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VIBRATIONALLY INELASTIC SCATTERING AT MODERATE ENERGIES
CEAPTER 1
INTRODUCTION

The transfer of energy from translation to internal states of mole-
cules during coliisions plays an essential role in numerous molecular
processes. For example, collisional excitation of vibrational and rota-
tional energy levels is a major mechanism by which population inversions
are produced in chemical lasersl and by which molecular reactants acquire
the activation energy by which to form new products.2

Crossed polecular beam techniques are now beginning to yield de-
tailed information concerning the outcome of inelastic molecular colli-
sion events.3 The output of such experiments is in the form of angular
distributions and cross sections. Thus we now have microscopic experi-
mental techniques to compare with theoretical collision dynamics, where-
as previously experiments were concerned with bulk properties for colli-
sions in gases, such as relaxation times, transport properties, etc.

The theoretical description proceeds by selection of a potential
energy surface which describes the interaction between the collision
partners. Rigorous theoretical, or ab initio methods to calculate reli-

able potential surfaces are difficult to apply and, as yet, there is
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no direct method for inverting the process in order to determine the
inelastic scattering potential from experimental measurements. However,
new techniques are rapidly being developed which may facilitate the in-
version process for the inelastic case.?

The next step involves the solution of the scattering problem to
obtain the probabilities for the inelastic events which can take place
in the system. The formal theory for molecular scattering has been de-
veloped5 but exact calculations, although feasible, are usually diffi-
cult and time-consuming to perform. Therefore, various models of the
collision process have been designed to replace an exact solution to
the dynamics of a collision.6»7

The problem of vibrationally inelastic collisions which are energe-
tic enough to produce vibrational transitions is a difficult one. Eve-
ry system with vibrational levels will also have rotational energy le-
vels which are closely spaced compared to the vibrational levels so
that rotational transitions will occur for each vibrationally inelastic
event. Approximations which can treat a few widely spaced levels will
fail for the rotatiomal part, while those valid for a large number of
closely spaced levels will fail for the vibrational part.

The simplest model with which to treat this problem is a collinear
collision of an atom with a diatomic molecule. This procedure elimi-
nates the rotational part of the problem and the anisotropy of the vi-
bration part of the interaction potential. The first exact classical
calculation for this model was made by Kelley and Wolfsberg.8 They
used both harmonic and Morse oscillator poteantials to describe the dia-

tomic molecule along with an empirical interaction potential to obtain
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the exact classical energy transfer. Recently, this classical model
has been extended to two dimensions.? Secrest and JohnsonlQ first cal-
culated exact quantum mechanical transition probabilities in one di-
mension for an harmonic oscillator in soft collisions. These calcula-
tions have been extended to a Morse oscillator and several different
systems.11 By assuming that all the ignored orientations and impact
parameters make a rapidly and regularly decreasing contribution to the
inelastic scattering, a steric factor can be introduced to obtain a
three-dimensional average transition probability. The steric factor is
usually set equal to a constantl2? or obtained by some prescription.13
The transition probability thus obtained can then be used to calculate
relaxation rates for the system. The steric factor concept has been
found to be generally iavalid for vibratiomally inelastic events.12,14,15
Since cross sections are obtained by integrating over impact parameter,
they cannot be obtained from this model.

At the other extreme, the rotational part of the problem may be re-
moved when the rotational period is much shorter than the duration of
the collision. The vibrating molecule is treated as a sphere which un-
dergoes changes in radius as the molecule vibrates. This is the basis
for the breathing sphere model.16 Although such a model is not realis-
tic, since there is no coupling of angular momenta for a spherical po-
tential, it allows for a three-dimensional test for various other ap-
proximacions.17

In the last few years a series of papers has introduced what are
now called “effective Hamiltonian" techniques.18'23 These approximate

methods, which achieve a reduction in the number of coupled equations,
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all involve various types of angular momentum decouplings. The reduc-
tion is effected by altering or eliminating states not directly mea-
sured. Rabitz2%4 has indicated the flexibility in choice of an effec-
tive Hamiltonian with regard to computing time and accuracy requirements
for two colliding molecules and for an atom-molecule collision. It has
been pointed out23 that with increasing anisotropv of the interaction
potential the effective Hamiltonian methods are likely to become less
adequate because they employ approximate angular momentum coupling.

The above approximation methods appear to have general applicabili-
ty to the classical, semi-classical and quantum mechanical formulations
for inelastic collision probabilities. For example, Augustin and Ra-
bitz27 have extended the effective Hamiltonian methods to the classical
S-matrix theory.

