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ABSTRACT

The investigation carried out in this project was

mainly concerned with modelling and optimization of a ro-

tating disc contactor (RDC) liquid-liquid extraction process.

The main goals achieved in this work are:

1.

A thorough study of the hydrodynamics of an RDC was
carried out, and the physico-hydrodynamic relations

were evaluated. A semi-theoretical holdup model was
validated experimentally and an axial mixing correlation
was recommended.

Steady-state models for the process were developed and
solved numerically. Steady-state experimental data were
used to test alternative mathematical models for the
process. The three-section column model with axial
mixing was found the most suitable.

An operating objective function was developed for steady-
state optimization and four gradient optimization tech-
niques were compared numerically for solving the problem.
The optimum gradient method proved to be the best for
this case.

A unique dynamic model with identified order and seven
fiow conditions was developed and solved for time-in-

variant and time-varying disturbances. The dynamic



response of the seven flow conditions were compared to
experimental data. The model with variable axial mixing
in solvent phase only proved to be the best in represent-

ing the dynamics of the process.
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MODELLING AND OPTIMIZATION FOR A
ROTATING DISC CONTACTOR

CHAPTER 1

INTRODUCTION

During the last twenty years process control and
optimization for all industries and especially the chemi-
cal industry have taken on an increasingly important role.

To have better control is one of the most important
demands in modern industry, and this has been brought about
by several reasons:

1. New processes have been developed which can operate
only if such variables as flow rates, concentrations,
temperatures, and pressures are maintained within
very close limits.

2. 01d industries have found that one way to increase
their sales was to improve the quality of their
products and to avoid off-specification products.

3. A more fundamental study of the process can lead
to better process control, giving higher product
quality and lower consumption of materials, labor

and energy.



4. To improve working conditions especially as regards
safety.
5. The necesgity of finding causes for improper per-
formance.
6. The necessity of decreasing the unproductive time
required to adjust for upsets.
7. The need to help the engineer make better and faster
decisions about the system under his supervision.
During the last ten years on-line computer control
has taken on added significance; it is not only enough to
be able to control a process (supervisory) but also to be

able to control it at optimum conditions (optimal).

Background:
Steady-State Optimization

There are two main approaches to_.the probliem of
steady state optimization of a chemical process, namely,

on-line search techniques and model-reference optimization.

The former are used if it is not possible to develop
a mathematical model for the process because of its com-
plexity or because of unknown physical phenomena. Even if
a mathematical model can be prepared, it is often too com-
plex to solve. Therefore, one is forced to resort to a
different means of determining the optimum. This can be
done by considering the system as a "black box" about which

nothing is known except the number of inputs and outputs.



Clearly, this case is rarely, if ever encountered
in practice. However, it needs the most general background
for the development of theory of system identification.

Any theury advanced from this concept, while being completely
universal in scope, will suffer from the lack of concern

for the physical process involved. The system is viewed as
an input-output device with little regard for its internal
physical structure.

In model reference steady-state optimization one
should postulate a mathematical model for the process per-
formance under steady-state conditions of operation.
Mathematical modelling of a process is generally a two-step
operation: (1) to define a model structure, (2) to fit,
calculate, or adjust the parameters of the model. The
identification and estimation of model parameters can be
done either from the available information about the process
from previous investigations or through known statistical
techniques. The first approach is much easier for processes
for which the physico-chemical phenomena are well understood,
while the second approach is preferable for processes which
are not so well characterized.

For the second approach Eykhoff(]) distinguishes
two classes of problems, which depend on the initial and
desired knowledge of the process:

a. "Identification - the determination of a topology of the

process, considering it as a celebrated black box."



b. "Parameter Estimation - the determination of the para-
meter values of the process, assuming the topology to
be known."

The development of a reliable and realistic model
for the process is the basis for the development of a
Performance Criterion with reference to which the optimum
values for the process variables can be obtained.

For commercial processes, maximum return on invest-
ment, or profit, is perhaps the most common criterion for
optimum engineering design. Since the pilot scale RDC
under study is operating on a physical system which is
not useful industrially (Amyl Alcohol-Acetic Acid-Water),
it is not possible to assign realistic costs for the raw
materials or the product and, therefore, to formulate a
general profit function.

It would be better then to restrict the objective
function to an operating criterion which relates the ef-
ficiency of the process (measured by the actual number of
transfer units (NTUM), to the process variables through
the steady-state model, and the power required by the
rotating shaft. This type of objective function is a mea-
sure only of the effectiveness of the process.

To optimize the process performance and to evaluate
the optimum levels, an efficient optimization technique
must be used. The convergence and efficiency of any op-

timization technique is of primary importance from the



economic point of view. A preliminary investigation is
required to indicate the most useful scheme for a particular
application. Among the techniques which have shown con-
siderable success for optimizing a quadratic or non-quad-
ratic constrained objective function are: Optimum Gradient,
Conjugate Gradient, Modified Fletcher and Powell, and Vari-
able Metric Methods.(z) Further details abou: each of the

above mentioned steps are detaiied later.

Scope of the Project:

In this dissertation the author has tried to answer
the following two questions: (1) What benefits will one
get from implementing on-line computer control for the pro-
cess under investigation? and (2) How can a suitable system
be implemented?
To answer these questions qualitatively and quanti-
tatively for the extraction process under investigation,
one would review the following important stages of operation:
1. Start-up: For the usual start-up of an extraction pro-
cess, the column is filled with the continuous phase,
then the flowrate of this phase is set to the desired
value and then the dispersed phase is introduced at
the proper flowrate. Within a short period of time
the holdup of the dispersed phase attains its steady-
state magnitude. A full quantitative description of
this period of the start-up would be extremely diffi-

cult because of the different displacement velocities



3.

of the different size drops and wouid lead to very
complex results. Therefore, attention should be given
at this stage only to actuate the motorized values in
an optimum way. This can be done by postulating a
suitable control algorithm with an optimum combination
of the three PID (Proportional, Integral, Derivative)
control parameters.

Steady-State is one in which the process is operating

under equilibrium conditions for long periods of time.
The problem of evaluating the corresponding optimum
levels for the process parameters and variables would
be evaluated either off-line if the objective function
can be evaluated directly from the steady-state model,
or on-line as a stochastic search procedure with the
past and current values of the input and output vari-
ables used to create a surface on which search for
optimum is carried out.

A Transient State is one in which the system is driven

away from the desired steady-state optimum level for a
short period of time. The process could be represented
by a time-invariant model and a time-optimal control

or dynamic optimization procedures can be implemented
through the process model to evaluate and renew the
controllable variables to achieve minimum deviation

error.



4. Unsteady-State is one in which the system operates for

relatively longer periods of time under dynamic condi-
tions and the rate of change of the parameters is so
high that it would be hard to consider it stationary.
A time-varying model is required to represent the
process and a suitable control technique is required
not only to control the process but also to predict
for some time in the future the state of the process.

5. Set-Point Changes: This case could be considered as a

special case of case number (3).

6. Process Troubles are states in which the system is forced

out of the feasible and controllable range. Without
developing a mathematical model for the process, it

will be very difficult to detect such troubles, and the
only action remaining is to stop the process and leave

it to settle down and then repeat case (1) procedure.
With a reference model it is possible to avoid these
troubles by drawing a margin between the critical

region and the feasible one, thereby imposing constraints

on the process performance.

Process Models:

As a good process model is necessary for model
techniques, attention will be paid to three types of process
models: qualitative, static, and dynamic.

1. Qualitative Models

The great majority of control systems are still

being designed on the basis of qualitative process models.



Physical insight and experience indicate how to connect the
controllers to the control valves. Also, the choice of
controller behavior, which usually comes down to the ad-
justment of P-, I-, and D-action, is realized by trial and
error.

2. Static Models

These models have been developed for a variety of
processes. They consist of algebraic, ordinary differential,
or partial differential equations (linear or nonlinear).

They are used generally for static optimization of process
operation, resulting in optimum desired values for the con-
trolled variables.

3. Dynamic Models

It is not always appreciated that there are various
types of dynamic models, which differ widely from each other.

They are: Lumped models of low or high order, models with

time delays, and distributed-parameter models. Low-order

lumped models consist of a small number of differential

equations, e.g., stagewise model for a multistage transfer

process. High-order lumped models pertain to so-called

multicomponent processes (e.g., polymerization reactors),
or multistage processes where the actual stage is the unit
for mass and heat balances (mixed-cell models).

Distributed-parameter models arise when the process

variables are functions of time and of geometric coordinates,

and the dynamic behavior must be described by partial



differential equations. Figurel shows the different types
of models and the interrelationships between them. We
shall find that the steady-state model with end effects
adequately describes the steady-state performance of the
RDC, and that the dynamic model with variable backmixing

in solvent phase only best describes the transient response.
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CHAPTER I1I

HYDRODYNAMIC STUDIES

Introduction

Extensive use is made of the liquid-liquid extrac-
tion process in industry; as a result many column designs
have been suggested in the literature to perform this liquid
separation process efficiently.

(3)

Mumford in his review on equipment selection
for extraction processes, classified them as:

I. Equipment in which the liquids are mixed, extracted
and separated in discrete stages. This class in-
cludes the mixer-settier range of equipment and the
different plate-type columns.

II. Equipment in which continuous countercurrent flow
is established between the immiscible phases to
give the equivalent of any desired number of stages.

They may be categorized as follows:
A. Gravity Operated Columns:
1. Non-mechanical dispersion:
a. Spray columns,
b. Baffle-plate columns, and

¢c. Packed bed columns.

11



12

2. Mechanically agitated columns:
a. Pulsed columns, and
b. Rotary agitated columns.

B. Centrifugal Columns.

Selection of Equipment

The choice between the various types of extraction
columns for any particular application is based largely on
experience.

Continuous contact extraction columns are, in
general, preferable to mixer-settler units when large
throughputs are to be handled since they offer economies
in agitation power, equipment cost, floor space, and solvent
inventory. They operate with relatively small amounts of
holdup of extract and raffinate which is especially impor-
tant when processing radioactive, flammable or low sta-
bility materials.

A prime advantage is their flexibility of operation
which enables extraction to be performed with systems

'Iikely to form fine dispersions.

Rotating Disc Contactors

(4,5) 45 1951,

The RDC was first proposed by Reman
and consists of a vertical cylindrical shell divided into
a number of compartments by a series of stator rings. A
rotating disc supported on a central shaft is located in

each compartment. The dense phase is introduced into the
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top of the column and the light phase into the bottom end.
At each end, there is a settling zone to allow for separa-
tion and recoalescence of phases.

Mi§ek(6) studied the conditions under which one of
the phases is dispersed, and the second is continuous.

He classified the operation of the RDC into two different
operating conditions: (a) moderate-intensity, and (b) high-
intensity operation. The transition between the two states
can be determined only with T1imited accuracy, because the
transitions for individual elementary factors differs to

a certain extent.

During intensive operation, the droplets are broken
up ina turbulentstreamanda transfer of mass from solid drop-
lets with their center at rest results. Practical experience
indicates that resistance to mass transfer in the moderate-
intensity region is concentrated in a continuous film and
in the high intensity region in the dispersed phase.

Tables 1 and 2 give a guide to a decision based
on the value of the separation coefficients. When the
separation coefficient is less than one (m << 1), and the
column is under moderate operating conditions, a dispersed
feed phase is acceptable. A similar recommendation can be
deduced on the basis of the volume of the column and the
effect of the longitudinal mixing coefficients. On the
other hand, for m > 1 and the column operating under moder-
ate conditions, difficulties due to the effect of the longi-

tudinal mixing must be expected.



14

MiSek concluded that the majority of industrial
extraction columns are operating under moderate conditions,
and under these circumstances the influence of longitudinal
mixing is not dominant. He recommended the following pro-
cedure to define the dispersed phase.

1. Using Table 1 as a first approximation for the state
of operation for the column.

2. When the dispersed and the continuous phases are known,

then the condition

]—<< ]
Kd mcKc

should be evaluated and K(0) value is determined from

Table 2. If K(0) < 1 the feed is the continuous phase.
3. The functional x(K) (which describes the ratio of the

value of a function in a disperse solvent to the same

value obtained when a disperse feed is considered,

—éii) is illustrated by the following relationships:

Xf=d
_ 1
x(mc) = ;ﬁ
o ou ) 1/3
- s ¥s
x(u) = X(d)[of-uf] (11-1)

4. If the results from Tables 1 and 2 are in contradiction,

trials starting with step two are repeated.

