variation in rate of developuent of an early and late MATURITG HYBRID CORN AT DIFFERENI PLANTING DATES

By
JOSEPH W. SMITH
"
Bachelor of Science
OKlahoma Agricultural and Mechanical College
1949
Sribnitted to the faculty of the Graduate School of the Orlahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1, 1953

tranc 7
Member of the Thesis Committee

ACMOWLEDGMENT

The author wishes to express his sincere apprecid. tion to his Major Adviser, Dr. J. S. Brooks, for his extreme patience, guidance, and constructive criticism in the writing of this thesis.

TABLE OF CONTENTS

Page
InTPRODUCTION 1
RUTIEN OF LITERATURE 3
MATERIALS AND METHODS 6
RESULTS AND DISCUSSION 5
Stem Lergth 8
1951 Data 8
1952 Data 9
Ear Length 15
1951 Data 15
1952 Data 15
Tassel Length 19
1951 Data 19
1952 Data 20
SUMMARY AMO CONGIUSIONS 24
LITERATURE CTTED 25

LIST OF TABLES

TablePage

1. Analysis of vaxiance for stem length $30,40,50$,and 60 days from planting 11
2. Average stem length in centimeters at $30,40,50$, and 60 days from planting 12
3. Analysis of variance for ear length 50, 60, and 70 days from planting 16
4. Average ear length in centimeters at 50,60,and 70 days from planting 17
5. Analysis of variance for tassel length 40, 50,and 60 days from planting 21
6. Average tassel length in centimeters at 40,50, and 60 days from planting 22
LIST OF FIGURES
Figure
7. Average stem length in centimeters 30 and 40 deys from planting 13
8. Average stem length in centimeters 50 and 60 days from planting 14
9. Average ear length in centimeters 50,60 , and 70 days from planting 18
10. Average tassel length in centimeters 40, 50, and 60 days from planting 23

Since the development of hybrid corn, many problems have arisen in regard to proper planting time, number of days to maturity, and relative growth rate.

Very often it is neessary to plant corn a second time when the first planting comes up to a poor stand. The problem that then faces the grower is whether to replant a hybrid corn of similer maturity or to plant an earlier maturing hybrid, since it will be a late planting.

As a rule a late maturing corn will outyield an early maturing one In regions where frost damage is not a major problem. Therefore any information that might show what possibilities a delayed planting of late maturing corn can offer as compared with an early maturing corn would be of help to growers.

The use of single crosses of different maturity in hybrid seed production requires different planting dates for the two single crosses in order to produce flowering at the same time. Different climatic conditions during the growing season may alter the relative maturity of the single crosses. Information as to rate of plant development and the time of tassel initiation might help in the understanding of some of these problems.

The objectives of these investigations were to determine:

1. The progressive development of hybrid com strains at different planting dates.
2. The influence of planting date on development of hybrid comn streins of different maturity.

REVIEW OF LITERATURE

Some of the early workers realized the value of determining the optimm planting time for corn. Others realized the value of informam. tion pertaining to progressive growth of the corn plant.

Brown and Gerrison (2) Ll mede a study of the effects of plenting date on germination, growth and development of corn. They observed 8 strains for a three year poriod at Arilington Farm near Washington, D. C. The plantings were made April 19, May 20, June 21, and July 20. In all their experiments there was a consistent decrease in the number of days from seeding to energence as the date of seeding was delayed. The maxim ham plant heights of most of the varieties were obtained in the June seedings. The May seedings ranked second, the July seedings third and the April seedings fourth in plant height. The daily increase in height was greatest from the June planting. The shortest plant height and the slowest rate of increase resulted from the April planting.

Six open pollinated dent corn strains were planted by Alberts (I) at 7 day intervals from May 2 through August 1. From the results of thege plaxtings he found the muber of days from planting to silking were progressively less for each planting from May 2 through the July 5 plautiag. From the July 11 planting through the August I planting, the number of days from silking to denting remained faifly constant for all planting dates.
$\angle 1$ Fumbers in parenthesis refer to Literature Cited, Page 25.