A completely classical S-matrix formulation of a molecular collision
problem has been proposed by Miller.26 He showed how to construct the
classical limit of a quantum mechanical S-matrix by exact numerical
solution of the classical equations of motion. Quantum mechanics is
introduced into this theory by the superposition principle whereby pro-
bability amplitudes are added instead of the probabilities themselves.
The method has been extended to those processes which are classically
forbidden by a partial averaging technique which treats, for example,
rotation by a Monte Carlo averaging and vibration by classical tech-
niques. This classical model requires a root searching procedure to
determine classically-allowed trajectories and complex value trajecto-
ries for classically-forbidden trajectories. Doll and Miller#3 have

applied this method to investigate various three~dimensional atom-
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diatom collisions, and compared their results with the quantum mechani-
cal calculations of Eastes and Secrest2d for collision enmergies in a
range of 1-2eV, and obtained excellent agreement.

An exact quantum iechanical result means a close coupling calcula-
tion.28 1In practice the expansion of the total wave function in terms
of complete sets of basis functions must be truncated to a finite num-
ber of basis functions. This is done by adding functions until a pre-
scribed convergence criterion is reached. Close coupling calculations
in three dimensions are scarce. To date, few atom-diatomic molecule
system calculations have been made which include both vibrational and
rotational states. Those that do carry only two or three rotational
channels.

While the previous two formulations have described the collision
system degrees of freedom either entirely classically or entirely quan-
tum mechanically, it is possible to use a mixed description. The semi-
classical formulation treats the inelastic scattering as a time-depen-
dent perturbation on the internal coordinates while the relative coordi-
nates follow a trajectory determined by a spherically symmetric poten-
tial. This method has been used in a first-order perturbation treat-
ment and a multiquantum treatment of collinear scattering by empirical
potentials.3°’3l The time-dependent formalism was extended to three
dimensions by invoking the breathing sphere model33 for an energy range
below one-half eV.

Another formulation for semi-classical inelastic scattering has
been developed and applied to three-dimensional, vibrationally inelas-

tic collisions in the sudden approximation.35‘38 This method will be
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described in detail in the next chapter, where modifications will be
made in order to describe inelastic events at moderate collision ener-
gles.

The sudden approximation provides a simple high energy limit from
which one can obtain probabilities and cross sections for inelastic
transitions with an effort consistent with the presently limited know-
ledge of intermolecular interaction potentials. It would be valuable
to have an equally simple method for describing inelastic events at mo-
derate collision energies ~-~ from about 4eV up to the sudden limit.

We propose to develop a rather simple semi-classical approach for
taking into account deviations from the sudden approximation while main-
taining at the same time the calculational facility of the sudden limit.
We will account for vibrational energy level differences by relaxing
the sudden approximation with a constant energy-level spacing between
the initial vibrational state and all possible final states. A prescrip-
tion for choosing this spacing will be based on an exact collinear quan-
tum mechanical calculation. We then extend the formulation to three
dimensions and compare the result with that obtained in the sudden ap-

proximation for the same collision processes.



CHAPTER II

THEORETICAL FORMULATION OF THE SCATTERING PROBLEM

1. Formal Theory

The formal theory of scattering states that a collision process may
be sufficie: =1y described by the stationary solutioms, ¢(r,R), of the
time—-independent Schrodinger wave equation:

(8, +8, - Mm2/21)7% + V() - E J9(,R) = -AV(x,R).  (2.1)
Here, H] and H) are the Hamiltonians of noninteracting collision part-
ners, r is a vector joining the centers of mass of the molecules, and
R represents the collective internal coordinates. The interaction po-
tential, V(r,R), has been written as the sum of a spherically symmetric
part, Vo, and a part, AV, which contains the dependence on the inter-
nal coordinates of colliding systems. In writing Eq. (2.1), we must
make two assumptions; (i) electron transitions are ignored; and (ii)
the process is limited to energies below the threshold for dissociation
of the collision partners so that we will not consider the coantinuum.

We reduce Eq. (2.1) to a set of coupled second-order ordinary dif-
ferential equations by expanding Y in terms of the eigenfunctions ¢jn
and ¢9, of H} and Hp, respectively:

= -1
¥(r,8,¢) = Ezmr g CTIY, (8,8)9, ¢, (2.2)

where £ and m are the orbital quantum numbers associated with state n

7
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and the u nf.m(r) are as yet undetermined radial wave functions. The
index n represents all of the internal quantum numbers. Putting Eq.

