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Section 1

(Courtesy of Texas Highway Department)

Colorado River Bridge on State Highway 71 near Smithville, Texas.



_SECTION I GENERAL THEORY

INTRODUCTION

Although the moment distribution method1 became a very important and
widely used tool of structural analysis during the last two decades, no
systematic effort has been made:

1. To investigate the internal functional mechanics of this pro-
cedure;

2. To define it in general algebraic terms;

3. To replace the n-cycle procedure by one direct function, clear-
ly expressed in terms of structural identities and loads ap-
plied.

This paper is intended to be a contribution to the above mentioned
effort presenting:

1. A complete mathematical analysis of the moment distribution
method applied to the computation of the end moments in con-
tinuous beams.

2+ A derivation of the general end moment equations for a limited

1This method was developed in connection with the calculation of sec-

ondary stresses in trusses and is described in the book by O. Mohr, "Ab-
handlungen aus dem Gebiete der Technischen Mechanik", p. 429, 1906 and
was extended te the analysis of statically indeterminate frames by K. A.
Calisev (Technicné Listy 1923 No. 17-21, Zagreb). The final form of the
numerical method of successive approximations was obtained in the paper
by H. Cross (Transactions, Am. Soc. C.E., Vol. 96, 1932) and is without

a doubt the most important contribution to structural analysis in recent
years,
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number of cases (three, four, five, six, seven and eight span
beams) .

3. A direct, simple and workable procedure for the computation of
end moments in continuous beams due to static or moving loads,
due to settlement or rotation of supports.

Although only beams with a constant moment of inertia are analyzed,
it is evident that all the principles apply to beams or frames with a
variable moment of inertia.

Tables for twenty-four specific cases were prepared and their appli-

cation demonstrated by three typical problems.



1. BASIC SERIES

If the method of moment distribution is used to compute the end mo-
ments for three or four span beams and the balancing procedure is ex-
panded algebraically, each moment consists of a series that is:

1, Infinite (number of terms = o),
2. Convergent (ratio of two successive terms < 1),
3, Geometric (ratio of two successive terms is constant).

The sum of all the terms in each series forms the final moment,
which contains two separate and independent functions(z)(B):
1. New Distribution Factor,

2, Fixed End Moment.

2Jan J. Tuma, Wind Stress Analysis of One Story Bents by New Distri-
bution Factor (Oklahoma Engineering Experiment Station Publication No. 80,

May, 1951).

3Jan J. Tuma, Influence Lines For Frames With Constant Moment of In-
ertia and Sidesway Prevented (Oklahoma Engineering Experiment Station Pub-
lication No. 85, November, 1952).




2. BASIC SERIES FOR A THREE SPAN BEAM

In the following illustration of the Basic Series; the end moment
equations will be derived for a three span cyclosymmetrical beam; loaded

as shown in Fig. 1.

LULNN

=3
o

1=

N

Fig. 1
THREE SPAN BEAM
Denoting the fixed end moments due to the applied loads as =FMAB’
FMBA' QFMBCS FMCB, ~FMaps and FMDC, the sums of the fixed end moments
are at Point B
B = FMy, - FMg,, (1a)
and at Point C
c = FHCB = mCDe (1b)
The distribution factors are denoted

at Point B as

Dpy = 28, Do = 2b, (2a)
and at Point C as
Dep = 2¢; Doy = 2d. (2b)

The distribution of the fixed end moments at Points B and C is

presented in Table 1.



Continuonus Beams

TABLE 1

ALGEBRAIC DISTRIBUTION OF FIXED END MOMENTS FOR A THREE SPAN BEAM

Points: .

Distribution
Factors:

Fixed End
Moments:

1st Cycle

Carry-over

2nd Cycle

Carry-over

3rd Cycle

Carry=over

4th Cycle

Carry-=over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

0 2a f 2b 2c 2d 0
~Myp My | -PMgg FMog | -Mgp Fne
-2aB -2bB =2¢C =240
-aB -cC -bB -dC
2acC 2beC 2bcB 2bdB
acC beB beC bdB
_2abeB | -2b2B | ~2bc>C | -2bedC
-abcB -bc?C | -b2cB ~bcdC
2abc?C | 2b%c?C | 2b%c®B | 2b2cdB
abc?C b*c<B bzczc bzch
~2ab%c?B| -2b%e?p| -2b2c3¢|-202c24c
0 0 0 0 0 0

Mg Mgy Mpe ¥op ¥op ¥ng
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Surming all the term_s in column MAB of Table 1,
MAB=—mAB-§B+%90, (3)
in which
%{: 1+ be+ (be)? + (bc)3 B et D * (3a)
and
x =1 - be (denominator of Convergency for E) . (3b)

All moment equations similarly derived are presented in Section 2,

Table C3,



3. BASIC SERIES FOR A FOUR SPAN BEAM

As a second illustration of the Basic Series, the end moment equa-

tions will be derived for a four span cyclosymmetrical beam, loaded as

shown in Fig. 2.

Using nomenclature similar to that in the previous chapter and

summing all the terms in column M,y of Table 2, the moment equation

becomes

Myp
in which

Hooni-
it

L]

¥y =

and

Jo =

1A B c D Ef

¢ 4 ;

T “Saa %" L/
Fig. 2

FOUR SPAN BEAM

= = - 8Y ac ¢ - ace

FMyp ‘xz B + 5 c = D
1+ (be + de) + (be + de)? + (be + de)3 + .......
1 - be - de (denominator of convergency for IE),

1 = bc (denominator of convergency for AD),

1 - de (denominator of convergency for BE).

(4)
(4a)
(4b)

(4e)

(4d)

All moment equations similarly derived are presented in Section 2,

Table C4.
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TABLE 2

ALGEBRAIC DISTRIBUTION OF FIXED END MOMENTS FOR A FOUR SPAN BEAM

Points:
Distribution
Factors:
Fixed End

Moments

1st Cycle

Carry-over

2nd Cycle

Carry-over

3rd Cycle

Carry-over

4th Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

B ¢ D

0 2a 2b 2c 2d 2e 2f 0

-Fiyp | FMgy |-FMpg | Figp |-FMgp | FMpg (-Flpg | FMgp
-2aB | =2bB | =2¢C | -2dC | -2eD | -2£D

-aB -cC =bB =eD -dC =fD
2acC | 2bcC | 2c | 2as | 2dec | 2afc

acC (] beC deC ds dfC
-2acS |-2bcS |-2ctéb|-2dtC |-2des [-2dfS

-acS -ctC | =beS | =deS | =dtC =dfS
2actC| 2bctC| 2ctS | 2dtS | 2detC| 2dftC

actC ctS | betC | detC dts dftC
~2actS |-2bctS [-2ct2C [-2dt2C [-2detS |-2dftS

0 0 0 0 0 0 0 0

Mpg | Mga | Mo | Mg | Mep | Mpc | Mpe | Mmp

LSubstituting bB + eD = 5 and bec + de = t simplifies the algebraic
procedure, When summing the terms in each column, the values S and t
are replaced by the original values.




4. INTRODUCTION TO SERIES OF SERIES

The Basic Series has proven itself adequate in the two preceding
derivations. For beams with more than four spans, the series become
very complex and it would be unadvisable to derive the moment equations
by the previous procedure.

To illustrate the complexity of such a problem, consider an elemen-

tary case: a five span beam of equal spans, constant moment of inertia,

and loaded as shown in Fig. 3.

M =1 in-1b.
///’““\.
L —t— L —i‘ L—eta—L—»pr=—1L
Fig. 3

FIVE SPAN BEAM - EQUAL SPANS

Denoting all the distribution factors as
D = 2a, (5)
from Table 3, the moment MAB is
Myp = a2 + 2ak + 526 4 13a8 + 24210 4 ......... + 0. (6)

The series forming the moment M, is evidently infinite in length and

AB
does converge, but it is not a simple geometric series. Although the
algebraic terms form a perfect geometric series, their numerical fac-

tors follow a different generating law. By resolving each numerical
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TABLE 3

ALGEBRAIC DISTRIBUTION OF APPLIED MOMENT (M = 1) FOR A FIVE SPAN BEAM

Points: A B C D
‘D's 0 | 2a 2a | 2a 2a | 2a 2a | 2a 2a | 0
1st Cycle -2a | -2a
-a -a
2nd Cycle 2a2 232 2a2 2a2
a2 a2 a2 a2
3rd Cycle -4a3 | -4a3 -2a3 | -2a3
-2a3 -2a3 | -a3 -a3
4th Cycle Lak | Lab ak | 6ak
2ah 2ah 315.11‘t 33“
5th Cycle -10a” |-10a’ -6a’ |-6a’
_535 _535 _335 _335
6th Cycle 10a®| 10a® 16a® | 16a°
536 5a6 8a6 8a6
7th Cycle -26a’ |-26a7 ~1éa’ |-16a’
Infinite 0 0 0 0 0 0 0 0 0 0
Cycle
Sum of all
the terms in
each column MAB MBA MBC MCB MCD MDC MDE HED MEF MFE

= Final
Moment




Continuous Beams
factor into basic components:
3 =0 a2 = 1a2, |
T,=(1+1 )ak = 2a%,
T3=(L+242 )a® = 5a°,
T,=(1+2+5+5 )a® = 1348,
r (1)
Ts= (L+2+45+134+13 ja29 = 5add,
Te=(Le2+5+13+34+ 34 )al? = g5al?,
Ty BT T Ty F connenns # Tpg b 20y o) (0],
Tp=(Ty + Ty + T34 covocoee + T 5+ 21 _,)a%n,

J

Equation 7 demonstrates that each final moment is a combination of

an infinite number of infinite series, generating parallel

to zero. In

order to simplify the analysis of the series in the following chapters,

the investigated beams will be divided into isolated parts.



5. CARRY-OVER SERIES << AND 8 FOR A FIVE SPAN BEAM

In the following illustration of the Carry-over Series, the end mo-
merit equations will be derived for a five span cyclosymmetrical beam,

loaded as shown in Fig. 4.

=
TSRS

AN Y

Fig. 4
FIVE SPAN BEAM

1A B C Dy 1c D E bl 7
7 2 4
I, I I, I, I, I
Fig, 5 Fig., 6
ISOLATED BEAM 1 ISOLATED BEAM 2

In order to simplify the algebraic procedure, only the fixed end mo-
ments at Points A and B will be considered. The same procedure must be

repeated for the fixed end moments at Points C, D, E, and F, and the fi-

nal moments will be the sums of the partial results.

