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PREFACE

The present study originated as a result of the
author's desire to become hore_familiar with the
foundationé of mathematics, particularly general top-
ology and modern algebra. Greater familiarity with
the system of real numbers, which constitutes cone of
the most fuhdamental $tructures of mathematics, was
another goal. The study of metric spaces and their
generalizétions seémed an exceilent way to accomplish
these ends. |

This thesis is a study of certain topological
neighborhood spaces which the author defined in a
manner not previously done in the mathematical litera-
ture.

Indebtédness is acknowledged to Dr. D. O. Ellis of
the Univérsity of Florida for providing the author with
reprints of his published articles on subjects related
to this étudy, and £o the mathematics faculty of the
Oklahoma A, and M, College, particularly Dr. O. H.
Hamilton, for guidance and constructive criticism durn

ing the preparation of this thesis.
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I, INTRODUCTION

The present paper is devoted to the consideration
of topological spaces in which the topology is defined
by means of a function of two variables in the space
taking values in a lattice. The conditions on the func-
tion are analogous to the conditions on an ordinary metric
taking values in the set of non-negative real numbers.
Hence the name lattice-valued metric.

This system has not been treated in the mathematical
literature. However, several related mathematical systems
have been treated. References to these will be given in
the following pages.

Many generalizations of the notion of metric space
have been studied. The present study suggested itself
to the author because a lattice seems to be the most
general system in which the triangle axiom can be treat-
ed. That is, for the triangle axiom it is necessary to
have some binary operation and some partial ordering
relation. A lattice is an algebra which provides Jjust
these properties.

The lattice used in our discussion will be described
completely in the next section. The topological space,
defined by means of the lattice, is introduced and treated

in Section III.



2.

There follows a list of symbols, with their meanings,

which will be used in this paper.

agA . .

afh . . .
aFb . . .
ACB . .
ANB . .
AUB , .
A-B . .
E(x: P(x))

a+b . . .

ash . .
a<b . . .
a<b . . .

the
the
the
the
the
the
the
the
the
the
the
the

the

element a is a member of the set A
element a is not a2 member of the set A
elements a and b are different

set A is a subsa2i of the set B
intersection of the sets A and B
union of the sets A and B
intersection of the sets A and
complement of B

set of elements having property P
lattiée join of a and b

lattice meet of a and b.

element a precedes the element b

element a precedes or is equal

to the element b.



II, THE LATTICE
Birkhoff (1) (see bibliography at the end of the
paper) has defined a lattice as a partly ordered set
in which each pair of elements has a join and meet. These
will be defined presently. A partly ordered set is a

set in which is defined a relation < with the properties:

01. a<a (reflexive)
02. a<b and b<a imply a=b (anti-symetric)
03. a<b and b<c imply a<c (transitive)

Such a relation is called an order relation. We take
b>a to mean a<b. We write a<b to mean a<b but a#b.

If in addition the property:

oL. a<b or a=b or a>b (trichotomy)
holds, the set is said to be simply or linearly ordered.
Such a set is also called a chain. In the foregoing
expressions, the letters répresent arbitrary elements.
of the set: thus universal quantifiers are not written.

An upper bound of a subset X of a partly ordered
set L is an element b such that x<b for all xeX. A
least upper bound of a subset X of a partly ordered set
L is an element b such that:

x<b for all xeX and

x<c for all xeX implies b<c.

A lower bound of a subset X gf a partly ordered set
L is an element b such that b<x for all xeX. A greatest

lower bound of a subset X of L is an element b such that:
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b<x for all xeX and

c<x for all xeX implies cZb.

The least upper bound of a set X is denoted by
sup X; the greatest lower bound is written inf X.
These are read supremum and infimum, respectively.

If X is a two element subset of L, say X=(a,b),
we denote sup X by a+b (read join) and inf X by a.b
(read meet). Thus a lattice is a partly ordered set
in which each pair of elements has a meet and join.

The introduction of the + and . notation leads to

an algebraic treatment of lattices. The following

properties hold:

1 S X=X+X=X . X (idempotent)
L2. X+YSF+X, X.y=Y.X (commutative)
13 . (x+y) +z=x+(y+2), (x.y).2=x.(y.2) (assosciative)
LL. x=x+(x.y) =x.(x+y) (absorptive)

These laws can be proved as follows:

Let us notc first that the meet and join are unique.
For if x and y are elements of L, and a and b are two
meets of x and y, we have

a<b because b is a meet of x and y, and

b<a because a is a meet of x and y.
Hence a=b by 02. A similar proof holds for joins.