(2.2) into Eq. (2.1) yields

2 2 . .2
[ @an? - ees/c® + 6 - v (o) ] Elmu S A

=80 ] ¢; ¢, (2.3)
nfm ’

where

U () = 2V (DA

AU = ZuAV/hz
k2 = 2u(E - E, - E. )
n 1n 2n’°

M is the reduced mass of the system, E the total energy, and Eln and

Epp are the respective energy eigenvalues of H) and H2. Both sides of

*

Eq. (2.3) may be multiplied by Yz

x %
'm'¢ln'¢2n' and integrated over R, 6,

and ¢ to give

2 .2
[ (a/ar)? - sy /et + K = U ()] u g,

= U vor u
owm B 2'n'nim nim, (2.4)
where
x % %
Un'!.'m'n!.m = I ¢1n'¢2n'YZ'm'AU¢1n¢2nY£mdnd§' (2.5)
Using the substitution
2 _ .2 2 _ 2
P (r) =k - 22+l /x Uo(r) (2.6)

we can write Eq. (2.4) in the more compact form,

wi(e) + Pl (D (1) = PRARIC IR @.7
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with n denoting the entire collection of indices. If AV vanishes, Eq.

(2.7) reduces to a set of decoupled equations which describe elastic

scattering.

2. Semi-classical Approximation

In order to describe the radial functions un(r), we treat the
three-dimensional collision process with the semi-classical methods de-
veloped by Cross.33-38 These are based upon two mathematical approxi-
mations: the removal of rapid oscillations and the WKB approximation;
the former requires the energy differences between the internal states
to be small compared to the kinetic energy of the system and the latter
requires that the deBroglie wavelength must be small compared to the
range of the potential. The derivation then allows for a description
in terms of classical trajectories and correctly predicst the asympto-
tic properties of interest such as probabilities and cross sectioms.

We begin the semi-classical treatment by writing the radial wave-
functions in terms of two linearly independent approximate solutions
for elastic scattering from the spherically symmetric part of the poten-
tial. Then

ui(r) = Xi(r)uli(r) + Yi(r)uZi(r). (2.8)

Since Eq. (2.8) involves twice as many functions as Eq. (2.7), we may

impose the following restrictions on the coefficients X, and Yi:

i

X, () + Yi(r)u,(r) = 0 (2.9)

Inserting Eq. (2.8) and (2.9) into (2.7) results in two sets of first-

order coupled differential equations for the xi and Yi’ These are
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X'= (A X +B.Y. )
1 j( 1353 15 J) (2.10a)
and
Y'= (C.,X, +D Y.
17 Sy T Py
where
_ Al w4 p2 -1
Agg = Wy (upquyy + Pyup uy 06,0 = Wy tup Uguyy o (2.112)
B.. = W l(e u". + PPu..u ALIRE vl v (2.11b)
ij 1 “Y21%2i 1¥21%21 i 72iij725° )
c =w'1(u u" +P2u u )5 +v iy U (2.11¢)
e e t e LR A T AT 1 Y11%5%;
D.. = Wl + P2y, u 26,5 + W] 1 v (2.114)
g3 = Wy (upqupy FFgu Yy 1i%15%2; °

and W is the Wronskian of Y and u The exact solutions of the elas-

9*
tic Schrodinger equation satisfy u" = -qu, in which case the first

terms of Eq. (2.11) are zero. Since vy and u, are approximate solutions

for the elastic case we expect the first terms of Eq. (2.11) to be
samll, and omit them from the following.

OQutside of the classically-forbidden region and well away from a
classical turning point, we can use simple WKB functioms for v and u,-
These are given by

_ o .
Uy = Pi exp(lsi - 1i7w/6), T>r (2.12a)
u,, = P-.;i exp(-is, - iw/4) r>r (2.12b)
21 i i > ci
uy = u21 =0, r < rci (2.12¢)
with
T
- v '
s, | £ P (r")dr | . (2.13)

c1i
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The quantity Pi(r) is the momentum associated with position r and Ty
is the classical turning point for the ith state, i.e., the value for

which Pi(rci) = 0. Equations (2.11) become

e - i(Pin)-!i Uijexp(—isi + 1sj), (2.14a)
By, = icpipj)”’ U (s, = 1s)), (2.14b)
cij = % i(PiPJ_)-;i Uijexp( is, + isj), (2.14c)
Dy = k i(r:ipj)'Li Ugjexp( is; = isj). (2.14d)

For the energy range we are concerned with, Pi(r) is large so s is

also large and varies rapidly with r. Thus, the B and C terms will be
rapidly oscillating functions of r sco that any integral over them will
be negligible. The properties of Uij are also important to the vali-
dity of this approximation: the Uij must be sufficiently slowly-vary-

ing functions so that the average of

% . 3 1
(Pin) Uijexp[ ti(s, + Sj)J

i
is close to zero. With only the slowly oscillating terms A and D re-

maining, we have the coupled equations

] = -
X; § Aijxj (2.15a)

and

Y = 1D,.Y. . (2.15b)
b

The neglect of the B and C terms means that we have lost quantum inter-
ference between the outgoing half of the trajectory represented by Xi

and the incoming half represented by Yi.
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For energies in the range cf a fewr electron volts, we expect only
small relative changes in the relative energy transferred, since energy
level spacings are on the order of one-half electron wvolt. Also, for
most molecular collisions the angular momentum £ = 200 and the changes
A% are on the order of 10 or so.39 Therefore, with Ak/k and A%/2 small,
we can expand (gi - sj) in a double Taylor series and retain only the

first-order terms,
(si - sj) = (as/ak)(ki - kj) + (as/zu.)(rti - 13.). (2.16)