The distribution factors are denoted by the algebraic terms shown in

12



Points:
Distribution
Factors:
Fixed End
Moments:
1st Cycle
Carry-over
2nd Cycle
Carry-over
3rd Cycle
Carry-over
4th Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the

Continuous Beams 13
TABIE 4
ALGEBRAIC DISTRIBUTION OT FIXED END MOMENTS FOR A FIVE SPAN BEAM
(ISOLATED BEAM 1)
0 2 2b 2¢ 2d 0
Mg Py | ™My
-2aB | -2bB
—aB ~bB
2bcB | 2bdB
bcB bdB
—2abcB | -2b%cB
-abcB ~b7cB
2b%¢°B | 2b°cdB
b2c2B bzch
—2ab202B —2b302B
0 0 0 0 0 0
Mg Mpy Yoo Mog Mop Mg

terms in each
colum =

Final Moment
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Table 4 and the sum of the fixed end moments at the points of support are
designated by their respactive symbols, as was done in Chapters Two and
Three, Point D is temporarily locked against rotation; thus, isolating
from a five span beam AF, a three span beam AD (Beam 1), From Table 4

the moments on Beam 1 ara

Mpg, = - PMpp - § By (8)
Mgy, = + FMgy - 2 B, (9)
HBCD = = Flg, + % B, (10)
Meg, = - 2d B, (11)
Mop =+ 2bd B, - (12)
Mpg = + b B, (13)

Hereafter, all series performing moments in Beam 1 will be called "Basic
Series" because of their similarity with series derived in Chapters Two
and Three,

By unlocking Point D and locking Point C, a new beam is isolated

(Beam 2). Denoting

Mpg,, = ¢ 2B = s, (14)
and summing the values in the various columns of Table 5,

chl % & 3? & (15)

Mpg, = + S0 -~ §=0s (16)

MDE]_ S - e, ¢-2§@;€09 (17)

Mgy, = - 2B, (18)

HEF]_ =4 2%‘@303 (19)

Mpg, = L PP (20)
Unlocking Po_int C, locking Point D and denoting

Mcl}l = % =4 = Bys (21)

the carry-over value from Table 6 is



Continuous Beams

TABLE 5

15

ALGEBRAIC DISTRIBUTION OF FUNCTION &< IN A FIVE SPAN BEAM
(ISOLATED BEAM 2)

Points:

Distribution
Factors:

Starting Moments:

1st Cycle

Carry-over

2nd Cycle

Carry-over

3rd Cycle

Carry-=over

4th Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

g D E 3
0 2e 2f 22 | 2h 0
X,
~2ecx,| =2f o<y
-e X, -f ox¢,
_2fg &%, 2fh O%
|
fg o<, ‘ fh o
|
~2efg &% ~2f%g 4,
i
-efg Ox, —f2g oy i
212g%c 2r2ghox,
fzgz (=R | ’ £2gh %
|
-2ef?goy -213g% o |
0 0 0 0 0 0
Mop Mpe Mpg Yep | Mgr Mpg
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TABLE 6

ALGEBRAIC DISTRIBUTION OF FUNCTION /3, IN A FIVE SPAN BEAM
(ISOLATED BEAM 1)

Points: A B C D
Distribution 0 2a 2b | 2c 2d 0
Factors: ;

Starting Moments: @o
1st Cycle ’: -2c/3, | =243,
Carry-over -c/3, . =d 3,

i
2nd Cycle 2ac/3,| 2bc/3, .

|
Carry-over ac/3, be /3, |
3rd Cycle —2b02ﬁ°[ ~2bcd/3,
Carry-over -bczﬁo ' -bed /3,
Lth Cycle 2abe?/3 | 20%c?/3 |
Carry=over abczﬁo bzczﬂn

2 2

5th Cycle -20°c7 3, -2p%e?d/3
Infinite Cycle 0 0 0 0 0 0
Sum of all the
terms in each MAB MBA HBC MGB MCD HDC
column =

Final Mcoment
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SERIES OX AND /3 AS A FUNCTION OF CX FOR A FIVE SPAN BEAM

Series ©{ - Function €x

Series /3 - Function ox

%:Q%

1

309
Bo=-['s =
f=-f'; >
/?2 =={§22§ o
oo 5~ g &

$o .t
[ 1uQa§
Xy

SERIES CX AND /3 AS A FUNCTION OF ﬁ FOR A FIVE SPAN BEAM

Series CX - Function /3

Series /2 - Function /3

o= -4 3
cu=-fi4'd B
-fia

O(nz_(?_g)n%ﬁ
d

i T x
CH (B e
de

0 1===¢===
Xy

o = (&'
A= s
£ = B

&

= (&3
e "

1~ 88

xy

B0
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Mpc, = - §/30 = + Roxg =oxy. (22)

Systematically locking and unlocking Points C and D performs two

functions:
1. Balancing the moments at each support,
2, Establishing equilibrium between the isolated beams.

The carry-over values from "Beam 1" to "Beam 2" and from "Beam 2" to
"Beam 1" are denoted the functions "Cx" and "/3" respectfully, and they
are tabulated. Tables 7 and 8 demonstrate that these functions form per-
fect infinite, convergent, geometric series. OSuperimposing the Basic Se-
ries (Eq. 8) and the Carry-over Series (/3) recently derived, the moment

HAB due to the unbalance at Point B is

MABz-mAB-%B'F%ﬁO*%ﬁl#B%Bz*oaoav“o’ (233)

or
MABa-FMAB-§B+%CEj§__/_-;§ (23b)
(=3
in which (Table 7)
- X
E 3= o (23¢)
C 1 - de :
Xy

With the notation 14, equation 23b becomes

Map = - FMgp - 2(1 + 28) B, (23)
in which
x = 1 - bc (Denominator of convergency for Beam 1), (234)

1 - fg (Denominator of convergency for Beam 2), (23e)

<
1]
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z = g% =~ 1 (Modified denominator of corwergency5 of Carry-over
Series o< and /3 ). (23f)
The above procedure is repeated for the fixed end moments at Points
C; D, E and F. All moment equations similarly derived are presented in

Section 2, Table C5,

5The actual denominator of convergency of the Carry-over Series o<

and /3 i; ) de.

In order to §gmpliﬂy the algebraic form of the final equations;, a modified
term is used.

de de
xy



6. CARRY-OVER SERIES ¢, /3 , § AND )Y FOR A SIX SPAN BEAM

As a second illustration of the Carry-over Series, the end moment
equations will be derived for a six span cyclosymmetrical beam, loaded
as shown in Fig. 7. This beam could be divided into sections of unequal
lengths, but the derivations of the moment equations are less complicated

if the beams are isolated as shown in Figs. 8, 9, and 10.

1

D
I3 ji I
L L

3
Fig. 7
SIX SPAN BEAM
B c_ D oD E} gp E F___Gf
1 |
Fig. 8 Fig. 9 Fig. 10
ISOLATED BEAM 1 ISOLATED BEAM 2 ISOLATED BEAM 3

Using nomenclature similar to that of the previous chapters and temp-

orarily locking Point D, the moments on Beam 1 due to the fixed end moments

20
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TABLE 9

ALGEBRAIC DISTRIBUTION OF FIXED END MOMENTS FOR A SIX SPAN BEAM
(ISOLATED BEAM 1)

Points:

Distribution
Factors:

Fixed End
Moments:

1st Cycle

Carry=-over

2nd Cycle

Carry=over

3rd Cycle

Carry-over

4th Cycle

Carry=-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =

Final Moment

S

B c D
) Za__ | 2 | 2c 2d 0
1
-FMyp FMpy  -FMpe
-2aB -2bB
|
-aB =bB
2bcB 2bdB
| beB bdB
| | 2.0 |
| =2abecB | =2b“cB
| f
|
-abcB i | -b2cB {
{ |> I
| i 2b2c2B i 2b2cdB
b2c2B | b2cdB
| |
-2ab2c2B | -203¢B | |
0 0 0 0 0 0
Myp Mpp Mg Mc Mop Mpe
| |
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at Points A and B are (Table 9)

Mppy = - FMyp - §.B,

x]
MBAQ = FMg, - 2%113,
oo = = Py + 28 3,
MCBQ = - 2%;"‘139
MCDQ = 2%1 B,
M = bd B,
DCO xl

(24)
(25)
(26)
(27)
(28)
(29)

Unlocking Point D and locking Points C and E, a second beam is iso-

lated (Beam 2). Denoting

=bd g
¥Dco = 3 B = =0»

and summing the values in the various columns of Table 10,

¥pg, = - 2%
= = fm o
gD, 0

TABLE 10

ALGEBRAIC DISTRIBUTION OF FUNCTION ©<,IN A SIX SPAN BEAM

(ISOLATED BEAM 2)

Points: G D E

Distribution 0 2e 2f 0
Factors:

Starting Moments: O,

1st Cycle =28 O¢,| =2f o<

Carry-over -e o%¢, -fox,

Unlocking Points C and E and locking Point D, Beam 1 is again

(30)

(31)
(32)
(33)
(34)



ALGEBRAIC DISTRIBUTION OF FUNCTION /3, IN A SIX SPAN BEAM

Points:

Distribution
Factors:

Starting Moments:

1st Cycle

Carry-over

2nd Cycle

Carry-over

3rd Cycle

Carry-over

4th Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

Continuous Beams

TABLE 11

(ISOLATED BEAM 1)

23

B ¢ D
0 2a 2b 2c 2d 0
/3
-2¢ ﬁe =2d /3e-
¢ /3, -d/3,
2ac/3, | 2bc/3,
-2bc?3| -2bed/3,
-bc273h =bcd /3,
Zabczfjo 2b202[:)°
abc%ﬂ% b2e Y3, i
1
- b2c3/3‘, -2b%c 3
i
!
0 0 0 0 o . o0
MpB Mgy | Mpe Mcp ¥cp Mpc
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TABLE 12

ALGEBRAIC DISTRIBUTION OF FUNCTION ¥, IN A SIX SPAN BEAM

Points:¢

Distribution
Factors:

Starting Moments:

1st Cycle

Carry=over

2nd Cycle

Carry-over

3rd Cycle

Carry=over

Lth Cycle

Carry=over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =

Final Moment

(ISOLATED BEAM 3)

