0 S U Collection

SIMPLE SLOPE DEFLECTION EQUATIONS FOR

SYMMETRICAL ARCH STRUCTURES

BY

Rafael German Ungson, Jr. Bachelor of Science Mapua Institute of Technology Manila, Philippines

1951

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements

for the degree of MASTER OF SCIENCE

SIMPLE SLOPE DEFLECTION EQUATIONS FOR

SYMMETRICAL ARCH STRUCTURES

RAFAEL GERMAN UNGSON, JR.

MASTER OF SCIENCE

1955

REPORT AND ABSTRACT APPROVED:

Report Adviser

Faculty Representative

Dean of the Graduate School

PREFACE

The purpose of this report is to present a new derivation of slope deflection equations for symmetrical, curved members.

The first comprehensive study of structures with curved members by means of slope deflection equations was prepared by K. Beyer¹. The method of elastic centers was used as a basis of investigation.

In this country the slope deflection equations for curved members were derived by means of column analogy by K. Fowler².

The idea of a fictitious fixed end beam was applied in this paper. The curved member is replaced by a straight, fictitious member, passing through the center of the real member.

The slope deflection equation of the curved member was de-

 M_{AB} (Curved member) M_{AB} (Straight member) H_{B}

where (H) is the horizontal reaction of the curved member and (e) is the vertical ordinate of its centroid. All investigations are general and are applicable to any structure containing symmetrical, curved or bent members.

- (1) K. Beyer, Die Statik Im Stahlbetonban, Berlin 1933.
- (2) K. Fowler, Slope Deflection equations for Curved members, Proc. ASCE, March 1950.

The illustrative examples selected are limited to high parabolic arches of

I = I sec 🗙

where

I = Moment of inertia of beam at any section,

I_= Moment of inertia of beam at center line section,

 α = Slope of the tangent line at any point of the beam.

and

The writer's decision to derive simple slope deflection equations for symmetrical curved members came about as a result of se-

minar courses taken under Professor Jan Joseph Tuma.

Grateful acknowledgement is due to Professor Tuma for his advice and persistent encouragement as well as for the general procedure laid down in this paper.

Spring, 1955 Stillwater, Oklahoma

R. G. Ungson Jr.

R. G. UNGSON, JR.

TABLE OF CONTENTS

PART I

DERIVATIONS

Sectio	n and a second se	Page
1.	Fixed End Moments	l
2.	End Moments Due to Θ_A	5
3.	End Moments Due to Θ_B	6
4.	End Moments Due to $rightarrow_{AX}$ and $rightarrow_{BX}$	7
5.	End Moments Due to \bigtriangleup_{AY} and \bigtriangleup_{BY}	9
6.	Slope Deflection Equations	11
7.	Conclusion	12

PART II

TABLES

8.	Table of Constants	13
9.	Table of Fixed End Moments	14
10.	Table for Thrust Due to the Load	15
11.	Table of Thrust Due to Angular Rotations and Lateral	
	Displacements	16

والمرجوعي المتعطية المرجوع المتعطية والمتعاد والمرجوع

. • • •

TABLE OF CONTENTS (Cont'd)

. .

PART III

ILLUSTRATIVE EXAMPLES

Sectio	<u></u>				<u></u>	age
12.	Illustrative	Example	Number	1		17
13.	Illustrative	Example	Number	2	•••••	20

TABLE OF ILLUSTRATIONS

		Page
1.	Figure 1	(Symmetrical curved beam with a general load) 1
2.	Figure 2	(Symmetrical curved beam with an angular
		rotation of the left end A) 5
3.	Figure 3	(Symmetrical curved beam with an angular rotation
		of the right end B) 7
4.	Figure 4	(Symmetrical curved beam with a horizontal lateral
		displacement of one leg relative to the other 8
5.	Figure 5	(Symmetrical curved beam with a vertical lateral
		displacement of one leg relative to the other 9
6.	Figure 6	(Three continuous symmetrical parabolic arches 17
7.	Figure 7	(Frame with Parabolic top member loaded by a ver-
		tical uniform load and a horizontal uniform
		load from the left side 20

TABLE OF ILLUSTRATIONS (Cont'd)

		•	Page
8.	Figure 8	(Frame with parabolic top member symmetrically	
	•	Loaded from the top and from the sides	21
9.	Figure 9	(Frame with parabolic top member antisymmetri-	
		cally loaded from the top & from the sides	25

TABLE OF SIGN CONVENTIONS

1 .	Moments	(+)	
2.	Horizontal Forces	+	• •
3.	Vertical Forces	+	
4.	Horizontal displacements	+	
5.	Vertical displacements	+ †	\
6.	Angular rotations	+ >	4-

