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ABSTRACT

We have measured the absorption and its concentrationCcJ, pressure 
(P), and tenç>erature(Tj dependences over the 2.7 micron vibration-rotation 
band of %*ater vapor at near atmospheric conditions. For comparison we also 
have calculated these spectra using a line-by-line method. The line streng
ths as listed in N. B. S. Monograph "1, should be corrected to account for 
the non-rigidity of the water vapor molecule. We propose a form

F = (0.92 + ZmJ^
for the ratio of the measured to rigid rotator line strengths, the F factor 
for the Vj band of water vapor. Here, m = J + 1 for the R branch, m = - J 
for the P branch, and J is the rotational quantum number of the lower state 
and Z = - 0.025.

In addition to the conventional steady state absorption measure
ments, we have also perturbed the thermodynamic equilibrium of the absorber 
gas by acoustic excitation. The resulting fluctuations in the transmitted 
intensity were measured and the pressure derivatives of the absorption 
under adiabatic conditions, (3A/3PJ^^ were derived.

We observe crossover points in the wings of the band, where the 
absorption and its pressure derivative are independent of the temperature 
of the water vapor; there is a mild negative T dependence in the core of 
the band and a strong positive T dependence farther out in the wings. We 
also see that (3/3P(3A/3PJ^ ) is very small in the wings of the band, 
whereas (3/3c(3A/3PJ^^ ) is significant. These results can be used to 
measure the concentration, the pressure, and the tençerature of water 
vapor in the atmosphere.

We have also calculated the absorption and its first and second 
thermodynamic derivatives for the 3.46 micron hydrogen chloride band. The 
calculated absorption has also been compared with published results.
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2.7 MICRON WATER VAPOR BAND ABSORPTION AND ITS STATIC 

AND DYNAMIC THERMODYNAMIC DERIVATIVES

CHAPTER I 

INTRODUCTION

This dissertation deals with research concerning the 2.7 micron 

water vapor band absorption at near atmospheric conditions. We have 

measured the static transmitted intensity and its fluctuations, using 

acoustic excitation, over the entire band. For comparison, we also 

have theoretically calculated the absorption spectra and its static 

and dynamic thermodynamic derivatives using a line-by-line method^.

We have investigated the relationship between these spectra and the 

thermodynamic variables, concentration (cj, pressure (PJ, and temperature 

(TJ.

A detailed knowledge of the infrared transmission of planetary 

atmospheres is of fundamental importance in astrophysics, meteorology, 

infrared probing, etc. In order to understand how infrared transmission 

is affected by the atmosphere, it is necessary to leam how and to what 

extent atmospheric constituents attenuate infrared radiation.

Observations and analyses of spectral measurements of infrared 

radiation show that the atmospheric absorption at these frequencies is a 

complex process. The attenuation of infrared radiation in the atmosphere

1



is mainly due to water vapor, carbon dioxide, and ozone; near infrared

radiation also experiences attenuation by fog, haze, dust, and smoke in

the atmosphere. This type of attenuation, as well as uncontrollable

factors such as temperature and humidity, makes it difficult to obtain

quantitative data on true molecular absorption in field studies. Hence,

laboratory studies of synthetic or artificial atmospheres are desirable

as guide. The absorption in the 2.7 micron region is sufficiently strong

so that the water vapor content can be measured spectroscopically at a

given location in the atmosphere by various types of instruments such as

high altitude balloons or other high altitude vehicles with the sun

serving as a radiation source. Good detectors and sources are available

for the 2.7 micron region and background emission by the earth and

reflected solar radiation are relatively low. Finally our experimental
2results may be used in the crossed beam correlation technique . Here the 

atmospheric water vapor is monitored remotely, hoping to estimate water 

delivery to a certain region and thus predict critical water shortages.

There are two different instrumental approaches in measuring the 

absorption. (1) Using high resolution, one can determine the exact 

location of the individual rotational lines and the variation of line 

strengths and half-widths throughout the absorption band. Interactions 

between absorbing molecules and other molecules in the absorber path 

must be considered. On the basis of this information concerning all the 

absorption lines in the band, it is possible to compute the absorption 

of radiation for various thermodynamic conditions in the atmosphere.

(2J In the second approach, the low resolution method, one experimentally



determines the absorption in small regions of the band containing several 

rotational lines. Here the effects of fine structure are integrated out. 

Enq>irical relations can be obtained, which directly correlate the overall 

absorption with the thermodynamic variables. The resulting expressions 

are of immediate use in predicting the overall absorption in the atmosphere. 

Cooq>arisons of results between these two types of measurements are 

possible taking into consideration the way in which the instrumentation 

affects the two types of observations.

In the limit of high resolving power, we define as the fractional 

absorption at any given frequency, v. In practice, because of finite 

slit width, one deals with a frequency interval. For a given spectro-
t

meter setting, one observes a fractional absorption, , which is an 

average value of A^ for the frequency interval passed by the spectrometer. 

For an entire vibration-rotation absorption band, it has been shown^ that 

under fairly general conditions, even for an arbitrary slit function, it 

is true that

where the first integral represents the area under the observed absorption 

curve and the limits of integration give a frequency interval (v^ - 

outside of which there is negligible observed absorption by the band. The 

second integral is called the total absorption or the equivalent band

width, and has limits sufficiently wide to include the entire absorption 

by the band. Thus the measured total absorption of a band is independent 

of spectrometer slit width.

Our experiment belongs to approach two while our theoretical



calculations are based on approach one. The experimental spectroscopic 

region of interest contains three vibration-rotation bands (see Chapter 

IIJ of water vapor.

In our experiment we have obtained information in addition to the 

conventional spectroscopic methods by perturbing the steady state 

conditions of the absorber gas (introducing known pressure fluctuations 

using two loudspeakers). This causes fluctuations in the temperature and 

pressure of the gas. We measure the fluctuation of the transmitted 

intensity about its mean value, (I). The experiment was conducted for 

various c, P, and T values. From this we obtained the absorption spectra 

and the thermodynamic derivative spectra over the entire 2.7 micron water 

vapor band.

In the theoretical calculations, we used the line parameters for the

2.7 micron band^, line frequencies, line strengths, haIf-widths, and 

energies of upper and lower levels to obtain the absorption spectra and 

the thermodynamic derivative spectra using the line-by-line method^. These 

spectra were degraded to 35 cm~^ using a triangular slit function so that 

they could be compared directly with our experimental results. We have 

shown that the experimental results and the theoretically calculated 

results show good agreement when adjustments are made in the line strengths 

(see Chapter II).

The experiment has two parts; in the first part we have measured the 

I through the sample water vapor for various combinations of thermodynamic 

variables. Then the absorption is obtained from

A = 1 - I/Iq I - (2)



where is the transmitted intensity with the absorption cell evacuated. 

By using 2, 3, or 4 of these A versus wavenumber curves, we were able to 

calculate the static first and second thermodynamic derivative spectra.

In the second part, to be called the pressure fluctuation mode or 

dynamic mode, known fluctuations are introduced in the absorption cell; 

and we have measured the fluctuations in the transmitted intensity, 61,as 

a function of wavelength over the entire 2.7 micron band, for various 

combinations of static thermodynamic conditions. For the size of the 

cell and the 14 Hz pressure fluctuation frequency, the acoustic excitation 

constitutes an adiabatic process (see Chapter II). We then calculate

(3A/3PJad_ = -1/Iq C<Sr/6PJ I - (3)

Again, as in the static derivative spectra, we were able to calculate 

the second derivative spectra using two of these spectra. They are

3/3c (3A/3PJ^^ , 3/3P (3A/3PJa^ , and 3/3T OA/SPI^j •

These derivative spectra can be of use in the field of environmental 

science for the detection of small traces of gases. This method is of 

practical importance because there are fluctuations in the atmosphere in 

the form of simple pressure and temperature variations with time.

In Chapter II, we discuss the near infrared spectra of asymmetric 

molecules, water vapor in particular,and also a brief sketch of the 

method used in our theoretical calculation of the spectra. The experi

mental set up is explained in Chapter III and the data and data processing 

methods are in Chapter IV. Experimental results are presented in Chapter 

V and compared with the theoretical calculations. Chapter V also contains



the results of a similar theoretical calculation we have made for the 

5.46 micron fundamental band of hydrogen chloride.



CHAPTER II 

THEORY

A. INTRODUCTION

In this chapter we discuss the nomenclature used in the analysis of 

the near infrared spectrum of asymmetric top molecules with emphasis on 

the water vapor molecule. We deal first with the vibration and rotation 

of the molecule separately. Thereafter they are considered together 

and the interaction of the two types of motion, the fine structure of 

infrared bands, is examined. The F factors for the 2.7 micron H 2 O band 

are then introduced so that they can be used to correct the line 

strengths of the rotational lines in our calculation.

A  molecule absorbs infrared radiation when a transition between two 

vibration-rotation energy levels takes place. A vibrating molecule will 

interact with the electromagnetic radiation, if an oscillating dipole 

moment is associated with the vibrati:. A change in dipole moment occurs 

for a molecule whenever a change in relative position of the centers of 

positive and negative charges, resulting from the atomic motion, occurs.

We shall neglect the quadrupole interaction on account of its much lower 

probability.
Infrared absorption bands can be related to the motions of the 

individual atoms that comprise a molecule. The motions of atoms are
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generally divided into vibrations and rotations and the former into 

different types of vibrations. The overall complex motion of all the 

atoms in a anlecule can be approximately resolved into a small number 

of basic motions which are designated as the normal vibrations or the 

fundamental vibrations of the anlecule.

B. VIBRATKMAL ANALYSIS

Use of group theory and symmetry operations is of great importance 

in the theory of molecular structure and molecular spectra. The symmetry 

properties of a body involve tvo distinct concepts. First, it may possess 

certain elements of symmetry. Second, given these elements, there are 

symmetry operations which can be carried out with respect to them.

Let us consider the case of water vapor molecule in particular.

HgO is a non-linear, planar triatomic molecule as shown in Figure 1, with

YZ as the plane of the molecule. The equilibrium values of the HOH angle

and 0-H distance are given by 104° 2?' and 0.958 x 10”^ cm. respectively^.

The symmetry operations which can be performed on H^O are: (IJ a

rotation of t around the two-fold axis, Cg, (2J a reflection in the verti

cal plane, o^, (3j a reflection in another vertical plane,a^t ̂ and (4) the 

identity, I.

The symmetry operations form the elements of a finite group known

as the group. The multiplication table for this group of symmetry

operators for H^O is given in Table I.



