- 1.7924 0.9478
NG 0.1597 -2.0659 0.3054 NG 1.7924 -- 2.5156
E -0.0313 0.9078 -1.2950 E 0.9478 2.5156 --
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in Table 6-8) range from 0.0589 to 2.7539, except those for the year
1945. But, since the 1950's, the ranges have narrowed. Price elas-
ticities are between -1.3519 and -1.8686, and cross elasticities be-
tween 0.0589 and 0.7551. These empirical results imply that the demand
for any fuel is elastic, and there does exist measurable interdependence
between energy fuels, i.e., they are substitutes in some degree.

In 1945, the price elasticity of demand for fuel oil and some of cross
elasticities of demand show positive and negative signs, respectively.
These are inconsistent with other elasticity coefficients for other
years, as observed in Table 6-8.

Elasticities of substitution between fuel oil and natural gas,
between fuel o0il and electricity, and between natural gas and electri-
city, which are derived from the translog utility function, range from
1.2287 to 3.8620, from 1.3438 to 1.6554, and from 2.0215 to 4.9357,
respectively. However, since the 1950's, the ranges have narrowed.
Elasticities of substitution between fuel oil and natural gas, between
fuel o0il and electricity, and between natural gas and electricity are
between 1.2287 and 1.5689, between 1.5581 and 1.6554, and between
2.0215 and 2.2607, respectively. Accordingly, it is concluded that
substitution possibilities among energy fuels do exist, but substitu-
tion is not easy.

Throughout this chapter, performances of the chosen utility
functions have been investigated in terms of demand elasticities and
elasticities of substitution. Some conclusions can be drawn about
these functions. First, the functions which possess the CES proper-

ties will be ruled out of consideration for use in the present study,
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Table 6-8

ELASTICITIES OF DEMAND AND PARTIAL ELASTICITIES OF
SUBSTITUTION OBTAINED FROM THE TRANSLOG FUNCTION,
SELECTED YEARS, 1938-1970

q ED in 1938 q ES in 1938
) FO NG E q FO NG E
FO -1.5854 0.5147 0.06l8 FO -~  3.8620 1.3438
NG  0.3449 -4.2684 0.4742 NG 3.8620 --  4.9357
E 0.2405 2.7537 -1.5360 E  1.3438 4.9357  --

q ED in 1940 q ES in 1940
p FO NG E q FO NG E
FO  -1.2959 0.1517 0.1093 FO  --  1.5297 1.3815
NG  0.0845 -2.4497 0.3739 NG 1.5297  --  3.3429
E 0.2113 1.2980 -1.4831 E  1.3815 3.3420  --

q ED in 1945 \C ES in 1945
P FO NG E q FO NG E
FO  3.0540 -0.2764 -0.1863 FO  --  -4.7384 -2.8667
NG -1.1455 -1.7314 0.2675 NG -4.7384  --  2.3398
E  -2.9086 1.0078 -1.0811 E -2.8667 2.3398  --

q ED in 1950 q ES in 1950
p FO NG E q FO NG E
FO -1.4058 0.0692 0.1405 FO  --  1.3068 1.6231
NG  0.0745 -1.6440 0.2623 NG 1.3068 --  2.0809
E 0.3313 0.5748 -1.4029 E  1.6231 2.0809  --

q ED in 1955 q ES in 1955
p FO NG E q FO NG E
FO -1.3519 0.0687 0.1399 FO  --  1.2739 1.5581
NG  0.0638 -1.6944 0.2822 NG 1.2739  --  2.2118
E 0.2881 0.6257 -1.4222 E 1.5581 2.2118  --




Table 6-8 (Continued)

ED in 1960

FO NG E

ES in 1960

FO NG E

.4148 0.0629 0.1457
.0722 -1.5969 0.2605
.3426  0.5339 -1.4062

-- 1.2831 1.6554

.2831 -- 2.0215
.6554 2.0215 -~

ED in 1965

FO NG E

ES in 1965

FO NG E

.3655 0.0559 0.1505
.0589 -1.5939 0.2783
.3066 0.5381 -1.4289

-- 1.2287 1.6157

. 2287 - 2.0806
.6157 2.0806 --

ED in 1970

FO NG E

ES in 1970

FO NG E

-1.4800 0.1135 0.1217

.1147 -1.8686 0.2541
.3654 0.7551 -1.3758

-- 1.5689 1.6100

.5689 -- 2.2607
.6100 2.2607 -~
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because estimates of elasticities of substitution derived from both
CES and Sato utility functions do not satisfy the restrictions implied
by separability. Consequently, nothing can be said either about
estimates of price- and cross-elasticities of demand or about the
quality of the parameter estimates for both utility functions.
Second, as discussed in Chapter IV, the CD utility function
is a special case of the CES utility function and a limiting case
of the Uzawa CES utility function which is a hybrid of the CD and CES
utility functions. As observed above, estimates of elasticities of
substitution derived from both CD and Uzawa utility functions satisfy
the restrictions implied by separability. It is noted that since
no appeal to approximation by a Taylor series expansion is required
in case of the CD utility function there is no approximation error for
the CD utility function and, consequently, the restrictions on the
Hicks-Allen partial elasticities of substitution implied by separa-
bility are exactly satisfied. (See Section 4 in Chapter IV.) In
fact all of the Hicks-Allen partial elasticities of substitution for
the CD utility function are exactly equal to unity for all years,
as seen in Table 6-4. Since it is not necessary to use both CD and
Uzawa CES utility functions in order to build an econometric model
of demand, the Uzawa CES utility function will be chosen over the CD
utility function. A major reason is that the former has fewer restric-
tions and is therefore more general than the latter. The latter will
be ruled out of consideration for use in this empirical study of demand.
Third, only two utility functions remain--the Uzawa CES and

translog utility functions. Table 6-9 presents the averages of estimates
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Table 6-9

