A STUDY OF THE FORMATION OF AQUO- AND CHLORO-COMPLEXES OF COBALT(II) IN 2-OCTANOL AND ETHANOL

W. Don Beaver " Bachelor of Arts Bethany-Peniel College Bethany, Oklahoma

1946

Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1953

OKLAHOMA Agricultural & Mechanical Collect LIBRARY

JUL 6 1953

A STUDY OF THE FORMATION OF AQUO- AND CHLORO-COMPLEXES OF COBALT(II) IN 2-OCTANOL AND ETHANOL

Thesis Approved:

Adviser Thesis Tt. the Graduate School Dean of

ACKNOWLEDGMENTS

To Dr. Tom E. Moore and Dr. Paul C. Yates I extend my sincere thanks for the help so generously given during the study of this problem. My thanks also goes to the Atomic Energy Commission under whose sponsorship this investigation was made.

TABLE OF CONTENTS

í,

																							Page
INTRODUCT	ION	9	•	٠	÷	•	•	0	٠	•	•	•	٠	٠	•	•	•	•	•		٠	•	l
LITERATUR	E SI	JRV	EY	:	•	•	٠	٠	٠	•	•	÷	٠	•	¢	Ģ	٠	٠	•	ø	٠	\$	3
EXPERIMEN	TAL	•	•	•	¢	٠	٠	•	¢	٠	•	•	٠	ø	•	•	٠	*	٠	•	٠	٠	14
TREATMENT	OF	DA	LTA	•	٠	•	9	•	٠	•	•	•	•	٠	•	æ	•	÷	٠	٠	•	٠	19
RESULTS A	ND J	DIS	CU	ISS	SIC	ON	÷	¢	Ŧ	÷	•	٠	٠	•	•	•	•	ę	•	٠	٠		23
CONCLUSIO	N.	٠	Ŧ	•		¢	9	۵	9	•	٠	•	•	•	\$	٠	¢	•	٠	٠	•	٠	65
SUMMARY	• •	0	ġ	v	¢	a)	÷	•	•	٠	8	•	٠	٠	٠	۰	٠	•	٠	•	٠	٠	67
BIBLIOGRA	РНҮ	٠	0	6	ø	\$	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٩	•		68

INTRODUCTION

Garwin and Hixson¹ have studied the relative distribution of cobalt and nickel chlorides between aqueous solutions and various organic solvents. This study indicated that in most organic solvents, including 2-octanol, cobalt chloride had a greater solubility than nickel chloride. Although the solubilities were sufficiently different, the quantity of salt extracted was insufficient for practical purposes. The extraction, however, could be satisfactorily promoted by the addition of considerable amounts of certain strong electrolytes such as HCl and CaCl₂.

Following the initial study by Garwin and Hixson, considerable work has been done at Oklahoma A. and M. College in an effort to determine factors which affect the distributions of cobalt and nickel chlorides between water and 2-octanol.

A difference in the extent of association in the organic phase appears to offer a reasonable explanation of the difference in the extractabilities of nickel and cobalt. This difference may be explained on the basis that cobalt forms both the undissociated molecule and higher complex ions more easily in 2-octanol than does nickel.

However, in practice, the system is complicated by the fact that extraction conditions usually involve excesses both of promoting salts and water, since considerable amounts of

each are extracted along with the cobalt. The presence of such salt excesses and water in the organic phase have been found to greatly affect the type of complex formed and its stability. Trevorrow² found this to be the case in a study of the chloro-complexes of nickel in 2-octanol.

A preliminary study of the chloro-complexes of cobalt in 2-octanol has been made by Estill³. His work, however, was confined to anhydrous systems and to those which contained only a small and constant amount of water. Furthermore, the effect of large excesses of other metal chlorides such as are frequently encountered in extraction was not studied. On this basis it was considered desirable to extend the study of Estill to systems more closely approximating those involved in extraction with the purpose of determining the composition and relative stabilities of the aquoand chloro-complexes which exist under varying conditions of salt and water concentrations.

LITERATURE SURVEY

The literature records a considerable number of studies on the color change of from red to blue associated with solutions of cobaltous chloride in various solvents. Since there is little agreement among the authors as to the probable cause, merely a review of their conclusions would appear confusing unless accompanied by some indication of the nature of the experiments. It was considered best, therefore, to list the studies in tabular form. They are listed in Table I together with the salts and solvents studied, methods applied, and important conclusions. The work most closely associated with the present investigation will be discussed in more detail.

The conclusions of these workers may in general be divided into two groups. One group explains the color changes on the basis of dehydration effects or a change in the coordination number for cobalt, and the other interprets the changes on the basis of complex formation between the cobalt and chloride ions.

Among the adherents of the complex ion theory, there is considerable disagreement as to the composition of the complex or complexes responsible for the blue color. Barbinok⁴, from investigations in acetone, claims to have found a tetrachloro-complex on the basis of spectrophotometric studies, while Wormser⁵, from studies in the same solvent, believes,

on the basis of his conductivity work, that the complex is trichloro. However, Katzin and Gebert⁶ have pointed out errors in the studies of Barbinok and have concurred with Wormser that the principal complex is the trichloro complex. There seems to be little doubt that such a complex exists in organic solvents and probably in water as well.

Bobtelsky and Spiegler' from spectrophotometric data in ethanol have found evidence for the tetrachloro-complex in the presence of large excesses of chloride ions and for the CoCl₂ entity formed at lower chloride concentrations. It would therefore appear that chloro-complexes having Cl/Co ratios of from 1:1 to 4:1 exist under suitable conditions in solutions in alcohols and in acetone.

Although the majority of investigations have pointed to chloro-complex formation as an important cause of the color changes noted in solutions containing cobalt and chloride ions, evidence showing the occurrence of a change of hydration or coordination number of the cobalt cannot be ignored. Bobtelsky and Spiegler⁷, for example, point out from their measurements of the extinction coefficient in alcohol-water mixtures that whereas in water a high concentration of chloride is necessary to replace the water in the coordination sphere of the hydrated cobalt ion, the introduction of chloride is facilitated in the alcohol-water mixtures. This, they claim, is due to the smaller concentration of water and the association between alcohol and water molecules. In absolute alcohol the chloride enters the coordination sphere readily.

and therefore the reaction between chloride and cobalt ions is nearly quantitative. Thus they have proposed that the deep color is characteristic of the covalent bond formed between cobalt and chloride causing deformation of the electronic orbits. In the absence of water and at high chloride concentrations, these bonds could form easily and the distance between the cobalt and chloride ions would be relatively small. This would correspond to a coordination number of four. However, in the presence of water and lower chloride concentrations, the distance between cobalt and chloride ions would be increased due to the shielding action of the molecular dipoles of the water. This would allow an increased coordination number for cobalt, probably six, as has been suggested by several workers. Katzin and Gebert⁸, in studies on CoCl₂ solutions by the spectrophotometric methods, noted the appearance of a peak at 530 millimicrons in methanol, believed due to a CoCl₂ entity, and a stronger peak at 570 millimicrons in acetone which also seemed to be due to a CoCl_o entity. They thus postulated that the difference in the two absorptions was the result of a difference in the coordination number of the cobalt in the two cases. In methanol the coordination number would be six, and in acetone, four.

Katzin and Gebert⁸ also noted that the addition of small amounts water to the solutions in acetone, tertiary butyl alcohol, and dioxane reduced all parts of the absorption curve above about 550 millimicrons, and at concentrations of water about 15% or higher, the absorption approaches that of the

hydrated cobalt ion.

Through their studies on $Co(NO_3)_2$ in various solvents, Katzin and Gebert⁹ have extended the idea of a competitive reaction between the nitrate ions, water molecules, and molecules of solvent for positions in the coordination sphere of cobalt. The presence of water tends to raise the dielectric constant and to provide the solution with a strong electron donor which is able to replace the nitrate ion in the following manner:

 $Co(NO_3)_2(H_2O)_x + aH_2O \equiv Co(NO_3)(H_2O)_{x+a}^+ + NO_3^$ or

 $Co(NO_3)_2(H_2O)_x + bH_2O = Co(H_2O)_{x+b} + 2NO_3$

Reference has already been made to studies on solutions of cobaltous chloride in octanol in the presence of lithium chloride by Estill^3 in which he indicated the important complex to be the CoCl_3^- entity. Estill employed the method of continuous variations as developed by Job^{10} and modified by Vosburgh and $\operatorname{Cooper}^{11}$ and Katzin and Gebert⁶. While his results were interpreted as indicating the existence of a CoCl_2^- . However, certain difficulties in interpretation of results are inherent in the application of the continuous variation method to regions involving the existence of more than one complex. In addition, disproportionation of the CoCl_2 is a possibility and this would interfere with a clear interpretation. These difficulties prohibited Estill from positively identifying both complexes by the variations method. Later experiments in which small excesses of lithium chloride were added to cobalt chloride failed to demonstrate the formation of any higher complex beyond $\operatorname{CoCl}_2^{12}$.

A preliminary study has been made in these laboratories on the effect of water in such systems. Gootman, using the method of continuous variations, found that the addition of small amounts of water to solutions of CoCl₂ in 2-octanol produced no change in the extinction coefficient. In another series of studies by the same method, he added small amounts of water to an octanol solution containing CoCl₂ and LiCl in the ratio of $CoCl_2/LiCl = 1/5$. In this case a minimum in excess optical density was found as the water concentration varied, indicating some reaction between water and cobalt leading to a stoichiometric ratio of $Co/H_2O = 1/1$. Since the addition of water in these studies was made by adding it directly to the octanol solution, there may be some question as to how well the water dissolves in the octanol under such conditions. Gootman also made a variation study to test the formation of complexes higher than $CoCl_2$, (e.g. $CoCl_h^{-}$), in octanol-water mixtures. His results indicated no complexes of ratio Cl/Co greater than 2/1.

In connection with a study made in these laboratories¹⁴ of the promoting effect of $CaCl_2$, LiCl, and HCl on the extraction of $CoCl_2$ from an aqueous into a 2-octanol phase, the extinction coefficient of $CoCl_2$ in the octanol phase was determined under widely varying conditions of excess chloride

ion ancentration and water content. Fig. 1 shows the apparent extinction coefficient at 690 millimicrons as a function of excess chloride for the promoted extractions with CaCl₂, LiCl, and HCl. The dotted line is the extinction coefficient of CoCl₂ taken from the continuous variations studies by Estill³. This figure suggests that more than one complex exists under extraction conditions since values of the extinction coefficient fall below and above that for the CoCl₂ entity in anhydrous octanol. This leads one to believe that Estill's experimental conditions did not correspond closely to those occuring in the systems under extraction as previously noted. That the complex formation may not be due entirely to a variation in chloride ion concentration is shown by the different curves obtained for the LiCl- and HCl-promoted extractions in Fig. 1.

It would seem from this survey that the complexity of relationships encountered in these systems makes a comparison of results difficult and leads to apparent disagreement even though results from many of the individual systems, as applied to the particular concentration region and solvent studied, are probably valid.

