INVESTIGATION OF COMPRESSIBIE-FLUID FLOW
THROUGH A CASCADE OF BLUNT HOSED PROEILES

By
WAITER ASCHER
at
Bachelor of Science
Tulane University New Orleans, Louisiana 1949

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

1953

WALTER ESCHER

MASTER OF SCIENCE

1953

THESIS AND ABSTRACT APPROVED:

$$
\frac{\text { Sadeslaus \&. Fila }}{\text { Thesis Adviser }}
$$

ACKIOOWLEDGMENI

The author feels grateful and indebted to Professor Rollo E. Venn and the School of Mechanical Engineering for granting him the Graduate Fellowship which enabled hinn to carry forward his education.

Sincere thanks are due Professor Carroll M_{c} Leonard for carefully reading the entire thesis and offering much valuable criticism.

The author owes deepest thanks to Professor Ladislaus J. Fila under whose direction this thesis was written, and without whose encouragement this work never would have been completed.

For their help and great patience throughout school the author is very grateful to his parents.

TABLE OF CONTENTS
PAGE
ACKNOWIEDGMENT ํํํㅗํ
LIST OF TABLES Wi.
LIST OF ILLUSPRATIONS ㅊํํํํ
IIST OF SYMBOLS AND ABBRTVIATIONS xน์ํํ
PREFACE 3Vำํํํ
GHAPTER
I INTRODUGPION 1
II ANTECEDENT INVESTIGATIONS 3
IIJ STATEMENT OF PROBLEM 5
IV ANALYSIS AND COMPUTATIONS 6
A Cascade of Modified NACA Profiles 6
1 Profile and Channel Layout 6
2 Nose Region 9
3 Supersonic Dowstrean Region 15
B Cascade of Second Modification of Blunt-Nosed Proifles 40
1 Profile and Channel Layout 40
2 Nose Region 42
3 Supersonic Dowstream Region 42
4 ChannelwExit Region 50
C Gascade of Sharp-Nosed Profiles 59
1 Profile and Channel Layout 59
2 Nose Region 59
3 Downstream Region 63
4 Chanelmait Region 66
V FALLACIES AND ERRONEOUS APPROACHES 70
A Introduction 70
B Joulowski Proriole 70
G Analytic Relation Between Nose and Shock Shapes 70
D Selection of Entrance M in Relation to Nose Pattern Overlap 72
E Shear Sheet Energy Dissipation in a Supersonie Region 72
F Buildmup of Shock Along Concave Wall Due to Wedge Nose on Profile 73
$\begin{array}{lll}\text { G Analysis Downstream of Channel Trailing Edges 。 } & 73 \\ H \text { Partial Center Pattern Resulting in VoidwWedge Flow } & 73\end{array}$

VI SUMMARY . 75
VII CONCLUSION . 89

BIBLIOGRAPHY . 93

APPENDIX . 95

LIST OF TABIES

Table Page（Chapter IV，Part A）
$4-1$ MACA Mean Line 63 6
4－2 MACA 63－206 Wing Section Data δ
4－3 Characteristics Along Concave Wall 29
4－4 Characteristics Along Convex Wall 33
$4-5$ Center Pattern Flow Directions 36（Chapter IV，Part B）4－6 Center Pattern Flow Directions．．．．．。．。．。．。．。 44
4m Center Pattem Flow Directions（Pressures matched） 46
4∞ Values of $\bar{\theta}_{W_{2}}($ ）for Wave Segments of Figure $4-47$ 47
$4-9$$4-10$Flow Direction，Expansion Angle，and Mach Number atChannel Exit51
$4-11$ Chamel－Entrance and－Exit Distributions，Part 1 of 2 Parts 55Channel－Entrance and－Exit Distributions，Part 2 of 2 Parts 56（Chapter IV，Part C）
e_{ϕ} Along Upper Wall of Sharp－Nosed Profille Channel 62
$4-14$ Continuation of OWL，Center Pattern，Sharp NosedProfile Channel64
$4-15$ Continuations of $0 W_{,} e_{18}$ and e_{23} ；Center Pattem，Sharpmosed Profile Channel ．． 3 ．．．．．．．．．．．． 64$4-16$ Flow Direction，Expansion Angle，and Mach Number atChannel Exit674－17 Channel－Entrance and－Exit Distributions，Part 1 of 2 Parts 68
$4-18$

（Chapter VI）

6 I Modified Exit Static Pressure Force Distribution， Blunt－Nosed Profile Channel 78
6－2 Comparison of Constituents of／and Cascade Channel Force Components（BNC，SNC），Part 1 of 3 Parts $\circ . \circ \circ$. 80
6－3 Comparison of Constituents of／and Cascade Channel Force Components（BNC，BNC），Part 2 of 3 Parts．。．。．。 81
6－4 Gomparison of Constituents of／and Cascade Channel Foree Components（BNC®，SNC），Part 3 of 3 Parts．．．． 83

LIST OF ILLUSTRATIONS

Figure Page
(Chapter IV, Part A)
L-1 Construction of Leadingmedge Circle 7
$4-2$ Layout of Profile Surfaces 7
L-3 Chanel Reference System 7
4-4 Measurement of δ at $M=1.8$ 10
4×5 Location of "Shoulder Circle" 11
$4 \infty 6$ Loci of Wall Sonjc Points 13
4 $\quad 7 \quad$ Construction of Sonic Line 13
4-8 Flow Deflection Trends 14
4-9 Reflexed Sonic Line 14
4-10 Hodograph and Superimposed Ellipse 16
$4-11$ Modified Method of Characteristics 17
4-12 Comparison of Characteristics Methods 17
$4-13$ One-Degree Expansion 19
$4-14$ Borders of Region 1 20
4-15 Center of Region 1 20
4-16 Actual Pattern, Region 1 21
40.17 Substitute Pattern, Region 1 22
4-18 Characteristic 1 24
$4-19$ Segment (3) of Characteristic I 24
4-20 Partial Pattern, Region 2 27
$4-21$ e_{20} of Concave Wall 28
$4-22$ Reference Direction, Concave Wall 29
$4-23$ Concave-Wall Pattern 29
Figure Page
$4-24$ Intersection of c_{25} and c_{20} 30
$4-25$ Intersection of \bar{c} and c_{15} 30
$4-26$ Mecting of \tilde{c} and ϵ_{20} 31
$4-27$ Compression＂Stepm Wave＂ 31
$4-28$ Formation of Σc 32
$4-29$ e_{20} and e_{25} ，Converx Wall 32
$4-30$ Reference Direction，Convex Wall 33
$4-31$ Reference Directions 34
$4-32$ Flow Directions Past Last Bent e_{ϕ} 34
4－33 Genter Pattern 35
4－34 Modified Center Pattern 36
$4-35$ Corrected Modified Center Pattern 36
$4-36$ Alternate Matching Pattern 38
$4-37$ Changed Behavior of Wave 38
（Chapter IV，Part B）
$4-38$
New Lower Walls of Sharp－Nosed and Bluntw－NosedProfile Chamels ．．．．。．．．．．．。．。．。．。41
$4=39$ Upper Wall of New Blunt－Nosed Profile Channel 41
4040 Construction of e_{25} ，Lower Wall 42
4－41 Remainder of Pattern，Lower Wall 43
$4-42$ e_{50} ，Upper Wall 43
$4-43$ Center Pattern 44
4 r44 Modified Center Pattern 45
$4-45$ Corrected Modified Center Pattern 46
4～46 Final Center Pattern 46
$4-47$ Intersections of Upper－Wall e_{ϕ} and the Wave $\mathcal{X} \ldots \ldots$ 47
Figure Page
4-48 Lover Portion of Downtream Wave Pattern 48
$4-49$ Typical Subregion of Figure $4-48$ 49
4-50 Channel-Exit Pattern 50
$4-51$ Location of Axes of Modified Bluntonosed Profile Channel 54
$4-52$ Force Components for Chanel in Cascade of Second Modification of Blunt-Mosed Profiles 58
(Chapter IV, Part C)
$4-53$ Layout of Channel of Sharp-Nosed Profiles (Incomplete) 59
$4-54$ Nose Region of SharpeNosed Profile 59
$4=55$ Initial Segments of OWL and OWU 60
$4-56$ Flow Along Upper Wall 60
4×57 Construction of Curved Portion of OWU 62
4 Center Pattern 63
$4-59$ Reflection of OWL 65
$4-60$ Reflection of OWU 65
4-61 Chamel-Exit Pattern 66
$4-62$ Axes and Outward Normals of Sharpwosed Profile Channel 67
4063 Force Components for Channel in Cascade ofSharp-Nosed Profiles69
(Chapter V)
5-1 Void-Wedge Flow 74
(Chapter VI)
6-I Chemel-Exit Station Versus Mach Number 84
6-2. Channel-Exit Station Versus Flow Velocity 85
6-3 Channelmxit Station Versus X-Gomponent of Momentum 86
604 Channel-Exit Station Versus X-Component of Force Die to Static Pressure 87
Figure Page
6-5 Channel-Exit Station Versus Y-Component of Momentum ©
(Chapter VII)
7-1 Suggested Cascade Design Change 91
(Appendix)
A-1 Nose Region of Blunt-Nosed Profile 95
A-2 Layout of Channel Flow Pattern, Cascade of Modified. NACA BluntmNosed Profiles 96
A-3 Layout of Channel Flow Pattern, Cascade of SecondModification of Blunt-Nosed Profiles 97
A-4 Layout of Channel. Flow Pattern, Cascade of Sharpm Mosed Profiles 98

LIST OF SYMBOLS AND ABBREVIATIONS

Many of the symbols in the text are composites of those defined below; that is, one symbol may serve as subscript for another. The mean ing of these combinations is always clear. For example, $F_{\Delta n_{x}}$ is a com posite of $F, \Delta M$, and x_{0}. The definition of the composite is

Force (F) due to change in momentum ($\triangle M$) in the x-direction (x).

LATIN CAPITALS

A
A, B, $\overline{\mathrm{A}}, \overline{\mathrm{B}}_{\mathrm{O}} \ldots \ldots \mathrm{O}$
A_{x}
A_{y}

D sphere diameter, inches,
F
\bar{F}
K_{S}
K_{W}
M
M_{i}
N_{j}
0
OWL
OWJ
P
station area, sq. ino, x-axis, sq. in., ($A_{x}=0$ sq. ino), y-axis, sq. in.s
force, lbs, force, lbs, Mach number, Mach wave, normal to characteristic curve, hodograph origin point, static pressure, psia,
center pattern subregion, also point on wave, center pattern subregion, also point on wave, component of control surface segment A parallel to
component of control surface segment A parallel to curvature of attached nose shock, $\frac{1}{\text { ing }}$, curvature of ogive portion of wall, $\frac{1}{\text { ino }}$, oblique wave originating at lower channel wall entrance, oblique wave originating at upper channel wall entrance,

P^{j}	end point of vector on hodograph corresponding to w_{i}, whenever $i=j$,
$\mathrm{P}_{\text {S }}$	stagnation pressure, psia_{2}
R	Rankine,
R_{W}	radius of curvature of the ogive portion of the wall, inches,
R_{S}	radius of curvature of attached nose shock, inches,
T	ambient temperature, degrees Rankine,
T_{s}	stagnation temperature; degrees Rankine,
V	flow velocity, fps,
V_{n}	velocity component normal to control surface, fpss
v_{x}	velocity component along x-axis, fps,
V_{Y}	velocity component along y-axis, fps, LATIN LOWER CASE
a	velocity of sound in air, fps,
	constants,
c	chord,
c	compression characteristic resulting from combination of c_{25} and C_{20},
\tilde{c}	compression characteristic resulting from combination of \bar{c} and ${ }^{c} 15$.
¢	compression characteristic resulting from combination of c_{35} and c_{30},
$\stackrel{\breve{c}}{6}$	balancing compression characteristic,
c_{ϕ}	compression characteristic corresponding to ϕ
d	distance from "shoulder circle" center to normal shock point on detached wave, inches,
é	balancing expansion characteristics
${ }^{\epsilon_{\phi}}$	expansion characteristic corresponding to ϕ,

${ }_{200}$	continuation of e_{20},
${ }^{e} 250$	continuation of e_{25},
${ }^{e} 25 \mathrm{~L}$	e_{25} of lower wall,
${ }^{\text {25Luc }}$	continuation of $e_{25 L}$,
$\mathrm{e}_{25 \mathrm{U}}$	e_{25} of upper wall,
$\mathrm{e}_{25 \mathrm{Uc}}$	continuation of e_{250} \%
$f()$	function of quantity enclosed in parentheses,
i	exit station number,
i, j	1, 2, ...,
m	polynomial in M,
n_{1}	outward nomal to channelmentrance control surface,
n_{2}	outward normal to channel-exit control surface,
owc_{ℓ}	continuation of lower portion of detached nose wave,
OWe $_{\mu}$	continuation of upper portion of detached nose wave,
s	stagnation condition,
$w_{\text {i }}$	flow velocity, fps,
X	chord station abscissa, per cent of chord ${ }_{3}$ also reference to x-axis, x-direction,
y	y-axis, y-direction,
y_{6}	mean-line ordinate measured from chord, per cent of chord,
	LATIN SGRIPT CAPIPALS
\therefore, d, L, m,	dunny pattern subregions,
x	momentum, $1 \mathrm{lbs}(1 / 4)$,
p	force due static pressure, Ibs,
R	any center pattern subregion,
	GREEK CAPITALS
\triangle	change in, or difference between,

$\triangle M O$	change of momentimg Ibs (14.4),
θ_{s}	deflection angle, degrees,
$\theta_{\text {s, crit }}$	wedge angle of maximum magnitude for attached shock, degrees,
$\theta_{W} \text { or } \theta_{W_{9}}()$	wave angle, degrees,
$\bar{\theta}_{W}$ or $\bar{\theta}_{W,}()$	local wave angle with respect to free-stream flow direction, degrees,
Σ	summation indicators
$\sum \mathrm{c}$	compression wave resulting from combination of \tilde{e} and c_{10}.
$\sum_{c_{c}}$	continuation of $\Sigma_{c_{3}}$
ϕ	expansion angle of Prandtl-Meyer relation, degrees, GREEK LOWER CASE
α	angle between local flow direction and outward normal to control surface, degrees,
α, β	dummy characteristics,
γ	ratio of specific heats of ges,
$\gamma_{\text {s0 }}$	weight density of air at Standerd Sea Level, lbs/cf,
δ	detach distance, inches, also flow deflection through wave, degrees,
$\bar{\delta}$	local flow direction with respect to free-stream direction, degrees,
ζ_{2}	substitute wave for owc_{l} and $\theta_{25 \mathrm{~L}}$ \%
\bar{N}_{1}	$\bar{\delta}$ corresponding to $\phi=0$ degrees along lower channe 1 wall, degreess
\bar{v}_{μ}	$\bar{\delta}$ corresponding to $\phi=0$ degrees along upper channel wall, degrees,
λ	substitute wave for owc $_{i}, \varepsilon_{20 c}$ s and $\sum_{c_{c}}$,
N	substitute wave for ows ${ }^{\text {and }}$ a e_{250} \%
ξ_{2}	substitute wave for owc ${ }_{\mu}$ and $e_{250 c}$,
ρ	mass density of air, slugs/of,

```
PO mass density of still air at Standard Sea Level.
    slugs/cef,
\chi substitute wave for ĕ and h,
    ARABIG NUMERALS
```

1, 2, points along wall,
$\overline{1}, \overline{2}, \ldots$. points along wall,
3, 5, 20, . . subscripts indicating value of ϕ preceding wave segment,

0
(1), (2), (3), segments of characteristic $I_{\text {, }}$

ABBREVIATIONS
$\equiv \quad$ is identical to,
$>\quad$ is greater than,
$\doteq \quad$ is very nearly equal to,
upward and dowward direction tendencies,
prime, superscript on P, P_{g}, P, P_{s} and BNC referring to fictitious distribution of chanelwexit quantities,

BNC
BNC^{3}
of cubic foot,
今ps
Ibs
NACA
psi pounds per square inch,
psia pounds per square inch, absolute,

R
SNC
sec.
sq. in. square inches,
TM
TN Technical Note 。

PREFACE

In the analysis of turbomachinery, it is very necessary to know flow behavior in certain velocity ranges Airfoil and cascade theories already have provided solutions of the flow problem for incompressible fluids. The development of cascade theory for compressible iluids carries with it a great number of difficulties. One of the unsolved problems is thet of the behavior of a cascade of blunt-nosed profiles in a mixed compressiblemfluid flow When a flow is initially supersonic, a detached, curved shock wave forms in front of each profile. Behind the wave, there exists a region of subsonic velocities bordered by the shock curve and the nose of the profile. Further downstream, the flow becomes supersonic again.

The method of successive approximetions frequently is productive of useful results. This, then, is the first approximation of the solution of the flow of a compressible fluid through a cascade of bluntmosed profiles. As such, it carries the properties of a guidepost, but not those of a map. The rigorous development of the theory is hampered by tremendous mathematical difficulties. Proof of the existonce of a solution is given by Bergman for the irrotan tional case. Frankl demonstrates the uniqueness of the solution for an isolated cone with detached nose shock. ${ }^{2}$ Neither of the given theorems applies directly to the problemo Thus farg no analytical

1. Stefan Bergman, "On Supersonie and Partially Supersonic Flows* NACA, TN 1096 (December, 19/6).

2 F. Frankl, "On the Problem of Chaplygin for Mixed Subr and Supersonic Flows," NACA, TM 1155 (June, 1947).
results have been discovered. Under these conditions, the authox feels justified in accomplishing his ends by non-rigorous meanso

CHAPTER I

INTRODUCT ION

The solution of mixed compressible-fluid flow through a straight cascade of blunt-nosed profiles is of practical importance in furthering the design theory of axial-flow turbomachinery. The development of compressible-fluid flow theory is step-by-step; starting with the simplest flow configurations, and continuing to slightly more complicated ones. This approach is the soundest one, for the theory thereby is assured of a solid foundation. Necessity and lack of time often force the engineer to attack a more advanced problem for which some of the foundations stones are missing. Necessarily, many assumptions must be made; some of which cannot be justified solidly. Retaining rigor is next to impossible, and the method of successive approximations becomes the chief tool. Individual solutions of this type serve as direction indicators in the development of the general theory, and as starting points in the evolution of particular-case theories. Thus in this study, a two-dimensional analysis is made of the flow between two adjacent turbomachine blades. The summation of all flows through all blades will produce the required results for one turbon machine wheel.