F F
0O | 2 | 2n 23 2k
i
. | ,
-2gY, | -zhY, |
| | .
-g Y, - -hY,
: . {
| 2hjY, | 2hkY, {
hj XO | | ’ hk);
| | |
-' ' |
-2ghj¥, |=2h23Y, | ! |
| .
L | | i
-ghjy, | | | -h23Y, |
| | :
| | w22y, 202Ky,
| | |
| -2gh232;;! -2h3 32y i
]
0 o o | o o o
|
| | | L
l ]
Mpg | Mgp Mgp f Mpg | Mpg Mop
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isolated, but also isolated is Beam 3. The following moments are denoted

MCDl = - ec><O = /30, (35)

MEnl ==fex¢g= Yo (36)
and the carry-over values from Tables 11 and 12 are

Mpo, = - %1/30 = Sy (37)
My =-8 Y= 3, 9
TABLE 13

ALGEBRAIC DISTRIBUTION OF FUNCTION & IN A SIX SPAN BEAM
(ISOLATED BEAM 2)

Points: C D E
Distribution Factors: 0 2e 2f 0
Starting Moments: $o

1st Cycle -2e 8, | ~=2f &,
Carry-over -e 8 ~-f &

The Points G, D, and E are locked and unlocked systematically and
the values of >, /3, § and ¥ are tabulated (Table 14). Superimposing
the Basic Series (Eq. 24) and the Carry-over Series (/3) recently de-

rived, the moment MAB due to the fixed end moments at Points A and B is

M mw M =S B 28 A, 28 B B8 A+ sovins #0805 (99a)
AB AB % % 0 * 24 X 2

or
M, =-FM -§B+19m/3 (39b)
=" Pl ~ %P+ 5 00

in which (Table 14)

[--]

Zﬂ:—wo‘.:—a;%o(. (390)
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TABLE 14
SERIES ©¢, /3 , & AND ¥ AS A FUNCTION OF o< FOR A SIX SPAN BEAM

Series o< = Function ox< Series /3 = Function o<
c:-(o = O /3)0 2 = 'e o<
= de = -
Sl o EN e Tox
e, % T &< (6) /32 e T<ox
¢ = 32 mn-1 ox | ﬁS-eTno‘
n Xl n

2'ﬁw)(l=%) Do e

: (1=-1T)

 Series § - Function o ~ Series ¥ - Fumction o
805%’;"‘ Yo == £ %
Slgi_grrm 'Y1===fTo<
825;%1'2“ Y, = -t 1o
QHE%THCK Yn==f‘1‘n9‘

§ w —Efo¢ Sy e Iz
s (1 - T)x, “ 1-71)

6E‘zubstj’.t.utfmg de , fg = T,
X X2
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SERIES o¢, (3 , % AND ¥ AS A FUNCTION OF /3 FOR A SIX SPAN BEAM

TABLE 15

27

Series ot = Function /3

|

Series /3 - Function /3

=_d
2
>, = - 9°¢
1 %12
2
o, = . d7e
2 2P
o = - §_2..32Tn=1/3
!
zcx = d/g..m - :1:8)
) (l = T)Xl X

3o =/3
o5 -G
Bz = ;dgf T/3
[3n = %f -4/3
> Az B -5

o (1- T) )

ZS = - _5!!.5.,@__.--
£ x1x2(1 - T)

Series © - Function /3 ! Series ¥ = Function A3
df ‘ daf
S =-S5 Yo ==/
0 xlx2/3 ‘l °7x
o dfg g | Y, =% 1.
& A | 152
= - 4fg 72 f = 4f 42
82 xlsz /3 | Yo Y T</3
- _dfg 5 | - d4f mn
L A | WmER T
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TABLE 16

SERIES <<, /3 , & AND Y AS A FUNCTION OF & FOR

A SIX SPAN BEAM

Series ¢ - Function § Series /3 - Function ©
C"l:g—]‘iTS /31==-eT8
o = 2128 [32=-e128
O‘n:%..;'rng‘ Pn=-eMb
a(: deg mﬁ: ‘es\
Series § -~ Function & Series Y = Function §
So- 1) Yg==18
='f = e
&, ,-cgs‘ 5 £T8
= & = 2
82 ng Yz-mf'r&‘
- b i n=1 _ n
8, ,‘;!;T § y, =-t1m8%
285 & l_de Z - ~-f8
s (1—T)( 7 E (1-7T)
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SERIES =, /3, § AND Y AS A FUNCTION OF ¥ FOR A SIX SPAN BEAM

29

Series o¢ = Function ¥ Series /3 - Function Y
= - 328 y PBo=BY
=4 =
0 xx 0 x5
deg = &8
. B = TY 3, = TY
1 XqXp 1 X
5 de 2 - 8 2
o, = - 488 72y 13, 2 8& g2y
2 X1Xo 2 X5
o< = - 388 ny [ =8 my
n xlX2 n x2
Ferds | It
Series § - Function Y Series Y -~ Function Y
=_8& 'l = Y
SO Xp Y0
=-.f2 l!-i:.g
8, x—g Y Yy xzv
& . T8° = Ig
32 l‘%TY Y2 szY
= _ fgm-1y = fg mn-1y
Sn ng Yn x2'1'-'
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With notation 30, equation 39b becomes

Mpp = - F¥p - %l(l i gﬁi) B, (39)
in which

x3=1-=be (Denominator of convergency of Beam 1), (39d)

xp = 1 = hj (Denominator of convergency of Beam 3), (39e)

zq = a-cl- a-&‘% - 1 (Modified denominator of convergency'of
Carry-over Seriesc<,/3, & and Y, (39f£)
The above procedure is repeated for the fixed end moments at Points
C, Dy E, F and G. All moment equations similarly derived are presented
in Section 2, Table Cé.

"The actual denominator of convergency of the Carry-over Series o,
/B: 8 and Y is
l -

£
In order to Enplify the algebraic form of the final equations, modified
terms are used.

1-g-§&
=
"gg_:_ixé__ d _



7. CARRY-OVER SERIES Cx AND /3 FOR A SEVEN SPAN BEAM

The derivation of the end moment equations for the seven span cyclo-

symmetrical beam are considerably like those which are presented in Chap-

ter Five. The beam will be loaded and divided as shown in Figs. 11, 12,
and 13.
S T S

1A B C D E F 1+ G HY

/] -

jﬁ Z

7 I1 12 I3 Ih I I6 I7 #

-*-L1_ Lé---j-*—-L3 Lg—*"‘—-L Lg—*“‘——Lﬁ-*'

Fig. 11
SEVEN SPAN BEAM
/ 7 / o 7
?ﬁ 5 C D Z'D H§
V I 4 “
1 I2 13 ZT If+ I IS 16 I7
Fig. 12 Fig. 13

ISOLATED BEAM 1

ISOLATED BEAM 2

Tables 18, 19, 20, 21, and 22 are formed by the same procedure that

was used in Chapter Five.

31
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TABLE 18

ALGEBRAIC DISTRIBUTION OF FIXED END MOMENTS FOR A SEVEN SPAN BEAM
(ISOLATED BEAM 1)

Points:

Distribution
Factors:

Fixed End
Moments:

1st Cycle
Carry-over
2nd Cycle
Carry-over
3rd Cycle
Carry=over
4th Cycle(s)
Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

A B c D
0 2a 2b j 2c | 2d 2e 2f 0
-FMyg | FMpy |-FMpg
-2aB | -2bB
!_
| |
-aB ' -bB ‘
| 1
|
2bcB ! 2bdB
| |
beB | bdB
|
-2abeB | -2b%¢B| | -2bdeB| ~2bdfB
5 , |
-abeB =b“cB| ~bdeB =bdfB
obetB| 2bdtB
betB bdtB
-2ab |-2b° -2bd | -2bd
ctB| ctB etB|  ftB
0 0 0 0 0 0 0 0
Mag | YMpp | Mpc | Mgg | Mop | Mpg | Mpg | Mgp

8Substituting be + de = t,




Points:

Distribution
Factors:

Starting
Moments:

1st Cycle
Carry-over
2nd Cycle
Carry-over
3rd Cycle
Carry-over
Lth Cycle (9)
Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

Continuous Beams 33
TABLE 19
ALGEBRAIC DISTRIBUTION OF FUNCTION c<,IN A SEVEN SPAN BEAM
(ISOLATED BEAM 2)
E G H
2h 2m 2n 0
| —2ge ~2hxy
i
|
|
hje<, hke<,
~2ghjoc 212 §og ~2hkmsy|~2hknsy
i
| ~hknex,
|
. hjves, hkv o<,
| 2
-2h -2hk  |-2hk
ij4 Jves lveg  mvoy
i IS | DS | S
i
. 0 0 0
|
|
Mep | Ygp Yor | You | Yhe
|

Isubstituting hj + km = v,
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TABLE

20

ALGEBRAIC DISTRIBUTION OF FUNCTION /3,IN A SEVEN SPAN BEAM
(ISOLATED BEAM 1)

Points:

Distribution
Factors:

Starting
Moments:

1st Cycle

Carry-over

2nd Cycle

Carry-over

3rd Cycle

Carry-over

Lth Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

B C D )
0 2a 2b 2 | «d 2e 2f 0
| A
|
| el g,
_3/3 3 ~f /30
2ec/3) 2def3
cef3, de/3,
-2acep| -2bcefy | -2de?s3| -2defyy
)
~ace/3, -bee/3, | -de?/3, ~def/3,
E |
FZcepﬁ%‘IZdet/io
|
cetﬁi{ det/3,
-2ac |-2bc -2de? |-2de
ety etf3 3, 4741
0 0 0 0 0 0 0 0
Mpap | Mpa | Mgc | Mg | Mcp | Mpc | Mpe | Mpp
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TABLE 21

SERIES &< AND /2 AS A FUNCTION OF o« FOR A SEVEN SPAN BEAM

Series =¢ - Function << Series /3 -~ Function =<
=0 (f.gl.]g.’i = - fgy‘yo‘g‘a <
\ 1% » XX2] %
o<, = (@_&)lm = (@31@ -
b b HE ) 5
_ [feyiyiR - [feyyiyRey,
= () o - (R e
. (.f_@ﬂ_z)m ( zjnm
G s
E > = - /3 - - x2
5 1 - ey 5 1 - gy,
%2 X1%2

SERIES &< AND /3 AS A FUNCTION OF /3 FOR A SEVEN SPAN BEAM

Series o< -~ Function 3 Series /3 = Function /3
" ,____;_4\01’?1
- (FE R (xl*z)
oy = - (fELY 1f‘¥1 = [fen) 4
b ( 5] n A {"1"2 )2
2
- (2 o (e
fgy;y%nfy fey v}
R (xl"z ;11/3 ("1“2)/3
© Iy o
P L Sp: L
¥ 1 - 1=y, C _ fanyy,
52 e
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Combining the terms of Tables 18, 20 and 21, the moment Mpg is

= - -2 bede,
Mpp = - FMpp xl(y2+ ¥yz ? (40)
in which
X3 =1 =be - de, (40a)
Xy = 1 = hj - km, (40b)
y3 ® 1= be, (40¢)
Jo = 1 - de, (404)
y3 = 1 - hj, (40e)
v, =1 - km, (40£)
and
- _X1X2 .
Ty " 1 (Modified denominator of convergency of Carry-over
174
Series o< and 13 )Elo) (40g)

All moment equations similarly derived are presented in Section 2,

Table C7.