Applications of RDC's

The original use of the RDC by the Shell Companies

was for the furfural extraction of petroleum lubricating
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0ils from which they gained savings of about 60% of the
capital cost of equivalent packed towers and had a sepa-
rating power equivalent to a 14-stage mixer-settier unit.(7)
The RDC has found a wide use in petroleum extraction
processes including propane deasphalting,(7) SO2 extraction
of kerosene fractions, sulpholane extraction and naptha
sweetening. About one hundred and fifty units were reported
to be in commercial use by 1968.(3) More uses have appeared
recently for the separation of oxy-compounds from Fisher-
Tropsch synthesis and the dephenolization of waste waters
from effluents in the coke and gas industries.(g)
Westerterp and Landsman(]g’]g) have noted the po-
tential of using the RDC as a continuous reactor for homo-

geneous liquid phases reaction, especially in cases where

large heat effects and long holding times are required.

Flow Pattern in an RDC Compartment

Reman(zo) studied the hydrodynamics of flow in each
compartment, and found that the flow consists, in the first
place, of a rotation of the whole mass of liquid superinm-
posed on this motion a slower movement of the Tliquid from
the vicinity of shaft towards the column walls, and from the
wall back towards the shaft in the vicinity of the stator
rings. The resulting flow in each compartment is toroidal
in nature. Two vortices in opposite senses occur; they are
geared together to form a complete vortex. The energy
transformed from the rotor discs to the liquid creates a

fairly uniform turbulence.
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Kung g}_gl.(Z]) in a similar work concluded that
the flow consists of two movements: (1) countercurrent
flow of phases caused by a density difference, and (2) ro-
taticn of the whole liquid mass. Therefore, besides the
axial flow there is toroidal flow, the latter causing
back-mixing in the column. Diagrammatic sketches for both

explanations are shown in Figure 2.

Liquid System Used

In the tertiary system selected, amyl alcohol is
used as a carrier, acetic acid as a solute, and distilled
water as a solvent. The direction of mass transfer is from
amyl alcohol to water.

This system has been chosen on the following basis:
1. The acid content can be accurately determined either

on-line by the refractometer for the feed phase, by the
conductivity meter for the extract phase, or by the
specific gravity meter for the raffinate phase, or
manually by titration.

2. The equilibrium relationship is linear below acetic
acid concentration in the feed phase of 15%, and de-
pends to a negligible extent on the concentration
(below this value), or the temperature.

3. The system shows 1little tendency to form stable emul-
sions.

4. The system is not highly corrosive.
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Description of the Experimental System

The system used by the author was primarily equipped
for on-line experimental optimization studies on the ro-
tating disc contactor. Few necessary modifications and
additions were carried out to make the system more reliable
and capable of performing various input disturbances to
study the dynamics of the process. The following modifica-
tions were made:

1. A second feed phase overhead storage tank was installed
to be able to switch the inlet feed concentration be-
tween two different values.

2. Two solenoid valves (one N/0 and one N/C) were fixed
on each feed phase tank line with necessary fittings,
by-passes and manual valves, to have a flexible access
to any feed tank.

3. A filter (-360 mesh) was installed on the main feed
line to prevent fine solid particles from blocking the
line and a similar one on the solvent line to remove
any suspended growth from the water inlet.

4. A pneumatic valve was installed on the main feed line
to allow for testing the process for different feed
phase flowrate disturbances. A sinusoidal generator
was connected to the valve to be able to actuate it in
a known signal form (amplitude and duration).

5. An orifice meter (pressure drop = 0-20" meter) with a

75-vo1t power supply and interface circuit was installed
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on the feed line to make more accurate flow measurements
than tﬁose obtained from the motorized valve. The lat-
ter proved inaccurate due to slip in the stem position
after a period of use. This makes the calibration
curve inaccurate to take by.

6. Also, a hot wire anemometer was installed on the sol-
vent line for the same reason.

7. An electronic tachometer and interface circuits were
built by the department electronics workshop to be
able to interface the rotating shaft with the computer
and include it as another input variable.

A schematic flowchart for the system is shown in
Figure 3.

Fundamental Aspects of Mass Transfer in a Continuous

Counter-Current Liquid-Liquid Extraction Process

It is essential for many mass transfer studies and
modelling to review the characteristics associated with the
process, such as holdup, back-mixing, mass transfer coef-
ficients and the interfacial area bf contact between phases.

The dispersed phase holdup is expressed as the

volume percent occupied by the dispersed phase. Many studies
have been carried out on the effect of the different con-
ditions of operation, and the geometry of the column on
the holdup distribution and percentage.

Strand gg_gl.(zz) determined point values for the
holdup along the column axis by drawing samples through

probes located at various points on different levels, to
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determine the axial and radial values for the holdup.

For the feed phase introduced at the bottom end, it has been
shown that the value of holdup increases by moving up, prob-
ably because it takes time for the phase to break-up by the
shear action. Then it decreases towards the top end due

to the competing effects of axial diffusion of drops in

the contact zone and the drop discharge into the sink or
settler provided by the internal settler above the top
stator ring.

(23)

Vermijs and Kramers measured the holdup for
ditferent feed to solvent ratios (G/L), and column through-

puts (G + L).

Logsdail, Pratt et a].(24) have fe]ated the column
geometry, flow conditions, and physical properties of the
1iquid system to the holdup volume fraction by the follow-

ing correlation:

. K{;Y:] [%&}O.Q[D—rg,rz]]'0{%]2.3[%]0'9{%]2.6 .

(21) (3)

Kung and Beckmann and Mumford have reached

the feilowing conclusions from their experimental work on

a similar extraction column:

1. At rotor peripheral speeds less than 300 ft/min, entrap-
ment of the dispersed phase droplets under rotor discs
and stator rings occurs. However, this entrapment is
not permanent since there is a net movement through

the column.
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2. The holdup value (average) can be evaluated with rea-
sonable accuracy for a given column geometry and rotor

speed by using the following semi-theoretical formula:

V4 v

. _ce =90 - ) (11-3)
where

Ky = 2.1 at (b, - D)/D, < g?
and

Ky = 1.0 at (b - D_)/D, >2]_4

The equivalent values of V are estimated from Equation
{I1-2) for K = 0.0225 for the first case and 0.012 for the
second case.

Strand gg_gl.(ZZ) assumed a relation for the charac-

teristic drop velocity (VCRL of the same form proposed by

Thornton,(]7) as follows:
- 1 Vd )
Vool T (11-4)

where CR is taken to be the minimum of the following three

area ratios given below:

2 2
gi s 1 - ;ﬁ , or
r c
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Kung and Beckman have shown that at the flooding
point the flowrates and rotating shaft speed reach maximum
permissible values. Introducing this condition into Equa-
tion (11-3) and by differentiation and setting (dVd/dZ)
and (ch/dZ) equal to zero the following two equations

are obtained:

2ve$(1 - ef) (a)

-
H

(11-5)

-
|

=701 - 0?01 - 2¢p) (b)

Equation (II-5) relates the superficial velocity
for the dispersed and continuous phases to the holdup
fraction at flooding conditions (e).

A relation between €g and the superficial velocities
ratio at flooding (Vdf/vc ) is then obtained by eliminating

- f
V from Equations (a) and (b) in (II-5).

_(R% + 8r)0+% - 3

e = 71 - R) (11-6)

where

R= (V, /V_ ).
df Ce

For each new set of conditions of operation, the
flooding holdup value can thus be calculated. This value
will be a constraint on the process performance. If the
actual value of holdup is near the flooding value, a cor-
rective action can be taken to reduce the actual holdup

and prevent the system from running in a critical range.
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Similar studies on the holdup and flooding conditions
for other types of extraction columns have been carried out
by other workers, e.g., for packed columns'by Watson gg_gl.}lo)
for multistage vibrating disc columns by Miyanami gg_gl.,(!!)

for spray columns by Laddha et a].,(]z)

and for unbaffied
agitated vessels by Weinstein and Treyba].(]3)

Delichatsios gg_gl.(]4) have shown mathematically
and by experimental validation that increased drop size with
higher fractional holdup can only be accounted for by al-
Towing for coalescence, while turbulence damping caused by
the dispersed phase playsa secondary role. Park and B]air(Is)
have studied droplet interaction phenomena of liquid-liquid
dispersions in a stirred tank, for Methyl Iso-Butyl Ketone
(MIBK) in water. They found that drop dispersion and break-

up occurred near the impeller and coalescence predominated

at other locations, as expected.

Physical Explanation of the Flooding Phenomenon

This phenomenon can be understood well by consider-
ing the hydrodynamics of flow in each compartment as follows:
As the liquid mixture comes in contact with the
rotating surface, it imparts kinetic energy. The amount
of energy imparted to the liquid mixture will depend on
the angular speed, the surface roughness, shape, and dia-
meter of the disc, and the physical properties of the
Tiquid mixture. The amount of energy gained by each phase
will depend on its physical properties and the quantity

present in the mixture.
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The centrifugal action will drive the liquid away
from the center in the form of a continuous sheet. For low
angular speed this sheet will not be strong enough to hold
its shape and penetrate a long distance awav from the disc
edge in the continuous medium filling the compartment.
Therefore, it will disperse in the form of large drops
for the light phase while the dense phase drops will soon
recoalesce with the continuous medium.

A force balance on each drop shows that larger
drops will ascend in the axial direction faster than the
smaller drops. Therefore, fine drops will have a longer
residence time in each compartment while the coarse ones
rise up and are subjected to further shear action in the
next compartment.

This will make the value of holdup increase pro-
portionally with the shaft speed and the distance away from
the dispersed phase inlet to a certain height after which
the holdup will decrease by coalescence as it becomes closer
to the liquid interface.

By further increase in the shaft speed, a higher
dispersion will be achieved and an increase in the residence
time for each drop will also increase as a result of further
disintegration. This explains the direct increase in hold-
up with the shaft speed.

A higher shaft speed will make a stronger sheet of
liquid which can penetrate further in the continuous phase

in the compartment, which will prevent to a certain extent
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more drops from ascending in the central part of the column
and will be enforced to take the vicinity of the column
walls.

A higher speed than the above one might cause a
state in which neither the heavy phase can find its way
down nor the light phase can find its way up. This is
most likely to happen in RDC's with small diameters.

A further increase in the shaft speed will cause
another undesirable phenomenon. This is due to the ex-
tremely Tow drop size distribution of the dispersed phase
which will make it possible for the droplets to avoid coming
in direct contact with the rotating disc surface. Thereby,
a great portion of the shear action is applied to the con-
tinuous phase which will turn it into a dispersed form
also.

When the stage in which both phases are present
as fine dispersed emulsion is reached, the rate of entrain-
ment of one phase into another will increase to an extent
that the outlet streams will be a mixture of both phases.

This physical explanation is based on observation
of the column performance at wide range of operating con-
ditions and gives more insight on the flooding phenomenon
in mechanically agitated columns. It can be said now that
flooding occurs in two distinct stages:

1. No flow in the axial direction due to density difference,
and

2. Emulsion formation.
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Mathematical Model for the Holdup Evaluation

A computer program has been written to evaluate
the holdup mean value and the equivalent flooding value for
the system under study, using Equations (II-2), (II-3)
and (11-6), the column geometry, and the physical properties
of the Tiquid system.

Figure 3 shows a flow diagram of the computer pro-
gram written for this purpose.

The program has been used to solve the above equa-

tions for a wide combination of the process variables:

Feed phase mass flowrate (G): 60-180 g/min
Solvent phase mass flowrate (L): 60-180 g/min
Peripheral shaft speed (RN): 0-1800 cm/min

Figures 4 and 5 give the relationship between the
column throughput (G + L), and the peripheral shaft speed

vs the holdup volume fraction of the dispersed phase.

Holdup Measurements

To check the accuracy of predictions obtained from
the semi-theoretical model solved above, many steady-state
runs were carried out at various levels of operation. The
procedure used for experimental holdup measurement is simi-
lar to the one used by‘Vermijs and Kramers.(zs) In this
technique the inlet streams and shaft speed were set-up to
the desired level manually and kept there until the exit
extract concentration shown on the conductivity meter

reached a steady-state. Then, the inlet and exit valves



26

were shut down immediately and the contents of the column
were drained and left to settle down in a graduated 4 litre
beaker. The volume of the 1ight phase was measured and
the holdup volume fraction calculated.
The experimental results showed very close agree-
ment with the semi-theoretical model as shown in Figure 5.
For larger columns, it is possible to measure the
variation in holdup along the column axis by inserting
probes on different levels and withdrawing samples from them
simultaneously by control levers on the side hoses. If
the column diameter is large enough, more than one probe
could be inserted on the same level and with different

taking points-radii.

Longitudinal Dispersion

The second phenomenon to be studied is longitudinal
mixing and its effect on the efficiency of mass transfer
in liquid-liquid extraction processes.