Full advantage is made of a step-by-step solution. Since the analysis depends heavily on the geometry of the flow, and since the inequalities used in reasoning often change directions with only slight changes in local values of flow variables, conjecture on expected results is quite difficult. Later research may solve the entire range of veloci-
ties for a given cascade. At that time, a solution to the general probe lem should have more encouraging probability than it does now.

CHAPTER II

ANTECEDENY INVESTIGATIONS

Since momentum theory in its old form, applied to turbomachines, fails to produce results in certain velocity ranges, it is necessary to apply cascade theory, and to develop it further. The general theory of incompressible-fluid flow through straight cascades is already far advanced. ${ }^{l}$ In the region of compressible subsonic potential flow, Costello, ${ }^{2}$ using the method outlined by Lin 3 produces a cascade design. More precise, more tedious, and entirely different is the method presented by Wang ${ }^{4}$ Although it is given for an isolated body only, it seems adaptable to cascade flow. Pure supersonic flow about bluntmosed objects is not possible physically.

Very little is know about the problem under considerationg that of mixed compressiblemfluid flow about a blunt body. The work of

I A unified treatment is given in F. Weinig, Die Strömug un die Schaufeln von Turbomaschinen.

2 George R. Costello, "Method of Designing Cascade Blades with Prescribed Velocity Distributions in Compressible Potential Flows ${ }^{\text {" }}$ NACA, R 978 (1950).

3 C. CoLin, "On an Extension of the von Kármán TI sien Method to Twomimensional Subsonic Flows with Circulation around Closed Profiles," Quarterly of Applied Mathematics, IV (October, 1946), 291-297。

4 Chi-Teh Wang, "Variational Method in the Theory of Compressible Fluid," Journal of the Aeronautical Sciences, XV (November, 1948), 6750 685; also errata, XVI (February, 1949), 125 fo

Dugundji ${ }^{5}$ is quite misleading when applied to the two dimensional case. The only other pertinent writing is that of Busemann. ${ }^{6}$ His survey of known experimental and theoretical results is sparse. However, he introduces the concept of "shoulder circle," a very useful tool which is explained later.

5 John Dugundji, "An Investigation of the Detached Shock in Front of a Body of Revolution," Joumal of the Aeronautical Sciences, IV (December, 1948), 699-705.

6 Adolf Busemann, "A Review of Analytical Methods for the Treat ment of Flows with Detached Shocks, "NACA, TN 1858 (April, 1949).

CHAPTER III

STATEMENT OF PROBLEM

The determination of the thrusto and torquereactions of a straight cascade of blunt-nosed profiles to the flow of air with an entrance Mach number of 1.7 is the chief purpose of this investiw gation. The same problem is to be solved for a straight cascade of sharp-nosed profiles, the element of which corresponds very closely in shape and position to the element of the blunt-nosed profile cascade. The results of the two problems are to be compared with each other, and analyzed.

GHaPTER IV

ANALYSIS AND COMPUTATIONS

A Cascade of Modified NACA Profiles

1 Profile and Channel Layout

Entrance Mach number and profile configuration are chosen such that channel theory may be employed in the two dimensional analysis of the flow between two adjacent blades. The NACA 63-206 airioil is the basic profile selected. To produce turning of the flow, the profile is modis fied to increase the camber. Actual chord length, or bucket width equals 2 inches, and the layout scale ratio chosen is 10 to 1 . The construction follows. NACA Mean Line 63 is plotted from the data of Pable $4-1$. The

Table $4-1$

NACA Mean Line 63I			
x	Y $_{c}$	X	J $_{c}$
(per cent c)	(per cent c)	(per cent c)	(per cent e)
0	0	30	6.000
1.25	0.489	40	5.878
2.5	0.958	50	5.510
5.0	1.833	60	40898
7.5	2.625	70	4.041
10	3.333	80	2.939
15	4.500	90	1.592
20	5.333	95	0.827
25	5.833	100	0

X^{\prime} s are the chord (c) station abscissae, and the $y_{c}{ }^{\prime}{ }^{\prime} s$ are the mean line ordinates, measured from the chord. A tangent is draw to the mean line at the leading edge, or at station 0 . The slope of the leadingeedge

1 Ira F_{A}. Abbott and Albert E , ton Doenhoff, Theory of Wing Sec. tions. p .384 .

radius line is laid out with respect to this tangent, and the leadingo edge circle drawn as shown in Figure 4 I . Values of slope and radius are given at the end of Table $4-2$, page 8. Upper and lower surfaces are then laid out, using the data for NACA 63-206. The new stations are plotted along the original chord。

A point corresponding to each station is located along the mean line by finding the mean line intercept of a line dram perpendicular to the
$P=$ point on upper surface,
$Q=$ point on lower surface. chord at each chord station.

Pwo blades are arranged to form the walls of the channel under

	$x=$ channel axis, y = cascade axis. $\begin{aligned} \text { pitch } & =1.6 \mathrm{in}, \\ \text { stagger angle } & =30^{\circ} .\end{aligned}$

Table 4-2

	ACA 63-206	ction Data	
	face	Low	ace
Station	Ordinate	Station	Ordinate
0	0	0	0
. 458	. 551	. 542	-. 4.41
. 703	.677	. 797	- . 537
1.197	. 876	1.303	- . 662
2.438	1.241	2.562	-. 869
4.932	1.776	5.068	-1.144
7.429	2.189	7.571	-1.341
9.930	2.526	10.070	-1.492
14.934	3.058	15.066	-1.712
19.941	3.451	20.059	-1.859
24.950	3.736	25.050	-1.946
29.960	3.926	30.040	-1.982
34.970	4.030	35.030	-1.970
39.981	4.042	40.019	-1.900
44.991	3.972	45.009	-1.782
50.000	3.826	50,000	-1.620
55.008	3.612	54.992	- 1.4 .22
60.015	3.338	59.985	-1. 196
65.020	3.012	64.980	- . 952
70.023	2.642	69.977	- . 698
75.023	2.237	74.927	- 0.447
80.022	1.804	79.978	- . 212
85.019	1.356	84.981	- . 010
90.013	. 900	89.987	. 134
95.006	. 454	94.994	. 178
100.000	0	100.000	0
Leadingeedge circle radius: 0.297%			
slope of leadingmedge circle radius line through leading edge:			

analysis. The reference axes are located such that the velocity components along them generally are positive. Figure $4=3$ shows the skelem

2 Ibido. p. 415.
ton layout of the channel. The leading edges are at the left, and the mean lines are draw below the chords. The flow is from left to right.

2 Nose Region

The entrance portion of the stagnation line must be located first in order to define the channel walls upstream, and to locate the optimum direction of approach. The nose of the profile is very nearly symmetric about the leading-edge radius line. If the direction of approach is chosen parallel to this line, the profile presents its slimmest aspect to the incoming stream, and thereby minimizes the region of strong shock of the detached nose wave. Because of the symmetry property, the entrance portion of the stagnation line coincides with a continuation of the leading-edge radius line, and the stagnation point with chord station zero.

The detach distance of the shock from the stagnation point is found next. Only experimental results are available. It must be assumed that the detach distance in front of the profile coincides with that of a sphere in free flight, at the same Mach number. A shadowgraph picture of a sphere is available for a Mach number, M, of 1.80^{3} The quantities obtained by measurement must be corrected to $M=1.7$. Let

$$
\begin{aligned}
& \delta=\text { detach distance, inches; } \\
& D=\text { sphere diameter, inches }
\end{aligned}
$$

The scale is arbitrary, since only the ratios are important. To reduce error, the measurements are taken as shown in Figure $4-4$. Let m be a

3 Hans Wolfgang Liepmann and Allen E. Puckett, Introduction to Aerodynamics of a Compressible Fluid, Fig. 6.13, p.99.
polynomial in M, and $f(M)$ a function of M. Then, let

$$
\delta / D=f(M)=a_{1} m+a_{2} m^{2}+a_{3} m^{3}+\ldots \circ+
$$

where the $a^{!} s$ are constants, and $0 \leqq \delta / D \ll I$. If $m=M-I_{8}$ and if the power terms, which tend toward zero, are neglected, then

$$
\begin{equation*}
\delta / D=a(M-I) \tag{I}
\end{equation*}
$$

The constant a then can be determined from experimental data.

$$
\text { At } M=1, \quad \delta / D=0 \text {. Substitution into the last equa }
$$

tion produces the identity

$$
0=a(0)=0 \text {, yielding no solution for } a_{0}
$$

At $M=1.8$,

$$
(\delta / D)_{I_{0} \delta}=a(1.8-I) .
$$

Therefore,

At $M=1.7$,

$$
(\delta / D)_{1.7}=0.2174(1.7 \mathrm{~m} I)=0.1522
$$

According to the data at the end of Table $4-2$, the diameter of the leade indeedge circle, D_{3} in per cent of c, equals 0.594 . The detach distance
in per cent of c equals

$$
\begin{aligned}
& \delta=(\delta / D)_{1.7}(D)=0.1522(0.594) \\
& \delta=0.0905
\end{aligned}
$$

Next to be found is the shape of the nose shock wave. There exists no analytical relation between the shape of the nose and that of the detached wave. However, the shapes are related indirectly. For this relation, the concept of "shoulder circle" must be introduced. 4 The "shoulder circle" is located as follows: At $M=1.7, \Theta_{s, ~ c r i t}$, the wedge angle of maximum magnitude for attached shock equals 17 degrees, Chart 2-1. 5 The nose region of the profile is redrawn, magnified 125 to 1. On tracing paper, an acute angle equal to $2 \Theta_{\mathrm{s} \text {, crit }}$ is laid off. The traced angle is superimposed on the nose region until the unique tan gency condition shown in Figure $4-5$ is obtained. The points of tangency
 are "shoulder points," and the shoulder circle may be located by drawing normals to the surfaces at the points of tangency, locating the point of intersection of these normals, and, using this as center, drawing a circle through both points of tangency. Because of
the approximate symmetry of the nose about the leading-edge radius line,

4 Adolf Busemann, on. cit., p. 11.
5 C. L. Dailey and F. C. Wood, Computation Gurves for Compressible Fluid Problems.
the center of the shoulder circle falls on that line. The leading edge of an object has little or no influence on the shape of the detached shock. Two sensitive arcs behind and on either side of the leading edge bear the greatest influence. These arcs may be called "shoulders ${ }_{9}$ " and it follows that the shoulder circle is the main factor in the definition of the relation between the nose shape and the shape of the detached wave. Thus the curved portion of the nose wave is defined as a circle which is concentric with the shoulder circle, and which has a radius equal to the distance from the stagnation point to the center of the shoulder circle plus the detach distance. The circular portion terminates in a tangent which coincides with a wave angle of 37 degrees. The straight wave portion has a turning strength of I degree at a free-stream M of $1.7,{ }^{6}$ which is equivalent to the turning strength of the straight portion of a detached wave with a free-stream M of 1.8 , as show in a shadowgraph. ${ }^{7}$ This configuration holds true at least for the length of wave front under consideration.

The locus of the sonic line behind the detached shock is the next item to be found. At the wave, the sonic point falls where the local wave angle equals 61.4 degrees, according to Chart 2.1. ${ }^{8}$ This means that immediately downstream of this point $M=1$. The sonic line is one of the borders of the subsonic region. The sonic point at the wall must be located next. Its locus is given in Figure $4-6$, where d is the length of the shock arc radius. The justification for the location of the sonic

6 Ibid.

7 Hans Wolfgang Liepmann and Allen E. Puckett, loc. cit.
8 C. L. Dailey and F.C. Wood, op. cit.

point at the surface and upstream from the shoulder point is given by Busemann. 9 The direction of the sonic line in the neighborhood of the wall is known to be perpendicular to the wall, since the flow there is parallel to the wall. Since it may be assumed that the sonic line is a simple curve, the outer portion of which is already constructed, it can
be concluded that the inner portion is the longer of two segments forming the sonic line. The definition of the locus of the wall sonic point results in a satisfactory proportion between the two segments of the sonic line, as shown in Figure $4-7$. The sharp corner of the intersection of the inner and outer segments of the line is removed by drawing a smooth fillet, as show, The flow is deflected 16.7 degrees away from the wall behind the wave sonic point according to Chart $2-1.10$ The outer segment
 of the sonic line is perpendicular to this direction. The sonic line has two properties: (1) The Mach number at every point along it equals one, and (2) the flow direction is orthogonal to it at every point along it.

At the stagnation point, immedi-

9 Adolf Busemann, opo cit. p. 12.
10 C.L. Dailey and F。G.Wood, op. cit.
ately behind the normal portion of the nose shock, $M \equiv 0$. On either side of this point, along the wall, the curvature produces expansion intil sonic velocity is reached downstream, at the wall sonic point. Prom ceeding laterally from the stagnation streamline, the deflection through the curved portion of the nose wave is at first small, then increases, and then decreases after reaching a maximum, 2.5 show in Figure 408 . How ever, it is difficult to predict the locus of the streamlines further
 downstrean inside the subsomic zones since the wall is quite steep with rem spect to the original flow direction. Because of the increasing decreasing deflection property, the actual sonic line must be refiexed, as show in Figo ure 4-9. The major portion is conm structed perpendiculax to the wall. which means that some of the subsonic streamines must be reflexed also. However, to facilitate the analysis, the sonic line of Figure $4-7$ is rem
Free-stream flow tained.

The curved portion of the nose wave rapidly changes strength from normal shock to very weak oblique shock. A division of the wave into incremental arcs permits the definim tion of single conditions behind each sưch portion. Adjacent portions dif. fer sufficiently in flow variables that crosswflows are formed. Statice
pressure-, temperaturem, and entropy differences, in other words, are sufficiently large to force a flow across laminae between former stream filaments. After some mixing, the pressures will be matched. The other quantities will be sufficiently different to cause the persistence of shear sheets between adjacent layers. However, since all the se adjacent channel flows reach sonic velocity at the sonic line, the shear sheets must disappear at this line。 It must be remembered that flows across incremental portions of the sonic line still retain different reserroir conditions.

3 Supersonic Dowstream Region

The supersonic portion of the flow pattern is next to be analyzed. A simplification is obtained by the assumption of only two extreme resm ervoirss that pertaining to the flow immediately behind the sonic point at the wave, and that pertaining to the wall streamline. Downstream of the wall sonic point, the wall curvature is convex a 2 and the flow is expanding.

The method of characteristics, as given for instance by Liepmann and Puckett, ${ }^{11}$ is most advantageous if the flow is prescribed, and the shape of the wall or channel is to be found. If the wall curve already is given exactly, a modification simplifies the work. The new procedure is given below. Essentially, the behavior of the flow is as before。
(1) Construct tangents to the walls at small intervals of arc.
(2) Locate the point corresponding to the tangent direction on cham acteristic curve.

11 Hans Wolfgang Liepmann and Allen E. Puckett, opo cito, Chapter 13.
(3) With superimposed ellipse, ${ }^{12}$ read the wave angle corresponding to the tangency point, as illustrated in Figure 40 .
(4) Construct the Mach wave at the tangency point on the wall such that the wave angle equals the tangencympoint Mach angle.

(5) Assign a turning angie, δ, to the flow as it crosses the wave equal to the angle between successive tangents.

The modified method presented permits the use of the PrandtlwMeyer flow relations, Chart $20-11^{13}$, in the construction of the characteristicso The two methods are thoroughly interchangeable. The application of the characteristics - chart, or hodograph, is independent of the reservoir conditions. This holds true also for the application of the Prandtlo Meyer flow relations. A proof of the last statement is unnecessary, since any sample problem can be solved by either method with identical results. Part of the modified method of characteristies appears in Fige ure $4=11$. The difference between the modification and the original can be seen easily in Figure 4-12。 Let

$$
\begin{aligned}
& I_{2}, \ldots, \ldots \overline{I_{2}}, \overline{2}, \ldots, \text { points along wall } I_{2} \\
& \mathrm{w}_{\mathrm{I}}=\text { flow velocity, } \\
& M_{1}=\text { Mach wave },
\end{aligned}
$$

12 Ibid. p 。218.
13 C. L. Dailey and F.C.Wood, op. eit.
$N_{j}=$ normal to characteristic curve,
$P_{j}=$ end point of vector on hodograph corresponding to $w_{i}, i=j$,

In Figure 4-11, when $i=j, \mathrm{OP}_{j} \| W_{i}$, and $M_{i} \| N_{j}$ o

The purpose of the problem is the location of the wave pattern at the channel exit. Any intermediate problem solution not necessary as a step toward the solution is omitted. Hence, the solution which follows often bypasses regions which are unnecessary ∞ and difficult to solve.

Frequent use is made of a set of curves compiled by Dailey and Wood. 14 On all occasions it is ascertained implicitly that the conditions of the problem correspond to those of the chart used. Usually, no mention is made of the equations the authors employed in the derivations of curve relations. Let

$$
\begin{aligned}
& \theta_{W}=\text { wave angle, degrees; } \\
& \theta_{S}=\text { deflection angle, degrees; } \\
& P_{S}=\text { stagnation pressure, psia; } \\
& P=\text { static pressure, psia; } \\
& \phi=\text { expansion angle, degrees, PrandtiwMeyer relation; } \\
& T=\text { ambient temperature, degrees Rankine; } \\
& T_{S}=\text { stagnation temperature, degrees Rankine; } \\
& \gamma=\text { ratio of specific heats. }
\end{aligned}
$$

Additional subscripts, usually arabic numerals, refer to points, regions, and interfaces between regions.

