08
Contection

SIMPIE SLOPE DEFLECTION EQUATIONS FOR SYMMETRICAL ARCH STRUCTURES

BY
Rafael German Ungson, Jr. Bachelor of Science
Mapua Institute of Technology
Manila, Philippines
1951

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College
in partial fulfillment of the requirements
for the degree of
MASTER OF SGIENCE
1955

SIMPLE SLOPE DEFLECTION EQUATIONS FOR

 SYMMETRICAL ARCH STRUCTURESRAFAEL GERMAN UNGSON, JR. MASTER OF SCIENCE 1955

Dean of the Graduate School

PREFACE

The purpose of this report is to present a new derivation of slope deflection equations for symmetrical, curved members.

The first comprehensive study of structures with curved members by means of slope deflection equations was prepared by $\mathrm{K}_{\text {。 }}$ Beyer ${ }^{1}$ 。 The method of elastic centers was used as a basis of investigation.

In this country the slope deflection equations for curved memo bers were derived by means of column analogy by K_{o} Fowler ${ }^{2}$.

The idea of a fictitious fixed end beam was applied in this paper. The curved member is replaced by a straight, fictitious member, passing through the center of the real member.

The slope deflection equation of the curved member was de. rived in the form

$$
M_{A B} \text { (Curved member) }=M_{A B} \text { (Straight member) } \pm \mathrm{He}
$$

where (H) is the horizontal reaction of the curved member and (e) is the vertical ordinate of its centroid. All investigations are general and are applicable to any structure containing symmetrim cal, curved or bent members.
(1) K. Beyer, Die Statik Im Stahlbetonban, Berlin 1933.
(2) K. Fowler, Slope Deflection equations for Curved members, Proc. ASCE, March 1950.

The illustrative examples selected are limited to high parabolic arches of

$$
I=I_{0} \sec \boldsymbol{\alpha}
$$

where
and
$I=$ Moment of inertia of beam at any section,
$I_{0}=$ Moment of inertia of beam at center line section, $\alpha=$ Slope of the tangent line at any point of the beam.

The writer's decision to derive simple slope deflection equal tins for symmetrical curved members came about as a result of sem minar courses taken under Professor Jan Joseph Tuma.

Grateful acknowledgement is due to Professor Puma for his adm vice and persistent encouragement as well as for the general prow cedure laid down in this paper.

Spring, 1955
Stillwater, Oklahoma

$$
\frac{\text { ReG. } \operatorname{Cng} \operatorname{lng} / 4}{\text { R. G. UNGSON, JR. }}
$$

TABLE OF CONTENTS

PART I

DERIVATIONS

Section Page

1. Fixed End Moments 1
2. End Moments Duee to θ_{A} 5
3. End Moments Due to θ_{B} 6
4. End Moments Due to $\triangle_{A X}$ and $\triangle_{B X}$ 7
5. End Moments Due to $\triangle_{A Y}$ and $\triangle_{B Y}$ 9
6. Slope Deflection Equations 11
7. Conclusion 12
PART II
TABLES
8. Table of Constants 13
9. Table of Fixed End Moments 14
10. Table for Thrust Due to the Load 15
11. Table of Thrust Due to Angular Rotations and Lateral
Displacements 16

TABLE OF CONTENTS (Cont'd)

PART III

ILLUSTRATIVE EXAMPLES

Section
 Page

12. Illustrative Example Number 1....................................... 17
13. Illustrative Example Number 2...................................... 20

TABLE OF ILLUSTRATIONS

1. Figure 1 (Symnetrical curved beam with a general load)..... I
2. Figure 2 (Symmetrical curved bearn with an angular rotation of the left end A) 5
3. Figure 3 (Symmetrical curved beam with an angular rotation of the right end B) .. 7
4. Figure 4 (Symnetrical curved beam with a horizontal lateral displacement of one leg relative to the other.... 8
5. Figure 5 (Symmetrical curved beam with a vertical lateral displacement of one leg relative to the other.... 9
6. Figure 6 (Three continuous symmetrical parabolic arches.... 17
7. Figure 7 (Frame with Parabolic top member loaded by a vertical uniform load and a horizontal uniform load from the left side 20
TABLE OF ILLUSTRATIONS (Cont'd)
Page
8. Figure 8 (Frame with parabolic top member symmetrically Loaded from the top and from the sides 21
9. Figure 9 (Frame with parabolic top member antisymmetric.. ally loaded from the top \& from the sides 25
TABLE OF SIGN CONVENTIONS
10. Moments
$+$

2. Horizontal Forces

$$
\square
$$3. Vertical Forces

$$
-1
$$

4. Horizontal displacements
5. Vertical displacements

$$
+1 \quad-1
$$

6. Angular rotations

NOMENCLATURE

$M_{A B}=$ Left end moment of arch, $A B$.
$M_{B A}=$ Right end moment of arch, $A B$.
$\mathrm{FM}_{\mathrm{AB}}=$ Fixed end moment of the left end of arch (AB).
$\mathrm{FM}_{\mathrm{BA}}=$ Fixed end moment of the right end of arch (AB).
$G M_{A B}=$ Left end moment of fictitious beam ($A^{\prime} B^{\prime}$).
$G M_{B A}=$ Right end moment of fictitious beam ($A^{\prime} B^{\prime}$).
$\mathrm{H}=$ Total thrust of the arch (AB).
$R_{A Y}=$ Vertical reaction of left end of arch (AB).
$R_{A X}=$ Horizontal reaction of left end of $\operatorname{arch}(A B)$.
$R_{B Y}=$ Vertical reaction of right end of arch (AB).
$R_{B X}=$ Horizontal reaction of right end of arch ($A B$).
e $\quad=$ Distance of centroid of arch from its base line ($A B$).
$\theta_{A}=$ Angular rotation of left end A.
$\theta_{B}=$ Angular rotation of right end B.
$\Delta_{A Y}=$ Vertical displacement of end A.
$\Delta_{B Y}=$ Vertical displacement of end B.
$\triangle_{A X}=$ Horizontal displacement of end A.
$\Delta_{B X}=$ Horizontal displacement of end B.
$U_{Y}=$ Angular rotation of the beam.
$K_{A B}^{(R)}=$ Rotational stiffness factor of end A.
$K_{B A}^{(R)}=$ Rotational stiffness factor of end B.
$K_{A B}^{(C)}=$ Carry over factor from A to B.
$K_{B A}^{(C)}=$ Carry Over factor from B to A.
$\Delta_{Y}=$ Relative vertical displacement between A and B.
$\Delta_{X}=$ Relative horizontal displacement between A and B.