In determining the daily growth of radze, Loomis (5) need plants growing in the greenhouse. For the month of March he showed a high correlation between mean daily temperature and maen daily growth of the coxn plant. For the other months used in the experiment he found no correlation, and explains this discrepency by saylng the relative hunidity was too low for these months. He concluded by making the following statement: "The growth of maize depends upon a liberal water supply at the growing point. In order of effectiveness such a supply is reduced and groth checked by (a) direct sunlight, (b) deficient soil moisture, and (c) Iow relative humidity。"

Kiesselbach (3) studied the progressive weekly changes in corn plants in Nebraska. He found that the plants grew at an average rate of 2.9 inches per day and 13.2 inches per week. The plents gained their maximum height at nine weeks after emergence. The average maximum stem hetght for the two year period was 119 Anches. Although the plants stood 4 inches high at the end of the firth week, the stem had attained a height of only 20 inches. Duxing the following four weeks the stems gained 99 inches or an average of 25 inches per weok. The ear length reasurenents were from 0.2 inches at seven weeks to the meximum of 10.2 inches by the end of the eleventh week. Maxtmum tassel length of 19 inchas was obtained at oight weeks after emergence.

Th determining the time relationship in tassel development of inbred and hybrid corm Leng (4) plonted two inbred lines at an early and late date. These plantings were then compered for number of days from plantIng to tassel initiatiox. It was found that the later plantings showed tassel initiation an average of e. 3 days earlier than the early plantings
for 1949 and 1950. In 1950 the effect of planting on rate of tassel develoment, time to half silk, and leaf number was studied. The early planting was May 10 and the late planting was June 9. The number of days from planting to tassel initiation was shortened 7.3 days, tassel initiation to anthesis was shortened 1.5 days, planting to anthesis was shortened 8.7 days and planting to half silk was shortened 7.6 days by the later planting. If all lines were considered together, a delay of 30 days in planting resulted in highly significant decreases in length of developmental periods preceding anthesis. Total number of foliage leaves was not significantly affected by planting date. Leng concluded that the development of the corn plant from planting to anthesis occurs in two phases. The first phase includes the period in which vegetative structures are being differentiated and ends with the elongation of the growing point. The elongation of the growing point marks the beginning of differentiation of the tassel. The second phase extends from tassel inftiation to anthesis and is the period duxing which reproductive structures develop.

MATERIALS AND METHODS

The preliminary work for this experiment was done in 1950. The actual data presented here represent experiments conducted in 1951 and 1952. All of the work was conducted on creek bottom land two and Onewhalf miles east of Stillwater, Oklahoma.

An early maturing hybrid, U.S. 13, and a late maturing hybrid, Texas 26, were used. The six planting dates were April 15, May 1, May 15, June 1 , June 15, and July 1.

The field design was a split plot with four replications. The six planting dates were made the main plots and the two varieties were used as the suboplots.

Each variety was planted in 3 row plots 40 hills long within each planting date. The row spacings were 42 inches and the hill spacings were 42 inches in the row. The April 15 planting in both 1951 and 1952 was planted with a modified two row cheok row planter. The remaining five plantings were planted with a hand planter. Each planting was fertilized at the rate of approximately 175 pounds of Armonium Phosphate (16-20-0) per acre as a starter fertilizer. The plots were planted at the rate of four per hill and later thinned to two plants per hill to bssuxe a uniform stand.

All measurements were made from the middle row of each 3 row Fariety plot. The readings for each samping date were from two plants In the same hill, and alternate hills were used for the successive
readings. By using alternate hills any effects of unequal competition were ayoided. All measurements were made with a centimeter scale.

To study the rate of development of the two hybrids at the different planting dates measurements were made for stem length at 30, 40, 50, and 60 days from planting; ear length measurements at 50,60 , and 70 dayss and tassel length measurements at 40, 50, and 60 days.

The stem length measurements were made by dissecting the young corn plant and measuring from the adventitious roots to the growing point for the 30 day interval. The 40,50 , and 60 day measurements were made by measuring the stem length from the adventitious roots to the base of the tassel.

The ear length measurements were made by removing the husk and measuring the length of the ear from the butt to the tip.

The tassel length measurements were made by measuring the main axis of the tassel from the base to the uppermost tip.

Three hondred eighty-four plants were dissected and measured for the stem length data, and 288 plants each for aar length and tassel length data, making a total of 960 plants.

The analysis of variance method was used to estimate the signifia cance of the data obtained.