Let the flow expand one degree from the condition at the sonic line at the wall. This means that the flow is bent through one degree at the wall. The condition behind the oblique wave corresponding to this is assumed such that the shock wave is decreased in slope by one degree from that at the wave sonic point. At the wave sonic point, $\theta_{w i}=61.4$ der grees, Chart 20.1^{15}. At point 6\% Figure 4 m 13,

$$
\begin{aligned}
& \theta_{w 6}=61.4-1=60.4 \text { degrees; } \\
& \theta_{s 6}=16.4 \text { degrees, Chart } 2-1^{15} ;
\end{aligned}
$$

14 Ibid.

15 Ibid.

$$
\begin{aligned}
& \frac{P_{s 5}}{P_{5}}=2.08, \text { at } \gamma=1.40, \text { Chart } 1-116 \\
& \frac{P_{s 6}}{P_{s 5}}=\frac{P_{s 6}}{P_{s 1}} \frac{P_{s 1}}{P_{s 5}}=0.934 \frac{1}{0.856}=1.0918 \\
& \frac{P_{6}}{P_{5}}=\frac{P_{s 6}}{P_{s 5}} \frac{P_{55}}{P_{5}}=1.091 \frac{2.08}{P_{s 6}}=1.158 \\
& P_{6}
\end{aligned}
$$

is greater than at the wall.

Past the sonic line, the first characteristic is constructed at 5 degrees of ϕ. The zone between the sonic line and the extension of the portion of the first characteristic originating at the wall shall be called region l_{8} as shown in Figure $4-14$. For the computation of region I_{z} it is assumed that the border portion of the oblique shock wave is a

16 Ibi̊d.

Figure $4=15$
Center of Region 1
straight line from the wave sonic point to the point of intersection of the extension of the wall segment of the 5m degree characteristic and the nose wave. The center of region 1 is examined next. As may be seen from Figure 4015 , the wall condition corresponds to a $2 \frac{2}{2}$ dec gree expansion. From a precise drawing, the straightmine portion of the oblique shock has a slope, equal to $\theta_{w 6}$, of $49^{\circ} 32^{3}$. The remainder or region 1 can be computed next.

$$
\begin{aligned}
& \theta_{s \overline{6}}=11.5 \text { degrees, Chart } 20.17 \\
& \mathrm{~N}_{6}=1.285, \text { Chart } 2-7^{17} \\
& \frac{\mathrm{P}_{s \overline{6}}}{\mathrm{P}_{\text {si }}}=0.982, \text { Chart } 2-3^{17}
\end{aligned}
$$

$$
\frac{P_{s 5}}{P_{s l}}=\frac{P_{s 2}}{P_{s 1}}=0.856, \text { Chart } 2-3^{17} \text {; since point 2 falls on }
$$

the same streamline as point $\overline{5}$.

$$
\begin{aligned}
& \frac{P_{s 6}}{P_{s 5}}=\frac{P_{s 6}}{P_{s 1}} \frac{P_{s 1}}{P_{s} \overline{5}}=0.982 \frac{1}{0.856}=1.148 \\
& M_{5}=1.154, \text { at } \phi=2.5 \text { degrees, Chart, } 2011^{17} ; \\
& \frac{P_{s 6}}{P_{6}}=2.72, \text { at } \gamma=1.40, \text { Chart } 1.1^{17} ; \\
& \frac{P_{s}}{P_{5}}=2.29, \text { at } \gamma=1.40, \text { Chart } 1-11^{17} ;
\end{aligned}
$$

17 Ibid.

$$
\begin{aligned}
& \frac{P_{\overline{6}}}{P_{\overline{5}}}=\frac{P_{s \overline{6}}}{P_{s \overline{5}}} \frac{\frac{P_{s \overline{5}}}{P_{\overline{5}}}}{\frac{P_{s \overline{6}}}{P_{\overline{6}}}}=1.148 \frac{2.29}{2.72}=\frac{1}{1.032} \\
& P_{\overline{6}}<P_{\overline{5}}, \text { or the static pressure at the wave is less }
\end{aligned}
$$

than at the wall.
The pressure difference after one degree of expansion in region 1 necessitates the existence of a compression wave originating at the sonic line, and directed toward the wall. This wave is such that static pressures past the matching wave, immediately past the oblique wave and at the wall, are equalized. It can be shown that the flows in these adjacent zones are very nearly parallel, and that the Mach numbers are different. Therefore, there is a shear sheet between the zones, originating at the sonic line at the same point as the balancing compression wave. The direction of the static-pressure inequality for the greater part of region 1 is that which holds at the condition of 2.5 degrees of expansion from the sonic line. The mid-region condition is used to compute the

Figure 4-16
Actual Pattern, Region 1
balancing wave which matches pressures for all of region 1 . It is seen that there is a reversal of the static-pressure inequality between the one-degree condition and the mid-region condition, as illustrated in Figure 4-16. There is no necessity for analyzing the indeterminate subregion in order to obtain a satisfactory pattern downstream. That is,
it is safe to assume that the flow behaves as if the compression wave and the shear sheet originated at the midpoint of the sonic line.

$$
\begin{aligned}
& \theta_{s \overline{6}-\overline{5}}=0.64 \text { degrees, Chart } 2-4^{18} \\
& \theta_{w \overline{6}-\overline{5}}=52.1 \text { degrees, Chart } 2-1^{18}
\end{aligned}
$$

Dowstream of the balancing shock,

$$
\text { Mr } \quad=1.279, \text { Chart } 2-7^{18}
$$

Therefore, the shear velocity corresponds to

$$
M_{7}-M_{5}=\Delta M_{7-\overline{5}}=1.279-1.154=0.125 \text {. Consequently, the }
$$

shear sheet must be continued.

The balancing compression wave is composed of two segments, each properly directed with respect to the flow direction preceding it. The actual wave, of course, is curved, and the two-segment wave shown in Figure 4-17 is a substitution. A further simplification is the substi-

Figure 4-17
Substitute Pattern, Region 1
tution of a single straight wave for the two-segment wave. The direction of the flow preceding this wave is such that $\theta_{w 6-\overline{5}}$ is the same as before.

There is a difference of conditions between subregions 7 and 8. $M_{8}=M_{6}=1.285$, since the flow is assumed to cross the chord segment
of the oblique wave.

18 Ibid.

$$
\begin{aligned}
& \frac{P_{s 7}}{P_{s l}}=\frac{P_{s 6}}{P_{s l}}, \text { since } \frac{P_{s 6}}{P_{s 7}}=1.00 \text {, Chart } 2.3^{19} \text {. } \\
& \frac{P_{s 7}}{P_{s 1}}=0.982, \text { Chart 2-3 } 3^{19} ; \\
& \frac{P_{s 7}}{P_{7}}=2.69, \text { at } \gamma=1.40 \text {, Chart 1-1 } 19 \text {; } \\
& \frac{P_{s 8}}{P_{8}}=\frac{P_{s 6}}{P_{6}}=2.72, \text { since } M_{-8}=M_{6} . \\
& \Phi_{7} \quad=5.6 \text { degrees } s_{2} \text { and } \\
& \phi_{8} \quad=5.75 \text { degrees, Chart 2-11 }{ }^{19} \text {; } \\
& \Delta \phi_{8 \infty 7}=\phi_{8}-\phi_{7}=5.75-5.6=0.15 \text { degrees } \\
& \frac{P_{s 7}}{P_{8}} \quad=1.00 \text {, since there is no shock wave。 } \\
& \frac{P_{7}}{P_{8}} \quad=\frac{P_{s 7}}{P_{s 8}} \frac{P_{s 8}}{\frac{P_{s 7}}{P_{7}}}=1.00 \frac{2.72}{2.69}=1.012 .
\end{aligned}
$$

The expansion wave required to match static pressures of adjacent subm regions 7 and 8 originates at the intersection of the interior compres sion wave and the nose wave, and slopes downstream, toward the wall. This expansion wave is very weak, has negligible turning power, and does not change the Mach number sufficiently to warrant consideration. Thereo fore, it may be neglected in the first region.

The first five-degree expansion characteristic, called character istic $l_{\text {, }}$ is located, next. Characteristic 1 is composed of three segm

19 Ibid.

ments, as show in Figure $4=18$. Segment (1) of characteristic I begins at the wall at a point the tangent to which makes an angle of 5 degrees with the wall sonic point tangent. It extends to the medien shear sheet, which originates at the midpoint of the sonic line.
$\theta_{w(I)}=52.7$ degrees, at $\phi=5$ degrees, Ghart $201 x^{20}$. The condition
at segment (2) corresponds to a 2.5 -degree expansion from condition. 7 .

$$
\begin{aligned}
\phi_{(2} & =\phi_{7}+2.5=5.6+2.5=9.1 \text { degrees, } \\
M_{(2} & =1.37, \text { Chart } 2-11^{20} ; \\
\theta_{w}(2) & =46.9 \text { degrees, Chart } 2-11^{20} .
\end{aligned}
$$

Segment (2) extends from the median shear sheet to the streamline through the nose wave terminus of the interior compression wave. This streamine is also the locus of an extremely weak shear sheet which is neglected, and the direction of which corresponds to the flow dowstream of the chord substitute for the curved obliquewave segment bordering region 1.

θ_{W} of the wave portion preceding segment
(3) of characteristic I is such that 42° $53^{\circ} \geq \Theta_{w} \geq 37^{\circ}$. It is assumed that $\theta_{w, ~ a v e r a g e ~}=40^{\circ}$, at the wave. The pattern under examination appears in Figure 4 19. Across the portion of the
nose wave,

$$
\begin{aligned}
& \theta_{s}=4.1 \text { degrees, Chart } 2-1^{21} \\
& M_{z}=1.55, \text { Chart } 20.77^{21} \\
& \text { At } M_{2}, \phi \frac{1}{2}=13.3 \text { degrees, Chart 2-11 }
\end{aligned}
$$

Since the balancing compression wave strikes dowstream of the center of the obliquemave chord, an additional expansion equivalent to a ohange in \oint of 2 degrees is assumed to be required to reach the condition immediately ahead of segment (3) of characteristic I_{9} instead of one equivalent to a change in ϕ of 2.5 degrees. Let

$$
\begin{aligned}
\Delta \phi_{2}(3) & =\text { required change in } \phi \text { Theng } \\
Q_{(3)} & =\oint_{2}+\Delta Q_{2}(3)=13.3 \div 2=15.3 \text { degrees: } \\
M_{(3)} & =1.616, \text { chart } 2-11^{21} \\
\theta_{W} & =38.2 \text { degrees, Chart } 2-11^{21}
\end{aligned}
$$

Imediately preceding the wave, the statio pressures are such thet $\mathrm{P}_{(1)}>\mathrm{P}_{(2)}>\mathrm{P}_{(3)^{3} \text { as is demonstrated below. }}$
$\frac{P_{S} I}{P_{S}}=2.61_{9}$
$\frac{P_{s}(2)}{P_{(2)}}=3.05$, and

$$
\frac{P_{s}(3)}{P_{(3)}}=40.35 \text { at } \gamma=1.40, \text { Chart } 1-121
$$

$$
\frac{P_{S}(I)}{P_{s 1}}=0.856, \text { Chart } 2-3^{21}
$$

and (2.
$\frac{P_{s(2)}}{P_{s I}}=\frac{P_{s 6}}{P_{s 1}}=0.982$, since no shock wave exists between $\overline{6}$

21 Ibiod.

$$
\begin{aligned}
& \frac{P_{s(1)}}{P_{s(2)}}=\frac{\frac{P}{s} 1^{P_{s I}}}{\frac{P_{s(2)}}{P_{s I}}}=\frac{0.856}{0.982}=\frac{1}{1.147}, \\
& \frac{P_{(2)}}{P_{(1)}}=\frac{P_{s}(2)}{P_{s(1)}} \frac{\frac{P_{s}(1)}{P_{s}(2)}}{P_{(2)}}=1.147 \frac{2.61}{3.05}=0.982, \\
& \operatorname{orP}_{\text {(1) }} .>\mathrm{P}_{(2)} \\
& \frac{P_{s}(3)}{P_{s l}}=1.00 \text {, at } \theta_{s}=4.1 \text { degrees, Chart } 2.03^{22} \text {; } \\
& \frac{P_{s(2)}}{P_{s}(3)}=\frac{P_{s, 2}}{\frac{P_{s l}}{P_{s l}}}=\frac{0.982}{1.00}=0.982, \\
& \frac{P_{(2)}}{P_{(3)}}=\frac{P_{s(2)}}{P_{s(3)}}=\frac{\frac{P_{s(3)}}{P_{(3)}}}{\frac{P_{s(2)}}{P_{(2)}}}=0.982 \frac{4.35}{3.05}=1.400 \quad, \\
& \operatorname{orP}_{(2)}>\mathrm{P}_{(3)} \text { 。Hence, } \mathrm{P}_{(1)}>\mathrm{P}_{(2)}>\mathrm{P}_{(3)} .
\end{aligned}
$$

The second region lies between the 5-degree and 10-degree characterm istics. A balancing pattern is required, similar to that of region $l_{\text {. }}$ This pattern is assumed to be the result of 7.5 -degree conditions, or mid-region conditions in region 2. The method used in the analysis of region 2 is a continuation of that of region 1 . Figure $4 m 20$ shows the beginning of the pattern. The shear velocities at the junctures of the segments of the characteristics are decreased by the static-pressure
free. stream flow
Partial Patterm, Region 2 the decrease in shear velocities. The nature of the matching patterns of successive regions is such that each characteristic is bent back, or dowstream, further than its predecessor because of the expansion process along the wall, but the curvature of each successive characteristic bem comes less and less until the characteristics become and remain straight. There exists a characteristic, the outer segment of which is parallel to the straight portion of the nose wave. Since this outer segment ceases to touch the wave, its influence on successive outer segments of charactere istics remains uniform. The pressure-matching patterns existing between the interior segments decrease shear velocities and force the streamlines away from convergence. A precise drawing of this part of the solution appears in the appendix. The sonic lines on both sides of the nose are shown, but the calculated pattern is drawn for the concaverwall side of the nose only. The pattern of the other side is quite similar, since the nose region is approximately symmetrical about the continuation of the inlet stagnation streamline. No numerical solution of this other side is given, since the downstream pattern may be located without doing so by taking advantage of the near-symmetry.

A stable configuration is reached at and past the first straight characteristic, at which the shear sheets must cease. Supersonic flow tends toward stabilization. Once stabilized, it tends to remain stable。 It is safe to assume that all balancing compression waves are weak oblique shocks, none of which changes the stagnation conditions of its partieular subregion。

The remainder of the chamel remains to be analyzed. The pattern is constructed in the neighborhood of each wall, after which intersections between members of opposite wave families may be examined.

The pattern along the concave wall is examined next. A Prandtlmeyer expansion takes place close to the wall, beginning at the somic point, and continuing along the convex portion of the nose zone. The wall curvature then changes to concave, but the Prandit-Meyer relations still apply to the slow compression along this portion of the wall. Expansion characteristics corresponding to a given value of ϕ are labeled e_{ϕ} and σ_{ϕ} respectively. The previous analysis permits the asm sumption that e_{20} is bent. In addition, it is assumed that e_{20} is constructed in two segments, such that the outer segment meets the two oblique waves at their point of intersection.

The tangent line at the wall sonic point corresponds to the $\phi=0$ reference direction. Wall origin points of characteristics have tagents making the angle of the local value of ϕ with the reference direction. All characteristics past e_{20} are ${ }^{\circ}{ }_{\phi}$, with the exception of portions
past "intersections" with other waves. The wave e_{20} is constructed in accordance with Figures $4-21$ and $4-22$, and the e_{ϕ} with the use of Table 4-3. The resulting pattern is show in Figure 4-23. Waves origim

Table 4-3

Characteristics Along Concave Wall, Chart 201123					
ϕ	θ_{W}	M	$\tan \phi$	$\tan \theta_{W}$	
degrees	degrees				
20	34.3	1.775	0.364	0.682	©
25	30.7	1.950	0.466	0.594	1
20	34.3	1.775	0.364	0.682	1
15	38.6	1.605	0.268	0.798	e_{ϕ}
10	44.2	1.435	0.176	0.972	1
5	52.7	1.255	0.088	1.313	1

nating from a single wall are said to belong to the same family. The meeting of such waves with each other is not a proper intersection, and it becomes necessary to analyze all possible types of meeting patterns.

23 Ibid.
c_{25} and c_{20} are of the same family. If $\theta_{5,1-2}$ and $\theta_{5,2-3}$ are sufficiently small, a single wave $\overline{0}$ may be assumed to result past the point of intersection. This compression characteristic is such that

$$
\begin{aligned}
& \theta_{S_{2} I-3}=\theta_{s, 1-2}+\theta_{S_{9} 2-3}, \text { and } \\
& \theta_{W_{g}} \bar{c}=\frac{1}{2}\left(\theta_{W_{2} c_{25}}+\theta_{w_{2} c_{20}}\right)
\end{aligned}
$$

The behavior of \bar{c} is not in full agreement with the method of characterm istics; that is, ϕ preceding \vec{c} does not correspond to θ_{w} of \vec{c}. How ever, the flow is fixed completely by the equations given. For the sake
Intersection of c_{25} and c_{20}
 of agreement, it is assumed that $\phi_{\mathrm{c}}=22.5^{\circ}$, and that the flow in a small region immediately preceding \bar{c} corresponds to ϕ_{e}^{-}. \bar{c} is assign ed $\theta_{s, \bar{c}}=7.5^{\circ}$ under this assumption. The pattern appears in Figure 4-24. An analogous pattern is formed by \bar{c} and c_{15}, resulting in \tilde{c}, as is show in Figure 4-25. The conditions on \tilde{c} are:
$\theta_{s_{8} 1-4}=\theta_{s_{2} 1-2}+\theta_{s_{2} 2-3}+\theta_{s_{2} 3-4}$
and $\theta_{W_{2} \tilde{c}}=\frac{1}{2}\left(\theta_{W_{2}, \bar{c}}+\theta_{W_{2} c_{15}}\right)$ Again, the behavior of \tilde{c} is not in full agreement with the modified method of characteristics: that iss \oint preceding \tilde{e} does not correspond. to θ_{W} of \tilde{c}_{0} As before, however, the flow is fixed completely by the conditions given. For the sake of
agreement, it is assumed that $\phi_{\tilde{c}}=18^{\circ} 45^{\circ}$. $\tilde{0}$ is assigned $\theta_{s_{y}}$ $=8^{\circ} 45^{\circ}$ 。

The expension characteristic camot be crossed by a compression characteristic of the same family, since the disturbance cannot communcate itself upstream. Hence, the pattern of Figure $4-26$ is formed. The portion of \tilde{c} bent away from θ_{20} is assumed to have the same turning power as the other section of the compression wave, but the angular relation of flow direction to wave position is not preserved, unless for purposes of visualization, a "step-wave" is assumed. The "steps" are parallel to

Figure 4-26
Meeting of \tilde{c} and e_{20}

Figure $4-27$
Compression "Step-Wave"
the initial section of the characteristic, as shown in Figure 4m27. The "stepmave" segment of \tilde{c} is intersected by c_{10}, forming \sum, a reinforced continuation of the "stepowave." A straight line is substituted for both segments of the "step-wave," as shown in Figure $4-28$ (B). The layout drawing, given in the appendix, shows pattern (C), but for purw poses of later analysis, (B) is used. \sum_{c} is such that the flow behind it corresponds to that behind G_{10} : which corresponds to the flow prem ceding σ_{5} (not shom)。 e_{5} is of indeterminate length, since it is not yet known where it is intersected by a member of the opposite family of
characteristics.

