AN ELECTRICAL ANALOGUE
OF THE BERNOULLI EFFECT

By
ALLEN WIENDELL ENGLE Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1939

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE
August, 1953

AN ELECTRICAL ANALOGUE
 OF THE BERNOULLI EFFECT

Thesis Approved:

Tichael Faraday and others thought of electricity as a fluid. This thesis describes a series of experiments that apply this concept. Since the problem contains both electrical and chemical theory it has been necessary to try to clearly present necessary information relating to the two fields.

Dre to lack of complete experimental data it is too early to draw complete conclusions. However, the experiment has indicated the path of the investigation is in the correct direction.

The author wishes to express his appreciation to Mr. Robert Z. Fearon, his former department head, for suggesting the problem and for his assistance in the various phases of the worls. Thanks are also due to Dr. H. L. Jones for his constructive criticisms in the writing of this paper.
TABLE OF CONTENTS
Page
PREFACE iii
LIST OF TABLESS AND DIAGRAMS v
CHAPTER
I GLECTRICAL AND CHRMICAL THEORY 1
II DESIGN AND CALCULATIONS 10
III DESCRIPTION OF APPARATUS 18
IV RESULTS AND CONCLUSIONS 35
BIBLIOGRAPHY 45

JIST OT TABHES ADD DLACRASS

Page

PABEE
1 Transfer Numbers of Cations at 18° Centigrade . . . 10

3 Calculations of Voltage, IDife, due to Bernoulli
Efiect, 18° Centigrade 15
4 Second order fifect for 0.1 Monal Solution, NaCl . . 36
5 Second Order Efect for 0.25 Horma Solution, NaCl . 36
6 Second Order Effect for 0.5 Momal Solution, NaCl . . 37
7 Second order Hffect for 0.1 Nomal Solution, MaBr * 39
6 Second Onder Efect for 0.2 Normal Solution, NaBr . . 39
9 Second Order fifect for 0.1 Momal Solution, KCl . . 41
10 Second Order Pffect for 0.2 Nomal Solution, KCI . . 41

TIGURE

1 Whar of Rlectrolyte through Restriction in Tube . . 5
2 Block Diagran of Apparatus 19
3 Illustration of Solution Cell and Coil 21
4 Coaxial Coils with Outer Coil the Longer 23
5 Equivalent Circuit for Coil Coupled to Solution Cell 25
6 Simplified circuit Showing Eeduction of Parallel
Tuned Circuit to a Series Arrangenent 25
7 Schematic of Tranmitting Section 29
8 Schematic of Receiving Section 33
9 Second Order Pifect for Sodiua Ghloride 38
10 Second Order Bffect for Sodiun Bromide 40
11 Second Order friect for Potassium Ghloride 42
12 Second Onder mifect for 0.1 homal Solution 44

CHAPTER I

GRECRTCA MD GUDTOR THORX

The problea of making suitable measurenents arises in many fields of science. If there is any possibility of malling improvements or In axpanding the accmacy of the present syatens, it is most useful to persons engaged in scientiric woxl.

This thesis is doveloped along both theoretical and experineatal Ines, and is an abtempt to develop a nem method or measuring certain chemical properties of solations. There is a lack of infomation dealing directly with this wort and therefore, roost of the findings represent original bork.

Basically, this "Electrical Bernoulli Befect", with whach this thesis is concerned, is dependent upon two very inportant relationo ships that exist in nature. These are:
(a) That positive and regative ions in solutions do not necessarily carry the same fraction of the total current flomiag.
(b) That positive and negetive ions are aflected difrerently by an orifice or reduction in mass-section axea. The second statement will be treated extensively in this thesis. The first relationship is well knom and is covered thoroughy in reference material.

Before attempting to derive the relationships necessary for the study of pertinent phenomena, a reviem of exlsting knomledge in the various related fields is necessaxy.

If a beaker is filled with a solution containing hydrochloric acid, HCl, there will exist an equal number of positive hydrogen ions, H^{+}, and chlorine ions, Cl^{-}. The positive ions are called cations and the negative ones are anions. The process by which molecules in solution are separated into electrically charged ions is called electrical dissociation, while the solvent in which it occurs is called an ionizing solvent. The amount of this dissociation is a function of various factors such as normality of the solution, temperature, type of solution and solvent as well as others which are not necessary to this study. Into this solution of HCI are inserted two platinum electrodes which are separated from each other. These in turn are connected to a source of electromotive force. As a result hydrogen gas will be liberated at the cathode. By determining the amount of hydrogen liberated for a given amount of current, it is possible to arrive at a conclusion known as the Faraday's laws of electrolysis. ${ }^{1}$ These laws may be stated as:
(a) The mass of any substance liberated is proportional to the amount of current flowing and the time during which it flows.
(b) The masses of different substances liberated by a given current in a given time are proportional to the chemical equivalents or canbining weights of a substance. The term combining weight would be the ratio of atomic weight to the volume of the element.

[^0]As is well known the charge of an electron or univalent ion is the same. Therefore, the charge of the ions which are to be studied will be 1.59×10^{-19} coulombs per ion.

It is a known fact there is a great similarity between gases and liquids in so far as some of the studies of diffusion are concerned. For instance in the study of osmosis, which deals with diffusion through a semipermeable membrane or partial obstruction, there is a great similarity. As an example, the osmotic pressure of a mole of solute in 1000 grams of water is approximately that of a mole of gas confined in one liter at room temperature. ${ }^{2}$ In fact with suitable substitutions, the relation between pressure, volume and temperature is correct for the osmotic properties of solutions as well as gases. That is

$$
\text { where } \begin{aligned}
P V & =m R^{3} T \\
P & =\text { Osmotic Pressure } \\
V & =\text { Volume of Solution } \\
m & =\text { Moles of solute } \\
R^{2} & =\text { Constant } \\
T & =\text { Temperature (absolute) }
\end{aligned}
$$

This theory will be utilized in this study which follows. Certain terms will be necessary for the development of the required equations. The first term needed will be the concentration of ions, c, and will be defined in terms of units of 6.06×10^{23} ions per 22,400 cubic centimeters. The 6.06×10^{23} term is called

2E. B. Millard, Physical Chemistry for Colleges, (1931), p. 168.