AVERAGES OF DEMAND ELASTICITIES AND ELASTICITIES OF SUBSTITUTION FOR
THE UZAWA AND TRANSLOG UTILITY FUNCIIONS, 1950-1970

Elasticity Uzawa Translog Difference* I%%ﬁ%égg
(1) (2) (2)-(1) (2)/(1)
Py %y
—_ . — -1.0 -1.4036 0.4036 1.4036
x1 apl
p2 axz
—— e —= -1.5040 -1.6795 0.1749 1.1162
X
Py X3
— . — -1.2249 -1.4072 0.1823 1.1488
X P~
3 3
p1 axz
- 0.0 0.0740 0.0740 ©
X,
pl ax3
% 0.0 0.1396 0.1396 )
3 °Pp
p2 axl
X P 0.0 0.07608 0.0768 o
1 °Pp
p3 axl
il 0.0 0.3268 0.3268 @
1 P3
p2 3x3
—_— 0.2229 0.2654 0.0425 1.1906
X ap
3 2
p3 axz
—_ . — 0.5045 0.6055 0.1010 1.2001
X ap
2 3
01 1.0 1.3322 0.3322 1.3322
013 1.0 1.6124 0.6124 1.6124
0yz 1.9427 2.1311 0.1884 1.0969

*
The differences are computed in absolute value.
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of both demand elasticities and elasticities of substitution derived
from the Uzawa CES and translog utility functions, the differences
between the averages, and the ratios of the averages for the translog
utility function to those for the Uzawa CES utility function. The
purpose of Table 6-9 is to empirically determine which function per-
forms better. Since the empirical results for the 1945 (Table 6-8)
are qualitatively unsatisfactory in case of the translog utility
function, Table 6-9 covers the estimates ranging from 1950 to 1970.
The unsatisfactory results may possibly be attributed to errors in
measurement of quantities consumed of energy fuels and their prices
or some other unknown factors. If the rows with zero values in
Table 6-9 are ignored, there exist insignificant differences between
the averages. It is very difficult to judge which function performs
better. But the translog utility function is preferred over the
Uzawa CES utility function. A major reason is that the former has
fewer restrictions and is therefore more general than the latter.

On that basis alone, the translog utility function is superior to all
the other utility function.

Finally, Table 6-10 presents estimates of Slutsky's price
elasticities of the compensated demand for the translog utility func-
tion. Estimates of Slutsky's price elasticities of the compensated
demand is smaller in absolute value than estimates of price elastici-
ties of the ordinary demand, because income elasticities of demand are
positive and equal to unity due to the hypothesis of linear homogeneity
(see (5.32)). Hence, the ordinary demand curve has greater price

elasticities of demand in absolute value than the compensated demand
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Table 6-10

PRICE ELASTICITIES OF THE COMPLENSATLED DEMAND FOR THE TRANSLOG UTILITY
FUNCTLION, 1950-1970

Year 4 FO NG E
FO -1.1657  0.3093  0.3806
1950 NG 0.2885 -1.4300 0.4763
E 0.8772 1.1207 -0.8570

FO -1.1364 0.3413 0.4241
1960 NG 0.3444  -1.3247 0.5327
E 0.7920 0.9833 -0.9568
FO -1.1112 0.3102 0.4048
1965 NG 0.3450 -1.3078 0.5644
E 0.7662 0.9977 -0.9693
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curve.

However, there exists one important difference between Table
6-8 and Table 6-10. According to Table 6-8, the demand for fuel oil,
natural gas, or electricity is elastic--the coefficients of price
elasticities of demand for each fuel are greater than unity in abso-
lute value. On the other hand, according to Table 6-10, the demand
for fuel oil or natural gas is elastic, but the demand for electricity
has the coefficients of brice elasticities of demand of less than

unity in absolute value and is, therefore, inelastic.



CHAPTER VII

CONCLUSION

To buiid an econometric model of U.S. households' demand for
energy fuels, five utility functions have been chosen. As observed
in Chapter IV, the CD and CES utility functions are strongly separable,
while the Uzawa CES and Sato two-level CES utility functions are weakly
separable. These functions place a priori restrictions implied by
linear homogeneity and separability 6n their parameters and, hence,
on their various elasticities. The translog utility function places
no a priori restrictions on its parameters and, hence, no a priori
restrictions on its various elasticities, yet allows various restric-
tions to be tested parametrically. However, the restrictions implied
by linear homogeneity are imposed on the translog parameters in this
empirical study of demand, as discussed in Chapter IV.