107pe actual denominator of convergency of the Carry-over Saries <<
and /3 is

1 - gy, |
x1x2
In order to simplify the final equation, a modified term is used.

fgy.y
12 _ xxp

fey.y,  fayyy
1=/ 194
b )

-1=2z,



8. CARRY-OVER SERIES o<, /3, § AND ¥ FOR AN EIGHT SPAN BEAM

As a final illustration of the Carry-over Series, the end moment

equations will be derived for an eight span cyclosymmetrical beam, load-
ed as shown in Fig. 14.

A o1 o
/]
LT L] 3] I
—Lyste—Ly~t= Lyt Lz
Fig. 14

EIGHT SPAN BEAM

4 H
N
I L

ARNRYY

I7 I8

6
Fig. 15 Fig, 16 Fig. 17

ISOLATED BEAM 1 ISOLATED BEAM 2 ISOLATED BEAM 3

Since the series would become complicated if beams of more than four
spans were isolated, it is necessary to divide the eight span beam into

two four span sections and a two span section, as shown in Figs. 15, 16

and 17.
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TABLE 23

ALGEBRAIC DISTRIBUTION OF FIXED END MOMENTS FOR AN EIGHT SPAN BEAM
(ISOLATED BEAM 1)

Points:

Distribution
Factors:s

Fixed End
Moments:

1st Cycle
Carry-over
2nd Cycle
Carry=-over
3rd Cycle
Carry=cver
4th Cycle(ll)
Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

B c D
0 i 2a 2b ? 2¢ 2d 2e 2f 0
-Fifyp | FMpy |-F¥pc |
|
-2aB | -2bB |
~aB : ~bB
' l
|
2bcB | 2bdB
beB bdB
~2&ch|-2b2cB ~2bdeB |~2bdfB
I R ?
| | |
-abcB | | ~b%cB |-bdeB | ~bdfB
2bctB | 2bdtB |
i
r
betB bdtB
-2ab |=-2b° -2bd |=2bd
ctB ctB ' etB ftB
0 0 0 0 0 0 0 0
| |
Mg | Mpp | Mo | Mgp | Mgp | Mpc | ¥pg | Mpp

115ubstituting bc + de = t,
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Using nomenclature similar to that of the previous chapters and
temporarily locking Point E; the moments in Beam 1 due to the fixed end

moments at Points A and B are (Table 23)

Mppy= - F¥yp - %213, (41)
Mypg® Py - 235’2 (42)
Mpog= - FMgy + 23'12 (43)
Mcpo= - biuzB (44)
Mepo™ :{%28 (45)
Mpgo™ 25 By (46)
Mpgo= - 2‘-’%’-‘? B, (47)
Mepo® - ]‘%%f B. (48)

Unlocking Point E and locking Points D and F, a second beam is iso-

lated (Beam 2). Denoting

Mgpg= - P% B = 4, (49)
and summing the values in the various columns of Table 24
Mpg,= - €05 (50)
Mgpy= 2he<g, (51)
Mgpy® = 2he, (52)
Mppy= - he<g. (53)
TABLE 24

ALGEBRAIC DISTRIBUTION OF FUNCTION ©<,IN AN EIGHT SPAN BEAM
(ISOLATED BEAM 2)

Points: D E F
Distribution Factors: 0 2g 2h 0
Starting Moments:

b‘ﬁ
1st Cycle ~2g | -2h o<,

Carry-over -gS<, i ~h =<,
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TABLE

25

ALGEBRAIC DISTRIBUTION OF FUNCTION /3, IN AN EIGHT SPAN BEAM
(ISOLATED BEAM 1)

Points:

Distribution
Factors:

Starting
Moments:

1st Cycle

Carry-over

2nd Cyecle

Carry-over

3rd Cycle

Carry-over

Lth Cycle

Carry-over

5th Cycle

Infinite Cycle

Sum of all the
terms in each
column =
Final Moment

A B ¢ D B
0 2a_ | 2b 2¢c | 2 2e | 2f 0
/3,
.l-23 /3. -2 /3
-6/30 ' =f I'Go
2ce/3,| 2def3,
— —— !_ SIS -
ce/3, - de/3,
|
I
~2acefll ~2bces3 ’-Zdezﬁ;, -2deff3
—_ || | B ==
~ace/3 -bece/3 -de%Gni ~def /3,
2cet /3 |2det/3 |
cet/3 | det/3
|
-2ac |-2be |-2de® |-2de
etg eyq t/3, ftﬁ%
!
0 0 0 o | o 0 0 0
| .
Map | Mgp | Mo | Mo | YMop | ¥pc | ¥pe | Mmp
|




Points:
Distribution
Factors:
Starting
Moments:
1st Cycle
Carry-over
2nd Cycle
Carry-over
3rd Cycle
Carry-over
Lth Cycle(lz)

Carry-over

5th Cycle

Infinite Cycle

Sum of all the

Continuous Beams L1
TABLE 26
ALGEBRAIC DISTRIBUTION OF FUNCTION ¥ IN AN EIGHT SPAN BEAM
(ISOLATED BEAM 3)
E F G ___H J
0 23 2k 2m 2n 2p 2r 0
A |
—2j Eg ""2k XQ I
‘-j 50 “"k a’o
2km X,| 2kn %o
km Y, kn Yo
-2 jkmY|-2k2mY, -2knpy [-2knrY,
~jkmY, -k%m Y, |-knp Y, -knr Y,
2kmw ¥, | 2knw Y,
kmw ¥, knw ¥,
25k |-2K3 -2kn |-2kn
mwY, mw, pwY, rwy
i
0 0 0 0 0 o | 0 0
|
|
!
Yer | e | Yo | Yor | Yen | Mo | Mag | Mum

terms in each
column =
Final Moment

Psubstituting km « np = w.
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Unlocking Points D and F and locking Point E, Beam 1 is again iso-

lated; but also isolated is Beam 3. The following moments are denoted

Upg, = = 8% =/0s (54)
and

Mpg, = = hog =¥o (55)

The carry-over values from Tables 25 and 26 are
e, = = ﬁlﬁcf =1, (56)
Mep, = - "‘* ¥o= 8o (57)
TABLE 27
ALGEBRAIC DISTRIBUTION OF FUNCTION &, IN AN EIGHT SPAN BEAM
(ISOLATED BEAM 2)

Points: D E F
Distribution Factors: 0 2g 2h | 0
Starting Moments: &
1st Cycle -2g B, [-2h 8o
Carry-over -g 8, -h &,

The Points D, E and F are locked and unlocked systematically and the
values of ¢, /3, & and Y are tabulated (Tables 28, 29, 30 and 31). Su-
perimposing the Basic Series (Eq. 41) and the Carry-over Series recently

derived, the moment M AB due to the fixed end moments at Points A and B is

Mpp = - FMyp - 2B~i°£/ a"e/sl-a“e/sz- sowes = 0 (58a)
or

HAB='FMAB'“23" ace yﬁ, (58b)
in which (Table 28)

Z@: ~e7 — (58¢)

1 - gy Wiy,
xl JC2
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TABLE 28

SERIES =<, /3, @ AND Y AS A FUNCTION OFe<FOR AN EIGHT SPAN BEAM

Series o< - Function o< Series /3 = Function =<
Py = S [3g &= &8
oy - 18 o fr= -
mzﬁiglvm (13) [32=-gV29‘
. n=1 -
cxn=%lv oK ﬁn--gv"c‘
(=]
- B hj - = O
e =t $pasem
Z L=¥ 2 C) 1~V
Series ¥ - Function o< Series ¥ - Function o«
Sozr.].;j%hcw Yo ==h o<
‘81:%%th Y1 =-hves
hj 2
gzg_%hﬁm Yo = - h Ve
Snz'}‘l"%hvngc Yn=—hv“°‘
> §a o hiy, Sv wplis
[-] lﬂv x2 o 1‘-V

133ubstituting %1 « 2T, =y,
2
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TABLE 29

SERIES o<, /3, © AND Y AS A FUNCTION OF /2 FOR AN EIGHT SPAN BEAM

Series ©¢ - Function 3 Series /3 - Function /3
D('O (= Q_l : /3 -1 ﬁ
% /3 0
2 | +
1 .
2 2
mzz-é‘;émv,g Bz:fﬁflm
2
o>, = - L&yl 3 fAn = %vl(l vl A
1
- =B by, s A (1. hi,
[ = =
Z x(1 - Dhe X ! | 2;!‘3 ke *2 :

Series ¥ - Function A3

- _ Thiny), | _ fhyy
SO *x1%Xo /3 i YO mx_]t /3
fhiyiy), | thy
- e = v o Y % “Hl v
e-SEte | 1=
g, = - Ny, 2 5 | YV, =1 2
X Xo | |
fhj f
T _x:,j%l'h VA , Y, = ...;9’;1 W A

Y
[}
IR
ks
1
a"-<:
S0
M
ol
ig
';‘.-e
<[»
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TABLE 30

SERIES <<, /3, & AND ¥ AS A FUNCTION OF § FOR AN EIGHT SPAN BEAM

Series o< - Function 'Y ' Series /.3 - Function %
“o’i;f%rlﬁ Bo=-¢g?8
°<1=£J-%y-il\18 31=-8V%

o = FL V28 2= -g V28
an.—sf.%lvn‘s ﬁn:-gv"'&‘

i&zﬂl__g_ iﬁ: -89

. xl(luv) . -V

Series § - Function 9 Series Y = Function &
§5= 8 Yy=-h 8
- 2974 =
'81 = Y Yy h Ve
=0y v T - 2
82 s v Y2 h V< §
‘Sn-b%“‘in“lg Y =-hv'S8
- 5 £ e h §
= - El Y = o
1 =
2 3oy PR
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TABLE 31
SERIES =<, /3, & AND ¥ AS A FUNCTION OF Y FOR AN EIGHT SPAN BEAM
Series o< - Function Y Series /3 -~ Function Y
feiviyy, g8y
| e Y = SO0 A b
=0 %)% 0" %
O, = ea fiﬂ.}_rlb_q& VY 3, = .gg_yi# VY
(- S — E.gigl"yh V2 'y /-3»« = _g_;l_:fh V2 Y
2 X1 %5 i7) X
e, == _f.g_.‘].y].z& ‘,Tn Y ﬂ = 5..:13111‘ Vn Y
n xlx2 8 x2

fgiy-¥, Y
174
xl32 1~ V)