NOMENCLATURE

В	=	Left end moment of arch, AB.
A	111	Right end moment of arch, AB.
AB	Π	Fixed end moment of the left end of arch (AB).
BA	H	Fixed end moment of the right end of arch (AB).
AB		Left end moment of fictitious beam (A'B').
BA	-	Right end moment of fictitious beam (A'B').
	II	Total thrust of the arch (AB).
Y	=	Vertical reaction of left end of arch (AB).
٢	Ξ	Horizontal reaction of left end of arch (AB).
Y	=	Vertical reaction of right end of arch (AB).
ζ	Ξ	Horizontal reaction of right end of arch (AB).
	=	Distance of centroid of arch from its base line (AB).
		Angular rotation of left end A.
		Angular rotation of right end B.
Y	-	Vertical displacement of end A.
3Y	Ξ	Vertical displacement of end B.
X	=	Horizontal displacement of end A.
X	=	Horizontal displacement of end B.
ζ	=	Angular rotation of the beam.
≀) 3	=	Rotational stiffness factor of end A.
2)	=	Rotational stiffness factor of end B.
;) ;		Carry over factor from A to B.
;) 	=	Carry Over factor from B to A.
		Relative vertical displacement between A and B.
	فتغير	•
	B A A B A B A B A B A B A B A B A B A B	$\begin{array}{c} \mathbf{B} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{C} \\ $

NOMENCLATURE (Cont'd)

- K'_{AB} = Modified stiffness factor for a symmetrical beam with a symmetrical load.
- $K_{AB}^{\prime i}$ = Modified stiffness factor for a symmetrical beam with an antisymmetrical load.
- $K_{BA}^{(1)}$ = Modified stiffness factor for a beam with a hinged end.
- L = Span of the arch (AB).

BM = Bending moment at any point on a simple beam.

SM = Statical moment of load about any point.

 T_{AB} = Moment of the bending moment diagram about the left end A.

 T_{BA} = Moment of the bending moment diagram about the right end B.

f = Height of the arch.

I = Moment of inertia at any section of the arch.

 \mathbf{X} = Angle which the tangent to the arch makes with the horizontal.

CONSTANTS:

$$c_{1} = \int_{0}^{L} \frac{X^{2}ds}{L^{2}EI}$$
$$c_{2} = \int_{0}^{L} \frac{XX'ds}{L^{2}EI}$$
$$c_{3} = \int_{0}^{L} \frac{X'^{2}ds}{L^{2}EI}$$

X' = L - X

PART I

DERIVATIONS

PART I

DERIVATIONS

1. Fixed End Moments:

A fixed end symmetrical curved bar, loaded by a general system of loads will be considered (Fig. 1). The reactive elements may be related to the axis \overline{X} (R_{AX}^{l} , R_{AY}^{l} , GM_{AB}^{l} , R_{BX}^{l} , R_{BY}^{l} , GM_{EA}^{l}), which passes through the center of the arch, or to the axis \overline{AB} (R_{AX}^{l} , R_{AY}^{l} , M_{AB}^{l} , R_{BX}^{l} , R_{BY}^{l} , M_{BA}^{l}). The first relation has been proven to be more appropriate and will be used.

C. G. is the center of gravity of the arch.

Thus horizontal reactions are

 $R_{AX}^{1} = R_{BX}^{1} = H^{1}$ (1)

2

The vertical reactions are

$$R_{AY}^{l} = BR_{AY}^{l} - \frac{M_{AB}^{l} + M_{BA}^{l}}{L}, \qquad (2)$$

and

$$R_{BY}^{l} = BR_{BY}^{l} + \frac{M_{AB}^{l} + M_{BA}^{l}}{L}, \qquad (3)$$

where BR_{AY}^1 and BR_{BY}^1 are the vertical reactions of a simple beam \overline{AB}^t . And the fixed end moments are

$$M_{AB}^{l} = M_{AB}^{l} + H^{l}e , \qquad (2)$$

and

$$\mathbb{GM}_{BA}^{1} = \mathbb{M}_{BA}^{1} - \mathbb{H}^{1}e , \qquad (5)$$

where e is the ordinate of the centroid of the bar. The normal force at any right section of the bar is

$$N_{X=0}^{(A)} \rightarrow L = + \sum_{0}^{X} F_{X} \cos \varphi + \sum_{0}^{X} F_{Y} \sin \varphi$$
(6)

where φ is the angle the tangent line to the bar at any point makes with the horizontal.

The shearing force at any right section of the bar is

$$T_{X=0}^{(A)} \longrightarrow L = -\sum_{0}^{X} F_{X} \sin \varphi + \sum_{0}^{X} F_{Y} \cos \varphi$$
(7)

and the bending moment at any right section of the bar is

$$M_{X=0}^{(A)} \longrightarrow L = GM_{AB}^{1} - \frac{GM_{AB}^{1} + GM_{BA}^{1}}{L} X + BM_{X}^{(A)} - H^{1}Y$$
(8)