The classical trajectory determined by Vo(r) is specified by r, 6, and

¢ as functions of the time t. They are related by

dr

"
+

Pohdt/u (2.17a)

and

"
1+

a9 ldr/rzPo , (2.17b)

where the upper sign holds for the incoming half of the trajectory and
the lower sign holds for the outgoing half.

In Eq. (2.17), we have an average momentum, Po, to replace (Pin)%
which occurs in Eq. (2.14). We consider it to be an average P by which
we can define a single classical trajectorv. The manner by which such
an average is defined has been shown to have little effect on the quan-
tities calculated by its use. Substituting Eq. (2.17) into (2.16)
yields,

(si - sj) =+ wij(t - tc) 5 (li - zj)(e - ec) . (2.18)

where mij is the energy difference between states i and j in units of
h. Substitution of Egs. (2.17) and (2.18) into (2.15) effects a change-

of-variables from r to t:
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X = - (1/ﬁ)§ Vigexp[ duy (e~ e ) - 102y - 2000 - 0 ]x, 2.19)

fort 2t , and
[ o]
ii = - (i/ﬁ)§ Vijexp[ imij(t -t) -1, - zj)(e -8 ]Yj (2.19b)

for t ¢ tc. Continuity of the wave function requires that Xi = Yi at
time tc, the time at which the system is at the turning point.

As they stand, Eqs. (2.19) couple the vibrational, rotational, and
orbital angular-momentum states of the colliding system. We now remove
the orbital part by employing an action-angle transformation which is
valid in the classical limit of large £.36 For large £ and m << £ we

can use an asymptotic expansion of the spherical harmonic.40

Y, (8,¢) = ﬂ-l(sine)—%cos[ (44+%) 8 - /2 - wr/2 Jexp(imé) (2.20)

which is valid for © >> 1/%&. The potential matrix can then be written

as
2 -1 w27 . ]
-[exp(iaL8' + irAm/2) + exp(- iAL'6- imAm/2)]dé" (2.21)

where A = L' - 2 and 4m = m' - m. Terms containing exp!ti(£+1')e|
are highly oscillatory and are omitted. Making use of the fact that
(6',6") and (-8',¢"+w) represent the same point in space, we can rewrite

Eq. (2.21) as

™

27
v ') = wrd™ [ aer] Vij(r,e',¢')exp[ - 1Am(¢' - 1/2)]

"
ijt’m o °

-[exp(iaz8")ds']. (2.22)

Since V as given by Eq. (2.22) depends on 42 and Am and not on indi~
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vidual values of 2 and m, we can diagonalize the orbital angular momen-

tum via the transformation
X, (t,8,y) = (NN ) Y exp[ im(y - n/2)]exp(-128)X_, (t); (2.23)
i 2V 2 m y i!-m > .

here, Nz and Nm are the numbers of 2 and m values respectively, to be
used in the sum,>and § and y are defined by

§ = 21m2/Nz s Y =2 nm/Nm . (2.24)

As Nz and Nm become large, Xi may be considered to become a continuous
function of § and y. The inverse of Eq. (2.23) is given by

2w 27

X, (r,2,m) = (lem)!’(mz)’l favfexp[ -im(y - 7/2)]
[¢] ]
+ [exp(i28)% (r,6,7)d6]. (2.25)

Substitution of Egqs. (2.22) and (2.25) into (2.19a) yields

X (£,8,7) = - (i/ﬁ>§vij(t,s +6-8.,7)

fexp( O cc)] Xj(t,é,y)}. (2.26)

By a similar procedure we obtain the coupled equations for Yi' Equa-
tions of the form of (2.19) have been derived from time dependent per-
turbation theory by including the spherical harmonics in the original
wave function. Transition probabilities can be obtained from the per-
turbation treatment, but the translational part is ignored so that an-
gular distributions cannot be obtained. Equations similar to (2.26)
have been used to describe vibrationally inelastic scattering in a2 col-

linear model.30
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3. Treatment of Internal States by the

Relaxed Sudden Approximation

The coupled equations still contain the rotational and vibrational
transitions. The rotational dependence is removed by using the sudden
approximation. Here, we assume that mij does not depend upon rotational
energy differences, i.e., that the energy-level spacing for rotational
states is essentially zero. Further, we assume that remaining vibra-
tional energy-level spacing contained in wij does not depend upon the

vibrational quantum numbers so that we can replace

. s
ij by some constant

value w. We then have

ii(:,e,y) = - (:L/h)JZvij (t,6 +6 - 8)
{exp[ dw(e - )] Xj(t,é,y)} (2.27)

with a similar expression for Yi’ We refer to this procedure as the

"relaxed sudden approximation.”