Avogadro's number and is a statement of the number of molecules in a mole or in a mass of substance equal numerically to its molecular weight. The number 22,400 cubic centimeters is a quantity representing the volume occupied by a gram mole of a gaseous substance under standard conditions of temperature and pressure, that is at 0 degrees centigrade and one atmosphere of pressure.

The density, D, of a substance is defined as the ratio of weight, w, to volume, V, or $D=w / V$. Therefore, for the problem at hand this definition may be changed to better suit the present problem and will be

$$
\begin{equation*}
D=\frac{C M}{V} \tag{1-1}
\end{equation*}
$$

where D is the density in grams per cubic centimeter, C is the concentration as defined previously, M is the mass in grams and V is the volume in cubic centimeters. The numerical values may be substituted in the equation (1-1) which becomes

$$
\begin{equation*}
D=\frac{C M}{2.24} \times 10^{4}=4.46 \times 10^{-5} \mathrm{CM} \text { grams per cubic centimeter } \tag{1-2}
\end{equation*}
$$

To obtain the charge density, p, which is the number of charges per unit volume, it is necessary to replace the mass, M, in equation (1-2) with the quantity, e, which is the total ionic charge of 6.06×10^{23} ions. Such a unit is consistent with M, which is the mass of 6.06×10^{23} ions. The relation for charge density is

To carry on this derivation it is necessary to derive the relation betrreen current and the ionic velocity relation so that it may be used in later equations. The equation of current flar is given by ${ }^{3}$

$$
\begin{equation*}
A=\rho v \tag{1-4}
\end{equation*}
$$

where $A=$ current donsity, amperes per square centimeter $\rho=$ charge density, coulombs per cubic centimeter $\mathrm{v}=$ velocity, centimeter per second
Rerriting equation (1-4) and substituting equation (1-3) for charge density, ρ, gives

$$
\begin{equation*}
v=\frac{A}{\text { Ce } 4.46 \times 10^{-5}} \text { centimeter per second } \tag{1-5}
\end{equation*}
$$

This is then a relation which indicates that the velocity of the ions is proportional to the current density and inversely proportional to the concentration of the ions.

To continue the derivation it is necessary to obtain the electrical equivalent of Bernoulli's Theorem as shown in Figure 1.

Figure 1. Flow of Electrolyte through Restriction in Tube.
3.W. G. Dow, Fundamentals of Engineoring Elociromics, (1937), p. 97.

This theorem states the relation between energy levels as a fluid or electrolyte flars through a restriction or volume change. The equation of this relation is

$$
\begin{align*}
& P_{1}+h_{1} D g_{1}+1 / 2 D V_{1}^{2}=P_{2}+h_{1} D_{2} g_{2}+1 / 2 D V_{2}^{2} \\
& \text { and if } h_{1}=h_{2} \\
& P_{1}-P_{2}=1 / 2 D V_{2}^{2}-D V_{1}^{2} \\
& \text { or } P=1 / 2 D\left(V_{2}^{2}-V_{1}^{2}\right) \tag{1-6}
\end{align*}
$$

where $P=$ pressure of liquid
$\mathrm{h}=$ height above reference plane
$\mathrm{D}=$ density of liquid (assume constant)
$\mathrm{V}=\mathrm{velocity}$ of flow
The equation (1-6) is merely another way of stating the conservation of energy assuming no losses. Since the charge density, ρ, has been defined in equation (1-3) and velocity, v, defined in equation (1-5), a substitution may be made into equation (1-6) which then becomes

$$
\begin{align*}
P & =1 / 2 \operatorname{Cla\times L} \cdot 46 \times 10^{-5} \quad\left(\frac{A}{\text { Cex4. } 46 \times 10^{-5}}\right)^{2} \\
& =\frac{A^{2} M}{2 C e^{2} \times 4 \cdot 46 \times 10^{-5}} \tag{1-7}
\end{align*}
$$

There may be a question regarding the substitution of the velocity equation (1-5) for the change in velocity relation in equation (1-6) however, the change in velocity will almost be the velocity at the restriction itself and therefore is a valid substitution although not entirely correct.

The work per unit volume associated with ΔP to transfer fluid ions in or out of the ΔP region is ΔP. This may be proven as follows:

> Work $=$ Force x distance
> and Pressure $=$ Force $/$ area
> therefore, $\frac{\text { work }}{\text { area }}=$ Pressure \times distance
> or work/volume $=\Delta W=\Delta$ Pressure (1-8)

Also since the work done per unit charge is the definition of the volt, the following relation is true

$$
\begin{equation*}
E \text { (volts) }=\frac{\text { work (joules) }}{\text { charge (coulombs) }} \tag{1-9}
\end{equation*}
$$

It would be helpful if this equation were defined differently so as to introduce the volume factor. It would then become

$$
\begin{equation*}
\mathrm{E} \text { (volts) }=\frac{\text { Work/volume }}{\text { charge/volume }} \tag{1-10}
\end{equation*}
$$

Therefore, equations (1-3) and (1-8) may be substituted and equation (1-10) becomes

$$
\mathrm{E}=\frac{\Delta \mathrm{P}}{4 \cdot 46 \times 10^{-5} \times \mathrm{Ce}}
$$

and from equation (1-7)

$$
\begin{align*}
E & =1 / 2 \frac{A}{C^{2} e^{2}} \times \frac{M}{e} \times \frac{1}{\left(4.46 \times 10^{-5}\right)^{3}} \\
& =1 / 2\left(\frac{A}{C e}\right)^{2} \times \frac{M}{e} \times 10^{-7} \\
& =1 / 2\left(\frac{1}{C e}\right)^{2} \times \frac{M}{e} \times 11.3 \times 10^{-12} \times 10^{-7} \\
& =5.65 \times 10^{5}\left(\frac{A}{C e}\right)^{2} \times \frac{M}{e} \text { volts } \tag{1-11}
\end{align*}
$$

where $\mathbb{M}=$ mass of ions in grams
$e=$ charge per 6.06×10^{23} ions in coulombs
$\mathrm{A}=$ amperes/sq. cm.
$c=$ concentration in units of 6.06×10^{23} ions per
22.4 liters.

A study of the above relation yields sone interesting relations. First the relation of M / e is often found in other physical problems except more cormonly as e/iH.