Or, taken from the end B:

$$^{M}X_{\pm 0}^{(B)} \longrightarrow L = -GM_{BA}^{1} + \frac{GM_{AB}^{1} + GM_{BA}^{1}}{L} X' + BM_{X}^{(B)} - H^{1}Y , \qquad (9)$$

where $\operatorname{EM}_{X}^{(A)}$ and $\operatorname{EM}_{X}^{(B)}$ are the bending moments of a simple beam $\overline{\operatorname{AB}}$. The virtual work equations are

$$\int_{0}^{L} \frac{N \, ds}{L \, AE} + \int_{0}^{L} \frac{V \, ds}{L \, AG} + \int_{0}^{L} \frac{MX^{i} \, ds}{L \, EI} = 0 = \frac{\partial U}{\partial GM_{AB}^{1}}, \quad (10)$$

$$\int_{0}^{L} \frac{N ds}{L AE} + \int_{0}^{L} \frac{V ds}{J AG} + \int_{0}^{L} \frac{MX ds}{L EI} = 0 = \frac{\partial U}{\partial GM_{BA}^{L}}, \quad (11)$$

and

$$\int_{0}^{L} \frac{N \, ds}{L \, AE} + \int_{0}^{L} \frac{V \, ds}{L \, AG} + \int_{0}^{L} \frac{MY \, ds}{L \, EI} = 0 = \frac{\partial U}{\partial H^{L}}, \quad (12)$$

where $X^{i} = (I - X)$.

Considering the normal and the shearing deformations to be small and expressing equations (10, 11, and 12) in terms of equations (8 and 9), the virtual work equations become

$$\operatorname{GM}_{AB}^{L} \int_{0}^{L} \frac{X^{1^{2}} ds}{L^{2} EI} - \operatorname{GM}_{BA}^{L} \int_{0}^{L} \frac{XX^{i} ds}{L^{2} EI} + \int_{0}^{L} \frac{\operatorname{EM}_{X}^{(A)} X^{i} ds}{L EI} = 0, \quad (13)$$

$$GM_{AB}^{1} \int_{0}^{L} \frac{X \cdot X \, ds}{L^{2} \, EI} - GM_{BA}^{1} \int_{0}^{L} \frac{X^{2} \, ds}{L^{2} \, EI} + \int_{0}^{L} \frac{BM_{X^{1}}^{(A)} X \, ds}{L \, EI} = 0, \quad (14)$$

$$\int_{0}^{L} \frac{EM_{\chi}^{(A)} Y ds}{EI} - H^{1} \int_{0}^{L} \frac{Y^{2} ds}{EI} = 0.$$
(25)

and

Denoting

$$C_{1} = \int_{0}^{L} \frac{X^{2} ds}{L^{2} EI}, \qquad C_{3} = \int_{0}^{L} \frac{X^{2}^{2} ds}{L^{2} EI}, \qquad C_{3} = \int_{0}^{L} \frac{X^{2}^{2} ds}{L^{2} EI}, \qquad C_{4} = \int_{0}^{L} \frac{Y^{2} ds}{EI}, \qquad (16)$$

$$C_{5} = \int_{0}^{L} \frac{EM^{(A)} Y ds}{EI}, \qquad C_{6} = \int_{0}^{L} \frac{EM^{(B)} Y ds}{EI}, \qquad (17)$$

$$T_{AB} = \int_{0}^{L} \frac{EM^{(A)} X ds}{L EI}, \qquad T_{BA} = \int_{0}^{L} \frac{EM^{(A)} X^{2} ds}{L EI}, \qquad (18)$$

the deformation equations become

$$C_{3}^{GM_{AB}^{1}} - C_{2}^{GM_{BA}^{1}} + T_{BA}^{2} = 0$$
, (19)

$$C_2 GM_{AB}^2 - C_1 GM_{BA}^2 + T_{AB} = 0, \qquad (20)$$

and

 \mathbf{a} nd

$$C_4 H^1 - C_5 = 0.$$
 (21)

Solving equations (19, 20, and 21) simultaneously and denoting

$$C_{1}C_{3} - C_{2}C_{2} = N$$
, (22)

the reactive elements related to the centroidal axis become

$$GM_{AB}^{1} = \frac{C_{2}T_{AB} - C_{1}T_{BA}}{N}, \qquad (23)$$

$$GM_{BA}^{l} = \frac{C_{2}T_{BA} - C_{3}T_{AB}}{N}$$
, (24)

$$H^{1} = \frac{C_{5}}{C_{4}} \quad \text{or} \quad \frac{C_{6}}{C_{4}} \quad (25)$$

Finally the reactive elements related to AB become

$$M_{AB}^{1} = \frac{C_{2}T_{AB} - C_{1}T_{BA}}{N} + \frac{C_{5}}{C_{4}} e$$
, (26)

$$M_{BA}^{I} = \frac{C_{2}T_{BA} - C_{3}T_{AB}}{N} - \frac{C_{6}}{C_{4}} e , \qquad (27)$$

and

$$R_{AX}^{1} = R_{EX}^{1} = \frac{C_{5}}{C_{4}} = \frac{C_{6}}{C_{4}}$$
 (28)