Q x x z )

Figure 1. The symmetry elements of the water molecule

V 1

V

V

Figure 2. The normal modes of vibration of H^O
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TABLE I

MULTIPLICATION TABLE FOR THE SYMMETRY OPERATORS
CONSTITUTING THE C_ POINT GR0UP6 2v

I ^2 'v

I I C_ 0 0 12 V V

C_ c_ I c , 02 2 V V

'̂ v ay Oy- I ^2

Oy' Oy* Oy ^2 I

If we replace each symmetry operation of an Abelian group (a group 

is called an Abelian, if all the elements of that group commute) by a 

number, such that the products of the numbers correspond with laws of 

multiplication for the group, then that set of numbers is said to form 

a representation of the group. There are four irreducible representations 

of the shown in Table II; these are related to the types of possible

molecular vibrations.
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TABLE II

IRREDUCIBLE REPRESENTATIONS OF G. POINT GROUP2v

Species

1 +1 +1 +1

1 +1 -1 -1 ^2

1 -1 +1 -1 «1

1 -1 -1 +1 2̂

In the case of H^O, a vibration can be either symmetric or anti

symmetric with respect to the symmetry operation, and therefore the only 

numbers possible are +1 or -1. Each set of numbers along a row (a

representationJ gives rise to a different type of vibration in the molecule

and is referred to as a species of vibration. So, for H^O, there are

four species of vibrations that are possible (though one of these will be

eliminated laterj, each corresponding to an irreducible representation 

in Table II. The representations are labeled A^, A^, B̂ , and B̂ .

In the case of any planar molecule, two of the three principal 

axes lie in the molecular plane, one of which is the axis, and the 

third axis is perpendicular to the molecular plane. The three normal 

modes of vibration of H^O are; (1) a symmetric stretch, (2J a bend, and 

(3J an asymmetric stretch. These three and the associated frequencies are
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shown in Figure 2. Fach of the normal vibrations is represented by the 

variation in time of one normal coordinate. The normal vibrations for 

H^O cannot be degenerate on account of the molecular symmetry^. All 

three vibrations remain unchanged under an identity operation and the 

reflection in the molecular plane. Vibrations and are also 

unchanged under the group operations and â , and therefore they 

belong to the Aĵ representation or Aĵ species. However the direction of 

all the displacements in are reversed under and operations, and 

so this vibration belongs to the B2 representation.

According to quantum mechanics, the vibrational transition probability 

is proportional to the square of the transition moment,

[ M %jj*„dT II - (IJ

where and are the vibrational eigenfunctions of the upper and 

lower state respectively. The dipole moment M has components,

M = Ze.x., M = Ze.y., and M = Ze.z.X 1 1  y 1/ 1' z 1 1

where ê  is the charge of the particle i at (x̂ , y^, z^J.

Only those vibrational transitions are allowed for which the transi

tion moment is nonzero, i.e., at least one component of the integrand

'I'v' ^ V ’

remains unchanged for any of the four symmetry operations. In other 

words, at least one of the quantitites,

’̂v’̂ x'̂ v” ’ v̂'̂ '̂ v'- ’ V'^z'^v" '
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should be totally symmetrical for a vibrational transition to be an

allowed one. So, a vibrational transition v' v" is allowed^ only when

there is at least one component of the dipole moment M that has the same

species as the product Accordingly, the only allowed vibrational

transitions for HjO are A^, B^, and 6 2 : species A2  is thus infrared

inactive. The same general rule applies to overtone bands also.

The water molecule with three non-degenerate eigenvibrations has

vibrational energy^ correct to second order, in the anharmonic oscillator

approximation, given by

3 3
G.(v,,v.,v,J = Z w.(V. + 1/2) * Z Z Xi.(V. + 1/2)(v. + 1/2)

u i  z  i  i=l  ̂  ̂ i=l j>i J  ̂ J
II - (2)

0
where the constants u. and x.. are

1 iJ

“ 1 = 3825.32 *12 = -20.02

“2 = 1653.91 *13 = -155.06

“ 3  = 3935.59 *22 = -19.50

*11= -43.89 *23 = -19.81

*33 = -46.87

Accidental degeneracies occur when two or more vibrational states 

have the same symmetry type or nearly the same energy. This situation 

does not occur in HgO for any of the fundamental vibration states, but 

does occur for the states (002) and (200) and for all subsequent pairs 

of states, (Vj - 2, V 2 , v^ + 2) and (v^, Vj, v^). For H2 O the first 

contribution from the perturbation associated with the resonance comes
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from fourth order terms.

Table III lists some of the vibrational transitions, band centers 

(calculated using the energy equation], relative intensities, and AK (see 

section II - CJ.

TABLE III

VIBRATIONAL TRANSITIONS OF H^O AT 300°K^

Region Transition Band Origin 
(cm-1)

Relative Intensity AK

6 . 3 y 000^10 1 5 9 5 . 0 1.00 + 1

010-K)20 1 5 5 6 . 4 9 . 6  X lOT* + 1

010-)-100 2 0 5 6 . 7 1 . 9  X lO'S + 1

01CM)01 2 1 6 0 . 6 9 . 6  X 1 0 " ^

3 . 2 v 00(M)20 3 1 5 1 . 4 1.00 + 1

0 1 0 * 0 5 0 3 0 7 3 . 4 4 . 8  X lOT* + 1

2 . 7 % 000*001 3 7 5 5 . 8 1.00

000*100 3 6 5 1 . 7 0.10 + 1

010*011 5 7 3 7 . 0 4 . 8  X 1 0 " *

010-*110 3 6 3 0 . 0 4 . 8  X lO'S + 1

1 . 8 7 % 000*011 5 3 3 2 . 0 1.00

000*110 5 2 2 5 . 0 2 . 0  X 1 0 " 2 + 1

0 0 0 + 0 3 0 4 6 6 8 . 4 6 . 7  X 1 0 " ^ + 1

010+021 5 2 7 9 . 0 4 . 8  X 1 0 " *

010+120 5 1 6 6 . 0 9 . 6  X 1 0 " * + 1

0 1 0 + 0 4 0 4 5 5 1 . 0 3 . 2  X 1 0 " * + 1

010+101 5 6 5 6 . 6 4 . 8  X 1 0 " *

010+200 5 5 9 3 . 1 3 . 8  X 1 0 " 5 + 1

010+002 5 8 4 7 . 2 5 . 8  X 1 0 " S + 1
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C. ROTATIONAL ANALYSIS

It is customary to label the principal axes of a molecule as a, b, 

and c so that the principal moments of inertia about these axes have the 

order

'c> 'b> 'a

A molecule in which all the three moments of inertia are equal is called 

a spherical top; if all three have different values, then it is called 

an asymmetric top, and if two of them are equal, then it is called a 

symmetric top. The symmetric tops are divided into two groups; (1) if 

the two largest moments of inertia are equal, it is a prolate symmetric 

top, and (2J if the two smallest moments of inertia are equal the 

molecule is an oblate symmetric top.

We define the rotational constants 

A = h/8iT̂ cÎ , B = h/8ir̂ clĵ , and C = h/8w^clq

where evidently

A > B > C.

The rotational energy of a molecule can be written in units of cm  ̂as,

E (A, B, CJ = A + B + C II - (5J

where P^ are the components of the total angular momentum ? = i. For 

an asymmetric top molecule like 11̂ 0, the rotational energies cannot be 

expressed as a simple function of the rotational quantum number. It is 

instructive to look at a less complex symmetric top molecule before we 

deal with an asymmetric top molecule.
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1. Rigid Symmetric Top Molecule 

In this case the total angular momentum, J, has a constant component 

K along the top axis of symmetry. The unique axes for prolate and oblate 

symmetric tops are the a and the c axes respectively. The rotational term 

values of a prolate symmetric top are^

F (J, KJ = B J (J + Ij + (A - B} II - (4J

and for an oblate symmetric top, they are

F (J, Kj = BJ  W  +1) + (C- B) II - (53

where J = 0, 1, 2 . . . . and K = -J, (-J + 1)  . . . ■ > ■  J .

All states with K  ̂0 are doubly degenerate, and a total of (2J + IJ states

exist for each value of J. Since A > B = C, for a prolate symmetric top,

the energy for a particular J increases with an increase in |K|. For an

oblate symmetric top the energy for a given J decreases as |k | increases.
9If we consider a non-rigid symmetric top molecule, the energy levels are

F (J, Kj = B J (J + 13 + (A - B3 - DjJ^ (J + 13^

- J (J + 13 d ,  II - (63

where the D's are small compared to A and B.

2. Asymmetric Top Molecule 

The total angular momentum for a given energy level is constant in 

direction and magnitude, but none of the components of J are constant.

Since there is no longer a preferred direction which carries out a simple 

rotation about J, the K degeneracy we encountered in the last section is
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removed. Thus, for each value of J there are (2J + IJ different energy 

levels. Since there is no single quantum number having a definite 

physical meaning, these (2J + 1) levels are distinguished using a subscript 

t added to J such that

T = - J, (-J + IJ, . . . + J II - (7J

The rotational energy can still be written as a function of the rotational

constants as before in equation II - (3J. Ray^^ has solved the energy

equation to obtain the energy levels, by using a change of variables 

method as,

E (A, B, CJ = F (Ĵ J = J (J + IJ + (<J II - (8J

where E (<J = E(A, B, CJ - (^-^J J (J + IJ II - (9J

and K = ^  ̂  , is called the asymmetry parameter. When k = -1

or +1, the equation II - (8J reduces to the two equations obtained for 

the prolate symmetric top and oblate symmetric top respectively.

3. Symmetry Properties of Rotational Levels 

The symmetry properties, and hence the selection rules for 

rotational transitions, are obtained from the behavior of the rotational 

eigenfunction, The equation II - (3J remains unchanged when any of

the components P^, P^, or are replaced by their negatives. This can 

be accomplished by two-fold rotations about each of the three principal 

axes of the molecule. These three rotations plus the identity operation 

constitute the point group whose character table is given in Table IV, 

along with the different notations for each species used in the literature.
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TABLE IV

CLASSIFICATION OF THE ENERGY LEVELS OF THE 
ASYMMETRIC TOP MOLECULES

Behavior Species Designation

: C] 4 Dennison Mulliken King, Hainer, 
and Cross

1 + + + + + A e e

1 + - - + - Be 0 e

- + -  + Ba e 0

+ - - Bb 0 0

The first sign in Dennison notation (+ or - ) refers to the behavior 

of with respect to Ĉ , and the second refers to C^ . In the King, 

Hainer, and Cross^^ notation, the energy levels are labeled by a set of 

quantum numbers, J, K and where K  ̂and K̂  ̂are the limiting 

prolate and oblate symmetric top quantum numbers, respectively. The 

first letter, e or o, refers to the parity of K  ̂and the second letter 

to the parity of e standing for even and o for odd.

Molecules like H^O have only one two-fold axis about which a rotation 

interchanges identical atoms. The sub-group C2 of the D^ point group 

gives either a symmetric or an antisymmetric species, A or B respectively. 

The ++ and —  belong to an A species and +- and -+ belong to a B species.
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In a set with a given J value, the levels are alternately antisymmetric 

or symmetric, and the lowest and the highest levels are symmetric or 

antisymmetric depending on whether J is even or odd. Thus we can obtain 

the symmetry of each rotational level.