The longitudinal mixing of phases in extraction
columns, which reduces its efficiency, is due to the re-
verse mixing produced by the entrainment of phases, and the

8,28,29,30,31) ,pich

axial mixing or Taylor diffusion(
causes transverse and longitudinal non-uniformity in the

velocity and concentration profiles.
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Longitudinal, reverse- or back-mixing, and axial
diffusion are characterized by the coefficients EZ’ Er and

Eax respectively, which have the units of diffusivity and

are related together as follows:

E, = E_+E (I1-7)

Two approaches have been taken to study this phe-
nomenon. The first is based on the diffusion model in
which the change in concentration along the column axis
is continuous. The characteristics of this approach are
the height of transfer unit (HTU), E, and E..

Myauchi(3])

has studied the influence of EZ the-
oretically, by using a simplified model which utilizes
mean diffusivities and mean velocities for both the con-
tinuous and the dispersed phases. From this theoretical
study, it has been shown that the influence of the longi-
tudinal dispersion on the extent of extraction can be
expressed as a function of four dimensionless parameters.
These parameters include as variables the rates of longi-
tudinal dispersion, the overall mass transfer coefficient,
the equilibrium partition ratio, and the rates of fluid
flow.

It has been shown theoretically that longitudinal
dispersion has the effect of increasing or decreasing the
concentration abruptly at the column entrance, Figure 6,

and the concentration pattern for each outgoing stream be-

comes flat as it approaches its outlet.
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Miyauchi"s approach led to three different defini-
tions of NTU, depending on how one defines the effective
concentration driving force:

a. True value

NTU;. = KaZ/G (I1-8a)

b. Plug-flow value NTUP, obtained from the logarithmic

mean driving force,

NTU, = {1n[(] e :i" + A]}///(] - a) (1I-8b)
out J .

c. Measured value, NTUM, obtained by integration to

the calculated concentration profiles

R
NTU, = {x(z-])- T (11-8¢)
(z=0)

It has been shown that NTUT > NTUM > NTUp.

The second approach for determining the longitudi-
nal dispersion coefficients is to test the process for a
known disturbance and to measure the dynamic response.

Rod(32) used a graphical method based on a dif-
fusion model to construct the true operating line for three
cases: (1) longitudinal mixing in the continuous phase
only, (2) longitudinal mixing in the dispersed phase only,
and (3) longitudinal mixing in both phases.

In the last case trial and error is required to de-
termine the concentration jump at the feed entrance and to

be able to Tocate the first point on the operating line.
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Danckwerts(33’34) has developed a distributed model
representing the process under dynamic conditions. His
starting point is the following differential equation,
where the longitudinal dispersion coefficient, E , uniquely

characterizes the mixing process

32x aX _ ax
EZ 372 " Uf 3z ° 3t (I1.9)

This model assumes‘a uniform radial concentration
in the continuous phase. If the disturbance function is
introduced, its concentration becomes established at the
inlet cross section almost instantaneously. The dependence
of this concentration, x, on time, t, is characterized by
the input curve.

The regularity in the variation of the concentra-
tion with time in the column being considered is character-
ized by the output curve.

The type of disturbance used to drive the process
to the dynamic state varied from one worker to another and
obviously the equations developed to evaluate EZ varied
from one another.

(1) Pulse-Input:

Levenspiel And Smith(zs) showed that for an infi-
nitely Tong tube and periodic sampling, the output curve
can provide the value of the variance of the dispersion

for the tracer concentration (o2-tracer):
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2
2[ze2x. 262x.
W] o
j

The longitudinal ;oefficient of mixing can then be

evaluated from the following formula:

£, = 9L/8o7+ 1 - 1] (11-11)

[/

oo|‘:

It has been shown by Levenspiel and Smith that at
higher Peclet numbers the output curve becomes closer to
the normal distribution curve.

Van der Laan(35) has treated the diffusional type
of flow for a more general case of a finite pipe length by
applying suitable boundary conditions.
(2) Step Input:

Hazlebeck and Geankop]is(36) have calculated the
axial mixing coefficients, using Equation (II-11) and making
the substitution, Z = x - Ut and the boundary conditions

as follows:

x(Z,0)

n
>

0 (11-12)
x(0,t) =

'
x
~
~N

"
<D
\%
[\

Equation (II-12) states that half the tracer ma-
terial is ahead of the point (qft/edV) = 1.0, and half
behind it. This equation is solved for step input to ob-

tain the following:

X 1 x - Ut
X ol 4 erp| o Ut (11-13)
X 2[ [ 2/?2%4}
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Differentiating Equation (II-13) and evaluating it

at the reduced time § = (qft/edV) = 1 gives

Uz
E, = (11-14)
L [d(x/xo) ]2
™
— =]
edV

By measuring the siope of the curve of x/xo VS.

(qft/edV) at 8 = 1.0, E, can be calculated.

1

(3) Sine-Wave Input:
Ebach and Nhite(37) and Liles and Geankop]is(38)

started with Equation (II-11) and with two boundary condi-

tions imposed at the inlet and the outlet respectively:

x(0,t)

"

Xy * A, sin wt (I1-15)
x(=,t) = Xy ~or A(z) = 0 for z » = (I1-16)

The periodic steady state solution is
x(Z,t) = xy + A(O)e-B sin(wt -~ £) (11-17)

where

= l = wZ
B = and tcalc U

It has been shown in previous surveys that it is
very difficult to evaluate the longitudinal dispersion co-
efficients for the process investigation through the ex-

perimental approach. It would be easier to seek an accurate
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empirical formula developed by other workers for such a

prob]em.(]04)

Empirical Formulae for the Longitudinal Dispersion

Coefficients:

Westerterp and Landsmann(]s) have developed the
following correlation for the evaluation of the Peclet

numbers:

2n

= II-18
Pe(f or s) -3 NDr ( )
1+13 x 10 “|—

Uf or s

where n is the number of compartments, and (NDr/ﬁ) is a
measure of the ratio of the linear stirring velocity and
the liquid flow velocity through the column (N = the angu-
lar speed of the shaft, rpm).

One of the two RDC's used in their experimental
work is similar in dimensions to the one presently under
investigation with the only difference being the number of
compartments.

(28) carried out experimental work

Miyauchi et al.
on a two-stage unit under flow and non-flow conditions and
obtained the following correlations:

For nD2/v > 1.2 x 10°:
_ -3 0.5 0.25 )
£/mD,, = 4.3 x 1073(0 /H)%-% (0 /0 (I11-19a)
and for nD2/v < 1.2 x 10°:

£/nD_ = 4.5 x 10'2(DC/H)°'5(DC/DS)°'25(nDi/V)'O'Z (11-19b)
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Strand et al.(zz) have reached similar formulae
for the evaluation of axial mixing coefficients, given as
follows:

For the continuous phase:

[l_:_i]g = 0.5 + 0.09(1-c¢) EEE EL 2 EEJZ . [HX}ZJ
VCH ¢ : Vc DC DC D

c
(11-20a)
and for the dispersed phase,
2 2 2
ek D NfD D D
d r|'r S r

= 0.5 + 0.9¢c || |I5>] - |5 (I1-20b)

VgF Y [D] HDJ M ]

The above formulae give the average values of the axial
mixing coefficients.

If the variation in the axial mixing coefficients
along the column axis is required, Gel'perin g}_gl,(40’4])
have determined the coefficients of Ez(h) by the pulse
method. They found that the dependence of EZ on the impor-
tant process parameters can be described satisfactorily by

the following correlation:

Ez(h) = aVsh + bDMNh (11-21)

where a and b are constants characterizing the column.
For RDC the above equation can be reduced to the
following form which takes into account the effect of the

column-~to rotor-diameter ratio:

2
E,(h) = 0.5 Vch + 0.012 hD N(D/D) (11-22)
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It should be noted that the first term in the above
equation accounts for the effect of the height while the

second term accounts for the intensity of mixing.

Interfacial Area of Contact and Mass Transfer Coefficients

Two of the most important factors governing mass
transfer in 1iquid-liquid extraction processes are the drop
size distribution and the mass transfer coefficients. The
pattern of change of these parameters has been studied by
various experimental methods (e.g., photography, sedimenta- -
tion, transmission and dispersion of 1ight) under a wide
(16,17,104)

variety of conditions.

(1) Interfacial Area of Contact:

Starting from the equality of the capillary pres-
sure and the dynamic pressure of the turbulent pulsating
eddies, one couldobtain the following equation for the

average diameter of a dispersed ]iquid:(40’]05)

0.6
. Y i
d =K 57773 (11-23)
Pe ¢
(33)

The same formula had been obtained by Hinze
from the condition that the ratio of the drop's kinetic
energy and surface energy is constant (for maximum sta-
bility of the drop diameter, Ky = 0.725). _Vermeulen et
gl.(34) have studied the dispersion of liquids in two
geometrically similar mechanically agitated columns. They

found that the mean volume surface drop diameter can be
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calculated from Equation (II-23) with K] = 0.0835. The
value of ¢ is related to a unit volume of the liquid being
mixed. Miyauchi and Oya(44) studied the fine dispersion
which occurs in a pulsed sieve-plate column, using a liquid
system MIBK-Water and failed to find the law governing the
change in K].

Little work has been done on dispersion in contin-
uous flow extraction columns. Strand g;_gl.(zz) studied
the law governing this phenomenon in RDC's. Attempts by

Olney(45)

to determine drop diameter in an extraction

column from the characteristic drop velocity, can hardly

be considered as legitimate, because coalescence and re-

dispersion have not been taken into account. In fact, the

literature contains no quantitative data on the effect of

mass transfer on the drop diameter and the interface surface.
Finally, it may be noted that the rate of mass

transfer is determined, not only by the area of the inter-

face surface, but also by the actual drop size of the

dispersion.

(2) Mass Transfer Coefficients:

The problems of mass transfer in extraction columns
have attracted the attention of many workers. The com-
plexity of the process is due to the fact that it is usu-
ally governed by the diffusion, both in continuous and
dispersed phases, and the transfer of the solute in the

latter phase is unsteady.
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Unfortunately, there are no reliable methods for
direct evaluation of macs transfer coefficients in the two
phases or for their determination from the values of the
overall mass transfer coefficients.

The difference between the mass-transfer mechanisms
in the continuous and the dispersed phases, reduces to a
marked difference between the methods proposed for their
description.

(a) For the Dispersed Phase:

The simplest model of mass-transfer in a drop(4])
(assuming it is confirmed) postulates the absence of cir-
culation currents and transfer of solute exclusively by
molecular diffusion. Furthermore, it is assumed that the
limiting stage of mass-transfer is the diffusion rasistance
of the dispersed phase.

The solutions given by Ca]derbank,(AB) Hand]os,(47)
and Thornton(24) for the degree of saturation of a single
drop by a substance diffusing into it, enable us to pro-
ceed to an expression for Kdi (the coefficient of mass
transfer of phase i).

(48,49,105)

In the work done by Skelland et al. and

Wellek et a].fso) the equations for Kd for various models
are given as follows:

1. For "Hard Globule" Model"

N°D n" <
d b = 1 d
K = _]n —_— _ — exp|- —m—=% (II-24)
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2. For "Circulation Currents in the Drop" Model:

d 3 9 ]6DdrPe
Kd = . (13 In g zn=] Bn exp -Xn —15753? (11-25)
where Bn and Rn are coefficients of the series.
3. For "Turbulent Mixing" Model:
q zw 160dTPe (11-26)
Ki==-—=1n2) _,|B exp|l-x — II-
d 61 n=1{"n N 5048 d2

At drop saturation less than 0.5 Equation (1I-24)

reduces to the following:

d TrD;é'r15
Ke = = 52 - 1@y (11-27)

and Equation (II-25) to the following:

dT

ok
.. 4 s (11-28)
Kd g M1 - R @

For conditions of intensive circulation (or fluc-
tuation) in the drop, and by stopping at the first term

of the series, Equation (II-26) becomes:

K, = 0.00375 Vv (11_29)
d My
1+ —

He

It has been estab]ished(41) that the circulation

within a drop is observed, provided that:

dy > 2[—L (11-30)

0.5
Apg]
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(b) For the Continuous Phase:

Higbie(51) postulated a theory of penetration.
According to this, mass transfer in the continuous phase
is effected directly by the transient molecular diffusion
towards the interface and away from it to the core of the
current in a time aAt.

His equation to determine the coefficient of mass-
transfer in the continuous phase during its contact with a

drop of diameter (dK) is given by:

kK =2/~ (11-31)

To describe the mass transfer in the continuous
phase, Danckwerts(33)proposed a model for the surface re-

newal, by this means it was found that:

kc = VDCS (I11-32)

where S is the specific rate of surface renewal.