2. End Moments due to the

Releasing the fixed end A and producing an angular deformation Θ_A (Fig. 2) and using the same procedure as in the previous derivation, the deformation equations similar to equations (19, 20, & 21) become

$$c_{3}GM_{AB}^{(2)} - c_{2}GM_{BA}^{(2)} = \Theta_{A}$$
, (29)

$$C_2 GM_{AB}^{(2)} - C_1 GM_{BA}^{(2)} = 0$$
, (30)

$$C_4 H^{(2)} = e \Theta_A = 0$$
 (31)

The reactive elements related to the axis \overline{X} become

$$GM_{AB}^{(2)} = \frac{\Phi_{A}C_{1}}{N}$$
, (32)

$$GM_{BA}^{(2)} = \frac{\Theta_A C_2}{N} , \qquad (33)$$

$$H^{(2)} = \frac{\sigma_{A}^{e}}{c_{4}}$$
 (34)

Finally, the reactive elements related to \overline{AB} are

$$M_{AB}^{(2)} = \frac{\Theta_A C_1}{N} + \frac{\Theta_A e^2}{C_A}, \qquad (35)$$

$$M_{BA}^{(2)} = \frac{\Theta_A C_2}{N} - \frac{\Theta_A e^2}{C_L}, \qquad (36)$$

$$R_{AX}^{(2)} = R_{BX}^{(2)} = \frac{\Phi_{A}e}{C_{A}}$$
 (37)

and

3. End Moments due to OB:

Releasing the fixed end B, but holding the end A fixed (Fig. 3) and producing an angular displacement $\Theta_{\overline{B}}$ at B; from cyclosymmetry, the reactive elements related to axis \overline{X} become

$$GM_{AB}^{(3)} = \frac{C_2 \Theta_B}{N} , \qquad (38)$$

$$GM_{BA}^{(3)} = \frac{C_3 \overline{C_B}}{N}$$
, (39)

Finally the reactive elements related to the axis AB are

$$M_{AB}^{(3)} = \frac{C_2 \Theta_B}{N} = \frac{e^2 \Theta_B}{C_L}, \qquad (41)$$

$$M_{BA}^{(3)} = \frac{C_3 \Theta_B}{N} + \frac{e^2 \Theta_B}{C_1}, \qquad (32)$$

and

$$R_{AX}^{(3)} = R_{BX}^{(3)} = -\frac{\Theta \Theta_B}{C_4}.$$
 (43)

4. End Moments due to Δ_{AX} and Δ_{BX} :

Locking the ends A and B against rotation, but permitting two independent horizontal translations (Fig. 4) and using the same procedure as in the previous cases (1 to 3), the following deformation equations may be derived

(52)

$$C_{3}GM_{AB}^{(4)} - C_{2}GM_{BA}^{(4)} = 0$$
, (44)

$$C_2 GM_{AB}^{(4)} - C_1 GM_{BA}^{(4)} = 0$$
, (45)

and

$$C_{4}^{H}(4) = \Delta_{AX} - \Delta_{BX} = \Delta_{X} .$$
 (46)

The reactive elements related to the axis \overline{X} become

Finally the reactive elements related to the axis \overline{AB} are

$$M_{AB}^{(4)} = \frac{\Delta_{X}^{e}}{c_{4}}, \qquad (50)$$

$$M_{BA}^{(4)} = \frac{\Delta_{X}^{e}}{c_{4}}, \qquad (51)$$

$$R_{AX}^{(4)} = R_{BX}^{(4)} = \frac{\Delta_{X}}{c_{4}}. \qquad (52)$$

and

and

5. End Moments due to Δ_{AY} and Δ_{BY} :

and

Locking the ends A and B against rotation and permitting two independent vertical translations (Fig. 5) and using the same procedure as in the previous cases, (1 to 4), the following deformation equations may be derived

$$C_3 GM_{AB}^{(5)} = C_2 GM_{BA}^{(5)} = \frac{\Delta_{BY} - \Delta_{AY}}{L} = \frac{\Delta_Y}{L},$$
 (53)

$$C_2 GM_{AB}^{(5)} - C_1 GM_{BA}^{(5)} = \frac{\Delta_{BY} \cdot \Delta_{AY}}{L} = \frac{\Delta_{Y}}{L}, \quad (54)$$

$$-C_4 H^{(5)} = 0$$
 (55)

FIG, 5

The reactive elements related to the $\overline{X}_{-}axis$ are

 $H^{(5)} = 0$.