NOMENCLATURE (Cont'd)

$K_{A B}^{\prime}=$ Modified stiffness factor for a symmetrical beam with a symmetrical load.
$K_{A B}^{\prime \prime}=$ Modified stiffness factor for a symmetrical beam with an antisymmetrical load.
$K_{B A}^{i \prime \prime}=$ Modified stiffness factor for a beam with a hinged end.
$\mathrm{L}=\operatorname{Span}$ of the $\operatorname{arch}(\mathrm{AB})$.
$\mathrm{BM}=$ Bending moment at any point on a simple beam.
SM = Statical moment of load about any point.
$T_{A B}=$ Moment of the bending moment diagram about the left end A.
$T_{B A}=$ Moment of the bending moment diagram about the right end B_{A}
$f=$ Height of the arch.
I = Moment of inertia at any section of the arch.
$\boldsymbol{\alpha}=$ Angle which the tangent to the arch makes with the horizontal.

CONSTANTS:

$$
\begin{aligned}
& C_{I}=\int_{0}^{L} \frac{X^{2} d s}{L^{2} E I} \\
& c_{2}=\int_{0}^{L} \frac{X X I d s}{L^{2} \mathrm{EI}} \\
& C_{3}=\int_{0}^{L} \frac{X^{\prime 2} d s}{L^{2} E I}
\end{aligned}
$$

$$
c_{4}=\int_{0}^{L} \frac{Y^{2} d s}{E I}
$$

$$
C_{5}=\int_{0}^{\mathrm{L}} \frac{\mathrm{BM}(\mathrm{~A})}{\mathrm{Yds}}
$$

$$
C_{6}=\int_{0}^{L} \frac{\mathrm{BM}^{(B)} \mathrm{Yds}}{\mathrm{EI}}
$$

$$
X^{\prime}=L-X
$$

PART I

DERIVATIONS

PART I

DERIVATIONS

1. Fixed End Moments:

A fixed end symmetrical curved bar, loaded by a general system of loads will be considered (Fig. 1). The reactive elements may be related to the axis $\bar{X} \quad\left(R \frac{1}{A X}, R_{\bar{A} Y}, G M_{A B}^{I}, R_{B X}^{I}, R E Y, G M E A\right)$, which passw es through the center of the arch, or to the axis $\overline{A B}\left(R_{A X}^{I}, R_{A Y}^{1} M_{A B}^{l}\right.$ $R_{B X}^{1}, R_{B Y}^{1} M_{B A}^{1}$). The first relation has been proven to be more ap propriate and will be used.
G. G. is the center of gravity of the arch.

Thus horizontal reactions are

$$
\begin{equation*}
R_{A X}^{I}=R_{B X}^{I}=H^{1} \tag{1}
\end{equation*}
$$

The vertical reactions are

$$
\begin{equation*}
R_{A Y}^{I}=B R_{A Y}^{I}-\frac{M_{A B}^{I}+M_{B A}^{I}}{L}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{B Y}^{I}=B R A B_{I}^{I}+\frac{M_{A B}^{I}+M_{B A}^{I}}{L} \tag{3}
\end{equation*}
$$

where $\quad B R_{A Y}^{I}$ and $B R_{B I}^{I}$ are the vertical reactions of a simple beam $A^{\top} R^{\prime}$. And the fixed end moments are

$$
\begin{equation*}
G M_{A B}^{I}=M_{A B}^{I}+H_{e}^{I} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
G M_{B A}^{]}=M_{B A}^{1}-H^{I} e, \tag{5}
\end{equation*}
$$

where e is the ordinate of the centroid of the bar.
The normal force at any right section of the bar is

$$
\begin{equation*}
N_{X=0 \rightarrow I}^{(A)}=+\sum_{0}^{X} F_{X} \cos \varphi+\sum_{0}^{X} F_{Y} \sin \varphi \tag{6}
\end{equation*}
$$

where φ is the angle the tangent line to the bar at any point maixes with the horizontal.

The shearing force at any right sestion of the bar is

$$
\begin{equation*}
T_{X=0 \rightarrow I}^{(A)}=-\sum_{0}^{X} F_{X} \sin \varphi+\sum_{0}^{X} F_{Y} \cos \varphi \tag{7}
\end{equation*}
$$

and the bending moment at any right section of the bar is

$$
\begin{equation*}
M_{X=0}^{(A)} \rightarrow L=G M_{A B}^{1}-\frac{G M_{A B}^{1}+G M_{B A}^{1}}{L} X+B M_{X}^{(A)}-H^{1} Y \tag{8}
\end{equation*}
$$