The total eigenfunction for H^O, which must obey Fermi statistics 

must be of species B. For one pair of identical nuclei of spin 1/2, 

there are three nuclear spin functions of species A and one of species

B. In order to construct a total eigenfunction of species B, we have to 

combine the A rotational functions with the B spin functions or combine 

B rotational functions with the A spin functions. Thus B rotational 

levels have three times the statistical weight of the A levels.

D. VIBRATION - ROTATION SPECTRA

So far we have considered that the vibration and rotation of the 

molecule take place independently, i.e., pure vibrational and rotational 

spectra. Now we consider the interaction of the vibration and rotation. 

In this case, a number of rotational levels are associated with each 

vibrational state. For a transition between two vibrational states, a 

number of rotational level pairs may be involved according to the 

selection rules on the quantum numbers of these levels. Thus we obtain 

the fine structure of the vibrational band which is discussed next.

We will limit our discussion to asymmetric triatomic molecules 

and H^O in particular. First, only a molecule which possesses a 

permanent dipole moment can exhibit a rotational spectrum. In the case 

of H^O the dipole moment is directed along the symmetry axis.
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The energy of a vibrating and rotating molecule, to a good 

approximation, can be written as the sum of the pure vibrational energy 

and the rotational energy calculated with effective values of the 

rotational constants, i.e.,

T = C (v̂ , v^, VjJ + (icj.

The interaction of vibration and rotation will be taken into account by

allowing for the periodic change of the moment of inertia during the

vibration. We can write for the effective rotational constants,

A(v) "'V - Ç  "Î * 1/2)

- Z a® (v. + 1/2J II - (10 )

C(v, = C. - ; .C ( V .  . 1/2)

where A^, B̂ , and are the rotational constants referring to the 

equilibrium position and the o^'s are small compared to A^, B̂ , and Ĉ .

We may write,

^  ̂(harmonic; ̂ ^ (anharmonic)  ̂^ (Coriolis) jj _

The (anharmonic) results from the anharmonicity of the vibrations

which in turn produces the change in equilibrium moment of inertia and 

hence in the rotational constant. The term is of importance

to our problem of HgO, in which two vibrational levels of different 

species lie close together. Though they cannot interact in the rotation- 

less state (J = 0 levels), they will indeed interact producing an
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increasing repulsion of the rotational levels of the same J with increasing 

J. The effective rotational constants will be changed from unperturbed 

values even though there is no shift of the pure vibrational levels. It 

should be pointed out that only rotational levels of the same overall 

species and the same J value can perturb one another. Consequently, 

we have strong Coriolis interaction between and for H^O.

The Infrared Spectrum

The infrared spectrum of water vapor is composed of spectral lines 

corresponding to transitions between different vibration - rotation 

energy levels. The frequency of a spectral line is determined by the 

difference between the energies of the two levels involved, according 

to Bohr's condition, = hv.

The selection rules governing the allowed transitions for a 

triatomic molecule are^

AJ = 0, Î 1 and J = 0 J = 0 II - (12)

If the alternating dipole moment lies along the axis of least moment of 

inertia, resulting in A type bands, we have the additional condition,

+ +-<-»■-+ and only. II - (13)

If the alternating dipole moment lies along the axis of intermediate 

moment of inertia, resulting in B type bands, we have the additional 

condition,

+ +-*-»-- and + only. II - (14)
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These additional conditions for A and B type bands in the King, Hainer
12and Cross notation are given elsewhere . Finally, type C bands are 

forbidden for any planar triatomic molecule.

The 2.7 micron spectral region consists of three vibration - 

rotation bands of water vapor: v̂ , and 2v̂  with relative strengths, 

120:12:1, and with the band origins at 3755.92 cm ^, 3657.08 cm ^, 

and 3151.60 cm  ̂ respectively^^. The band is an A type band and

and 2^2 are B type bands. The energy level diagrams for the first

few J values for these bands are given by Herzberg^. Unlike the bands of 

linear and symmetric top molecules, there is no regularity in line spacing 

of the P, Q, and R branches of the vibration rotation spectra of an 

asymmetric molecule except when the asymmetry is very small. The
4asymmetry of water vapor molecule is not small; ic has a value of -0.4377 .

High resolution experimental investigations have been conducted by 

many workers at Ohio State University^^’̂ ^. Theoretically calculated, 

extensive tables for the infrared absorption of water vapor are given in

Reference 15. The single largest collection of calculated line parameters
4for the 2.7 micron band of H^O are given by Gates et al.

In our experiment, we used a wide slit and thus have low resolution 

to the extent that the fine structure of the vibration - rotation band 

is not resolved. Our aim is to determine the behavior of the absorption 

spectra due to the variations in the thermodynamic conditions.
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E. THEORETICAL LINE-BY-LINE CALCULATION

As mentioned in Chapter I, we have also calculated the absorption 

spectra and their thermodynamic derivatives^. The reader is referred 

to that reference for details. The calculations were done on a remote 

teletype terminal connected to the University of Oklahoma computers.

The absorption and its first and second thermodynamic derivatives 

are obtained using the tables of Reference 1, with the line parameters of 

Reference 4 as input data. The dynamic or the adiabatic derivatives are 

obtained using the relations of Table V, and assuming.

-̂ P ~ 

for nitrogen.

0.28

TABLE V

ADIABATIC DERIVATIVES OF THE ABSORPTION

P[3A/3P]^^ = P 3A/3P + 0.28 T 3A/3T

cP 3/3c [3A/3P]^j = cP 3^A/3c3P + 0.28 cT 3^A/3c3T

P“ 3/3P [3A/3P]^j = P̂  3^A/3P^ + 0.28 [PT 3^A/3P3T - T 3A/3T]

PT 3/3T [3A/3P]^j = PT 3^A/3P3T + 0.28 [T 3A/3T + T^ 3^A/3T^]
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1. 2.7 Micron Water Vapor Band

Reference 4. lists line positions, v [cm ^intensity, S (cm/gj*, 

half-width, a and energy level of lower state, E (cm There

are about 3,500 lines in the region 3335 cm  ̂to 4100 cm  ̂with line 

strengths varying from 9,222 to 0.001. From these, we chose the 

strongest lines, 720 in total. In the wings of the band (3335 to 3550 

cm”  ̂and 3950 to 4100 cm~^J these were lines with intensity 3(cm/gj and

above, while in the core region of the band (3550 to 3950 cm^j all the

lines with intensity 7 (cm/gj and above were included in the calculation.

The calculated spectra are degraded to 35 cm ̂ by using a triangular

slit function. The average absorptance at a wave number is

A (v.j = 1/1225 (Z w. (35 - \ v .  - v |j II - (15jJ ^  ^  ^  J

where w^ is the equivalent line width (see Reference 1 j. The summation 

is over all lines such that

1̂ i - Vj I < 35 cm ^.

The computer programs for these calculations were first written 

for the 6.3 micron H^O band by W. L. Walls^ in PL/1 computer language.

We have modified these for the 2.7 micron H^O band. For each of the 

five concentrations, we have obtained the absorption spectrum, three 

first derivative spectra, three second derivative spectra, and three 

mixed derivative spectra. We have also obtained the integrated values 

(the area under the curve j for each of these spectra.

The results of these computations are given in Chapter V.
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2. Computer Calculations of 5.46 Micron Hydrogen Chloride Band Absorption

Theoretical calculations were also performed to obtain the absorption 

and its thermodynamic derivatives of HCl 3.46 micron fundamental band.

The choice of this band was based on its importance to propulsion related 

problems^^.

The line parameters for this band are collected from several sources. 

Line positions of HCl^^ are given in Reference 17, and that of HCl^^ in 

Reference 18. The energy levels of the upper and lower levels are calcu

lated using the formulae in Reference 19 and the rotational constants of 

Reference 17. Line strengths (cm atm ĵ are taken from References 

20, 21, and 22. Line widths (cm” /̂ atm are taken from References 

23 and 24.
35 37There are 57 lines of HCl and HCl combined, included in this 

calculation with line strengths ranging from 10 to 0.001, at 300°K. The 

values of absorber mass, u, were chosen from 3.5687 (g/cm"j to 28.5496 

in multiples of 2. The values of n =0.5, m =1.0, and kT/hc = 208.53 cm  ̂

(see Reference IJ are used in the calculations to obtain the absorption 

and its thermodynamic derivatives at 1 atmosphere and 300°K. The results 

of these calculations and their comparison with other published results 

are presented in Chapter V.

F. F FACTORS

The rotational line parameters for the 2.7 micron water vapor band 

used in the theoretical calculation of the absorption and its thermodynamic 

derivatives were taken from the National Bureau of Standards Monograph 71
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4by Gates et al. They have used the rigid-rotator approximation to 

obtain the different parameters of all the lines except for lines arising 

from levels which were very highly perturbed because of accidental 

resonance. This amounted to the assumption that the interaction between 

vibration and rotation was neglible.

For the fundamental bands of polyatomic molecules, several mechanisms 

cause departure from rigid-rotator intensities. They include centrifugal 

stretching, Coriolis interactions, and Coriolis perturbations of vibration 

rotation states of different bands which accidentally have the same, or 

nearly the same, energy (resonance or near resonanceJ. Marked departures 

from rigid rotator intensities were observed in several cases including 

the Vj and bands of water vapor, such that intensities in one sub-branch 

are enhanced while those in the opposite sub-branch are decreased. 

Accordingly, corrections to the calculated values of intensities of lines 

have to be applied to obtain the true intensities.
4

Gates et al. , have recognized this error and pointed out that 

these effects may result in an overestimate of intensities of many high J 

value lines in the high frequency branches by as much as 200 to 300 percent 

and in underestimates of the highest J lines in the low frequency branches

by 50 to 100 percent.
25 26 27Maclay , Babrov and Casden , and Babrov and Healy have shown

that large deviations from rigid-rotator strengths exist for the two

fundamental bands of water vapor in the 2.7 micron region.
28Benedict and Calfee have applied corrections for the rigid-rotator 

assumption in a compilation of line parameters for the 6.3 and 1.9 micron
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bands of water vapor. Equations describing these corrections are briefly 

discussed below.

The intensity of any line at frequency v may be expressed, in a 

purely formal way, as;

= 7o ■ " - '“ I
where S° is the vibrational intensity of a nonrotating molecule at the

vibrational origin, v q; is the rotational intensity for a rigid 

nonvibrating molecule, and F is the correction factor to account for the 

vibration - rotation interaction. If there is no vibration - rotation 

interaction, then F = 1.
28The rotational intensity Sĵ  is

S%= ^  -g . [exp C-E'/kTj] / II - (17j

where is the rotational transition line strength, such that

Z (Ĵ , J"j = C2J" + IJ II - (18J

and the rotational partition function, Q^, is

%  = (2J" + IJ . g.[exp (-E'VkTJ] II - (193

The values of g, the statistical weight factor, are: 

g = 1 for even t
II - (203

g = 3 for odd t



28

Also

I S. = I II - C2IJ
R *

Since the intensity is proportional to the square of the transition 
28moment, we have

F = [1 + $ (J'. II - (223

F factor correction will be necessary whenever 0 cannot be neglected 

in comparison with unity.