The chosen utility functions have been applied to the problem
of estimating elasticities of both ordinary demand and compensated
demand and elasticities of substitution. As observed in Chapter VI,
estimates of elasticities of substitution derived from the CES and
Sato two-level CES utility functions do not satisfy restrictions
implied by separability. Since price- and cross-elasticities of demand

are not indices independent of elasticities of substitution (i.e.,
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they are a function of the elasticity of substitution and the income-
elasticity of demand), nothing can be said about estimates of various
elasticities. Accordingly, the quality of the parameter estimates

for the CES and Sato two-level CES utility functions is unsatisfactory
beyond dispute. Therefore, these two utility functions have been
ruled out of consideration for use in this empirical study of demand.

On the other hand, estimates of elasticities of substitution
derived from the CD and Uzawa CES utility functions do satisfy restric-
tions implied by separability, and, hence, estimates of their parame-
ters and various elasticities can be regarded as qualitatively satis-
factory. Since the choice must be made among utility functions, the
Uzawa CES utility function is preferred over the CD utility function,
even though the empirical performances of both utility functions are
satisfactory,;in terms of the fulfillment of restrictions. A major rea-
son is that the former has fewer restrictions and is therefore more
general than the latter. Hence, the CD utility function has been ruled
out of consideration for use in this empirical study of demand.

There remain only two utility functions--the Uzawa CES and
translog utility functions. As for a choice between them, the latter
is preferred over the former for two reasons. First, as observed in
Table 6-9, the empirical performances of both utility functions pro-
vide similar results, but some of estimates of cross elasticities of
demand for the Uzawa CES utility function are zero due to restrictions
implied by separability. These empirical results are unrealistic.
Second, the translog utility function has fewer restrictions and there-

fore more general than the Uzawa CES utility function. Hence, the
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Uzawa CES utility function has been ruled out of consideration for

use in this empirical study of demand. So far as the performances

of the chosen utility functions are concerned, the translog utility
function dominates its competitors. Therefore, an econometric model

of U.S. households' demand for energy fuels is built from the translog
utility function. The choice of the translog utility function implies
that restrictions implied by either strong separability or weak sepa-
rability on the parameters of other chosen utility functions are invalid
in case of U.S. households' demand for energy fuels, and, hence, the

hypothesis of separability must be rcjected.
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APPENDIX A

APPROXIMATIONS BY A TAYLOR SERIES EXPANSION

(1) The CES Utility Function

- 1
o -
F(x) =6 (] 6ixi-ﬂ P from (4.3).
i=]
1 3 -
InF(x) =18 - =+ 1n[} 6.x."P) from (4.21).
) o 1
{(a) In F(x) Xi=l =In®6 , since 61 + 62 + 63 = 1.
-p
by 2 FE) 2P M 8i% | s
.  dox. F - - - ~ i
dIn X3 X3 (x) (Glxl Py 62x2 Py 63x3 p)Ixi=1
(c) ﬁlili(x_) = _a_ d (aF(x) ] XI ) ¢ X. = -pé.x.-p . ( 23 6.)(.-]?) -l
qmxp? %y % FOITOA 1 jz1 1
220 (% -p -2 2
+ PO (Z ijj p} x.zp TP 6y 7 85)
j=1 1
x.
d 3ln F(x)y = 8 . (3F(x), "1y, .
@ sy Gomx 1., " (a X, F(x}) X
j i Ti#j j i

3
-p, - P -2

Hence,
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’ 3 1 > 2 2
In F(x) = ln6 + iz-lsi. in X; + 3" piz_l (6l -51) * (in xi)

N} —

3
+>°p z z 8§.6.° Inx.* Iln x..
i=1 j=1 1) ' )

i#j

(2) The Uzawa CES Utility Function

5
b, 3 =
Fx) =8« x. -+ () 6.x. 7 P from (4.10).
1 i=2 171
b, 3 i}
ln F(X) = ln e + bl N ln xl - 'p—‘ ¢ ln(léz Gixl p) from (4~23)‘
(a) 1n F(x) x;=1 = In6 , since 62 +53 = 1.
by A FX) | 3F(x) | Xy
31n X 3x,  F(x)
b
2
b,-1 3 -— X
1 -py P 1
=8 * b,x -(Zd.x.) ¢ b,.
171 j=p 1 b F(x) x;=1 1
3ln F(x) _ 3F(x) , *2
3m x, 5x2 F(x)
. 3 - -1
= b8yt (izz 81%; ) |x.o1 = b2
aln F(x) _aF(x) . *3
3ln x, ©8xg  F(x)
3 -1
=b,6.x, P o () 6.xF) | _, =1y
2°3%3 L, Ol x=l © 23
(c) —-———82111 Fx) . 8, (____3F(x) . ___xl )+ x = x ﬂ =0 0
3(1n x )2 CE3) ax, F(x) 1 1 X, x;=1