613

$$GM_{AB}^{(5)} = \frac{C_1 + C_2}{N} \frac{\Delta_Y}{L},$$
 (56)

$$GM_{BA}^{(5)} = \frac{C_3 + C_2}{N} \frac{\Delta_Y}{L},$$
 (57)

and

Ν

Finally the reactive elements related to the \overline{AB} axis become

472

$$M_{AB}^{(5)} = \frac{C_1 - C_2}{N} \Psi_{Y} , \qquad (59)$$

$$M_{BA}^{(5)} = \frac{C_3 - C_2}{N} \Psi_{Y} , \qquad (60)$$

$$R_{AX}^{(5)} = R_{BX}^{(5)} = 0 , \qquad (61)$$

9

and

in which

$$\Psi_{\Upsilon} = \frac{\Delta_{\Upsilon}}{L} \qquad (62)$$

(58)

6. Slope Deflection Equations:

Superimposing the results of equations (26, 27, 28, 35, 36, 37, 41, 42, 43, 50, 51, 52, 59, 60, and 61), the final slope deflection equations become

$$M_{AB} = \frac{C_1}{N} \Theta_A + \frac{C_2}{N} \Theta_B + \frac{C_1 + C_2}{N} \Psi_Y + GM_{AB} + He, \quad (63)$$

$$M_{BA} = \frac{C_3}{N} \Theta_B + \frac{C_2}{N} \Theta_A + \frac{C_3 + C_2}{N} \psi_Y + GM_{BA} - He, \quad (64)$$

$$H = \frac{e(\Theta_{A} - \Theta_{B}) + \Delta_{X} + C_{5}}{C_{4}} .$$
 (65)

Considering the curved member to be a high parabolic arch of

 $I = I_0 \sec \alpha$, (66)

then

$$M_{AB} = 4EK\Theta_{A} + 2EK\Theta_{B} + 6EK\psi + GM_{AB} + He,$$
(67)

$$M_{BA} = 4EK\Theta_{B} + 2EK\Theta_{A} + 6EK\psi + GM_{BA} - He,$$
 (68)

and
$$H = \frac{5EK(\Theta_A - \Theta_B)}{e} + \frac{C_5}{C_4} + \frac{5EK\Delta_X}{e^2}.$$
 (69)

The similarity of these equations with the regular slope deflection equations for straight beams is apparent.

In the equations above, the relative stiffness (K) of the beam is used where

$$K = \frac{I}{L}$$
(70)

7. Conclusion:

By relating the reactive forces and moments acting on any symmetrical arch to the axis \overline{X} passing through the centroid of the arch, the slope deflection equations can be easily derived.

These equations have two simple parts. The first part is the slope deflection equation of a simple beam $(A^{\dagger}B^{\dagger})$ with a length equal to the span of the arch (L) and loaded with the same load as that of the arch.

The second part is a correction to the end moments given by the first part. This correction (He) is due to the total thrust (H) of the arch multiplied by the vertical distance of the centroid (e) from the base line (AB).

These slope deflection equations make the solution of symmetrical arch structures almost as simple as that of a straight beam.

PART II

TABLES

PART II

TABLES

From the formulas derived in Part I, the following tables are obtained for high parabolic arch structures of

where

I = 0 the moment of inertia at the center	line section,
$\mathbf{N} = $ the slope of the tengent line to th	e erch

8. Table of Constants:

In all the tables, the following dimensions are used:

f = the height of the arch,

and $e = \frac{2f}{3}$, is the centroidal height of the arch.

9. Table of Fixed end Moments:

10. Table for Thrust Due to the Load:

11. Table of Thrust Due to Angular Rotations and Lateral Displacements:

$H^{(2)} = \frac{e \Theta_{A}}{C_{4}} = \frac{5 E I \Theta_{A}}{e L}$	<u>5EKOA</u> e
$H^{(3)} = -\frac{e\theta_{B}}{c_{4}} = -\frac{5EI\theta_{B}}{eL}$	e <u>5EKO</u> B
$H^{(4)} = \frac{\Delta_{\Upsilon}}{c_4} = \frac{0}{c_4}$	0
$H^{(5)} = \frac{\Delta_{X}}{C_{4}} = \frac{5EI\Delta_{X}}{e^{2}L}$	<u>5EKAx</u>

PART III

ILLUSTRATIVE EXAMPLES

PART III

ILLUSTRATIVE EXAMPLES

12. Illustrative Example Number 1

A three span continuous beam, composed of three identical, symmetrical, parabolic, high arches, loaded and supported as shown in figure 6, will be analyzed by the slope deflection method.

The variation of the moment of inertia of the arch section is

$$I = I_{o} \sec \alpha$$
.

The modulus of elasticity is constant for all arches and will be denoted by (E).

DOTUGTOII.

a. Stiffness factor

 $K_1 = K_2 = K_3 = \frac{I}{L} = \frac{1000}{100} = 10 \text{ in}^3$

b. Fixed end moments

$$FM_{AB} = GM_{AB} + H_{AB}e = -\frac{wL_{AB}^2}{12} + \frac{wL_{AB}^2}{12} = 0 ,$$

$$FM_{BA} = GM_{BA} - H_{AB}e = +\frac{wL_{AB}^2}{12} - \frac{wL_{AB}^2}{12} = 0 ,$$

$$FM_{CD} = GM_{CD} + H_{CD}e = -\frac{Pab^2}{L^2} + \frac{5Pa^2b^2}{2L^3} = -203,000 ,$$

$$FM_{DC} = GM_{DC} - H_{CD}e = +\frac{Pa^2b}{L^2} - \frac{5Pa^2b^2}{2L^3} = + 18,300 .$$