In the case of water vapor, the three types of effects which 

contribute to the F factor are (IJ the stretching effect, (2J the Coriolis 

effect, and (3J the Ak effect, in order of decreasing importance.

The stretching about each of the three inertial axes, p = a, b, and

c, in any rotational state is proportional to < The rotation

in each state, J^, will therefore lead to a shift in the position of the

potential minimum. The first order approximation for this contribution

to the F factor is^^

F = [1 - a (6J J - e (ÔĴ J - y CôJ^J]^ II - (23J

where ôJ^, 6J^, and are the differences of the effective angular

momenta, i.e.,

ÔJ = <(p2j' - (p2j">, etc. II - (24Ja a a

The constants a, 6, and y  depend on the first two coefficients in the

power series expansion of the dipole moment function and the coefficients 

which express the interaction of rotation about each axis on the normal
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vibration. Babrov and Casden^^ obtained the values of -0.075, -0.035, 

and -0.028 for a, 6, and y respectively.

Rotations that induce mixing of vibrational wave functions of oppo

site symmetry types are classified as Coriolis interactions. In Ĥ O, the 

only such rotation in first-order is about the C axis and this effect is 

negligible for the band. A complete quantum mechanical treatment of 

this effect is given in Reference 29.

The value of the asymmetry parameter, < differs for all upper 

vibrational states from its value for the ground state. Again, this 

effect is negligible in the 2.7 micron H^O band region.

We have found the ratio of the degraded experimental absorptance and 

the degraded calculated absorptance at 5 cm  ̂intervals, thereby 

obtaining the F factors indirectly. These F factors are in good agreement 

with those obtained elsewhere^^’ It should be pointed out that

these two references quote F factors for individual rotational lines, 

whereas we obtained them using the degraded absorptance. The results 

are presented in Chapter V.



CHAPTER III 

EXPERIMENTAL FACILITIES

A. INTRODUCTION

The apparatus used in our experiment is a modified version of

an optical absorption cell with variable path length and temperature^^,

built during the years 1966-69 at the Illinois Institute of Technology

Research Institute and later adapted for a vapor cross flow in our

laboratory during 1972-73. An important feature of the cell is the

fact that the problems of adsorption and desorption of water vapor

by the walls of the cell are eliminated with the cross flow system.
32 33A complete description of the original cell is given elsewhere. ’

The absorption cell is divided into three parts: (IJ the left

end chamber, (2J the right end chamber, and (3) the middle cell space. 

Each one of these three sections can be evacuated separately. The 

middle cell space is made of a 5-inch stainless steel tube, connected 

to the identical end chambers using two short 3-inch stainless steel 

tubes and four flanges and 0 rings. The distance between the two 

calcium fluoride windows inside the cell and attached to two identical 

mullite tubes, whose other ends are connected to the end chambers, 

gives the absorber path length of 1.005 m.

30
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B. GAS HANDLING AND THE VAPOR CROSS FLOW SiSTEM

Two factors make it more difficult to work with samples containing 

water vapor than most other gases which occur in the atmosphere. The 

first is the relatively low saturated water vapor partial pressure 

which occurs near room temperature. The second difficulty arises from 

the adsorption of water vapor on the walls of the container. Adsorption 

makes sampling of H^O vapor difficult, since the amount may be great, 

depending upon the nature of the surface and the temperature. Further

more, the adsorption or the desorption process may require several 

hours to come to equilibrium^^.

In order to overcome this second difficulty, we have used a continu

ous vapor-cross-flow system.

Sample water vapor is produced in a 'Vapour-Temp' controlled 

temperature and humidity chamber, which controls the relative humidity 

to within 1% of its value. With proper combination settings of the 

dry bulb temperature, the wet bulb temperature, and the power range 

selector, the chamber produced satisfactorily the relative humidity 

required for our experiment^^’ Slightly more dry nitrogen is fed

into the humidity chamber than the wet nitrogen taken out of the 

chamber, in order to keep a slight overpressure and to prevent carbon 

dioxide from leaking into the humidity chamber.

Dry nitrogen is injected through a flowmeter and allowed to mix with 

the wet nitrogen drawn from the humidity chamber in the desired ratio.

The resulting sample gas goes either straight to the hot or cold 

temperature bath or through a compressor, for cell operations above
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0.75 atmosphere pressures. The sample gas then enters a gas handling 

manifold which enables us to measure the water vapor concentrations 

before the sample gas enters the absorption cell, after it leaves the 

cell, or completely bypassing the cell. The gas is finally ejected with 

a pump through a flowmeter which shows the flow rate at any time. The 

gas handling manifold, associated valves and tubing, and the dew point 

hygrometer sensor are enclosed in a plexiglass box. The interior of 

this box is heated with electrical heating tapes and maintained at a 

temperature which is approximately equal to that of the sample gas.

The sample gas enters the absorption cell through 80 orifices 

drilled in a stainless steel tube of 1.2 cm. diameter and over one meter 

long. This tube extends towards and is supported by the flanges at the 

ends of the 5-inch cell. A similar tube is placed parallel to the first 

tube, at a distance of 10 cm. The infrared beam passes through the 

space in between these two tubes, parallel to the tubes. Thus, the 

sample gas flows across the infrared beam from the orifices in the first 

tube towards the orifices in the second tube.

Initially, we made a model of the cell flow system with plexiglass 

and substituted smoke for sample gas. We found that the smoke flow 

rate was uniform over the entire absorption path when the sample gas 

entered at the right end of the cell and exited at the left end.

The diffusion of water molecules in the nitrogen across the cell 

diameter of 5-inches can be expected to take place in about five minutes. 

Moreover, at a flow rate of 2 liters/minute, the vapor in the 11 liter 

cell convectively exchanges with a time constant of 5 minutes. Hence,
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an equalization to within 1% of the final equilibrium vapor concentration 

could be expected within 30 minutes^^.

In order to check this, three hygristors, whose resistance increases 

with humidity were mounted inside the cell, one at each end and the 

third at the middle of the cell. The graphs of time versus resistances 

of these hygristors from the moment the sample gas was introduced into 

an evacuated cell showed that the humidity reached a constant value in 

about 40 minutes with a flow rate of about 1 1/2 liters/minute. To 

some extent, the walls and connections could act as a sink of sample 

gas and a source of contamination. But at the flow rate used, the gas 

column of 4.1 cm diameter, path of the infrared beam, in the cell approxi

mated unbounded space quite well. A flow rate of 1 1/2 liters/minute 

was adequate to suppress wall effects, yet not too fast to give rise to 

turbulence inside the cell.

C. CONCENTRATION MEASUREMENT

Concentrations of the water vapor samples are measured using a Dew 

Point Hygrometer. It is an automatic, optically sensed, thermoelectrically 

cooled, condensation dew point hygrometer. This unit measures the dew 

point of a sample gas by the primary defining technique; namely, it 

presents a cooled metal surface to the gas sample so that the temperature 

of the gas at the metal surface is at the temperature of the metal.

The temperature of the sensor surface is measured by means of an 

embedded precision thermistor which, in turn, forms a part of an 

electrical bridge circuit. A zero to fifty millivolts output is
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available from the bridge circuit, in addition to a front panel meter 

graduated in degrees.

Soluble contaminants, such as salts or acids, will change the 

temperature at which equilibrium occurs, and will result in higher than 

actual dew points. Insoluble contaminants in the sample gas, such 

as dust or dirt will not produce an error in the dew point measurement.

We have checked the sensor for both kinds of contaminants and found only 

some dust on it.

The manufacturer had provided us with a calibration curve and our 

own calibration did not show any significant difference from that curve.

We have also checked the calibration regularly for any possible errors 

and found none.

The dew points of the sample gas were measured both before and 

after the gas entered the cell. It took about one to one and a half 

hours to obtain steady state conditions depending on the static pressure. 

The dew points were also continuously monitored during the course of 

each run at the outlet side of the cell, to ascertain the constancy of 

the concentration during the course of the experiment. A different static 

condition with the same concentration and temperature but higher pressure 

was obtained after 20 to 30 minutes. The dew points for each static 

thermodynamic condition, were calculated beforehand.

D. PRESSURE MEASUREMENT AND PRESSURE CONTROL

The pressures in each section of the cell were monitored using NRG 

804 thermocouple gauges. In addition, the sample gas pressures were
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also measured using an alphatron gauge and a Bourdon type Heise gauge. 

The latter could be separated from the system by a vacuum valve, and 

was pumped out to adjust the zero reading, everytime a pressure measure

ment was made. Both left and right end chambers and the monochromator 

were pumped continuously during the experiment to a vacuum of less than 

5 microns so that desorption from the walls had no effect.

At the right end of the cell was connected another Heise gauge, 

a pressure regulator (Mano-watch), and a vacuum pump. The Mano-watch 

actuated a solenoid valve which regulated the rate at which the gas 

exhausted through the vacuum pump. Under typical operating conditions 

the solenoid valve opened and closed once every 5 to IS seconds and 

controlled the pressure of the gas in the cell to the precision of 0.2  

mm of Hg.

All the static measurements were done at 1/2, 3/4, 1,and S/4 

atmospheric pressures. At lower temperatures, higher concentrations and 

higher pressures were avoided because of possible condensation inside 

the cell.

E. TEMPERATURE MEASUREMENT AND TEMPERATURE CONTROL

As mentioned in Section B, the sample gas passed through a hot or 

cold bath before it entered the cell space. Liquid from the hot or 

cold bath itself was also circulated by a pump through copper tubing 

soldered onto the outside walls of the cell. All parts of the thermal 

equipment and cell walls were carefully insulated.

The heating bath was operated with three commercial heating coils
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which were regulated by a proportional electronic temperature controller 

(Versa-ThermJ. The Versa-Therm control sensitivity was better than

0.2°C. For temperatures below 25°C, a Blue M cooling unit was used. By 

adding a heat load it was possible to obtain an appropriate duty cycle 

and temperature regulation of the cold bath within 0.2°C.

The temperatures of the hot and cold baths were measured using 

mercury thermometers. The temperatures inside the cell were measured with 

eight copper-constantan thermocouples in ceramic tubes placed along its 

length supported by the mullite tubes. The thermocouple wires were 

connected to two terminal blocks and then to a common temperature 

reference junction. With melting ice providing the reference temperature, 

a potentiometer was used to measure the thermoelectric emf’s. The 

temperature variations along the cell were less than I'C while fluctuations 

at a given point were about 0.1°C.