TABLE I

100

Investigations on the Color Change of Cobalt(II) Salts in Solution

Ref.	Author	Solute	Solvent	Method*	Conclusions
15	Bassett, Donnan	CoCl ₂	H ₂ O	(a)	Blue color migrated to anode indicating some anionic complex.
16	Cooper	Co(II)& Cu(II) salts	H ₂ 0	(Ъ)	Absorption depends on the solvent and probable solvates.
17	Jones	Co(II) salts	H ₂ 0	(b)	Phenomena due to change in hydration.
18	Brown	CoCl2	H ₂ 0 EtOH	(b)	Proposes three distinct phases of CoCl ₂ : anhydrous, hexahydrate and polyhydrate.
19	Houston	CoCl2 CoBr2	Various	(b)	Color change depends on change in hydra- tion.
20	Kochubei	CoCl2	EtOH	(c)	Groups responsible for blue color are such as $CoCl_2(EtOH)_2$ and $CoCl_4^-$.
21	Groh	CoCl ₂ LiCl	H ₂ O MeOH EtOH PrOH	(b)	CoCl4 is responsible for the blue color.
22	Hill, Howeil	Co(II) salts	н ₂ 0	(b)	The red color corresponds to a coordina- tion number of 6, blue to a coordination number of 4.

Author	Solute	Solvent	Method*	Conclusions
Mazzetti #	CoCl ₂ + added salts	H ₂ O,MeOH EtOH,PrOH BuOH	(d),(e) (b),(f)	Both hydration and complex formation re- sponsible for the change. Red form due to hydrated CoCl4.
Hantzsch	Co(II) halides	Various	(b)	Color change due to change in coordina- tion number of cobalt.
Groh, Schmid	CoCl2 LiCl	Acetone	(b),(d) (g),(a)	$CoCl_{4}^{-}$ responsible for the blue color.
Brdicka	CoCl ₂	H ₂ O	(b)	CoCl4 and possibly others of the type $CoCl_n^{n-2}$ are present.
Torpescu	CoCl2	MeOH, EtOH PrOH, BuOH AmOH	(Ъ)	Color change accounted for by relation between dielectric constant and degree of polymerization.
Dirking	CoCl2 CoBr2	MeOH EtOH	(b),(c) (h)	Formation of complex ions of the type $CoCl_4^-$ evident,
Howell, Jackson	CoCl2	н ₂ 0	(b)	Proposed the mechanism: Co(H_2O)6> Co(H_2O)4Cl2> Co(H_2O)Cl3
Kiss,Arpad Gerendas	,CoCl2	н ₂ 0	(b)	Indicated the presence of complexes but could not identify them.
Kiss, Csokan Richter	CoCl2	MeOH,EtOH PrOH Pyridine Quinoline	(b)	Color change due to change in the coordi- nation number which for the red form is 6 and for the blue form is 4. (e.g. CoCl ₄ , Co(MeOH) ₂ Cl ₂ , Co(MeOH) ₄ Cl ₂).
	Author Mazzetti m Hantzsch Groh, Schmid Brdicka Torpescu Dirking Howell, Jackson Kiss, Arpad Gerendas Kiss, Csokan Richter	AuthorSoluteMazzetti # #CoCl2 + added saltsHantzschCo(II) halidesGroh, SchmidCoCl2 LiClBrdickaCoCl2TorpescuCoCl2DirkingCoCl2 CoBr2Howell, JacksonCoCl2Kiss, Arpad GerendasCoCl2Kiss, Csokan RichterCoCl2	AuthorSoluteSolventMazzettiCoCl2 + added *H20,MeOH EtOH,PrOH BuOHHantzschCo(II) halidesVariousHantzschCo(II) halidesVariousGroh, SchmidCoCl2 LiClAcetoneBrdickaCoCl2H20TorpescuCoCl2MeOH,EtOH PrOH,BuOH AmOHDirkingCoCl2 CoBr2MeOH EtOHHowell, JacksonCoCl2H20Kiss, Arpad GerendasCoCl2H20Kiss, Csokan RichterCoCl2MeOH,EtOH PrOH PrOH PrOH PrOH PrOH PrOH PrOH PrOH ProH 	AuthorSoluteSolventMethod*Mazzetti # added #CoCl2 + added saltsH2O,MeOH EtOH,PrOH BuOH(d),(e) (b),(f)HantzschCo(II) halidesVarious(b)HantzschCo(II) halidesVarious(b)Groh, SchmidCoCl2 LiClAcetone (b),(d) (g),(a)(b),(d) (g),(a)BrdickaCoCl2H2O(b)TorpescuCoCl2MeOH,EtOH CoBr2(b)DirkingCoCl2 CoBr2MeOH EtOH(b),(c) (h)Howell, JacksonCoCl2H2O(b)Kiss, Arpad GerendasCoCl2H2O(b)Kiss, Csokan RichterCoCl2MeOH,EtOH PrOH Pyridine Quinoline(b)

TABLE I (Continued)

11

	TABLE I (Continued)									
Ref.	Author	Solute	Solvent	Method*	Conclusions					
34	Richter	CoCl ₂ LiCl	MeOH,EtOH PrOH	(b)	Red absorber is $Co(H_2O)_6^{++}$, blue is $CoCl_4^{-}$. In the absence of H_2O and excess Cl_{-} , blue is of the type: $CoCl_2(X)_2$ or 4. X=Solvent.					
4 35 36 37	Barbinok " "	CoCl ₂ CoBr ₂ Co(ClO ₄) ₂ LiCl	Acetone MeOH EtOH PrOH	(b) (b) (b) (b)	Absorption due to CoCl ₄ with other com- plexes (CoCl ₃ and CoCl ⁴) indicated present					
38	Robinson, Brown	CoCl2 Co(NO3)2	H ₂ 0	(ð)	Mechanism for color change is: Co(H ₂ O)6 + 2Cl> CoCl ₂ (H ₂ O)4 + 2H ₂ O					
7	Bobstelsky	Co(NO3)2 + salts	EtOH	(b) (d)	Indicated the presence of undissociated $CoCl_2$ and $CoCl_4$.					
39	Varadi	CoCl2 HCl	H ₂ 0	(b)	Color change due to coordination number change from 6(red) to 4(blue). (i.e. Co(H ₂ O)6 CoCl ₄ .)					
6,8, 9	Katzin, Gebert	CoCl2 Co(NO3)2 + salts	Acetone t-BuOH MeOH	(b)	Evidence for undissociated $CoCl_2$. $CoCl^+$, $CoCl_3$, and possibly $CoCl_4^-$. Strong effects due to water addition.					
40	Lehne	Co(SCN)2	H ₂ O	(b)	Complexes of the type $Co(SCN)_n^{2-n}$ form stepwise with n=1,2,3,or 4, accompanied by change in coordination number.					
5	Wormser	CoCl2 LiCl	Acetone PrOH	(ā)	Blue color due to the $CoCl_3$ complex.					
,										

•

ti.

TABLE I (Continued)

Ref.	Author	Solute	Solvent	Method*	Conclusions
41	Katzin	Co(II), Ni(II) halides	t-BuOH	(b)	Indicated the presence of mono-, di-, and tri-halide complexes.

5

*Methods:

- (a) Electrolysis
- (b) Spectrophotometric analysis
 (c) Transport number determinations
 (d) Conductance measurements
- Viscosity measurements Diffusion studies (e)
- (f)
- Solubility determinations Molecular weight determinations (g) (h)

EXPERIMENTAL

A. Reagents

Anhydrous nickel chloride and cobalt chloride were prepared from the corresponding recrystallized C.P.-grade hydrated salts by first pulverizing and then drying them in air at 120°.

Anhydrous silver perchlorate, for use in preparing cobalt and nickel perchlorates, was also obtained by pulverizing the C.P.-grade salt and drying in air at 120°.

A saturated solution of lithium chloride in dry 2-octanof prepared by Trevorrow² from anhydrous C.P.-grade lithium chloride was diluted as needed with additional dry octanol.

Anhydrous methanol and ethanol were prepared from the best commercial grade reagent by refluxing with a small amount of magnesium turnings and iodine, followed by distillation according to the method of Lund, Hakon, and Bjerrum⁴².

The 2-octanol used was the best grade of anhydrous reagent from the Matheson company. A water analysis showed the water content to be approximately 0.002%.

Conductance water was prepared by redistilling water from a slightly basic potassium permanganate solution as described by Kendall⁴³.

B. Preparation of Stock Solutions

Solutions of NiCl₂ and CoCl₂ in methanol, ethanol and 2octanol were prepared by adding anhydrous salt to the anhydrous

solvent and shaking the mixture for several hours to facilitate solution. The excess salt was then filtered off in an atmosphere of dried air. The solutions were stored in glassstoppered flasks.

Anhydrous solutions of Ni(ClO₄)₂ and Co(ClO₄)₂ in methanol, ethanol, and octanol were prepared by the metathesis of anhydrous AgClO₄ solutions with stoichiometric quantities of NiCl₂ or CoCl₂ solutions in the corresponding solvents. The solutions were shaken to allow complete reaction and the precipitated AgCl filtered off. Trevorrow² found by determining the quantity of AgCl precipitated in such a preparation that the reaction may be considered as quantitative.

A stock solution of water in octanol was prepared by shaking an excess of water with octanol for several hours. The two phases were separated by means of a separatory funnel and the water in the octanol phase determined as described below.

All equipment used in the preparation of these solutions was oven-dried, and other necessary precautions were taken to insure the exclusion of water from the system.

C. Analytical Procedures

The determination of water in 2-octanol and in the oct-44 anol solutions was made using the Karl Fischer method .

The concentrations of the prepared stock solutions and methods of analysis are listed in Table II.

D. Apparatus

For the conductance measurements, a bridge, oscillator, and amplifier similar to those described by Luder⁴⁵ were used. A sensitivity of 1-2 parts in 100,000 and a maximum resistance measurement of 200,000 ohms are possible with this bridge. The cell was of Washburn design. A value of 0.6843 ± 0.0001 was determined for the cell constant by measuring the resistance of a KCl solution of known concentration at 0, 18, and 25°. The specific conductance values used were determined by Jones and Bradshaw⁴⁶. The cell was thermostatted by being placed in a kerosene-filled metal container which had been placed in a larger constant-temperature water bath. Both baths were stirred constantly. By such a procedure, the temperature could be controlled easily within better than $\pm 0.01^{\circ}$.

Spectrophotometric studies were carried out using a Beckman model DU quartz spectrophotometer using both Corex and silica cells, all of 1 cm. light path. The cells were maintained at 30° during the measurements.

E. <u>Procedure</u>

All solutions used in conductance measurements were prepared by weight from the appropriate alcohol stock solutions and conductance water keeping the salt concentration constant. The conductance cell was rinsed with the anhydrous solution of each series until a constant resistance reading was obtained. Then the remaining solutions were measured in order of increasing water concentration without additional rinsing. The amount of error that would be involved in such a procedure was estimated and found to be insignificant. Sufficient time was allowed for each solution to reach a constant temperature of 25°.

The solutions that were studied spectrophotometrically were prepared by weighing out the desired amounts of both the stock salt solutions and the octanol solution of water into a 10-ml. volumetric flask and adding anhydrous octanol to volume. After thorough mixing, these solutions were transfered to the Corex or silica cells for measurement in the spectrophotometer. The cells were paraffined around the top to exclude the possible entrance of water during measurement.