The other influence on the center pattern is due to the flow along the convex wall, which is examined next. Since the curvature is always convex, a Prandtl-Meyer expansion takes place in the neighborhood of the wall, beginning at the wall sonic point. All characteristics are expanm sions waves, and are labeled e_{ϕ}, where the subscript is the value of ϕ in the subregion preceding each wave. It is assumed that both e 20 and e_{25} are bent. Each is constructed of two segments, such that the outer
 segment of each meets the oblique waves at their point of intersection.

The tangent line at the wall sonic point corresponds to the ϕ $=0$ reference direction. As with the other wall, wall origin points of characteristics have tangents making the angle of the local value of ϕ with the reference direction.
e_{20} and e_{25} are constructed in accordance with Figure 4-29, and the

tained by the modified method of characteristies for $\phi=75^{\circ}$ and 80°.

The flow configuration in the small neighborhood of the intersection of the two oblique nose waves is called the center pattern, and is to be analyzed next. e_{30}, originating at the convex wall and 0_{25}, originatm ing at the concave wall are straight waves. The outer portion of e_{25} is

composed of segments reinforced by successive c_{ϕ}, and of the special segment \sum_{c} 。However, the flow preceding this outer portion has the same ϕ as the flow preceding the straight portion of c_{25}. e_{25}, orim ginating at the convex wall and e_{20}, originating at the concave wall are bent in two segments. e_{25} precedes e_{30}, and e_{20} precedes e_{25}. Hence, all conditions past e_{25} must be the same as those preceding e_{30}. Similarly, all conditions past e_{20} must be the same as those preceding c_{25}. Therefore, past e_{25} (convex) the flow direction is 30° from $\bar{v}_{\mu}:$ past e_{20} (concave) the flow direction is 25° from $\bar{\Sigma}_{l}, \bar{\delta}_{A}$ and $\bar{\delta}_{F}$ are the flow directions with respect to the free-stream flow direction, past e_{25} and e_{20}, respectively. From Figures $4-31$ and $4-32$,

$$
\begin{aligned}
& \bar{\delta}_{A}=\bar{v}_{\mu}-30^{\circ}=40^{\circ} 28^{\circ}-30^{\circ}=10^{\circ} 28^{\circ} \\
& \bar{\delta}_{F}=\bar{\vartheta}_{l}-25^{\circ}-34^{\circ} 07^{\circ}-25^{\circ}=9^{\circ} 07^{\circ}
\end{aligned}
$$

The pattern of Figure $4-33$ is assumed in the center region. Let

$$
\begin{aligned}
R & =\text { subregion, as labeled, } A_{2} B_{2} \ldots \\
O C_{\mu} & =\text { continuation of upper oblique wave, } \\
\text { owc }_{\ell} & =\text { continuation of lower oblique wave, } \\
\sum c_{c} & =\text { continuation of } \sum c,
\end{aligned}
$$

${ }^{e} 250$	$=$ continuation of e_{25},
e_{20}	= continuation of e_{20},
δ	= flow deflection through wave, degrees,
$\bar{\delta}$	=local flow direction with respect to free-stream

direction, degrees.
The symbols \hat{A} and following δ and $\bar{\delta}$ specify direction tendencies. Five identities must hold in the R 's:

Table 4-5 shows the result of applying these relations to the pattern of Figure $4-33$, with the exception of $\delta_{e_{25}}=\delta_{e_{250}}$ and $\delta_{e_{20}}=\delta_{e_{200}}$. These quantities are found by locating all possible $\bar{\delta}{ }^{\circ} \mathrm{s}$ with the aid of the known δ is, from which the unknown δ is may be derived. When these are know, the remaining unknown $\bar{\delta}$'s may be computed. It is seen that $\bar{\delta}_{L} \equiv \bar{\delta}_{M}=18^{\circ} 39^{\circ} \uparrow$ is the flow direction imnediately downstream of the center pattern. Neither the e_{ϕ}, nor the e_{ϕ}, nor their combinam tions make the proper $\theta_{w}{ }^{\prime}$ s with their respective flow directions for

Table 4-5

Center Pattern Flow Directions					
R	$\bar{\delta}$		2	$\bar{\delta}$	
A	$10^{\circ} 281$	1	H	80078	$\hat{1}$
B	0°	-	I	$28^{\circ} 07^{\circ}$	\uparrow
C	$9^{\circ} 28^{1}$,	J	$28^{\circ} 07{ }^{\circ}$	1
D	$9^{\circ} 281$	1	K	$29^{\circ} 07{ }^{\circ}$	\uparrow
E	10211	\downarrow	L	$18^{\circ} 39^{3}$	4
F	$9^{\circ} 071$	\uparrow	M	10218	\downarrow
G	80071	\uparrow	N	$18^{\circ} 39^{\circ}$	4

reasons given previously. The analysis is made on the assumption of correct flow deflections and other flow conditions.

A simplification is introduced to reduce the work required to ana lyze the interference pattern of the waves issuing from the center region with the domstream members of both families of characteristics. The single wave λ is substituted for the three waves $\mathrm{owe}_{\ell}, e_{20 c}$ and $\sum \mathcal{C}_{c}$ 。 Similarly, N is the substitution wave for the two waves owc μ and e_{25}. The modified center pattern appears in Figure $4-34$. Since λ is a single

wave, a contradiction is reached because $\theta_{W, \lambda}<\delta_{\lambda}$, which means that the flow does not cross the wave. λ must be modified to satinfy the necessary condition that $\theta_{w}>\delta$. Therefore, it is assumed that
in a small region immediately preceding $\lambda, \quad \Phi=\phi_{A}-\frac{1}{2} \Delta \phi_{\lambda} \quad$, where $\Delta \phi_{\lambda}=\phi_{A}-\phi_{I} \cdot \Theta_{W, \lambda}^{\prime}$ corresponding to this assumption satin fies the necessary condition that $\Theta_{w, \lambda}^{\prime}>\delta_{\lambda}$. δ_{λ} of the lower substitute wave $\mathcal{\nu}$ is not excessively large, and the necessary condition, $\theta_{w, 0}>\delta_{\nu}$, is not violated. Figure $4-35$ shows the corrected pattern.

The waves λ and ν are not fully established, since it is necessary to check that $\phi_{L}=\phi_{N} \geq 0 . \quad \delta_{\lambda}=\delta_{A-L}=29^{\circ} 07^{\circ} \uparrow$,

$$
\phi_{I}=\phi_{A}-\delta_{A-L}=30^{\circ}-29^{\circ} 07^{\circ}=0^{\circ} 53^{\circ}
$$

Hence, the wave λ is established, provided that $\phi_{L}=\phi_{N}$. The value of ϕ past the wave ν is checked next.

$$
\begin{array}{ll}
\delta_{N} & =\delta_{K-\mathbb{N}}=10^{\circ} 28^{8} \downarrow \\
\phi_{\mathbb{N}} & =\phi_{\mathrm{K}}-\delta_{\mathrm{K}-\mathbb{N}}=5^{\circ}-10^{\circ} 28^{8}=-4^{\circ} 32^{3}
\end{array}
$$

Hence, the wave ν cannot be established, since ϕ cannot be less than zero for a Prandtl-Meyer compression. The flow in subregion N is subsonic. Let N^{\prime} by substituted for N, with $\delta_{N^{\prime}}$ just sufficient to prom duce $M=I$ past the wave The lower pattern still contains sufficient energy to compress the flow by an amount equal to the subsonic equivalent of a decrease in ϕ of $4^{\circ} 32^{\prime}$, in such an equivalent exists. No such equivalent is known to exist, and the condition of flow in subregion \mathbb{N} remains indeterminate. In subregion $L_{\text {, }}$, the flow is supersonic, but in N the flow is subsonic. If the pressures in L and N are matched, a shear sheet forms their common interface. No information is available on what occurs at a shear sheet which has a subsonic zone on one side, and exmansion characteristics "crossing" into it from the supersonic zone on the other side. Therefore, no solution of the mixed-flow region can be found.

The previous portion of this analysis is based on the assumption that the change in ϕ across each substitute wave is a function of δ across each substitute wave. Another assumption is possible. It is only stated here, and requires further investigation. Let $\Delta \varnothing$ equal the change in ϕ across the wave denoted by the subscript attached. Let

$$
\begin{aligned}
\Delta \Phi_{\lambda} & =\Delta \phi_{\mathrm{owc}_{l}}+\Delta \phi_{e_{20 c}}+\Delta \phi_{\Sigma c_{c}} \\
\text { and } \Delta \phi_{\nu} & =\Delta \phi_{\text {owc }_{\mu}}+\Delta \phi_{e_{25 c}}
\end{aligned}
$$

Then it can be shown that

It is possible to match static pressures past subregions L and $N_{\text {}}$ such that in a subsequent pair of subregions L^{1} and $\mathbb{N}^{1}, \phi_{L^{2}}=\oint_{\mathbb{N}^{2}}$. This pattern is show in Figure $4-36$. These conditions are sufficient to establish both λ and ν, but they change the character of ν to that of an expansion wave with the extraordinary property that δ_{N} is directed in a manner opposite to that associated with ordinary expansion waves. This behavior is show in Figure 4-37. No proper explanation can be
found, and, as stated above, further investigation is necessary. Hence, the first set of assumptions is used. This conclusion demonstrates that the second assumption is also of no help toward a solution.

It is desirable to avoid mixed flow in the channel, since this type of flow cannot be solved by any known or attempted means. The only alternative which will produce a result is an alteration of the profiles such that no mixed flow occurs for both the blunt-nosed and the sharpnosed cascade channels.

B Cascade of Second Modification of Blunt-Nosed Profiles

1 Profile and Chamel Layout
In the alteration of the blunt-nosed profile, as much of the old construction as is possible should be retained. In accordance with Chapter III, a sharp-nosed profile is associated with the blunt-nosed one. Both must be considered simultaneously, since their shape limits must be established such that all mixed flows in their respective channels are eliminated.

To establish the required limits, the construction of the sharpnosed profile channel wall which replaces the concave wall of the original channel is considered first. A straight wall is selected, since concave curvature causes excessive compression, which is to be avoided. If the semi-wedge angle associated with this wall is chosen too large, the reflection of the attached oblique shock fron the opposite channel wall will cause the flow to be subsonic. Hence, it is desirable to select a small semi-wedge angle to insure supersonic flow in the sharpo nosed profile channel.

Consider next the wall of the blunt-nosed profile channel replacing the original concave wall. Compression at the original wall begins past the inflection point on the wall. If all compression is avoided, the rem flection of the straight continuation of the detached nose wave will not be strong enough to cause compression to subsonic flow either at the convex wall on at the lower wall, if the direction of the reflection is such that it strikes the lower wall.

These limits determine the new lower walls for both required channels. Since both walls must be nearly the same, let the lower wall of
the sharpmosed profile channel be a semimwedge, with the associated angle $\delta=9^{\circ} 07^{\circ}$, which corresponds to the slope angle of the original lower wall at the point of inflection. The lower wall of the new blunt-a nosed profile chemel consists of half of the nose region of the original profile superimposed on the lower wall of the sharpmosed profile channel, with a fillet drawn from the point of inflection to the semiwedge wall. Figure $4-38$ shows the configuration of both new lower walls.

```
_blunt-nosed profile.
-_-shanp-nosed profile.
```


Figure $4-38$
New Lower Walls of Sharp-Nosed and Blunt-Nosed Profile Channels

The upper wall of the new blunt-nosed profile channel now can be established completely. Figure $4-39$ illustrates how this is accomplished.

$A B$ is a straight line from A_{2} draw tangent to the original profile at B。

2 Nose Region

The nose region, including the subsonic zone behind the nose wave, the sonic line, and the detached shock wave, is preserved in the alteration of the channel.

3 Supersonic Downstream Region

The nose portion of the new profile coincides with that of the original one to the point corresponding to $\phi=25^{\circ}$ along the lower channel wall, and up to the point corresponding to $\phi=51^{\circ} 46^{\circ}$ along the upper channel wall. The flow along the lower wall is identical to the originm al flow from the sonic line to the subregion immediately past e_{20}. Along the upper wall, the flow remains unaltered from the sonic line to and including the subregion immediately past e_{45}.

The patterns in the neighborhood of each wall are constructed next, after which the intersections of members of opposite wave families may be examined.

The remainder of the pattern along the lower wall is examined next with the use of the modified method of characteristics and the termino logy of the first channel analysis. e_{25} is the last bent e_{ϕ}. Its con-
 struction is shown in Figure $4-40$. e_{30} is the last e_{ϕ}. The next two waves are c ${ }_{\phi}$, and are the last waves along the lower wall. Through each of these, 0_{35} and 0_{30}, the flow is derlected through 5 degrees, so that the flow past ${ }_{30}$ corresponds to $\phi=25^{\circ} \cdot c_{35}$ and c_{30} are of the
same family. If $\theta_{S, 1-2}$ and $\theta_{S, 2-3}$ are sufficiently small, a single wave $\begin{gathered}\text { may } \\ \text { be assumed to result past the point of intersection. } 6 \text { is }\end{gathered}$ such that

$$
\begin{aligned}
\theta_{s, I-3} & =\theta_{s_{8} I-2}+\theta_{s, 2-3}, \\
\text { and } \quad \theta_{W, c} & =\theta_{W, c_{30}}
\end{aligned}
$$

The patterm appears in Figure 4-47. The behavior of c is not in agreew
 ment with the modified method of characteristies; that is, ϕ preceding č does not correspond to θ_{w} of c . However, the flow is fixed corpletely by the equations given. For the sake of agreem ment, it is assumed that $\phi_{\%}$ $=30^{\circ}$, and that the flow in a small region immediately prem ceding γ corresponds to $\phi \gamma$ 。 $\theta_{S_{z}} c=5^{\circ}$ under this assumption. e_{30} and č are of indeterminate length。

Next to be examined is the remainder of the pattem along the upper wall. e_{50} is the last upper-wall characteristic. Instead of the stand-
 ard turning of 5 degrees through each of the $e_{\phi}, \theta_{s, e_{50}}=1^{\circ} 46^{\prime}$, since
$\phi=51^{\circ} 46^{\circ}$ past e_{50}. This configuration is show in Figure 4442.

The new center pattern may be ex amined now. The method and teminology are nearly identical to those used
for the analysis of the first channel. The pattern of Figure $4-43$ is

Table 4-6 shows the results of applying these relations to the pattern of Figure 4-43, with the exception of $\delta_{e_{25 U}}=\delta_{\theta_{25 U c}}$ and $\delta_{e_{25 L}}=\delta_{e_{25 L c}}$. These quantities are found by locating all possible $\bar{\delta}$'s with the aid of

Table 4-6

Center Pattern Flow Directions					
Q	$\bar{\delta}$		x	$\bar{\delta}$	
A B C D E		$\frac{1}{1}$	F G H I	$\begin{array}{ll}4^{\circ} 0 & 078 \\ 3^{\circ} & 078 \\ 30 & 078 \\ 6^{\circ} & 2181\end{array}$	\uparrow \uparrow \uparrow \dagger

the known δ is, from which the unknown δ^{\prime} 's may be derived. When these are known, the remaining unknom $\bar{\delta}{ }^{\text {ts }}$ s may be computed. Imediately down stream of the center pattern, the flow direction is equal to $\bar{\delta}_{E} \equiv \bar{\delta}_{I}$ $=6^{\circ} 21^{\prime} \downarrow$. For reasons given previously, neither the e e_{ϕ}, nor the e_{ϕ} o nor their combinations make the proper $\theta_{w}{ }^{\prime}$ s with their respective flow directions. All other flow quantities are assumed correctly.

To reduce the work required to analyze the interference pattern of the waves issuing from the center region with the downstream membexs of both families of characteristics, a simplification is introduced. The single wave l_{2} is substituted for the two waves owe l_{l} and $e_{25 L e}$. SimilarIy, ξ is the substitution wave for the two waves owe ${ }_{\mu}$ and $e_{25 \mathrm{Je}}$. The Modified Center Paittern modified center pattern appears in Figure 4-44. A necessary condition for establishing the two substitute waves is that $\theta_{w}>\delta$. Both ζ_{2} and ξ fulfill this requirement. Then, the sufficient condition for the establishment of the waves is that $\phi_{E} \geq 0$, and $\phi_{I} \geq 0$. This condition must be checked for each wave.

$$
\phi_{E}=\phi_{A}-\delta_{h}=30^{\circ}-4^{\circ} 07^{8}=25^{\circ} 53^{\circ}
$$

Hence, the wave l_{l} is established.

$$
\phi_{I}=\phi_{F}-\delta_{\xi}=30^{\circ}-10^{\circ} 28^{\circ}=19^{\circ} 32^{\circ}
$$

Hence, the wave ξ is established.