Or, taken from the end B

$$
\begin{equation*}
M_{X}^{(B)}{ }_{0}^{(B)}=-G M_{B A}^{I}+\frac{G M_{A B}^{1}+G M_{B A}^{1}}{L} X^{\prime}+B M_{X}^{(B)} \ldots H^{I} Y, \tag{9}
\end{equation*}
$$

where $B M_{X}^{(A)}$ and $B M_{X}^{(B)}$ are the bending moments of a simple beam $\overline{A B}$. The virtual work equations are

$$
\begin{align*}
& \int_{0}^{L} \frac{N d s}{L A E}+\int_{0}^{L} \frac{V d s}{L A G}+\int_{0}^{L} \frac{M X^{\prime} d s}{L E I} m 0=\frac{\partial U}{\partial G M_{A B}^{1}}, \tag{10}\\
& \int_{0}^{L} \frac{N d s}{L A E}+\int_{0}^{L} \frac{V d s}{J A G}+\int_{0}^{L} \frac{M X d s}{L E I}=0=\frac{\partial U}{\partial G M_{B A}^{-}}, \tag{11}
\end{align*}
$$

and $\quad \int_{0}^{L} \frac{N d s}{L A E}+\int_{0}^{L} \frac{V d s}{L A G}+\int_{0}^{L} \frac{M Y d s}{L E I}=0=\frac{\partial U}{\partial H^{I}}$,
where $\quad X^{\prime}=(\operatorname{Im} X)$.
Considering the normal and the shearing deformations to be small and expressing equations (10, 11, and 12) in terms of equations (8 and 9), the virtual work equations become

$$
\begin{align*}
& G M_{A B}^{I} \int_{0}^{L} \frac{X^{2}}{L^{2} E I}-G M_{B A}^{I} \int_{0}^{I} \frac{X^{9} d s}{L^{2} E I}+\int_{0}^{I} \frac{B M^{(A)} X^{1} d s}{L E I}=0, \tag{13}\\
& G M_{A B}^{I} \int_{0}^{L} \frac{X^{\prime} X d s}{L^{2} E I}=G M_{B A}^{1} \int_{0}^{I} \frac{X^{2} d s}{L^{2} E I}+\int_{0}^{I} \frac{B M_{X^{0}}^{(A)} X d s}{L E I}: 0, \tag{24}\\
& \int_{0}^{I} \frac{\mathrm{BM}_{X}^{(A)} Y \mathrm{ds}}{\mathrm{EI}}-\mathrm{H}^{I} \int_{0}^{\mathrm{L}} \frac{Y^{2} \mathrm{ds}}{\mathrm{EI}}=0 . \tag{25}
\end{align*}
$$

Denoting

$$
\begin{align*}
& C_{I}=\int_{0}^{L} \frac{X^{2} d s}{L^{2} E I}, \\
& C_{3}=\int_{0}^{I} \frac{x^{2} d s}{L^{2} E I}, \\
& C_{2}=\int_{0}^{L X X X} \frac{X}{L^{2} E I}, \tag{16}\\
& C_{4}=\int_{0}^{J} \frac{y^{2} d s}{E I}, \\
& \mathrm{C}_{5}=\int_{0}^{\mathrm{L} \mathrm{BM}^{(\mathrm{A})} \mathrm{Yds}} \frac{\mathrm{EI}}{}, \tag{17}\\
& C_{6}=\int_{0}^{L} \frac{B M^{(B)} \mathrm{Yds}}{E I}, \\
& T_{A B}=\int_{0}^{L} \frac{B M^{(A)} X d s}{L E I}, \quad T_{B A}=\int_{0}^{工} \frac{B M^{(A)} X^{\prime} d s}{L E I}, \tag{18}
\end{align*}
$$

the deformation equations become

$$
\begin{align*}
C_{3} G M_{A B}^{I}-C_{2} G M_{B A}^{I}+T_{B A} & =0 \tag{19}\\
C_{2} G M_{A B}^{I}-C_{2} G M_{B A}^{I}+T_{A B} & =0, \tag{20}\\
C_{4} H^{I}-G_{5} & =0 \tag{21}
\end{align*}
$$

and

Solving equations (19, 20, and 21) simultaneously and denoting

$$
\begin{equation*}
\mathrm{C}_{1} \mathrm{C}_{3}-\mathrm{C}_{2} \mathrm{C}_{2}=\mathrm{N}, \tag{22}
\end{equation*}
$$

the reactive elements related to the centroidal axis become

$$
\begin{align*}
& \mathrm{GM}_{\mathrm{AB}}^{\mathrm{I}}=\frac{\mathrm{C}_{2} \mathrm{~T}_{\mathrm{AB}}-\mathrm{C}_{1} \mathrm{~T}_{\mathrm{BA}}}{\mathrm{~N}}, \tag{23}\\
& \mathrm{GM}_{\mathrm{BA}}^{\mathrm{I}}=\frac{\mathrm{C}_{2} \mathrm{~T}_{\mathrm{BA}}-\mathrm{C}_{3} \mathrm{~T}_{\mathrm{AB}}}{\mathrm{~N}}, \tag{24}
\end{align*}
$$

and $\quad H^{I}=\frac{C_{5}}{C_{4}} \quad$ or $\quad \frac{C_{6}}{C_{4}}$.

Finally the reactive elements related to $A B$ become

$$
\begin{align*}
& M_{A B}^{I}=\frac{C_{2} T_{A B}-C_{1} T_{B A}}{N}+\frac{C_{5}}{C_{4}} e, \tag{26}\\
& M_{B A}^{I}=\frac{C_{2} T_{B A}-C_{3} T_{A B}}{N}-\frac{C_{6}}{C_{4}} e, \tag{27}\\
& R_{A X}^{I}=R_{B X}^{I}=\frac{C_{5}}{C_{4}}=\frac{C_{6}}{C_{4}} \tag{28}
\end{align*}
$$

2. End Moments due to θ_{A} :

Releasing the fixed end A and producing an angular deformation θ_{A} (Fig. 2) and using the same procedure as in the previous derives tion, the deformation equations similar to equations (19, 20, \& 21) become

$$
\begin{align*}
C_{3} \mathrm{GM}_{\mathrm{AB}}^{(2)}-\mathrm{C}_{2} \mathrm{GM}_{\mathrm{BA}}^{(2)} & =\theta_{\mathrm{A}} \tag{29}\\
\mathrm{C}_{2} \mathrm{GM}_{\mathrm{AB}}^{(2)}-\mathrm{C}_{1} \mathrm{GM}_{\mathrm{BA}}^{(2)} & =0 \tag{30}\\
\mathrm{C}_{4} \mathrm{H}^{(2)} & \tag{32}\\
\mathrm{Ce} & \\
A & =0
\end{align*}
$$