TABLE II

Stock Solutions

Solute	Solvent	Concentration (moles/1000 g. soln.)	Method of Analysis				
CoClo	MeOH	0.4321	Electrolytic ⁴⁷				
CoClo	EtOH	0.2462	Electrolytic ⁴⁷				
CoCl	2-octanol	0.4551	Electrolytic ⁴⁷				
NiCl ₂	MeOH	0.4012	Electrolytic ⁴⁸				
NiCl ₂	EtOH	0.02270	Amperometric ⁴⁹				
NiCl2	2-octanol	0.00405	Amperometric ⁴⁹				
AgClO4	MeOH	0.4151	Gravimetric ⁵⁰				
AgCl04	EtOH	0.6140	Gravimetric ⁵⁰				
AgCl04	2-octanol	0.8140	Gravimetric ⁵⁰				
co(C10 ₄) ₂	МеӨН	0.1460	Calculated				
co(c10 ₄) ₂	EtOH	0,1422	Calculated				
co(C104)2	2-octanol	0.2420	Calculated				
N1(C104)2	MeOH	0.1424	Calculated				
N1(C104)2	EtOH	0.0213	Calculated				
N1(C104)2	2-octanol	0.0040	Calculated				

TREATMENT OF DATA

A method for determining the extent of salt hydration in a CoCl₂-2-octanol system containing a varying amount of water may be developed as follows. In such a system, if the reaction of water may be assumed to be represented by the equilibrium:

 $\left[\operatorname{CoCl}(H_2O)_n^{+}\right] + Cl^{-} \stackrel{\text{def}}{=} \operatorname{CoCl}_2 + nH_2O$ (1)

and if the concentration of $CoCl_2$ at equilibrium is C_2 and the concentration of $\left[CoCl(H_2O)_n\right]$ is C_1 , an approximate mass action expression may be written as:

$$\kappa_{2} = \frac{C_{2} [H_{2}0]^{n}}{C_{1} [C1^{-}]}$$
(2)

t shi . Wily

where K_2 is a measure of the instability of $\left[\operatorname{CoCl}(H_2 O)_n\right]$. Concentrations are used rather than activities since the activities are generally not known. Rearranging Eq.(2) gives:

$$\frac{C_2}{C_1} \times [H_2 0]^n = K_2 \times [C1^-]$$
(3)

and taking the logarithm of both sides results in:

 $\log C_2 - \log C_1 - \log [C1] = -n \log [H_20] + \log K_2$ (4)

Values for C_1 and C_2 may be calculated through a series of approximations. This requires either a knowledge of the extinction coefficients of $CoCl_2$ and $\left[CoCl(H_2O)_n\right]$ at some wave length in a region of absorption or an experimental value of

the one of higher optical density and the assumption of a reasonable value for the other. The first step, therefore, assuming that the complex $CoCl_2$ is the one having the higher optical density at the wave length selected, is to ascribe all of the observed optical density to this complex and calculate a value of C_2 and C_1 based upon this assumption as a first approximation. The optical density of the solution may be expressed as:

$$O.D. = \pounds \mathcal{E} \mathcal{C}$$
 (5)

where \mathcal{L} is the distance light must travel through the absorbing medium, C is the molar concentration of the absorber, and \mathcal{E} is the extinction coefficient of the absorber. When \mathcal{L} is 1 cm., the expression reduces to:

$$0.D_{obs} = \mathcal{EC}$$
(6)

Thus,

$$C_2 = \frac{0.D._{obs.}}{\varepsilon_2}$$
(7)

and

$$\mathbf{C_1} = [\mathbf{Co}]_{\mathbf{t}} - \mathbf{C_2} \tag{8}$$

where $[Co]_t$ equals the total cobalt concentration. The optical density due to C_1 is then obtained from the product of $C_1 \epsilon_1$ where ϵ_1 has been independently evaluated. From this consideration, the optical density of CoCl₂ becomes:

$$D.D._{CoCl_2} = O.D._{obs.} - C_l \varepsilon_l$$
 (9)

An improved value for C₂ is then obtained;

$$c_2' = \frac{0.D_{obs.} - c_1 \ell_1}{\ell_2}$$
 (10)

and from it, an improved value for C_1 :

$$C_1' = [Co]_t - C_2'$$
 (11)

This series of approximations is continued until further change in C_1 and C_2 is insignificant. The free chloride ion concentration may then be determined by subtracting $2C_2$ and C_1 from the total chloride concentration. The total water concentration may be substituted for free water concentration as an approximation since only a very small part of the total water will be tied up as water of hydration. If Eq. (1) correctly represents the reaction involved, a plot of the lefthand side of Eq. (4) against log H_2O should yield a straight line with slope <u>n</u> and intercept log K_2 .

In regions of high water concentration, it seems likely that an additional equilibrium between aquo-complexes would be of importance. This might be represented as:

 $\left[\operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{m+n}^{\dagger \dagger} \right] \div \operatorname{Cl}^{} \stackrel{\overset{\overset{\overset{\overset{\phantom{\phantom{\phantom{\phantom{\phantom{}}}}}}{=}}}{=} \left[\operatorname{CoCl}(\operatorname{H}_{2}\operatorname{O})_{n}^{\dagger} \right] \div \operatorname{m} \operatorname{H}_{2}\operatorname{O} \right]$

A value for \underline{m} may be determined in a manner similar to that for \underline{n} in Eq. (1). Thus the extent to which the nonchlorocomplexed cobalt ion is hydrated may be found by adding the values of \underline{m} and \underline{n} .

A test of the correctness of C_1 and C_2 , if desirable, may be made by examining absorption at a new wave length. Using the predetermined values of C_1 and C_2 from calculations made at the original wave length and a known value of \mathcal{E}_2 at the new wave length, the value of \mathcal{E}_1 may be determined, and then should remain resonable constant over the range of coexistence of the two complexes.

This type of procedure may be applied to anhydrous systems as well, where two complexes may coexist within a particular concentration range (e.g. $CoCl_2$ and $CoCl_3^-$). It can be seen, therefore, that composition of the complexes, their concentrations, and instabilities may be determined by this method in favorable cases.

RESULTS AND DISCUSSION

A. <u>Conductance</u> Studies

It was decided to make some preliminary investigations of the effect of water on the conductivity of solutions of $CoCl_2$, $Co(ClO_4)_2$, NiCl_2, and Ni(ClO_4)_2 in methanol and ethanol as well as in 2-octanol. It was hoped that a significant change in the conductance of the solutions would occur at definite water-to-salt ratios.

The first studies were made on 8 solutions containing 0,1 mole CoCl₂ per 1000 grams of a mixture of methanol plus the very small amount of water required in the variations. The ratio of moles of water to moles of CoCl₂ was varied from O to 13:1. An increase in conductance was noted, especially between ratios of H_0O/Co of 2:1 and 5:1, but the resistances of the solutions were too small to give desirable differences in bridge resistance readings. A second and third series of solutions were prepared in the same manner as the first, except for a change in the concentration of CoCl_p to 0.01 mole CoCl₂ per 1000 grams of aqueous methanol. The mole fraction of water in such solutions never exceeded a value of 9×10^{-3} . In a plot of conductance vs. the ratio H_0O/Co , the points were scattered too widely to give a clear picture of any occurring reaction, except to show the tendency toward an increase in conductance between ratios of H_2O/Co from 0 to 6:1. An examination of the solutions a few hours after preparation

showed the appearance of a solid phase indicative of solvolysis which might account for the erratic results.

The studies were then shifted to $CoCl_2-C_2H_5OH$ systems. Twenty solutions containing 0.01 moles $CoCl_2$ per 1000 grams of ethanol plus water were prepared in an analogous manner to those in methanol, the water-to-cobalt ratio being varied from 0 to 18:1. The results of measurements on two such series again show some scattering of points in a plot of conductance vs. the ratio H_2O/Co but the consistency of the results is much better than in the case of methanol. A plot showing the results on these two series taken from Table III is given in Fig. 2. A rapid increase in conductance between ratios of H_2O/Co of 0 and 2:1, followed by a leveling-off between 2:1 and 10:1 and a renewed increase in conductance above 10:1, suggests the existence of two aquo-complexes.

The third phase of the study was to have been an extension of the same type of measurements to the 2-octanol system. However, it was found that the resistance of octanol solutions was entirely too high to make accurate measurements with the available conductivity apparatus. These resistances were estimated as being of the order of 10⁷ ohms.

Some qualitative measure of the effect of water on the conductance of various salts in 2-octanol was obtained by conductance measurements using a known fixed resistance in parallel with the cell. These results are presented in Table IV. It is apparent that in every case, the conductance of the solution of the salt was increased by the addition of water. It may also be noted that $Ni(ClO_4)_2$ and $Co(ClO_4)_2$ form better conducting solutions than the corresponding chlorides and that the effect of water was greater in the case of $CoCl_2$ than with $NiCl_2$.

Since the principal objective of the investigation was to study the 2-octanol phase, it was considered inadvisable to continue studies in methanol and ethanol.

B. Spectrophotometric Studies

These studies will be discussed first from a qualitative viewpoint. A description of a partial quantitative analysis of the data which has been carried through in certain concentration ranges will then be presented.

1. Qualitative Observations

Seventeen solutions were prepared in the system $Co(ClO_4)_2^{-1}$ LiCl-2-octanol with the cobalt concentration constant and equal to $8x10^{-4}$ molar and LiCl concentration varying from 0 to 1000 times the cobalt concentration. The optical densities of these solutions were determined at 5- and 10-millimicron intervals over the wave length range from 420 to 700 millimicrons and are listed in Table V. The spectral curves of a number of these solutions are plotted in Fig. 3.

Several important observations may be made from a study of these curves. At a wave length of 575 millimicrons, the absorption increases with an increase in chloride ion concentration reaching a maximum at a chloride-to-cobalt ratio of 2:1 as shown in Fig. 4. This indicates the increasing concentration of an absorbing entity, and the fact that the maximum absorption occurs at the chloride-to-cobalt ratio of 2:1 indicates that its composition might be CoCl₂. This conclusion is supported by the evidence obtained by Estill³ using the method of continuous variation.

The decrease in absorption at 575 millimicrons beyond a chloride-to-cobalt ratio of 2:1 may be explained by a decrease in concentration of the CoCl_o. The fact, however, that the absorption never reaches zero as the chloride concentration continues to increase indicates either that a complex or complexes are formed having a small value for their extinction coefficients at this wave length, or that the conversion from CoCl₂ to higher complexes is not complete even at a 1000;1 ratio. At 660 millimicrons a continued increase in absorption beyond a ratio of 2:1 was found. The decrease in absorption at 575 millimicrons beyond a ratio of 2:1 coupled with the continued increase in absorption at 660 millimicrons beyond this same ratio again points to the formation of a higher complex. Since Estill's³ continuous variation studies indicated a maximum interaction between cobalt and chloride ions at a 2:1 ratio in the presence of small excesses of LiCl in the wavelength region around 660 millimicrons, it would appear that a continued increase in absorption would be unlikely without higher complex formation.