To prove L1, we see that x is an upper bound of the

pair x,x. But no smaller element can be an upper bound



of a set containing x. Thus x=x+x. A similar argument
proves X=X.X.

To see that L2 is true, we only need to notice that
the definitions of meet and join are symetric in the two
elements x and y.

For a proof of L3, we observe that (x+y)+2z and
x+(y+z) are both suprema for the set consisting of

Xx,y, and z. Hence they are equal because of the unique-

ness of suprema. The assosciative law for meet is proved

similarly.

To prove L4, we have x>x.y since x.y is a lower
bound of the set containing x. But x>x by Ol. Hence
X>X+X.y. But x+x.y>x, since x+x.y is an upper bound
of the set containing x. Hence x=x+xy by 02. The
proof of the other half of L4 is analogous.

A complete lattice is one in which every subset
has a sup and inf. Thus a complete lattice has univer-
sal bounds O and I; O<a for all ael, a<I for all acel.
Here O0=inf L, and I=sup L.

An element a of a lattice is said to be meet
irreducible if it cannot be written as the meet of a
pair of elements of the lattice each distinct from a.
Thus we say that O is meet irreducible if a.b=0 implies
a=0 or b=0. An atom is an element which covers O, that

is, which follows O but follows no other element. Note



that if O is meet irreducible, the lattice is non-atomic.
For if a and b are atoms, a.b=0, so that O is meet reduci-
ble.

Hereafter, the letter L will denote a complete lattice
in which O is meet irreducible. The reason for this
restriction will appear presently. Let us call this
property L5;

L5, Oel is meet irreducible.

Birkhoff (1) has discussed several topologies
which may be considered in L itself. The interval topolcgy
of a lattice is defined by taking the closed intervals
as a sub-base of closed sets. These terms will now be
explained. A closed interval is the set E(x: a<x<b)
for any elements a and b of L. Here the notation
E(x:...) means the set of all elements x having the
indicated property.

A base of closed sets is a collection of sets such
that every closed set is an intersection of sets in the
base. A sub-base of closed sets is a collection whose
finite unions form a base.

Our definition of the interval topology then means
that a set is closed if and only if it is an intersection
of finite unions of closed intervals.

Since a point is a closed interval, we note that a

lattice is a T1 space in its interval topology. A Tl



space is a space in which points are closed sets.

Birkhoff (1) has proved that a complete lattice
is compact in its interval topology. The usual definition
of compactness is that every open covering of a set contains
a finite subcovering. This means that a set A is compact
34 AC:L)Ga implies AC:LJGi, where the Ga is any collection

of open sets, and Gi is a finite subcollection of the Ga'

An equivalent formulation of this concept can be
given in terms of the finite intersection property. We
say that a collection of sets has the finite intersection
property if when the intersection of every finite sub-
collection is non-empty, the intersection of the collec-
tion is non-empty. A space is compact if and only if
every subcollection of its closed sets has the finite
intersection property.

To prove that a complete lattice is compact in its
interval topology, it is sufficient to prove that its
closed intervals have the finite intersection property.

Let (aa’ba) be a collection of closed intervals,
such that any two of them have a non-empty intersection.
Then aasba' for each a, a'. Hence a=sup aasinf ba=b° We
see that the closed interval (a,b) is contained in each
of the closed intervals of the collection, so that their

intersection is not empty.



III. THE SPACE
Let S be a set and D a funetion mapping S><S into
L. Here S><S is the Cartesian square of S, or the set
of all ordered péirs of elements of S. Thus D is a
function of two variables in S. Let the mapping D have

the following properties:

D1, D(a,b)=0 if and only if a=b
D2. D(a,b)=D(b,a)
D3. D(a,b) +D(b,c)>D(a,c) .

Here D(a,b) denotes the element of L which corresponds
under D to the pair a,b of S. We shall use lower case
letters near the beginning of the alphabet for the
elements of S. Elements of L will, when necessary, be
denoted by the letters near the middle of the alphabet.
We shall abbreviate D(a,b) by ab; thus ab denotes the
element of L ﬁhich corresponds to the pair a,b of S

under the mapping D. The axioms above now read:

DI, ab=0 if and only if a=b
D2. ab=ba
D3. ab+bc>ac.