The reactive elements related to the axis \bar{X} become

$$
\begin{align*}
& G M_{A B}^{(2)}=\frac{\theta_{A} C_{1}}{N}, \tag{32}\\
& G M_{B A}^{(2)}=\frac{\theta_{A} C_{2}}{N}, \tag{33}\\
& H \tag{34}
\end{align*},
$$

Finally, the reactive elements related to $\overline{\mathrm{AB}}$ are

$$
\begin{align*}
& M_{A B}^{(2)}=\frac{\theta_{A} C_{1}}{N}+\frac{\theta_{A} e^{2}}{C_{4}}, \tag{35}\\
& M_{B A}^{(2)}=\frac{\theta_{A} C_{2}}{N}=\frac{\theta_{A} e^{2}}{C_{4}} .
\end{align*}
$$

and

$$
\begin{equation*}
R_{A X}^{(2)}=R_{B X}^{(2)}=\frac{\theta_{A}{ }^{(2)}}{C_{4}} \tag{37}
\end{equation*}
$$

2. End Moments due to θ_{8} :

Releasing the fixed end B, but holding the ond A filxed (Fig. 3) and produsing an angular displacenent θ_{B} at B from cysiosym: metry, the reactive elements related to axis \bar{X} become

$$
\begin{align*}
& G M_{A B}^{(3)}=\frac{C_{2} \theta_{B}}{N}, \tag{38}\\
& G M_{B A}^{(3)}=\frac{C_{3} \theta_{B}}{N}, \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
H(3)=\frac{\theta_{B}}{C_{4}} \tag{40}
\end{equation*}
$$

Finally the reactive elements related to the axis $\overline{A B}$ are

$$
\begin{align*}
& M_{A B}^{(3)}=\frac{C_{2} \theta_{B}}{N} \cdot \frac{e^{2} \theta_{B}}{C_{4}}, \tag{42}\\
& M_{B A}^{(3)}=\frac{C_{3} \theta_{B}}{N}+\frac{e^{2} \theta_{B}}{C_{4}},
\end{align*}
$$

and

$$
\begin{equation*}
R_{A X}^{(3)}:=R_{B X}^{(3)}:=-\frac{\theta \theta_{B}}{C_{4}} \tag{4.3}
\end{equation*}
$$

4. End Moments due to $\Delta_{A X}$ and $\Delta_{B X: ~}^{\text {: }}$

Locking the ends A and B against rotation, but perritting two independent horizontal translations (Fig. 4) and using the same procedure as in the previous cases (1 to 3), the following dem formation equations may be derived

$$
\begin{align*}
& C_{3} G M_{A B}^{(4)}-C_{2} G M_{B A}=0 \tag{44}\\
& \tag{45}\\
& C_{2} G M_{A B}^{(4)}-C_{1} G M_{B A}(4)=0, \\
& \text { and } \quad C_{4} H^{(4)}=\Delta_{A X}-A_{B X}=\Delta_{X} \tag{46}
\end{align*}
$$

The reactive elements related to the axis $\overline{\mathrm{X}}$ become

Finally the reactive elements relatea to the axis $\overline{A B}$ are

$$
\begin{align*}
& M_{A B}^{(4)}=\frac{\Delta_{X}{ }^{e}}{C_{4}}, \tag{50}\\
& M_{B A}^{(4)}=-\frac{\Delta_{X}^{e}}{C_{4}} \tag{51}\\
& \text { and } \quad R_{A X}^{(4)}=R_{B X}^{(4)}=\frac{\Delta_{X}}{C_{4}} .
\end{align*}
$$

5. End Moments due to $\Delta_{A Y}$ and $\Delta_{B Y:-}$

Locking the ends A and B against rotation and permitting two independent vertical translations (Fig. 5) and using the same prom cedure as in the previous cases (1 to 4), the following deformation equations may be derived

$$
\begin{align*}
& \mathrm{C}_{3} \mathrm{GM}_{\mathrm{AB}}^{(5)}-\mathrm{C}_{2} \mathrm{GM}_{\mathrm{BA}}^{(5)}=\frac{\Delta_{\mathrm{BY}} \cdots \Delta_{\mathrm{AY}}}{\mathrm{~L}}=\frac{\Delta_{\mathrm{Y}}}{\mathrm{~L}}, \tag{53}\\
& \mathrm{C}_{2} \mathrm{GM}_{\mathrm{AB}}^{(5)}-\mathrm{C}_{2} \mathrm{GM}_{\mathrm{BA}}^{(5)}=\frac{\Delta_{\mathrm{BY}} \cdots \Delta_{\mathrm{AY}}}{\mathrm{~L}}=\frac{\Delta_{\mathrm{I}}}{\mathrm{I}}
\end{align*}
$$

and

$$
\begin{equation*}
-\mathrm{C}_{4} \mathrm{H}^{(5)}=0 \tag{55}
\end{equation*}
$$

FIG. 5

The reactive elements related to the $\overline{\mathrm{X}}$.axis are

$$
\begin{align*}
\mathrm{GM}_{A B}^{(5)} & =\frac{C_{I}+C_{2}}{N} \frac{\Delta I}{L}, \tag{56}\\
\mathrm{GM}_{\mathrm{BA}}^{(5)} & =\frac{C_{3}+C_{2}}{N} \frac{\Delta_{Y}}{L}, \tag{57}\\
H^{(5)} & =0 . \tag{58}
\end{align*}
$$