At this stage it is not easy to assess
the possible error introduced by the nature of this approximation. It
has a strong appeal, in that it should permit a test of the usual sud-
den approximation which considers w to be zero.

In the sudden approximation, the available energy levels are trea-
ted as if they are completely degenerate since the parameter w expres-
sing energy differences between states is set equal to zero. Under
such a condition any classical path should be able to connect the ap-
propriate internal states involved in an energy transfer during a col-

lision. At low energies, however, this degeneracy should no longer be

apparent to the colliding molecules and the sudden approximation should
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fail.

As a next approximation, a constant, non-zero @ is chosen in order
to closely reproduce the elastic scattering transition probability for
an oscillator in its ground state as given by a quantum mechanical cal-
culation for the collinear problem. Such a choice for w makes all exci-
ted vibrational states degenerate, i.e., all excited states lie at the
same energy above the ground state. Harmonic oscillator wave functions
are then used to describe the internal vibrational states.

Equations (2.27) are still coupled to the various internal states

by the potential matrix elements. The matrix elements have the form
*
= i
Vi3 (8 j¢i(§)m¢j @®de , (2.28)

which represents a transformation from a basis set quantized in the

set of quantum numbers i and j to a basis set in the intermal coordi-

nate representation. The basis set becomes a set of Dirac delta func

tions so that the inverse transformation is33’34

*
L5 ¢ lavies o (R

J 1=
= AV(R)(R-R") , (2.29)
where the closure property of the complete set of internal wave func-
tions has been used. Using Eq. (2.29) we can diagonalize Eq. (2.27),

producing the set of completely decoupled equations,
X(t,8,v,R) = - (i/h)AV(L,8 + 8 - 8_,Y,R)

-[x(t,8,v,R)] (2.30a)

for (t = tc) and
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¥(t,8,Y,R) = - (i/h)AV(L,S + 8 - 8,Y:R)

<[x(t,8,v,R)] (2.30b)
for (t < tc). The solution of Eq. (2.30) is obtained by a simple in-
tegration over the classical trajectory. For the asymptotic limit
r &+ », we ¢an write®l
X(t + + «) = exp(2in) Y (£ » - =) (2.31)

where the phase shift n is given by

-1 +e
n =~ (20)"" [AVexp(iwt). (2.32)

-0

The X and Y functions no longer depend upon the internal states of the
collision partners, but they do depend upon the internmal coordinates,
collectively denoted by R. The potential AV varies in time as the
trajectory changes with time.

In previous applications of the sudden limit to both the rotational
and vibrational parts of the collision problem, the phase shift was

determined by
a
n = - (20)7" [avdr. (2.33)

-0

Here, AV depends only upon the trajectory, while the internal coordi-
nates (for vibration and rotation) are independent of the time. For
the relaxed sudden approximation, as given by Eq. (2.32), it is correct
to say that the rotational coordinates are independent of time since
any rotational contribution to the mij appearing in Eq. (2.26) was set
equal to zero. Then, since all of the rotational energy levels are de-
generate, we can use any linear combination of wave functions to des-

cribe the rotational state. In particular, we can diagonalize AV and



18

n by using a set of Dirac delta wave functions in the internal rota-
tional coordinates. For the vibrational case a similar diagonalization
was carried out, but it is not clear that the vibrational coordinate
can be treated as time-independent due to the exponential factor ap-~-
pearing in Eq. (2.27). However, w was assumed to be a constant so that
the diagonalization could be carried out; accordingly, we will assume
that the internal vibrational coordinate is independent of time. Thus,
the quantity w in Eq. (2.27) will be used as a parameter to modify the
results obtained previously, i.e., using Eq. (2.33) for three-dimen-

sional atom-diatom scattering.

4. Interaction Potential

A problem facing any theoretical calculation of a collision pro-
cess is how to choose an interaction potential which can at least exhi-
bit the qualitative features of an experimental situation. The vibra-
tional potential of the HZ molecule is that of an anharmonic oscillator.
The He + H2 interaction potential should exhibit a shallow potential
well. A purely repulsive nonspherical exponential potential is a rea-
sonable approximation. Many interaction potentials of this analytic
form have been introduced. We chose to use the potential fit of Krauss
and Mies,44 since it is the one adopted by Wartell and Cross.15 It is
more spherical and its anisotropy varies less rapidly as a function of
the vibration coordinate than the more recent one of Gordon and Secrest,
but it describes the essential features of the interaction quite well,
especially in the highly repulsive range.