- c. Deformations

d. Deformation equations

$$M_{AB} = 2EK\Theta_{B} - 5EK\Theta_{B} = -3EK\Theta_{B}, \qquad (71)$$

$$M_{BA} = 4EK\Theta_{B} + 5EK\Theta_{B} = 9EK\Theta_{B}$$
, (72)

$$M_{BC} = 4EK\Theta_{B} + 2EK\Theta_{C} + 5EK\Theta_{B} - 5EK\Theta_{C}$$

= 9EKO_B - 3EKO_C (73)

$$M_{CB} = 4EK\Theta_{C} + 2EK\Theta_{B} - 5EK\Theta_{B} + 5EK\Theta_{C}$$

$$= 3EK\Theta + 0EK\Theta$$
(71)

$$= -5 \text{EKO}_{\text{B}} + 5 \text{EKO}_{\text{C}}, \qquad (14)$$

$$M_{CD} = 4EK\Theta_{C} + 5EK\Theta_{C} - 203,000$$

= 9EK\Theta_{C} - 203,000, (75)

$$M_{DC} = 2EK\Theta_{C} - 5EK\Theta_{C} + 18,300$$

= - 3EK\Theta_{C} + 18,300. (76)

e. Equations of equilibrium

.....

$$\Sigma M_{\rm B} = 0 \equiv M_{\rm BA} + M_{\rm BC} = 0 ,$$

$$180 \ EO_{\rm B} - 30 \ EO_{\rm C} = 0 , \qquad (77)$$

$$\sum_{m_{c}}^{m_{c}} = 0 \equiv M_{CB} + M_{CD} = 0 ,$$

-30 E0_B + 180E0_C - 203,000 = 0 . (78)

f. Solving equations (77 & 78) simultaneously

$$\Theta_{\rm B} = \frac{193.5}{E}, \text{ and } \Theta_{\rm C} = \frac{1,161}{E}.$$
(79)

g. Deformation equations in terms of values of $\theta_{\bar{B}}$ and $\theta_{\bar{C}}$

$$M_{AB} = -5,800$$

$$M_{BA} = +17,415$$

$$M_{BC} = -17,415$$

$$M_{CB} = +98,685$$

$$M_{CD} = -98,510$$

$$M_{DC} = -16,530$$

These values are the end moments at points A, B, C, and D. All moments are in feet pounds.

13. Illustrative Example Number 2

A frame with a parabolic top member and two side bents as shown in figure 7, will be analyzed. The parabolic top member is of the type

 $I = I_{o} \sec \alpha$.

The modulus of elasticity (E) is constant for the whole structure. The slope deflection method will be used.

This problem can be solved very conveniently by resolving the frame (Fig. 7) into (I) a symmetrical system, (Fig. 8) and (II) an antisymmetrical system (Fig. 9), and to analyze only half of the frame instead of the whole. Each system will be analyzed independently and the results will be superimposed.

I. Solution by symmetrical system

Stiffness factors

a.

$$K_{1B} = \frac{500}{20} = 25 = K_{DC} = K_{FE} = K_{HG}$$

$$K_{BD} = \frac{1000}{50} = 20 = K_{FH},$$

$$K_{DF} = \frac{1000}{100} = 10.$$

b. Fixed end moments

$$FM_{AB} = \frac{-wL_{AB}^2}{12} = -\frac{25(20)^2}{12} = -833 \quad \text{ft. lbs.} = -FM_{BA} ,$$

$$FM_{BD} = \frac{-wL_{BD}^2}{12} = -\frac{100(50)^2}{12} = -20,833 \quad \text{ft. lbs.} = -FM_{DB} ,$$

$$FM_{BD} = \frac{-wL_{DF}^2}{12} + \frac{wL_{DF}^2}{12} + \frac{3w_1e^2}{5} - \frac{6w_1e^2}{7} = \frac{3(25)100}{5} - \frac{6(25)100}{7}$$

c. Deformations

$$\begin{array}{l} \Phi_{A} = 0, \quad \Phi_{B} = ?, \quad \Phi_{C} = 0, \quad \Phi_{D} = ?, \\ \bigtriangleup_{AX} = 0, \quad \bigtriangleup_{BX} = \bigtriangleup_{1}, \quad \bigtriangleup_{CX} = 0, \quad \bigtriangleup_{DX} = \bigtriangleup_{1}, \\ \bigtriangleup_{AY} = 0, \quad \bigtriangleup_{BY} = 0, \quad \bigtriangleup_{CY} = 0, \quad \bigtriangleup_{DY} = 0. \end{array}$$

d. Deformation equations

$$M_{AB}^{(I)} = 2EK_{AB}(\Theta_{B} - 3\psi_{1}) - FM_{AB}$$

= 50EO_B - 7.5E^A₁ - 833 , (80)

$$M_{BA}^{(1)} = 2EK_{AB}(2\Theta_{B} - 3\psi_{1}) + FM_{BA}$$

= 100E $\Theta_{B} - 7.5E\Delta_{1} + 833$, (81)
$$M^{(1)} = 2EK_{AB}(2\Theta_{B} - \Theta_{D}) - FM_{AB}$$