We say that S is an L-metrized space.
Some systems related to that under consideration
have been treated recently in the literature. Blumenthal

(2) defined a Boolean metric space as a system of the
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present type in which the lattice is a Boolean algebra. No
topology is introduced. In a private communication to the
author, Dr. Blumenthal has indicated that a paper to appear
later treats the convergence topology of the Boolean alge-
bra.

Ellis and Sprinkle (L4) discussed the topology of
such a B-metrized space for a sigma-complete Boolean
algebra., A sigma-complete Boolean algebra is one in which
every countable subset has a supremum and infimum. Kelly
and Lapidus (6) discussed the geometry of an L-metrized
space. In case S=L, L is said to be autometrized. Auto-
metrized Boolean algebras were discussed in Ellis (3).

As in the case of the ordinary metric axioms, we
could replace D2 and D3 by one condition DLiL:

DL. ab+cb>ac.

Theorem 1. Axioms D1 and DL are equivalent to
axioms D1, D2, and D3.

Proof:

Put a=b in Di. Thus be<bb+ecb=cb, since bb=0 by D1.
Now permute the letters of DL; c¢b<ca+ba and put a=c.
Then cb<cc+bc=bc by Dl. Now 02 gives be=cb and we have
proved D2. D3 now follows immediately. The converse is
obvious.

We shall define a toplogy on the set S by using the
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mapping D to define a closure operator on the subsets of
S. We define D(A,B)=inf ab, for aeA, beB, as the distance
between A and B, where A and B are any two subsets of S.

Obviously, D(A,B)=D(B,A). Now we define the closure A

of a subset A of S:

A=E(x: D(x,A)=0).
The closure of a subset of S is thus another subset of S
consisting of the elements at lattice distance 0 from S.
We shall show that the closure operator defined above
satisfies the usual axioms for a closure operator.

The axioms for a closure operator are:

Gl 5 - (isotone)

¢z2. §=f (idempotent)
C3. XUY=XUY (distributive)
Ck. ¢=p, where ¢ is the null set.

Theorem 2. The operator K defined on the subsets of
S by the distance function D is a closure operator.

Proof:

Axioms Cl and C4 are obvious. To establish C2, we
need only prove that %C:f, since the reverse inclusion
is obvious. But ae% means that for any mel, ay<m for
some yef. This means that for some xeX, yx<m also. Then

ax<ay+yx<m+m=m. But m is arbitrary, so we have proved

acX. To prove C3, let aexUY., 1If aef, we have D(a,X)=0,



so that D(a,X\UY)=0 and agXUY. Similarly for aeY. We
have proved that fLJTC:ETj?. For the reverse inclusion,
< affk)?, then adf and af?, and so for some m and n of
L, and all x, y of X, Y, we have ax>m, ay>n and hence
ax>m.n>0 for xeXUY by L5. This means that D(a,XUY)>0,
so that agXUY. This completes the proof.

Theorem 3. S is Tl space.

Proof:

A Tl is a space in which points are closed. Our
theorem follows directly from Dl. Let aeS. Then ;=a,
for the set at zero distance from a is a itself, because
if ab=0, we have a=b by Dl.

In order to define a neighborhood topology directly

in S, let us define:

Nm(a)=E(x: ax<m), acA, mel

as a neighborhood of a.

The neighborhood axioms are:

N1. aeNm(a) and each point has a neighborhood.
N2. beNm(a) implies that some Nn(b)C:Nm(a).
N3. aeNm(a), aeNn(a) imply that some

Np(a)C:Nm(a)fﬁNn(a).

In this last expression, () is used to denote set inter-

section.

11.



12,

Theorem L. S is a neighborhood space.

Proof:

N1 is obvious, since NI(a) is a neighborhood of a,
and aa=0<m, To prove N2, let bst(a) and consider
xENm(b). Then ax<ab+bx<m+m=m, so that xeNm(a). Thus

N (5)CN (a). To show that N3 is satisfied, observe that

N n(a) is contained in Nm(a) and Nn(a), gince ax<m.n implies

that ax<m and ax<n.