The flow past the center region must be such that the flow directions and static pressures are matched. Let

$$
\Delta \phi_{E-I}=\phi_{E}-\phi_{I}=25^{\circ} 53^{\circ}-19^{\circ} 32^{\circ}=6^{\circ} 21^{8}
$$

The existence of a pair of waves, ${ }^{4}$ and ${ }^{\prime}$, is assumed, as shown in Figure 4-45. Each is assigned a turning power equal to $\frac{1}{2} \Delta \phi_{E-I}$; that is ${ }^{2}$

$$
\begin{aligned}
& \delta_{y}=3^{0} 10.5^{\prime} \uparrow \\
& \delta_{y}=3^{0} 10.5^{\prime} \uparrow
\end{aligned}
$$

δ_{h} and δ_{ξ} do not change value. Then,

$$
\begin{aligned}
& \Phi_{\bar{E}}=\Phi_{A}-\delta_{\mathrm{C}}-\delta_{\xi} \\
& \Phi_{\bar{E}}=30^{\circ}-3^{\circ} 10.5^{\circ}-4^{\circ} 07^{\circ} \\
& \Phi_{\bar{E}}=22^{\circ} 42.5^{\circ} ; \\
& \Phi_{\bar{I}}=\Phi_{F}+\delta_{\bar{E}}-\delta_{\xi} \\
& \Phi_{\bar{I}}=30^{\circ}+3^{\circ} 10.5^{\circ}-10^{\circ} 28.5^{\circ} \\
& \Phi_{\bar{I}}=22^{\circ} 42.5^{\circ}
\end{aligned}
$$

$$
\text { since } \phi_{\bar{E}}=\phi_{\bar{I}}, \text { static pressures }
$$ past the center pattern are matched. as required. The new $\bar{\delta}{ }^{\text {i }}$ s are found with the use of the computed values of δ, and are given in Table $4-7$ 。

Table $4-7$

Center Pattern Flow Directions (Pressures matched)		
2	δ	
A	$10^{\circ} 281$	'
A	$7{ }^{\circ} 17.5^{\prime}$	\dagger
F	$4^{\circ} 07{ }^{\circ}$	1
F	7017.51	1
\underline{E}	3010.5^{\prime}	
I	$3^{\circ} 10.5^{1}$	\dagger

shom in Figure 4-46. The flow directions of Table 4-7 remain unchanged. For the purpose of

For further simplification, a wave χ is substituted for the two waves C and h_{2}. The final center pattern is
Final Center Pattern visualization, subregion \bar{A} becomes infinftesimally small.

The intersection pattern of the e_{ϕ} originating from the upper wall and the wave χ is located next. For each of these e $\phi, \delta=5^{\circ}$, from which the flow directions are obtained, as show in Figure 4-47. Let $\bar{\theta}_{W_{g}}()$ be the angle between the wave segment indicated by the second
subscript and the free-stream flow direction. Values of $\bar{\theta}_{w,}$ () are obtained by adding or subtracting the value of $\bar{\delta}$ preceding each wave

segment, as necessary. The results appear in Table $4-8$.

Table 4-

Values of $\bar{\theta}_{w, ~(~) ~ f o r ~ W a v e ~ S e g m e n t s ~ o f ~ F i g u r e ~}^{4-47}$					
Wave Segment	ϕ	$\begin{gathered} \theta_{w_{2}()} \\ \text { Chart 2-1125 } \end{gathered}$	$\bar{\delta}$	$\bar{\theta}_{\mathrm{W}_{8}}()$	$\tan \bar{\theta}_{W_{g}}()$
$A B$	30°	$2^{27}{ }^{\circ} 48^{1}$	$10^{\circ} 28{ }^{2}$	$17^{\circ} 20^{\prime \prime}$	0.312
BG	35°	250181	$5^{\circ} 288$	$19050{ }^{\prime}$	0.361
CD	40°	$23012{ }^{8}$	$0^{\circ} 28{ }^{\prime \prime}$	$22^{\circ} 44{ }^{\prime}$	0.419
DE	45°	$21^{\circ} 12{ }^{\prime}$	4032.1	$25^{\circ} 44^{\circ}$	0.482
	30°	$27^{\circ} 48^{\circ}$	$4^{\circ} 07^{\circ} \quad 1$	$23^{\circ} 41^{1}$	0.439
髙	$33^{\circ} 10.51$	$26^{\circ} 18^{\prime}$	7010.511	19000.57	0.344
B \bar{E}	$22^{\circ} 42.5{ }^{\prime}$	$32^{\circ} 20^{\prime}$	3010.51	$35^{\circ} \quad 30.5{ }^{\text {8 }}$	0.714
C \bar{C}	$27^{\circ} 42.5{ }^{\prime}$	$29015{ }^{\prime}$	1049.514	$27025.5{ }^{\circ}$	0.519
D \bar{D}	$32^{\circ} 42.51$	$26^{\circ} 30^{\circ}$	6049.514	$19040.5^{\text {8 }}$	0.358

A similar analysis is made for the pattern of Figure 4-48。 The results appear in Table 4-9. It is necessary to check for agreement bew tween the local values of $\bar{\delta}$ and ϕ. e_{30} camot cross ξ, since the 25 Ibid.
nose wave of the upper wail is a component of ξ, and the disturbance of e_{30} cannot communicate itself unstrean across the nose wave. The prom

Table 4-9

Values of $\bar{\theta}_{w_{s}()}$ for Wave Segments of Figure $4-48$					
Wave Segment	ϕ	$\begin{gathered} \theta_{W_{g}}() \\ \text { Chart 2-1 } \end{gathered}$		$\bar{\theta}_{w_{j}}()$	$\tan \bar{\theta}_{W_{2}}()$
RJ	35°	$25^{\circ} 18{ }^{\circ}$	$0^{\circ} 53^{\circ}$	$26^{\circ} 11{ }^{1}$	0.492
J	25°	$30^{\circ} 42^{\prime}$	$9^{\circ} 07^{\circ}$	$21^{\circ} \quad 35^{8}$	0.396
TK	38010.51	24°	$2^{\circ} 17.5^{1}$	$21^{\circ} 42.5^{\circ}$	0.398
KK	$28010.5{ }^{\text {a }}$	$28^{\circ} 48^{\circ}$	$12^{\circ} 17.514$	$16^{\circ} 30.5{ }^{\circ}$	0.296
RT	$33^{\circ} 10.5^{\text { }}$	$26^{\circ} 18{ }^{\circ}$	70.17 .59	$33^{\circ} 35.58$	0.664
TU	$27^{\circ} 42.5{ }^{\circ}$	$29^{\circ} 15^{\text { }}$	$1^{\circ} 49.514$	$31^{\circ} 04.5{ }^{\circ}$	0.603
UV	$32042.5{ }^{\circ}$	$26^{\circ} 30^{\prime \prime}$	$6^{\circ} 49.51 \uparrow$	33019.51	0.658
VW	37042.51	$24012{ }^{1}$	$11^{\circ} 49.514$	$36^{\circ} 01.5{ }^{\circ}$	0.727
JK	$38^{\circ} 10.5{ }^{\circ}$	24°	$2^{0} 17.581$	$26^{\circ} 17.5^{\circ}$	0.494
KL	$32^{\circ} 42.5{ }^{\prime}$	$26^{\circ} 30^{\circ}$	3010.51	$23^{\circ} 19.5$	0.431
IP	$37^{\circ} 42.5{ }^{\circ}$	$24^{\circ} 12^{\circ}$	$1049.51 \uparrow$	$26^{\circ} 01.5^{\circ}$	0.488
$P Q$	$42^{\circ} 42.5{ }^{\prime}$	220108	6049.511	$28059.5{ }^{\text {\% }}$	0.554
UI	$32^{\circ} 42.5{ }^{\circ}$	$26^{\circ} 30^{8}$	$3^{\circ} 10.5^{1} \downarrow$	$29^{\circ} 40.5^{\circ}$	0.570
LN	$22^{\circ} 42.5{ }^{\circ}$	$32^{\circ} \mathrm{O} 0^{\circ}$	6049.514	$25^{\circ} 30.5{ }^{\circ}$	0.477
VP	$37^{\circ} 42.5{ }^{\circ}$	$24^{\circ} 12^{\prime}$	$1^{\circ} 49.51$	$22^{\circ} 22.50$	0.412
PO	$27^{\circ} 42.5{ }^{\circ}$	$29^{\circ} 15^{\prime}$	$11^{\circ} 49.514$	$17^{\circ} 25.5{ }^{\circ}$	0.314

26 Ibid.
cess of checking the matching of the $\bar{\delta}$ is is identical to that using the $\overline{8}$ identities in the analyses of the center patterns. For the dumny pat-

Figure 4-49
Typical Subregion of Figure $4-48$ tern of Figure $4-49$, the following relations must hold:

1) $\bar{\delta}_{\alpha} \equiv \bar{\delta}_{m}$,
2) $\phi_{1} \equiv \phi_{m}$, where $\Phi_{2}=\Phi_{0} \pm \delta_{\alpha}$
and

$$
\phi_{m}=\phi_{g} \pm \delta_{\beta}
$$

where the sign is + when the wave is an e_{ϕ}, and - when the wave is a c_{ϕ}. It is not necessary to reproduce the substitution computations for the subregions which are in agreement with these relations.

The three subregions downstream of the segment of ξ beginning at $S_{\text {, }}$ however, do not at first satisfy the relations. $\delta=10^{\circ} 20^{\circ}$, holda for the segment AS of ξ. The continuation of ξ past S is assigned the turming $\delta=5^{\circ} 28^{\prime} \psi$. The slopes of the segments $\mathrm{ST}_{,} \mathrm{TK}$, and $K K$ of the continuation are unchanged, since they are fixed by their respective upm stream flows. The continuation $S T K \bar{K}$ is a substitute wave for two wavess
ξ and an expansion wave originating at S which has the effect of making $\delta_{\xi}>\delta_{S T K \bar{K}}=5^{\circ} 28^{\circ}$, . The assumption of the substitute wave produces the desired holding of the relations for the three subregions downstream of the segment of ξ beginning at S. In the computation of the quantities of Table 4-9, the matching of $\bar{\delta}$'s and ϕ^{\prime} 's in each subregion was assumed. The assumption of the substitute wave $S T K \bar{K}$ serves as a physical explanation which justifies the first assumption for the three subregions examined last. Hence, all waves necessary for the computation of the
flow at channel exit are located.

4 Channel-Exit Region

The exit pattern appears in Figure 4-50. The dashed line represents the exit control surface, which passes through the trailing edges of the profiles. The upstream control surface is parallel to the exit surface,
and is drawn between stagnation strean-
ty, $\gamma_{s 0}$, equals 0.07651 Ibs/cf. Since the freemstream Nach number iss rather high, channel entrance conditions corresponding to an aititude of

Table 4-10

Flow Direction, Expansion Angle, and Mach Number at Channel Exit				
Station	$\bar{\delta}$		ϕ	M Chart $2=11^{27}$
1	$9^{\circ} 071$	\uparrow	25°	1.950
2	$12^{\circ} 17.5^{\circ}$	\uparrow	$28^{\circ} 10.5{ }^{\circ}$	2.067
3	6049.50	\uparrow	$22^{\circ} 42.5{ }^{\circ}$	1.870
4	$11^{\circ} 49.58$	\uparrow	$27^{\circ} 42.5{ }^{\circ}$	2.055
5	16049.5°	\uparrow	$32^{\circ} 42.58$	2.246
6	$6^{\circ} 49.5^{\circ}$,	$42^{\circ} 42.5{ }^{\prime}$	2.660
7	$11^{\circ} 49.58$	1	$37042.5{ }^{\circ}$	2.445
8	$4^{\circ} 32^{\prime}$	1	45°	2.765
9	$9^{\circ} 32{ }^{\prime}$	1	50°	3.014
10	$11^{\circ} 18{ }^{\circ}$,	$51^{\circ} 46^{\circ}$	3.109

$20,000 \mathrm{ft}$, Standard Atmosphere are selected. The subscript 0 refers to Standard Sea Level conditions, and the subscript s to stagnation conditions. Let a_{s} equal the local acoustic velocity, $f p s$, and T_{s} equal the absolute temperature, degrees R. at channel entrance,

$$
\begin{aligned}
\frac{\rho_{s}}{\rho_{S O}} & =0.5327 \\
\frac{P_{S}}{P_{s O}} & =0.4593 \\
T_{s} & =447.70 \mathrm{R} \\
\mathrm{a}_{\mathrm{S}} & =1040 \mathrm{fps}^{28} \\
\rho_{\mathrm{s}}=\rho_{\mathrm{SO}} \frac{\rho_{\mathrm{S}}}{\rho_{\mathrm{s} O}} & =0.002378(0.5327)=0.001268 \mathrm{slugs} / \mathrm{ci}
\end{aligned}
$$

28 M . J. Zucrow, Principles of Jet Propulsion and Ges Turbines, p. 34 。

$$
P_{s}=P_{s 0} \frac{P_{S}}{P_{s 0}}=14.7(0.4593)=6.75 \text { psia }
$$

Tables $4-11$ and $4-12$ contain the flow conditions at channel entrance and at the ten stations of the channel exit. The colums of figures are num bered continuously throughout the two tables. Let
$\rho=$ local mass density, slugs/cf;
$a \quad=$ local acoustic velocity, fps;
$\mathrm{V}=\mathrm{Ma}=$ local flow velocity, fps;
$A=$ local station area, sq. in. $=($ station width, ino $)\left(1 n_{0}\right)_{\text {, }}$ since blade height $=1$ ino;
$\alpha=$ angle between local flow direction and outward normal to control surface, degrees;
$V_{n}=V \cos \alpha=$ velocity component normal to control surface, fps:
$V_{x}=V_{n}=$ velocity component along xaxis, $f p s$, since x-axis is parm allel to normal to control surface;
$V_{y}=V \sin \alpha=$ velocity component along y-axis, fps, since y-axis is parallel to control surface;
$A_{x}=0$ sq. in., by choice of axes, = component of control surface segment A parallel to x-axis, sq. ino:
$A_{y}=A=$ component of control surface segment A parallel to y-axis, sq. in., since control surface is parallel to y-axis.

Then, the values of the entries for a given station are obtained by the scheme which follows on the next two pages.

The data of Tables $4-11$ and $4-12$ permit the computation of the for ces which the flow exerts upon the walls of the channel. The channel configuration has been described already, and is shown in Figure 4 ml .
(A)
(B)
(c)
(D)

Entry in Column	Obtained by Reading	At Value of	(And) Muitio plying	By
1	Chart 1-129	$\begin{aligned} & M_{9} \mathrm{Table} \\ & 4-10^{30} \end{aligned}$	-	-
2	Column 1	--	$\mathrm{P}_{\mathrm{s}}=6.75$	1/(A)
3	Chart 1-29	$\begin{aligned} & \text { M, Table } \\ & 4-10^{30} \end{aligned}$	---	--
4	Column 3	---	$\rho_{\mathrm{s}}=0.001266$	1/(A)
5	Chart 1-4 ${ }^{29}$	$\begin{aligned} & \text { M, Table } \\ & 4-10^{30} \end{aligned}$	--	- -
6	- Column 5	- -	$\mathrm{a}_{\mathrm{s}}=1040$	1/(A)
7	Column 6	---	$\begin{aligned} & \mathrm{M}, \mathrm{Table}^{4-10^{30}} \\ & 4 \end{aligned}$	(A)
8	Station Length on Scale D^{\prime} wng.	---	-	\cdots
9	Angle between $\bar{\delta}$, Table $4-10^{30}$ and outw. normal to contr. surface	-	\cdots	\cdots
10	Trig。 Tables	Column 9	--	\cdots
11	Trig。 Tables	Column 9	--	-->
12	---	--	Columa 7	Coiumn 10
13	---	--	Colurn 12	Itself

29 G. Le Dailey and F.C.Wood, ibid.
30 B. 51.
(A)
(B)
(c)
(D)

Entry in Column	Obtained by Reading	At Value of	(And) Multi- plying	By
14	--	-	Column 7	Column 11
15	-	-	Column 4	Column 8
16	--	--	Column 15	Column 13
17	--	--	Product of Col. 15 and	Column 14
			Col. 12	
18	-	-	Colurnn 2	Column 8

The y-axis coincides with the exit control surface, and the origin with the trailing edge of the lower profile. The results sought are the con-
 ponents of the forces along the axes. Let n_{1} be the outward normal to the entrance control surface, and n_{2} the outward normal to the exit control surface. Then, the acute angle between n_{1} and the free-stream velocity upm stream equals $3^{\circ} 50^{\circ}$. Since all $\overline{8}$:s are referred to the direction of the freewstrean velocity upstrean, the entries of column 9 may be obtained by computation. $\alpha_{\text {entrance }}$ equals $180^{\circ}-3^{\circ} 50$. Since the $\bar{\delta}$'s of the exit stations all have the postscript $\hat{1}$, the value of α for any exit station equals $\bar{\delta}_{i}+3^{\circ} 50^{\prime}$, where $i=$ exit station number. Let \sum indicate a summation

Table 4-11

Channel-Entrance and -Exit Distributions, Part 1 of 2 Parts									
	1	2	3	4	5	6	7	8	9
Station	P_{S} / P	P	ρ_{s} / ρ	$\times 10^{4}$	$\sqrt{\mathrm{T}_{\mathrm{S}} / \mathrm{T}}$	a	V	$A=A_{y}$	α
Entrance	4.94	1.367	3.125	4.060	1.257	828	1408	1.6000	$176^{\circ} 10^{8}$
1	7.27	0.928	4.1	3.095	1.327	784	1530	0.2750	$12^{\circ} 57^{\circ}$
2	8.70	0.776	4.67	2.717	1.362	764	1580	0.0670	$16^{\circ} 07.5$
3	6.40	1.056	3.76	3.375	1.304	797	1490	0.0404	$10^{\circ} 39.5{ }^{\text {d }}$
4	8.55	0.790	4.625	2.742	1.358	766	1573	0.2490	$15^{\circ} 39.5{ }^{\text {a }}$
5	11.50	0.587	5.72	2.217	1.417	734	1649	0.0096	$20^{\circ} 39.5^{8}$
6	21.8	0.3097	9.05	1.402	1.555	668	1778	0.1452	$10^{\circ} 39.5^{8}$
7	15.6	0.433	7.14	1.776	1.482	702	1718	0.0788	$15^{\circ} 39.5^{\text {8 }}$
8	25.7	0.2625	10.16	1.250	1.591	654	1810	0.0260	$8^{\circ} 22^{\circ}$
9	37.5	0.180	13.23	0.958	1.678	620	1869	0.1970	$13^{\circ} 22^{8}$
10	43.2	0.1563	14.70	0.863	1.712	607	1888	0.5120	$15^{\circ} 08^{8}$