RESULTS AND DISCUSSION

In using the analysis of variance method, each sampling period for all six planting dates was treated separately making a total of 20 separe ate split plot analyses. Because of the differences in the two growing seasons it did not seem feasible to combine the analyses for the two years, however general trends were evaluated by considering averages of the two years data.

Stem Length

1951 Data

An analysis of variance of the results of this study are given in Table 1.

For the 1951 data a mean square for planting date significant at the one per cent level was obtained for all sampling dates, which shows the growth rate was different for the different planting dates.

Since varieties showed highly significant mean squares at 30 and 40 days, this means one variety grew at a greater rate than the other variety at these two intervals. Fiffty and sixty days from planting showed no significant difference in growth attained.

The interaction varieties x dates significant mean squares for 30 , 40, and 50 days from planting indicate that the amount of growth of the two varieties was not the same at each planting date.

1952 Data

The 2952 data shows significance for planting date at 30 days and highly significant mean squares at 40,50 , and 60 days indicating that the anount of growth wes different for the different planting dates.

The mean squares for varieties showed no significant difference at $30,40,50$, or 60 days from planting.

The varieties x dates interaction significant mean square at 30 days indicates that the amount of growth of the two varieties was not the same for all planting dates at this interval. No significant dife ference was obtained for this interaction at 40, 50, and 60 days from planting。

In 1951 there was a significant difference for varieties at 30 and 40 days from planting, but none for any of the sampling dates in 1952. The raason for this probably lies in the fact that the 1952 growing season was less favorable at these two intervala and both varieties made such small amounts of growth that statistically no difference could be shown. This reasoning may also explain why varieties x dates interactions were significant at 30,40 , and 50 days for 1951 and only at 30 days for 1952. For the intervals at 50 and 60 days from planting for both gears the varieties appear to have leveled off and grown at about the same rate.

The averages presented in Table 2 are for two measurements from each of four repiications taken at $30,40,50$, and 60 days from planting for each of the six planting dates.

By studying these averages it appears that in both a favorable growing season, 1951, and a less favorable one, 1952, later plantings increased the growth rate of both hybrids. The 1951 and 1952 averages were combined in the graphs presented in Figures 1 and 2.

From the graphs it can be seen that the eariy variety, U. S. 13, starts its growth somewhat earlier and grows slightly faster than the late variety, Texas 26.

The April 15 planting made the slowest growth and shortest plants, while the July 1 planting showed the most rapid growth, and except for Texas 26 at 60 days from planting, the tallest plants.

The data show a proportional increase in growth for each succeeding planting date except for the June 15 planting. An attempt was made to show the effects of temperature and deficient soil moisture for the pariod following this planting. Although this did not explain the discrepancy completely it is believed that environmental factors were responsible.

Table 1.--Analysis of variance for stem length 30, 40, 50, and 60 days from planting.

1951

Sourceofvariation	Days fromplanting				
	d.fo.	30	40	50	60
		Mean square			
Total	95	14.82	308.73	1.647 .59	2,051.64
Replications	3	20.70	25.08	862.85	853.94
Planting date	5	147.33**	48056.35% \%	16,336.26**	30,232.18**
Error A	15	13.37	220.89	3,363.27	615.80
Plots of dates	23	41.02	1,029.15	5,857.35	7,085.20
Varieties	1	99.43**	3,067.95**	2,244.65	552.48
Varieties x dates	5	22.55*	276.02**	6,769.14**	1,163.40
Error B	66	69.50	69.68	587.12	566.30

1952

$\begin{gathered} \text { Source } \\ \text { of } \\ \text { Tasiation } \end{gathered}$	Days from planting				
	dofo	30	-40	50	60
		Mean square			
Total	95	2.19	176.23	415.79	922.72
Replications	3	0.51	133.70	142.31	516.77
Planting dete	5	11.4.6**	2,015.97\%*	4,819.94**	7.767.28**
Errar A	15	2.58	105.44	372.46	1,321.07
Plots of dates	23	4.24	524.58	1,309.29	2,617.51
Varieties	1	2.98	122.62	0.35	587.57
Varieties x dates	5	$6.69 \% *$	160.44	263.11	1,380.00
Error B	66	1.74	86.92	296.21	626.28

Table 2.-Average stem length in centimeters at $30,40,50$, and 60 days from planting.