We now define as usual an open set as a set which
is a union of neighborhoods. A closed set is one whose
complement is open.

Theorem 5. S is a T1 space in its neighborhood
topology.

Proof:

If a#b are in S, we have a(Nab(b). We have shown

that of any two points of S, each has a neighborhood not
containing the other. Lo show that points are closed,
let aeS, and for each b#a, let N(b) be a neighborhood of

b which does not contain a. Then S-a= U N(b), so that
beS

the complement of a is open. Thus a is a closed set.
Theorem 6. A set is closed if and only if it is
equal to its closure.
Proof:

Let ACS be closed and beS-A. Then for some m,



beNm(b)(:S-A. Thus ab>m for all asA. Hence D(b,A)>m>0,
so that bfA. This proves that ACA. Since we always
have AC A, we have proved that A=A,

Now assume A=A. We show that the complement of A
is open. Let beS-A. Then ab>m>0 for some meL and all
agA, so that Nm(b)C:S-A. Thus S-A is open and so A is

closed., This completes the proof.

13,

The need for condition L5 is seen from the following:

Theorem 7. If S is a neighborhood space defined by
an L-metric D, then condition L5 holds.

Proof:

Condition L5 means that m.n=0 implies that m=0 or

n=0., Consider Nm(a)f\Nn(a). If this intersection is

to contain a neighborhood of a, we must have some pel,

p>0 for which Np(a)C:Nm(a)fﬁNn(a). But p<m.n, since

p<m and p<n follow from ast(a), aan(a), respectively.
Thus p is a lower bound of the pair m, n so that p<m.n.
This completes the proof.

A Hausdorff space is a space in which each of two
distinct points have disjoint neighborhoods.

Theorem 8. S5 is a Hausdorff space.

Proof:

We show that two elements a, b of S have disjoint

neighborhoods. Now Nab(a) and Nab(b) are disjoint, for
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if xeNab(a)rﬁNab(b), we have ax<ab, and bx<ab, so that

ab<ax+xb<ab+ab=ab. This is a contradiction.
Theorem 9. The lattice metric is a continous
function of its variables.

Proof:

It will suffice to prove that for each mel, XENm(a)

and yeNm(b) imply that xy<ab+m and ab«Xy+m.

But if ax<m and by<m, then

ab<ax+xb<ax*txy+yb<m+xy+m=xy+m.
Similarly, xy<ab+m.,

A topological space is said to be normal if every
pailr of disjoint closed subsets of 1t are contained in
disjoint open subsets of it. We can prove that the
space S has this property.

Theorem 10. S is normal.

Proof:

Let A and B be disjoint closed subsets of S. Then

D(A,B)=m>0. For each achA and beB, consider Nm(a), N _(b)s

i

AC UN (a), BC UN (b). If these open sets are not
m n
ach - beB

disjoint, let ¢ be a common point. This means that for
some aed, and beB, we have cgNm(a), cst(b). Thus
ab<ac+be<m+m=m, contrary to D(A,B)=m.

A subset X of a topological space is said to bhe



connected if it is not the union of two disjoint non-
empty open sets. A set is connected if and only if it
contains no proper subset which is’ both open and closed.
For if ACX is open and closed, then X-A is open, so that
:X=AL)(X;A), contrary to connectedness of X. On .the other
hand, if X=A{UB, where A and B are both'open, then A is
also closed, being the complement of an open set.

A space is called totally diéconnected if it contains
no connected subset of more than one point. We can show
that the space S is totally disconnected.

Theorem 11. S is totél;y disconnected.

Proof: |

We first show that a neighborhood is closed as well
as open in S. Consider Nm(a) and let D(b,Nm(a))=O. Then
for some xeN (2), bx<m. But ax<m. Hence ab<ax+bx<m+m=m.
Thus ngm(a), so that Nm(a) is closed. Now suppose AC S
contains more than one point., Let a, begA. Then Ar\Nab(a)
is a subset of A both'open and closed in A, so that A is
not connected. We have thus established that S does not
contain a connected subset of more than one point.

In an ordinary metric space, a sequéncé a1s 8y, cee
is called a Cauchy sequence if for each positive number
m, there is an integer Xk such that aiaj<m if i>k and

>k, Here a;a denotes the ordinary distance from ag to

J

aj. We can generalize this notion to L-metrized spaces
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as follows. Let a1, 85, oo be a sequence of elements of S.