Table 4-12

Channel-Entrance and -Exit Distributions, Part 2 of 2 Parts									
	10	11	12	13	14	15	16	17	18
Station	$\cos \alpha$	$\sin \alpha$	$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{x}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{n}}^{2} \\ & \times \quad 10^{-6} \end{aligned}$	V_{y}	$\begin{aligned} & \rho A_{Y} \\ & \times 104 \end{aligned}$	$\begin{aligned} & \rho A V_{n}^{2} \\ = & \rho A V_{n} V_{X} \end{aligned}$	$\rho A V_{n} V_{y}$	$P A_{y}$
Entrance	-0.998	0.067	- -1405	1.975	94.4	6.49	-1283.	-86.1	2.185
1	0.975	0.224	1492	2.224	342.8	0.851	189.3	43.5	0.255
2	0.961	0.278	1518	2.304	439.	0.182	42.0	12.14	0.052
3	0.983	0.185	1465	2.146	275.7	0.1363	29.28	5.51	0.04265
4	0.963	0.270	1516	2.297	425.	0.683	156.8	44.0	0.1942
5	0.936	0.353	1543	2.383	582.	0.02125	5.08	1.912	0.00564
6	0.983	0.185	1748	3.057	329.	0.2036	62.2	11.71	0.0449
7	0.963	0.270	1655	2.740	464.	0.1399	38.32	10.76	0.0341
8	0.989	0.146	1791	3.205	264.2	0.0325	10.43	1.538	0.00683
9	0.973	0.231	1819	3.305	431.5	0.1888	62.4	14.82	0.03545
10	0.965	0.261	1822	3.320	493.	0.442	146.7	39.67	0.0801

of terms, and let

$$
\begin{aligned}
& M M_{x, \text { entrance }}=x \text {-component of momentum at entrance, } \operatorname{Ibs}(114) ; \\
& M M_{x, \text { exit }}
\end{aligned}=x \text {-component of momentum at exit, } \operatorname{Ibs}(114) ;
$$

The analogous terms along the y-axis are obtained by substituting y for x in the subscripts and definitions.

$$
\begin{aligned}
M_{x, \text { entrance }} & =\left[\rho A_{y} V_{n} V_{x}\right]_{\text {entrance }} \\
M_{x, \text { exit }} & =\sum_{i=1}^{10}\left[\rho A_{y} V_{n} V_{x}\right]_{i}, i=\text { exit station number, } \\
\Delta M_{x} & =M_{x, \text { entrance }}-M M_{x, \text { exit }}
\end{aligned}
$$

Let $F_{\Delta m M_{x}}$ force due to $\Delta \Delta M_{x}$, lbs. Then,

$$
\begin{aligned}
\Delta M_{x} & =1283-742.5=540.5 \mathrm{lbs}(114) \\
F_{\Delta M_{x}} & =\frac{1}{144}(540.5)=3.75 \mathrm{lbs}
\end{aligned}
$$

Let $P_{x, e n t r a n c e}=x$-component of force due to static pressure at entrance, lbs;

$$
\begin{aligned}
& P_{x, \text { exit }}=x \text {-component of force due to static pressure at } \\
& \text { exit, lbs; } \\
& F_{X X} \quad=x \text {-component of net force due to static pressure, } \\
& \text { Ibis; } \\
& \mathrm{F}_{\mathrm{x}} \quad=\mathrm{x} \text {-component of total force, lbs. } \\
& P_{X, \text { entrance }}=[P A]_{\text {entrance }}=2.185 \mathrm{Ibs} \text {, } \\
& P_{x_{9} \text { exit }}=\sum_{i=1}^{10}\left[\mathrm{PA}_{\mathrm{y}}\right]_{i}=0.751 \mathrm{Ibs}_{\mathrm{i}} \mathrm{i}=\text { exit station number }{ }_{9} \\
& F_{P_{x}} \quad=P_{x_{9} \text { entrance }}-P_{x_{9} \text { exit }}=2.185-0.751 \quad, \\
& F_{P_{X}} \quad=1.434 \mathrm{Ibs},
\end{aligned}
$$

$$
\begin{aligned}
& F_{x} \quad=F_{\Delta M_{x}}-F_{p_{x}}=3.75-1.434=2.316 \mathrm{lbs} \quad . \\
& \text { My, entrance }=\left[\mathrm{PAV}_{\mathrm{n}} \mathrm{~V}_{\mathrm{J}}\right]_{\text {entrance }}=86.1 \mathrm{Ibs}(124) \text {, } \\
& M_{y, \text { exit }} \quad=\sum_{i=1}^{10}\left[\rho A V_{n} V_{y}\right]_{i}=185.6 \operatorname{Ibs}(14 / 4) \quad \text {, } \\
& \triangle M_{\mathrm{y}} \quad=M_{y, \text { exit }}-M_{y, \text { entrance }}=185.6-86.1 \text {, } \\
& \Delta r h_{y} \quad=99.5 \operatorname{Ibs}\left(1 L_{4}\right) \quad:, \\
& \mathrm{F}_{\Delta M_{y}} \quad=\frac{1}{144} \Delta M_{y}=\frac{1}{144} 99.5=0.691 \mathrm{Ibs} ; \\
& \mathrm{F}_{\mathrm{y}} \quad=\mathrm{F}_{\Delta M_{y}}=0.691 \mathrm{lbs},
\end{aligned}
$$

since the choice of axes forces the x-components of the entrance and exit control surface areas to be zero, which forces the y-components of forces due to static pressures to be zero. F_{X} is the axial thrust per channel, and F_{y} the torque-force per channel of the cascade. Figure 4-52 shows the directions of all forces with respect to the axes.

$$
\begin{aligned}
& \text { Components are not dmawn to } \\
& \text { scale. All show the direction of } \\
& \text { the force of the flow on the } \\
& \text { channel walls. }
\end{aligned}
$$

C Cascade of Sharomosed Profiles

1 Profile and Channel Layout
Most of the profile has been designed already in part B of this chapter. For the sake of convenience, the parts already selected are show in Figure 4-53. The portion left incomplete is the semi-ogive on

the lower nose arc of the profile. A semiwedge angle of 14 degrees is selected for the initial section of the semi-ogive. A smooth connection curve is dram, replacing the corner made by the interm section of the semiwedge line and the original nose outline. The layout is cormplete now, and the new nose, or leading edge appears as show in Figure $4-540$

2 Nose Region

The nose portion of the lower channel wall is a semi-wedge. The initial flow preceding the leading edge is identical to that of the first two profiles analyzed. Hence, at the lower wall, $\bar{\delta}=\delta=9^{\circ}$ 07\% A weak oblique shock wave is caused by the semi-wedge。 The shock is a straight
wave, originating at the wedge point, and intersecting the attached nose wave originating at the entrance point of the upper channel wall.

Most of the symbols used in the remainder of this chapter already have been defined. Additional quantities shall be introduced and defined as needed. Let

$$
\begin{aligned}
& \text { OWL = oblique wave originating at lower channel wall entrance. } \\
& \text { OWU = oblique wave originating at upper channel wall entrance. }
\end{aligned}
$$

For the wave $0 W L, \theta_{W}=46^{\circ}$, Chart 2-131。
Past the wave, $M=1.376$, Chart $2-7^{31}$;

$$
\phi=8^{\circ} 15^{\circ}, \text { Chart } 2-11^{31}
$$

For the wave $0 W \mathrm{U}, \theta_{\mathrm{W}}=53^{\circ} 50^{\circ}$, Chart $2-1^{31}$.
Immediately past the wave, $M=1.175$, Chart $2-7^{31}$;

$$
\phi=3^{\circ}, \text { Chart } 2-11^{31}
$$

Figure $4-55$ shows the initial segments of both OWL and OWU. Following

the straight portion of the initial segment of the upper channel wall is a circular-arc convex transition section, which is in turn followed by

31 C. In Dailey and FoC. Wood ibid.
a long portion of straight wall. This appears in Figure $4-56$.

The turning along the convex portion of the upper wall is from $14{ }_{4}^{\circ}$, to $11^{\circ} 18^{1} \uparrow$, with respect to the freestream flow direction. Hence, the turning equals 25° 18'. At $P, \phi=3^{\circ}$. Therefore, ϕ corresponding to the turning past the curved portion equals $3^{\circ}+25^{\circ} 18^{8}=28^{\circ} 18^{\circ}$. Since the wall remains straight, this is also $\oint_{\text {exit }}$ at the wall, unless a wave from the opposite wall is reflected at the upper wall.

Five expansion characteristics are used, with the first one originating at P. The first four of these e_{ϕ} are assigned respective $\Delta \phi=\delta$ $=5^{\circ}$. The last ${ }_{\phi}$ is assigned $\Delta \phi=\delta=5^{\circ}$ 18?。Table $4-13$ presents the layout quantities for the upperwall characteristics.

Table 4-13

θ_{ϕ} Along Upper Wall of Sharp-Nosed Profile Channel							
Char。	ϕ	Chart 2-1132		$\bar{\delta}$	$t \tan \bar{\delta}$	$\bar{\theta}_{w}$	$\tan \bar{\theta}_{W}$
${ }_{3}$	30	5°	58024°	1401	0.249	$72^{\circ} 24^{8}$	3.152
${ }^{6}$	80	5°	$47^{\circ} 12^{1}$	90\%	0.158	$56^{\circ} 122^{\prime}$	1.494
${ }^{e} 13$	13°	5°	$40^{\circ} 40^{\circ}$	4°	0.070	$44^{\circ} 40^{\circ}$	0.988
e_{18}	180	5°	$35^{\circ} 50$	101	0.017	$34^{\circ} 50{ }^{\circ}$	0.696
${ }_{23}$	23°	$5^{\circ} 18{ }^{\circ}$	$32^{\circ} 10^{8}$	601	0.105	$26^{\circ} 10^{\prime \prime}$	0.491

The shape of the remainder of OWU remains to be determined. Let $R_{w}=$ radius of curvature of the ogive portion of the wall. ine;
$K_{W}=\frac{1}{R_{W}}=$ eurvature of ogive portion of wall. $\frac{I}{I_{0}}$;

32 Ibid.

$$
\begin{aligned}
& R_{s}=\text { radius of curvature of attached nose shock, ino; } \\
& K_{s}=\frac{1}{R_{S}}=\text { curvature of atteched nose shock } \frac{1}{i n_{0}}
\end{aligned}
$$

The distances are measured on the layout pattern (see appendix), which has a scale ratio of 10 to 1 .

At a free-stream M of 1.7 , and with a semiwedge angle of 14 degrees,

$$
\frac{K_{\mathrm{S}}}{\mathrm{~K}_{\mathrm{W}}}=1.00, \text { by interpolation. } 33
$$

Hence,

$$
R_{S}=R_{w}=3.296 \mathrm{in} .
$$

The curved portion of the nose shock begins at the point of intersection of e_{3} and the initial segment of OWU, and ends when the local $\theta_{w}=36^{\circ}$. From this point, OWU continues as a straight line, with $\theta_{W}=36^{\circ}$, until it intersects OWL. The straight outer portion of OWU is a Mach wave of zero turning power. The construction of the curved portion of OWU ap-
 pears in Figure 4-57. It is ream sonable to assume that the central angle of the circle are which matches the ogive wall are is apm proximately equal to the central angle of the circle are forming the curved portion of CWJ. By measurement,
(central angle, wall are)
$=16^{\circ} 42^{\circ}$ and

33 M.M.Munk and R。CoPrim, "Surface-Pressure Gradient and ShockFront Curvature at the Edge of a Plane Ogive with Attached Shock Front, ${ }^{\text {: }}$ Journal of the Aeronautical Sciences, XV (November, 1948), Fig. 4. 693.
(central angles are of curved portion of OWU) $=17^{\circ} .50^{\%}$ which satisfies the assumption. If the angles are too greatiy different, the cause-andmeffect relation between the ogive wall and the curved porm tion of the shock fails.

The first three of the five e_{ϕ} are straight, and cease at their respective points of intersection with OWU. This behavior is confirmed by actual pictures of patterns of flow about lenticular airfoilso 34

3 Downstream Region.

The center pattern must be examined next. Again. the method and the terminology are nearly identical to those used for the analyses of the two previous chamels. The pattern, as shown in Figure $4-58$, is simpler

than before. Past $A B_{2}$ the flow corresponds to $\mathrm{M}=1.7$, and ϕ $=17^{\circ} 45^{\circ}$: Chart 2 - 1135 , Past eg 3^{\prime}, $\phi=18^{\circ}$, according to Table 4-1336. The two flows should match, and it is assumed that the flow past $A B$ is identical to that behind e13. The error due to this assumption is practically zero. The flow directions, or
$\bar{\delta}$ is, are inscribed in each subregion. The computation of the quentities

34 Antonio Ferri, Elenents of Aerodynamics of Supersonic Flows Fig. 104 , po 152 and Fig. 105, p. 153.

35 C. L. Dailey and FoC. Wood, ibid.
36 P. 61。
required for the layout of the continuation of OWL is given in Table

Table $4-14$

Continuation of OWL, Center Pattern, Sharp-Nosed Profile Chennel						
Segment	ϕ	Chart 2-1137	θ_{W} Chart 2-1 37	$\bar{\delta}$	$\bar{\theta}_{W}$	$\tan \bar{\theta}_{W}$
BC	18°	1.705	$45^{\circ} 45^{\circ}$	$10 \quad \uparrow$	4604.58	1.063
$C D$	23°	1. 88	47°	60 个	47°	1.072
DE	$28^{\circ} 18{ }^{\circ}$	2.072	37°	110189	$48^{\circ} 18{ }^{\circ}$	1.122

$4-14 . \quad \bar{B} \bar{B}$ is the continuation of the Mach wave portion of $O W J, \bar{C}$ and $D \bar{D}$ are continutions of e_{18} and e_{23}, respectively. The quantities rem quired for the layout of these segments are computed and presented in Table 4-15.

Table $4-15$

Continuations of $0 W W U_{3} e_{18}$, and e_{23}; Center Pattern, Sharp-Nosed Prom file Channel						
Segment	$1-\text { Chart } 2-11^{37} \longrightarrow 1$			$\bar{\delta}$	$\bar{\theta}_{W}$	$\tan \bar{\theta}_{W}$
BE	1.376	8045°	$46^{\circ} 45^{\prime}$	$9^{\circ} 0714$	370380	0.771
CC	1.376	$8{ }^{\circ} 15^{3}$	$46^{\circ} 45^{\circ}$	100078	$36^{\circ} 38^{\circ}$	0.744
D. D	not rea.	$13^{\circ} 15^{\circ}$	$40^{\circ} 20^{\circ}$	$15^{\circ} 078$.	$25^{\circ} \quad 13^{8}$	0.471

The remainder of the channel pattern may be analyzed now. The conm tinuation of the weak oblique shock OWL is reflected from the upper channel wall, as show in Figure 4-59. The flow directions are noted in each subregion. EF is the reflected wave. The location of the wave segment $D E$, the flow direction, $\bar{\delta}$, preceding $D E$, and $\bar{\delta}$ past $D E$ have been detern

[^0]mined in the analysis. of the center pattem. $\bar{\delta}$ past EF is prescribed by the wall direction; that is, the flow past $E F$ must be parallel to the wall.

\[

$$
\begin{aligned}
\bar{\theta}_{W, E F} & =24^{\circ} 50^{\prime} \\
\tan \bar{\theta}_{W, E F} & =0.463
\end{aligned}
$$
\]

Past $E F, M=M_{I I, E F}$.

$$
\begin{aligned}
& M_{I I, E F}=1.405, \text { Chart } 2-7^{38} \\
& \phi_{I I, E F}=9^{\circ} 10 \%, \text { Chart } 2-11^{38}
\end{aligned}
$$

The continuation of OWT, labeled BB , is reflected from the lower wall. At the center pattern, the flow behind BB , has $\bar{\delta}=10^{\circ} 071 \uparrow$, but at the lower wall, $\bar{\delta}$ must equal $9^{\circ} 00^{\prime} \uparrow$. An adjustment is necessary,

Reflection of OWU
and it is assumed that the transition between the two directions is smooth. takes place close to the center, and leaves most of the flow past $\overline{B B}$ at $\bar{\delta}$ $=9^{\circ} 07^{1} \uparrow$. The reflection pattern appears in Figure 4 60. The flow
through $\overline{B B}$ and the reflected wave $\overrightarrow{B G}$ does not change direction of concim

38 Ibjda

$$
\begin{aligned}
& \phi_{E F}=\phi_{D D}+\delta_{\theta_{23}} \quad, \\
& \phi_{E F}=13^{\circ} 15^{\circ}+5^{\circ} 18^{\circ}=18^{\circ} 33^{\circ} \text {; } \\
& M_{E F}=1.723 \text {, Ghart } 2.11^{38} \text {; } \\
& \delta_{E F}=90078 ; \\
& \theta_{W_{2} E F}=45^{\circ} 15^{8}, \text { Chart } 2-138 \% \\
& \bar{\theta}_{W_{9} E F}=\theta_{W_{2} E F}{ }^{=} \bar{\delta}_{E F} \quad \text {, } \\
& \bar{\theta}_{W_{2} \mathrm{EF}}=45^{\circ} 15^{8}-20^{\circ} 25^{\circ} \text {, }
\end{aligned}
$$

tion.

$$
\begin{gathered}
M_{\bar{B} G}=M_{B \bar{B}}=1.37 \sigma_{,} \text {Table } 4-15^{39}, \\
\phi_{\bar{B} G}=8^{\circ} 15^{\circ}, \text { Chart } 2-11^{40} ; \\
\theta_{\bar{W}, \bar{B} G}=46^{\circ} 45^{2}, \text { Chart } 2 \cdot 11^{40}, \\
\bar{\theta}_{W,} \bar{B}=\theta_{W, \bar{B} G}+\bar{\delta}_{\bar{B} G}=46^{\circ} 45^{\circ}+9^{\circ} 07^{\circ}=55^{\circ} 52^{\circ} \quad, \\
\bar{\theta}_{W, \bar{B} G}=0.678 \quad .
\end{gathered}
$$

cot
As stated previously, \varnothing, M, and other flow quantities past $\bar{B} G$ are the same as ahead of $\bar{B} G$.