$$M_{BD}^{(1)} = 2EK_{BD}(2\Theta_{B} + \Theta_{D}) - FM_{BD}$$

$$= 80E\Theta_{B} + 40E\Theta_{\overline{D}} - 20,833, \qquad (82)$$

$$M_{DB}^{(I)} = 2EK_{BD}(2\Theta_{D} + \Theta_{B}) + FM_{DB}$$

= 80E Θ_{D} + 40E Θ_{B} + 20,833, (83)

$$M_{DC}^{(I)} = 2EK_{DC}(2\Theta_{D} - 3\psi_{1})$$

$$= 100 E\Theta_{D} - 7.5E\Delta_{1} , \qquad (84)$$

$$M_{DF}^{(I)} = 2EK_{DF}(2\Theta_{D} - \Theta_{D}) + 10EK_{DF}\Theta_{D} + \frac{100E\Delta_{1}}{e} - FM_{DF}$$

$$= 120E\Theta_{D} + 10E\Delta_{1} - 653 , \qquad (85)$$

$$M_{CD}^{(I)} = 2EK_{DC}(\Theta_{D} - 3\psi_{1})$$

$$= 50E\Theta_{D} - 7.5E\Delta_{1} , \qquad (86)$$

where

$$\psi_1 = \frac{\Delta_1}{20}$$

(87)

e. Equations of equilibrium

$$\sum M_{B} = 0 \equiv M_{BA} + M_{BD} = 0, \qquad (88)$$

$$180E\Theta_{B} + 40E\Theta_{D} - 7.5E\Delta_{1} - 20,000 = 0,$$

$$\sum M_{D} = 0 \equiv M_{DB} + M_{DC} + M_{DF}, \qquad (89)$$

$$40E\Theta_{B} + 300E\Theta_{D} + 2.5E\Delta_{1} + 20,190 = 0.$$

f. Shear equation

$$R_{AX} + R_{CX} + H_{DF} + 875 = 0,$$
 (90)

where

~ .

/

$$R_{AX}$$
 = horizontal reaction at $A_{,=} - \frac{M_{AB} + M_{BA}}{20} - \frac{w(20)^2}{2(20)}$

$$= -\frac{150 \text{ EO}_{\text{B}} - 15 \text{E} \Delta_{1}}{20} + 250, \qquad (91)$$

$$R_{CX} = \text{horizontal reaction at } C = -\frac{M_{CD} + M_{DC}}{20}$$
$$= -\frac{150 \text{ E}\Theta_{D} - 15\text{E}\Delta_{1}}{20}, \qquad (92)$$

 ${\rm H}_{\rm DF}$ = horizontal thrust of the parabolic arch DF at T

$$=\frac{-wL_{DF}^{2}}{12e}-\frac{6wf}{7}+\frac{5EK_{DF}\Theta_{D}+5EK_{DF}\Theta_{D}}{e}-\frac{5EK_{DF}(2\Delta_{1})}{e^{2}}$$

$$= -10E_{D} - E_{1} - 8,654.$$
 (93)

Substituting these values in equation (90) above, the final shear equation become

$$-7.5E_{B} - 17.5E_{D} - 2.5E_{1} + 7,530 = 0.$$
 (90)

g. Solving equations (88, 89, and 90) simultaneously

$$\Theta_{\rm B} = -\frac{3.12}{\rm E},\tag{94}$$

$$\Theta_{\overline{D}} = -\frac{42.1}{E}, \qquad (95)$$

$$\Delta_{l} = -\frac{2965}{E}.$$
 (96)

h. Deformation equations in terms of $\theta_{\rm B}$, $\theta_{\rm D}$ and $\bigtriangleup_{\rm l}$.

$$M_{AB}^{(I)} = ... + 19,890 = - M_{GH}^{(I)}$$

$$M_{BA}^{(I)} = ... + 21,980 = - M_{HG}^{(I)}$$

$$M_{ED}^{(I)} = ... - 22,180 = - M_{HF}^{(I)}$$

$$M_{DB}^{(I)} = ... + 17,510 = - M_{FH}^{(I)}$$

$$M_{DC}^{(I)} = ... + 15,720 = - M_{FD}^{(I)}$$

$$M_{DF}^{(I)} = ... - 33,250 = - M_{FD}^{(I)}$$

$$M_{CD}^{(I)} = ... + 18,010 = - M_{EF}^{(I)}$$

These values are the end moments due to the symmetrical system of loading. All moments in feet pounds.