F. PRESSURE FLUCTUATIONS AND 6P MEASUREMENTS

Pressure fluctuations inside the cell were generated by two 12-inch 

reinforced cone loudspeakers mounted on the top plate of a foot deep 

cylindrical tank. A 40-inch long tube connected the speaker cavity to 

the cell space. The two speakers were connected in series with and 

actuated by a Dynakit 40 watt amplifier. The amplitude of the pressure 

fluctuation was adjusted at 14Hz by changing the input voltage to the 

speakers.

The pressure fluctuations were measured by a model 701A Kistler 

pressure transducer mounted inside the absorption cell. It measured the
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fluctuations about the mean value of the pressure in the cell. This unit 

was a high sensitivity quartz pressure transducer for dynamic pressure 

measurements. The pressure transducer outputs were amplified using a 

model 566 Kistler multirange electrostatic charge amplifier. The sensiti

vity of the pressure transducer was set at 5.25 picocoulombs/PSI at 15.1 

Hz by the factory.

G. OPTICAL SYSTEM

The infrared radiation source was a globar element of silicon carbide, 

powered by a Hewlett-Packard D. C. power supply. The globar was normally 

operated at 4 ampers and 45 volts with a resultant source color temperature 

of about 1400^K.

A chopper produced a light signal in the form of a square wave of 320 

Hz; the frequency was measured using a digital counter. A reference signal 

was also obtained with the chopper and fed into a type A 102B Ad-Yu 

preamplifier.

The plane reflection grating used had 300 lines/mm and was blazed at 

2 microns. The grating provided a reciprocal linear dispersion of 106.1 

Angstroms/mm and a resolution of 2.4 x 10  ̂microns with 10 micron x 4mm 

slits.

The entrance and exit slits were both 2 mm wide and 12 mm high. A 

long wave pass filter with a 2.1 micron cut on, coated on a silicon 

substrate, was mounted on a plexiglass holder just outside the exit slit. 

This filter was used to eliminate higher orders of lower wavelength spectra 

and other stray radiation. Finally, the infrared beam fell on an ellipsoidal 

mirror which focussed the radiation on to a diffused junction, photovoltaic.
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indium antimonide (InSbJ detector cooled to liquid nitrogen temperature.

The output from the detector was connected directly to a model 

213 Princeton Applied Research (PARJ preamplifier having an input 

impedance of 10 megohms. The output impedance of the detector, 1000 

ohms, and the preamplifier input impedance were matched by connecting a 

variable resistance R to the output terminal of the detector. For a 

value of R = 1500 ohms, we found that the detector output was increased 

by a factor of three and that this factor decreased when R was increased 

or decreased. But for R = 800 ohms, the noise in the output decreased 

by a factor of four compared to the noise with R = 0 and R = 1500 ohms. 

We used an 800 ohms resistance thereafter.

H. ELECTRONICS

All the measurements were made using a PAR Lock-in-Amplifier (LIAJ 

and a PAR preamplifier. A PAR selective amplifier was also added for 

the dynamic mode measurements. These amplifiers were powered by a PAR 

Nim Bin. The LIA output was recorded by a Honeywell Electronik 15 

dual pen solid state strip-chart recorder.



CHAPTER IV 

THE EXPERIMENTAL METHOD

In this chapter, we give the details of the experimental operating 

procedures, conditions under which the data were taken, and the data 

processing methods.

A. TYPICAL OPERATING PROCEDURE

In the static mode we have measured mean value intensities. I, and 

in the dynamic mode we have measured the fluctuations in the mean 

intensity, 61, about the mean values. First a group of static mode data 

were taken and their thermodynamic derivatives calculated. Thereafter 

a group of static and dynamic mode data sets were taken at the same time 

to obtain I and 61 values.

1. Static Mode

Since no dynamic mode data were taken in the first group of data, the 

speaker cavities and the speaker connections were disconnected. Thus the 

time required for the conditioning of the cell was reduced by almost half.

The near square wave of frequency 320 Hz, passed through the sample 

gas in the cell and then through the monochromator where the spectrum was 

formed. The light reflected from the grating was focussed on the detector

39
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which created an electrical signal proportional to the transmitted light 

incident on it. Tlie detector output was fed to the preamplifier and then 

on to the lock-in-amplifier. The selective amplifier was not used for 

this group of data.

The reference signal, synchronous with the chopped optical signal 

was connected to the reference channel of the LIA. The phase of this 

signal with respect to the optical signal was adjusted mechanically by 

the proper positioning of the reference lamp and correct choice of the 

Ad-Yu preamplifier. The output of the LIA was recorded with a stript 

chart recorder.

In order to obtain a reference point, the monochromator was first 

set at a wavelength on the far wing of the band where the absorptance by 

water vapor is very small. This was set at 2.33 microns and the LIA 

output at that point was always adjusted to be 7.5 volts. A scan was 

made from 2.33 to 3 microns at a speed of 0.2 microns per minute. At 

the end of the scan, the monochromator was set back to the reference 

point to check any change in the transmitted intensity at that point.

If it had changed by more than one half of one percent, that scan was 

discarded and a new one was made. This procedure was repeated for 41 

different combinations of concentration, pressure, and temperature of 

the sample gas.

In addition a similar scan, I^.was also made at the beginning of 

the runs each day with the cell space fully evacuated. After every 

two I scans, the cell was again evacuated and another Iq scan was made.

So we obtained the scans in the order of I^j, 1̂ , Î , Iq2» 4̂»
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I... The I ,, I and I _ were taken to check the 100% transmitted ol o2 o3
intensity for any effects due to absorption by the CaF^ windows 

because of condensation of water vapor on them. From all the lo scans, 

we were assured that there was no condensation on the windows for the 

water vapor concentrations used in our experiment.

2. Dynamic Mode

After the first group of static mode of operation was completed, 

much effort was expended to improve the signal to noise ratio. The 

typical operating procedure in this mode was to take an lo scan, an I 

scan and then immediately a 61 scan. The additional 1© and I scans were 

necessary to calculate the derivatives of the absorption.

The selective amplifier was tuned to the LIA in its internal mode 

at 14 Hz. The LIA in this mode provided the voltage to operate the 

two loud speakers connected to the cell space. The (nonchoppedJ modulated 

optical signal was fed into the electronics and a 61 scan was obtained.

For details, see Reference 3 3. The amplitude of the pressure fluctuation,

6P, was also recorded on the stripchart recorder at the beginning and 

end of each 61 scan. The value of 6P was fixed at 5.57 mm of Hg., peak to 

peak. This value of 6P was chosen to obtain sufficient pressure fluctua

tions in the cell, but not to create any turbulence. A 61 scan was completed 

in about an hour, including electronics adjustments. Additional information 

such as thermodynamic conditions, gain settings of the amplifiers, cali

bration factors, ambient conditions, LIA integration time, etc., were 

also recorded for each scan on a separate'information sheet*.
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B. CELL CONDITIONS

It was important that a steady state water vapor condition was 

established in the cell. As explained in section 111 - G, this could be 

achieved. Thus all uncertainties about the sample gas concentration 

in the cell were avoided. The first steady state for a particular c, P, 

and T was obtained in about 2 to 3 hours after start up. It was very 

essential to maintain the room temperature within about 1°F.

The ratio of the partial pressures of the water vapor, p, and 

nitrogen, the latter almost equal to the total pressure, P, was always 

adjusted to be a constant; i.e.,

P/P = c = constant IV - (IJ

So an increase in one meant a proportionate increase in the other.

The frequency of the pressure fluctuations of 14 Hz was dictated 

by the geometry of the absorption cell. With two speakers, the resonance 

peak for the cell space was at 14 Hz, and the half width of the peak was 

larger than that with one speaker alone, with the peak at 10 Hz. We 

were interested in having the resonance frequency at least at 14 Hz, 

because the S/N ratio for the optical signal at higher frequencies was 

higher and the electronics operated better. Introducing the pressure 

fluctuations at both ends of the cell created a more uniform symmetric 

case.

It can be shown that the pressure fluctuations produced in the cell 

constitute an adiabatic process ; i.e., there is no gain or loss of heat
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33in the system during a change in pressure

We also assume that the pressure fluctuation is uniform over the 

entire length of the cell. Laplace's expression gives for the speed of 

sound

V = ( kT/m//^ IV - (2J

where k is the Boltzman constant and m is the mass of the molecule. The 

speed of sound changes from 340 m/sec. at 288°K to 368 m/sec. at 338°K.

The corresponding wavelengths for a 14 Hz sound wave are 24.3 and 26.3 m. 

respectively. Since the absorption cell is considerably shorter than 

the wavelength of the sound waves, we conclude that the waves produced 

inside the cell are reasonably uniform over the cell space at all 

temperatures encountered in our experiment.

C. ABSORPTION AND ITS STATIC DERIVATIVES

We have the absorption equation,

A = 1 - I/Io IV - (3J

By choosing a proper wavenumber interval, we can calculate the absorptance 

over the entire band. The area under the curve of absorption versus 

wavenumber, gives the integrated band absorptance. Since the experimental 

band pass changed from about 23 cm"^ at 3 microns to about 35 cm  ̂at 

2.3 microns, all the experimental results are degraded to 35 cm ^, as in 

the case of the calculated spectra.

With the aid of the measured transmittance for various combinations
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of the thermodynamic variables, it is now easy to obtain the thermodynamic

derivative spectra. The static first derivatives can be obtained from two

absorptance spectra, with the averages of c, P, and T of the two curves

serving as the reference point. Using three absorptance spectra, one can

interpolate to find a different c, P, and T point. Experimental second

and mixed static derivatives are obtained from 3 or 4 absorptance spectra

spaced at regular c, P, and T intervals. Again, the averages of c, P, and

T values serve as the reference point.

Using a power law, A a to express the c, P, and T dependence,

we can calculate the experimental spectrum at a different thermodynamic 
34,35condition • The exponent Z(vJ is obtained by taking the ratio of the

calculated first derivative, y (3A/3yJ, and A. Similarly the ratio of
2 2 2the second derivative y (3 A/3y ) and the first derivative y (3A/3y) 

equals [2(vJ - 1].

D. ADIABATIC DERIVATIVES 

We have the equation

(3A/3P)^j = -d/Io3 (ÔI/ÔP) IV - (4J

The value of 6P is known and we have measured 61 and Iq . So the magni

tude of (3 A/9 PJad can be calculated.

Thermodynamic second derivatives and mixed derivatives are obtained 

as before in the static case. Accordingly, we can obtain

3/3c ^A/3P)^j , 3/3P C3A/3P)^j , and 3 /3T (3A/3P3^j .

We can also use a power law to obtain (3A/3Pj^ spectrum at a desired
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thermodynamic condition from a known (9 A/3 spectrum at a different

thermodynamic condition.

E. DATA AND DATA PROCESSING

Table VI shows the thermodynamic conditions for each of the 41 

static spectra recorded.