1951

Planting date	U. S. 13				Texas 26			
	Days from planting				Days from planting			
	30	40	50	60	30	40	50	60
1-15	1.4	4.3	27.1	70.0	1.1	2.8	17.7	47.1
$5-1$	2.5	10.4	48.6	127.9	2.0	4.5	41.4	111.3
5-15	4.6	37.2	89.0	155.6	2.6	25.2	80.5	169.2
6 l	9.4	33.1	107.9	152.6	3.0	16.6	84.6	171.3
6-15	4.4	15.4	27.2	777.4	2.7	7.9	28.1	65.8
$7-1$	9.6	57.2	117.0	125.0	9.4	32.7	106.4	114.5

1952

$\begin{gathered} \text { Planting } \\ \text { date } \\ \hline \end{gathered}$	$\text { D. S. } 13$				Texas 26 Days from planting			
	30	40	50	60	30	40	50	60
$4-15$	1.1	3.9	34.0	91.9	1.1	3.4	21.8	53.4
5-1	2.6	15.9	29.6	51.5	1.8	9.2	32.5	44.3
$5-15$	2.4	6.9	31.3	4.8 .2	2.2	9.1	36.3	65.3
6 m 1	2.8	7.7	31.1	62.1	2.7	13.4	38.3	67.3
6×15	2.2	26.6	60.4	104.6	5.1	24.2	66.3	99.3
$7 \mathrm{I}=1$	2.8	38.8	70.8	98.5	2.1	26.9	62.9	86.4

Figure 1.--Average stem length in centimeters 30 and 40 days from planting.
$120-$
$110-$
$100-$
$90-$
$80-$
$70-$
$60-$
$50-$
$40-$
$30=$
$20-$
$10=$

M

U.S. 13

30 deys
(0x)

Texas 26
30 days

120 m
110 -
100 -
90. -

80 -
70 -
60 -

U.S. 13

40 days

Figure 2.-Average stem length in centimeters 50 and 60 days
from planting.
$120-$
$110-$
$100-$
$90-$
$80-$
$70-$
$60-$
$50-$
$40-$
$30-$
$20-$
$10-$
-

Ear Length

1951 Data

The analysis of variance of the ear length data are given in Table 3.

Since the 1951 planting dates showed significant mean squares for 50, 60, and 70 days from planting it may be assumed that there was a significant difference in the amount the ears grew at the six planting dates.

The significant mean squares for varieties at 50,60 , and 70 days from planting indicate that the ears of one variety grew faster than the ears of the other variety at these periods.

The varieties x dates interaction showed no significance at 50 , 60 , or 70 days from planting.

1952 Data

For the 1952 ear length data, the planting dates showing significance at 50 and 60 days means that there was a difference in the amount of ear growth for the different planting dates. The 70 days from planting showed no significance.

Nean squares obtained for varieties at 50,60 , and 70 days were not significant.

The interpation varieties x dates significent mean square for 50 days shows that the ear growth of the two varieties was not the same at each planting date. Since no significance was obtained in 1951 or 1952 for the other samping periods, this mean square may be a chance variation.

Table 3.-mAnalysis of variance for ear length 50,60 , and 70 days from planting.

1951

Soureeofvariation	d.fo	Days from planting		
		50	60	70
			ean squar	
Total	95	10.65	25.98	21.40
Replications	3	2.10	16.32	3.80
Planting dates	5	145.99**	337.59**	292.78**
Error A	15	1.78	13.64	5.70
Flots of dates	23	33.17	84.47	67.86
Varleties	1	48.16**	164.59**	110.94**
Varieties x dates	5	6.84	8.27	8.69
Error B	66	3.03	8.70	6.28

1952

Source of	d.f.	Days from planting		
		50	60	70
vaxiation			ean square	
Total	95	2.53	18.64	38.43
Replications	3	0.87	7.39	24.09
Planting dates	5	32.91**	269.05**	52.35
Error A	15	0.41	6.91	37.98
Plots of dates	23	7.53	63.96	141.70
Vaxieties	1	2.28	1.53	0.38
Varieties x dates	5	2.83*	6.30	8.81
Error B	66	0.89	5.95	14.98

* Significant difference at 5% level
** Significant difference at 2% level

Table 4.--Average ear length in centimeters at 50,60 , and 70 days from planting.