As a P inal check on this voltage equation it is important to see that the units are consistent throughout. One more definition is required to give a relation between mass and energy. This would be

$$
\begin{aligned}
& \text { kinetic energy }=1 / 2 \text { lass } x(\text { velocity })^{2} \\
& \text { or Mass }=2 x \frac{\text { kinetic energy }}{\text { velocity }}
\end{aligned}
$$

where kinetic energy is in ergs and velocity is in cm/sec, therefore

$$
\text { Mass }=2 \frac{\operatorname{ergs}}{(\mathrm{~cm} / \mathrm{sec})^{2}}=\text { Constant } x \text { ergs } \sec ^{2} \mathrm{~cm}^{-2}
$$

Rewriting equation (1-11) and omitting the constants yields

$$
\begin{aligned}
& E=K^{\prime} \times\left(\frac{A}{C e}\right)^{2} \times \frac{M}{e} \\
& E=K^{\prime} \frac{\text { coulombs } \times \sec ^{-2} \mathrm{~cm}^{-4}}{\frac{\text { ions }}{}{ }^{-4} \times \frac{c^{2}}{\left(\mathrm{~cm}^{3}\right)^{2}}} \times \frac{\text { mass }}{\text { ions }{ }^{2}}
\end{aligned}
$$

therefore

$$
\begin{array}{r}
E=K^{\prime} \frac{\text { ergs }}{\text { coulombs }} \\
\text { Since } \frac{\text { ergs } \times 10^{-7}}{\text { coulombs }}=\frac{\text { joules }}{\text { coulombs }},
\end{array}
$$

this relationship is recognized as the definition of the volt. Therefore the units are consistent throughout.

CHAPIER II

 DESIGN AND CALCULATIONSIt is necessary to make some calculations before considerations of equipment design may be undertaken. Therefore in this chapter a study will be made of the chemistry and electrical theory that is involved.

In the study of ionized solutions it is necessary to lonowr the amount of current carried by the positive and the negative ions. This term is lenown as the transference or transfer number and represents the fraction of the total current carried by each type of ion or the number of equivalents of each ion constituent transferred per faraday. ${ }^{1}$ The faraday was defined in Chapter I. Since there exists both positive and negative ions in each electrolyte, it is to be expected there will be a transfer number for each ion. As was stated in the first chapter an important principle for the success of the experiment is that the anions and cations do not carry the same fraction of the total current per molecular weight. From data available in the various literature, transfer numbers for many electrolytes may be obtained. The requirements necessary are that the normality and temperature of the known solutions be available. The transference numbers are not greatly

I . B. Millard, Physical Chemistry for Colleges, (1931) p. 199
affected by temperature although there is some change. This is also true of concentration. Exact figures are available and will be used. The term "normality" is defined as "the number of equivalents of solute per liter of solution." This definition in turn requires clarification as to the meaning of equivalent weight. This is the weight in grams which will react with one gram atomic weight of a hydrogen ion. For instance the equivalent weight of hydrochloric acid is 1 mole; for sulfuric acid, $1 / 2$ mole. From Table I, the transfer number for the positive ions of sodium chloride, NaCl , at 18° Centigrade and . 01 normal solution is .396. The transfer number for the negative ion, Cl, will therefore be (1-.396) or . 604.

	TABIE I
Transfer Numbers of Cations at 18° Centigrade 2	
$\frac{\text { Electrolyte }}{\mathrm{NaCl}}$	$\frac{.01 \mathrm{Normal}}{.396}$
KCl	.496
LiCl	.332
HCl	.833
AgNO_{3}	.471

The transfer number for a positive ion, such as sodium, Na, is not the same in sodivm chloride as it would be in a solution of sodium nitrate other conditions remaining the same. Therefore
${ }^{2}$ E. B. Millard, Physical Chemistry for Colleges, (1931), p. 201
each solution constitutes a new set of data and must be treated separately.

Another quantity requiring some explanation is the field strength in units of volts per centimeter of current path. Since the amount of current per sq. cm, A, is a function of the voltage applied to the circuit the quantity of volts per cm. is necessary for the calculations that follow. It does not make any theoretical difference how the field is produced. It will be done electromagnetically in this experiment.

Another quantity involved is the equivalent conductance in units of reciprocal ohms or ohms ${ }^{-1}$. This is a term which defines a relation between electrical and chemical terminology. If Ohn's law is applied to conducting solutions or electrolytes it is necessary to introduce other definitions. As applied to solid conductors this law takes on the familiar form

$$
\begin{align*}
I & =\mathbb{E} / \mathbb{R}=\mathbb{E} \lambda \tag{2-1}\\
I & =\text { anmeres } \\
\mathbb{R} & =\text { ohm } \\
\lambda & =\text { ohms }^{-1}
\end{align*}
$$

The resistance, R, may be written in terms of the dimensions of the conductor, and the specific resistance, K, in ohms per centimeters. This is also the familiar

$$
\begin{equation*}
\mathrm{R}=\mathrm{K} \frac{\text { length }}{\text { Area }} \tag{2-2}
\end{equation*}
$$

where length is in centimeters Area is in square centimeters.

The current will therefore be

$$
\begin{align*}
& \qquad I=\frac{E \times \text { Area }}{K \times \text { length }} \\
& \text { or } \frac{I}{\text { Area }}=A=\frac{E}{\text { length }} \times \lambda^{\prime} \tag{2-3}\\
& \text { where } \quad \lambda^{\prime} \text { is in (ohn-cm) }{ }^{-1} \text { and is the specific conductance } \\
& \text { or conductivity. }
\end{align*}
$$

The required term is the equivalent conductance, and is available in the handbooks. It may be defined as the conductance which would be obtained between two parallel electrodes that are spaced. one centimeter apart and having an area such that the volume of solution contains one mole or equivalent of solute between the plates. ${ }^{3}$

It follows that the specific conductance, λ^{\prime} becomes

$$
\begin{equation*}
\lambda^{\prime}=\frac{\text { equivalent conductance }}{\phi} \tag{2-4}
\end{equation*}
$$

where $\phi=$ the number of cubic centimeters which contain one equivalent of solute.

Therefore a . 01 normal solution of hydrochloric acid which has an equivalent conductance of 369.3 at $18^{\circ} \mathrm{C}$. would have a specific conductance of

$$
\lambda^{\prime}=\frac{369.3}{\frac{1000}{.01}}=.00369 \mathrm{ohm}^{-1}-\mathrm{cm}^{-1}
$$

Thus, there is enough information to derive the equation of the current per unit area or A.
p. 68.