Levich(sz) allowed for the nature of the movement
of the continuous‘phase around a drop and gave the follow-
ing equation for the mass-transfer coefficient for the con-

tinuous phase:

~(0.V 0.5 ] i,

. /2| c -

ke = /3 [d/?] EEWOR (11-33)
c

This equation is limited for the conditions R, < 1 (for the

drop).
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Kafarov(53) concluded that in the presence of
developed turbulence the substance is transferred mainly
by turbulent diffusion, so that the effect of the indivi-
dual diffusion properties of the system become negligible.
According to Levich, the coefficient of molecular diffu-

sion retains its value under any hydrodynamic conditions.

Conclusions

The holdup model is accurate to predict the holdup
fraction of the dispersed phase at any level of operation.
The flooding holdup values predicted by this model seemed
fairly higher than the actual level at which flooding takes
place. Therefore, a safety factor of 15% more was allowed
to make sure that the process has not reached the critical
region.

If the mechanically agitated column is different
in type from the one used in this study (e.g. O0ldshue,
Treybal, Misek, Scheibel, and Mixer-Settler), and it is
desired to replace the axial mixin§ correlation by a more
accurate one, it can be carried out easily by replacing the
equivalent set of statements in Subroutine ABMAT given in
Chapter 5.

As shown in the above review, the model represent-
ing the mass-transfer operation is mainly based on a single
drop only. Therefore, it can be used to represent spray
columns where the dispersed phase is introduced in a form

of a spray. However, they could hardly represent extrac-



40

tion columns with intense phase mixing, accompanied by
repeated fine subdivision and coalescence of the drops and
severe checks to the dispersed phase.

Under these circumstances, a theoretical description
of mass exchange is made difficult by many factors such as
the paucity of data on the laws governing the formation
of the interface surface and the absence of methods for
direct determination of the coefficient of mass transfer.

Finally, it would be advantageous to by-pass the
direct involvement in the experimental evaluation of these
coefficients by solving the steady-state mass transfer
equations in a dimensionless form and to calculate the
NTU's, which includes the overall mass transfer coefficient
and the interfacial area of contact.

) Details about the steady-state mass-transfer equa-
tions, numerical solution, the computer program written for
this purpose and graphical representation for the numerical

results are presented in the next chapter.
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TABLE 1
RECOMMENDED OPERATING CONDITIONS

Operating Conditions Moderate Intensive

Separation Coefficient | m << 1 m>> 1 m<<1 |m>1

Influence of
Longitudinal F
Mixing Negligible

n
(=N
-
m
(]
-n
m
(2]
-
m
Q.

Influence of
Longitudinal F

(F=d) | F
Mixing Dominant

n
(]

(F =d)

n
(9]

Forward Mixing

-
i
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TABLE 2
VALUES OF K(0) (Misek)

Moderate Intensive
Operating Conditions 1 .. 1 ., 1 1 .. LI |
Kd mcKc Kd mCKc Kd mcKc Kd mcKC
2/3 1/2 1/3 1/3 2/3 5/6
AN
D¢ e m{p u D
Influence of 1 Ec f Ps S s f °f 11°f 4/3 Mg 1/3
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. ["_f uf . [_f]
uS) 1 + _t uS
Mg
Influence of E Pe M 1/3 1 [es 4/3fuf 1/3
Longitudinal HTU < o S gL =235 |
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PERIPHERAL SPEED >300F T/MIN.

(b&c BY KUNG & BECKMAN)
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Fig 4, Flowdiagram For The Holdup Program.
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Z:=0 Z=1

Fig. 7: Concertration distribution in an extractor;
Lcurve ABDE .actual distribution of X,
2.curve FGHK, same for Y,

3.curve AD'E,apparent distribution of ¥,
4.curve FH'K , same for Y.

(Miyauchr and Vermeulen (1963)) -



CHAPTER III

STEADY STATE MODELLING

Introduction

There are two ways of modelling mass-transfer op-
erations in continuous countercurrent liquid-liquid extrac-
tion processes:

1. Differentially continuous models, in which a dif-

ferential element is the unit for material balance.

A schematic diagram for this type of presentation

is shown in Figure 8. The general mathematical
structure of this type of model is a second order
ordinary differential equation which could be lin-
ear or nonlinear, and homogeneouys or non-homogeneous,
depending on the conditions of mass-transfer pro-
posed in the assumptions.

2. Stagewise discrete models, in which a discrete

actual mixed cell or theoretical stage is used as

a unit for material balance. Figure 8 shows a
schematic diagram for this type of presentation.
Exchange of material between two adjacent stages

is due to net flows, (L and G), of the main streams

and an additional backflow, of the mixed phases,

49
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which occurs in each direction and is the sum of

individual phase backflows s (solvent) and f (feed).

Therefore, the total flows between adjacent stages

are G + f,s and L + s,f.

For the limiting case of s + f - 0, this system
reduces to a "stage model" of perfectly mixed cells in
cascade. For another limiting case, with n >> 1, the system
reduces to the "differential model" which assumes mean dif-
fusivities and mean velocities for both continuous and dis-
persed phases (simplified case).

The longitudinal and backmixing coefficients are
defined by equations (II-19) to (I1-22) given in Chapter II.
Backmixing will be taken to mean entrainment of one phase
in the main flow of the other in stagewise models, and
longitudinal dispersion or eddy diffusion in the differen-
tially continuous one. The effect of backmixing on effi-
ciency for continuous countercurrent extraction processes

for different starting assumptions is studied here.

Continuous Model with Axial Dispersion

(54

The model developed by Sleicher ) is an idealized
diffusion model for a three-component physical system. The
following assumptions are postulated:
1. The backmixing of each phase may be characterized
by a constant axial diffusion coefficient.

2. The boundary conditions assumed for models of this

type, which are determined by materials balances
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around each phase at each end of the column and
have been discussed at some length in the litera-

ture(35)

are applicable here.

3. The velocity and concentration of each phase are
constants across that part of the column which is
occupied by the phase.

4. The solvent and solute-free raffinate phases are
immiscible (or their solubility does not change
with solute concentration and hence the column
height).

5. The volume flow rates for the solvent and carrier
phases do not change with height.

6. The distribution coefficient is constant and is not
a function of concentration.

7. The product of mass transfer coefficient and the
interfacial area per unit volume is constant through-
out the column.

8. The gradients of solute concentration in each phase
are continuous, that is, there are no discontinui-
ties of the type that would occur in a series of
discrete well-mixed stages.

Figure 8 shows the notation and the model parameters
based on these assumptions. The governing differential

equation is:

-6 g—,’; e~ KaA(x - x*) (I111-1a)
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2
oLy dy . -
L Th AEy dhz KxaA(x X*) (I1I-1b)
The boundary conditions are:
dx _
-AEx ah + Gx = Gxin
I111-2
oy ., (111-2)
dh at h =0
dy -
AEy dh tly Ly1n
dx _ 0 (I11-3)
dh at h = Z
When Ex = Ey = 0, the model reduces to that for
plug-flow condition. When Ex = Ey = », there is perfect

mixing in both phases and the column becomes one large
stirred tank.

The general solution of Equation (III-1) with the
boundary conditions given by Equations (III-2) and (III-3)
is developed, for constant backmixing and linear equilibrium

(55)

relationship, analytically by both Sleicher and Hartland

and Meck]enburgh.(56’57)
A computer program (STSTM #1) has been written to
calculate the concentration profiles for wide range of op-

erating conditions.

Continuous Model with Longitudinal Dispersion
(27,31)

Miyauchi in a similar study to that conducted
by Sleicher, made his starting point the equation of con-

tinuity developed by Damk&hler for single-phase continuous
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flow shown below:

9X

—J = - div(-D. ) - div(Tx:) - s(x. ;
. div( DJ grad xJ) d1v(uxJ) ¢(xJ) (111-4)

For a one-dimensional steady-state flow system in
which constant diffusivity of the j-th component can be as-

sumed, Damkohler's equation becomes:

dzx. de
E, ——idhz - uj - ¢(xj) =0 (I11-5)

Two phase coutercurrent systems can be treated by
an extension to this equation. This can be achieved by in-
troducing the volume fraction for each phase, and substituting

the mass transfer term for ¢(x.):

J
e 4 g dX _ g a(x - my) = 0
£x"x dhe x dh X7 y
(111-6)
2
d dy )
EyEy m + Fy an Kxa(x -my) =0

These equations are basically the same as Equation
(III-1), and both are based on the assumption that the
dispersed phase behaves as another continuous phase. This
is a fairly reasonable assumption provided that enough
coalescence and redispersion take place in the continuous
process.

Rearranging the above equations into dimensionless

form, gives
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d™X dX
— - P - TP (X -mY) =0
de e, dZ X e,
(111-7)
2
d-y dyY
—+P =Z=+TP (X -mY)=0
de ey dZ y ey
- o - 0 - -
where X = x/x , Y = y/x, Pe, UxH/Ex’ Pey UyH/Ey,
Tx = KxaH/Fx, Ty = KyaH/Fy, UX = Fx/ex, Uy = Fy/ey,
and Z = h/H.
Boundary Conditions
At Z =0
dX| _ dy| _
(8]0
dX} _ dy) _ _ oyl
)0 e -

Figure 9 shows a diagramatic presentation for the
conditions of flow assumed in this model.

A computer program has been written for the solution
of the above model equations (STSTM #2), for the same input
variables as those used in the previous model (STSTM #1).
Figure 10 shows a flow chart for the program. The symbols
used in this chart are those used in the original paper by
Miyauchi. (27)

A special case for STSTM #2 is the plug- or piston-
flow case which has also been solved (STSTM #3) to be used

as a guide for a comparison to be carried out between the

different cases.



55

Characteristics of Sleicher's and Miyauchi's Models

(STSTM # 1 and STSTM # 2)

From numerical results obtained for the concentra-

tion profiles at wide range of operating conditions, the

following characteristics can be deduced:

1.

Both models resemble each other and the difference in
results were not significant; this is evident from the
similarity between the equations solved. The basic
difference is in the method of solution. While Sleicher
solved the two second order equations separately,
Miyauchi augmented them into one fourth order homogeneous
differential equation before solving it.

The concentration driving force between two-phases is
obviously lowered by backmixing in both phases.

When longitudinal dispersion is significant, the con-
centration of the incoming stream increases or decreases
abruptly at the point the stream enters the column. On
the contrary, the concentration curve for the outgoing
streams becomes flat as it approaches the outlet.

This is expected from the boundary conditions postulated,
Equation (III-8).

When extraction is accompanied by longitudinal dispersion,
the extent of extraction decreases in comparison with

the piston-flow case, especially at high NTU, and low
values of Peclet nﬁmbers. |

Finally, points 1 to 4 given above are well understood

in conjunction with Figure 12 given later in this Chapter.
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Continuous Model with End Effects

This model has been developed by wi1burn(58) in which
the boundary conditions are altered to consider the ends as
well as the effective section of the column. Figure 12

shows the schematic for this new representation.

Model Equations

In this representation a separate set of equations
has been written for each section of the column. The total
height, in dimension]ess form, of the column becomes equal
to (6 + 1.0 + a), the x-phase is introduced at Z = 0, and

leaves at Z = 1.0 + A, while y-phase is introduced at Z =

1.0, and leaves at Z = § + 1.0.

The region 6 < Z < 0 is given the number 1, 0 < Z
< 1 is given the number 2, and 1 < Z < 1 + A is given the
number 3.

Region 1:

The x-phase convection term vanishes in Equation

(II1-6) and can be written as follows:

2
d=x
(. ; -
xEx 2 Kealx(py - my(q)d =0
) (I111-9)
——(—ldy]’rF d—yﬂl+K[ ]=0
vy 372 dh x3A () T ™Y T
Region 2:

The two equations represented in this section (the

effective height of the column) are similar to those given
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by Equation (I1I-6) and can be written as follows:

2
dx dx
exEx dn2 Fy TR Kxa[x(Z) my(z)] 0
(111-10)
dzygzz ¥ (2)
EyEy dh2 + Fy dh + Kxa[x(z) - mY(z)] =0
Region 3:

The y-phase convection term vanishes in Equation

(I11-6) which can be written as follows:

dzx

dx
3 3 -
*xEx d—h‘zLl S Py gt Kalxggy - mgl e o
(I11-11)

2
dy
.___Lil + - =
EyEy dh2 Kxa[X(3) mOY(3)] 0
The above set of equations (III-9 to 11) for the
three sections of the column could be written in a more com-

pact form, using the dimensionless variables (y and r), as

follows:
e i
Y TPylyy - r5) =0
(111-12)
2
d°r. dr.
__*l . _Al+ - . =
oy + RJ ¥ TRJ(wJ FJ) 0
for j = 1,2,3, where
X - mY] m(Y - Y])
wj(Z) = |/ and rj(Z) = |—
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1

(Y' is the inlet solvent concentration for each sec-

tion of the column)

Boundary Conditions:

1. AtZ =23
dr dy
1 - 1 =
[T}a = 0 and [Ez—]s = 0 (111-13)
2. AtZ =0
(bq)y = (0y)gs () = (1)) s
dr dr
1 2 -
[37_]0..[37_]0 (I11-14)
dv, dwz]
PIT - (vp)] [T‘]o - [dZ ,
3. At Z =1
(wy)q = (v3)ys (ry)q = (ryugs
dwz dw3
[37_]] = [37—}] (111-15)
dr dr
PLO - ()] = { 2]1 - [Hi]]
4. Z =4

d
[aw_3] = 0 and [_.g] = (III"]G)
A A
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A computer program has been written for the solution
of this model equations (STSTM #4). The concentration pro-
files, for x-phase, for the four developed differentially

continuous models are shown in Figure 13.