1951

$\begin{gathered} \text { Planting } \\ \text { dato } \end{gathered}$	U. 5.13			Texas 26		
	Days from planting			Days from planting		
	50	60	70	50	60	70
$4-15$	0.5	2.5	8.0	0.2	0.9	5.1
501	0.9	8.2	9.9	0.6	3.3	6.8
5-15	3.6	9.1	12.0	1.4	8.3	11.0
6 cl	5.5	14.3	16.5	2.9	12.5	14.2
6-15	1.0	6.0	12.2	1.0	3.0	8.1
7×1	9.7	15.0	19.3	6.9	10.5	16.4

1952

Planting date	$\text { D. S. } 13$			Texas 26		
				Days from planting		
	50	60	70	50	60	70
4 m 15	0.7	2.5	6.4	0.5	1.2	5.2
50.1	1.1	1.8	2.1	0.7	1.9	1.9
50.15	1.1	2.1	9.6	1.2	4.0	8.4
6 m 1	1.2	4.0	10.4	1.7	3.6	12.3
6-15	4.4	13.5	17.9	4.4	11.9	20.0
7×1	3.4	5.5	10.8	1.5	5.3	10.2

The averages presented in Table 4 are for two measurements from each of four replications taken at 50,60 , and 70 days from planting for each of the six planting dates. From these averages it can be seen that the ears of both varieties made less growth in 1952 then was attained the previous year. The smaller growth in 1952 has contribum ted to greater similarity between the two varieties and probably explains the non-significant mean squares for varieties in 1952. The ears of both varieties made more growth in 60 days in 1951 than was made in 70 days in 1952, indicating that an unfavorable season during early developmental stages might reduce yield by limiting early ear development

These 1951 and 1952 averages were combined to show the growth trend in the graphs presented in Figure 3.

As the plantings are delayed ear development proceeds at a faster rate. Just as in the stem length, D. S. 13 starts ear development earlier and grows at a slightly faster rate than Texas 26.

Tassel Length

1951 Data

The analysis of variance for tassel length is shown in Table 5. Planting dates for the 1951 data showed significant mean squares for 40 , 50 s and 60 days from planting indicating the tassel growth was differ ent for the different planting dates.

Since the variety mean squares show significance at all three sampling dates, it seems evident that the tassels of one variety grew
at a more rapid rate than the tassels of the other variety.
The varieties grew at different rates at the different planting dates for 40 and 60 days from planting since the mean squares for varieties π dates interaction are significant at these periods. No significance was show at 50 days from planting.

1952 Data

For the 1952 data the significant mean squares obtained for plantm ing dates indicate as above that the tassel growth of the two varieties was not the same for the different planting dates.

The significant varieties mean squares at 40 and 50 days from planting indicate that the tassel growth of one variety was greatero than for the other varieties at these periods. No significance was show for 60 days from planting.

The interaction varieties x dates shows significant mean squares at 40 and 50 days indicating the tassel growth of the two varieties was not the same at the different planting dates. The mean square for 60 days was not significant.

The twouyear average tassel length for the six planting dates at 40,50 and 60 days from planting are show in the graphs in Figure 4.

It is evident from these graphs, and the data presented in Table 6 thet the Juiy 1 planting makes the earliest growth, especially in the case of U. S. 13. As in the case of stem length and ear length the later plantings grow more rapidiy. There is some indication of more vniform growth rates at the June 15 and later planting dates.

Table 5.manalysis of variance for tassel length 40, 50, and 60 days from planting.

1951

Source of	Days from planting			
		40	50	60
Variation	d.f.	Mean square		
Total	95	122.53	265.03	967.15
Replications	3	5.54	66.23	12.19
Planting dates	5	1,143.38*\%	3,749.64**	833.99**
Error A	15	25.07	112.08	68.31
Plots of dates	23	265.63	8,968.72	227.44
Verieties	1	2,345.31\%	414.59*	682.13**
Varieties x dates	5	$515.81 * *$	134.81	283.37**
Error B	66	15.14	80.92	44.24

1952

Souree			from planti	
of		40	50	60
Veriation	d.f.		ean squars	
Total	95	28.08	281.55	129.13
Replications	3	9.90	6.78	83.05
Planting dates	5	$211.07 *$	2,609.42**	1,000.80**
Error A	15	20.24	60.79	189.70
Plots of dates	23	60.38	607.80	352.12
Verieties	1	144.79**	331.89**	141.13
Varieties x dates	5	90.38**	91. 27 \%*	185.97
Frorr B	66	15.38	5.17	93.82

* Simnificant difference at 5% level
$\%$ Sigrificant difference at 1% level

Table 6.-Average tassel length in centineters at 40, 50, and 60 days from planting.