A in $\frac{\text { Amperes }}{\text { Sq. } \mathrm{cm}}=\frac{\text { Normality }}{1000} \times$ Bquivalent Conductance \times Transior Number \times Field Strength

A check of units shows

$$
\begin{aligned}
\frac{\text { Anperes }}{\text { Sq. cil }} & =(\text { ohm }-\mathrm{cm})^{-1} \times \text { Transfer Ilumber } \times \frac{\text { Volt }}{\mathrm{CII}} \\
& =\frac{\text { Vol.ts }}{\text { ohms } x \mathrm{~cm}^{2}}=\frac{\text { Anperes }}{\text { Sq. } \mathrm{cm}}
\end{aligned}
$$

This follows because the transfer number is dimensionless.
For the positive ions or cations the equation (2-5) will
become

$$
A=\text { Specific Conductance } \times \underset{\substack{\text { Transfer Number } \\ \text { (positive) }}}{ } \times \frac{\text { Field }}{\text { Strength }}
$$

and for negative ions (cations)

$$
\begin{aligned}
A= & \text { Specific Conductance } \times{ }_{F} \text { ield Strength } \times T \text { ransfer } \\
& \text { numbers (negative) }
\end{aligned}
$$

It is necessary to define the concentration, C, a litile more in detail. In chapter I this unit was defined in terms of 6.06×10^{23} ions per 22.4 liters of solution. Therefore if a . 01 normal solution of univalent electrolyte is assuned, there would be . 01 gram of hydrogen equivalent per liter of solution. However, in this particular case the definition was based on 22.4 liters instead of unity, and therefore, the concentration would be given as . 01×22.4 or ${ }^{.224}{ }^{22} \frac{\text { grams }}{22.4 \text { iter }}{ }^{\circ}$

This completes the information necessary for the solution of equation (1-11) for the voltage. From Table I, the transfer numbers
for Licl at $18^{\circ} \mathrm{C}$. are .332 for the cation and .668 for the anion, II the field strength is taken as 1000 volts per ci, the equivalent conductances are show in Table II. For lithia chloride, mich, the value is $92 \mathrm{om}^{-1}-\mathrm{cmi}^{-1}$. The current per unit area

TABS L II
Equivalent Conductance of Aqueous Solutions at 18° Centigrade ${ }^{4}$

for the positive lions will be

$$
\begin{aligned}
& A=\frac{.01}{1000} \times 02 \times .332 \times 1000=.306 \text { amperes } / \mathrm{sq} \mathrm{cas} \\
& R=5.65 \times 10^{5} \times\left(.224 \times 3.64 \times 10^{4}\right. \\
&)^{2} \times \frac{3}{9.64 \times 10^{4}} \\
&=5.65 \times 10^{5} \times(.0202) \times 10^{-9} \times .312 \times 10^{-4} \\
&=.0356 \times 10^{-7} \text { volts }
\end{aligned}
$$

For the Cl ton the value of A will be

$$
A=\frac{.01}{1000} \times 92 \times .666 \times 1000=.6 I 5 \mathrm{anp} / \mathrm{sq} \mathrm{ad}
$$

4. B. Millard, Physical Chemistry for Colleges (1931), p. 192

$$
\begin{aligned}
E & =5.65 \times 10^{5} \times\left(\frac{.615}{.224 \times 9.64 \times 10^{4}}\right)^{2} \times \frac{35.5}{9.64 \times 10^{+4}} \\
& =5.65 \times 10^{5} \times .081 \times 10^{-8} \times 3.6810^{-4} \\
& =1.68 \times 10^{-7} \mathrm{volts}
\end{aligned}
$$

The voltage difference between the ions will be

$$
\begin{aligned}
\mathbb{E}_{\text {difference }} & =\mathbb{E}_{+}-\mathbb{E}_{-}=(.0356-1.68) 10^{-7} \\
& =-1.64 \times 10^{-7} \text { volts }
\end{aligned}
$$

These calculations may be obtained in a siailar mamer for other electrolytes and the results obtained are shom in Table III.

TABLE III

Calculations of Voltage, TDiff., The to Bernoulli Effect, 18° Centigrade.

Blectrolyce \mathbb{E}, due to Cations E, due to Anions Difference, Eiff. Licl $\quad .0356 \times 10^{-7}$ volts 1.68×10^{-7} volts -1.64×10^{-7} volts $\mathrm{HCl} \quad .120 \times 10^{-7}$ volts 1.7×10^{-7} volts $.05 \times 10^{-7}$ volts NaCl 0.48×10^{-7} volts $\quad 1.55 \times 10^{-7}$ volts 1.07×10^{-7} volts $\mathrm{AgNO}_{3} \quad 3.2 \times 10^{-7}$ volts $\quad 2.42 \times 10^{-7}$ volts 1.18×10^{-7} volts

It can be concluded from the preceding calowations that the measurenents will be difficult to obtain. Therefore it is necessary that calculations should be made to determine the possible linitations that may be placed upon the ultinate level of measurement.

In the experinental procedure it is necessary to amplify the required sigal to such an extemt that thermal noise becores an importent factor. This themal agitation occurs in the cisst arglifier stage and is due to the randon motion of the free electrons in the associated conductors. As a result swall potentiale are produced across the teminals of the imut tabe. Although there ate other noise types, that due to thenal agitation sets the limit to the smallest roltage that can be amolified without being lost in the noise bacleground. 5 In actual amplifiers this factor may not be the largest of the noise sources, but does establish the lowest level of yeasurement.

The equation for the thermal agitation is expressed as ${ }^{6}$

$$
\mathbb{R}^{2}=4 \mathrm{HR}\left(f_{2}-f_{1}\right)
$$

where $k=$ Boltamann's constant $=1.374 \times 10^{-23}$ joule per degree Kelvin

IT = absolute temperature, degrees Kelvin
$\mathrm{h}=$ resistance component of impedance where noise is generated
$\mathrm{I}=$ erfective value of voltage lying between frequencies f_{1} and f_{2}.