The appearance of a second higher complex is indicated by the split of the main absorption peak into two peaks at 665 and 690 millimicrons accompanied by a continued increase

in absorption at high LiCl concentrations. Additional evidence for a second higher complex is found in the appearance of a new peak at approximately 630 and a trough at approximately 635 millimicrons. The fact that the concentration of the second higher complex is increasing while the concentration of the first higher complex is decreasing with increasing chloride ion concentration is indicated by an initial increase in absorption in the region 635 to 645 millimicrons followed by a decrease in absorption at higher chloride ion concentrations.

Observations of this type strongly suggest the possibility of at least two complexes of chloride-to-cobalt ratios greater than 2:1. If these complexes are formed stepwise, as proposed by some workers^{40,51}, their compositions would then be $\operatorname{CoCl}_{\overline{3}}$ and $\operatorname{CoCl}_{\overline{4}}^{-}$.

It seemed of interest to investigate the effect of water on the formation of the complexes tentatively identified in the anhydrous system. Accordingly an investigation was made of the system consisting of $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol. The first series of 15 solutions were prepared with the following concentrations: $Co(ClO_4)_2$, 1.6×10^{-3} molar; H₂O, 0.5 molar; and LiCl varying from 0 to 250 times the cobalt concentration. Four anhydrous solutions of the same cobalt concentration, but having concentrations of LiCl equal to 1.0, 2.0, 100.0 and 250.0 times the concentration of the cobalt, were prepared for comparison with corresponding solutions containing water. The optical densities of these solutions were determined and are listed in Table VI. The spectral curves of several of these solutions containing water are plotted in Fig. 5.

A comparison of the spectra of two pairs of corresponding hydrous and anhydrous solutions is shown in Fig. 6. It may be noted that the effect of water is great for solutions #5 and 5-A but appears to be very small for solutions #14 and 14-A. This difference might be explained by the fact that the lithium ions tie up a number of water molecules and thus lower the concentration of free water in the system. Earlier work in these laboratories has indicated that one lithium ion combines with two water molecules at somewhat similar ratios of LiCl-to-H₂O in 2-octanol.

The general appearance of the spectral curves is not changed on addition of water to the system, but the absorption is decreased in every instance where free water is present. This probably means that water competes with chloride ions for coordinating positions about the cobalt ions and thus favors the formation of aquated lower chloro-complexes.

The study of the effect of water on the formation of complexes was extended to the system $CoCl_2-H_2O-2-octanol$. Fourteen solutions were prepared in the first series with a constant cobalt concentration of 1.6×10^{-3} molar. The water concentration was varied from a water-to-cobalt ratio of 0 to 600:1. The optical densities of these solutions were determined at 5- and 10-millimicron intervals between 420 and 700 millimicrons and are listed in Table VII. The optical

density vs. wave length for several of these solutions is plotted in Fig. 7.

It is seen from this figure that addition of water to CoCl₂-2-octanol systems does produce a change in the spectral characteristics. The general shape of the curves seems to remain the same but the extinction coefficient decreases considerably and in the highest water concentrations becomes similar to that of cobalt perchlorate in hydrous 2-octanol. In solutions above a water-to-cobalt ratio of 400:1, the decrease in blue color of the solutions was quite noticeable.

The method of continuous variations developed by Job^{10} , and extended by Vosburgh and Cooper¹¹, was used to confirm the presence of a chloro-complex with a chloride-to-cobalt ratio less than 2:1 in the system $CoCl_2-Co(ClO_4)_2-2$ -octanol. Nine solutions with a constant total salt concentration of $1.6x10^{-3}$ molar were prepared. The variations covered a range of from 0 to $1.6x10^{-3}$ molar $CoCl_2$. The optical densities of these solutions were measured at 5-millimicron intervals from 550 to 700 millimicrons and are listed in Table VIII. Fig. 8 is a plot of the excess optical density vs. relative concentrations of $CoCl_2$ and $Co(ClO_4)_2$ at wave lengths 585, 660, and 665 millimicrons.

A very pronounced change in the excess optical density, defined as the difference between the observed optical density and that calculated for the components on the assumption that no reaction had occurred, is found at all three wave lengths. Although the minimum at 585 and 665 millimicrons

is not sharply defined, at 660 millimicrons the minimum is clearly located at a position corresponding to a $CoCl_2$ -to- $Co(ClO_4)_2$ ratio of 1:1. This constitutes good evidence for the existence of a monochloro-complex formed by the reaction:

 $Co(ClO_4)_2 + CoCl_2 \longrightarrow 2CoCl^+ + 2ClO_4^-$ (13) It must be assumed however, that the extinction coefficients for all entities having the same chloride-to-cobalt ratio are the same.

2. Analysis of Results

An attempt was made to calculate the concentration ratios in mass action-type expressions for the several equilibria in the three systems: $CoCl_2-H_2O-2-octanol$, $Co(ClO_4)_2 LiCl-H_2O-2-octanol$, and $Co(ClO_4)_2-LiCl-2-octanol$. The results of these calculations will be discussed in that order.

a. System: CoCl₂-H₂O-2-octanol

Since maximum interaction between cobaltous and chloride ions in systems containing only small excesses of chloride ion has been found to occur at a chloride-to-cobalt ratio of 2:1 and the addition of water decreases the absorption below the value corresponding to this ratio in the anhydrous system, it seems probably that a reaction occurs as follows:

 $\operatorname{CoCl}_2 + \operatorname{nH}_2 \operatorname{CoCl}(\operatorname{H}_2 \operatorname{O})_n^+ + \operatorname{Cl}^-$ (14) Following the procedure outlined in TREATMENT OF DATA, a test of eq. (14) was made from data in Table VII at a wave length of 660 millimicrons. The results of this test are found in Fig. 9. A value of 316.5 for the extinction coefficient of CoCl₂ at this wave length was determined by dividing the optical density of the anhydrous solution by the total cobalt concentration. A value of 128 for the extinction coefficient of the monochloro-complex was determined from the solution corresponding to the minimum in the continuous variations study. In the evaluation and use of these extinction coefficients it was assumed that hydration of the respective chloro-complexes would not change the extinction coefficients and further that essentially all of the cobalt was in the form of each of these complexes at the stoichiometric chloride-to-cobalt ratio of the complex. The left-hand side of eq. (4) is represented along the ordinate. In this case the assumed chloride ion concentration will be equal to C1 and the ordinate becomes $2\log C_1 - \log C_2$. The total water concentration represents the free water concentration without significant error and is plotted as the abscissa. The circled points are the experimental values. The best straight line through these points has a slope, or value of n, equal to 2 and an intercept of -2.50. From this K2 is then determined to be 3.16x10². Individual values of K₂ were computed from the data using eq. (2) and listed in Table IX.

A second series of 6 solutions in this system was prepared in a manner analogous to the first, having concentrations of water varying from a water-to-cobalt ratio of 450:1 to 650:1. A 750:1 ratio produced a cloudiness which corresponded to a separation of an aqueous phase. The optical densities were determined at 660 millimicrons and presented in Table X.

The maximum interaction between CoCl_2 and $\operatorname{Co(ClO}_4)_2$, as previously pointed out, occurs at a 1:1 ratio. Since in the region of highest water concentration the absorption is reduced below that of the monochloro-complex, dissociation of this complex may will occur. A reaction describing this further effect of water might be written as:

 $\operatorname{CoCl}(\operatorname{H}_2\operatorname{O})_2^+ + \operatorname{mH}_2\operatorname{O} \xrightarrow{\operatorname{desc}} \operatorname{Co}(\operatorname{H}_2\operatorname{O})_{m+2}^{++} + \operatorname{Cl}$ (15) In order to determine whether or not the data given in Table X fits eq. (15), the following mass-action expression for this reaction was used;

$$\kappa_{1} = \frac{C_{1} [H_{2}0]_{f}^{m}}{C_{0} [C1^{-}]_{f}}$$
(16)

where C_1 is the concentration of the monochloro-complex and C_0 is the concentration of the completely hydrated cobaltous ion. Rearranging eq. (16) gives:

$$K_1 C_0 [C1^-]_f = C_1 [H_2 0]_f^m$$
 (17)

Taking the logarithm of both sides and rearranging gives:

 $\log C_{0} - \log C_{1} + \log [C1^{-}]_{f} = m \log [H_{2}0]_{f} - \log K_{1}$ (18)

Values of C_0 and C_1 were obtained by successive approximations as described in an earlier section of the thesis using the values of 128 for the extinction coefficient of the monochloro-complex and 4.4 (determined from a solution of $Co(ClO_4)_2$ in 2-octanol)for the extinction coefficient of the hydrated cobaltous ion. The free chloride ion concentration, $[Cl^-]_f$, was taken as equal to the total chloride minus C_1 . To
determine the concentration of free water, an approximate value of <u>m</u> was needed. A value of 10 for <u>m</u> was found by solving simultaneous equations corresponding to eq. (18) for two solutions with increased water concentrations. The concentration of free-water was then calculated as equal to the total water less that assumed bound in the ionic complexes. Thus:

$$[H_20]_{free} = [H_20]_{total} - 10 C_0 - 2 C_1$$
(19)

Fig. 10 is a plot of the left-hand side of eq. (18) against $\log[H_20]_f$. The best straight line has a slope of ll.1 and an intercept of -1.86 which corresponds to a value of 11 for <u>m</u> and a value of 72 for K₁. Individual values of K₁ were computed and are presented in Table XI.

b. System: $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol

A test of eq. (14) for this system was made at 660 millimicrons and at a constant concentration of 0.5 molar to see whether or not the equilibrium between the dichloro-complexes could be expressed by a mass-action type of expression shown to be valid in the system $CoCl_2-H_2O-2-octanol$. Free-water concentration was determined as total water minus 2 C₁ and free chloride as total chloride minus $(2C_2 - C_1)$. Values of the extinction coefficients of $CoCl_2$ and the monochloro-complex were again assumed to be 316.5 and 128 respectively. Calculation of K₂ resulted in an average value of 57.2 over the LiCl concentration range of 4.0×10^{-3} to 6.4×10^{-3} molar. The individual K₂ values are found in Table IX.

In order to check the constancy of Kp for this system at

other water concentrations, a second and third series of 4 solutions were prepared at 0.3 and 0.1 molar water concentrations respectively. They were prepared with LiCl concentrations in the range where K_2 had been found to be constant in the series containing 0.5 molar water. Optical densities were measured at several selected wave lengths and have been listed in Table XII. Average values found for K_2 are 3.76x 10^2 at 0.3 molar and 4.10x10² at 0.1 molar water. The individual K_2 values for these series are also listed in Table IX. Points corresponding to solutions in these series have been plotted in Fig. 9 as triangular-shaped points.

It may be noted that the K_2 values at these two lower water concentrations compare favorably with K_2 values found for the $CoCl_2-H_2O-2$ -octanol system but disagree considerably with K_2 values at 0.5 molar water. This disagreement cannot be explained easily or completely satisfactorily. A 0.5 molar water concentration which corresponds to a water-to-chloride ratio of 312.5 in the $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol system is intermediate between ranges of water concentrations found for the coexistence of $CoCl_2$ with $CoCl(H_2O)_2^{\dagger}$ and ranges where only $Co(H_2O)_{13}^{\dagger\dagger}$ and $CoCl(H_2O)_2^{\dagger}$ exist. Thus the system at a water concentration of 0.5 molar likely contains all three complexes. Other possible influencing factors neglected in developing eq. (14) are changes in activity coefficients of the various species and changes in the dielectric constant of the solution.