1951

Planting date	U. S. 13			Texas 26		
	Days from planting			Days from planting		
	40	50	60	40	50	60
4-15	0.4	8.6	38.6	0.3	0.9	21.6
5 m	0.9	18.5	56.3	0.5	6.0	41.6
$5-15$	11.7	40.8	34.6	1.6	35.7	43.2
6.1	15.7	45.2	42.7	4.0	38.2	39.9
$6-15$	8.9	20.4	30.8	3.5	19.6	32.3
$7-1$	35.1	38.8	41.3	7.8	38.9	42.6

1952

Planting date	U. S. 13			Texas 26		
	Days from planting			Days from planting		
	10	50	60	40	50	60
4×15	1.3	5.2	32.1	0.7	1.1	17.7
$5-1$	2.0	20.9	34.5	0.7	10.6	27.8
5-15	1.2	23.6	34.0	0.8	21.3	35.3
6 m 1	1.2	25.9	39.5	2.7	27.9	40.0
$6-15$	7.2	39.4	40.9	5.3	39.8	44.1
7 ml	15.7	36.0	45.8	3.8	27.9	47.3

Figure 4 , Average tassel length in centimeters 40, 50, and 60 days from planting.

SUMMARY AND CONCLUSIONS

A study of the variation in rate of development of an early and late maturing hybrid corn at six different planting dates was cone ducted on oreek bottom lend two and one-half miles east of Stillwater, Oklahoma in 1951 and 1952. A total of 960 plants were used in this study.

Significant mean squares were obtained for planting dates at all sampling intervals for stem length, tassel length, and with one exception, ear length.

The two-year graphs and the analyses of variance show that as planting is delayed growth rates increase for all three characters studied.

The early variety, U. S. 13, began stem growth at a faster rate, and started ear and tassel initiation earlier than the late variety, Texas 26.

From the evidence presented here, it appears that a late mature ing corn will develop almost as rapidiy as an early maturing corn when planted at the later planting dates.

Since the 1951 and 1952 growing seasons were quite different in Bo far as favorable growing seasons were concerned, it is evident that extreme weather conditions can affect the pattern of growth of both eaxily and late varieties of corn at all planting dates.

1. Alberts, H_{0} W. Relation of time of planting corn to the time of silking, denting, and senescence. Jour. Am. Soc. Agron. 18:375-380. 1926.
2. Brown, E. B. and Garrison, H. S. Effect of date of seeding on germination, growth and develope ment of corn. U. S. D.A. Bul. 101.. 1922.
3. Kiesselbach, T. A. Progressive development and seasonal variations of the corn crop. Nebr. Agr. Exp. Sta. Res. Bul. 166. 1950.
4. Leng, E. R.

Time relationship in tassel development of inbred and hybrid corn. Agron. Jour. 43:445-449. 1951.
5. Loomis, W.E. Daily growth of maize. Amer. Jour. Bot. 2181-6. 1934.

VITA

> Joseph Wesson Smith
> candidate for the degree of Master of Science

Thesis: VARIATION IN RATE OF DEVELOPMENT OF AN EARLY AND LATE MATURING HYBRID CORN AT DIFFERENT PLANTING DATES.

Major: Field Crops
Biographical and Other Items:
Borns July 13, 1925 at Louisville, Kentucky.
Undergraduate Study: O.A. M. C. 1946049.
Graduate Study: O. A. M. C. 1950-53.
Experiences: Navy, U. S.S. Radford, South Pacific 1943-46; Employed by Agronomy Department parttime 1946-49. Employed by Agronony Department since 1949.

Date of Final Examination: August 1, 1953.

THESIS TITTE: VARTATION IN RATE OF DEVELOPMENT OF AN EARLY AND LATE MATURING HYBRID CORN AT DIFFERENT PLANTING DATES.

AOMHOR: Joseph Wesson Smith

THESIS ADVISER: DroJames S.Brooks

The content and form have been checked and approved by the author and theais adviser. The Graduate School office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and foeulty adviser.