Input Variables for the Differential Models

In order to evaluate the concentration profile and
actual number of transfer units (NTUM) for a specific column,
the following parameters must be evaluated:

1. Peclet numbers for each phase
2. Plug- or piston-flow NTU's, and
3. The extraction factor.

To evaluate the first two, empirical and semi-empi-
rical formulae will be used instead of experimentally deter-
mined values. The third will be defined by the equilibrium
relationship and mass flow rates of both phases.

1. Peclet's number of each phase has been evaluated for

any condition of operation (flow rates and shaft speed),

using an empirical formula developed by Westerterp(]8)

for a column similar in dimensions to the one used in

this study. This can be rewritten as follows:

Pe; = 2n (111-17)

i ND
1 + 0.013[——"}

U,

2. Plug- or piston-flow number of transfer units (NTUPL:

The logarithmic mean driving force formula given by

(59)

Treybal is used in this study.
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X.
1n{(] -4') x‘"t + A'}
ou

NTUP = T3

(I11-18)

Prediction of the Measured Number of Transfer Units (NTU,)

As shown in Chapter II, there should be three dif-

ferent numerical values of NTU's, depending on the definition
of the concentration driving force:
1. True value defined as the ratio of volumetric flow rate
across a unit section to the true over-all coefficient
of mass-transfer.

2. Measured value defined by the following equation, and

which can be evaluated from the concentration profiles

for the x- and y-phases:

X221
- -d¥ 111-19
NTU), . Y (11 )

220

and
1
HTU, = o (111-20)
M~ 7O,

Since Equation (III-19) is calculated in the dimensionless
form, Z has been replaced by the value one in Equation
(I11-20).

3. Plug- or Piston-flow Value defined in terms of the

logarithmic-mean driving force, Equation (III-18), cal-
culated from the exterior incoming and outgoing concen-

trations at both ends of the column.
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Equation (III-19) can be evaluated by substituting
for x and dx by the equivalent from:

a. Miyauchi's solution (STSTM #2)

ALl
X -my = (1 - mY]) Z§=](] - aj)Aje J
(I11-21)
Asl
- Ty v4 J
dx = - : A
X = (1 -my) ZJ=] AJxJe dz
Accordingly, one has:
1 4 AjZ 4 AjZ
= . A . - a.)A. I1-22
NTU,, [0 (550 Apge S /5d 0 - apne 10 (1n-22)

This equation is written for a column with a total height
Z =1 in dimensionless form, considering the total height
as an effective section.

b. Backflow Model with Ends Effect Solution (STSTM #4)

The modification given here is developed by the
author relying on the principles and conditions developed
previously by Miyauchi.

For this model the total height in dimensionless
form is the sum of the heights of the three sections (top,
effective, and bottom). Therefore, the integration limits
for Equation (III-19) will be modified to be from § to
§ + 1+ 4 instead of zero to one, and whatever the heights
of the two ends in dimensionless form, Z (the middle section)
will still be equal to one.

Equation (III-21) can be written for the three

sections in compact form as follows:
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YA

_ 1 4 174
(I11-23)
(dX), = (1 -m¥"), 7% . a.a RAEE I
i i =1 "ighiy i

where i = 1, 2, 3.
Putting § = -0.1, Z = 1.0, and A = 1.1 would make

the dimensionless height correspond to the column under study.
Equation (III-22) will be written for the three sec-

tions of the column with NTU,, being the algebraic sum of

M
the three integrations.

0.0 . .
_ 4 1551 .4 154174z
1.0 Aoyl .Z
4 252,04 4 22552
+ Jo.o (137 Apghpge 23 270500 - 2y )R 5 lz,
1.1 . .
4 353,08 o 3523
+ J1.o (1301 Aggrage 23 305,00 - agy)nge 39 300z,
(111-24)

The computer algorithm developed for the purpose,
using STSTM #4 with input variables, Equations (III-17) and
(111-18) and measured number of transfer units (NTUy,) cal-
culation, Equation (III-24), shown in Figure 14.

Uses of this algorithm will be pointed out in due
course in the chapters to follow on steady-state optimiza-

tion and dynamic modelling.

Steady-State Experihenta1-Runs

The main purpose of this step is to validate and

recommend one of the theoretical models as the most feasible
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to represent the process performance under steady-state.
The system was operated under steady-state in a procedure
similar to the one used for holdup measurements, except,
changing from one level of operation to another was made
directly by setting up the valves on the desired rates and
without purging the column.

Some of the results obtained were used for the
comparison purposes. Figure 15 shows five different theo-
retical methods to calculate the number of transfer units.
From this figure one would recommend both steady-state
models (with axial mixing and with axial mixing and ends
effect) as the best to represent the process performance.

Careful study of the distribution of the experimental
points shows a mean square error deviation (vZe’/n) of
(mG/L) for the model with axial mixing (curve 4) equal to
0.437, and for the model with axial mixing and ends effect
equal to 0.3655. This would make the use of the last model
over the other alternatives advisable.

Finally, these experimental measurements were taken
for zero shaft speed which make the degree of entrainment
minimum and shows that both models are close in the degree
of accuracy. But, it is expected that the model with end
effects will be far better for higher shaft speeds as the
rate of entrainment will increase. Therefore, the steady-
state model with ends effect (STSTM #4) is recommended for

later applications.
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FIG, - 8
DIFFERENTIAL BACK MIXING MODEL.
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=
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®

Nox1

T SUMT1,Nax"SUMT2
[} Noxf SUMT3

CONTINUE | 1

1

@ Total NTU's imeasured) {NTU:NoxpNoxz’Noxa

@ Print out results

PRINT

Pe, ,Pey » X(2)LY2)

DEL, Nox,
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|
END

Fig. 14 Differentially- Continuous Model
With End Effect.

EVALUATION

OF THE ACTUAL NTU
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FIGURE 15. RELATION DETWEEN CXPERIMENTAL EMPIRICAL AND THEORETICAL
CALCULATION OF THE RAFFINATE EXIT CONCENTRATIUH FOR
DIFFERENT EXTRACTION FACTOR VALUES.



CHAPTER IV

STEADY-STATE OPTIMIZATION

The Objective Function

For commercial purposes, maximum return on invest-
ment, or profit, is perhaps the most common criterion for
optimum engineering design.

In order to compare different techniques of optimi-
zation and to calculate the profit for a particular chemical
process, one must formulate the objective function on a
realistic basis.

Since the pilot-scale rotating disc contactor under
investigation is operating on a physical system which is not
used industrially (Amyl Alcohol-Acetic Acid-Water), it is
impossible to assign realistic costs and therefore formulate
an overall objective function.

Therefore, one is forced to optimize the process
performance with respect to an operating objective function,
which is only a measure of the effectiveness of the process.

The purpose here is not to discuss the detailed as-
pects of such an evaluation, but to select a typical form of
the cost function which is most likely to satisfy a wide
variety of operations, and will keep the complexity of the

73
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problem and its solution within the scope of a particular
utility.

The majority of operations demand a product quality
within certain tolerances. Deviation from the given speci-
fications may result in loss of product or a product of
inferior quality which requires recycling, blending, etc.

The resulting increase in the cost of production
can take the form shown graphically by the broken lines 1in
Figure 16, where the quality q is measured from a desired
reference or set-point b.

For commercial convenience, this cost-quality re-
lationship is approximated by the solid-line parabola shown
on the same figure, and the cost of production resulting
from a deviation in product quality is given by czéz, where
¢y is a constant; the cost of raw materials is considered
proportional to the rate of consumption by a factor Cq-
Assuming that the product flow rate is constant, the cost

equation for the system can be written as follows:
- =y _ = =2
f](u,q) = CqU * Coq (1v-1)

This is the basic cost relationship which would be
used to optimize the plant performance either for static
or dynamic conditions of operation. The difference between
them will depend on the definitions of u and g.

For the extraction process shown in Figure 17, the
efficiency or effectiveness of the process is measured by

the HTU (or HETS) and the column throughput, but for a
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mechanically agitated column, the matter would be slightly
different and the power should be included as well.

As the hydrodynamics of the process have been stud-
ied previously (Chapters II and III), a quantitative mathe-
matical relation has been found to exist between the HTU's
and the extraction factor (4 = mG/L), Peclet numbers, ro-
tating shaft speed, and the column throughput (G + L). The
shaft speed, feed phase flowrate, and solvent phase flowrate
have been chosen as the manipulated variables while the
feed phase inlet concentration is considered constant.

The operating objective function can then be written

as follows:

L2 N3p3)2 K,
f = K][NTU] * K, tET O (1v-2)

The first term [Eq. (IV-2)] counts for the efficiency
of the process (always greater than three times the second
term, in absolute value in the feasible operation range); the
second term counts for the power input to the rotating shaft;
and the third term for the column throughput. The second

term of Equation (IV-2) was developed by Reman(7)

as a mea-
sure of the optimum shaft speed for any given conditions of
operation and rotating disc contactor dimensions.

The values of Ki (i =1, 2, 3) have been specified

after a variety of trials to be 0.25, 0.5 x 10°2

and 100,
respectively. These values weight the three terms of the

constrained objective function with respect to each other.
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The values assigned to the weighting factors Ki
in Equation (IV-2) were such that the operating objective
function would include besides the height of transfer unit
(HTU), which is a measure of the effectiveness of the mass-
transfer process, a second term to represent power which
has become a scarce resource, and a third term to count
for the throughput of the process. The numerical choice
was made such that the effectiveness would be greater or
equal to three times the throughput and the latter greater
or equal to three times the power input in the most feasi-
ble range of operation. The choice was made to make the
objective function as close to our experimental system as
possible, since the liquid system did not have any indus-
trial value.

For industrial purposes a long term objective func-
tion should include raw materials cost, product demand,
storage, pumping and equipment depreciation rate. The weight-
ing factors Ki could be easily adjusted to suit any specific
case. This will not change the main outlines of the steady-
state optimization procedure but will assign different
values to the various terms forming the new objective func-

tion.
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Process Constraints:

1. The extent of extraction (denoted by XO0T in subrou-
tine STSMOD) should be equal to or greater than a specified

1imit to ensure minimum recovery, recycling, and solute waste

X.
X0T = x‘" > 2.0
out

or in dimensionless form

1
out

X0T = > 2.0 (Iv-3)

2. The holdup value for any given conditions of opera-
tion should be less than the equivalent flooding holdup value

by a certain reasonable safety margin,

Ef'E

CR2 = >0.15 (IV-4)

€f
3. The necessary condition for mass-transfer in a two-
phase contact should be ensured. This has been carried out

by applying Miyauchi's necessary condition for mass-transfer.

It can be written as follows:

2 3

CR3 = q° - p° = 57(a3y - o%8%/8 + 908y/2 - g%

+ 274274) < 0
(Iv-5)
The equivalent meaning of these parameters are given
in Appendix A.
4. To evaluate the apparent number of transfer units
(NTUP) using the mean logarithmic driving force, which can

be rewritten as follows:
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_ 1 X . ]
NTUp = 77 A7]n{x;:t (1 -2) + A} (IV-6)

For a new set of conditions of operation determined
by the optimization search technique, it might happen that
the value of the argument of the logarithm becomes less than
or equal to zero. To avoid this difficulty a constraint is
imposed on the argument to ensure that it always has a
positivé’ value.

X,

CR4 = X1" (1 -a)+2>0 (Iv-7)
out

Process Bounds:

1. The inlet mass flow rates, G and L, must be within
the possible valve ranges.

Valve 1: K]

Valve 2: K

2. The rotating shaft speed 1imits must be considered:

R . <R<R (IV-9)

Subroutine BOUNDS has been written to includé these Timits

on the process variables.

The CRST Technique

As can be seen from the above discussion, both the

objective function and the constraints are nonlinear func-

(60)

tions. Spang has reviewed three methods to deal with

such systems:



79

1. Direct Search: 1in which the actual value of the
function is replaced by a very large value whenever the con-
straints are violated. This pseudo-value must be propor-
tional to the amount the inequality is violated so that the
search routine will force the test points towards the region
where the inequality can be satisfied.