An effort was made to determine values of K_1 , the formation

constant of the monochloro-complex of eq. (15), by measuring the optical densities at 660 millimicrons of 5 solutions having a cobalt concentration of 1.6×10^{-3} molar, a water concentration of 0.5 molar, and LiCl concentrations varying from 4×10^{-4} to 20×10^{-4} molar.

Values of K_1 were calculated in a manner similar to that already described and are presented in Table XI. Free-water concentrations were taken to be equal to the total water minus the quantity $(11C_0 - 2C_1)$. A very decided trend towards increasing values of K_1 as the chloride ion concentration increases is noticeable. The value most nearly comparable to the K_1 value obtained for the $CoCl_2-H_2O-2-octanol$ system is still only 1.24 compared to 72. Differences in K_1 found for the two systems might again be the result of neglecting the activity coefficients.

c. System: Co(ClO₄)₂-LiCl-2-octanol

The reaction for the formation of a $CoCl_3$ complex from $CoCl_2$ can be written as:

$$\operatorname{CoCl}_{2} + \operatorname{Cl} \xrightarrow{4} \operatorname{CoCl}_{3}$$
 (20)

For this reaction the approximate mass action expression is:

$$K_{3} = \frac{C_{3}}{C_{2} [C1]_{f}}$$
 (21)

where

 $C_3 = \text{concentration of } CoCl_3^ C_2 = \text{concentration of } CoCl_2^ [Cl_1]_f = \text{total chloride} - (3C_3 + 2C_2^-)$

After rearranging and expressing in terms of logarithms, eq. (21) becomes:

$$\log \frac{C_3}{C_2} = \log[C1^-]_f + \log K_3$$
 (22)

A wave length of 575 millimicrons was chosen as a suitable wave length at which to calculate C_2 and C_3 since $CoCl_3$ does not absorb greatly in this region and errors involved in an incorrect choice of an extinction coefficient for the trichloro-complex would not be so serious as in other regions. A value of 174 for the extinction coefficient of CoCl₂ at this wave length was calculated by assuming that all cobalt was in the form of CoCl, at a chloride-to-cobalt ratio of 2:1. A value of 40 was obtained for the extinction coefficient of the trichloro complex, by averaging the optical densities at the highest chloride concentrations and dividing by the total cobalt concentration. In so doing it was assumed that all of the cobalt existed in the form of $CoCl_3^-$ at these concentra-The concentrations of the two complexes were then detions. termined by successive approximations. Fig. 11 is a plot of $\log \frac{C_3}{C_2}$ vs. $\log [C1]_f$. A straight line having a slope of 0.636 represents the data rather well.

As a test of the validity of the assumptions involved in the calculation of C_2 and C_3 the values obtained were used to compute a value of the extinction coefficient of the trichlorocomplex at 660 millimicrons. The values of this extinction coefficient are listed in Table XIII. These values remain reasonably constant over the chloride-to-cobalt concentration ratio range of from 2.5:1 to 50:1. The continuous deviation beyond a ratio of 50:1 can probably be ascribed to the formation of the next higher complex, $CoCl_4^-$. This same test of the values of C_2 and C_3 was also applied at two other wave lengths, 630 and 675 millimicrons with comparable results, indicating that the values of C_2 and C_3 are close to being correct.

Values of K_3 were then determined using eq. (21) from the values of C_2 , C_3 , and the free chloride ion concentration. These results are listed in Table XIII. An average of the K_3 values is approximately 1.0×10^2 although there is a noticeable lack of constancy in K_3 .

The fact that the slope obtained in Fig. 11 is constant but is not unity as expected from eq. (22) is puzzling and is not easily explained except on the basis that concentrations rather than activities of the solution components have been used. This fact could also explain the variation in the values of K_3 in Table XIII.

An attempt was made also to calculate a value of the reaction constant for the formation of $CoCl_{h}^{-1}$:

 $CoCl_{3} + Cl CoCl_{4}$ (23)

However, it became evident that in any region where $\operatorname{CoCl}_4^$ contributed to the optical density it was necessary to consider the existence of all three of the complexes CoCl_2 , CoCl_3^- , and CoCl_4^- . Efforts to calculate and then check the concentrations of these complexes were unsuccessful. However, perhaps they could be determined by further experimental investigation.

TABLE III

Conductance of Solutions of the Systems

CoCl2-C2H50H-H20

Concentration of $CoCl_2 = 0.01$ mole per 1000 g. of $(C_2H_5OH_4H_2O)$ Temperature = 25⁰

· · ·	Series l	9	Jeries 2
Ratio H ₂ 0/Co	Conductance (mhos x10 ⁵)	Ratio H ₂ 0/Co	Conductance (mhos x10 ⁵)
$\begin{array}{c} 0.0\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 12.0\\ 10.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ 18.0 \end{array}$	9.2546 9.5556 9.6899 10.2890 10.3880 10.2998 10.4788 10.4773 10.7140 10.5864 10.5317 10.6031 10.7991 10.9413 11.1218 11.2146 11.6886 11.6886 11.6826 11.7771 11.8607	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\\ 2.50\\ 2.50\\ 3.00\\ 4.00\\ 6.00\\ 8.00\\ 9.00\\ 10.00\\ 11.00\\ 13.00\\ 15.00\\ 17.00\\ 17.00\end{array}$	9.2220 9.2618 9.3291 9.9072 10.3939 10.1553 9.8794 9.9571 10.0584 10.3651 10.5503 10.6633 10.2783 10.6328 10.7731 10.8068 10.77383 11.0011 11.0953 11.4156

TABLE IV

Conductance of Various Cobalt and Nickel Solutions in Aqueous 2-octanol

rompor a car				
Salt	Salt Conc. (molal)	H ₂ 0 Conc. (molal)	Resistance (ohms)	
CoCl2	0.01	0.00	4.17×10 ⁷	
CoCl ₂	0.01	0.14	1.82×10 ⁷	
Co(C104)2	0.01	0.00	1.94x10 ⁶	
Co(C10 ₄) ₂	0.01	0.14	1.61×10 ⁶	
NiCl ₂	0.00405	0.00	2.57×10 ⁷	

0.14

0.00

0.14

0.00403

Ø.00401

0.00399

Temperature = 25°

NiCl₂

Ni(C104)2

Ni(C104)2

Conductance (mhos)

 2.40×10^{-8}

5.50×10⁻⁸

5.15×10⁻⁷

6.21x10⁻⁷

3.89×10⁻⁸

 4.25×10^{-8}

5.53x10⁻⁷

5.72x10⁻⁷

2.35x10⁷

1.81×10⁶

1.75×10

TA	BI	E	V
	~		

Optical	Densit	ies for	the Syst	em: Co(C104)2-L	iCl_2_oc	tanol
Tempera	ture =	30°		Co(c10 ₄) ₂ =	8×10 ⁻⁴	molar
Wave	00.97	CARC .	Ratio	C1/Co			
Length	0.0	0.5	1.0	1.5	2.0	2.5	3.0
100	0.017	0.018	0.017	0.027	0.032	0.017	0.02

Wave	00.81	CAN'N C	Ratio	C1/Co			and the second
Length	0.0	0.5	1.0	1.5	2.0	2.5	3.0
420 340 560 78900 50120 340550 500 500 500 500 500 500 500 500 50	0.017 0.016 0.015 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.009 0.008 0.008 0.008 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.004 0.005 0.004 0.004 0.004 0.004	$\begin{array}{c} 0.018\\ 0.018\\ 0.017\\ 0.021\\ 0.022\\ 0.025\\ 0.036\\ 0.044\\ 0.0441\\ 0.0441\\ 0.0448\\ 0.055\\$	0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.017 0.016 0.017 0.016 0.017 0.018 0.022 0.024 0.022 0.024 0.059 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.095 0.088 0.095 0.095 0.095 0.096 0.095 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.097 0.099 0.099 0.097 0.099 0.091 0.052 0.037 0.052 0.037 0.052 0.037 0.052 0.037 0.052 0.037 0.052 0.037 0.052 0.05	0.027 0.024 0.023 0.021 0.021 0.021 0.019 0.019 0.017 0.018 0.022 0.025 0.031 0.042 0.160 0.110 0.117 0.168 0.175 0.176 0.178 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.097 0.048 0.097 0.048 0.033	$\begin{array}{c} 0.032\\ 0.030\\ 0.028\\ 0.028\\ 0.028\\ 0.028\\ 0.028\\ 0.029\\ 0.032\\ 0.037\\ 0.044\\ 0.057\\ 0.076\\ 0.090\\ 0.119\\ 0.132\\ 0.145\\ 0.145\\ 0.164\\ 0.174\\ 0.164\\ 0.174\\ 0.164\\ 0.164\\ 0.174\\ 0.226\\ 0.236\\ 0.225\\ 0.236\\ 0.236\\ 0.236\\ 0.236\\ 0.236\\ 0.225\\ 0.236\\ 0.225\\ 0.236\\ 0.225\\ 0.236\\ 0.225\\ 0.236\\ 0.225\\ 0.236\\ 0.225\\ 0.236\\ 0.256\\ 0.$	$\begin{array}{c} 0.017\\ 0.016\\ 0.015\\ 0.013\\ 0.023\\ 0.027\\ 0.040\\ 0.089\\ 0.074\\ 0.089\\ 0.074\\ 0.157\\ 0.165\\ 0.179\\ 0.165\\ 0.179\\ 0.165\\ 0.165\\ 0.179\\ 0.165\\ 0.225\\ 0.236\\ 0.245\\ 0.265\\ 0.$	0.022 0.019 0.018 0.017 0.016 0.016 0.015 0.016 0.015 0.020 0.024 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.024 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.2232 0.2246 0.2445 0.02445 0.02445 0.02445 0.02445 0.02445 0.02445 0.0256 0.02445 0.0245 0.0276 0.0276 0.02445 0.0276

TABLE V (Continued)

Wave			Ratio	C1/Co			
Length	3.5	4.0	6.0	10.0	20.0	50.0	100.0
420 340 560 789 50 120 340 550 50 50 50 50 50 50 50 50 50 50 50 5	0.014 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.013 0.013 0.013 0.012 0.013 0.015 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.024 0.035 0.132 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.252 0.245 0.245 0.252 0.245 0.252 0.245 0.252 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.245 0.255 0.263 0.130 0.097	$\begin{array}{c} 0.018\\ 0.017\\ 0.016\\ 0.015\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.015\\ 0.016\\ 0.015\\ 0.016\\ 0.015\\ 0.016\\ 0.026\\ 0.026\\ 0.075\\ 0.090\\ 0.105\\ 0.075\\ 0.090\\ 0.105\\ 0.162\\ 0.177\\ 0.162\\ 0.177\\ 0.162\\ 0.177\\ 0.185\\ 0.193\\ 0.2232\\ 0.255\\ 0.256\\ 0$	0.017 0.016 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.016 0.022 0.028 0.028 0.055 0.0658 0.094 0.066 0.094 0.065 0.094 0.127 0.166 0.181 0.192 0.2257 0.2257 0.263 0.2658 0.	0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.013 0.013 0.013 0.013 0.013 0.013 0.043 0.043 0.053 0.067 0.043 0.053 0.067 0.043 0.044 0.0466 0.2474 0.2474 0.2479 0.2466 0.247 0.247 0.247 0.2466 0.227 0.2661 0.227 0.261 0.2	0.013 0.013 0.013 0.012 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.012 0.013 0.015 0.015 0.019 0.026 0.042 0.034 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.056 0.042 0.042 0.056 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.056 0.042 0	0.006 0.006 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.008 0.009 0.017 0.022 0.028 0.028 0.071 0.022 0.028 0.071 0.022 0.028 0.071 0.022 0.028 0.071 0.022 0.028 0.071 0.022 0.028 0.071 0.022 0.028 0.071 0.028 0.071 0.028 0.071 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.0293 0.157 0.1632 0.2655 0.2755 0.2842 0.2842 0.2852 0.2842 0.2852 0.2842 0.2852 0.2882 0.2920 0.318 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.3292 0.328 0.3292 0.328 0.3292 0.328 0.3292 0.	$\begin{array}{c} 0.017\\ 0.015\\ 0.013\\ 0.009\\ 0.009\\ 0.009\\ 0.008\\ 0.$