The Krauss-Mies interaction potential for the He + Hz system is
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given by

V@LRY) = Cexp[ - (@, -aRr [ A +3MR] , .30

where the H2 displacement from the vibrational equilibrium is R, the
distance from He to the bond center of Hz is r, and Y is the angle be-
tween the molecular axis and the momentum vector. The numerical values

of the constants are:

ACY) = 1.1004[ 1 + 0.18250 P, (cosY) ]

B(Y) = - 0.52151[ 1 - 0.27506 B,(cosy) ] a.u.™
C = 198.378 eV (2.35)
@ = 1.86176 a.u.”}
o
and
_ -2
o, = 0.3206 a.u.

where Pz(cosy) is the second Legendre polynomial and all linear dimen~-
sions are given in atomic units (1 bohr = 0.5293). This potential is
valid for 2.5 € r £ 3.8 a.u. and -1.4 £ R £ 0.6 a.u.. Since the poten-
tial becomes large as R exceeds about 6 a.u., the exponential term in-
volving R in Eq. (2.34) was expanded to first order im R which gave the

potential used the form

V(r,R,y) = Cexp{ =ar ][ 1 +apre 1[ a¢y) + BCY)R ]. (2.36)

The Legendre polynomial was written as a function of the angles €, ¢,
©, and ¢ by use of the addition theorem for spherical harmonics. The

relationship of these angles is shown in Fig. l.
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CHAPTIR III

DETAILS OF THE NUMERICAL COMPUTATIONS

For each energy and impact parameter a classical trajectory for the
relative translational motion was calculated by integrating the classi-
cal equations of motion using the isotropic part of the interaction po-
tential. This potential was obtained by averaging over the internal
coordinates. The average over rotational coordinates was done in the
standard manner by integrating over © and ¢. The average over the vi-
brational coordinates was carried out with a weight factor, exp[ aRZ ],
where a was chosen according to the identity of the diatomic molecule.
The resulting trajectory was then expressed as a set of data giving the
center of mass distance r and the scattering angle 6 as functions of
time. These functions were then used to obtain a time dependent inter-
action which followed the vibrational motion of the diatomic molecule.

The phase-shift calculations were made by integrating over the
complete interaction potential for a given trajectory. The sudden-ap-

proximation results were obtained from the relation

-1 ¥
n(g,b,R,0,8) = - (28)"~ [v(r,8,4,R,0,8)dt. (3.1)

-0

Here, E and b are the center of mass energy and impact parzmeter, res-
pectively, R is the vibrational coordinate of the diatomic molecule, and

© and ¢ are the orientation angles for the diatomic molecule as de-

21
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fined by Fig. 1. Phase shifts for the relaxed sudden approximation
were calculated from a relation which differs from Eq. (3.1) only by
the inclusion of an exponential factor, exp(iwt), under the integral.
In Eq. (3.1), it was convenient to use the complete potential for the
system rather than the anisotropic part, 4V, which was used in the
theoretical development. This substitution produced only a phase-fac-
tor difference in the scattering matrix elements and no difference in
the transition probabilities, since V(r,R,0,¢) = Vo(r) + V(r,R,0,%)
and since the matrix elements were obtained by integration over the
internal coordinates. The trajectory was calculated for a spherically
symmetric potential so the azimuthal angle ¢ was chosen to be zero.

The scattering matrix elements Snn' were obtained by integrating
the exponential of the phase shift over vibrational wave functions of
the molecule using the equation

Snn,(E,b,e,Q) = (n']exp(Zin)!r1> . (3.2)

where [n) and |u>> are the initial and final states of the oscillator
and were chosen as harmonic-oscillator wave functions. For this work,
the initial vibrational state was chosen to be the ground state of the

diatomic molecule. The transition probabilities, Pon’ were obtained

from the squares of the absolute values of the scattering matrix ele-
ments, i.e.,

P o (E:b.8,0) =[S (E,b,8,9)[% . (3.3)
Orientation-dependent cross sectiomns Qon were defined by and calculated
from the relation,

L
Qo (E:8,0) = 21r£ P_,(E,b,0,0)bdb. (3.4)
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Finally, angle-averaged cross sections Q;u for fixed energy were ob-
tained by averaging over the internal angles of the diatomic molecule.

The calculations were performed for center of mass energies of 4,
5, 8, and 10ev. These energies fall within the range used in the quan-
tum mechanical calculations of Secrest and Johnson for collinear colli-
sions of the He and Hz system,

Calculations were carried out on a PDP-10 system. Simpson's rule
was used for all numerical integratioms.

The values of w to use in Eq. (2.27) for each energy were selected
by calculating the elastic transition probability for various w's and
choosing those which gave values for the probability which was closest
to the collinear calculation of Secrest and Johnson. The values used

are given in Tatle I.