Thus a typical sequence of equation would be written

as follows:

n
—t
A
=3

T'i(a'i ,t) = 0, i *sP
C= f(u,,x_,y »t) (1v-10)

i’"n?’q _
Ti(ui,t)>0, i =p+],"',m
and
Coo= 1 x 10200717 (u.ut) 1+ £(d;.% .5 .t) (1V-11)
N Sla i? i’*n’’q’
where CN is the value of the function used in the search

and the sum, a, consists of these Ti which are not satisfied.
CN is now an unconstrained function whose minimization is
within or on the boundary of the region defined by the con-
straints.

2. Lagrangian Method: in which the inequality con-
straints are converted to equality constraints by introduc-

ing a non-negative "slack" variable o . Thus

T(i,t) -y =0, (i=pHl,eeem), 1, 20 (IV-12)

The lagrangian function could be defined in the usual manner

as follows:
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- - _ - - - p -
¢(ui’xn’yQ’Hi ’t) - f(u'l an,yqst) = X.i___'l A'IT'I(u'l’t)
m -

where A is a non-negative variable independent of ﬁi.

It has been shown that a necessary and sufficient condition
for G? to be a solution of the minimization problem is that
f(ﬁg,in,iq,t) be concave and the constraint set be convex
in the vicinity of G?, and that ﬁ;, A%, and n, satisfy the

following set of equations:

T*,X_,y (0%
2 . o (uF.xp.y00t) g aT; (u¥,t) (1v-18)
U -4 i=1 M o,

1 ou?® U3

1 1
a = T = 3 = LN 3 -
B_A’_]?_ - 'Ti(u:!t) =0, i=1d,eee5p<m (IV ]5)
30 - T.(U*,t) + M. =0, di=pl,ee-,m (IV-16)
3n% ithie i ’ 2Tt
ni =0, i = ptlyeee,m
A¥ 20, = 1,000,p (Iv-17)

A¥m, = 0, i = p+l,see,n

From Equations (IV-16) and (IV-17), it follows that
m, is completly determined by G? and l?. It can be also

shown that:

@(ﬁ;,xi,ni) < ¢(G$,Ag,ni) < ¢(ii,x§,ni)

For large problems, according to Carrol, the Lagrange multi-

(61)

plier technique may be quite unwieldy.
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3. Created Response Surface Technique:
The CRST as developed by Carrol(al) and mathemati-

k(62:63) 5o pased mainly

cally proved by Fiacco and McCormic
on solving a sequence of unconstrained probliems whose solu-
tions approach the solution of the constrained function,
i.e. ¢ » f when R - 0, where R is the penalty factor weight-
ing the constraints Ti to the constrained function f.

Equation (IV-2) would be written as follows to in-
clude all the equality and inequality constraints:

W.
m 1
1)+ Ry Lo (1v-18)

q’(u'axnay T‘:

; ot) = f(ui,xn,y

q q

Ni > 0 weight the individual penalties amongst themselves,
while Rj (always > 0) weights the sum of the constraints in
relation to the constrained function to be optimized.

The minimization of ¢(Gi,in,§q,R,t) for Rj >0
yields a point that is dual-feasible, as well as a point
that is primal-feasible. It follows that the process ex-
plicitly generates the associated "Lagrange Multipliers,"
and hence, the dual solution vector.

The optimum of the function is evaluated for dif-
ferent values of R (decreasing in value) and for each level
the equivalent optimum level of the manipulated variables
(Gi) is used as a starting point for the next level of the
criterion function, with less value of R, evaluation. The

procedure continues until Rj + 0 and therefore, .¢ optimum

approaches f optimum without violating any of the constraints.
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The choice of Rj-values can be arbitrary or included
as an unknown parameter to be identified by the optimization

technique. The first approach is used in the present study,

while the second would be preferable for large problems which

are extremely nonlinear and partially unknown.

This technique seems more simple, Togical and prac-
tical to use. Therefore, the optimization of the operating
objective function for the RDC operating under steady-state

conditions has been solved using the CRST.

Unconstrained {Dual Problem) and Constrained Objective

Functions

The constrained objective function has been written
to include three important parameters, considering the im-
portance of each parameter separately on the process per-
formance. It has been given the name 0BJ in Subroutine

PROC, and can be written as follows:

f = 0.25(HTU)2 + 0.005 onn + 100(1/T) (Iv-19)
where
P = the power consumption by the rotating shaft,

con
T = the column throughput expressed in terms of the

sum of the superficial velocities (Vd + Vc) instead of the
sum of the mass flow rates (L + G).

In the CRST a modified path is formed which, while

and

optimizing the unconstrained function as quickly as possible,

it steers automatically clear of the constraints and thus
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prevents their violation. Near the very optimum, however,
solutions are allowed on or very close to, critical con-
straints surfaces.

Following the CRST procedure and incorporating the
above mentioned four constraints with the constrained objec-
tive function, to form the Dual unconstrained function,

Equations (IV-19) can be modified thus:

W W
1., 2 + 1 (1V-20)

¢ = f - RilgoT -2 0.85:, - ¢ ' CP3 ' TRE

The Objective Function Evaluation

A computer program has been written for the purpose
of evaluating the objective functions (both constrained and
dual unconstrained) for a wide range of combinations for the
process variables. The variables taken into consideration
are the feed and solvent mass flowrates and the peripheral
shaft speed. The inlet feed phase concentration has not
been considered because the concentration is expressed in
dimensionless form which gives the outlet raffinate concen-
tration as a fraction of the inlet (which is unity).

The contours of the constrained function have been
plotted for various combinations of the process variables
and the equivalent important parameters. Figure 18 shows
the variation of the function as a function of the solvent
and feed flowrates, while the shaft speed is kept constant
and equal to zero. It has been found that the topology of
the function plotted for any other value of the shaft speed
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js similar in shape while it varies in the absolute values.

Figure 19 shows the contours of the constrained func-
tion for a wide combination range for the extraction factor
(mG/L), and the sum of the superficial velocities (Vd + Vc)
which is a measure of the column throughput.

Figure 20 shows the contours for the constrained
function for different values of the extraction factor and
peripheral shaft speed.

Figure 21 shows a similar plot for the constrained
function for different values of the sum of the superficial
velocities and peripheral shaft speeds.

Figures 18 to 21 show that the objective function
is nonlinear with respect to the three process variables
considered (feed mass flowrate, solvent mass flowrate, and
peripheral shaft speed). The characteristics, dependency,
topology, and minimum region for different combinations of
the process variables and parameters are shown graphically.

From Figure 18 one can see the function as a set of
multi-level surfaces for different shaft speeds. For con-
stant shaft speed and fixed solvent rate, the value of the
constrained objective function changes slowly. The absolute
minimum for the constrained objective function, for any
constant shaft speed value, is on the upper 1imit of the feed
rate, corresponding to the minimum solvent rate. This is
valid theoretically but not possible practically. Flooding
might possibly prevent the process from reaching this opera-

tion level.
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From Figure 19 the contours of the objective func-
tion are symmetrical around Vd + VC ~ 13.5. The direction
of curvature is reversed at extraction factor 4 = 0.5. For
each value of extraction factor, there are two equivalent
values of column throughput (Vd + Vc) which have the same
value of objective function. The radius of curvature de-
creases rapidly as the extraction factor increases. The
absolute minimum for the objective function lies on the line
of symmetry for the column throughput, and for the maximum
possible extraction factor.

Figure 20 shows the contours of the objective func-
tion to be considerably irregular and nonlinear due to the
change in the value of the shaft speed. This is because of
the complexity of flow changes accompanying aﬁy variation
in the shaft level used (e.g., degree of dispersion, hydro-
dynamics of flow, and Peclet number values).

In Figure 21 the objective function contours form
an eccentric elliptical set of curves with an increasing
radius up to 800 cm/min shaft speed. Over this speed the
degree of nonlinearity and irregularity increases noticeably.

From the above results, it appears that the approxi-
mate combination of process variables which tend to give a
feasible minimum for the objective function would be:

i. A column throughput (Vd + Vc) ~ 13.5.
ii. A maximum possible extraction factor (mG/L), and

iii. A shaft speed which is combined with the above two
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parameters would give a minimum power inlet, optimum
Peclet numbers, and maximum feasible holdup value

for the dispersed phase.

Solution of Quadratic Optimization Problems

One would 1ike to find that value of the independent
variables, x* = ]xf, xg,--~, x;] such that f(x*) is a minimum
subject to the restrictions that,

gi(x?s"" X;)=0, i =],"’,P<n
(Iv-21)

gi(xf,---, x;) >0, i ptlyece, M

m<n

For an unconstrained function with continuous deriva-
tives, a minimum occurs at that point where the first par-
tial derivatives of the function with respect to the inde-
pendent variables are zero and its matrix of second deriva-
tives is positive definite.

A minimization procedure for a digital computer
provides an algorithm by which the function is tested at a
set of points. These points then provide information about
the function and the location of its minimum. The way the
test points are chosen divide these procedures into two
very general classes: sequential and non-sequential. In
a sequential procedure the test points are determined by a
fixed set of operations. The values of the independent
variables are completely determined by the previous measure-
ments while in a non-sequential procedure the points are

picked up essentially at random.
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If the objective function is quadratic and has the
form,
T 1

- 1.7 _
Fa = Fo* Cx+ 7 x0x (1v-22)

where
x is an n-dimensional vector,
¢ is an n-dimensional vector of constants, and
Q is an n x n symmetric positive definite matrix.
If the objective function is nonquadratic, expanding

the function about the minimum point x = x* gives:

o= Fot 32- (x - x*)T Qlx - x*) + R (1v-23)

The remainder R estimates the error between Fn and
its quadratic approximation. Since R becomes negligible when
x is sufficiently close to x*, the general function is ap-
proximated by a quadratic in a neighbourhood of the minimum;
hence algorithms converging rapidly for quadratics are of
interest.

Since it is possible to convert constrained functions
to the equivalent unconstrained functions, one would limit
his analysis to unconstrained functions only.

Now let us say that x minimizes F(x*) is determined
by constructing a sequence {xi} that converges to x* as i
becomes greater or equal to n (where n is the number of
variables). A procedure for constructing the X is said to

(60) if x* is determined after

be quadratically convergent
n-gradient evaluations. The four procedures considered

herein all exhibit this property.
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Certain conventions and properties(67) associated
with the problem of minimizing Equation (IV-23) will be
used frequently. The gradient of F evaluated at the point

X5 is defined as

T
_aF(xs) _ -
gi‘_ l 2 i l = Qx; +c (1v-24)
For Equation (IV-23), a necessary and sufficient condition

for x* to minimize F is that

g(x*) = 0. (Iv-25)
So it follows immediately from Equation (IV-24) that
Xx* = - Q ‘¢ (1v-26)

It is also well known that if one has the point X;
and the gradient at the point 95 then the minimum x* is found

from the following relation:

x$ = x: - Q7'g, (I1v-27)

From Equations (IV-26) and (IV-27), it is clear that
if Q'1 is known, one can obtain the minimizing points. In
most problems of practical interest the objective function
F is not quadratic, so that equation (IV-22), similarly
Equation (IV-23), is at best an approximation of the objec-
tive function surface in the vicinity of the minimum. Even
then, it is not Tikely that the approximating Q is known,
or if it is, the difficulties invoived in finding Q'] are
significant enough to warrant seeking alternative methods

for finding x*.
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For a general function F, the derivative (azF/axz)
provides a linear relationship between infinitesimal changes
in x and the resulting changes in the gradient g given by

2
dg = 2 dx (1v-28)
X

For a quadratic function, this linear relationship is true
for all changes in x and g with Q replacing (BZF/axz).

Thus the gradient difference vector y is defined as:

Yi ¥ 95471 7 9 (Iv-29)
and can be written, analogous to Equation (IV-28) as
Y; ° Q(Xi.” - X].) fd Q(Axi) (Iv-30)

The gradient difference vector plays an important role in
subsequent discussions.
In all of the procedures that are discussed, the

search for optimum proceeds iteratively according to

i+]

where Ki is always chosen so that X; minimizes F in the

+1
direction P starting from Xs o The Xy and py are chosen
arbitrarily. The manner in which the direction vector Ps
is selected is defined by the particular procedure. The

p; are restricted to satisfy

plg; < 0 (1v-32)

to ensure that the objective function is reduced through
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the choice of Ki' The minimizing choice of Ki results
in the satisfaction of the condition,

T
pigi+1 =0 (Iv-33)

for all i. The procedure for determining the desired Ki
is an important part of the actual minimization procedure.
For this discussion, it shall be assumed that the minimiza-
tion can be accomplished so that Equation (IV-33) is always
valid.