1
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321n F(x) _ 3 (aF(x) . XZ) X
alln x)2 3% %Xy Fl 2
3 oL
= -Pbydyxy ¢ (1 85%;7)
1=2
-2
5252 - (] 6P
+pb,®,“x <P |
2272 i=2 xi—l
= =pbySy ¢ {1 - 8p) = -pby8.84
2
9°1n F(x) 3 (BF(x) X3
3(In x3)2 TG g —p(x)] " Xg
3 -1
= -pbysgxg P ([ 6,%7)
pb8x, 2P o f s.x.‘P)'z
2 373 i=2 iM1 xi=1
= -Pbdy t (1 - 850 = -pby8,0y
3, (mmF)y _ 3 ., (3F(x) ., "1,y .
) 5% ( 3n x 3x, ( 3%, F(x)) X2
ab
1
= s —_=¢ = 0.
X2 axz 'xi'-*l
8, (aln F(x)j\ .8 . (BF(x) . X Cx
51n Xq 3ln x 3x3 3x1 F(x) 3
3b1
Xs . 5{; =0 xi=1 0.
X
2, alnFlx)y _ 3, @F(¥) . 23 .4
3ln x4 U3iln X, J 3x3 9%, F(x) 3
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“Py_"P -p)~°
= pby8 8.k, X5 ¢ ('Z 8;%; P) .=l
i=2 i
= pb26263.
Hence,
3
InF(x) =Ing +b » Inx +b, ) 8 + Inx
1=2
3
1 2
- 5t Pby8,8y - Z (In x;)
i=2
! 1]
+ 5+ pb8,8,  In x. + In x..
2 2273 35, 55 i j
i#j

(3) The Sato Two-Level CES Utility Function
w 1

_o . -W . % -p\Py W |
F(x) =8 * (b)x, ™" + b, (i=26ixi )¥) © from (4.11).
W
1 - f P
In F(x) =1nb6 - W 'ln(blxl Y. b2 . (i=2 5ixi p)p from (4.25).
(a) In F(x),xi=1 = In 8 , since by + b, = 62 + 63 = 1.
X 3 v
3ln F(x) _8F(x) , "1 _ W, W, 5 . PP
®) Tmx, = Fmo P O (1§z i) (ka1
=b,.
3ln F(x) _3F(x) , "2
3ln X, sz F(x)
3 LA | LA |
_ -p, W, P2 6x PP
= bybpx, T (oyxy by (igz Sixg ) L 8% V) a

= bzéz.
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X

Similarly,

aln F(x) _ 3F(x) . "3
3ln x, x5 F(x)
P (b S ] 5
= b263x3 ’(blxl +b2‘(2 Bixl ) ) ’(.z §X1 )
i=2 i=2
= byds
(c) M= L o(aF(x) . x_l) e X
s x)? M ) !
-w -W 3 -p % )
= <bywx e (dyx;" + by ( [ 8;%7)0)
i=2
5 W
2w -p\P
UL R L i P
= sbw+(1- b)) = -ubb,.
2 X
InF) | o R, M2,
snx)? X ¥y RO
w w
3 ¥ 03 L
_ -W -p\P -pyP
= px)" # by (] 6Py (] 6yxP)
1=2 i=2
3 L)
' {'szézxip + b5 P oMb ( ] 6,P)7)
i=2
3 -1
2 -2, T & 4P 1’
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252" WP} X, (izz 1% ) J1x%;=1
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APPENDIX B

DERIVATION OF DEMAND ELASTICITIES

From (5.24):
P Ix. 9X.:
2o oy e MO -
A0 e TR O ) WL 2

Among partial elasticities of substitution defined in (5.18)

there exists a linear dependence:1

(A.2) kl > 0.

i1 * k2 T 0t k3 * 043 = 0, i=1, 2, 3.

i
From (A.2), the following relations can be obtained:

Ky gy = ckyp 9y - Kyt 0y3 for i=l,
(A.3) k2'°22 = -k;*0y) - k3-023 = -kl-o12 - k3-023 for i=2,

k3-033 = -ky*0zy - k 005, = -kj*0;5 - kyr0,, for i=3

since °ij =055 for i,j =1, 2, 3 (see (5.18)).

The price- and cross-elasticities of demand for a good xj
(j =1, 2, 3) for the chosen utility functions can be obtained by
using (A.1) and (A.3):

{1) The CD utility function

Pp 34 N -_
y . 55; = (-kye0y, - k3-013) - kl'l = 'kz'k3'kl = -1 for 1i=1,

lR. G. D. Allen, Mathematical Analysis for Economists, pp.

503-505.
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P, sz for i=
g * 'aPTz = ('kl‘olz - k3'023) - kz'l - "kl'ks"kz = "1 or 1-2)
(A.4)
P; X3 for is
?3— . -3—% = (-kl.ols - k2'023) - k3'1 = 'kl'kz‘ks = 1 or 1=3
P4 axj
x; . 55;-: ki*(1-1) =0 fori #j (i.j=1,2, 3)
where O1p = 933 =993 =1 (see (5.19)), and the income-elasticity of

demand is unity, and k1 + k2 + k3 = 1 due to linear homogeneity.

(2) The CES utility function

Pp %
x, oy - (Ratoig m kgropg) - Kyl
= an®
= -0%(] - kl) - kl for i=1,
p2 ax2
(A.S) g hd gz— = (-kl'olz - k3.023) - kz'l
= -c*(kl + kS) - kz
= -g*(1 - kz) - kz for i=2,
P3 8x3
— ¢ === (-Ky*0yz - ko*0,2) - kgol
X; g 1°%13 ~ X2°023) - X3
= -o*(k, + k) - kg
= -0*0(1 - k3) - k3 for i=3,
Py 8xj
5 =kl - 1) fori#j(,i=1,2 3
I S

where o* = 915 =913 = 0p3 (see (5.20)).