1]

PN

s

gy, Y
thl - vj

Series & - Function Y Series Y - Function Y
= - :]..:).rib = Y
§,= - L v Xy
- Ny = hJy, vy
8l ;ﬁ Yl Cox
2 2
2 9 )
= M vy - by v
= - : Y. o= =Sy
82 2 x2
“) -
g :_thiVn"lY Y :EQXL yo=-1l ¥y
n n X,
4
o f -3
> Ga il g 0 E v = Y (1. I8,
e 1-v) x o 1-V x




Continuous Beams L7

With notation 49, equation 58b becomes

Myp = - Py - 3 (72 4.,‘.;{%:) B, (58)
in which
x, =1~ be - de, (58d)
X, =1 = km - np, (58e)
yy = 1 - be, (58£)
¥, =1~ de, (58g)
y3 = 1- km, (58h)
y, =1~ mnp, (583)

and
b < hjy, x
B, = —do -g&—l - 1 (Modified denominator of convergency:u‘ of
1 feyy fexyyy
Carry-over Series o<, /3 , & and ¥ ).(58k)
The above procedure is repeated for the fixed end moments at Points
C, D, E; F, G, H and J. All moment equations similarly derived are pre-

sented in Section 2, Table C8,

l’l"'I'he actual denominator of convergency of the Carry-over Series o2,
B, ® and ¥ is
feyy _ hivy,
| *2
In order to simplify the algebraic form of the final equations, modified
terms are used.

l =

3 fgyy hly,

e < S~ AT _l_hjy!’x = s
f
21 fey, fey %,

1

_ ey by
X] R =X . lom.
hiyy, hjyh hjyhxl

X2



9. FINAL CONCLUSIONS

A general procedure for the derivation of the end moments by moment
distribution has been demonstrated by using the summations of infinite,
convergent, geometric series. The results are exact, direct and general,
The final moments are functions of two separate and independent variables:

1. The New Distribution Factor which is a function of the stiffness
factors and the carry-over factors,

2, The Fixed End Moment which is a function of the applied loads or
the performed deformation.

In general; the New Distribution Factor consists of two classes of
infinite series:

1. Basic Series,

2, Carry-over Series,
The Basic Series are of two types:

1, Three Span Basic Series,

2. Four Span Basic Series.
The Carry-over Series are of two types:

1, Carry-over Series from left to right,

2. Carry-over Series from right to left.
The Basic Series consists of an infinite number of terms converging to
zero and each term is a finite number,

Basic Series = ArQ 4 Arl 4 Ar? + ArS + sccvsccocsoceee ¥+ O (59a)
The Carry-over Series alsc consists of an infinite number of terms conver-
ging to zero, Lach term in this series is not finite; it is another in-

finite series.

L8



Continuous Beams L9

(broso +Crls0 4 0rfs0 4 0r3s0 4 ,...... 4+ O
Cr9sl 4 crlsl 4 crisl 4 Cr3sl & .....w. + 0
Cr0f 4 Crls? 4 CrR + 0382 4 ..eveu. + O,
cr0g3 + Crls? 4 083 4+ Cr383 4 voveoes + 0,

Carry-over Series ) (60a)
u . . . 0,
u : : : 0,
: . . - 0,
| o 0 0 0 0.

The sum of the Basic Series is the simple sum of an infinite, con-
vergent, geometric series.

ZA= —1—‘:‘—;—, (59)

Q
The sum of the Carry-over Series is the sum of an infinite series of in-

finite series.

- C C C
C*—-——-——LI'O+—_I'1+———I"2 coeoo0o0o0 +O 60b
:z:- l-s l-s l-s ¥ ’ ( )

- C
e (60)

According to the performed investigations, the continuous beams may
be divided into two groups:
1. Three and four span beams containing New Distribution Factors
formed by the Basic Series;
2. Five and more span beams containing New Distribution Factors
formed by the Basic Series and the Carry-over Series.
Although the investigation was limited to continuous beams of three,
four, five, six, seven and eight spans having a constant moment of inertia,
it is evident that the principles are valid for all cases in which the

Fixed End Moments may be distributed or the end angle changes may be bal-
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anced. Any beam may be divided into an integral number of two, three and
four span sections and the Carry-over Series tabulated. In many cases it
becomes necessary to decide which division is the most appropriate. If
the isolated sections are symmetrical with respect to the center of the
beam, the derivations are simpler and the resulting equations are more
concise than if the isolated sections are unbalanced. It must be noted
that no matter how the beam is divided, the results will always be the

same, although the algebraic form may differ,
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SECTION 2

1. GENERAL NOTES

The moment tables presented in Section 2 are divided into the fol-

lowing groups:

Group 3 - Three Span Beams,

Group 4 -~ Four Span Beams,

Group 5 - Five Span Beams,

Group 6 - Six Span Beams,

Group 7 - Seven Span Beams,

Group 8 - Eight Span Beams.
Each group is subdivided into three subgroups:

1, Equal Span Beams,

2, Symmetrical Beams,

3. Cyclosymmetrical Beams,
Each table is composed of the following parts:

1. Description of the beam and structural identities,

2. Illustration of beam,

3. Constant functions of New Distribution Factors,

L. Table of final moments.

In the application of the following tables, follow this procedure:

1. Select the table for the case to be investigated,

2, Determine all the stiffness factors,

3, Determine all the required functions of the New Distribution

Factors (8,5,6,d covoevesscs X3 and ),

53
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4., Determine all the required load functions (fixed ead moments,
sums of the fixed end moments at the points of support or the
applied couples),

5. Substitute all the computed values into the Table of Final Mo-
ments,

6. Determine the final moments from the Table of Final Moments.
For example, from Table C3, the final moment
MAB - FMAB - %(FMBA - FMBC) - %f(FMCB - F‘MCD)°

The proper sign is incorporated in each formula in every table,
based on the principles defined in "Nomenclature'".

The tables may be used to compute the end moments due to the follow-
ing:

1. Static or moving loads,

2, Rotations at the points of support,

3. Displacements of the supports.

A1l the tables were prepared to be used mainly for the computation
of the end moments due to static or moving loads; therefore, the correct
signs for each fixed end moment are included in each formula., Every
fixed end moment is to be taken as positive when substituting into the
Moment Table and the table will algebraically work out the proper sign.

If the end moments due to applied couples at the points of support
are desired, the fixed end moments in the second vertical colum of the
selected table are placed equal to zero. The sum of the fixed end mo-
ments at the point of support where the couple is applied, is replaced
by the numerical value of that couple. All couples are positive if they
act in a clockwise direction, and negative if they act in a counterclock-

wise direction.
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Sometimes the end moments due to the displacements of the supports
are desired. In cases of this type a more complicated rule of signs must
be followed.

1. The fixed end moment of the high
High End
end is to be taken as positive.
Low End 2. The fixed end moment of the low
end is to be taken as negative
The above rules can be verified by basic relationships. If all the tables
were derived for transverse loads and all the signs of the fixed end mo-
ments have been included in each formula, the multiplication factor (-1)
has to be used to correct the sign for the low end. This modification
must be used throughout the given table.

The tables were prepared for continuous beams with fixed ends, but
may be modified for any end conditions. The modifications for two very
common end conditions are explained in the following paragraphs.

If an exterior end is freely supported, the exterior span becomes
a propped beam instead of a fixed end beam, The fixed end moment at the
freely supperted end becomes equal to zero, and the fixed end moment at
the other end of the propped span is replaced by a propped end moment.
The stiffness factor of the exterior span must be replaced by a mod-
ified stiffness factor (K!' = % K).

If the exterior span has an overhanging end, the fixed end moment
at the freely supported end is egual ito the cantilever moment and the
fixed end moment of the other end is replaced by a propped end moment.,
This adjustment may be done mumerically and the tabular procedure ap=—
plied, The stiffness factor of the exterior span must be replaced by

a modified stiffness factor (XK' = %'K)“



CASE A30

THREE SPAN BEAM

EQUAL SPANS

DESCRIPTION:
Beam with ends built in and freely
supported at two points. Supports

equally spaced,

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

i
=~

9%

uoTyelg Juemtaedxy FuTsesutIug



TABLE OF FINAL MOMENTS

Fixed End Moment

Moment: FMpy - FMgg Hep = Pgp
i P TR
Mga FMpy H : - ;.5_333 e 013;3 .

| B ) o )
Mg .3 - Mg, ;5333 = <1333
;;B__m_ FMop - 1333 _ :;333
Mep - Pigp 1333 - 533
1-1D:' o ;0667 h- _:2-66_7 -

SWesy SNONUTIUON

LS



CASE A3l THREE SPAN BEAM EQUAL SPANS
DESCRIPTION: A | . Y L)
I 4 I I 4

Beam freely supported at four points.

Supports equally spaced.

[, —— et [ i ], ——=

PROPPED BEAM END MOMENTS

CONSTANT FUNCTIONS OF NDF

By = ==b T,y

% B
— M c
BMy, = Bgy + —]

=
i
i

m
li
N &

89
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TABLE OF FINAL MOMENTS

* *
Moment Fixed End Moment E'MB A= FNBG FMGB - EMCD
o 667 13:
}’BA miBA. o “4‘ - » 333
M o L6677 133
Be - By, 4,667 « ;1393
L : 667
MCB El\cﬂ - 1333 oy
—— e | e - Sy
M EM* 133 667
CD I b GD - 333 — 04

Swesg SNONUTAUON

6$



CASE B3 THRESZ SPAN BeAM SYMMETRICAL
DESCRIPTION: é ;

/4 7

Beam with ends built in and freely Il 12 I1 v

supported at two points. Supports

symmetrically spaced.