The problem of determining the x* that minimizes
(Iv-23) is seen from Equations (IV-24) and (IV-25) to be

equivalent to solving the linear equations,

Qx = -¢ (IV-34)
(64)

It has been shown by Hestenes and Stiefel
that this can be accomplished by constructing a set of n
mutually conjugate or, equivalently, Q-orthogonal vectors.
To be precise, vectors P1s Pos=v*» P, are said to be mutually

conjugate if for all i and j,

pj0py = 0, 1] (1v-35)

This is clearly a generalization of the concept of orthogonal
vectors.

The determination of n mutually conjugate vectors
allows the solution of Equation (IV-34) to be constructed
immediately. To see this, one must first note that the set
of n-mutually conjugate vectors Ps in an n-dimensional

space are linearly independent. Then, the P; span the space
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and any vector (but particularly x*) can be written as a
linear combination of the Ps-
x* = Tioy 355
so that
Ox* = Ji.y 2,095 = ¢
then

) _¢h — 1
ijX* - ziz] a~|ijp1 = aJpJQpJ

from the mutual conjugacy of the P; - The coefficients aj

are given by

a, = —— (1V-36)

and x* is

p.cC
x* Li=1 pTap; P (1v-37)

The inverse Q'] can be constructed from the pi by noting

that Equation (IV-37) can be rewritten as

pip;

- n
= - Liar pToe, €
so that
- Pip;
(R Lk (1v-38)

i=1 p.Qp;
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It is now seen that the determination of n-mutually
conjugate vectors provides the solution of a system of
lTinear equations or, equivalently, provides the minimum of
a quadratic function. Thus, if this set can be constructed
as the n-directions in the iterative procedure Equation
(IV-31), it follows that the procedure is quadratically con-
vergent. This is a characteristic of all the procedures

discussed below.

Davidon's Variable Metric Method

The variable metric method (VAM) of minimization
as developed by Davidon and discussed by others is simply
another gradient method.(65’66’67’68)

In the process of locating each minimum, a matrix
which characterizes the behavior of the function about the
minimum is determined. For a region in which the function
depends quadratically on the variables, no more than n
iterations are required, where n is the number of variables.
Outlines of Method:

1. The metric matrix and the gradient are used to establish
a search direction.

2. Successively larger steps are taken in this direction
until the relative minimum is encompassed.

3. A linear search is performed to locate the minimum with-
in the interval. The improvement in the criterion func-
tion is compared with a step perpendicular to this

direction at the relative minimum.
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4. The metric matrix is updated based on information about
the function obtained in this direction.

In the neighborhood of any point the second deriva-

tives of F(x) specify a linear mapping of changes in posi-

tion, dx, onto changes in gradient dg. For example in the

case of the i-th variable

2
f———] = ZJ =1 ax axJ dxj (Iv-39)
where
z? EEE___ = H..
i=1 axiaxj i]

(Hij is the Hessain Matrix and H;} is the variance matrix.)
If these matrix parameters are constant and explicitly

known, then the value of the gradient at any point would

suffice to determine the minimum. In this case the desired

step ij would be given by

= Ho1a[2E ] IV-40
ij H1J [ ( )

Since the matrix H is neither constant nor known,
this method employs an iterative technique to improve the
.estimates of Hij based on the changes in the gradients and
the parameters. To start the method, Hij is set equal to
unity, making the first-sten in the direction of steepest
descent. After every n-1 iterations the metric matrix is
set back equal to unity. 1In the linear search part of the

program, cubical interpolation is used to locate the minimum.
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The method is designed for problems where an analytical ex-
pression is available for the derivatives. However, a modi-
fication of this method have been published which used dif-

ference approximations instead.(75)

Optimum Gradient Method

The method of optimum gradient used is due to Beckey(sg)

and the main steps of the algorithm are:

1. Determine the direction of the gradient at the starting
point Xo

2. Perform a linear search in the negative gradient direc-
tion to locate the minimum point X1

3. Repeat steps (1) and (2) until minimum is located.

Discrete approximations for the partial derivatives
are used in the calculation of the gradient and are obtained
by perturbing each parameter by = 0.01%. The method can

be expressed by a generalized equation

X:,9 = X; = 1.6, (Iv-44)

This equation represents a simple iterative proce-
dure in which new optimal settings can be obtained for the
vector x at the i-th iteration. Thus the gradient method
for the step-by-step approach to an optimum point may be
divided into two parts:

1. finding the direction G in which the function will
decrease, and
2. finding the step size A which will bring the function

nearest to its minimum.
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The method is called "Optimum Gradient," as an op-
timum noint is located in each linear search and an optimum
step size is calculated, based on a modi fied Newton-Raphson
method. The step is taken in the negative gradient direc-
tion and the criterion function is evaluated at this point,
half-way between this point, and the original point. On
this basis the step size is doubled or halved until the ap-
proximate minimum is located.

In order to determine the minimum more accurately,
quadratic interpolation is used over the last three values
of the criterion function. The step size for future itera-
tions is determined from the results of previous iterations.
The iteration loop is terminated when the gradients and

parameter changes become very small.

Conjugate Gradient Method

The method of conjugate gradients used in this study

(70)

was developed by Fletcher and Reeves. The heart of this

algorithm is in the way the matrix H].j is updated.

Qutline of Method:

1. At the starting point Xos evaluate the gradient vector
9 and set the search direction d = 95

2. Perform a linear search in the direction d; on the line

through X; to lTocate the relative minimum X541

3. Evaluate the gradient 9; at X; and calculate

+1 +1

2 2
Bi = 9541/95-

+ g.d

4. Calculate the new direction di+1 = -9i41 545+
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5. The method is terminated if g; = 0 or if an n + 1 itera-
tions starting from a steepest descent search, produces
no reduction in the value of the function, otherwise a
new iteration is started.

After every n + 1 iterations, a step is taken in the
negative gradient direction to prevent oscillations and slow
convergence.

The linear search used in this program is similar
to the one used in the variable metric method and Fletcher

and Powell method.

Fletcher-Powell Modificationof Davidon's Method

The method is a modification of Davidon's method.(67’7])

OQutline of Method:
1. Given the parameter vector X; and the gradient vector

955 the direction di is calculated.

where Hii is the metric matrix which is taken initially
equal to unity.

2. Find o; so that the criterion function F(xi + °idi) is
a minimum along X; * °idi‘

3. Set Xigg = X5 * °idi and calculate 9547 ° g(xi+]) and
Vi % 9447 - 95

4. Form Hi+1 by

H = H, +

i i
i+1 7B * oy v T VY, (1v-42)
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5. Terminate the search when the direction di and the
parameter F become less than some specified minimum
prescribed value.

This method, like Davidon's, has a quadratic con-
vergence property, and will require n iterations to converge
for a minimum.

If convergence in general is not reached in n itera-
tions or if the directions derivatives are positive, the
metric matrix is set equal to unity and the search starts
again.

These techniques will be compared for solving the
minimization problem of an operating objective function for

a liquid-Tiquid extraction process. Appendix B shows com-

puter flow diagrams for the four optimization techniques.

The Steady-State Optimization Program

The computer program for steady-state optimization
of the RDC has been written in such a form as to facilitate
changes in logic, options, sequences, and input-output format.
The subroutines are used as a part of one main program, while
all the variables and constants are flowing in and out of
each subroutine through a common statement.

Figure 22 shows the general outlines of the program
which is called "STSOP", as a abreviation for steady-state
optimization, with the interrelationships between the dif-
ferent subroutines.

The main parts of the program are:

1. Main Program: Its function is to read in necessary data
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about the process such as:

a. Column configurations,

b. Physical system properties,

c. Size of the problem,

d. Upper and lower bound vectors,

e. An initial starting feasible point for the process
variables vector,

f. Penalty vector values, and

g. Another feasible trial point, to assure that the
first evaluated optimum is absolute.

The variables considered are the feed phase mass
flowrate, the solvent ptase mass flowrate, and the peripheral
shaft speed. The fourth variable (feed phase inlet concen-
tration) has been proved to be of no value in this program
due to the dimensionless representation of the process
model, which considers the inlet concentration equal to
unity and the outlet concentration as a ratio.

To neutralize the effect of any variable, if it is
desirable to keep it constant, the upper and Tower bounds
as well as the first guess values are made equal.

The second purpose of this program "MAIN" is to
call in the optimization subprogram which can be any of the
following four.

1. Variable Metric Method "VAMM": In this case an auxiliary
subroutine is required. Subroutine INPUT is caiied in
to provide the optimization subprogram with the follow-

ing necessary information:
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D - an estimate of the expected minimum of the
function

PMIN - an estimate of the allow minimum changes in
any of the process variables,

EP - a small parameter (e), twice the accuracy
required in evaluating the optimum of the
function, and

IPRNT - an index to control the amount of informa-
tion printed out.

Optimum Gradient Method “OPTGRD": 1In this subprogram
most of the information required is evaluated or given
within the program. The only subroutines called in are
the objective function (PROC), and the bounds on the
process variables (BOUNDS).

Modified Fletcher-Powell Method (FLTPOM): 1In this sub-
program matrix presentation is eliminated and equivalent
vectors are generated to save a considerable amount of
storage.

Conjugate-Gradient Method (CONJGR): A similar procedure
to method (3) is incorporated. For the last two methods
an index "IER" has been set to indicate how far the
optimization search has gone and the reason for any
failure in reaching the optimum.

IER

error parameter

0 means convergence is obtained

1 means no convergence in a limited number of

iterations
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2 means linear search indicates that no minimum

exists, and

-1 means error in gradient calculations.

Optimization Subprogram:

The subprogram is written in a standard form to per-

form a sequence of calculations; the outcome is the feasible

minimum of an objective function written for the case under

investigation, and the equivalent optimum Tevels for the

process variables vector.

Subroutines called in by the subprogram are:

1.

DERF - to calculate the derivative or gradient vector
values of the process variables vector at any stage of
the search. This has been performed numerically by in-
creasing each variable by an incremental value while the
other variables are kept constant and the corresponding
change in the objective function value is calculated.
This can be expressed mathematically as follows:

a. For the constrained function (0BJ):

. .} = f(x.
g.(x) = v.f = it ex) (x;) (1V-43)

1 X AX,i

and

b. For the Dual Unconstrained function,

' VxTi(x)
gi(x) = V6 =0f-R (IV-44)

} g, (x)1°

where
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Rj is the penalty factor which weights the constraints

to the constrained function (f = 0BJ).

Ti(s) are the constraints
2. BOUNDS - to impose the lower and upper limits on the

process variables vector. These limits are expressed
as Tower and upper limit vectors, XL(M) and XU(M),
where n is the number of variables.

The starting point for the search must be within the
feasible range. If at any stage in computation the predicted
or new evaluated value(s) of the process variable(s) vio-
lated these limits, one of the following actions will be
taken:

1. the variable value is replaced by the nearest bound,
or

2. an index is transferred to the optimization subpro-
gram showing the violation, and consequently a cut-
down or scaling-up in the step size is taken. The
new evaluated value is again checked and further
corrective action is taken.

3. PROC - to evaluate the three terms of the objective
function: NTU, power consumption, column throughput;
the constrained objective function (0BJ), and the dual
unconstrained function (PHI). A factor is set equal to
unity in the beginning of the subroutine, and at any
occasion when one of the constraints is violated, the

value of this factor will increase proportionally to
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the degree of violation. The value of PHI will be equal

to the calculated value multiplied by the value of the

factor (equal to unity when there is no violation).

This will make the optimization search interpolate be-

tween the last feasible value and the value of the vari-

ables causing this violation and determine a new feasible

point. Therefore, the search will continue only in the

feasible region.

where

Subroutines called by PROC:
Steady~-State Model Subroutines (STSMOD): from which
the value of the HTU is calculated, the extent of
extraction constraint (XOT), and the necessary condi-
tion for mass transfer between two phases constraint
(DIFNG) (equivalent meaning for the last two is
given in Chapter I of this section).

A difficulty can arise in this subroutine when
the logarithmic mean driving force equation (c.f.2)
is used to evaluate the apparent number of transfer

units, rewritten as follows:

X y
In| 2/ (1 _ ) 4 a
NTU. = X2 " Yo/m (1V-45)
P (1 - 4")
A = G (= feed mass flowrate )
mL '~ Equilibrium constant x solvent mass
flowrate

For the process under investigation a pure solvent

is used (y2 = 0). Therefore,
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Xy -y X
xor = L—2m. -1
2 " Yo/nm 2

Equation (IV-45) is simplified to

_Inl(1 - X0T)a' + a'|

On many occasions the argument of the logarithm
becomes less than, or equal to, zero because of un-
realistic values postulated by the search technique.
To overcome this difficulty an empirical formula
developed by Reman,(s): and tested versus the mean
logarithmic driving force equation experimentally,

has been used:

NTU, = k[s'70:3 (1V-47)

Figure 15 (Chapter III) shows that Equation (IV-47)
is in close agreement with Equation (IV-46) when
the proportionality constant (K) is equal to 2.
Equation (IV-47) was added to the Steady-State
Model Subroutine to be a stand-by for any negative
or zero argument for the logarithm in Equation
(Iv-46).
Holdup Subroutine (HOLDUP) - from which the power
consumption term in the objective function is cal-
culated as well as tie holdup volume fraction (EP),
the flooding equivalent holdup (EPF), and Peclet

numbers (Pe. and Pey).