(3) The Uzawa utility function



(A.6) Pz

where 012

4)

(A.7)

where ¢** =

W,

3x3

%;

P X

3x.
X

= (-k

—_—= kin

Bpi

%13
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27012 - k5°0;5) - Kytl = (-ky-kg)-ky=-1 for i=1,
1°%12 ~ k3-023)-k2.1 = -(k1+k2+k3.°23) for i=2,
17913 - k2.023)-k3.1 = -(k1+k2-023+k3) for i=3,
'aﬁ=?_§.- ﬁ:pl cf_x_zzo

(Oij -1) fori#j(i,j (i,j=1, 2, 3)

=1 and o0.. =0,. fori#j (see (5.21)).

The Sato

P
X

o

3

J

912

1) J2

utility function

-o** e (kytkg) k) = -o**e (1-k; )=k, for i=1,

= -(kl~012 + k3‘°23)'k2 for i=2,

-(kl-o13 + k2'°23) - k3 for i=3,

k"(cij -1) fori#j (L,3=1, 2, 3)

=03 and 6.. = o;. fori # j (see (5.22)).



APPENDIX C

DATA FUR ENERGY FUELS CONSUMED IN U.S. HOUSEHOLDS, 1937-1970*

Fuel 0il Natural Gas Electricity

Year Quantity Price Quantity Price Quantity Price

(Mil Bbl)  (¢/Bbl)  (Mil Therm) (¢/Therm) (Mil KWH)  (¢/KWH)
1937 64.355 415.0 3353.4 7.0569 17691.0 4.3529
1938 67.016 390.0 3356.3 7.0279 19371.0 4.0022
1939 81.740 385.0 3646.0 6.8376 21433.0 3.9100
1940 98.436 381.0 4064.3 6.7431 24068.0 3.8357
1941 103.763 378.0 4112.8 6.6969 26574.0 3.7520
1942 103.991 375.0 6913.6 6.4075 27000.0 3.6167
1943 107.437 370.0 6662.5 6.3850 29000.0 3.4983
1944 111.225 366.0 5290.0 6.2582 31000.0 3.3819
1945 103.634 362.0 5600.9 6.3071 34000.0 3.2724
1946 118.058 357.0 6162.7 6.1615 39000.0 3.1521
1947 150.695 38910 7513.6 6.0605 44000.0 3.0845
1948 167.623 437.0 8227.6 6.0676 51000.0 3.0059
1949 152.872 465.0 9541.9 6.1991 58000.0 2.9403
1950 174.821 481.0 11561.6 6.4813 67000.0 2.8536
1951 204.977 498.0 14008.7 6.6463 77000.0 2.7817
1952 219.746 499.0 15253.9 7.1811 87000.0 2.7598
1953 221.543 529.0 16013.2 7.7436 97000.0 2.7402
1954 254.994 553.0 17830.3 8.0624 108000.0 2.7037
1955 282.991 671.0 20085.7 8.2541 125000.0 2.6584
1956 301.497 713.0 22444.8 8.5160 134000.0 2.5948
1957 301.916 882.0 24277.7 8.7285 147000.0 2.5571
1958 343.700 829.0 26320.0 9.0729 159000.0 2.5314
1959 347.490 841.0 28026.9 9.3544 173000.0 2.5040
1960 364.142 826.0 30231.2 9.7282 196000.0 2.4776
1961 378.057 859.0 31575.0 9.9857 209000.0 2.4478
1962 392.519 859.0 33861.5 10.0191 226000.0 2.4124
1963 390.403 878.0 35309.9 10.0443 242000.0 2.3649
1964 378.156 864.0 37699.1 10.0114 262000.0 2.3057
1965 397.016 882.0 39164.2 10.0596 281000.0 2.2523
1966 396.392 904.0 40932.8 10.0415 307000.0 2.1935
1967 418.014 930.0 42811.0 10.0373 332000.0 2.1639
1968 430.608 959.0 44682.0 10.0367 368000.0 2.1201
1969 456.608 980.0 47374.5 10.1394 402000.0 2.1224
1970 470.337 1016.0 48394.4 10.5884 448000.0 2.1018

Source: See sources in Tables 2-2.

"The quantity of fuel oil is the quantity of distillate heating oil (grade 2),
and prices are obtained by dividing total revenues by total quantities.
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APPENDIX D

FINDING THE SOLUTION FOR THE PARAMETERS*

(1) The solutions for the parameters of the CES utility function
are:

6; =2 for1, 2, 3,

3y Q3
al 33

(0.1) p =)

(2) The solutions for the parameters of the Uzawa CES utility

function are:

b1 =a and b2 =1 - al since b1 + b2 =1,

*This method was used by Berndt and Christensen. See Berndt
and Christensen, op. cit.
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(Qp" (1 - 3y)

3523

Q2 (1 - ay)
S 33 17
(D.2) p 2735

Q23'(1 - 31)
L a3

(3) The solutions for the parameters of the Sato two-level

CES utility function are:

b1 al and b2 =1 - 3, since b1+ b2 =1,

a:
1 A .
51 ol for i = 2, 3 since 8, + 8

1,
1

5 -
-,

al 4 (l‘al)

U

3,23

W
33,

(D.3)
Yy (1-3))-wa;3,
333

Qy3°(1-a;)+wa)a 24

VA

- L] L] . 2
Q33 (l'al)‘w al 33
L 3,3,

(4) The solutions for the parameters of the CD utility function

are:

(D.4) bi = a; fori=1, 2, 3.
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As seen in (D.1), (D.2), and (D.3), the CES, the Uzawa, and
the Sato utility functions have multiple solutions to their substitu-
tion parameters, p or w. For particular parameter values, the value
of each true function is compared with the value of its second order
approximation for various points in the commodity space. This proce-
dure is interpreted as measuring how close together are :the true and
approximate indifference surfaces. The comparisons are based on the
differences between their values:

(1) For a particular value of p of the CES utility function,
the true and approximate CES utility function in (4.7) and (4.23) are
used:

3
MUK - InUX)* =18 -=-1In() 6.xP) - [Ino
P is1 1

2 2
p(si - 51)'(111 xi)

Il &~

(D.5)

1 3 3

+2 1 I pes;es;ln xpdn x]

i=]1 j=1
i#j
where 1n U* is the Taylor approximation to the CES utility function,
and In U is the logarithm of the true CES utility function in (4.7).
(2) For a particular value of p of the Uzawa utility function,

the true and approximate Uzawa utility function in (4.11) and (4.24)
are used:

b 3
2 N
In U(x) - InU(x)* = 1n 6 + b,-In X, - 5 1n(i£2 sixip)

Giln X

It ~1n

(D.6) - [In6 +Db;ln x; + b, L



121

1 3 2
- 5% (Pb,8,85) izz (1n x,)

1 3 3
+ 5+ (pby8,83) izz sz In x;-In xJ.]
i#]
where 1In U* is the Taylor approximation to the Uzawa utility function,
in U is the logarithm of the true Uzawa utility function in (4.11).
(3) For a particular value of p and w of the Sato utility func-

tion, the true and approximate Sato utility functions in (4.13) and

(4.25) are used:
W

3 —
- 1. -w . -p p
In 8 - —-ln(b x;"+b, (izzsixi )F)

In U(x) - In U(x)*

3
-[lne+bplnx +b, | &lnx
i=2
(D.7)
1 2
- E’bz("bl'(ln X )0+ 62(p63 + wblsz)

+(In xz)2 *+ 85(ps, + wb,62)* (In x3)2)]

where 1n U* is the Taylor approximation to the Sato utility function,
and In U is the logarithm of the true Sato utility function in (4.13).

Using (D.5), (D.6), and (D.7), the differences between the
true and approximate functions, which correspond to multiple parameter
values, p or w, are computed and presented in Tables D-1, D-2, and
D;S. To choose a particular value for p or w, the percentage distri-
bution of differences is considered: ‘the smaller differences the p or
w gives, the better the p or w. In other words, the distribution of
smaller differences means the relative closeness of the true and ap-

proximate indifference surfaces. The percentage distribution of differ-
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ences for the CES, the Uzawa, and the Sato utility functions are pre-
sented in Tables D-4, D-5, and D-6, respectively.

For a particular value of p of the CES utility function,
p = -0.243920 is chosen among four different values of p, because all
the values of differences lie between 0.0 and 20.0, as shown in Table
D-4. Similarly, for the Uzawa utility function, p = -0.772910 is
chosen among three different values of p, as shown in Table D-5. For
particular values of p and w of the Sato utility function, a careful
comparison suggests that the combination of p = -0.911384 and w =
-0.084352 is the best choice among nine different combinations of p

and w, as shown in Table D-6.
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Table D-1

CLOSENESS (OR DIFFERENCE) BETWEEN THE TRUE CES UTILITY FUNCTION AND ITS

ALTERNATIVE FUNCTIONAL FORM W1TH 10% DEPRECIATION RATE
(Magnitudes in Absolute Value)

Year =-0.635495 p=-0.243920 p=-0.392086  p=-1.040084
1938 52.430900 8.271940 13.868800 700.232000
1939 67.450100 9.599270 17.290300 916.417000
1940 76.891500 10.105900 18.880600 1117.830000
1941 66.370000 9.151020 16.387600 1005.210000
1942 120.169000 11.297600 24.456700 2075.830000
1943 43.113700 6.386720 9.829960 796.590000
1944 44.347500 6.439640 10.006700 332.116000
1945 80.142000 8.961730 17.383100 1359.190000
1946 103.469000 10.992700 22. 318500 1898.670000
1947 126.485000 12.414800 26.501300 2349.570000
1948 135.285000 12.295400 26.843100 2793.160000
1949 125.036000 10.062300 22.577100 2783.790000
1950 167.188000 13.377800 30.893500 3841.860000
1951 185.673000 14.120500 33.401600 4466.330000
1952 171.911000 13.319500 30.977600 4237.450000
1953 167.066000 12.744200 29.597700 4263.470000
1954 197.717000 14.455700 34.629900 5135.450000
1955 229.140000 15.069300 37.550700 6730.180000
1956 213.293000 14.741000 36.192000 5684.510000
1957 222.006000 14.383200 35.967100 6467.560000
1958 234.440000 15.587400 38.872300 6720.680000
1959 237.448000 14.899200 37.746300 7245.290000
1960 277.330000 15.926700 41.749100 9521.660000
1961 247.384000 15.347900 39.064700 7777.190000
1962 276.974000 16.028700 42.015900 9252.450000
1963 268.371000 15.415300 40.347300 9112.390000
1964 295.491000 15.651400 42.356900 10648.800000
1965 293.661000 16.300200 43.270100 10564.100000
1966 318.614000 16.283600 44.517000 12465.200000
1967 329.202000 16.979600 46.347000 12914.900000
1968 360.686000 17.232700 48.263900 15618.900000
1969 378.431000 17.906500 50.531300 16382.800000
1970 391.333000 17.574900 50.115300 18791.700000
Note: p is the substitution parameter in the CES function.
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Table p-2