Table I. Values Selected for w2

Collision Energy (eV) w (x 10145_1)
4 8.90
5 8.44
8 6.92
10 5.46

a. For HZ as an harmonic oscillator w = 8.28 x 10145_1

Fig. 2A illustrates the behavior of the peak in the probability

distribution as a function of the final state as w becomes non-zero.
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A .

0 2
FIG. 2

4 6

Transition probability, Ppg, vs. final state n
for collinear collisjions at zero impact parameter.
(a) 8eV Open circles for w # O.

Full circles for w = O.
() Open circles for 10eV w # O.

Full circles for 4eV w # 0.
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Fig. 3 Transition probability, P ,, vs. final state n for collinear collisions
at zero impact parameter. Full circiea represent the w % O results and the open
circles represent the exact results of Ref., (10). (a) ‘4ev (b) Sev
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FIG. 4 Transition probability, P,,, vs. final state n for collinear collisions
at zero impact parameter. Full circles represent the w ¢ 0 results and the open
circles represent the exact results of Ref. (10). (a) 8evV (b) 10ev
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For a zero-impact parameter, collinear collision at 8eV, the w = 0 re-
sults are those of Wartell and Cross -— a broad distribution centered
on relatively high final states. When w is increased from zero the peak
shifts to lower final states and the distribution becomes narrower.
This result is an indication of how the sudden approximation overesti-
mates the inelasticity of a collision process. For w # 0, the distri-
bution spreads with increasing collision energy, giving significant
transition probabilities at higher final states; i.e., the collision be-
comes more inelastic. This result is shown in Fig. 2B.

Comparisons of the collinear collision results of Secrest and
Johnson with those of the present work are given in Figs. 3A through
4B. At 4eV the two results coincide with essentially no discernable
difference, while at 5eV as n increases our values of Pon are slightly
larger than the quantal results. The maximum in the probability dis-
tribution occurs for the same escited state for both results at 8eV, but
the distribution for the relaxed sudden approximation is broader and
significant values of Pon are seen at larger n. At 10eV the maximum
for the present work has shifted to a higher n than the quantal result
and the distribution is much broader.

Collisions for which the impact parameter is not zero exhibit more
efficient transfer of energy when one end of the molecule is closest
to the atom's projected trajectory. This effect is illustrated by
Figs. 5 through 8 in which the sudden and relaxed sudden results are
compared at 8eV as 6 is varied and ¢ is kept comstant. The elastic
probability, Poo’ is smaller for the sudden approximation for all im-

pact parameters. Each result shows a miaimum for Poo which occur near
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the "aspect" of the molecule (equilibrium separation multiplied by
sinB) presented to the colliding atom. As O is increased the minimum
moves to larger impact parameter and the collision becomes more elastic
as Indicated by the increasing shallowness of the minimum. The relaxed
sudden minimum more closely follows the aspect. At lower energy, the
behavior is similar but the minima in Poo are much shallower as shown
by Fig. 9. The sudden approximation shows a larger range of impact
parameters contributing to the inelastic scattering than does the re-
laxed sudden approximation. This range narrows as the energy of the
collision decreases.

When both atoms of the molecule lie in a plane parallel to the in-
coming atom ($ = w/2) the relaxed sudden result rapidly approaches elas-
tic scattering as © is increased aad the range of impact parameters con-
tributing to inelastic scattering narrows appreciably. The sudden re-
sult, however, indicates appreciable vibrational excitation for all
values of O with the minimum in Poo moving to larger impact parameter
as © is increased. Also, a very broad range of impact parameters con-
tributes to the inelastic scattering. This behavior is indicated by
Figs. 10 through 13.

As shown in Fig. 14, where 1n(Qno) is plotted against the final
state n for four energies, the cross sections all fall off logarithmi-
cally with the rate of decrease less for higher energy. Fig. 15 com-
pares the 8eV result with that obtained by the sudden approximation and
we see that the sudden result falls off more slowly as the final state
becomes higher.

A least squares fit to a parabola for the data in Table I yields
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0 1 2 3 4
b
FIG. 5 Transition probability, P,,, vs. impact

parameter b at 8eV. o Relaxed approximation
e Sudden approximation. Orientation angles for
H, are 6 = n/8 and ¢ = O.
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o 1 2 3 4
b

FIG. 6 Transition probability, Py, Vvs. impact

parameter b at 8eV. o Relaxed approximation.

e Sudden approximation. Orientation angles for
Hzare6=1r/-’oand¢=0.
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0 1 2 3 4
b

FIG. 7 Transition probability, P,,, vs. impact
parameter b at 8eV. o Relaxed approximation.
e Sudden approximation. Orientation angles for

Hz are 6 = 3n/4, & = O.
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1 1
0 1 3 4
b
FIG. 8 Transition probability, Pgq, vs. impact
parameter b at 8eV. o Relaxed approximation.

e Sudden approximation.
H2 are 8 = /2, ¢ = 0.