X
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Auxiliary Subroutines Used:

1. CUBIC - to solve an algebraic cubic equation for the
holdup subroutine.

2. MATINV - to evaluate the inverse of a (12 x 12) matrix
generated in the STSMOD Subroutine.

3. MVMULT - to evaluate the product of a matrix with a
vector.

4. INPROD - to evaluate the inner product of a vector with
another vector.

5. TIME Function - to calculate at any stage in the compu-
tations the time in seconds taken to execute any part

of the program.

Numerical Results

For the objective function developed earlier, the
four optimization techniques, Optimum Gradient, Variable
Metric, Conjugate-Gradient, and Modified Fletcher-Powell
have been tested. It has been found numerically that each
technique has taken a separate trajectory path towards the
optimum.

For an extraction process (specifically an RDC) the
expected optimum conditions of operation would be a minimum
solvent rate use (or maximum G/L), aminimum solute waste in
the outlet raffinate phase (minimum xF), maximuh throughput
(Vd + Vc), and minimum power input per unit volume of extract.
This would be the optimum operating condition if no con-
straints, limits or bounds are violating the process perform-

ance.
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For the process under study the evaluated optimunm,
with respect to the postulated constrained function, from the

four optimization techniques used, is summarized in Table 3.

Discussion
It is impossible to find one optimization technique
to handle all engineering problems. Also, in the solution
of real engineering problems, each method must be "tuned
up" by trial and error to obtain the best results in the
minimum pefiod of computer time and storage required.
Some of the parameters which have to be considered
for modification and imporvement are:
1. The method for evaluating the gradient of a vector.
In the present methods the finite difference variable (ij)
must be fine-tuned.
2. The step size to be taken to initiate the linear
search.
3. The optimum value of the weighting factor (R) to
give the best results without violating any of the constraints.
Following the previous argument, a comparison be-
tween the four optimization techniques is carried out.
Table 4 shows the various important factors on which the
somparison has been based.
From this table the following conclusions can be
drawn:
1. For any RDC there is an optimum shaft speed, and for

any specific shaft spéed there is an optimum combination of
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the feed and solvent flowrates. The shaft speed, as a
variable, does not change considerably in the moderate con-
ditions of operation (with the operating condition far from
flooding conditions). Under intensive conditions of operat-
ing (shaft speed over 800 cm/min), it changes considerably
to counteract a violation in the flooding constraint.

2. Once the search technique has driven the system
away from the feasible range and consequently violated any
of the imposed constraints, a corrective action must be taken
to return the system to another feasible region. If it
fails to do so, it will be rather difficult to correct it,
unless a new iteration is started from the last feasible
point.

3. The possibility of a local optimum existing anywhere
else on the surface has been checked by starting the search
from the other extreme side of the conditions of operation.
This has shown that there is one, and only one, optimum for
a rotating disc contactor operating under steady-state con-
ditions.

4. From the previous comparison of search methods, it
can be said that the optimum gradient, followed by the vari-
able metric is the most suitable for dealing with the problem
under study.

5. The four methods of optimization have been tested
for a postulated performance criterion. Changing the form
of this criterion to include economic factors may invali-

date this comparison.



TABLE 3

COMPARISON BETWEEN THE OPTIMUM LEVEL OF OPERATION
ESTIMATED BY FOUR OPTIMIZATION TECHNIQUES

Process Variables

Estimated Optimum Values Obtained by

Optimum Gradient

Variable Metric

Conjugate Gradient

Modified
Fletcher-Powell

Feed Phase Man Flowrate
(g/min)

Solvent Phase Man Flowrate

Rotating Shaft Speed
{(cm/min)

Raffinate Concentration
(dimensions for inter feed
concentration equal to unity
and pure solvent)

Constrained Objective
Function Valve (F)

Unconstrained Objective
Function Value (¢)

180.

94.52
468.3

0.49939

1567.743

158.149

179.9995

95.2738
470.9

0.49628

159.296

159.3676

143.278

75.3374
437.8

0.498369

162.173

162.3292

178.8716

94.6338
468.5

0.496459

159.062

159.1369

L0l



COMPARISON BETWEEN FOUR SEARCH TECHNIQUES OF OPTIMIZATION

TABLE 4

Item

Search Technique o,4imum Gradient

Variable Metric

Conjugate-Gradient

Fletcher-Powell

Property

(1) Simplicity of formula- 1 3 4 2
mulation and implemen-
tation (in order)

(2) Core Storage Usage 36,332 43,020 37,764 36,968

(Bytes)

(3) Compilation Time 1.94 secs 3.23 secs 1.98 secs 1.98 secs

(4) Convergence Very Good Very Good Fair Good
Sensitivity

(5) CPU Time 64.20 sec 46.672 secs 149.157 sec 127.59 sec

(6) Number of Function 88 21 72 61
Evaluations

(7) No. of Iterations 26 14 21 19

(8) Total CPU Time used 455 secs 373.317 secs 536.75 secs 498.35 secs

for 7 starting points

80l
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CHAPTER V

DYNAMIC MODELLING

As has been mentioned briefly in the introduction
of this thesis, a dynamic model of the process is necessary
for dynamic optimal control, time-optimal control for the
start-up period, and recovery of the process if it has al-
ready gone through the critical region.

Each mathematical model developed for a specific
purpose must fulfill certain requirements:

1. For dynamic optimal control, it must yield a solu-
tion rapidly, and be sufficiently accurate.
2. For time optimal control for the start-up period

a highly accurate model is required over the entire

period while the time required for obtaining the

solution is not a critical factor.
3. For trouble shooting, cases one and two should in-
clude necessary constraints to avoid the critical

and unstable region.

Previous Work on Extraction Dynamics

Table 5 shows a summary of the previous investiga-
tions carried out by a number of authors on the dynamics

116
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of liquid-liquid extraction processes. Further details about

each of these investigations can be found in the critical

review published by Pollock and Johnson.(76)

The following work is the most relevant to this
study. Mixed cell model with constant back-mixing coeffi-
cients, developed by Pollock and Johnson.(77) In this model,
the following assumptions were postulated.

1. Within the narrow range of concentrations used experi-
mentally, the feed phase flowrate, the solvent phase
flowrate, the equilibrium distribution coefficient, and
the product of mass transfer coefficient and interfacial
area per unit volume are constant.

2. The gradient of solute concentration in each phase is
composed of finite steps associated with the area between
two successive stator rings.

3. The mean velocity and concentration of each phase are
constant across that part of the column cross-section
occupied by the phase. Thus the concentration gradients
exist only in the direction of flow.

4. The composition of the back-mixed stream from a given
stage is the same as that of the main stream leaving
the stage.

5. Variation in holdup, efficiency, and back-mixing coef-
ficients over the transient period are negligible.

6. The coefficients of back-mixing between stages do not

vary from one stage to another.
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The model being considered can be represented dia-
grammatically as shown in Figure 23.

For the conditions outlined above, the following mass
balance for the solute can be written as follows:

For the first stage:

ax, + arx, - (1 + r)ax] + (1 + e)y2 + (1 + e)y1

_ il dx] . (1 - s]) dy]

L dt L dt (v-1)

For any intermediate stage (k):

(1 + rlax,_; + rax , + (1 + e)Ypeq * &Yy - (1 + 2r)ax,

Ek ka N (] - Ek) dYk

- (T +2ely =T [ at (v-2)
and, for the last stage (n):
(1 + r)axn_1 ey, 1t Ypsp - (1 + r)axn - (1 + e)yn
dx (1 - ¢.) dy
= €n n + en n (v_3)

T dt L dt

In the case of equilibrium being attained in each
stage, the steady-state mass balances for the solute in
the outgoing streams are:

For the first stage:

(1 + r)ax] + (1 + e)y] = (1 + r)axf + (1 + e)yf (v-4)

For the intermediate stages:

(1 + 2r)ax, + (1 + 2e)y, = (1 + 2r)ax} + (1 + 2e)yy  (V-5)
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and, for the last stage:

(1 +r) ax, + (1 + e)yn = (1 + r)ax; + (1 + e)y; (V-6)

The stage efficiencies can be defined as:

N s S Bl
T _ yx T R
1 x0 x] k xk_] xk
X! - X
-1 n
and n, = oA (v-7)
n xn_] - X*
where
X_ + rx (1 + r)x + rx
0 2 - k-1 k+1
Xo T 7 ¥ and Xy q = T+ 27

Further, the steady-state mass balance for the
solute over the k-th stage corresponding to Equation (V-5)
is
(1 + r)ax, _; +rax, + (1 +ey 4 + ey,

= (1 + 2r)axk + (1 + 2e)_yk (v-8)

and, for the entire system of stages it is
= X)) =Yyt Yo (V-9)
Finally, the general equilibrium relationship is

y* = Dix + a5, i=1,c4,n (v-10)

Pollock and Johnson ended by putting Equations
(V-1) to (V-3), after a few replacements and arrangements,

in vector-matrix form as follows:
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[Al-% = [Clx + G (V-11)

The above equation represents the unforced dynamic
model for the process and can be rewritten in more compact
form as follows:

[Al-x = B (v-12)
where

B=[Clx +6 (V-13)

In these relations [A] is the tridiagonal matrix

[a;7 2, O e 0
351 3 23 0 . 0
[A]=10 o0 0 (V-14)

A k-1 KLk %KLk

e 0 3002 %-1,n-1 ¥n-1,n
.0 ceesne 0 an’n_.l an’n |
[C] represents the codiagonal matrix:
11 %12 ©13
€21 €22 C23 C24
(el = Ck.k-2 Sk.k-1  Sk,k  Sk,k+1 Sk, k+2

cn-],n-3 Cn-’I,n-2 cn-1,n-1 cn-],n

(V-15)
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The column vector G is given by the expression:
T ] (v-16)
G [g]’ gz,"‘s gk9"’s gn_'|9 gn
where "T" denotes transpose.

Parameters a5 bi’ Cis and d. are now defined by

the following equations:

. ns
a. = 1'], for i = 1,-+¢,n
i n.
i
D.
_ a i _ 1
b1 "T+ve T TFr for i = “n
D
_ a k _ _
bk =7+ P TF 78 for k = 2, ,(n-1)
_1l+r 21 (v-17)
i " T+e for i = G
_] +2r = o e -
C = T 5 76 for k = 2,°++,(n-2)
0, |
d, = — for i = 1,e«+4n
1 n

The elements of the matrix [A] are represented for
i = 1,+¢¢,n by the following expressions:

(] - 51)

i 4.1 T A (1 + r)aibi

o V]
n
—|—

[ei + (1 -‘ei)(di - “aiei)]

(1 - ¢;)
! ra.b

5,941 T T by

Similarly, the elements of [C] are represented by

¢qq = (1 + e)(1 + r)a2b2 - (1 + e)(d] - aa]c1) - (1 + r)a
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cip = ar ¥ (1 + e)(d2 - aazcz) - (1 + e)ra]b]
crp = (14 e)rasb,, and cy3 = (1 + e)rayb,
For i = 2,-+--,(n-1)

Ci,q-2 = el *+ rla; 4bs 4

¢ 4.1 = (1 +r)a + e(di-l - aai_]ci_]) - (1 + 2e)(1 + r)aibi
i, " (1 +e)(1 + r)ai+]bi+] + erai_]bi_] - (1 + 2r)a
- (1 + 2e)(di - “aici)
Ci je1 = Mot (1 + e)(di+] - aai+]ci+]) - (1 + 2e)raibi
S 02 T (T H edray by,
and

“hon-2 T %i,i-2

(T +r)e+e(d _;-ea _qc._q) - (1 +e)(1 +r)ab

(@]
]}

c = era _;b - (T +r)e - (1 +e)(d - aapc)

n-1

Finally, the elements of the column vector G are

represented by:

g9y =9y - 9y + [a - (1 + e)ajb,lx,
g, = (1 + e)az + eqy - (1 + 2e)q, + eqy - (1 + 2e)q,

+ ea]b1x0

(] + e)q.“.] + eqi_] - (.l + 2e)q

[fa]
-—do
1

i for i =3,---,(n-1)

9p = €y - (14 el g * vy

For a forced dynamic system Equation (V-12) can

be rewritten as follows:

x = [A17T[CIx + [A]7'G + [B*]u (V-18)