Finally the reactive elements related to the $\overline{A B}$ axis become

$$
\begin{align*}
& M_{A B}^{(5)}=\frac{c_{1}-c_{2}}{N} \psi_{Y}, \tag{59}\\
& M_{B A}^{(5)}=\frac{c_{3}-c_{2}}{N} \psi_{Y}, \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
R_{A X}^{(5)}=R_{B X}^{(5)}=0 \tag{61}
\end{equation*}
$$

in which

$$
\begin{equation*}
U_{Y}=\frac{\Delta Y}{L} \tag{62}
\end{equation*}
$$

6. Slope Deflection Equations:

Superimposing the results of equations (26, 27, 28, 35, 36, 37, $41,42,43,50,51,52,59,60$, and 61), the final slope deflection equations become

$$
\begin{gather*}
M_{A B}=\frac{C_{1}}{N} \theta_{A}+\frac{C_{2}}{N} \theta_{B}+\frac{C_{1}+C_{2}}{N} \psi_{Y}+G M_{A B}+\mathrm{He}_{2} \tag{63}\\
M_{B A}=\frac{C_{3}}{N} \theta_{B}+\frac{C_{2}}{N} \theta_{A}+\frac{C_{3}+C_{2}}{N} \Psi_{Y}+G_{B A}-H e_{2} \tag{64}\\
\therefore=\frac{e\left(\theta_{A}-\theta_{B}\right)+\Delta_{X}+C_{5}}{C_{4}} \tag{65}
\end{gather*}
$$

and

Considering the curved member to be a high parabolic arch of

$$
\begin{equation*}
I=I_{0} \sec \alpha \tag{66}
\end{equation*}
$$

then

$$
\begin{array}{r}
M_{A B}=4 E K \theta_{A}+2 E K \theta_{B}+6 E K \psi+\mathrm{GM}_{A B}+\mathrm{He}_{0} \\
M_{B A}=4 E K \theta_{B}+2 E K \theta_{A}+6 E K \psi+\mathrm{GM}_{\mathrm{BA}}=\mathrm{He}, \\
H=\frac{5 E K\left(\theta_{A}-\theta_{B}\right)}{e}+\frac{C_{5}}{c_{4}}+\frac{5 E K \Delta_{X}}{e^{2}} . \tag{69}
\end{array}
$$

and

The similarity of these equations with the regular slope dea flection equations for straight beams is apparent.

In the equations above, the relative stiffness (K) of the beam is used where

$$
\begin{equation*}
K=\frac{I}{I} \tag{70}
\end{equation*}
$$

7. Conclusion:

By relating the reactive forces and moments acting on any symmetrical arch to the axis \bar{X} passing through the centroid of the arch, the slope deflection equations can be easily derived.

These equations have two simple parts. The first part is the slope deflection equation of a simple beam ($A^{9} B^{0}$) with a length equal to the span of the arch (L) and loaded with the same load as that of the arch.

The second part is a correction to the end moments given by the first part. This correction (He) is due to the total thrust (H) of the arch multiplied by the vertical distance of the centroid (e) from the base line (AB).

These slope deflection equations make the solution of sym.. metrical arch structures almost as simple as that of a straight beam.

PART II

TABLES

PART II

TABLES

From the formulas derived in Part I, the following tables are obtained for high parabolic arch structures of

$$
I=I_{0} \sec \alpha
$$

where
$I=$ the moment of inertia of the arch at any section, $I_{0}=$ the moment of inertia at the center line section, $\alpha=$ the slope of the tangent line to the arch.
8. Table of Constants:

$C_{I}=\int_{0}^{L} \frac{x^{2} d s}{L^{2} E I}$	$\frac{L}{3 E I}$
$\mathrm{C}_{2}=\int_{0}^{\mathrm{L}} \frac{\mathrm{XX} \cdot \mathrm{ds}}{\mathrm{~L}^{2} \mathrm{EI}}$	$\frac{L}{6 E I}$
$c_{3}=\int_{0}^{L} \frac{X^{2} d s}{L^{2} E I}$	$\frac{L}{3 E I}$
$C_{4}=\int_{0}^{L} \frac{\mathrm{Y}^{2} \mathrm{ds}}{\mathrm{EI}}$	$\frac{4 f^{2} L}{45 E I}$
$N=C_{1} C_{3}-C_{2} C_{2}$	$\frac{\mathrm{I}^{2}}{12 \mathrm{E}^{2} \mathrm{I}^{2}}$

In all the tables, the following dimensions are used:
$f=$ the height of the arch,
and $\quad e=\frac{2 f}{3}$, is the centroidal height of the arch.
2. Table of Fixed end Moments:

LOADING	$G M_{\text {AB }}$	$\mathrm{GM}_{\mathrm{BA}}$
	$\frac{C_{2} T_{A B}-C_{1} T_{B A}}{N}$	$\frac{C_{2} T_{B A}-C_{3} T_{A B}}{N}$
	$-\frac{w L^{2}}{12}$	$+\frac{w L^{2}}{12}$
	$-\frac{\mathrm{Pab}}{}{ }^{2}$	$+\frac{\mathrm{Pa}^{2} \mathrm{~b}}{\mathrm{~L}^{2}}$
	$-\frac{11 w L^{2}}{192}$	$+\frac{5 w L^{2}}{192}$
	$+\frac{3 w e^{2}}{5}$	$+\frac{69 w e^{2}}{40}$

10. Table for Thrust Due to the Load:

11. Table of Thrust Due to Angular Rotations and Lateral Displacements:

$H^{(2)}=\frac{e \theta_{A}}{C_{4}}=\frac{5 E I \theta_{A}}{e L}$	$\frac{5 E K \theta_{A}}{e}$
$H^{(3)}=-\frac{e_{B}}{C_{4}}=-\frac{5 E I \theta_{B}}{e L}$	$-\frac{5 E K \theta_{B}}{e}$
$H^{(4)}=\frac{\Delta_{Y}}{C_{4}}=\frac{0}{C_{4}}$	0
${ }^{(5)}=\frac{\triangle_{X}}{C_{4}}=\frac{5 E I \Delta_{X}}{e^{2} L}$	$\frac{5 E K \triangle_{X}}{e^{2}}$

PART III

ILLUSTRATIVE EXAMPLES

PART III

ILLUSTRATIVE EXAMPLES

12. Illustrative Example Number 1

A three span continuous beam, composed of three identical, symmetrical, parabolic, high arches, loaded and supported as shown in figure 6, will be analyzed by the slope deflection method.

The variation of the moment of inertia of the arch section is

$$
I=I_{0} \sec \alpha
$$

The modulus of elasticity is constant for all arches and will be denoted by (E).