We say that this is a Cauchy sequence if for each meL there

is an integer k such that aiaj<m if i>k and j>k. We can

prove the féllowing theorem about Cauchy sequences in S,
Theorem 12. A sequence is a Cauchy sequence if and

only if for each meL there is an integer k such that

aiai+1<m if i>k.

Proof:

The necessity is obvious.

To prove the sufficiency, let a be a

1, az* L ]
sequence satisfying the conditions of the theorem.

Then:

aiai+1<m if i>k, where k is the integer given by

the theorem. Suppose j>i. Now:
aiajgaiai+l+ai+1ai+2+ ...+aj_1aj by D3
<m+m+ ... +m by 03
=m by Ll.
This proves the sufficiency.

The following theorem gives a partial characterization
of spaces haﬁing a lattice valued metric. A related result
appears in Hausdorff (5), who proves that a compact space
for which each pair of points have distanz zero is connected.

The distanz 3 between two points of a metric space is given

by
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d(a,b)=inf max XX, Where xixi+l=D(xi, X,.,) is

i+l

the metric distance between Xs and Xi41 and a=xy, X,,

0o, xn=b is a finite sequence of points in the space.

An ultra-metric space is an 6rdinary metric space in
which the triangle inequality is strengthened to read
ac<max(ab, bec), where ab denotes the distance from a to b.
The concept of ultra-metric space is explained and discuss-
ed further in examples 2 and 3 of this paper.

Theorem 13. A compact metric space S has an ultra-
metric if and only if it is totally disconnected.

Proof:

It follows from theorem 11 that a space is totally
disconnected if it has an ultra-metric.

To prove the converse for compact metric spades, it
is sufficient to show that in a totally disconnected
compact metric space, the distanz is an ulira—metric equi-
valent to the original metric.

First we prove axiom D1 for 8. If a=b, clearly
3(a,b)=0., Let d8(a,b)=0, and suppose a#b. Consider the set
A=E(x: 8(a,x)=0). This set contains at least two elements
by hypothesis. We show that it is connected, contrary to
the hypothesis that S is totally disconnected. If A is
not conneéted, let A=PL}Q'be a separation into disjoint

closed subsets. Then because of éompactnéss we have two



18.

sequences pneP and qneQ such that D(p,pn)*O for some pegP
and D(q,qn)*o for some qeQ and D(p,q)=D(P,Q). But p#q,
since P and Q are disjoint, so we have D(P,Q)>0. This
shows that the distanz 3 between a point of P and a point
of @ is not zero, contrary to hypothesis.

The distanz clearly satisfies D2.

If D3 should fail for 3, we would have some three
points a,b, and ¢ for which max(3(a,b), d(b,c))<d(a,c).
But then d(a,c) would not be the infimum as defined, since
the sequences of the form a, ..., b, ..., c are among
those over which the infimum is taken.

To show the equivalence of D and 9, let us first
remark that d(a,b)<D(a,b) for all a and b of S, since
the pair a,b is a sequence from a to b. Now suppose
a(a,an)*O. Then D(ani,p)+O for some peS because of
compactness. Here a s is a subsequence of a - But
this implies that a(ani,p)*O, since 8(a,b)<D(a,b). This
gives a=p, since limits are unique under an ultra-metric.
Thus we have proved D(ani,a)*O. We could not have
D(anj,q)éo for another point geS and subsequence L
of a_, since in that case we ﬁould have S(anj,q)40,
contrary to the assumption that a is the sequential

limit of a - This proves the equivalence of D and 9.
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IV. EXAMPLES

Example 1.

The following example is discussed in Blumenthal
(2) and Ellis (3).

Let B be a Booleah algebra, and define D(B><B)(C B
as D(a,b)=ab=(a.b')+(a'.b). Here we take S=L=B, This is
the Boolean metric, making B an autometrized Boolean space.
A Boolean algebra is a lattice in which the distributive
laws

a.(b+c)=a.b+a.c and

a+b.c=(a+b) .(a+c)
hold, and in which each element has a complement. The
complement a' of a is an element having the properties

a.a'=0, a+a'=I, where O and I are the universal bounds.