Ix an input resistance of 10000 ohms is assumed and a frequency band-wiath of 30 cps at roon temperature, 300 degrees Iielvin, the resulting noise voltage will be

> 5. R. Teralan, Radio Engineers Mandbool, (1943) p. 477
> 6 Toid, p. 477

$$
\begin{aligned}
E^{2} & =4 \times 1.374 \times 10^{-23} \times 300 \times 10000 \times 30 \\
& =40.5 \times 10^{-16} \\
\text { os } \quad \mathbb{Z} & =7.05 \times 10^{-8} \mathrm{volts}
\end{aligned}
$$

This noise level is below the calculated signal levels and should not limat or interfere with the measurenents. A further reduction is theoretically possible by increasing the time for a given reasuremont.

The 10,000 ohis input resistance has been assumed because it is appoximately the resistance of the solutions being used. $+$ Calculations Till be based on an assumed solution of . 01 noman hydrochloric acid which has an equivalent conduction of 369.3 ohas $^{-1}$. The specific conductance witl then be .00369 ohm-cm ${ }^{-1}$ and the specinic resistance will be

$$
k=\frac{1}{.00369}=271 \text { ohm-cm }
$$

If the cell containing the solution has a cross section area of 0.2 sq . ch. and a path length of 8.0 centimeters the resistance mill be

$$
\begin{aligned}
R & =271 \times \frac{8}{.2} \\
& =10,340 \text { ohms }
\end{aligned}
$$

If it is found possible to increase the input resistance because of a better than expected signal to noise ratio, then there till resilt a subsequent decrease in loading offect won the amylifier anput circuit.

CHARPR IIT
DESCRTPTIOI OR APPNRATUS

It was necessary to design suitable apparatus for the special type of reasurenents proposed.
iko basic units of apparatus were required for the investigation. These consisted of the transmitting and receiving sections, Which involve the following units:
A. Transmitting Section
(a) Oscillator
(b) Modulator
(c) Power Supply
(d) Heasuring Cell
B. Receiving Section
(e) Miok-up Bectrodes
(f) Bre-Anplifier
(g) Oscinloscope

The complete assembly is shom in the block diagram of Rigure 2.
The requirenents for the apparatas were quite extensive and tine consuning since wory little on the equapment was imediately available. The detorminag factors in the design of the appanatus depended on the size of the coil and the electrolytic cell. These itens nill be given precedence in the folloring discussion in

Figure 2. Block Diagram of Apparatus
order that a number of the important design factors nay be determined. In order to keep the amplitade distortion of the cell as small as possible it was necessary to omit fron fron the circuit betreen the coil and cell. This nade it necessary to employ an air-core coupling. It was decided to base all design on a frequency of one megacycle per second. This happens to be a convenient Prequency from the standpoint of design information and is easy to obtain.

The cell for the solution was made of polystyrene because of the excellent cheaical resistance of that material to the various electrolytes that were to be used. A diameter of 2 inches was chosen because of the availability of tubing and rod material. Tro electrolytic ealls were built in order to provide a check for experimental accuracy. One of these was made tith a built-in obstruction, whereas in the other this astruction was onitted. This allored for quick iaterchange of the cells so as to eliminate any question conceming the accuracy of the measurements that were obtained. The cell with the ofifice is shom in figure 3. It nay be seen there is a slot parallel to the face of both cells. This mas inciuded because of the requirement of inserting a probe mar the location of the obstruction.

The design of the coil was dependent upon the frequency selected and the diameter of the electrolytic cell. The of a single layer coil at radio frequencies depends upon seteral factors. In general, however, with a given inductance and coil diameter, the Q is a maximum when the ratio of length to diameter

Pigure 3. Illustration of Solution Cell and Coil
is of the order of $1 / 2$ to 1 . Furthermore with all factors fixed except the size of the wire, the highest Q is obtained with a wire size somewhat smaller than the largest that can be placed in the available space. For a coil of 2 inches in diameter the maximum length would be about I inch. By a cut and try process a number 17 single Formvar wire was used for the required If turns. By the use of a radio frequency Q meter, it was found that the coil had a Q of 155 at 1 megacycle per second. It also had an inductance of 13.2×10^{-6} henries, a d-c resistance of .07 ohms and an a-c resistance of Rac $=\frac{W L}{Q}$ or .535 ohms. The capacity required for tuning was found to be . 00192 microfarads. The inductance value was quite satisfactory because at the operating frequency, the impedance of the input circuit matched the load impedance of the vacuum tube. The coil shape may be seen in Figure 3. The coil diameter was actually somewhat greater than 2 inches; however, it was made as close to this value as possible so as to insure close coupling to the solution cell.

To obtain same idea of the magnitude of the induced voltage in the cell it is necessary to make a few additional calculations. Since the coil has Ih turns and the cell may be considered as a one turn device, it is only necessary to determine the mutual coupling that exists between the two elements. From these relationships the voltage induced into the secondary may be calculated.

The mutual inductance between two single layer concentric solenoids is given by Terman ${ }^{1}$ as

$$
\mathbb{M}=.0501 \frac{a^{2} n_{1} n_{2}}{g} \quad\left[1+\frac{s^{2} a^{2}}{8 g^{4}}\left(3-4 \frac{1^{2}}{a^{2}}\right)\right]_{(3-1)}^{\text {microhenries }}
$$

IF. E. Terman, Radio Engineers Handbook, 1943, p. 71.

This relation is correct if the outer cot in longer thea the Engr one. In this equation, the armolw have the gigratiocace show

Figure 4. Coaxial Coins with Outer Coil the Longer coil while the inner coil consists of the solution cell with its electrolyte.

The cell and coil have the following dimensions.

$$
\begin{aligned}
& x=.5 \text { inch } \quad a=.922 \text { inch } \\
& s=1 \text { Inch } \quad n_{1}=I_{1} \text { turns } \\
& 1=.430 \text { inch } \quad 3_{2}=1 \text { tran } \\
& \text { and } \quad g=\sqrt{1^{2}+.5^{2}}=1.125 \\
& \text { Sion equation (3-1) } \\
& 2=\frac{.0501 \times .922^{2} \times 14 \times 1}{1.225}\left[1+\frac{1^{2} x \cdot 922^{2}}{3 \times 1.125^{4}}\left(3-4 \frac{.430^{2}}{.922^{2}}\right)\right] \\
& =.53[1+.0600(3-.903)]=.53(1+.21)=.605 \mathrm{ma}
\end{aligned}
$$

This relation is abject to considerable error especially at radio
frequencies. Mowever, it does give a starting point for the calculations which follow. It should be noted that the low value for the mutwal inductance made it necessary to change a frequency that was correspondingly high. One negacycle was selected as about optinum.