TABLE VI

TABLE OF I MEASUREMENTS

Concentration
C

Pressure
P

Temperature

288°K 313°K 338°K

0.50 X X X

0.81% 0.75 X X X
1.00 X X X
1.25 X X X
0.50 X X X

1.62% 0.75 X X X
1.00 X X X
1.25 X X
0.25 X X
0.50 X X X

3.24% 0.75 X X
1.00 X X
1.25 X X
0.25 X X

4.86% 0.50 X X
0.75 X X
1.00 X



46

These concentration values correspond to 0.000622, 0.001244, 0.002488, 

and 0.003732 precipitable cm. absorber masses, u (g/cm^j,at 288°K.

In each case, the dew point temperature set the upper concentration and 

pressure limit. In particular, at 288°K, we were restricted to lower 

pressures and concentrations. The highest temperature at which the 

dew point hygrometer could be operated was 343°K.

The I and Iq data were digitized at intervals of 0.005 microns, 

with a total of 135 points per run. The computer programs enabled us to 

get tables of degraded absorptance and wavenumber at 5 cm~^ intervals, as 

well as the integrated band absorptance. The absorptance values for 

all 41 spectra were then stored in three different computer files. 

Thereafter other computer programs were used to obtain the thermodynamic 

derivative spectra.

Table VII shows the combinations of the thermodynamic variables used 

for the 61 measurements.

In order to obtain the experimental spectra we had to use

the Iq data taken under static conditions and 61 and 6P data taken under 

dynamic conditions. Therefore, we have reduced all the measurements to 

the absolute outputs at the detector. Taking into consideration the 

different wave forms used in the static and dynamic modes of operations 

and the calibration and gain factors of each of the amplifiers, we 

have to multiply Iq data by 2.2214 x lO” , 5P data by 1.393 x 10~ ,

and 61 data by 1.414 x 10  ̂for the lower two concentrations and by 

2.828 X 10  ̂for the upper two concentrations. The strip chart of 100 

marked divisions were digitized in units of zero to 1000.

In the dynamic mode, the data were digitized at intervals of 0.004
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TABLE VII 

TABLE OF ôl MEASUREMENTS

Concentration
C

Pressure
P 288°K

Temperature

293°K 308°K 338°K

0.81%
0.75
1.00

1.25

X
X
X

0.75 X X X
1.62% 1.00 X X X

1.25 X X X
0.75 X X

2.43% 1.00 X X
1.25 X X

3.24% 1.00 X X

microns, with a total of 160 points per run. These data were fed into 

the computer and P (3A/3PJ^^ spectra, degraded to 35 cm were calculated. 

Again, as in the static case, the second and mixed derivatives of these 

adiabatic derivative spectra were obtained using other computer programs.

All the spectra were plotted using the plotter attached to the 

minicomputer in the Physics department at the University of Oklahoma.



CHAPTER V 

ANALYSIS OF RESULTS

A. INTRODUCTION

In this chapter we present the results of our experiment and the 

theoretical calculations for the 2.7 micron water vapor band and the 

3.46 micron hydrogen chloride band. The calculated spectra for the 2.7 

micron band are all at 288°K and for the HCl band, all at 300°K. In 

this chapter we will use the following notations: A = absorptance, c = 

concentration, P = total pressure, T = absolute temperature, and E = 

energy of the lower state of the absorption process. Also partial 

derivatives cT 3/3 c (3A/3TJ will be written as cT A (cTJ, and similarly 

for the other derivatives as c A(cJ, P A(P), T A ' T ) ,  PP A(PP1, cP A(cPJ,

PT A(PTJ, TT A ( T T ) and cc A(ccJ. The multiplication by c,P, and T 

cancels units and the magnitudes fall into the range of values of the 

absorption. Finally the abréviation, "ad." stands for adiabatic.

The graphical display of our results gives the dependence of the 

absorption and its thermodynamic derivatives upon c, P, and T. We 

shall search for spectral regions, where the absorption or its derivatives 

are simple functions of the concentration, pressure, and temperature.

We will show how, in particular, the spectra can be used for a

48
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spectral inversion to obtain the thermodynamic variables.

B. STATIC MODE RESULTS

First we give the results for the static mode of the experiment 

and compare these with our theoretical calculations. Then, the more 

important dynamic mode results are presented. Finally, the results 

of the hydrogen chloride calculations are given.

Table VIII lists the band integrated absorptance for our 1.005 m 

column of water vapor over the 2.7 micron region. The experimental 

values are compared with our calculated values as well as those of 

References 36 and 37. The agreement between the experimental values 

and the others are well within expected accuracy. At lower tempera

tures the errors in the experiment, which are mainly due to the short 

term fluctuations in the concentration and in the globar intensity, cause 

a departure from the calculated values. However, at the higher concen

trations, the error in the calculation is larger and the experimental 

values are more reliable. Table VIII shows that the discrepancy is always 

less than 5%.

The short term fluctuation errors in the concentration and the globar 

intensity are about 0.3 percent and 0.2 percent respectively. Hence, 

in a single reading the error does not exceed 0.6 percent. Also, since 

each absorptance spectrum is obtained from an I scan and an Iq scan, 

the maximum possible error in the value of absorptance is 1.2 percent.

The maximum value of the absorptance obtained in our experiment was 

about 0.65; and the maximum absorptance obtained for the lowest concen

tration and pressure was about 0.25. So, for an average value of the



TABLR VIII

2.7 MICRON WATER VAPOR BAND INTEGRATED ABSORPTANCE FOR A 1.005 M COLUMN

INTEGRATED ABSORPTANCE (cm-1)
Concentration Pressure 288°K 3130K 388°K

(cj (PJ atm Expt. Calc. Ref. 36 Ref. 37 Expt. Ref. 36 Expt. Ref. 36

0,50 34.6 33.2 30.6

0.81% 0.75 51.8 49.0 47.5
1,00 68.6 68.96 71.0 66.3 68.0 63.7 65.5
1.25 85.3 83.8 78.5

0.50 55.8 52.7 49.9

1.62% 0.75 81.9 75.8 73.9
1.00 108.1 104.6 110.0 95.0 105.3 106.0 102.7 103.0
1.25 128.6 126.2

0.25 40.8
0.50 80.9

3.24% 0.75
1.00 153.5 163.0 139.0 155.8 156.0 149.0 150.0
1.25 183.6 176.3

0.25 50.7 48.2
0.50 104.7

4,86% 0.75 151.8
1.00 188.8 198.0 173.0 190.0 182.4 183.0

ino



2.7 MICRON WATER VAPOR BAND ABSORPTION

&

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 L

•A

9

. . «

.*Cf

.b‘ .

...c
c c.

.t/,. .......... .
.G".' .

c.

'. .o.

CONC 0.81 X 
TEMP 288 K PRESSURE 
A 1.25 ATM 
B 1.00 ATM C 0.75 ATM 4 
D 0.50 ATM •c- CALCULATED

0.00
3300 3400 3500 3800 39003600 3700

WAVENUMBER (I/CM)
Figure 3

4000 4100 4200



2.7 MICRON WATER VAPOR BAND ABSORPTION

0.45

0.40

0.35

0.30

0.25

0.20
0.15

0.10 .

0.05 .

0.00
3300

rr

r
gpp-C.“.

e
o

» . . r; .• B  •• •
. c.

•' *• C .'

• • r/
• * C \

V ? :  , • <-

I 'I

CONC t.62 X 
TEMP 288 K PRESSURE 
A 1.00 ATM 
B 0.76 ATM 
C 0.60 ATM 

•c' CALCULATED V  RIG. ROT.CAfl

:?r

3400 3500 3600 3700 3800 3908
WAVENUMBER (1/CM)

Figure 4

4000 4100 4200

tn
ro



2.7 MICRON WATER VAPOR BAND ABSORPTION

I

0.35 

0.30 

0.25 

0.20 

0.15 

0.10

0.05

0.00

tfb.
.‘A*.

• • .bcf. •

.* c ®..-. • • .* ® o c.
. -.iV c ^

• c •e . Cl
C .*

.*    .•
c."

. « : É /

CONC 0.81 % 
TEMP 313 K 
PRESSURE 
A 1.25 ATM 
B I.08 ATM C 0.75 ATM 
D 0.50 ATM 

•c* CALCULATED

3300
^«tggggSîSÜÎ»*' .___

3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

Figure 5

4000 4100 4200

w
(A)



2.7 MICRON WATER VAPOR BAND ABSORPTION

niI

0.45

0.40

0.35

0.30

0.26

0.20
0.15

0.10

0.05

0.00

•■‘a ’-.

. 9 • ♦ 
.«• • ••• O

cc.. .
' B ® *. '.

" C  \  cr'

•o’ ...... . D ’•. ..c.

I " 1

CONC 1.62 X 
TEMP 313 K 
PRESSURE 
A 1.25 ATM 
B 1.00 ATM C 0.75 ATM 
D 0.60 ATM 

•o' CALCULATED

.cr -

•/Cf.-

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

Figure 6

4000 4100 4200

%



2.7 MICRON WATER VAPOR BAND ABSORPTION

0.60

a

I

0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 . 
0.20 . 
0.15 . 
0.10 . 
0.05 .
0.00

 ••••••

.o •. o

c
e,”.......-....*' ;
ft Cc ® C •

/A-.

/• •*. O  •
•  * •  •  •  • C •

G.
C '

..... .

••îîjKttiss;-**.

. ^ 7 /
A*/

D \
e.

CONC 3.24 %
TEMP 313 K PRES A 1.25 ATM 
B 1.00 ATM 
C 0.75 ATM D 0.50 ATM 
E 0.25 ATM 
c" CALCULATED '

%
3300 3400 3500 3600 3700 3800 3900

WAVENUMBER (I/CM)
Figure 7

4000 4100 4200

(/Icn



2.7 MICRON MATER VAPOR BAND ABSORPTION

E

0.35

0.30

0.25

i 0.20

0.15 

0.10 . 

0.05 _

0 . 0 0
3300

c. .• A 
• .b'cf.

cy.eref*-.
.<?
9

. * * * O
6  ••• c  . . . . .  .

/•’....
* / .• • "c C  Y".

.c
D \  \6"

CONC 0.81 % 
TEMP 338 K 
PRESSURE 
A 1.25 ATM 
B 1.00 ATM C 0.75 ATM 
D 0.50 ATM "c" CALCULATED

%
3400 3500 3600 3700 3800 3900

WAVENUMBER (1/CM)
Figure 8

4000 4100 4200

Lne



2.7 MICRON WATER VAPOR BAND ABSORPTION

0.45

0.40 

0.35 

0.30 

0.25 I 

0.20 
0.15 L 

0.10 

0.05 L

0 . 0 0

; flfc k .
, c c

. c

.c- .

A

.‘c® • • 

®.