CLOSENESS (OR DIFFERENCE) BETWEEN THE TRUE UZAWA UTILITY FUNCTION AND
I'tS ALTERNATIVE FUNCTIONAL FORM WI1H 10% DEPRECIATION RATE

(Magnitudes in Absolute Value)

Year p=-0.938309 p=-0.772910 p=-1.280698

1938 0.030090 0.025910 0.027645
1939 0.020066 0.015852 0.024765
1940 0.019028 0.014924 0.024006
1941 0.031179 0.027190 0.027232
1942 0.000053 0.000036 0.000100
1943 0.956296 0.551171 1.892350
1944 0.972984 0.562711 1.919780
1945 0.022903 0.018475 0.026480
1946 0.023579 0.019121 0.026802
1947 0.012678 0.009541 0.018036
1948 0.017906 0.013937 0.023112
1949 0.022624 0.018211 0.026336
1950 0.014620 0.011139 0.020088
1951 0.013161 0.009934 0.018563
1952 0.021068 0.016764 0.025434
1953 0.025536 0.021042 0.027523
1954 0.018854 0.014770 0.023872
1955 0.021709 0.017355 0.025826
1956 0.014393 0.010950 0.019858
1957 0.020342 0.016101 0.024956
1958 0.018551 0.014503 0.023635
1959 0.021732 0.017377 0.025840
1960 0.025170 0.020677 0.027414
1961 0.023514 0.019058 0.026773
1962 0.021960 0.017588 0.025972
1963 0.024994 0.020502 0.027357
1964 0.023516 0.019060 0.026774
1965 0.026686 0.022213 0.027783
1966 0.028715 0.024369 0.027886
1967 0.028306 0.023923 0.027906
1968 0.031920 0.028097 0.026814
1969 0.029484 0.025221 0.027786
1970 0.036141 0.034267 0.020700

Note: p is the substitution parameter in the Uzawa
CES utility function.
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Table D-3

CLOSENESS (OR DIFFERENCE) BETWEEN THE TRUE SATO UTILITY FUNCTION AND ITS
ALTERNATIVE FUNCTIONAL FORM WITH 10% DEPRECIATION RATE
(Magnitudes in Absolute Value)

w=-0.243920

Year

p=0.168066 p=-0.555706 p=1.944176
1938 0.018387 0.109116 0.132710
1939 0.009349 0.064261 0.060134
1940 0.009144 0.061438 0.052339
1941 0.017483 0.112005 0.151621
1942 0.017734 0.016669 0.020784
1943 0.151943 0.281368 5.369460
1944 0.156246 0.274240 5.431580
1945 0.042950 0.074657 0.011095
1946 0.014844 0.081129 0.071821
1947 0.007248 0.043155 0.015057
1948 0.013512 0.061335 0.030720
1949 0.092638 0.0338781 0.057777
1950 0.013831 0.050079 0.009808
1951 0.012084 0.045264 0.005691
1952 0.018278 0.073551 0.041959
1953 0.025983 0.093007 0.062281
1954 0.014233 0.064735 0.035465
1955 0.018896 0.076109 0.045458
1956 0.015570 0.048937 0.005032
1957 0.026629 0.069467 0.020074
1958 0.014109 0.063669 0.033656
1959 0.025088 0.075932 0.032760
1960 0.025837 0.091299 0.059268
1961 0.022425 0.083817 0.052156
1962 0.023824 0.077116 0.036924
1963 0.030951 0.089909 0.047706
1964 0.041663 0.078496 0.017621
1965 0.026508 0.098521 0.072107
1966 0.037711 0.108665 0.090756
1967 0.029176 0.106943 0.083173
1968 0.036607 0.129081 0.112517
1969 0.031675 0.113594 0.091227
1970 0.040995 0.166194 0.183965

Note: p and w are the substitution parameters in the
Sato CES utility function.
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Table D-3 (Continued)

w=-0.084352
Year
p=-0.911384 p=-0.820797 p=-1.133682

1938 0.086827 0.079009 0.100934
1939 0.052695 0.047067 0.064842
1940 0.050540 0.045089 0.062478
1941 0.088081 0.080359 0.101450
1942 0.004767 0.004728 0.004857
1943 0.678795 0.468699 1.244930
1944 0.695426 0.482490 1.268250
1945 0.082042 0.073956 0.099285
1946 0.067098 0.060322 0.081096
1947 0.036260 0.032184 0.045864
1948 0.052993 0.047328 0.065648
1949 0.093838 0.084751 0.113496
1950 0.045550 0.040604 0.057010
1951 0.041029 0.036530 0.051599
1952 0.064288 0.057665 0.078560
1953 0.081820 0.073891 0.097916
1954 0.055766 0.049857 0.068821
1955 0.066368 0.059581 0.080874
1956 0.046001 0.041028 0.057557
1957 0.067364 0.060470 0.082440
1958 0.054965 0.049126 0.067913
1959 0.070457 0.063320 0.085778
1960 0.080664 0.072809 0.096707
1961 0.073676 0.066325 0.089033
1962 0.070348 0.063226 0.085579
1963 0.083274 0.075183 0.099917
1964 0.083557 0.075365 0.100876
1965 0.085557 0.077404 0.101785
1966 0.099184 0.0900983 0.116790
1967 0.092413 0.083848 0.108983
1968 0.110146 0.100686 0.127043
1969 0.098004 0.089123 0.114802
1970 0.132616 0.122802 0.147067
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Table D-3 (Continued)