Orientation angles for
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] 1 1
0 1 2 3 4
b
FIG. 9 P., vs. b for 4eV.
I: =x/8, o =Q IT: 6 =1/4, % =0
III: =3x/8, =0 IV: ©6=1/2,¢6=0
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FIG. 10 Pyo Vs. b at @ = w/8,

o 8eV relaxed.

e 8eV sudden.
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FIG. 11 Poo VS- b for 8eV at @ = /4, & =x/2
o Relaxed e Sudden.
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FIG. 12 Pyo vs. b for 8eV at © = 3n/8, ¢ =17/2
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b
FIG. 13 Pyo vs. b for 8eV at © = w/2, & = n/2

o Relaxed

e “Sudden.
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the curve,

W= - aE - bE (3.5)
where

w = 9.73 x 10145-1,

o

a=6.42x J.Olzev-]'s-1 .
and b = 3.59 x 10M2%ev7 %! .

The value of the center of mass energy for which w = 0 in Eq. (3.5) is
15.6eV. Thus, a lower limit for the application of the sudden approxi-
mation would seem to be a center of mass energy of about three times
the dissociation energy for Hz. A straight-line fit to the same data

yields a lower limit of about four times the dissociation energy.



CHAPTER IV

SUMMARY AND CONCLUSIONS

A three~dimensional semi-classical method using the relaxed sudden
approximation has been developed and applied to vibrationally inelastic
scattering of a structureless helium atom from a hydrogen molecule. A
simple procedure was devised for selecting a value for w which produced
close agreement between the collinear semi-classical transition proba-
bilities and the exact quantum mechanical values. The semi-classical
method was then extended to three dimensions to obtain probabilities
and cross sections for vibrational transitions from the ground state
of an harmonic oscillator. These results were compared with those of
the sudden approximation. A numerical lower limit on the collision
energy was found for the use of the sudden approximation for the He +
HZ system.

For low center of mass energy, it was found that the exact result
for the transition probabilities could be mimicked by a single choice
of w. At higher energies the relaxed sudden transition probabilities
showed a tendency to peak at a higher vibrational state than those found
by the exact quantal calculation.

While the sudden approximation indicates the general behavior of
the probability peaks, it overestimates the coantributions of higher vi-

brational states. The cross sections calculated from the probabilities

41



42
were smaller in the case of the relaxed sudden approximation. This be-
havior was expected since the relaxed sudden approximation introduced a
more complicated energy dependence via the factor exp(iwt) which oscil-
lates rapidly at low energies and reduces the transition probabilities.
As the collision energy increases, the oscillations decrease with an at-
tendant increase in the transition probability. It was also found that
the region of significant inelastic vibrational scattering is restricted
to a smaller range of impact parameters for the relaxed sudden approxi-
mation than for the sudden approximation. This range of impact parame-
ters was centered around the aspect of the molecule and indicated that
the most efficient energy transfer occurred when the incoming projectile
approached one of the molecular atoms head-on. The restriction of sig-
nificant vibrational scattering to a smaller range of impact parameters
for the relaxed sudden approximation comes about due to the finite ener-
gy spacing introduced by w. This means that stronger forces are neces-
sary to produce vibrational transitions.

The values for w were used to set an approximate lower energy limit
of three to four times the dissociation energy on the use of the sudden
approximation. Also, Eq. (3.5) could be used to detemmine values for
w within the energy range of this work although this was not done.

We would like to compare our three-dimensional calculation with
experimental results and an exact three-dimensional calculation. So far,
experiments for vibrational energy transfer in the He + Hz system have
been performed at energies below those considered in this work.42 The
same is true for theoretical calculations.29 Wartell has performed sud-

den approximation calculations for the scattering of He from HD.
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It would be of interest to apply the relaxed sudden approximation to this
system. Model calculations using this approximation could be extended
to heavy partner collisions and more anisotropic potentials.

The method combines the numerical advantages of classical mechanics
and rather simple techniques with which to handle the quantum properties
of the system under investigation. It is easy to program and computing
time is reasonable, although no attempt was made to produce a more ef-
ficient program. The number of trajectories needed is small — one for
each set of b and E. Although actual physical values will ultimately
rely on the full quantum description, we can use semi-classical means
to reveal many details of the cross sections and probabilities. Even
as new calculational techniques arise which will allow a full quantal
description at moderate energies, a two-part approach will probably
still be of value. In the low energy region, quantum mechanics will be
used and in the high energy regime, semi-classical calculations can give

an adequate description.
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