4 Channel-Exit Region

The analysis of this section closely parallels that of Section 40 Part B of this chapter. Figure $4-61$ displays the exit pattern. The exit
 control surface, indicated by the dashed line, passes between the trailing edges of the two adjacent profiles. The inlet control surface is parallel to the exit surface, and passes between the leading edges of the two adjacent profiles. The lateral control surfaces of the chanel are formed by the interior stagnation streamlines between the inlet and the exit control surfaces.

All flow quantities at channel eno trance are known. In order to find the

39 P. 64.
40 C. L. Dailey and Fo. Cood, ibid.
forces which the flow exerts upon the chanel walls, it is necessery to compute the distribution of static pressures and momenta at channel exito For convenience, pertinent quantities which have been computed already are assembled in Table $4-16$. The flow conditions at channel inlet and

Table 4-16

Station	$\bar{\delta}$		ϕ	Chart 2-1141
1	$9^{\circ} 07$	\uparrow	$88^{\circ} 15^{\circ}$	1. 376
2	$9^{\circ} 078$	\uparrow	$8^{\circ} 15^{\text { }}$	1.376
3	$15^{\circ} 07{ }^{\circ}$	\uparrow	$13^{\circ} 15^{\prime}$	I. 545
4	$20^{\circ} 25^{\circ}$	\uparrow	$18^{\circ} 33^{\circ}$	1.723
5	$11^{\circ} 18{ }^{\circ}$	\uparrow	$9^{\circ} 10^{\text {r }}$	1.405

at the five stations of the channel exit are contained in Tables $4-17$ and 4-18. The values of the entries for a given station are obtained by the scheme produced in Section 4 , Part B of this chapter.

Sufficient data are available now for the computation of the forces which the flow exerts upon the walls of the channel. The channel configuration, along with the outward normals n_{1} and n_{2}, are show in Figure 4-62. As before, the acute angle between n_{1} and the direction of the freem stream velocity at inlet equals

41 Ibid.

Table 4-17

Channel-Entrance and-Exit Distributions, Part 1 of 2 Parts									9
	1	2	3	4	5	6	7	8	
Station	$\mathrm{P}_{5} / \mathrm{P}$	P .	ρ_{s} / P	$\begin{gathered} \rho \\ \times \quad 10^{4} \end{gathered}$	$\sqrt{T_{s} / T}$	a	V	$A=A_{y}$	α
Entrance	4.94	1.367	3.125	4.060	1.257	828	1408	1.6000	$176{ }^{\circ} 10^{\prime}$
1	3.08	2.192	2.23	5.69	1.174	886	1218	0.0364	$12^{\circ} 57^{1}$
2	3.08	2.192	2.23	5.69	1.174	886	1218	0.1776	$12^{\circ} 57{ }^{1}$
3	3.92	1.722	2.66	4.765	1.216	856	1322	0.3932	180571
4	5.12	1.318	3.22	3.94	1.263	823	1418	0.9136	$24^{\circ} 15^{\prime}$
5	3.21	2.103	2.30	5.515	1.181	881	1238	0.0792	$15^{\circ} 081$

Table $4-18$

Channel-Entrance and - Exit Distributions, Part 2 of 2 Parts									
	10	11	12	13	14	15	16	17	18
Station	$\cos \alpha$	$\sin \alpha$	$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{x}}$	$\begin{gathered} \mathrm{V}_{\mathrm{n}}^{2} \\ \times \quad 10^{-06} \end{gathered}$	V_{Y}	$\begin{aligned} & \rho A \\ & \times \quad y \\ & \times \quad 104 \end{aligned}$	$\begin{aligned} & \rho A V_{n}^{2} \\ = & \rho A_{Y} V_{n} V_{X} \end{aligned}$	$\rho A V_{n} V_{y}$	$P A_{y}$
Entrance	-0.998	0.067	-1405	1.975	94.4	6.49	-1283.	-86.1	2.185
1	0.975	0.224	1188	1.413	273.	0.2072	29.25	6.715	0.0798
2	0.975	0.224	1188	1.473	273.	1.012	142.9	32.8	0.389
3	0.946	0.325	1250	1.563	429.5	1.873	293.4	100.7	0.677
4	0.912	0.411	1294	1.677	583.	3.60	603.5	272.	1.204
5	0.965	0.261	1195	1.4.28	323.	0.437	62.4	16.88	0.1668

CHAPTER V

FALLACIES AND ERRONEOUS APPROACHES

A Introduction

This chapter may be omitted entirely without disturbing the continuity of the study. It is presented only in order to save other workers the trouble of pursuing certain fruitless paths. The following items are presented in outline form. In each instance, the fallacious assumption is given, and, where necessary, the successful alternative assumption is pointed out.

B Joukowski Profile

After selecting a suitable direction of approach of the incompressible free stream, a Joukowski profile ${ }^{l}$ having the same thickness and camber as the original cascade element is constructed, partly by trial and-error, and the stagnation streamline plotted in the neighborhood ahead of the leading edge. The transformation of the curve to both the supersonic and subsonic regions is quite difficult, and totally unnecesm sary for the location of the entrance flow direction, as may be seen from the analysis in Chapter IV, Part A, Section 2.

C Analytic Relation Between Nose and Shock Shapes

A search is made for an analytic relation between the shape of the detached wave and the nose region of the original profile on the assump tion of the existence of such a relation. The fact that the flow is mixed makes this very difficult. The direction of solution is not rem

[^1]versible, which makes the direction of procedure unique. The first assumption must be that of the shape of the shock wave. A relation may be written then defining the nose shape in terms of the shock shape with a power series. For each assumption of a shock shape, there exists a mique nose shape. The process of assuming shock shapes until a nose shape approximately equivalent to that of the original profile is found is a long one. In addition, the solution of the power series relation is not straightforward. Hence, this method is not attempted because the amount of work involved is not justified.

Instead, an alternate assumption must be made. It is supposed that the shock shape can be located through the method of isoclines, or that the shock shape is an integral curve of the nose shape ${ }^{2}$ This is a graphical construction. From a shadowgraph, ${ }^{3}$ a center of isoclines is located. It is assumed that this point does not shift for a change in Mach number from 1.8 to l. $_{6}$. The nose wave found thus is used in the subsequent location of a pair of sonic lines, and for the analysis of the supersonic region dowstream. The resulting flows converge very rapidly toward each other and toward the wall. This leads to the physical impossiblity of vanishing flowo Since the analysis is rather straightm forward, the failure is due to the wrong assumption of the shape of the nose wave. This conclusion is supported by Busemann, who contradicts the assumption of an analytic relation. 4 The incorporation of his alterna-

[^2]tive leads to a successful solution, as presented in Chapter IV, Part A_{2} Section 2.

D Selection of Entrance M in Relation to Nose Pattern Overlap

The problem of detached shock is comparatively old, and the absence of theoretical results implies that it is difficult to solve. Sharpnosed profiles demand a unique direction of flow approach for optimum pero formance, and even a small deviation from this produces flow patterns having large entropy jumps, and hence large losses of energy. It is hoped that this property does not pertain to blunt-nosed profiles of sufficiently slim proportions. The free-stream M may be selected slightly larger than 1.0, whereupon the detached shock is very strong, and the region behind the wave is probably entirely subsonic. Behind the intersection of ade jacent waves, the flow has an even lower M. The energy losses due to this overlap become prohibitive, and Mach numbers only slightly greater than 1.0 must be avoided. Too high an M should be avoided also, since little is know about the hypersonic region. Hence the next stage of practical research should concern itself with $1.0<M \leqq 2.0$. The selec tion of $M=1.7$ at channel entrance is prompted by the availability of a shadowgraph photograph, mentioned in Part G 。

E Shear Sheet Energy Dissipation in a Supersonic Region

The assumption that shear sheets die out rapidly in a supersonic flow fails. Supersonic flow is essentially stable, and disturbances tend to persist. Also, the actual channel is extremely short, less than 2 inches long, and the flow time required is insufficient for dissipation in such a brief path.

F Build-Up of Shock Along Concave Wall Due to Wedge Nose on Profile If it is assumed that the flow in the chamel of the original prom files is entirely supersonic past the nose regions, then the comparison channel must have one concave wall, the entrance to which is a semiwedge. To preserve similarity, the semi-wedge angle is large, and a strong oblique shock is attached to the nose of the profile. The concave form of the downstream wall causes a series of compression characterisa tics. Irmediately past the strong attached shock, the flow is but slightw ly supersonic, so that the succeeding slow compression results in the building of a shock-wave envelope in the interior of the chamel. After sufficient turning of the flow, a portion of the envelope shock becomes normal, and the flow dowstrear of this portion becomes subsomic. If this had been noticed earlier, it could have been used as a reason for abandoning the original profile, since even the comparison profile results in subsonic conditions in the channel. These are, of course, to be avoided.

G Analysis Domstream of Channel Troiling Edges

It is extremely difficult to locate the portion of the stagnation streamine downstream of each trailing edge。 At first, this seems necessary in order to define the channel walls completely for a change-of-momentum analysis. This solution is not required, however, since the channel side walls end at the trailing edges of the profiles, by the definition of the exit control surface.

H Partial Center Pattern Resulting in Voidmedge Flow

If the assumption is made that the last bent e_{ϕ} intersects the nose wave ahead of the center point, either above or below, a void wedge of
flow results dowstream of the intersection, as show in Figure 5-1.
Hence, this partial pattern cannot
be used in the solution of the cen-
ter region. This failure is avoided
in Parts B and C of Chapter IV by a
Figure 5-1
Void-Wedge Flow

GHAPTER VI

SUMMARY

A method is developed for computing the axial thrust and tangential force, or torque-force, reactions of a suitabley selected cascade of bluntm nosed profiles to a compressiblewfluid flow having a freemstream Mach num ber arbitrarily set at 1.7. The problem is reduced to the analysis of the two-dimensional channel flow between two adjacent profiles of the cascade. A criterion is found for locating the detach distance, and the shape of the detached nose shock ahead of each profile. The limits of the subw sonie region behind the detached shock are defined then, and the subsem quent supersonic flow in the channel is computed. It is found thet too sharp a curvature of a concave wall causes an indeterminate interior pat" tern. The only fact evident in this case is that the flow in this intem rior pattern is strongly subsonic. To avoid excessive turning of the flow, which produces strong shocks in the channel and subsonic flow of indeterminate configuration, the original cascade slement is modified such that the formerly concave channel wall is initially convex, then straight. A valid solution then in obtained and corapared to that found for a channel, the bordering elements of which are sharp-nosed profiles, identical to the modified bluntwnosed profiles with the exception of the nose region. The method of analysis for the flow of a compressible filuid about a sharp-nosed profile is already $k n o w n$, and the subsequent chanel analysis is straightforwarde Since no experimental results are available for comparison to the theoretical values obtained for the channel of blunt-nosed profiles, the results of the sharponosed profile channel anam lysis are the only measure of validity for the original developments of
this work.

A cascade of sharp-nosed profiles in an infially supersonic flou has but one angle of attack for which the perfornence is at an optimm. If this angle is changed, the shock either detaches itself from the nose of the profile, or a subsonic zone forms on one side of the nose of each cascade element. In either case, cascade performance is very poors and high energy losses result. A slim blunt-nosed element, howerter, permits a slight variation of the angle of attack for which useful performance may still be obtained from the cascade. If the blunt nose of the element is sufficiently small, the region of strong shock of the detached shock is quite small, and only small entropy increases occur. In addition, the convex curvature past the subsonic zone behind the strong portion of the detached shock permits a smooth expansion of the flow, and hence a desirable increase in Mach muber without increase in entropy. The comm parison element, or sharp-nosed profile, has either no, or a very mall section of convex surface serving as a guide to smooth supersonic expansion.

The mass flow per inch of blade height at the entrance of each channel equals 0.912 slugs/sec. At the exit control surface of the sharp-nosed profile channel ${ }_{2}$ the mass flow equals 0.895° slugs/sec. This is sufficiently close to the value of the entrance mass flow to satisfy the mass flow continuity condition for this channel. However, the mass flow across the exit control surface of the bluntmosed profile channel is found to be equal to 0.4599 slugs/sec. This is only slightly more than 50 per cent of the mass flow at the channel entrance control surface. The neglect of strong flows parallel to the detached wave in
the subsonic region is the cause of this violation of the mass flow continuity condition. However, the trend of the given solution relative to the comparison solution is still correct from the standpoint of energy analysis.

It is possible to compute a fictitious set of values for the exit distribution of the blunt-nosed profile channel, such that these values will indicate the upper performance limit of the chamel. Let BNG refers to the blunt-nosed profile channel already computed. BNO" to the bluntnosed profile channel with the fictitious exit distribution, and SNC to the sharp-nosed profile channel。 Let ρ_{i}^{\prime} designate the mass density in slugs/of at exit station i_{2} where

$$
i=1,2,3, \ldots \ldots, 10
$$

The mass flow continuity condition is satisfied approximately if it is assumed that

$$
\rho_{i}^{\prime}=2 \rho_{i}, \text { where } \rho_{i} \text { refers to BNC exit stations. }
$$

It is known that

$$
\begin{aligned}
& \frac{P_{S}}{P}=\left(1+\frac{\gamma-1}{2} \mathbb{M}^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
& \frac{\rho_{\mathrm{S}}}{\rho}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}}
\end{aligned}
$$

from which it can bo seen that

$$
\frac{P_{s^{\prime}}}{P^{\prime}}=\left(\frac{\rho_{s}^{\prime}}{\rho^{\prime}}\right)^{\gamma}
$$

where P^{\prime} is the static pressure corresponding to ρ^{\prime} 。Corresponding stagm nation pressures and densities remain unchanged; that iss
 3.9 and 3.10 , p. 26 .

$$
\mathrm{P}_{\mathrm{s}}^{\prime}=\mathrm{P}_{\mathrm{s}} \quad, \quad \text { and } \quad \rho_{\mathrm{s}}^{\prime}=\rho_{\mathrm{s}}
$$

With the aid of these relations, the entries of Table 6 I are computied. The product $P^{\prime} A y$ is the static pressure force per inch of blade height for each exit station.

Table 6-1

Modified Exit Static Pressure Force Distribution, Blunt-Nosed Profile Channel						
Station	$\begin{gathered} \rho_{S} / \rho \\ \text { Table } 4-11^{2} \end{gathered}$	$\rho_{s}^{\prime} / \rho^{\prime}$	P ${ }_{S}^{\prime} / \mathrm{P}^{\prime}$	P ${ }^{\text {i }}$	$\begin{gathered} A \\ \text { Table } 4-11^{2} \end{gathered}$	$P^{\prime} A_{y}$
1	4.1	2.05	2.73	2.473	. 0.2750	0.6800
2	4.67	2.335	3.276	2.062	0.0670	0.1382
3	3.76	1.88	2.42	2.79	0.0404	0.1128
4	4.625	2.313	3.23	2.09	0.2490	0.5210
5	5.72	2.86	4.35	1.552	0.0096	0.0149
6	9.05	4.525	8.27	0.816	0.1452	0.1185
7	7.14	3.57	5.94	1.137	0.0788	0.0896
8	10.16	5.08	9.73	0.694	0.0260	0.01805
9	13.23	6.615	14.10	0.479	0.1970	0.0944
10	14.70	7.35	16.30	0.414	0.5120	0.2120

Using the symbols defined in Chapter IV $_{3}$ the forces of the flow on BNC? now may be computed . Since the chanel entrance conditions remain unchanged, M $_{\mathrm{x} \text {, entrance }}$ has the same value as before. However, because of the change in $\rho, M_{x_{2} \text { exit }}$ of BNC is double that of BNC. This statement holds if y is substituted for x in the subseripts.

$$
\begin{aligned}
& A_{x_{9} \text { entrance }}=1283 . \operatorname{lbs}(144) \quad, \\
& M_{x_{0} \text { exit }}=2(742.5)=1485 . \operatorname{lbs}(144) \text {, } \\
& \Delta O M_{\mathrm{x}} \quad=M_{x_{8} \text { entrance }}-M_{x_{0} \in x i t} \quad \text {, } \\
& \Delta M_{x} \quad=1283 .-1485^{\circ}=-202.1 b s(144) \quad \text { 。 }
\end{aligned}
$$

2 P. 55.

$$
F_{\Delta M_{x}}=\frac{1}{144}(-2020)=-1.402 \mathrm{Ibs} \quad .
$$

The force due to static pressure at channel entrance remains the same as that for Parts B and C of Chapter IV. Since $P^{\prime} A_{y}$ is the static pressure force for each exit station, the summation of the last column of Table $6-1$ is equal to the force due to static pressure at channel exit.

$$
\begin{aligned}
& p_{x, \text { entrance }}=2.185 \mathrm{lbs} \quad, \\
& \text { Pox,exit }=\sum_{i=1}^{10}\left[\text { PiA }_{y}\right]_{i}=1.999 \text { Ibs }, \\
& F_{P_{\mathrm{X}}} \quad=P_{\mathrm{x}, \text { entrance }}-P_{\mathrm{x}, \text { exit }} \quad \text {, } \\
& F_{P_{X}} \quad=2.185-1.999=0.186 \mathrm{lbs} \quad, \\
& \mathrm{~F}_{\mathrm{x}} \quad=\mathrm{F}_{\Delta m_{*}}-\mathrm{F}_{\mathrm{B}_{\mathrm{x}}}=-1_{0} 402-0.186 \quad 0 \\
& \mathrm{~F}_{\mathrm{x}} \quad=-1.588 \mathrm{lbs} \quad .
\end{aligned}
$$

The minus sign implies that energy is supplied to the flow in the in terior of the channel, since the axial drag is negative. This is not possible physically without an exterior energy source, but does not hamper the cormputation of BNC 8 values as upper performance limits. From the statement on page 7%,

$$
\begin{aligned}
& B M_{y_{9} \text { entrance }}=86.1 \operatorname{lbs}(144) \quad, \\
& M_{y, \text { exit }}=2(185.6)=371.21 \mathrm{bs}(144) \quad \text {, } \\
& \Delta O M_{y} \quad=M M_{y, \text { exit }}-M X_{y \text {, entrance }} \quad \text { o } \\
& \Delta M_{\mathrm{y}} \quad=371.2-86.1=285.1 \mathrm{Ibs}(144) \quad: \\
& F_{\Delta m_{y}} \quad=\frac{1}{144} \Delta O M_{y}=\frac{1}{144} 285 . I=1.978 \mathrm{Ibs} \quad . \\
& F_{y} \quad=F_{\Delta r M_{y}}=1.978 \mathrm{lbs} \quad .
\end{aligned}
$$

A comparison is made between important values of $\mathrm{BNC}, \mathrm{SNC}_{\text {, }}$ and BNCr , and

Table 6-2

Comparison of Constituents of/and Cascade Channel Force Components, Part 1 of 3 Parts					
Quantity, Units	BNC	Rel.	SNC	By __of SHC	Commentary
OM $x_{\text {entrance }}$, $1 \mathrm{bs}(144)$	1283.	三	1283.	--	Identical entrance conditions.
$M_{\text {x, exit }} \quad, \quad 1 \mathrm{bs}(144)$	742.5	<	1131.5	34.4	Greater loss of energy due to detached shock.
	3.75	>	1.052	256.4	Greater loss of energy due to detached shock.
$P_{x, \text { entrance }} \text { los }$	2.185	\equiv	2.185	-	Identical entrance conditions.
$P_{x_{8} \text { exit }} \quad, \quad \mathrm{lbs}$	0.751	$<$	2.517	70.2	Exit velocities of BNC > exit velocities of SNC
$F_{P x} \quad \quad \mathrm{Pbs}$	1.434	$>$	0.332	337.8	From the above, since $P_{\text {, }} \mathrm{x}_{2}$ entrance is constant
$\mathrm{F}_{\mathrm{X}} \quad, \quad \mathrm{lbs}$	2.316	>	1.384	67.3	Greater axial drag is due to detached shock.
$M_{y_{g} \text { entrance }} \mathrm{Ibs}^{(1 / 4)}$	86.1	三	86.1	\cdots	Identisal entrance conditions
$M_{y_{s} \text { exit }} \quad, \mathrm{Ibs}(1 / 4)$	185.6	<	429.1	56.7	Greater loss of energy due to detached shock.
F_{y}, , Ibs	0.691	$<$	2.382	71.0	Greater loss of energy due to detached shock.