The problem of inductively coupled circuits has been treated in detail by Terman ${ }^{2}$ and will be used in the folloring calcuations. There is one simplification nade wich will not effect the accuracy of the work, but does cut dima on the anomt of labox involved in the calculations. This, is the fact that self-inductance of the single tum coil, represeated by the electrolytic cell, is very lor and may be neglected.

The fundmental circuit is shom in Figue 5. A prinary voltage of $-\mu e_{g}$ is show, where μ and e_{g} represent respectively the amplification ractor and grid valtage of the vacum tube. The resistance p_{p} is the plate resistance or the tube; C_{p} is the capacity required to tune the coil and is .00192 $\mu \mathrm{s}$ s I_{p} is the inductance of the coil and is 13.2×10^{-6} henries; M is the nutual inductance previously calculated to be .605 microhenries; \dot{D}_{s} is the secondary or cell inductance which is to be neglected and r_{s} is the cells resistance of the electrolytic cell, and is approximately 10,000 ons. As previously stated this value waries with the solution omployed and thererore only represents one particular case.

A 606 trpe vacum tube is satisfactory because it has suffim cient driving power and a relatively low plate resistance. The plate
2. T. Terman, Radio Engineers Handbook, 1943, pp. 148-150.

Figure 5. Equivalent Circuit for Coil Coupled to Solution Cell.

Figure 6. Simplified Circuit Showing Reduction Of Parallel Tuned Circuit to a Series Arrangement.
resistance if 50,000 ohms, the transconductance, G_{m}, is 4000 micromhos and the required driving voltage is only 10 volts r.m.s.
${ }^{T}$ he circuit shown in Figure 5 may be simplified by the use of Thevenin's theorem to a simple series arrangement ${ }^{3}$ as shown in Figure 6. All symbols have been previously defined. The only qualification to be made is that the resistance of the vacuum tube is much greater than $1 / W_{p}$. The equivalent series resistance will be

$$
\begin{align*}
\text { Eq. Res } & =\frac{1}{\frac{\left(W_{p}\right)^{2}}{R_{p}}}=\frac{1}{\frac{\left(2 \pi 10^{6} \times .00192 \times 10^{-6}\right)^{2}}{50,000}} \\
& =\frac{1}{\frac{I_{1} 2 \times 10^{-6}}{50,000}}=\frac{1}{7.1}=.1111 \text { ohm } \tag{3-2}
\end{align*}
$$

The equivalent series voltage will be

$$
\begin{align*}
\text { Eq. Voltage } & =\frac{E 1 / \text { JWC }_{p}}{R}=\frac{10 \times 50,000 \times 400010^{-6} 1}{\frac{j 2 \pi 10^{6} \times \cdot 00192 \times 10^{-6}}{50,000}} \\
& =\frac{40000 \times 10^{-6}}{j .0121}=-j 3.31 \text { volts } \tag{3-3}
\end{align*}
$$

3F. E. Terman, Radio Engineers Handbook, 1943, p. 162.

Since the effect of the secondary current is to couple an ingedance into the prinary, this quantity will need to be calculated. The coupled ispedance will bo

$$
\frac{\overline{m^{2}}}{z_{s}}=\frac{2 \pi \times 3.0^{6} \times \cdot 605 \times 10^{-6}}{10,000}=14.4 \times 10^{-4} \text { ohnss }
$$

This value is small compared to the other quantities and thereiore may be maglocted. The current that will now in the primary eircuit will thersfore be

$$
\begin{aligned}
I_{p} & =\frac{\text { Equivalont Sorios Voltage }}{\text { Total Serios Impedance }} \\
& =\frac{3.31}{.11,1}+.535+3\left(2 \times \pi m 0^{6} \times 13 \times 10^{-6}-\frac{10^{6}}{2 \pi 10^{6}} \times .00192\right) \\
& =\frac{3.31}{.676}=4.9 \text { auperes }
\end{aligned}
$$

The voltage induced in the soconlary is thereione

$$
\begin{aligned}
\mathbb{E}_{g} & =-j m \mathbb{I}_{p} \\
& =-j 2 \pi 10^{6} \times .605 \times 4.9 \times 10^{-6} \\
& =-128.7 \text { volts }
\end{aligned}
$$

Since the cell has an equivalont length of path that is approcirately
1.84h inches or 5.8 inches, then the field strength in volts per can is $\frac{18.7}{5.8 \times 2.54}$ or 1.22 volits $/ \mathrm{cm}$.

From this calculation the question may be raised as to the rasson for the earilier assumption that set the fleld strongth at 3000 volits per cis. The anower to this question is rather complax and trmolvee potemitial theory. Without beconing too involved it may be sald that the potontial drop will be alnost ontirely across
the obstruction on onifice in the cell. In other words this cell may be thought of as a conductor in series mith a large resistance. Consequently any voltage thet appears in the circuit would consist alnost entrely of the drop across the resistance. Since the polystyrene restrictor is only about . 026 centineters in path Lench, the peak inejd strengh could be

$$
\frac{18.7 \times I .414}{.026}=1000 \mathrm{volts} / \mathrm{cm}
$$

The process of designing and constructing the oscillator was a relatively simple matter. A Hartley crrcuit was used because of its simplicity and relatively good frequency stability. A crystal controlled oscillator could have been used if additional frequency stability had been required. As shom in Pigure 7, the coil, I, was wound on a 1-1/4 inch bakelite form. The cathode tay vas located lif twas Erom the grome coneotion. Thore was a total of 100 bumg of fith Formar wire on the coil. fhe rest of the cixcuit mas conventional except for pernaps the chotee of cimcuit values an the plato gaction. The oselllator had wore output than reguired and so thene was sone deltberata attomation introduced to elfanate ang tendency to over-drive the final stage. The typo of the measwement involved is quite critical. From equation (1-11) it can be seen that the measured voltage varios as the square of the current por sq. can. Therefore if a rodulated voltage is induced into the cell, the non-linear relation betreen voltage and cument should produce a denodulation tem, Zrore soccirically it Rollows that in the ane megacyele pen second

Figure 7. Schematic of Transmitting Section.
frequency is ampitude modulated by a one kilocyole per soe. voltage, and indroduced inbo a non-linear circuit, the I filotycle per sec. frequency will appear as one of the products of nodulation.