We shall show that the conditions Dl, D2, and D3 df a
lattice metric are satisfied by the Boolean metric defined
above,

Dl. If ab=0, that is a.b'+a'.b=0, then a.b'=0 and
a'.b=0, that is a<b and b<a so a=b.

If a=b, then a.b'=0, a'.,b=0, so ab=0+0=0, This proves
Dl.

D2. To prove D2, we observe that ab is symetric by
definition.

D3. We have, using the definitions
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ab+bc=a.b'+a'.b+tb.c'+b'.c

=a.b'+b.c'+a'.b+b'.c
>a.c'.b'+b.a.c'+a'.c.b*+b'.at.c
=a.,c'.(b'+b)+a',c.(b+b!)
=Fa.c'+al,.c

=ac¢c, This proves D3.

This example illustrates what is berhaps the most
natural way in which an L-metric can arise. It is treated
in both Blumenthal (2) and Ellis (3). The only proofs so
far published are in Ellis (3). They deal with the geometry
of the autometrized space, i.e., with the distance preserving

transformations of the space.
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Example 2.

Another example of L-metrized spaces is provided by
the ultra-metric spaces which first appear in Hausdorff
(5), page 158.

An ultra-metric space is an ordinary metric space in
which the triangle inequality is strengthened to fead
3(a,c)<max(d(a,b), 3(b,c)), where 3 denotes the ordinary
metric.

Now let L be the set of real numbers in the unit
interval, This set of numbers forms a complete lattice
under the ordinary order relation <. Here sup X and inf X
have the same meaning‘as usual, But a+b‘means the sup of
the two element set containing a and b; thus a+b is the
maximum of a and b, Similarly a.b means the minimum of
a and b. Clearly O is meet irreducible.’

We see that an ultra-metric space is an L-metrized
space with the metric taking values in the lattice des-
cribed above. Consequently, all of the theorems proved
above for an L-metrized space are valid in any ultra-

metric space,
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Example 3.

The following example shows that an L-metrized space
may be dense-in-itself. This means that each point of it
may be a limit point. Hence the theorem on total dis-
connectedness cannot be strengthened to read that some of
the points are isolated.

Let S be the Cantor set in the closed unit interwval,
and L the lattice of real numbers in the closed unit inter-
val. The Cantor set is the set of numbers of the unit
interval which can be written in the triadic system without
using ones. We can think of it as the set remaining after
removing the open middle third of the interval, the open
middle third of the remaining intervals, etc. We shall
define an ultra-metric on the Cantor set which is topolog-
ically equivalent to the usual metric.

We define the distance ab between a and b of C as the
length of the longest complementary interval which lies
between them on the closed unit interval. Then ab is
clearly‘equiﬁalent to fa=b|, the usual metriec. But
max(ab,bc)>ac for any three points of C. Thus ab is
an ultra-metric.,

The Cantor set is well known to be dense-in-itself.
It is in fact perfect, that is, it is equal to the set of

its limit points.
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V. CONCLUSIONS

The L-metrized spaces have been proved to bé both
a éeneralization and a specilalization of ordinary metric
spaces. The lattice L is more general that the set of
non-negative real numbers in that the ordering need not
be linear nor must the lattice contain a countable dense
subset. However, the operation of join is only a partial
analogue of ordinary addition since it is defined by means
of the order relation, whereas the addition of arithmetic
is a field operation less simply related to the ordering of
;eal numbers. .

On the other hand, the triangle axiom on the L-metric
is perhaps more properly an analogue of the stronger ultra-
metric axiom (see example 2). We see in the theorems of
Section III that the strength of the lattice metric axioms
partially compensates for the greater generélity of the
lattice. Thus, the separation theorems on metric spaces
are also true in L-metrized spaces. HoWever, the proofs
are obtained by different methods.

The similarity between the L—metrizéd spaces and the
ordinary metric spaces ends with the separation theorems.
The theorem that an L-metrized space is totally disconnect-
ed has no analogue in the theory of metric spaces, nor does
the theorem on Cauchy sequences. The L-metrized space is

more nearly similar to the ultra-metric space in these latter
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properties.

The theory of L-metrized spaces constitutes a chapter
in the general theory of distance geometries as outlined
in the wbrk of Blumenthal and Ellis, listed in the biblio-
graphy. However, their work is concerned principally
with the distance relations, while the interest in this

paper has been centered on the topclogical properties.
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