a. Fixed end moments

$$FM_{AB} = -\frac{wL_{AB}^2}{12} = -\frac{25(20)^2}{12} = -833 = -FM_{BA},$$

$$FM_{DF} = \frac{3we^2}{5} - \frac{6we^2}{7} = 1,500 - 2,140 = -640.$$

b. Deformations are

II. Solution by antisymmetrical system

c. Deformation equations

$$M_{AB}^{II} = 50 E_B - 7.5 E_A - 833$$
, (97)

$$M_{\rm EA}^{\rm II} = 100E_{\rm B}^{\rm O} - 7.5 E_{\rm A}^{\rm C} + 833, \qquad (98)$$

$$BD_{BD}^{\perp\perp} = 80E\Theta_{B} + 40E\Theta_{D}, \qquad (99)$$

$$M_{DB}^{II} = 80E\Theta_{D} + 40E\Theta_{B} , \qquad (100)$$

$$\frac{1}{DC} = 100E0 - 7.5E\Delta_2$$
, (101)

$$M_{\rm DF}^{11} = 60E_{\rm D}^{0} - 640$$
 , (102)

$$M_{CD}^{II} = 50E\Theta_{D} - 7.5E\triangle_{2}$$
 (103)

d. Equations of equilibrium

$$\geq M_{\rm B} = 0 \equiv M_{\rm BA} + M_{\rm BD} = 0, \qquad (104)$$

$$180E\Theta_{\rm B} + 40E\Theta_{\rm D} - 7.5E\Delta_{2} + 833 = 0, \qquad (105)$$

$$\geq M_{\rm D} = 0 \equiv M_{\rm DB} + M_{\rm DC} + M_{\rm DF}, \qquad (105)$$

$$40E\Theta_{\rm B} + 240E\Theta_{\rm D} - 7.5E\Delta_{2} - 640 = 0.$$

e. Shear equation

$$R_{AX} + R_{CX} = 875$$
, (106)

Knowing the values of R_{AX} and R_{CX} from equations (91 and 92) and substituting these values into equation (106) above, the final shear equation is obtained

 $-7.5E_{B} - 7.5E_{D} + 1.5E_{2} = 625$ (106)

f. Solving equations (104, 105, and 106) simultaneously,

 $\Theta_{\rm B} = \frac{15.7}{E},$ (107) $\Theta_{\rm D} = \frac{18.35}{E},$ (108)

and

g.

Deformation equations in terms of θ_{B} , θ_{D} , and Δ_{2}

 $\Delta_2 = \frac{586.3}{\pi}$.

$$\begin{split} M_{AB}^{II} &= -4,000 &= M_{GH}^{II} & (110) \\ M_{BA}^{II} &= -2,000 &= M_{HG}^{II} & (111) \\ M_{BD}^{II} &= +2,000 &= M_{HF}^{II} & (112) \\ M_{DB}^{II} &= +2,100 &= M_{FH}^{II} & (113) \\ M_{DC}^{II} &= -2,600 &= M_{FE}^{II} & (114) \\ M_{DF}^{II} &= +500 &= M_{FD}^{II} & (115) \\ M_{CD}^{II} &= -3,500 &= M_{EF}^{II} & (116) \\ \end{split}$$

These values are the end moments due to the antisymmetrical system of loading. All are in feet pounds.

27

(109)

h. Superimposing the effects of the symmetrical and the antisymmetrical systems of loading, the final true end moments are obtained.

$$M = M^{I} + M^{II}$$
 (117)

The final end moments are

$$M_{AB} = + 15,890,$$

$$M_{BA} = + 19,980,$$

$$M_{BD} = - 20,180,$$

$$M_{DB} = + 19,610,$$

$$M_{DC} = + 13,120,$$

$$M_{DF} = - 32,750,$$

$$M_{CD} = + 14,510,$$

$$M_{GH} = - 23,890,$$

$$M_{HG} = - 23,980,$$

$$M_{HF} = + 24,180,$$

$$M_{FH} = - 15,410,$$

$$M_{FE} = - 18,320,$$

$$M_{FD} = + 33,750,$$

$$M_{EF} = - 21,510.$$

All moments in feet pounds.

i

TITLE:

SIMPLE SLOPE DEFLECTION EQUATIONS FOR SYMMETRI-CAL ARCH STRUCTURES.

NAME OF AUTHOR: Rafael G. Ungson, Jr.

NAME OF ADVISER: Jan Joseph Tuma

The contents and form had been checked and approved by the author and adviser. "Instructions for Typing and Arranging the Thesis" are available in the Graduate School Office. Changes or corrections are not made by the Graduate School Office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

NAME OF TYPIST: Rafael G. Ungson, Jr.

Rafael G. Ungson, Jr. Candidate for the degree of

VITA

Master of Science

Title: Simple Slope Deflection Equations for Symmetrical Arch Structures.

Major: Civil Engineering, Structures.

Biographical:

Born: Dagupan City, Philippines.

Undergraduate Study:

Mapua Institute of Technology, Manila, Philippines, 1947-1948 and 1949-1951.

U. C. L. A., Los Angeles, California, U. S. A., 1948-1949.

Graduate Study:

Oklahoma A. and M. College, Stillwater, Oklahoma, 1954-1955.

Experiences:

Assistant Civil Engineer, Construction Project, People's Homesite & Housing Corporation, Manila, Philippines. 1952-1954.