If the equation for the siaple amplitude modulation as writuen ${ }^{\text {l }}$

$$
\begin{equation*}
i=I_{\text {n }}(I+\pi \sin 2 \pi \sin t) \cos 2 \pi t \tag{3-3}
\end{equation*}
$$

expansion will xesult in

$$
\begin{gather*}
i=I_{0} \sin 2 \pi f t+\frac{\sum_{0}}{2} \cos 2 \pi\left(f-f_{S}\right) t \\
-\frac{\Phi_{0}}{2} \cos 2 \pi I^{2}\left(f+f_{S}\right) t \tag{3-4}
\end{gather*}
$$

viere $i=$ instantaneous current
in = nodulation factor
Q a mequency of oxpriter
$f_{5}=$ rodulation srequency
$I_{0}=$ average amplitude of the vave
If the equation of (1-11) is mritten as

$$
\begin{equation*}
\operatorname{Tran}(1)^{2} \tag{3-5}
\end{equation*}
$$

and equation ($3-4$) is substituted in this relation, and squared, there will be produced many nem frequencies. One rilocycle per second . . Bill be one of the frequencies obtained. Actaally there are sore other frequencies such as 2 kilocyclos per sec.

From the preceding discussion it follows that tit is recessary to either modulate the oscillator stage or a buffer stage. Stace
4. L. Everitt, Commication Ingineering, (1937), p. 382
the operation of the circuits involved, except the oscillator, were operated Class A it was decided to plate and screen modulate the oscillator itself. The only objection to this procedure is that a frequency modulation term is produced. 5 However, there is not a great deal of objection to this. The choice of plate and screen grid modulation rather than some other means was due to the excellent response of this system.

The circuit is shown in shown in Pigure 7. It may be seen that the modulating voltage is applied to both plate and screen grid. This is necessary because of the shielding action of grid mumber 2 of the 6 V 6 . A study of the figure shows the audio frequency voltage of one kilocycle per second has been coupled. into the radio frequency oscillator by means of a modulation transfomer. This transformer serves the dual purpose of matching the circuits properly and keeping the direct current of the 6 V 6 out of the output of the audio oscillator. In order to obtain maximum useful signal it was necessary to modulate at one hundred. percent. This required that the audio oscillator have sufficient voltage to drive the plate and screen combination from approximately zero to twice the value of the plate and screen supply voltage. This circuit produced a carrier with a value of 12 volts r.m.s. which was modulated 100% by the one kilocycle signal.

The final amplifier stage that drives the coil was operated Class A so as to insure low distortion in the plate circuit. The 6V6 tube, as previously stated, was utilized in this stage because
5. E. Terman, Radio Engineers Handbook, (1943), p. 550
 well as for a taverable value of its transconductenco.

The valtage across the ontut cont was fomd to be lho w. m . 5 . volts at me regabycle per sec.

The receiving section is rot panticularly complicated except for the arrangerent of the pickup electroder. These alectrodes consist on the platiman wire inmorsed in the electroIytic solution at two sets of points. These positions are at the largest and the smallest potential points in the solution. These points are located respectively at the orifice and at a location diangtrically opposite to this point. The wires are brought out in parallel and across the top of the cell so as to mullify any possible induced cument. platinus was chosen because of its relative inertness to comrosim by the various electrolytes that were used. Other materials could have servect the purpose but for the possibility of deterioration during the experinent.

The electrodes were conecter to a pre-anplifier through an input transformer. The anplifier, which is conventional in its design is shom in pigure 8. A 1000 cycle per second tuned band-pass filter has been placed in the grid circuit of the final stage to reject the harnonics and to narrol the overall frequency response. This resulted in a better signal to noise ratio. The circuit, exclusive of the transiomer, has a gain of appoxinately 95 decibels. There is about 9.5 decibel additional gain from the transformer. This results in a total gain of approxinately 105 decibels overall. 䗉 2000 cycle per second and at 500 cycles per second the gain of the amplifier is dom approximately 20

Figure 8. Schematic of Receiving Section
decibels. When this amplifier was used in conjunction with the oscilloscope there was more than enough gain to observe the smallest available signals. The oscilloscope has a naximm vertical sensitivity of 30 millivolits per inch, poak to peak. This results in a gain ratio on the 3 volt scale of

$$
\frac{3}{.03}=100 \text { to } 1
$$

which is equivalent to 40 decibels.

CHAPTRE IT

RESUTR AMD CORCLUGTONS

A prelininary checis was made of the apparatus before any actual measurenents nere attemped. This check consisted of the adjustment of the radio frequency oscillator to the me megacycle per second frequency and the tuming of the output coll for maximun output. In order to observe any spurious signals the probes were inserted into the erpty cell and the results observed visually on the oscilloscone. The observed spurious signals were elininated by additional shielding.
in this experinent two paraneters were investigated, one being the kind of electrolyte employed, the other the concentration or strength of electrolyte. Acids and alkalies were not enployed because of their corrosive properties.

The first tests mexe made using an 0.1 nomal solution of sodiun chloride. This salt was readily available in pure farm ad was satisfactory for the purpose. In order to determine the nature of the secoad order effect, the denodulated ouput woltage was measured for an increasing series on walues of the imput voltage. The results were consistent for values of output voltage that were above the thermal noise level of the amplifier of the receiver. The results are shom in table I for a 0.1 nomal solut ion of sodim chloride.

TABLE IV

Second Order Effect for O.I Normal Solution, NaCl

Input Voltage (Volts)	Output Voltage (Microvolts)
23.4	3.5
27.6	4.2
29.9	5.3
36.1	6.0
4.64 .6	8.9
49.0	10.1

Tro additional sets of data were obtained for 0.25 and 0.50 nomal solutions. The results of these runs are set forth in Table 7 and Table VI respectively.

TABLE V

Second Order Effect for 0.25 Mormal Solution, NaCl
Inout Voltage (Volts) Ontput Voltage (Vicrovolts)
$19.1 \quad 3.5$
23.44 .2
25.44 .6
27.64 .6
$31.8 \quad 5.9$
30.27 .1
$4.5 \quad 8.7$

TABLIE VI
Second Order Mefect for 0.5 Homal Solution, HaCl Envit Voltage (Vols) Ouput Voltage (aicrovolts)
20.23 .0
$23.4 \quad 4.2$
$29.8 \quad 5.3$
$36.2 \quad 6.5$
$38.3 \quad 7.2$
$42.5 \quad 7.8$

The data from these tables are show in graphical form in Tigure 9. These curves indicate that a change in the strength of the solution does not effect the voltage of the orifice. The reason for this is that an increase of decrease in solution strength only serves to change the current density and the concentration of the ions. Consequentiy the two effects cancel each other since they are equal and opposite.