w=-0.635495
Year-
p=-1.224270 p=-1.261184 p=-1.133682

1938 0.215878 0.224355 0.193284
1939 0.131837 0.138751 0.114110
1940 0.111864 0.118610 0.094624
1941 0.260780 0.269204 0.238194
1942 0.605051 0.604972 0.605246
1943 0.226933 0.316359 0.014998
1944 0.257142 0.347734 0.042346
1945 0.364484 0.356303 0.385644
1946 0.106699 0.114482 0.086509
1947 0.000036 0.005383 0.013377
1948 0.008688 0.001880 0.026026
1949 0.979950 0.971662 1.001370
1950 0.097175 0.091089 0.112525
1951 0.098086 0.09241° 0.112321
1952 0.021253 0.013707 0.040657
1953 0.038143 0.029764 0.060026
1954 0.000418 0.007437 0.017507
1955 0.016290 0.008621 0.036054
1956 0.137130 0.131061 0.152427
1957 0.183899 0.176327 0.203324
1958 0.004644 0.002312 0.022394
1959 0.123181 0.115379 0.143287
1960 0.045608 0.037277 0.067335
1961 0.032116 0.024082 0.052948
1962 0.096147 0.088328 0.116314
1963 0.132196 0.123808 0.154056
1964 0.330444 0.322172 0.351886
1965 0.015179 0.006658 0.037532
1966 0.129534 0.120654 0.153024
1967 0.011893 0.003167 0.034938
1968 0.011439 0.002397 0.035741
1969 0.015761 0.006902 0.039277
1970 0.101385 0.110262 0.076725
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Table D-4

DISTRIBUTION OF DIFFERENCES BETWEEN THE 'TRUE CES FUNCTLON AND ITS
ALTERNATIVE FUNCTIONAL FORM WITH 10% DEPRECIATIUN RATE

Class p=-0.635495 p=-0.243920 p=-0.392086 _p=-1.04008
0.00 - 10.00 - 18.2 % 6.1% ]
10.01 - 20.00 ; 81.8 % 15.2 % -
20.01 - 30.00 ; ; 18.2 % -
30.01 - 40.00 ; ] 30.3 3 -
40.01 - 50.00 6.0 % ; 24.2 % -
50.01 - 100.00  15.2 % ; 6.0 % -
100.01 - 200.00  30.3 % ] ] -
201.00 - 300.00  33.3 % . ; -
301.00 and over  15.2 % - - 100.0 %
The Snallest 43.1137 6.38672 9.82996  332.116
The Largest 391.333 17.9065 50.5313  18791.7

Number
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Table D-5

DISTRIBUTION OF DIFFERENCES BETWEEN THE TRUE UZAWA FUNCIION AND ITS
ALTERNATIVE FUNCTIONAL FORM WiTH 10% DEPRECIATLON RATE

Class p=-0.938309 p=-0.772910 p=-1.280698
0.0000 - 0.0200 30.3 % 66.7 % 15.2 %
0.0201 - 0.0300 51.5 % 24.2 % 78.7 %
0.0301 - 0.0400 12.1 % 3.0 % -
0.0401 and over 6.1% 6.1% 6.1 %
The Smzllest Number 0.000053 0.000035 0.000100

The Largest Number 0.972984 0.562711 1.919780
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Table D-6

DISTRIBUTION OF DIFFERENCES BETWEEN THE TRUE SATO FUNCTION AND I'tS
ALTERNATIVE FUNCTIONAL FORM WITH 10% DEPRECIATION RATE

=-0.243920
Class
p=0.168066 p=-0.555706 p=-1.944176
0.0000 - 0.0200 45.5 % 3.0 % 21.2 %
0.0201 - 0.0300 27.3 % - 3.0%
0.0301 - 0.0400 12.1 % 3.0 % 9.1%
0.0401 and over 15.1 % 94.0 % 66.7 %
The Smallest Number 0.007248 0.016669 0.005691
The Largest Number 0.156246 0.281368 5.431580
= -0.084352
Class
p=-0.911384 p=-0.820797 p=-1.133682
0.0000 - 0.0200 3.0 % 3.0% 3.0%
0.0201 - 0.0300 - - -
0.0301 - 0.0400 3.0 % 6.0 % -
0.0401 and over 94.0 % 91.0 % 97.0 %
The Smallest Number 0.004767 0.004728 0.004857
The Largest Number 0.695426 0.482490 1.268560
=-0.635495
Class
p=-1.224270 p=-1.261184 p=-1.133682
0.0000 - 0.0200 27.0 % 30.0 % 12.0 %
0.0201 - 0.0300 3.0% 6.0 % 6.0 %
0.0301 - 0.0400 6.0 % 3.0% 18.0 %
0.0401 and over 64.0 % 61.0 % 64.0 %
‘tThe Smallest Number 0.000036 0.001880 0.001370

The Largest Number 0.605051 0.604972 0.605246