CONSTANT FUNCTIONS OF NiW DISTRIBUTION FACTOR

Ky = &1 K, = L2
1. 2
L Lo
K Ko

x=1= b2

09
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TABLE OF FINAL MOMENTS

Moment Fixed End Moment FMp, - FMg, FMgp - FMop

a ab

Map - FMpp o X

a b

Mpp FMpp -25 2 &

M FM 2 8 -2 ab

BC o BA x %X

M FM . 2 ab > &

icB CD 7 b

. 2 ab .22

MCD FMCD X X

ab a

Mpe “¥he x TX

sureeg SNONUTIUOY
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CL3E C3 THREE SPAN BEAM CYCLOSYMMETRICAL
14 B C D
DESCRIPTION: 7 N
i Il I, I3
Beam with ends built in and freely
supported at two points. Supports Ly -~ Lz—"'"'——LB

unequally spaced.

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

K. = 11 K, = 12 K, = 13
33 Ii 2 i 3 L3
a::.»_z_KJ:__ b=,_._K_2._.._.. x=1- be
2(K + K5 ) 2(Ky + Kg)
r_..__KL_,_. d:——}iL_

29
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TABLE OF FINAL MOMENTS

Moment

Fixed End Moment FM

AB

¥y

i

Y

2 &
X

- 2 ac
X

2 d
X
-24d
X

-4
X

U079

swesg snonut

€9



CASE ALO FOUR SPAN BEAM EQUAL SPANS

DESCRIPTION:

AN
TSRS

Beam with ends built in and freely

supported at three points. Supports

e L —— L L —ofe—L—

equally spaced,

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTORS

x = 1

8

I . - 5

3 | e — = —
I s ¥ 18
u::z

L

9

utduy

-
<

uoTqelg quomtaedxy JuTae




TABLE OF FINAL MOMENTS

Moment Fixed End 1*1(:':31@!11;-==r FII.B " FMBG FMCB - M FMDG - FMDE
;A_B - M, - +2679 il 0715 - 0179
Msa G, - .5358 +1429 - 0357
MBG - P, «5358 = 1429 0357
Mo FMGB - .1250 = 5000 <1250
MCD - FMCD «1250 = »5000 - .1250
Mo FMDE +0357 - +1429 5358
Yo - Pl - 20357 1429 = 5358
Moo il - 0179 0715 - 42679

suweog SNONUTLUO)
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CASE 41 FOUR SPAN BEAM

EQUAL SPANS

DESCRIPTION:
Beam freely supported at five points.

"Supports equally spaced.

PROPPED BEAM END MOMENTS

CONSTANT FUNCTIQNS OF NDF

# M
{ = _AB

. D
E[‘-’IIIE = FM'DE S T

K::;[- K':B—l
L 4L
a:j. b=2 e =4
14 7 4

= 8 = 43

*=5 B ¥

99
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TABLE OF FINAL MOMENTS

¥*

Moment I Fixed End Moment EMB A" FMBG FMGB - FMCD F‘MDC - EMIE
¥*
Moo & EME " JbL3 - 1250 .0357
MGD - FMGD 1429 - 5000 - 1429
*
Mpe Mg .0357 - 1250 643
Mg - mim - 40357 «1250 - 4643

sueeg SNONUTIUOCH

L9



CASE B4

FOUR SPAN BEAM SYMMETRICAL

P

DESCRIPTION: 7 B C Eg

2

b A

Beam with ends built in and freely 2 I, 1, I, I, ’
supported at three points, Supports

, ot —— ]'_,l——l--l-— IQ_PI'"'_ ]_2 Ll—---

symmetrically spaced.

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

¥ -
K, =1 K, = 42
1 L-} 27 12
- Kq
2K * By
b«:.__lﬁz...___ K2
2(K1+K2)

<
i

b
1-3
1 .Db

N
g =B

89
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TABLE OF FINAL MOMENTS

sueeg SNCNUTHUOH

Moment, Fixed End Moment AL, - AL, M - P, P, - FM
a a ab
e - o - 3 -8
a a ab
Mpa Bhy -2 55 = 3%
I M 2 &Y - ab
e - i, 3 5% 5%
. _ b 1 b
Yep Mg -3 =3 P
’ b 1 b
Mep ~ Fop 3 -3 -3
ab - 2 &Y
MDG FMD}.i; 2% 2x X
- FN . ab o o 0
MDE LDE 2x 2x x
ab a a
Mep Py T Ix ix - ‘:Ez

69



CASE CL FOUR SPAN BEAM

CYCLOSYMMETRICAL

DESCRIPTION:
Beam with ends built in and freely
supported at three points. Supports

unequally spaced.

ARARE Y
| =
=

NARRARN

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

i s T S ¢ gt
2(K + K)  2(K + K) 2(K, + K5)

K ez_L f:._ﬂ'h_
2(K, + K3) 2(K3'+ Ku) 2(K3 + Kh)

x=1< be —de

vy = 1l- be
yé = 1 - de
up = 2-5b
u, = 2 - e

0L

uoTyel}g JuawTIedXy FuTdesuTiug



TABLE OF FINAL MOMENTS

Moment Fixed End Moment FIJB g ¥ FMBC FMCB - FMCD Tl e FMDE
MA.B - mA,B B 252;2 ?E(_: ) E%% =
]\IBG - j‘.IBf‘.L_ o 2_%2 ! _—-_2 ??’c__ o ; L_%

Mep " R = %l’zn : .. %11 N _2;3{-;1
Yop B =~ Blop - _—E?ii?g_ ] ‘“_%3 : - A1
M R _ 2 H;‘i-i.' . 2 & ) 2 f-;l _
Mg -uﬂbE__ | _- E—é;i;ﬁ‘_ 2 ;[g . _-_2 %Z_l
Mep Fpp | ‘:_Efti ?;-f - 'fzzl

SUBeg EMMUTLUOY)



CASE A50 FIVE SPAN BEAM

EQUAL SPANS

DESCRIPTION:
Beam with ends built in and freely
supported at four points. Supports

equally spaced.

AN

CONSTANT FUNCTIONS OF

NEW DISTRIBUTION FACTOR

==
i
=i
4]
3]
=i

i

N
=
=l

2

uoTyelC JuswTIedXy FurtIesuTIuy



TABLE OF FINAL MOMENTS

- FM FM_, - FM FM_ ., = FM

Moment Fixed End Moment FMBA." EMBC EMCB oD e DE D iF

-= = — —_—— e = 7

AB e F‘I{AB - o2679 00718 — 90191 uOOhS

- - 25359 1436 - 0382 .0096

BC - FMBA. 05359 - oJJ&Bé 90382 = .0096

Mop i © M. - 1212 4976 .1340 ~ 0335

e SO D | VTSI TN S — F T -
Mcp E - FMgp 1242 - <4976 - 1340 .0335

o8 ‘ FMp, .0335 - 21340 - 4976 1242

Moy | - P, - .0335 .1340 4976 ~ I

M ' FMpn - .0096 .0382 - 1436 5359

iF .0096 - ,0382 <1436 - 5359 "

0048 - .0191 .0718 1 - 2679

STeag SNONUTAUON
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CASE A51 FIVE SPAN BEAM EQUAL SPANS
\
DESCRIPTION: 4 B by B E F

I I 1 D 1 1

Beam freely supported at six

points. Supports equally

L—ott— L —odse— T - L—s
spaced.
PROPPED BEAM END MOMENTS CONSTANT FUNCTIONS OF NDF
K= 1 K = 3L
L 4L
E}% - S
B
A ) IBA o b =2
14 g
3 FMTE c=4d= L
EMEF = FME[F + 5 L
X = 12 e Q.'Z
14 49

L

uoTqels JuswtTaadxy SutaesuTduy




TABLE OF FINAL MOMENTS

¥* 3
Moment Fized End Moment | EM, ~ MM, Mg = Mgy Pipe = Mg Mgp = By
3
= " ; . - L] 4 .0
MB A EMB A 0.4641 0.1244 0.0334 0.0096
= S—
Moo - BMp, 0.4641 - 0.1244 - 0.009
Mon Mgy - 0.1435 0.5024 - 0.0383
Mep =B 0.1435 - 0,5024 0.0383
s s — e
= B B S,
l%n EI{EF L 0 i0096 0 00334 = 0 . 12!& O .46‘4.1
— - i —— ) -
IL{E,F = E:IVIEF 0.0J96 - 000334 e 0.4 +1

swesd snocnutiuopn
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CASE B5 FIVE SPAN BEAM " SYMMETRICAL
DESCRIPTION: IA B e D _E\I\F’
4 Fi 4
Beam with ends built in and freely Il 12 13 I2 Il
supported at four points. Supports
t— Ll ""‘LZ--D'--—— LB—-s-n-—LZ Liﬂ-—

symmetrically spaced.

CONSTANT FUNCTIONS OF NEW

DISTRIBUTION FACTOR

K, =31 K, = 1o K, = 13
a ] 2
L I3
a = 3] b= L
Ko K

x=1=be

z = (X -1
(d)

9L

uoTqeqg Juewtaadxy Jutaesutuy



TABLE OF FINAL MOMENTS

Moment Fixed End Moment FHBA = FMBC FMGB = FMCD FMDC = FMDE FMED = F'MEF
M - FM - 2140 ac(y . 1) - abe
AB AB x Z Z Z dz
Mpa FMpp -2a+ % 22214 9) - 2 T
o 2a be 2a¢ ¢ 1y 2ac 2abe
Mao - FMg, T g | =51 a3) T i
; . br2x 1/2% Irx _ - b(x
Mop F¥p - 2T -1 2T -1 2@ -2 -zE-2)
Mo - FMgp &1 . %(%5 1) - %(2.1 - 2) P%C = 3)
: bix _ 2 - 3x _ g Y> S b2x _
M'DC IMDC z'd 2) z(d 2) z'd 1) z( d 1)
brx 1 1/2x b/2x
._ - - 5x _ 2 (X _ (=X _ 1 - D(=X _
o Mg 3-2) Elg =2 (& - 1) -
Mo FMp - 2abe 3¢ - E58(1 5 ) 28(1 + bE)
dz L2 X z ' d z
2abc _ 2ac 2ac(y , 1 _ 2ay be
Mgp - PMgp z az =2+ 2) =1+ 32)
FE FE dz dz Z x z

sureag SNONUTRUON
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CASE C5 FIVE SPAN BEAM CYCLOSYMMETRICAL
DESCRIPTION: 1A B B D E F %
Y 4 i Vi 2
Beam with ends built in and freely 4 I L I I
1 2 L 5
supported at four points. Supports
unequally spaced. Ll L2 % >

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

= 29 = 25
Kl Ll KZ 1o 3
az Xl p=___K2
d:..._,._.}il:__: m_....i{jm
2(Ky + KB) 2(K3 + K )
b % i =
2(K1++K5) 2(

3‘."