TABLE V (Continued)

Wave		Ratio Cl/Co	. ;
Length	250.0	500.0	1000.0
420 30 500 500 500 200 300 500 200 340 550 5050 5050 5050 5050 1122 23050 5005 5005	0.009 0.008 0.007 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.008 0.008 0.008 0.011 0.012 0.016 0.022 0.030 0.040 0.022 0.030 0.040 0.054 0.071 0.090 0.106 0.122 0.145 0.196 0.225 0.267 0.267 0.259 0.267 0.267 0.259 0.267 0.267 0.259 0.267 0.265 0.272 0.279 0.312 0.366 0.364 0.365 0.365 0.323	0.019 0.014 0.012 0.011 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.010 0.011 0.011 0.013 0.013 0.024 0.031 0.024 0.055 0.070 0.038 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.270 0.270 0.273 0.259 0.260 0.270 0.270 0.270 0.273 0.259 0.260 0.381 0.372 0.381 0.372 0.389 0.403 0.400 0.358	0.033 0.026 0.023 0.019 0.016 0.013 0.012 0.011 0.011 0.010 0.009 0.010 0.009 0.010 0.010 0.009 0.010 0.010 0.012 0.016 0.020 0.027 0.034 0.048 0.067 0.020 0.027 0.034 0.048 0.067 0.020 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.238 0.275 0.256 0.263 0.267 0.263 0.267 0.267 0.280 0.385 0.404 0.385 0.384 0.402 0.414 0.416 0.393

Fig. 4: Saturation Plot for the System Co(Cl04)2-LiCl-octanol-2.

Optical Densities for the System: Co(ClO₄)₂-LiCl-H₂O-2-octanol

Temperature = 30°

 $Co(ClO_4)_2 = 1.6 \times 10^{-3} \text{ molar}$

Wave		Ratio Cl/Co						
Length	0.0	0.5	1.0	1.5	2.0	2.5	3.0	
420 340 567 890 5 1234 5565 50 50 50 50 50 50 50 50 50 50 50 50 50	0.030 0.028 0.028 0.025 0.025 0.025 0.024 0.023 0.024 0.023 0.024 0.023 0.021 0.020 0.017 0.016 0.017 0.016 0.012 0.012 0.012 0.011 0.010 0.010 0.010 0.009 0.008 0.006 0.006 0.006 0.006 0.005 0.005 0.005	$\begin{array}{c} 0.069\\ 0.062\\ 0.059\\ 0.057\\ 0.0562\\ 0.057\\ 0.0562\\ 0.057\\ 0.0562\\ 0.057\\ 0.0562\\ 0.0562\\ 0.057\\ 0.0562\\$	0.088 0.081 0.077 0.075 0.075 0.070 0.069 0.069 0.069 0.069 0.071 0.074 0.080 0.090 0.090 0.097 0.105 0.115 0.115 0.115 0.115 0.115 0.115 0.123 0.137 0.140 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.149 0.093 0.062 0.039	0.094 0.088 0.079 0.074 0.070 0.068 0.067 0.065 0.062 0.069 0.063 0.063 0.070 0.094 0.104 0.135 0.137 0.135 0.137 0.134 0.135 0.135 0.137 0.140 0.154 0.175 0.178 0.183 0.183 0.181 0.191 0.191 0.191 0.191 0.191 0.121 0.098 0.076 0.098 0	$\begin{array}{c} 0.053\\ 0.050\\ 0.048\\ 0.046\\ 0.047\\ 0.046\\ 0.047\\ 0.048\\ 0.049\\ 0.052\\ 0.057\\ 0.055\\ 0.$	0.096 0.090 0.083 0.077 0.073 0.070 0.064 0.065 0.068 0.065 0.068 0.072 0.086 0.105 0.123 0.123 0.152 0.166 0.179 0.239 0.255 0.262 0.268 0.271 0.239 0.255 0.268 0.271 0.239 0.255 0.268 0.271 0.291 0.291 0.291 0.291 0.298 0.299 0.299 0.299 0.272 0.244 0.182 0.299 0.272 0.244 0.182 0.291 0.298 0.299 0.299 0.272 0.244 0.182 0.291 0.298 0.299 0.272 0.244 0.182 0.2137 0.080	0.097 0.090 0.085 0.079 0.074 0.068 0.066 0.067 0.0205 0.2399 0.2655 0.2799 0.2655 0.3252 0.3252 0.3252 0.3252 0.2670 0.2670 0.22970 0.22970 0.22970 0.22970 0.22970 0.2407 0.299 0.265 0.2970 0.2900 0.2970 0.094	

TABLE VI (Continued)

Wave			Ratio	C1/Co			
Length	3.5	4.0	6.0	10.0	20.0	50.0	100.0
420 345678900005050505050505050505050505050505050	0.097 0.090 0.085 0.074 0.071 0.068 0.065 0.065 0.065 0.068 0.068 0.068 0.065 0.068 0.068 0.068 0.065 0.068 0.0728 0.03156 0.03320 0.3320 0.3341 0.339 0.0341 0.0339 0.0341 0.0376 0.0294 0.0294 0.0294 0.0294 0.0376 0.0294 0.0376 0.0	0.086 0.079 0.075 0.075 0.071 0.068 0.064 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.062 0.061 0.062 0.062 0.061 0.062 0.062 0.061 0.062 0.062 0.064 0.062 0.062 0.062 0.064 0.062 0.062 0.062 0.064 0.062 0.062 0.062 0.064 0.062 0.062 0.062 0.064 0.062 0.062 0.062 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.062 0.064 0.062 0.064 0.062 0.064 0.062 0.064 0.062 0.064 0.062 0.064 0.062 0.064 0.062 0.064 0.052 0.267 0.2792 0.3735 0.344 0.3550 0.2850 0.2650 0.25	0.123 0.115 0.100 0.094 0.090 0.086 0.083 0.080 0.080 0.081 0.085 0.085 0.093 0.125 0.141 0.163 0.221 0.248 0.297 0.313 0.221 0.248 0.297 0.313 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.409 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.5682	0.109 0.098 0.098 0.090 0.086 0.082 0.080 0.075 0.000 0.075 0.07	0.045 0.042 0.041 0.038 0.037 0.038 0.037 0.038 0.037 0.040 0.040 0.040 0.047 0.040 0.047 0.040 0.047 0.058 0.075 0.091 0.130 0.139 0.226 0.345 0.375 0.358 0.375 0.345 0.358 0.375 0.3462 0.348 0.375 0.555 0.559 0.590 0.590 0.5	$\begin{array}{c} 0.016\\ 0.016\\ 0.013\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.012\\ 0.022\\ 0.024\\ 0.022\\ 0.024\\ 0.022\\ 0.024\\ 0.022\\ 0.022\\ 0.024\\ 0.022\\ 0.$	0.023 0.020 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.014 0.014 0.016 0.022 0.027 0.022 0.027 0.035 0.045 0.059 0.059 0.059 0.059 0.059 0.0517 0.5520 0.552 0.552 0.5559 0.5560 0.5560 0.5560

I

I

TABLE VI (Continued)

Wave		Re	atio Cl/Co		
Length	250.0	1.0*	2.0*	100.0*	250.0*
4204000000000050505050505050505050505050	$\begin{array}{c} 0.031\\ 0.024\\ 0.024\\ 0.015\\ 0.015\\ 0.015\\ 0.015\\ 0.015\\ 0.016\\ 0.0120\\ 0.0224\\ 868\\ 432\\ 486\\ 812\\ 484\\ 326\\ 805\\ 0.0224\\ 868\\ 0.0224\\ 868\\ 0.0224\\ 868\\ 0.0222\\ 0.0223\\ 0.0222\\ 0.022\\ 0.0222\\$	0.052 0.047 0.046 0.00	0.027 0.0255 0.0244 0.0255 0.0244 0.0225 0.02244 0.0225 0.02294 0.0294 0.02	0.014 0.012 0.012 0.012 0.019 0.009 0.009 0.009 0.010 0.012 0.012 0.019 0.010 0.012 0.0237 0.0237 0.0258 0.05514 0.55401 0.5740 0.	0.025 0.020 0.018 0.018 0.015 0.013 0.013 0.013 0.014 0.014 0.016 0.020 0.029 0

*These solutions are anhydrous but have the same cobalt concentration as members of this system.

Molar.

Optical Densities for the System: $CoCl_2-H_2O-2-octanol$ Temperature = 30° $CoCl_2 = 1.6 \times 10^{-3}$ molar

Wave 🐰			Ratio H	120/00		
Length	0.0	1.0	,2.0	3.0	4.0	10.0
420 420 400 500 500 500 500 500 500 50	$\begin{array}{c} 0.002\\ 0.002\\ 0.000\\ 0.$	$\begin{array}{c} 0.004\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.005\\ 0.$	0.002 0.002 0.002 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.022366388 0.0224890 0.0224890 0.0223605 0.024891 0.02491 0.024891 0.02491 0.024891 0.02491 0.0	0.013 0.013 0.012 0.012 0.012 0.012 0.014 0.012 0.014 0.012 0.016 0.02	0.003 0.005 0.000 0.005 0.00	0.005 0.005 0.005 0.004 0.006 0.007 0.008 0.011 0.016 0.024 0.034 0.051 0.081 0.133 0.168 0.203 0.237 0.265 0.282 0.287 0.289 0.290 0.326 0.361 0.407 0.426 0.361 0.407 0.426 0.361 0.448 0.452 0.448 0.459 0.448 0.459 0.448 0.459 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.500 0.500 0.500 0.500 0.2435 0.2435 0.440 0.459 0.470 0.488 0.500 0.