Solution:
FIG. 6
a. Stiffness factor $\quad K_{1}=K_{2}=K_{3}=\frac{I}{L}=\frac{1000}{100}=10$ in. ${ }^{3}$.
b. Fixed end moments

$$
\begin{aligned}
& F M_{A B}=G M_{A B}+H_{A B^{e}}=-\frac{w L_{A B}^{2}}{12}+\frac{w L_{A B}^{2}}{12}=0, \\
& F M_{B A}=G M_{B A}-H_{A B^{e}}=+\frac{w L_{A B}^{2}}{12}-\frac{w L_{A B}^{2}}{12}=0, \\
& F M_{C D}=G M_{C D}+H_{C D}=-\frac{P a b^{2}}{L^{2}}+\frac{5 P_{a}^{2} b^{2}}{2 L^{3}}=-203,000, \\
& F M_{D C}=G M_{D C}-H_{C D}=+\frac{P a^{2} b}{L^{2}}-\frac{5 \mathrm{~Pa}^{2} b^{2}}{2 L^{3}}=+18,300,
\end{aligned}
$$

c. Deformations

$$
\begin{array}{llll}
\theta_{A}=0, & \theta_{B}=?, & \theta_{C}=?, & \theta_{D}=0, \\
\Delta_{A X}=0, & \Delta_{B X}=0, & \Delta_{C X}=0, & \Delta_{D X}=0, \\
\Delta_{A Y}=0, & \Delta_{B Y}=0, & \Delta_{C Y}=0, & \Delta_{D Y}=0,
\end{array}
$$

d. Deformation equations

$$
\begin{align*}
M_{A B} & =2 E K \theta_{B}-5 E K \theta_{B}=-3 E K \theta_{\mathrm{E}}, \tag{71}\\
M_{B A} & =4 E K \theta_{B}+5 E K \theta_{B}=9 E K \theta_{B}, \tag{72}\\
M_{B C} & =4 E K \theta_{B}+2 E K \theta_{C}+5 E K \theta_{B}-5 E K \theta_{C} \\
& =9 E K \theta_{B}-3 E K \theta_{C}, \tag{73}\\
M_{C B} & =4 E K \theta_{C}+2 E K \theta_{B}-5 E K \theta_{B}+5 E K \theta_{C} \\
& =-3 E K \theta_{B}+9 E K \theta_{C}, \tag{74}\\
M_{C D} & =4 E K \theta_{C}+5 E K \theta_{C}-203,000 \\
& =9 E K \theta_{C}-203,000, \tag{75}\\
M_{D C} & =2 E K \theta_{C}-5 E K \theta_{C}+18,300 \\
& =-3 E K \theta_{C}+18,300, \tag{76}
\end{align*}
$$

e. Equations of equilibrium

$$
\begin{align*}
\Sigma M_{B}=0 \equiv & M_{\mathrm{BA}}+M_{B C}=0 \\
& 180 E O_{B}-30 E O_{C}=0, \tag{77}\\
\Sigma M_{C}=0 \equiv & M_{C B}+M_{C D}=0, \\
& -30 E O_{B}+180 E O_{C}-203,000=0 \tag{78}
\end{align*}
$$

f. Solving equations (77 \& 78) simultaneously

$$
\begin{equation*}
\theta_{B}=\frac{193.5}{E}, \quad \text { and } \quad \theta_{C}=\frac{1,161}{E} \tag{79}
\end{equation*}
$$

g. Deformation equations in terms of values of θ_{B} and θ_{C}

$$
\begin{aligned}
& M_{A B}=-5,800 \\
& M_{B A}=+17,415 \\
& M_{B C}=-17,415 \\
& M_{C B}=+98,685 \\
& M_{C D}=-98,510 \\
& M_{D C}=-16,530
\end{aligned}
$$

These values are the end moments at points A, B, C, and D. All moments are in feet pounds.

13. Illustrative Example Number 2

A frame with a parabolic top member and two side bents as show in figure 7, will be analyzed. The parabolic top member is of the type

$$
I=I_{0} \sec \alpha
$$

The modulus of elasticity (E) is constant for the whole structure. The slope deflection method will be used.

FIG. 7

This problem can be solved very conveniently by resolving the frame (Fig. 7) into (I) a symnetrical system, (Fig. 8) and (II) an antisymmetrical system (Fig. 9), and to analyze only half of the frame instead of the whole. Each system will be analyzed independently and the results will be superimposed.
I. Solution by symmetrical system
a. Stiffness factors

$$
\begin{aligned}
& \mathrm{K}_{1 \mathrm{~B}}=\frac{500}{20}=25=\mathrm{K}_{\mathrm{DC}}=\mathrm{K}_{\mathrm{FE}}=\mathrm{K}_{\mathrm{HG}}, \\
& \mathrm{~K}_{\mathrm{BD}}=\frac{1000}{50}=20=\mathrm{K}_{\mathrm{FH}}, \\
& \mathrm{~K}_{\mathrm{DF}}=\frac{1000}{100}=10 .
\end{aligned}
$$

b. Fixed end moments

$$
\begin{aligned}
F M_{A B} & =\frac{-w L_{A B}^{2}}{12}=-\frac{25(20)^{2}}{12}=-833 \text { ft. Ibs. }=-F M_{B A} \\
F M_{B D} & =\frac{-w L_{B D}^{2}}{12}=-\frac{100(50)^{2}}{12}=-20,833 \text { ft. Ibs. }=-F M_{D B} \\
F M_{D F} & =\frac{-w I_{D F}^{2}}{12}+\frac{w L_{D F}^{2}}{12}+\frac{3 w_{1} e^{2}}{5}-\frac{6 w_{1} e^{2}}{7}=\frac{3(25) 100}{5}-\frac{6(25) 100}{7} \\
& =-643 \mathrm{ft.} \text { lbs. }
\end{aligned}
$$