"

e

it

8L

uoT1eqg quewrsadxy SuTassuTduyg



TABLE OF FINAL MOMENTS

Moment Fixed End Moment FMBA" F'MBC FMCB- FMCD FMpe = FMDE FMED"_FMEF_
M - M pp -i(lﬁ'%) Ei‘.’.(]_.,.%-) -3% %92-5
S, I | o = o
Mo FM o - 2 - 1) | L& - 1) ; 1% - 2) - B(X - 2)
[ M o L: - . DE - 1) E -»_%(-g - 1}-_ l -%}1_‘_ 2) B(X =_2) r
M pe i M e 2L - 2) | -1 - 2) I - 13 - 1) B(Zx - 1)
T e e | mes v | mges
) FMEF_ s %,.i?i;lz_ o %‘;}’1 | 2;?1(1 +3) Z}‘k‘l(l + )
e | Mg ot _ Basd) | -baef®

suresg €NONUTIUCH
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CASE A60 SIX SPAN BEAM EQUAL SPANS

DESCRIPTION:

08

AR TS

Beam with ends built in and freely

supported at five points. Supports

e |, — Ot T, — ot — L —btp—— [, — ettt | — >t — [, —
equally spaced,

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTCR

H
I
NG

=

i
Ao ]

jii)

1}
i

[t

1}
=2
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TABLE OF FINAL MOMENTS

Howont e ot | Pigy - Mg | Bigg = By | Pl - BGe | P - B | B - Pl
Myn - e - 22680 0718 - 0192 .oo5i-t - .0013
Moy R, - .5360 <1436 - 0384 .0102 - .0026
Moo - ML, 5360 — 1436 0384 0102 0026
M o - 1242 - 4973 o1345 .0359 .0090
Moo _" .._;{-MICD 1242 4973 - 1345 0359 = 20090
HDG L e ,0333 - L1333 - 25000 1333 - 0333
Mo - Mo - 40333 1333 - .5000 »1333 0333
Mo R - ,0090 0359 - 1345 4973 1242
o - FﬂED ,0090 ~ .0359 o 1345 4973 - 1242
Mo P 0026 - 0102 <0384 1436 05360
Moo - M. - 0026 0102 - 4038/ 1436 - +5360
M. . - .0013 .0051 - 0192 0718 = 2680

Swzog SNONUTIUOYH
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CASE A6l SIX SPAN BEAM EQUAL SPANS
$\
DESCRIPTION: = :

Beam freely supported at seven
points. Supports equally

spaced.

G
A 1 A

= L——s-1

PROPPED BEAM END MOMENTS

CONSTANT FUNCTIONS OF NDF
K= % K = 3K
o FMAB 4L
Bigy = —5- * Bigy 4 .2 : 5
=] - b . = —e ==
1 7 - 4
FM R i
3* —
Ellpg = g + ;:GF T z:%{%
n=

SR

z8
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TABLE OF FINAL MOMENTS

B et | By - B | Mg - B | RO - RO | PG - BL | R - B
M, EM, - L 1244 - .0333 .0090 - .0026
M, - B, 641 - 1244 .0333 - .0090 .0026
M g - 1436 -~ 5026 1333 - 0359 .0103
My - M \1436 .5026 = 833 .0359 - .0103
MDC FMDG .0385 - 1342 - 5000 1342 - 0385
My - P ~ 0385 21342 - 5000 - 1342 .0385
M R ~ .0103 0359 - 1333 .5026 1436
Mo - M 0103 - 0359 1333 - 5026 - 1436
My M, .0026 - .0090 .0333 - 244 641
Mg - B, - .0026 .0090 -~ 0333 1244, - 4641

Smeeg SNONUTHUO0N
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CASE Bb6 SIX SPAN BEAM SYMMETRICAL
DESCRIPTION: 3 E F
4 Z
Beam with ends built in and freely g I2 Il
supported at five points. Supports
- [ - ], : L, ote—1,_ -o-fe— I, b e
symmetrically spaced. & e 3 3 < Ll
CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR
I I 1
Ky =21 = X, = =3
a:_..__i,{,l:,__: b:,_?_,_Kg_,_._,, c:____,K..g_.__,. u:%
I I z=h43-2
dza.._.._a_.s_a, e.=::__.._.3........_::h.. d
2(K, + K;) 2(K; + K5) 4

RSN
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TABLE OF FINAL MOMENTS

Voment || Fixed End loment Py ~ Ry Fiop - Higp Fipe - Ripg Figp - Pge Ripg - Ripg
¥ap - Mg -3a. Faed -2 £ -5
L Fing -2a+de ey P - Z< - Zake
ae =Ty 20+ - %04 ) = - > =
¥ep Mep - b7 - 29 - 3729 1F-2 - 30~ 28 LI
Y - mgp 37 - 29 17 - 2 S A ) -fa-2
¥pE - Mg - % S -3 % =
T 1. - b -2 la-29 -3z-2 3729 Mr-g9
e | ™ b -3 -10-3) 3G 102 “yo-2
- T e -2 - -214 0 2 , o)
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CASE C6 SIX SPAN BEAM CYCLOSYMMETRICAL
DESCRIPTION: ; B c D
: z ;
Beam with ends built in and freely 7 Il I, 13 Ih I5 16 4
supported at five points. Supports
e | o —— P —t— ], e | g ], L, —1
unequally spaced. L -2 13 b > ! 6
CONSTANT FUNCTIONS OF NeW DISTRIBUTION FACTOR
5 1 ) 1 1 14 Ty * R
K =21 K, = =2 K.=e3 K. =gh K22 K==
i3 " 3 L3 L L}-l- L L5 6 L6 X, = 1 - hj
a‘....,....:_.IEL___.. h = K2 : c:mwfg_ d = K ulzz_e
2(Ky + K3) 2(Xy + K5) 2(Ky + Kg) 2(Ky + K3)
» K - K - K - K u2 = 2 - f
ST Ik T iELE) ETIE Lxy MU IE R #
R 3 * S ly 25 b > 7. =L _q . 289
- 1 aE dex
j = K o & K 2
2(K5 = Ké) 2(K5 & K6} o= X2 _ 1 _ de§2
2 fg fgxy
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TABLE OF FINAL MOMENTS

Moment Fixed End Moment HTB& - FHBC 'Him - I"HCD H{DC - I‘HDT]
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Mo P, %ﬁ;(wg - ﬁ—;(? -1) - %E(Z_d_xl - 1)
Wy - Riyp & %&} -1) ;1—*;‘;(2—? =1} 1_(2?’2 -1)
Myp AL ” %{? -2) —:&-‘:—2(:—2 -2) . T
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CASE A70 SEVEN SPAN BEAM EQUAL SPANS
DESCRIPTION: ﬁ B C D E F G Hé
E R

Beam with ends built in and freely

supported at six points. Supports

- [, e [, et | bl ], - |, u-l--- Lot ], o=
equally spaced.

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

EES—
x:Z
8
= 15
=38
K:E a:l
L L u:Z
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s u BIIE
225
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MOMENTS
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CASE A71 SEVEN SPAN BEAM EQUAL SPANS
DESCRIPTION: F G H
AN S/ AN GV N

Beam freely supporhted at eight
points. Supports equally

spaced.,

PROPPED BEAM END MOMENTS

CONST ANT FUNCTIONS OF NDF

3 FMAB
B = Ca P
” i
EMGH = FﬂﬁH + 3
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ke
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w15
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TABLE OF FINAL MOMENTS

Vo et By = P | WMoy - B | P RO | RN - e | Mg ~ Mg - By
Mo BL, - 4641 g2 | - 40333 0089 | = .002% .0007
M - B, 4641 - 1244 0333 | - .0089 002/, .0007
R Moo P - .1436_ = 4974 1333 -_ _0'55"’ .009% 0028
M - P, J1436 LI - 1333 0357 ~ .009% P
i Mo R .0385 - 1347 L5002 1339 -~ .0361 .0103
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CASE B7 SEVEN SPAN BEAM SYMMETRICAL

DESCRIPTION:

SAAMNAN
(w}
=
=
@
=/

ARAEANSS

4 h
Beam with ends built in and freely 12 Ts 13 I.,4 13 12 Il
suppoerted at six points. OSupports *l‘
[T ipigere L

symmetrically spaced,

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

43}

=1 - be - de
o =1 Lok -
h=h K=k K=h 5-L i
b5 2 3 A y3=1-1bc
. ¥> = 1 - de
I TR T SO - S 2
2(_K1 + K2) E{Kl + Kg) 2(1{2 + Kj) uy =2 <D
.- K - K u2:2--e
- - - 2
20K, + K;) 2(1{ +.K.5 20K + K, Z_(%;}) _1
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TABLE OF FINAL MOMENTS

Forent fixed snd Lovent . - Py R = Mo, B, - Rl Rie - P, R, - P,
Myg - By - Sy e 40 - O -2 o h B —:—;5-:‘: :‘;::’
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Mo - M %wz—;;?J %?n %%J —2}41«% ;% -E%} ;E?Z
Mo Mg it ol T - v %{1;—: -1) lz(g_l -2) 5%(1% - 2) Sl -2
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CASE C7 SEVEN SPAN BEAM CYCLOSYMMETRICAL
DESCRIPTION:
4 C D E F G HY
Beam with ends built in and freely 4 7 . K ;
) o = : I]. 12 13 I IS Ié T‘ I)?
supported at sixz points. Supports |
! ; .4 ol
uriequally spaced. ™ Ll_h_‘ LZ—‘“' LB*-_L_"‘_ Lﬁ_'“' Lé ' L7
CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR
I 4 I Ly I i1 I, I — -
Ei =2l Kb =22 Ka=23 K =22k Kp S8 K 226 Kep 2 27 X4y = 1 =be = de X4 = 1 = hj = km
1 1 2 1‘2 ) L & L 2 1 6 L 7 ]-7 1 2
1 3 b 5 6
Y3 = 1l="e Yo =1 ~de
- riiﬁkunb b = Ks ¢ = a?_Eémmh U (. y3 =1~ h y, =1~ km
2 (K 4K, ) 2(K; 4K, ) 2(Ky4K3) 2(Ky+K3)
. uy = 2 -b u, = 2 - e
‘:_?J:{.i:.i f:._?_}iﬁ__g g:;.'.,_f.l:}.‘_ h:_::.}.{,i_.,j uBzQ h uh;2,m
j= __L k= mjé.._... e q}.é_._ n= G_}f.z.m = .ﬁ?.c.z,..a 1
2 (K5+K6) 2 (K5+K6) 2 (K64K7) 2( K6+K7) fey v L
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TABLE OF FINAL MOMENTS

Moment Fixed End Moment H‘.m - T‘I‘Bc n:CB - “%n F'DG - FMDE FH.ED - H-LE‘T WTE - FM“} H:GF - My
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CASE A80

EIGHT SPAN RBEAM

EQUAL SPANS

96

DESCRIPTION:
Beam with ends built in and freely
supported at seven points, Supports

equally spaced,

L—-l

CONSTANT FUNCTIONS OF

i
1
i

i

NEW DISTRIBUTION FACTCR

M

o

e

]

n n
E§ =3 pdk; o
o~

et
o

uotgelg jusutaedxy Furaesurduy




TABLE OF FINAL MOMENTS
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CASE A8l

EIGHT SPAN BEAM EQUAL SPANS

DESCRIPTION
Beam freely supported at nine
points, Supports equally -

spaced.