TABLE VII (Continued)

Wave		R	atio HoO	/Co		
Length	20.0	50.0	100.0	312.5	500.0	600.0
420 340 560 900 100 34556650 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0.017\\ 0.016\\ 0.015\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.027\\ 8.64\\ 7.0\\ 0.0356\\ 0.0356\\ 0.0222688\\ 0.022268\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.02225\\ 0.025\\ 0.02$	$\begin{array}{c} 0.011\\ 0.008\\ 0.008\\ 0.008\\ 0.009\\ 0.013\\ 0.025\\ 0.053\\ 0.025\\ 0.053\\ 0.$	$\begin{array}{c} 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.008\\ 0.$	$\begin{array}{c} 0.026\\ 0.025\\ 0.025\\ 0.021\\ 0.021\\ 0.022\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.038\\ 0.051\\ 0.038\\ 0.051\\ 0.038\\ 0.051\\ 0.038\\ 0.051\\ 0.038\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.038\\ 0.038\\ 0.037\\ 0.$	0.069 0.064 0.059 0.056 0.054 0.052 0.048 0.047 0.047 0.047 0.047 0.047 0.048 0.052 0.058 0.058 0.058 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.099 0.09	0.063 0.050 0.046 0.039 0.037 0.034 0.032 0.030 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.030 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.038 0.039 0.040 0.041 0.042 0.041 0.042 0.041 0.042 0.037 0.037 0.037 0.037 0.037 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.039 0.040 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.040 0.037 0.037 0.037 0.037 0.039 0.040 0.041 0.040 0.041 0.040 0.037 0.037 0.037 0.037 0.037 0.039 0.040 0.037 0.039 0.040 0.037 0.039 0.040 0.037 0.039 0.040 0.037 0.037 0.037 0.039 0.040 0.037 0.039 0
	J				1	I

TABLE VIII

Optical Densities for the System: $CoCl_2-Co(ClO_4)_2-2-octanol$

 $A = Co(ClO_4)_2 \times 10^4 \text{ molar}$

 $B = CoCl_2 \times 10^4$ molar

Temperature = 30°

	•					·
Wave Length	A: 0 B: 16	A:: 2 B: 14	A: 4 B: 12	A: 6 B: 10	A: 8 B: 8	
55050505050505050505050505050505050505	0.135 0.171 0.2240 0.240 0.268 0.2684 0.2890 0.2291 0.290 0.3363 0.3422 0.3363 0.44350 0.4450 0.4450 0.4450 0.5502 0.54850 0.54850 0.54850 0.5502 0.54850 0.5502 0.5502 0.54850 0.5502 0.502 0.50	0,116 0,145 0.175 0.236 0.239 0.2444 0.253 0.2444 0.253 0.3355 0.366 0.3794 0.3996	0.098 0.122 0.147 0.169 0.186 0.200 0.201 0.201 0.200 0.225 0.225 0.225 0.2291 0.296 0.305 0.314 0.320 0.339 0.339 0.339 0.3293 0.293	$\begin{array}{c} 0.084\\ 0.102\\ 0.126\\ 0.139\\ 0.152\\ 0.162\\ 0.164\\ 0.164\\ 0.164\\ 0.164\\ 0.164\\ 0.164\\ 0.2225\\ 0.2254\\ 0.2253\\ 0.2253\\ 0.2253\\ 0.253\\ 0.253\\ 0.253\\ 0.253\\ 0.253\\ 0.253\\ 0.267\\ 0.253\\ 0.267\\ 0.253\\ 0.267\\ 0.260\\ 0.238\\ 0.170\\ 0.092\\ 0.040\\ \end{array}$	0.071 0.085 0.098 0.111 0.121 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.132 0.140 0.155 0.174 0.180 0.190 0.190 0.190 0.192 0.194 0.196 0.202 0.205 0.198 0.179 0.129 0.070 0.033	

TABLE VIII (Continued)

Wave	A: 10	A: 12	A: 14	A: 16
Length	B: 6	B: 4	B: 2	B: 0
550 550 65 705 85 9950 50 10 120 50 50 50 50 50 50 50 50 50 50 50 50 50	0.059 0.068 0.076 0.086 0.092 0.097 0.097 0.097 0.097 0.097 0.097 0.104 0.114 0.134 0.137 0.138 0.137 0.139 0.142 0.142 0.147 0.142 0.147 0.142 0.147 0.142 0.147 0.142 0.147 0.142 0.147 0.142 0.052 0.025	0.056 0.059 0.063 0.071 0.073 0.072 0.072 0.072 0.072 0.075 0.081 0.090 0.091 0.092 0.093 0.094 0.096 0.092 0.094 0.096 0.092 0.092 0.093 0.094 0.096 0.092 0.092 0.094 0.096 0.092 0.092 0.093 0.094 0.096 0.092 0.092 0.093 0.094 0.092 0.094 0.092 0.093 0.094 0.092 0.092 0.093 0.094 0.092 0.092 0.093 0.094 0.092 0.092 0.093 0.094 0.092 0.093 0.094 0.092 0.093 0.094 0.092 0.093 0.094 0.092 0.093 0.093 0.094 0.092 0.093 0.093 0.093 0.094 0.092 0.093 0.093 0.093 0.093 0.094 0.092 0.093 0.093 0.093 0.094 0.093 0.039	0.056 0.057 0.057 0.057 0.057 0.057 0.0557 0.0557 0.0553 0.0555 0.0555 0.055555 0.05555 0.055555 0.055555555555555555555555555555555555	0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0

J

Fig. 9: A Test of the Mass-action Expression for the Reaction $CoCl_2 + nH_20 = CoCl(H_20)_2^+ + Cl^-$. $\triangle --$ System $Co(ClO_4)_2$ -LiCl-H_20-octanol-2; $\bigcirc --$ System $CoCl_2$ -H_20-octanol-2 $C_1 = [CoCl(H_20)_2^+]; C_2 = [CoCl_2]$

57

TABLE IX

K₂ Values for the System

 $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol

d.

Ratio		K ₂	•
Cl/Co	For 0.5 molar H ₂ 0	For 0.3 molar H ₂ O	For O.l molar H ₂ O
2.0	45.3	ب دع ها ها ها ها ها ها ب دع ها	
2.5	57.2	4.59×10^2	3.73×10^2
3.0	57.2	3.15×10^2	4.56×10^2
3.5	58.1	3.16×10^2	
4.0	55.6	4.76×10^2	*# # # # # # # # # # # # # *
6.0	76.4	-	*****

K2 Values for the System

CoCl₂-H₂O-2-octanol

У Алісті 1997 — — — — — — — — — — — — — — — — — —	Ratio H ₂ 0/Co	K ₂	
	10.0	4.46×10^2	
	20.0	3.72×10^2	
·	50.0	11.90×10^2	
	100.0	5.64×10^2	
	312.5	1.53×10^{2}	

TABLE X

Optical Densities for the System: $CoCl_2-H_2O-2-octanol$ Concentration of $CoCl_2 = 1.6 \times 10^{-3}$ molar Temperature = 30°

Wave length = 660 millimicrons

Ratio H ₂ 0/Co	Optical Density
450	0.173
500	0.139
520	0.123
540	0.100
560	0.092
580	0.080
600	0.050
650	0.032

TABLE XI

K Values for the System Co(ClO₄)₂-LiCl-H₂O-2-octanol

 $Co(ClO_4)_2 = 1.6 \times 10^{-3}$ molar

 $H_20 = 0.5 \text{ molar}$

Ratio Cl/Co	Kl	
0,25	1.55×10 ⁻¹	<u></u>
0.50	1.56x10 ⁻¹	
0.75	2.83 x10⁻¹	``ltı
1.00	5.24x10 ⁻¹	
1.25	12.40x10 ⁻¹	×

K_l Values for the System

CoCl2-H20-2-octanol

<u> </u>						
	Ratio H ₂ 0/Co	ĸı				
<u> </u>	450	70.9				
	500	72.9				
· · · · ·	520	71.6				
12	540	62.6				
	560	79.2				
• •	580	85.4				
	600	52.0				
	650	71.0				

 $CoCl_{2} = 1.6 \times 10^{-3}$ molar

TABLE XII

Optical Densities for the System: $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol

$Co(ClO_4)_2 = 1.6 \times 10^{-3}$ molar

Temperature = 30°

		Ratio Cl/Co							
Weve		$H_{2}0 = 0$.3 mola	.r	H	$H_2 0 = 0.1 \text{ molar}$			
Length	2,5	3.0	3.5	4.0	2,5	3.0	3.5	4.0	
575 580 585 610 620 625 630 635 655 660 665 675 685 690	0.237 0.250 0.265 0.346 0.365 0.380 0.387 0.387 0.387 0.387 0.431 0.430 0.413 0.413 0.266 0.207	0.229 0.246 0.267 0.350 0.371 0.390 0.402 0.402 0.410 0.446 0.441 0.433 0.385 0.301 0.241	0.230 0.247 0.272 0.353 0.378 0.400 0.411 0.422 0.458 0.458 0.458 0.458 0.458 0.450 0.413 0.271	0.242 0.267 0.295 0.372 0.400 0.426 0.437 0.449 0.449 0.482 0.480 0.479 0.447 0.368 0.300	0.255 0.2755 0.2955 0.428 0.448 0.448 0.453 0.448 0.493 0.493 0.493 0.493 0.4339 0.270	0.248 0.275 0.303 0.386 0.410 0.444 0.458 0.468 0.468 0.500 0.468 0.500 0.495 0.457 0.375 0.304	0.243 0.270 0.304 0.389 0.424 0.451 0.468 0.481 0.520 0.520 0.521 0.520 0.499 0.423 0.355	0.240 0.271 0.310 0.392 0.429 0.459 0.476 0.489 0.530 0.530 0.530 0.530 0.521 0.449 0.389	

TABLE XIII

Values of K_3 and the Extinction Coefficient of $CoCl_3^$ for the System: $Co(ClO_4)_2$ -LiCl-2-octanol

Wave length = 660 millimicrons

Ratio Cl/Co	ξ_3 (calculated)	K ₃
2.5	428	287.8
3.0	400	177.4
3.5	407	200.0
4.0	423	168.0
6.0	413	131.6
10.0	427	92.9
20.0	417	59.4
50.0	407	45,5
100.0	448	800 ∞ 800 800 °.
250.0	469	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
500.0	486	دی می می دی ا
1000.0	514	ب موت موت موت م
7		

Fig. 11: A Test of the Mass-action Expression for the Reaction $CoCl_2 + Cl^- = CoCl_3$ for the system $Co(ClO_4)_2$ -LiCl-octanol-2. $C_2 = [CoCl_2]$. $C_3 = [CoCl_3]$.

CONCLUSION

Evidence for a number of chloro- and aquo-complexes of cobalt in hydrous and anhydrous 2-octanol has been found in this investigation. These complexes are listed in Table XIV with the system in which they were found to exist, conditions necessary for their formation, and values of equilibrium constants where calculated.

·ΠΛ	DT 1	r v	T 17
- 1 5	עע	<u>, </u>	T.A.