FIG. 8
c. Deformations

$$
\begin{array}{cccc}
\theta_{A}=0, & \theta_{B}=?, & \theta_{C}=0, & \theta_{D}=?, \\
\triangle_{A X}=0, & \triangle_{B X}=\Delta_{1}, & \triangle_{C X}=0, & \Delta_{D X}=\Delta_{1}, \\
\triangle_{A Y}=0, & \triangle_{B Y}=0, & \Delta_{C Y}=0, & \Delta_{D Y}=0 .
\end{array}
$$

d. Deformation equations

$$
\begin{align*}
M_{A B}^{(I)} & =2 E K_{A B}\left(\theta_{B}-3 \psi_{I}\right)-F M_{A B} \\
& =50 E \theta_{B}-7.5 E A_{I}-833, \tag{80}\\
M_{B A}^{(I)} & =2 E K_{A B}\left(2 \theta_{B}-3 \psi_{I}\right)+F M_{B A} \\
& =100 E \theta_{B}-7.5 E \Delta_{I}+833, \tag{81}\\
M_{B D}^{(I)} & =2 E K_{B D}\left(2 \theta_{B}+\theta_{D}\right)-F M_{B D} \\
& =80 E \theta_{B}+40 E \theta_{D}-20,833, \tag{82}\\
M_{D B}^{(I)} & =2 E K_{B D}\left(2 \theta_{D}+\theta_{B}\right)+F M_{D B} \\
& =80 E \theta_{D}+40 E \theta_{B}+20,833, \tag{83}\\
M_{D C}^{(I)} & =2 E K_{D C}\left(2 \theta_{D}-3 \psi_{I}\right) \\
& =100 E \theta_{D}-7.5 E \Delta_{I}, \\
M_{D F}^{(I)} & =2 E K_{D F}\left(2 \theta_{D}-\theta_{D}\right)+10 E K_{D F} \theta_{D}+\frac{100 E \Delta_{I}}{e}-F M_{D F} \\
& =120 E \theta_{D}+10 E \Delta_{I}-653, \tag{85}\\
M_{C D}^{(I)} & =2 E K_{D C}\left(\theta_{D}-3 \psi_{I}\right) \\
& =50 E \theta_{D}-7.5 E \Delta_{I}, \tag{86}
\end{align*}
$$

where

$$
\begin{equation*}
\Psi_{1}=\frac{\triangle_{I}}{20} \tag{87}
\end{equation*}
$$

e. Equations of equilibrium

$$
\begin{align*}
\Sigma M_{B}=0 \equiv & M_{B A}+M_{B D}=0 \tag{88}\\
& 180 E \theta_{B}+40 E \theta_{D}-7.5 E \Delta_{i}-20,000=0 \\
\Sigma M_{D}=0 \equiv & M_{D B}+M_{D C}+M_{D F} \tag{89}\\
& 40 E \theta_{B}+300 E \theta_{D}+2.5 E \Delta_{I}+20,190=0
\end{align*}
$$

f. Shear equation

$$
\begin{equation*}
R_{A X}+R_{C X}+H_{D F}+875=0 \tag{90}
\end{equation*}
$$

where

$$
\begin{align*}
R_{A X} & =\text { horizontal reaction at } A,=-\frac{M_{A B}+M_{B A}}{20}-\frac{w(20)^{2}}{2(20)} \\
& =-\frac{150 E \theta_{B}-15 \mathrm{E} \triangle_{1}}{20}+250, \tag{91}\\
R_{C X} & =\text { horizontal reaction at } C=-\frac{M_{C D}+M_{D C}}{20} \\
& =-\frac{150 E_{D}-15 \mathrm{E} \Delta_{I}}{20} \tag{92}
\end{align*}
$$

$H_{D F}=$ horizontal thrust of the parabolic arch $D F$ at T

$$
\begin{align*}
& =\frac{-\mathrm{WI} \mathrm{LF}_{\mathrm{DF}}^{2}}{12 \mathrm{e}}-\frac{6 \mathrm{Wf}}{7}-\frac{5 \mathrm{EK}_{\mathrm{DF}} \theta_{\mathrm{D}}+5 \mathrm{EK}_{\mathrm{DF}} \theta_{D}}{e}-\frac{5 \mathrm{EK}_{D F}\left(2 \Delta_{I}\right)}{e^{2}} \\
& =-10 \mathrm{E} \theta_{D}-E \Delta_{I}-8,654 . \tag{93}
\end{align*}
$$

Substituting these values in equation (90) above, the final shear equation become

$$
\begin{equation*}
-7.5 \mathrm{E} \theta_{\mathrm{B}}-17.5 \mathrm{E} \theta_{\mathrm{D}}-2.5 \mathrm{E} \Delta_{1}+7,530=0 \tag{90}
\end{equation*}
$$

g. Solving equations (88, 89, and 90) simultaneously

$$
\begin{align*}
\theta_{B} & =-\frac{3.12}{E} \tag{94}\\
\theta_{D} & =-\frac{42.1}{E}, \tag{95}\\
\Delta_{I} & =-\frac{2965}{E} \tag{96}
\end{align*}
$$

h. Deformation equations in terms of θ_{B}, θ_{D} and Δ_{I}.

$$
\begin{aligned}
& M_{\mathrm{AD}}^{(I)}=\cdots+19,890 \quad=-M_{\mathrm{GH}}^{(I)} \\
& M_{B A}^{(I)}=\quad+21,980 \quad=-M_{H G}^{(I)} \\
& M_{B D}^{(I)}=\cdots-22,180 \quad=-M_{H E}^{(I)} \\
& M_{D B}^{(I)}=\cdots+17,510 \quad \therefore=-M_{F H}^{(I)} \\
& M_{D C}^{(I)}=\cdots+15,720: \quad=-M_{F E}^{(I)} \\
& M_{D F}^{(I)}=\cdots,-33,250 \cdots,=-M_{F D}^{(I)} \\
& M_{C D}^{(I)}=+28,010 \quad=-M_{E F}^{(I)}
\end{aligned}
$$

These values are the end moments due to the symmetrical system of loading. All moments in feet pounds.
II. Solution by antisymmetrical system