Tests wexe also made for 0.1 and 0.2 nomal solutions of sodiun bromide. The results for these are shom in Table VII and Table VIII raspectively.

Figure 9. Second Order Effect for Sodium Chloride.

TABE VII

Second Order refect for 0.1 Tomal Solution, MaBr	
Inout Voltage (Volts)	Output Voltage (Microvolts)
19.1	4.2
23.4	5.3
27.6	7.2
32.9	9.3
30.2	9.2
70	41.0

TABIE VIII

Second Order efect for 0.2 Normal Solution, MaBr .
Input Voltage (Volts) Output Voltage (Hicrovolts)
$21.2 \quad 5.3$
$25.5 \quad 5.9$
$29.7 \quad 6.5$
$34 \quad 8.3$
$42.5 \quad 10.6$
$53.2 \quad 18.9$
$69 \quad 35.4$

These reamits are show graphically in Figure 10. It will be noted that there is a very close agreement between the two sets of data as would be empected.

Figure 10. Second Order Effect for Sodium Bromide.

Potassium chloride was selected as the third electrolyte to be tested. In this case solutions of 0.1 and 0.2 normal were employed. The results of these measurements are shown in Table IX and Table X respectively.

TABLE IX

Second Order Effect for 0.1 Normal Solution, KCl Input Voltage (Volts) Output Voltage (Microvolts)

17
4.8
25.4
36.2

51
68
7.1
11.8
29.6
47.5

TABIE X
Second Order Effect for 0.2 Normal Solution, KCl
Input Voltage (Volts) Output Voltage (Microvolts)
19.1 4.2
$21.2 \quad 5.3$
$31.8 \quad 8.3$
$42.5 \quad 13.6$
$55.3 \quad 29.6$
$66.0 \quad 41.5$

The data from these tables are shown graphically in Figure 11. The results are very similar.

Figure 11. Second Order Effect for Potassium Chloride.

The data for the 0.1 nomal solutions of sodiom chloride, sodiw bronide, and potassima chloride are shoma in tigure 12. The curves for sodiw bronide and potassima chloride are alnost the same. This indicates that the two gubstances have neanly identical properties.

These results substantiate the thoon that postulates the existence of the second order voltage.

Por all tyes and concempation of solutions thet have been investigated, ib was found that the output voltage mas dixectiy proportional to the square of the applied voltage. It showld be noted that the results obtamed in this invostigation regresent a men discovery. it it suggested that elfect might be called the "Fearoa Brect", arter , B. Fearon who conceived the original idea and predtcated the experimental amengenenta.

BIBITOKRAPHY

Gady, H. P. General Ghemistry. Men York: MCGraw-Hil Book Co., 1926.

Creighton, H. J. Principles of Electrochemistry, Volume 1. Hew Yonl: Jom illey \& Sons, me., 193.

Daniels, Farrington, Outlines of Physical Chemistry: New York: John Wiley \& Sons, Inc. 1940 .

Dow, W. G. Fundarnentals of Ingineering Ilectronics. New York: John Wiley \& Sons, Inc. 1937.

Daft, A. W. and Others. physics. Philadelohia: P. Blakiston's Son: Co., Inc., 1932.

Everitt, W. L. Commication Engmeering. Nem York: McharyHill Book Co.s Inc. 1937.

Harned, I. S. and Owen, B. B. The Physical Chemistry of Glectrolytic Solutions. Bev York: Pheinhold Dublishing Corporation, 1950.

Hoag, J. B. and Korff, S. A. Blectron and Buclear Physics. Hem York: D. Van Hostrand Company, Inc., 1948 .

Hodgman, C. D. and others. Mandbook or Chemistry and Physics. Cleveland: Cherical rubber Compary, 1951.

Finllard, E. B. Physical Onemistry for Colleges. Tey York: HeGraw-Hill Mblishing Comany, Inc. 1931.

Smith, A. The Elements of Physics. Hew York: EcGraw-Rill Book Company, inc., 1938.

Terman, T.E. Radio Engineers: Handbook. New Tork: Hecraw-HiTI Book Cmpany, Inc., 1943.

Tinbie, W. A. and Bush, Vamevar. Principles of Diectrical Engineering Vew York: John Tiley E Sons, The., 1929.

Washburn, E. 7 . and Others. Intermational Critical Tables, Volume VI. Wow York: BeGrom-lijl book Company, Inc. 1929.

VITA
Allen 保endell fngle
candidate for the degree of Fiaster of Science

Thesis: Aid ELECTRTCAL ANAZOOUE OF THE BERWOULI EERECT
Hajor: Dlectacical \#ngineering
Hinor: glectrical Engineering
Biographical and Other Items:
Bon: September 7, 1917 at Sapulpa, Ok ahoma
Undergraduate Study; Olmulgee Junior College, 1935-1936; O.A.1.C., 1936-1939

Graduate Study: 0.A.I.C., 1951-1953
Experience: Field Engineer, Well Survegs, Inc., Tulsa, Onlahoma, 1939m194]; Field Engineer, Lane-Tells Company, Houston, Texas, 1chl-Ist2; Instructor of Rlectronies in Radio Laterial School at 0.A....C., Stillwater, Ollahona, 1942-1945; Besearch and Develonnent Ingineer, Well Surveys, Jac., Talsa, OkIahcna, 1945-present.

Rember of Eta Kappa Nu, Society of Explorat ion Geophysicists, Arerican Geophysical Tnion, Tulsa Ceological Society and a Registered Professional migineer in Oclahoma.

Date of pinal mxanination: duy $24,1953$.

THESIS TITLE: An Electrical Analogue of the Bernoulli Effect

AUTHOR: Allen Wendell Engle

THESIS ADVISER: H. L. Jones

The content and form have been checked and approved by the author and thesis adviser. Changes or corrections in the thesis are not made by the Graduate School office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

[^0]: ${ }^{1}$ H. J. Creighton, Principles of Electrochemistry, Vol. I, 1943, p. 15 .