.". • C • 
• c .*

D

'.o •
'.o
• • • •vp.-

CONC 1.62 % 
TEMP 338 K 
PRESSURE 
A 1.25 ATM 
B I.00 ATM 
0 0.76 ATM D 0.50 ATM
CALCULATED

3300 3400 3500 3600 3700 3600 3900
WAVENUMBER (I/CM)

Figure 9

4000 4100 4200

In



2.7 MICRON WATER VAPOR BAND ABSORPTION

y

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

0.05
0.00 L _______u3300 3400 3500

c• c*

.' .«ë..

." A

 ..... , • • • • , D  • •

«c®cc; c ’* c
.•«
C"

J

• -  C '.
. ' c.

\  D

.o

CONC 3.24 % 
TEMP 338 K PRESSURE 
A 1.25 ATM 
B I.00 ATM C 0.75 ATM 
D 0.50 ATM 

"c" CALCULATED

%.  .  I_____     —
3600 3700 3800 3900 4000 4100 4200

WAVENUMBER (I/CM)
Figure 10

00



2.7 MICRON WATER VAPOR BAND ABSORPTION

8.60
0.55 . 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 

0.05 
0.00

• O  • •  •

• .....« c

C"

C.'

c.. ' . •
Q- .*

.‘Cc.

•' B

c
.o
• •
• •
.C
• •

•. .6

CONC 4.66 X 
TEMP 338 K 
PRESSURE 
A 1.00 ATM 
B 0.75 ATM 
C 0.50 ATM

•e* CALCULATED

. c 
• • •

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

4000

in
i£>

4100 4200

Figure 11



60

maximum absorptance of 0.45, there is an absolute error of 5.4 x 10"̂ .
_2Then, the absolute error in the first derivative, 3A, is 1.1 x 10

2 - 2  and that in the second derivative, 3 A, is 2.2 x 10
-1Figures 3 through 11 show absorptance (all degraded to 35 cm ) 

plotted against wavenumber with the pressure of the sample gas, P, as 

a parameter for the temperatures of 288°K, 313°K, and 338°K. The 

curve marked "r" in Figure 4 is the calculated absorptance spectrum
4obtained using the rigid rotator line strengths of Gates, et al.

The curves marked "c" are the calculated absorptance spectra obtained 

using the F factor corrected line strengths for the 2.7 micron H^O 

band. Since the theoretical calculations are at 288°K, the absorptance 

at the experimental temperatures had to be computed using the first 

derivative of the absorptance with respect to the temperature. The 

agreement between the experimental spectra and the F corrected calculated 

spectra is excellent.

We assume that the absorptance is approximately related to the 

pressure through a power law,

A = constant x V - (1}

The exponent, Y(vJ, may be obtained by taking the ratio of PA(PJ to A.

The value of Y(vJ varies slowly from about 1.00 at 3400 and reaches 

about 0.8 at the middle of the band (around 3800 cm ) ,  and then 

increases back to 1 at about 4100 cm

Figures 12 to 16 show the computer plotted absorptance versus 

wavenumber with concentration as a parameter for 288°K, 313°K, and 338°K.
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There is a strong dependence of absorption upon the concentration, 

which is fairly uniform along the entire band. We write the relation 

between the absorptance and the concentration as a power law,

A = constant x c*C^J'

where XCvJ is another parameter. This parameter X{vJ may be obtained 

by taking the ratio of cA(cJ to A. We found that the value of X(vJ 

decreases approximately uniformly from about 1 at 3400 cro~̂  to about 

0.47 at the middle of the band and then increases nearly uniformly 

back to 1 at about 4100 cm ^. Hence, there is a strong concentration 

dependence of the absorption throughout the entire band.

Figures 17 through 21 show computer plotted absorptance versus 

wavenumber with the temperature as a parameter. These graphs show 

that there are two regions on each wing of the band where the absorption 

is nearly independent of the temperature of the sample gas. These 

are the so called 'crossover points'. Between the crossover points there 

is a mild negative dependence of the absorption on the temperature and 

beyond the crossover points, in the wings, there is a strong positive 

dependence of the absorption on the temperature. The T dependence is 

the most variable of the three as we will see below. As before, we 

may write the absorptance temperature relationship as a power law,

A = constant x T^^^^ V - (3)

where ZCv) is another parameter. This parameter may be found by taking 

the ratio of TA[TJ to A. The value of Z(vJ varies considerably with
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wavenumber along the band. It increases from about 0.5 at 3400 cm  ̂

to 0.6 at about 3515 cm~^, then decreases rapidly reaching 0.0 at 

about 3575 cm continues decreasing to about -1.1 at the middle of 

the band, increases to 0,0 at about 3910 cm  ̂and then to about 0.6 

at 4100 cm"^ before decreasing again. The crossover points are 

approximately at the region where the value of Z ( v ) goes to zero.

So the temperature dependence is very different from the concentration 

and pressure dependences.

Figure 22 shows the F factor plotted against wavenumber. In this 

figure, the dots and crosses are the values obtained by References 26 

and 27, for the v, band and the band respectively. Since we are 

doing low resolution work, we could find only the ratio of the measured 

and calculated absorptance at 5 cm  ̂intervals, with a degrading of 

35 cm \  the drawn curve is the result of this. There is substantial 

agreement over a large portion of this curve and the References 26 

and 27.

Mac lay wrote the F factor as

F = 1 t ( am^ + bm^ + cm^J, V - (4J

where a, b, and c are constants, while the m^ is the quantum number for

the angular momentum about the i axis. One could include higher order

terms of m. in the above relation. It was assumed^^ for the case of 1
m., m^ << m.

S = S^ Cl - cmj V - C5J
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where S is the true strength of a rotational line, and designating m 

by m is given by,

m = J + 1 for the R branch

m = - J for the P branch,

and J is the rotational quantum number of the lower state. Maclay found

that equation V - (5J holds for two values of m, m = -11 and m = +14, 

with a value of 0.0433 for c.

We are proposing a relation for the F factor as

F = (1 + ZmjZ V - (6J

where Z is a constant and m is defined as before.

Figure 23 is a plot of versus m, obtained from Figure 22

for the V, band alone. A straight line is drawn as the best fit for this.

A correction to the strengths of the weaker fundamental band 

was also applied using the P factors for this band given by Babrov and 

Casden*"̂ . Babrov and Casden had shown that the F factor for this band 

is a smooth function of wavenumber, as shown in Figure 22. This correc

tion is satisfactory because the ratio of the relative strengths of 

v_ to Vj is 10:1.

Our straight line graph for CFJ^^^ does not pass through = 1

for m = 0. Recalculating the absorption spectrum several times, we 

found that the best fit with the experimental spectrum is obtained using 

F given by
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F = CO.92 + Zmj2, V - (7J

with a value of Z = -0.025.

The line strengths of Reference 4 are corrected for each transition 

using the F factor obtained for that transition, for both and v_ bands, 

as explained. The absorption and its thermodynamic derivatives are 

recalculated with these new line strengths, and they are plotted by the 

computer along with the experimental curves. These curves are marked 

as "c", and are all for one atmosphere pressure only, and for various 

concentrations and temperatures as shown in Figures 3 through 11. The 

agreement between the calculated and our experimental spectra is very 

good.

C. STATIC FIRST DERIVATIVES

Now, we turn to the static first derivatives which are obtained

from two absorption spectra whose averages of c, P, and T serve as the

reference point. Using three absorption spectra one can interpolate
58to find the derivatives at a different c, P, and T point

Figure 24 shows the partial derivative of the absorption with 

respect to P times P plotted against wavenumber, with pressure as a 

parameter at 313°K and a concentration of 3.24%. The calculated first 

derivative is computed for the experimental temperature using calculated 

first and second derivatives assuming a Taylor series expansion and 

keeping only terms of order two and less. The computed values plotted 

as "c" show excellent agreement with the measured values.
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Figure 25 shows the partial derivative of the absorption 

with respect to c times c versus wavenumber for one atmosphere pressure 

and at 338°K. Again, as before, the curve marked "c" is the calculated 

spectrum, computed for the experimental temperature, using calculated 

first and second derivatives. The agreement between experimental 

and calculated values is very good. It is clear from these curves 

that there is a strong dependence of the absorption on the concentration, 

over the entire band.

Figure 26 shows the partial derivative of the absorption with 

respect to temperature times the temperature plotted against wavenumber 

for c = 0.81%, P = 1 atmosphere,and T = 313°K. The curve marked "c” 

is the calculated spectrum computed for the experimental temperature.

Earlier in this chapter we concluded that there are two regions

in the wings of the band, where the temperature dependence of the

absorption is minimal; or even the absorption is independent of the

temperature of the sample gas. So we expect the first derivative of

the absorption with respect to the temperature at these regions to be

zero. Indeed, the TA(T) curve cuts the x-axis at the middle of these
-1 -1regions, at about 3575 cm and 3910 cm . The value of TA(TJ is 

negative between these two points and is positive everywhere else in 

the wings.

The difference between the experimental and calculated values of 

TA(TJ is well within our error estimates. Since, we had only a small 

temperature range available in our experiment, we have,

•Î- ï ê  ■ • “
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Therefore,times the possible maximum error in 3A of 1 • 1 x 10 “ gives 

the maximum error in the value of T (3A/3TJ to be about 0.07. This is 

larger than the maximum difference between the curves of Figure 26. It 

should be recalled that the calculated T (3A/3TJ at the experimental 

temperature was computed using calculated first and second derivatives 

only, neglecting higher order terms. Also, we have not included the 

possible errors in the calculated first and second derivatives.

D. STATIC SECOND DERIVATIVES

The experimental second derivatives and mixed derivatives are 

obtained from three or four absorption curves spaced at regular c, P, 

and T intervals, with the averages of the c, P, and T values serving 

as the reference points.

Figure 27 shows the second derivative of A with respect to

concentration times ĉ , with c as a parameter. Again, the "c" marks are 
2the calculated c A(ccJ values. Even for the second derivatives, we 

have good agreement between the calculated and experimental values, 

showing the quality of the measured values.

Figure 28 shows the second partial derivative of the absorption 

with respect to pressure at 338°K for a concentration of 4.86%, with 

pressure as a parameter. We notice that the PPA(PPJ are very 

small in the wings and small in the core of the band.

The calculated PPA(PPj are marked *'c" for one atmosphere. There 

is very poor agreement between the calculated and experimental values.

The authors of Reference 1, have recognized this error in the calculation
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of the second derivative, PPA(PPJ.

Figure 29 shows cT A(cT)versus wavenumber. The temperature 

dependence of the absorptance is again exhibited.

E. DYNAMIC MODE RESULTS

This section presents the most important result of our experiment: 

for the water vapor molecule no such results, experimental or theoretical, 

are available in the literature. The introduction of the fluctuations 

in the thermodynamic variables modulate the mean transmitted intensity.