Table 6-3

Comparison or Constituents of/and Cascade Channel Force Components, Part 2 of 3 Parts					
Quantity, Units	Bric	Re7.	BNC	By __\% BNC	Commentary
Mn ${ }_{\text {, entrance }} \mathrm{Ibs}(1,44)$	1283.	\equiv	1283.	----	Identical entrance conditions.
*M, exit \quad, Ibs (144)	1485.	>	742.5	100.	Since $\rho_{i}^{\prime}=2 \rho_{i}$.
$\mathrm{F}_{\triangle M} M_{x} \quad$, Ibs	- 1.402	$<$	3.75	137.3	Energy is supplied in the BNC ohannel.
$P_{\text {X }} \mathrm{Pentrance}{ }^{\text {Ibs }}$	2.185	三	2.185	-	Identical entrance conditions.
$P_{\text {xg exit }}$, Ibs	1.999	>	0.751	166.5	Since $\rho_{i}^{\prime}=2 \rho_{i}$
$\mathrm{F}_{\mathrm{P}} \mathrm{X}$ (Ibs	0.186	$<$	1.434	87.1	From the above, since $P_{X_{s} \text { entrance }}$ is constant.
$\mathrm{F}_{\mathrm{X}} \quad, \mathrm{lbs}$	- 1.588	$<$	2.316	168.8	Bnergy is supplied in the BNC' channel.
M ys_{8} entrance ${ }^{\text {a }}$ Ibs (14.4)	86.1	=	86.1	-	Identical entrance conditions.
Xhys ${ }_{\text {g exit }}$, Ibs (1L4)	371.2)	185.6	100.	Since $\rho_{i}^{\prime}=2 \rho_{i}$
$\mathrm{F}_{\mathrm{Y}} \quad, \mathrm{lbs}$	1.978	>	0.691	186.2	Since $\rho_{i}^{\prime}=2 \rho_{i}$.

Table 6-4

Comparison of Constituents of/and Cascade Channel Force Components, Part 3 of 3 Parts					
Quantity, Units	BNC ${ }^{8}$	Rel.	SNG	By __ot SNG	Commentary
M x_{9} entrance: $7 \mathrm{lbs}(1 / 4)$	1283.	\equiv	1283.	\cdots	Identical entrance conditions.
Al $_{x_{9} \text { exit }} \quad, \operatorname{lbs}(144)$	1485.	>	1131.5	31.22	Energy is supplied in the BNC' channel.
	- 1.402	<	1.052	233.5	Energy is supplied in the BNC' ohannel.
$P_{\mathrm{x}_{9} \text { entrance: }} \mathrm{lbs}$	2.185	三	2.185	-	Identical entrance conditions.
$P_{x_{3} \text { exit }}$, Ibs	1.999	<	2.517	20.57	Since $\rho_{i}^{\prime}=2 \rho_{i}$
$\mathrm{FP}_{\mathrm{x}} \quad$, 1 Bs	0.186	$<$	0.332	44.0	From the above, since $P_{\text {coentrance }}$ is constant.
$\mathrm{F}_{\mathrm{x}} \mathrm{C}$, Ibs	- 1.588	$<$	1.384	214.4	Energy is supplied in the BNC' chamel.
Sty, entrance ${ }^{\text {a }}$ Ibs (14.4)	86.1	\equiv	86.1	\cdots	Identical entrence conditions.
AC $\mathrm{y}_{\frac{8}{} \text { exit }}$: $1 \mathrm{bs}(144)$	371.2	$<$	429.1	13.5	Since $\rho_{i}^{\prime}=2 \rho_{i}$
$\mathrm{F}_{\mathrm{y}} \mathrm{l}$	1.978	$<$	2.382	16.97	Since $\rho_{i}^{\prime}=2 \rho_{i}$.

presented in Tables 6-2, 6-3, and 6-4. Rel。 at the head of each third colum stands for relation; that is, respectively, is greater than, is less than, and is identical to.

The five graphs which follow give a clear comparison of the raost important exit distribution quantities of the blunt-nosed profile channel of Part $B_{\text {, }}$ and the sharp-nosed profile channel of Part C of Chapter IV, The values are extracted from the tables of Section 4 of the respective parts of the same chapter.

CHAPTER VII

CONCLUSION

The chief purpose of this investigation, the determination of the thrust- and torque-reactions of a straight cascade of blunt-nosed prom files to the flow of air with an entrance Mach number of 1.7 , has been achieved. The pattern is shown in Figure A-3 of the Appendix. The axial force, or drag of the flow, per channel, per inch of blade height equals 2.316 lbs . The tangential force, or torque force of the flow on the cascade equals 0.691 lbs per channel, per inch of blade height. In the symbols already developed,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}_{2} \mathrm{BNC}}=2.316 \mathrm{Ibs} \\
& \mathrm{~F}_{\mathrm{y}_{8} \mathrm{BNC}}=0.691 \mathrm{lbs}
\end{aligned}
$$

For the comparison channel of sharp-nosed profiles, shown in Figure Am of the Appendix,

$$
\begin{aligned}
F_{x_{9} \operatorname{SNC}} & =1.384 \mathrm{lbs} \quad, \\
\mathrm{~F}_{\mathrm{y}, \mathrm{SNC}} & =2.382 \mathrm{lbs} .
\end{aligned}
$$

where the terms have definitions corresponding to those of the bluntw nosed profile cascade.

Because of the discrepancy in mass flows in the analysis of the blunt-nosed profile channel, a fictitious set of force values, labeled BNC', for which the mass flow continuity condition holds, was computed in Chapter VI. The most important of these values are

$$
\mathrm{F}_{\mathrm{X}, \mathrm{BNG}}=-1.588 \mathrm{lbs},
$$

and $\quad \mathrm{F}_{\mathrm{Y}_{2} \mathrm{BNC}^{8}}=1.978 \mathrm{lbs} \quad$,
where again the terms have definitons corresponding to those of the
blunt-nosed profile cascade. In final sumation,

$$
\begin{aligned}
& F_{x_{9} B N C}>F_{x_{9} S N C}>0>F_{X_{9} B N C B} \quad 2 \\
& F_{Y, S N C}>\mathrm{F}_{\mathrm{Y}, \mathrm{BNC}}{ }^{8}>\mathrm{F}_{\mathrm{X}, \mathrm{BNC}}
\end{aligned}
$$

and

These inequalities are as expected, and are explained in the comentary columsn of Tables $6-2,6-3$, and $6-4$ of Chapter VI.

Since the BNC' quantities represent the upper limit of the performance of $B N C$, a final estimate can be made of both F_{x} and F_{y} of BNC which will be the most plausible solution available at present. Let these final estimates be designated by $\bar{F}_{x, B N C}$ and $\vec{F}_{Y, B N C}$, having values which are assumed to lie midway between respective upper and lower performance limits. Hence,

$$
\begin{aligned}
& \vec{F}_{X_{8} B N C}=\frac{1}{2}\left(F_{X_{2} B N C}+F_{X_{2} S N C}\right) \quad, \\
& \bar{F}_{X_{2}} \text { BNC }=\frac{1}{2}(2.316+1.384) \quad \text {, } \\
& \begin{array}{l}
\overrightarrow{\mathrm{F}}_{\mathrm{x}_{8} \text { BNC }}=1_{.850 \mathrm{lbs}} \\
\overrightarrow{\mathrm{~F}}_{\mathrm{y}, \mathrm{BNC}}=\frac{1}{2}\left(\mathrm{~F}_{\mathrm{y}_{9} \mathrm{BNC}^{\circ}}+\mathrm{F}_{\mathrm{y}_{8} \mathrm{BNG}}\right)
\end{array} \\
& \overline{\mathrm{F}}_{\mathrm{Y}, \mathrm{BNC}}=\frac{1}{2}(1.978+0.691) \quad \quad, \\
& \overline{\mathrm{F}}_{\mathrm{y}, \mathrm{BNC}}=1.335 \mathrm{Ibs} \text {. 。 }
\end{aligned}
$$

It is seen that

$$
\left.\bar{F}_{x_{8} B N C}\right\rangle F_{x_{8} S N C} \quad \text { and } \quad \bar{F}_{y_{2} B N C}\left\langle F_{y_{8} S N C}\right.
$$

which is in accordance with the energy analysis result that the losses in a blunt-nosed profile channel are greater than those in a similar sharp-nosed profile channel.

The criteria found for locating the detach distance and the shape of the detached shock wave ahead of each blunt-nosed profile are somer what crude. Further refinement should lead to a mapping relation in which the shape of the sensitive shoulder ares and the distance from
the shoulder circle center to the normal-shock point on the detached wave are the principal parameters with whioh the shock-wave shape can be located from the profile nose shape.

Excessive turning of the flow must be avoided in the design of blunt-nosed profile cascades, since it causes strong subsonic flow in the interior of each channel. Further analysis is required to locate conditions of maximum turning without interior subsonic flow.

Figure A-3 of the Appendix shows that the blunt-nosed profiles are too slim to be sufficiently strong. A redesign is necessary. The cascade spacing, or pitch, should not be decreased, but the profiles should
 be shortened, as shown in Figure 7-1. This assures that no subsonic flow will occur in the interior of the channel. In fact, the exit flow will be more supersonic, and most of the flow will have a greater turning? and hence a greater change of monentum in the tangential, or y, direco tion. Hence, F_{y} will be greatex than before, and a stronger blade with botter performance is the form tonate result. Since strength is no consideration in this solution, the redesign is not given here.

In the development of highmspeed aircraft, new designs of axialflow turbomachines are required. These machines must operate both at
supersonic and subsonic flight speeds. The nucleus of these designs is a straight cascade capable of operating in both speed ranges. A bluntnosed profile is best for subsonic operation, while a sharp-nosed one is preferable for supersonic flight. Until now, it was feared that the blunt-nosed profile was incapable of supersonic operation. Although its performance is inferior to that of a sharpmosed profile, the results of this work show that it can be used for both speed ranges, while it is already known that a sherp-nosed profile cannot. Of course, a means must be devised for moving from the subsonic range to the supersonic one. The most obvious method is the brief use of booster rockets. No special auxiliary equipment is required for the reverse opexation.

It is denonstrated that useful performance may be obtained from a cascade of blunt-nosed profiles, provided that the turning of the flow is not great enough to cause subsonic flow in the interior of each chan nel. The performance of the bluntmosed profile cascade is inferior to that of a sharp-nosed profile cascade in a supersonje flow. Although the solution of the problem lacks rigor, it is hoped that it will be a small aid in the development of the general theories of detached-shock flow and mixed-flow cascades, since no experimental results are available at present.

This analysis is but the first small step toward the design of a subsonic-supersonic turbomachine。 The results are sufficiently promism ing to allow the author to recomend that further work should be done.

BIBLIOGRAPHY

Abbott，Ira H_{0} and Doenhoff Albert E．von．Theory of Wing Sections．
New York：McGraw－Hill Book Company，Inc．，1949．
Bergmen，Stefan．＂On Supersonic and Partially Supersonic Flows＂NACA， TN 1096 （December，1946）．

Busemann，Adolf．＂A Review of Analytical Methods for the Treatment of Flows with Detached Shockso NACA，TN 1858 （Aprill，1949）。

Costello，George R．Method of Designing Cascade Blades with Prescribed． Velocity Distributions in Compressible Potential Flows．＂NACA，R 978．Washington：1950．

Dailey，C．L．and Wood，F． C_{0} Computation Curves for Compressible Fluid Problems．New York：John Wiley and Sons，Incog co 1949。

Dugundji，John．＂An Investigation of the Detached Shock in Front of a Body of Revolution．＂Journal of the Aeronautical Sciences．XV（Dem ceraber，1948），699－705．

Ferri，Antonio．Elements of Aerodynmics of Supersonic Flows．New York：The Macmillan Company，1949．

Frankl，F．＂On the Problem of Chaplygin for Mixed Sub－and Supersonie Flows：＂NACA，TM 1155 （June，1947）。

Karman，Theodore vo and Biot，Maurice Ao Mathematical Methods in Era gineering．New York：MeGraw－Hill Book Company，Incos 1940.

Liepmann，Hans Wolfgang and Puckett，Allen $\mathbb{E}_{\text {。 Introduction to Aerody－}}$ namics of a Comoressible Fluid．New York：John Wiley and Sons， Inc．，c． 1947.

Lin，C．C．＂On an Extension of the von Kammacsien Method to Two－Di－ mensional Subsonic Flows with Circulation Arounc Closed Profiles．${ }^{10}$ Quarterly of Apolied Mathematios，IV（October，1946），291－297．

Mises，Richard von．Theory of Flight．New York：McGraw－Hi 11 Book Comm peny，Inc．，1945．

Munk，M．Mo and Prim，R。C。＂Surface－Pressure Gradient and ShockmFront Curvature at the Edge of a Plane Ogive with Attached Shock Front at Journal of the Aeronautical Sciences，XV（Novemberi，194c），691－695．

Wang，Chi－Teh．Mariational Method in the Theory of Compressible Fluid． Journal of the Aeronautical Sciences，XV（November，1948），675－685\％ also errata，XVI（February，1949）， 125 f 。

Weinig, F. Die Stromung wie Schanfy yon Turbomagohinono Teipzig: Verlag von Johemn Ambrosins Barth, 1935.

Zucrow, M.J. Principles of Jet Propulsion and Ges Tubbines. Revised printing. New York: John Wiley and Sons, Incog 0.1940. s

Scale:Ratios:

Drawing, $10: 1$, Photographic Reduction, 3:1.

Scale Ratios: $10: 1, ~$
Drawing, $10: ~$
Drawing, $10: 1$,
Photographic Reduction, $3: 1$.

Scale: Ratios:

Layout of Chanel Flow Pattern, Cascade of
Sharp-Nosed Profiles

VITA

Walter Ascher

Thesis: INVESTIGATION OF COMPRESSIBLBmFLUID FLOW THROUGH A CASCADE OF BLUNT-NOSED PROFIIES

Major: Mechanical Engineering
Minor: None
Biographical and Other Items:
Born: July 3, 1928 at Zurich, Switzerland.
Undergraduate Study: Tulane University, 1945-1949。
Graduate Study: O.A.M.C., 1949-1952.
Experiences: Graduate Fellow, teaching, School of Mechanical Engineering, O.A.M.C., 1949-1951; Test Engineer, General Electric Company, Lockland, Ohio, Fall, 1951.

Mernber of the Anerican Society of Mechanical Engineers, The Society of Automotive Engineers.

Date of Final Examination: February 27, 1953

THESIS TITIE: Investigation of CompressiblemFluid Flow Through a Cascade of Bluntonosed Profiles

AUTHOR: Walter Ascher

THESIS ADVISER: Professor Ladislaus Jo Fila

The content and form have been checked and approved by the author and thesis adviser. "Instructions for Typing and Arranging the Thesis" are available in the Graduate School office. Changes or corrections in the thesis are not made by the Graduate School office or by any committee, The copies are sent to the bindery just as they are approved by the author and faculty adviser.

NAME OF TYPIST: Fern BoHall

[^0]: 37 G. L. Dailey and FoC.Wood, ibid.

[^1]: 1 Richard von Mises, Theory of Flight, p. 122 ff.

[^2]: 2 Theodore va Karmán and Maurice A. Biot, Mathematical Methods in Engineering, po7。

 3 Hans Wolfgang Liepmann and Allen E. Puckett, op. citos Figo 6013, p. 99.

 4 Adolf Busemann, opo cita, p. 11.