FIG. 2
a. Fixed end moments

$$
\begin{aligned}
F M_{A B} & =-\frac{w L_{A B}^{2}}{12}=-\frac{25(20)^{2}}{12}=-833=-F M_{B A}, \\
F M_{D F} & =\frac{3 w e^{2}}{5}-\frac{6 w e^{2}}{7}=1,500-2,140=-640 .
\end{aligned}
$$

b. Deformations are

$$
\begin{array}{llll}
\theta_{A}=0, & \theta_{B}=?, & \theta_{C}=0, & \theta_{D}=?, \\
\Delta_{A X}=0, & \Delta_{B X}=\Delta_{2}, & \Delta_{C X}=0, & \Delta_{D X}=\Delta_{2}, \\
\Delta_{A Y}=0, & \Delta_{B Y}=0, & \Delta_{C Y}=0, & \Delta_{D Y}=0 .
\end{array}
$$

c. Deformation equations

$$
\begin{align*}
& M_{A B}^{I I}=50 E \theta_{B}-7.5 E \Delta_{2}-833, \tag{97}\\
& M_{B A}^{I I}=100 E \theta_{B}-7.5 E \Delta_{2}+833, \tag{98}\\
& M_{B D}^{I I}=80 E \theta_{B}+40 E \theta_{D}, \tag{99}\\
& M_{D B}^{I I}=80 E \theta_{D}+40 E \theta_{B}, \tag{100}\\
& M_{D C}^{I I}=100 E \theta_{D}-7.5 \mathrm{E} \Lambda_{2}, \tag{101}\\
& M_{D F}^{I I}=60 E \theta_{D}-640, \tag{102}\\
& M_{C D}^{I I}=50 E \theta_{D}-7.5 E \Delta_{2}, \tag{103}
\end{align*}
$$

d. Equations of equilibrium

$$
\begin{align*}
\Sigma M_{B}=0 \equiv & M_{B A}+M_{B D}=0, \tag{104}\\
& 180 E \theta_{B}+40 E \theta_{D}-7.5 E \Delta_{2}+833=0, \\
\Sigma M_{D}=0 \equiv & M_{D B}+M_{D C}+M_{D F}, \tag{105}\\
& 40 E \theta_{B}+240 E \theta_{D}-7.5 E \Delta_{2}-640=0 .
\end{align*}
$$

e. Shear equation

$$
\begin{equation*}
R_{A X}+R_{C X}=875, \tag{106}
\end{equation*}
$$

Knowing the values of $R_{A X}$ and $R_{C X}$ from equations (9I and 92) and substituting these values into equation (106) above, the final shear equation is obtained

$$
\begin{equation*}
-7.5 \mathrm{E} \theta_{\mathrm{B}}-7.5 \mathrm{E} \theta_{\mathrm{D}}+1.5 \mathrm{E} \Delta_{2}=625 . \tag{106}
\end{equation*}
$$

f. Solving equations (104, 105, and 106) simultaneously,

$$
\begin{align*}
\theta_{B} & =\frac{15.7}{E} \tag{107}\\
\theta_{D} & =\frac{18.35}{E} \tag{108}
\end{align*}
$$

and $\quad \Delta_{2}=\frac{586.3}{E}$.
g. Deformation equations in terms of θ_{B}, θ_{D}, and Λ_{2}

$$
\begin{align*}
& M_{A B}^{I I}=-4,000=M_{\mathrm{GH}}^{I I} \tag{110}\\
& M_{M I}^{I I}=-2,000=M_{H G}^{I I} \tag{111}\\
& \begin{array}{l}
M_{B D}^{I I}=+2,000=M_{H F}^{I I} \\
M_{D B}^{I I}=+2,100=M_{F H}^{I I}
\end{array} \tag{112}\\
& M_{D C}^{I I}=-2,600=M_{F E}^{I I} \tag{114}\\
& M_{D F}^{I I}=+500=M_{F D}^{I I} \tag{115}\\
& M_{C D}^{I I}=-3,500=M_{E F}^{I I}
\end{align*}
$$

These values are the end moments due to the antisymetrical system of loading. All are in feet pounds.
h. Superimposing the effects of the symmetrical and the antisymmetrical systems of loading, the final true end moments are obtained.

$$
\begin{equation*}
M=M^{I}+M^{I I} \tag{117}
\end{equation*}
$$

The final end moments are

$$
\begin{aligned}
& M_{A B}=+15,890, \\
& M_{B A}=+19,980, \\
& M_{B D}=-20,180, \\
& M_{D B}=+19,610, \\
& M_{D C}=+13,120, \\
& M_{D F}=-32,750, \\
& M_{C D}=+14,510, \\
& M_{G H}=-23,890, \\
& M_{H G}=-23,980, \\
& M_{H F}=+24,180, \\
& M_{F H}=-15,410, \\
& M_{F E}=-18,320, \\
& M_{F D}=+33,750, \\
& M_{\mathrm{FF}}=-21,510,
\end{aligned}
$$

All moments in feet pounds.

TITLE: SIMPLE SLOPE DEFLECTION EQUATIONS FOR SYMMETRICAL ARCH STRUCTURES.

NAME OF AUTHOR: Rafael G. Ungson, Jr.

NAME OF ADVISER: Jàn Joseph Tuma

The contents and form had been checked and approved by the author and adviser. "Instructions for Typing and Arranging the Thesis" are available in the Graduate School Office. Changes or corrections are not made by the Graduate School Office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

NAME OF TYPIST: Rafael G. Ungson, Jr.

VITA

Rafael G. Ungson, Jr. Candidate for the degree of Master of Science

Title: Simple Slope Deflection Equations for Symmetrical Arch Structures.

Major: Civil Engineering, Structures. Biographical: Born: Dagupan City, Philippines. Undergraduate Study:

Mapua Institute of Technology, Manila, Philippines, 1947-1948 and 1949-1951.
U. C. L. A., Los Angeles, California, U. S. A., 1948-1949.

Graduate Study:
Oklahoma A. and M. College, Stillwater, Oklahoma, 1954-1955.

Experiences:
Assistant Civil Engineer, Construction Project, People's Homesite \& Housing Corporation, Manila, Philippines. 1952-1954.