We can obtain the experimental adiabatic first derivative of the 

absorption with respect to the pressure from

(3A/3PJ^^ = (5I/6PJ. V- (8)

First we discuss the results for a constant gp of 5.57 mm, peak to peak.

Figure 30 shows the adiabatic partial derivatives of the absorption 

times P for concentrations of 0.81% and 1.62% at 288°K and 293°K respec

tively. The calculated adiabatic derivative is found using calculated 

first derivatives,

P (3A/3P)^j = P (3A/3PJ + 0.28 T CWSTj. V - (9J

Again, the calculated first derivatives at the experimental temperatures 

are obtained using calculated first and second derivatives, as was done 

in the case of static derivatives. The curves marked "c" are the 

calculated spectra. The agreement between experimental and calculated 

values is excellent.
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Ii^urc 31 and 32 show P r3A/3P;^^ versus wavcnuraber with the 

concentration of the sample gas, c as a parameter at 308°K and 338°K 

respectively. The calculated spectra for the experimental temperatures 

are computed from the calculated PATPJ, TA(T), and the second derivative, 

PTAfPTj. The agreement between the experimental and calculated values 

is good. A close look at these figures reveals an interesting phenomenon: 

as the concentration increases in equal steps the dependence of P (3A/3PJ^^ 

on the concentration becomes smaller.

Figures 33 through 36 show P(3A/3PJ^^ versus wavenumber for various val

ues of concentration and pressure, with temperature as i parameter.

These figures shew that there are two regions in the wings of the band

where P (3A/3PJ^^ is independent of the temperature of the sample gas.
-1 -1 These are the crossover regions at about 3575 cm and 3910 cm

Between the crossover points the effect of temperature cn the P (5A/3PJ^^

is negative, while in the wings, outside the crossover points, it is

strong and positive.

Figure 37 shows P (3A/3P)^^ versus wavenumber with pressure as a 

parameter, for a concentration of 1.62% and temperature of 293°K. The 

curve marked "c" is the calculated spectrum.

Figures 38,39, and 40 are computer plotted [3A/3Pj^^ versus wavenumber 

with pressure as a parameter. These graphs show that the dependence of 

f3A/3PJ^j on the pressure is minimal in the wings of the band and small 

and negative in the core of the band. This is an important result: in

each wing of the (3A/3PJ^j curve, we have a region, where (3A/3PJ^^ 

depends only on the concentration of the sample gas.



ADIABATIC DERIVATIVE OF 2.7 MICRON BAND ABSORPTION

0.30

0.25 .

0.20 .

0.16 .
r\

%

V
a. 0.10 .

0.05 .

C ..

• •• • •

0.00

CONC 1.62 % 
TEMP 203 K 
PRESSURE
A 1.25 ATM 
B I.00 ATM C 0.75 ATM

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (1/CM)

Figure 37

4000 4100 4200



ADIABATIC DERIVATIVE OF 2.7 MICRON BAND ABSORPTION

0.30

0.25

0.20 .

0.15

0.10

0.05 _

0 . 0 0 .. .
l'«

CONC 1.62 % 
TEMP 293 K 
PRESSURE
A 0.75 ATM 
B 1.25 ATM

...... ..

(C
in

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

Figure 38

4000 4100 4200



0.30

ADIABATIC DERIVATIVE OF 2.7 MICRON BAND ABSORPTION

0.25

0.20

2 0.15"D

0.10

.-'A'.
V  B

CONC 1.62 % 
TEMP 308 K 
PRESSURE
A 0.75 ATM B 1.25 ATM

0.05

0.00 .. •||
. ' I.. . . . . . .

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

Figure 39

4000 4100 4200



ADIABATIC DERIVATIVE OF 2.7 MICRON BAND ABSORPTION

1
r\%

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 L

0 . 0 0

A ••
• • •

B

CONC 2.43 X 
TEMP 338 K PRESSURE
A 0.75 ATM B 1.25 ATM

...

to

3300 3400 3500 3600 3700 3800 3900
WAVENUMBER (I/CM)

I’lgure 40

4000 4100 4200



98

Experimental Second Derivatives

As in the static case, we obtain the second derivatives by using 

two P (SA/3Pj^j curves, with midpoints serving as reference points for 

c, P, and T.

Figure 41 shows the partial derivative, cP f3/9c (3A/3PJ^^ )/ersus 

wavenumber, where the "c" marks are the calculated values. Again, the 

agreement between the calculated and experimental values is good. I hi s 

figure shows strong c dependence over the entire 2.7 micron band.

Figure 42 shows the partial derivative, PP (9/3P (3A/3PJ^^ ) 

versus wavenumber. This figure shows that its value is zero or very 

small in the wings of the band, unlike the cPA(cPJ curve.

Figure 43 shows the partial derivative, PT (3/3T (3A/3PJ^j J 

versus wavenumber. The temperature dependence of the P (3A/3P]^j 

curves is exhibited in this curve also. Again the calculated spectrum 

is plotted as "c" marks, by the computer.

F. VARIABLE 6P ANALYSIS

■A limited study was made concerning the dependence of the fluctuating 

intensity as a function of the fluctuating pressure, i.e., 61 vs. 6P.

Figure 44 shows P (3A/3PJ^^ with 5P as a parameter, for a concen

tration of 3.24%, pressure of 1 atmosphere and temperature of 358°K.

This curve shows that P C3A/3PJ^^ remains almost a constant for every 

value of 6P, as is to be expected. Figure 45 shows 61 versus wavelength 

in microns, with 6P as a parameter for c = 3.24%, P = 1, and T •= 338°K.

The I values in this figure are not degraded, unlike all the other spectra.
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and this figure is typical of the experimental spectra obtained on 

the chartpaper.

G. DISCUSSION- OF RESULTS

The basic aim of this experiment was to find spectral regions 

in the water vapor spectrum where the absorption or one of its deriva

tives may be expressed as a simple function of the thermod\-namic 

variables, concentration, pressure, and temperature of the sample gas.

In particular, we desired to express it as a function of only one 

of the three thermodynamic variables.

We have obtained the crossover points and thus isolated a region 

where the absorption depends upon two thermodynamic variables only. 

Examining the (oA/3Pj^^ curves, we notice that in the crossover region, 

the pressure dependence is also minimal. Thus, for the (SA/oPJ^^ spectra, 

there is a region which depends only on the concentration of the water 

vapor sample. A measurement at this region will enable us to determine 

the concentration of the water vapor. We have also found that near 

3975 cm  ̂ and near 3525 cm ^, the pressure dependence of the (c.4/3Pĵ  ̂

spectra is still negligible, but that there is a strong temperature 

dependence. Since we already know the concentration, the temperature 

of the water vapor can be obtained by a second measurement at this 

region. Finally a third measurement anywhere in the core of the band 

will yield the pressure of the water vapor. Thus, at least in principle, 

the (3A/3Pj^j spectra can be used for a spectral inversion to measure 

the thermodynamic variables, concentration, pressure, and temperature of
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the sample gas.

H. 5.46 MICRON HYDROGEN CHLORIDE ABSORPTION AND ITS DERIVATIVES

Results for the calculation of the HCI fundamental band are 

presented in this section. The spectra are calculated for one atmos

phere pressure and 300°K and are degraded to 30 cm ^.

Figure 46 is a plot of the absorption versus wavenumber with the 

absorber mass, u, in units of g/cm“, as a parameter. Ihe absorber mass, 

u, can be related to the concentration, pressure, and temperature of 

the sample gas by

Ptu = constant x —  x c,

where c = p/P^, p being the partial pressure of the sample gas and

being the total pressure of the sample gas and the foreign gas combined.

Ke will use them both interchangebly in this section.

Figure 47 shows the calculated absorption spectrum for u = 3.5687

fP“5. = IJ, indicated by the solid line, compared with the values of

Reference 39; >. is the path length of the absorber medium. The curve

marked by the error bars is the measured spectrum, with an integrated

absorptance of 57.2 cm ^. The dashed line curve is the result of
39a theoretical calculation by Stull and Plass , with an integrated 

absorptance of 50.9 cm~^. Our calculation yields an integrated absorp

tance of 60.1. Our calculated spectrum fits the experimental curve 

quite well, much better than the other calculations of Reference 39. 

Finally, the dash-dot-dash line curve is the result of an isolated
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line- theory calculation of Reference 39.

Figure 48 shows the average energy weighted by the absorption

plotted against wavenumber. The absorptance equation of Reference

1 requires (3A/5T) to be zero around the region of E = 2.2, which

is the sum of the exponent of T in the expression for the rotational

partition function, m = 1 for HCI, and a constant of about 1.2. This
-1 . -1c:orresponds to two regions at about 2743 cm and 5015 cm

Figure 49 shows T.A[Tj versus wavenumber with u as a parameter. As 

expected, all the curves cut the X-axis at about 2730 cm  ̂ and 3025 cm 

Since the general thermod>'namic dependence of the absorption and its 

derivatives of HCI are essentially the same as that of water vapor given 

earlier in this chapter, it will not be repeated here I'erbally.

Figure 50 and 51 show the other two first derivatives for HCI. 

Finally, Figures 52 through 55 show the adiabatic derivatives obtained 

using Table V.



CHAPTER VI 

CONCLUSION'S

The use of the absorption and its thermodynamic derivative spectra

of gases as a function of concentration, pressure, and temperature
7 4f)has been discussed by different authors"' . he have shoun that the

thermod>'namic derivative spectra of water vapor can be accurately 

measured in the laboratory using a vapor cross-flow system, he have 

also shown that these spectra can be calculated reliably from the 

individual line parameters of the vibration-rotation spectrum.

he agree with Babrov and Casden and Maclay that the line strengths 

compiled by the N.B.S. Monograph 71, for the 2.7 micron water vapor band 

should be corrected. We propose for the ratio of the measured line 

strengths to rigid rotator line strengths of the N.B.S. publication, the 

so called F factor, the function

F = (0.92 + ZmJ^

where m = J + 1 for the R branch and m = -J for the P branch; J is the 

rotational quantum number of the lower state. Furthermore, Z is given 

by -0.025. Using the corrected line strengths, we obtained the absorption 

spectra which agreed within 4% with our experimental results and those 

of Reference 36.

117
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The fluctuations in the thermodynamic variables obtained using 

acoustic excitation, were sufficient to produce measurable fluctuations 

in the transmitted intensity. Our experimental results agreed very 

well with the theoretical calculations using the corrected line strengths.

In the regions near 5575 cm  ̂ and 5910 cm in the wings of the

2.7 micron water vapor band, the dependence of the absorption and its 

adiabatic derivative with respect to pressure, upon the temperature is 

minimal, with a negative effect in the core of the band and a positive 

effect far in the wings of the band. IVe have also shown that the 

PP (7/oP (3.A/5P1 J is very small in the wings of the band, while the 

cP (3/oc ) is significant and can be used to measure the

concentration of water vapor at a given location.
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