Complex	System*	Conditions	Read lib:	ction** & Equi- rium Constants
Co(H ₂ O) ⁺⁺ 13	(1)	Higher water concentrations	(a)	72.
	(2)	$C1/Co$ ratio less than 1 and $H_2O = 0.5$ molar	(a)	1.56x10 ⁻¹
CoCl(H ₂ 0)	(1)	Lower water concentrations	(b)	3.16x10 ²
	(2)	Cl/Co ratio from 2 to 6 $H_2O = 0.5$ molar $H_2O = 0.3$ molar $H_2O = 0.1$ molar	(b) (b) (b)	57.2 3.76x102 4.10x102
CoCl ⁺	(4)	Anhydrous		
CoCl ₂	(3) (1) (2) (4)	Cl/Co ratic of 1 to 1000 Lower water concentrations Cl/Co ratio of 1 to 250 All regions	(c)	1.0×10 ²
CoCl_3	(3) (2)	Cl/Co ratio of 2.5 to 1000 Cl/Co ratio of 10 to 1000	(c)	1.0×10 ²
cocl ₄	(3) (2)	Cl/Co ratio of 100 to 1000 Cl/Co ratio of 100 to 1000		
* (1) CoC	12-H20-2	2-octanol; (2) Co(ClO4)2-LiCl	H2C)-2-octanol

(3) $Go(CIO_4)_2$ -LiCl-2-octanol; (4) $Go(CIO_4)_2$ -GoCl₂-2-octanol

** (a) $Co(H_2O)_{13}^{+7} + Cl^{-7}$ $CoCl(H_2O)_{2}^{+7} + Cl^{-7}$ $CoCl_{2}^{+7} + Cl^{-7}$ $CoCl_{2}^{-7} + Cl^{-7}$ $CoCl_{3}^{-7} + Cl^{-7}$ $CoCl_{3}^{-7} + Cl^{-7}$

Although relatively little work was done using the conductance approach because of experimental limitations, some comparison of the results obtained by this method and those obtained by spectrophotometric methods is possible. As has been pointed out, conductance measurements in the system $CoCl_2-H_2O-C_2H_5OH$ showed marked changes in conductance at waterto-cobalt ratios of 2:1 and 10:1. (See Fig. 2). This corresponds closely to the numbers of water molecules coordinated in the complexes $CoCl(H_2O)_2^+$ and $Co(H_2O)_{13}^{++}$ as determined by spectrophotometric studies in 2-octanol. Although the solvent systems are not the same, it seems quite possible that these complexes may exist in other similar solvents but in different concentration ranges.

It is also quite interesting to note that all of the chloro-complexes which have been positively reported in the literature have been found in this investigation. Since most of the studies of this nature have been made over much narrower concentration ranges than those covered here, it seems likely that the majority of the apparently conflicting findings of other workers are valid but have not been correctly compared.

SUMMARY

The method of continuous variations was used in a study of the system $CoCl_2-Co(ClO_4)_2-2$ -octanol and indicated the existence of a monochloro-complex of cobalt(II).

Spectrophotometric studies gave qualitative evidence for the existence of the complexes $Co(H_2O)_{13}^{++}$, $CoCl(H_2O)_2^{+}$, and $CoCl_2$ in the systems $CoCl_2-H_2O-2$ -octanol and $Co(ClO_4)_2$ -LiCl- H_2O-2 -octanol. The best values of the equilibrium constants for the reactions $Co(H_2O)_{13}^{++} + Cl^{-} = CoCl(H_2O)_2^{+} + 11H_2O$ and $CoCl(H_2O)_2^{+} + Cl^{-} = CoCl_2 + 2H_2O$ were determined from spectrophotometric data to be 72 and 3.16×10^2 respectively.

Qualitative spectrophotometric evidence was obtained for the existence of the complexes $CoCl_2$, $CoCl_3$, and $CoCl_4$ in the systems $Co(ClO_4)_2$ -LiCl-2-octanol and $Co(ClO_4)_2$ -LiCl-H₂O-2-octanol. The chloride to cobalt ratio was varied from 0 to 250 for the hydrated system. An equilibrium constant for the reaction $CoCl_2 + Cl^{-2} = CoCl_3$ was determined from data in the anhydrous system to be approximately 1.0×10^2 .

BIBLIOGRAPHY

1.	Garwin and Hixson, Ind. Eng. Chem., <u>41</u> , 2298 (1949); <u>Ibid., 41</u> , 2303 (1949).
2.	Trevorrow, Master's Thesis, Oklahoma A. and M. College, 1952.
3.	Estill, Master's Thesis, Oklahoma A. and M. College, 1951.
4.	Barvinok, J. Gen. Chem., <u>19</u> , 612–16 (1949) by way of C. A. 43: 7817.
5.	Wormser, Bull. soc. chim. France, 1948, 395-403 by way of C. A. 42: 5366.
6.	Katzin and Gebert, J. Am. Chem. Soc., <u>72</u> , 5464 (1950).
7.	Bobtelsky and Spiegler, J. Chem. Soc., 1949, 143-8.
8.	Katzin and Gebert, Private Communication.
9.	Katzin and Gebert, J. Am. Chem. Soc., <u>72</u> , 5460 (1950).
10.	Job, Compt. rend. <u>196</u> , 181 (1933).
11.	Vosburgh and Cooper, J. Am. Chem. Soc., <u>63</u> , 437 (1941).
12.	Estill, Unpublished observations.
13.	Gootman, Unpublished observations.
14.	Moore, Yates, and Gootman, Unpublished observations.
15.	Basett and Donnan, J. Chem. Soc., <u>81</u> , 939 (1902).
16.	Cooper, Astrophys. J., <u>31</u> , 339-63 (1910) by way of C. A. 5: 8256.
17.	Jones, Z. physik. Chem., <u>74</u> , 325 (1910)
18.	Brown, Proc. Roy. Soc. Edinburgh, <u>32</u> , 50-61 (1911) by way of C. A. 6: 2709.
19.	Houston, Physik. Z., <u>14</u> , 424-9 (1913) by way of C. A. 7: 3264.
20:	Kochubei, J. Russ. Phys. Chem. Soc., <u>46</u> , 1056 (1914) by way of C. A. 9: 2848.

К У
- 21. Groh, Z. anorg. allgem. Chem., <u>146</u>, 305-14 (1925) by way of C. A. 19: 3195.
- 22. Hill and Howell, Phil. Mag., <u>48</u>, 833 (1924) by way of C. A. 19: 591.
- 23. Mazzetti, Gazz. chim. ital., <u>56</u>, 595-600 (1926) by way of C. A. 21: 857.
- 24. <u>Ibid.</u>, <u>55</u>, 689-94 (1926) by way of C. A. 21: 857.
- 25. <u>Ibid.</u>, <u>54</u>, 891-907 (1924) by way of C. A. 19: 2155.
- 26. Hantzsch, A. anorg. allgem. Chem., <u>159</u>, 273-303 (1927) by way of C. A. 21: 1234.
- 27. Groh and Schmid, Z. anorg. allgem. Chem., <u>162</u>, 321-32 (1927) by way of C. A. 21: 3297.
- 28. Brdicka, Collection Czechoslov Chem. Comm., <u>2</u>, 545-58 (1930) by way of C. A. 25: 467.
- 29. Toporescu, Compt. rend., <u>192</u>, 282-2 (1931).
- 30. Dirking, Z. anorg. allgem. Chem., <u>233</u>, 321-45 (1937) by way of C. A. 31: 8418.
- 31. Howell and Jackson, J. Chem. Soc., 1936, 1268.
- 32. Kiss, Arpad and Gerendas, Z. physik. Chem., A <u>180</u>, 117-30 (1937) by way of C. A. 32: 426.
- 33. Kiss, Csokan, and Richter, Acta Univ. Szeged, Sect. Sci. Nat., Acta Chem., Mineral Phys., <u>7</u>, 119-32 (1939) by way of C. A. 36: 2803.
- 34. Richter, Acta Univ. Szeged. Chem. Mineral Phys., 7, 29-45 (1939) by way of C. A. 33: 4126.
- 35. Barbinok, J. Phys. Chem. (U.S.S.R.), <u>22</u>, 1100-7 (1948) by way of C. A. 43: 520.
- 36. Barbinok, Izvest. Akad. Nauk. U.S.S.R., Ser. Fiz., <u>12</u>, 636-45 (1948) by way of C. A. 44: 4362.
- 37. Barbinok, Zhur. Obshchei Khim. (J. Gen. Chem.), <u>19</u>, 793-7 (1940) by way of C. A. 43: 7817.
- 38. Robinson and Brown, Trans. Proc. Roy. Soc. New Zealand, <u>77</u>, 1-9 (1948).
- 39. Varadi, Acta. Univ. Szeged. Chem. et Phys., <u>3</u>, 62-7 (1950) by way of C. A. 46: 372.

and the second second

- 40. Lehne, Bull. soc. chim. France, 76-81 (1951) by way of C. A. 45: 6117.
- 41. Katzin, J. Chem. Physics, <u>20</u>, 1165 (1952).
- 42. Lund, Hakon, and Bjerrum, Ber., <u>64B</u>, 210-3 (1931) by way of C. A. 25: 3310.
- 43. Kendall, J. Am. Chem. Soc., <u>38</u>, 2460 (1916).
- 44. Mitchell and Hawkins, J. Am. Chem. Soc., <u>67</u>, 777-8 (1945).
- 45. Luder, J. Am. Chem. Soc., <u>62</u>, 89-95 (1940).
- 46. Jones and Bradshaw, J. Am. Chem. Soc., <u>55</u>, 1780 (1933).
- 47. Scott and Furman, "Standard Methods of Chemical Analysis", Vol. I, D. Van Nostrand Co., New York, 1939, p. 315.
- 48. <u>Ibid.</u>, p. 620.
- 49. Kolthoff and Lingane, "Polarography", Interscience Publishers Inc., New York, 1946, p. 469.
- 50. Scott and Furman, "Standard Methods of Chemical Analysis", p. 821.
- 51. Burkin, Quarterly Reviews, 5, 6 (1951).

W. Don Beaver candidate for the degree of Master of Science

Thesis: A STUDY OF THE FORMATION OF AQUO- AND CHLORO-COM-PLEXES OF COBALT(II) IN 2-OCTANOL AND ETHANOL

Major: Chemistry

Biographical: The author was born in Elkhart, Kansas, May 7, 1924, the son of Henry J. and Mable M. Beaver.

He attended the public schools of Omaha, Nebraska and was graduated from Omaha North High School in 1942. He received a Bachelor of Arts degree with a major in mathematics and a minor in chemistry in 1946 from Bethany-Peniel College, Bethany, Oklahoma. He did additional undergraduate work in chemistry at the University of Oklahoma during the school year 1946-47. He was married to Wanda Joy Beaver in May, 1946.

From 1947 to 1951 he served as instructor in mathematics at Bethany High School and as instructor in chemistry and mathematics at Bethany-Peniel College. During this time graduate study in chemistry was carried on at the University of Oklahoma.

In September, 1951, he entered the graduate school of Oklahoma A. and M. College. A teaching assistantship was granted for the school year 1951-52.

During the summer of 1952, he was employed as a research fellow by the Oklahoma A. and M. Research Foundation under contract to the Atomic Energy Commission.

In September, 1952, he received an appointment as research fellow by the Research Foundation of Oklehoma A. and M. College under contract to the Callery Chemical Company. He is continuing graduate study in chemistry at Oklahoma A. and M. College.

THESIS TITLE: A STUDY OF THE FORMATION OF AQUO- AND CHLORO-COMPLEXES OF COBALT(II) IN 2-OCTANOL AND ETHANOL

NAME OF AUTHOR: W. Don Beaver

THESIS ADVISER: Dr. Tom E. Moore

The content and form have been checked and approved by the author and thesis adviser. The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

NAME OF TYPIST: W. Don Beaver

72