BGDErF_GTl\J

I H 1T NI AT AT AT DI QNTY

PROPPED BEAM END MOMENTS

CONSTANT FUNCTIONS OF NDF

FN

¥* I&B
EMBA: > +FNB&

™M

ﬁ - ’IH
Blpy'= Wigg & =20

K=41 K1 = 3K

L 4L
ast:ll-.}P b:% c:d:e:i‘:g:%
% =P y=¥
=15 wm=2 =7
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TABLE OF FINAL MOMENTS
Moment, | F253 B Imft, - o, Py = Pgp| Mg = Pl Pty = P B, = B FMe = PG| B o - BN
M, B, - 461 A24 | - .0333 0089 | =~ .0023 .0006 .0002
M - B, LT | - a3onk 0333 | - .0089 0023 | - .0006 .0002
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CASE B8 EIGHT SPAN BEAM

SYMMETRICAL

DESCRIPTION:
Beam with ends built in and freely
supported at seven points., Supports

symmetrically spaced.

CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR

=L = i T I
K, == K, = =2 K, = =3 K, =324
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CASE C8

EIGHT SPAN BEAM

CYCLOSYMMETRICAL

DESCRIPTION:
Beam with ends built in and freely
supported at seven points. Supports

unequally spaced.

WBm
e R .
IIT I

m

Y N N R N
13 Ihér 15 | Ié I? I8
|

[ L =t Lz--

1
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CONSTANT FUNCTIONS OF NEW DISTRIBUTION FACTOR
-1 B R .- OB R R _ I . . .
K= =1 Kp= 22 K& 23 K;= =4 Ke= =5 K& =6 Ko= 27 Kg= 28 X, = 1= be ~de u, =2 - b
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K K> K K X, = 1- -~ np u, =2 - e
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TABIE OF FINAL MOMENTS
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Section 3

(Courtesy of Texas Highway Department)

Nueces Bay Causeway on U.S. Highway 181 near Corpus Christi, Texas.



SECTION 3

ILLUSTRATIVE EXAMPLES

1. END MOMENTS FOR A FOUR SPAN FREELY SUPPORTED BEAM

A four span beam is loaded as shown in Fig, 18 . The beam has spans
of 12 feet, 16 feet, 24 feet and 30 feet and has a constant moment of in-

ertia of 4 ft* Determine the end moments due to the transverse loading.

W o 200 1b/ft

I
100 lb/n a'-.l 80 1b/ft
1

Yo
Do

r*-l2?—*l¢——-16‘———r~

SOLUTION

241 - 30!
Fig. 18

1. Select table: Case C4 Four Span Beam -~ Cyclosymmetrical

2. Determine the stiffness factors:

K, =221 =1
1 L!»Ll L’ "
. Z Ky =Ky + Ky =3,
K ==2$;L.,
2 L2 L ) _ s
. ZKC-K2+K3--1—2-,
K, =223 =
3 A
"3 s o F R A R
D 3 L 152
K =3 3« 1,
L4 L 10
4
3. Determine the Constant Functions of the New Distribution Factor:
Ky 1
s =kl
B L4
b= K2=.17
2§KB L
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o & el g o2
25 KC 10’
ds 53 =1
25K, 5’
s e 2 8
25K, 18’
PO (R
25 Ky 16’
X=1l=-Dbc=-de= g%,
Yy = l~Dbe = %%,
1
Y2—l—=de:l—g,
- 7
Uy 22-b = 0

u2=2—e-1-6u

4. Fixed End Moments:
The first and the last spans must be considered as prop spans in

place of the usual fixed end spans when computing the end moments.

FMyp = O,
3 wl?

EMgp = £ 53 = 1800 ft-1b,

Mhoe = + =4+ Bl = | 8000 ft-1b

pp S Mg R g = ~1b,
= 5 B 2 w® 600 ft-1b

Pep "+ Bigg =4 33 =+ 72 ~1b;
= 3 w12 =

EI‘IDE — e ‘:-2-"2 - 9000 ft—lb,

&



Continuous Beams

5. Final Moments:

M FM [2FMg = - 6200{2FMz = - 1600|2FMp = + 600
Myn 0 0 0 0

Moy || 1800 -+ 5430 <1740 -.0543
My [|-1800 - 5430 - 1740 0543
MCB 8000 -.0978 -, 6080 1904
MCD ~9600 .0978 -.3914 -.1904
Mpe || 9000 .0218 -.0870 4022 -
Mpg [1=9000 -,0218 -0870 -.4022
Mop 0 0 0 0
Myp = 0,
My, = 1800 - (.5430)(-6200) + (.1740)(-1600) - (.0543)(600)

= 4857 ft-1b.

In a similar manner

Mgo = = 4857 ft-1b,

L

- Mpp = 9694 ft-1b,
- Mpp = 9245 ft-1b,

0.
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2, INFLUENCE LINES

A single concentrated load of 10,000 pounds is to move across a five
span continuous beam that is fixed at both ends and freely supported at
four points., This beam has equal side spans of 25 feet each (I} = 4 £t4),
equal intermediate spans of 50 feet each (12 = 4 fté), and a center span

of 50 feet (I = 4 4.

P
*—Ln*j
?A B C D E FE
¢ L A 7
25 1 it 501 et 50—ttt 501 e 25Tt
Fig. 19

Determine the influence line for moment Mppo
SOLUTION
1. Select table: Case C5 Five Span Beam = Symmetrical.

2, Determine the stiffness factors:

-l - 4
B o=l = 2
1 2
& S Kn = Ky # Kp = 2
<. hp 1 2 25‘
K= I>- .4
7L, 50 b
ZKC;K2+K3:§—5-’
Ky = I3 - 4
L3 50

3. Constant Functions of the New Distribution Factor:

K
8% ek =1
2K 3

. K _1
b= DK, 6
P e |
DKy W
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Continuous Beams 111

=1 -be =23
1l - be T

@ 1242

4. Fixed end moments due to "PY:

e
i

i

P
- :
7 ;
SUSESISIOE S ——
FMy5 = PLn(1 - n)?,
FMyq = PLn?(1 - n)
21 — 19 - 1 o

5. Influence Line equation for moment Mp,, load in 1st span:

- a be
MBA = FM.BA - 2;(1 # —Z-) FMBA’

.3048 PLn?(1 = n) = 76,250 n?(1 - n).

n n?(1 - n) Mgp
0 .000 0
2 .032 2,440
ob 096 7,310
.6 o L4k 10,970
.8 ,128 9,760
1.0 | .000 | 0

If the influence line equation is differentiated with respect to
n and the result set equal to zero, the point of maximum moment is

obtained.

M
OMBA - 50 - 3n2 =0, and n = 0,

an o HBAnlax = 11,120 ft-lbﬂ

W in
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6. Influence Line equation for moment MBA’ load in 2nd span:

. n a be ac X
Mop =25 (L« ) Pigo + 2 5 (14 3) Py,
= .6952 Fiy, + .1865 FM .o = 348,000 n(1 - n)?
+* 93:200 n2(1 - n).
n | n(1 - n)? n%(1 - n) Mg,
0 | .000 .000 0
.1 .08l ,009 29,000
52 .128 .032 47,600
.3 <147 .063 57,100
oh 144 .096 59,100
o5 .125 .125 55,200
.6 .096 144 46,900
o7 0063 DM? 358600
.8 .032 ,128 23,300
29 009 .081 10,700
1.0 .000 ,000 0
3%‘ = 348,000 (1 - 4n + 3n%) + 93,200 (2n - 3n2) =0,

n=1.201, .379, and Mg, = 59,120 ft-lb.
7. Influence Line equation for moment Mp,, load in 3rd span:

Mgy = 2 88 (1 + D(-PMgp) - 2 3§ Py,
= - 1865 Figp - 0487 Fipg,

= - 93,300 n(1 - n)? - 24,350 n%(1 - n).
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n n(1 - n)?® | n%(1 - n) Mo,
0 .000 .000 0
3 .081 .009 -7,869
i 42 .128 032 -12,719
35 147 .063 -15,260
oly o Ll 096 =15,770
i .5 ,125 ,125 -14,700
o6 096 oLlhly =12,470
7 .063 147 -9, 460
.8 .032 .128 -6,110
.9 .009 | o081 ~1,040
1.0 .000 Y 0

o¥py _

e == =

on

93,300 (1 - 4n + 3n°) - 24,350 (2n = 3n°) = 0,

n = 10188, 9386, m %a = - 15,820 ft""lba

8. Influence Line equation for moment MBA’ load in 4th span:

Mpy

ac abc
-— 2 a“z‘ (-FMDE) L 2 ‘-’d"—"z"" FMED"

24,350 n(1 - n)? + 4,055 n%(1 - n).

[ |

n Moa ? n M5a
0 0 | .6 3,220
o 2,000 || .7 2,130
i 3,250 -8 1,300
o3 3,850 -9 550
A 3,900 1.0 0
o5 3,550
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9. Influence Line equation for moment M;,, load in 5th spans

My, =2 %25 FMpp = 2028 n(l - n)z.
. Y5
0 0
e =254
ol =290
b -195
.8 -65
1.0 0




Fig. 20
INFLUENCE LINE FOR MOMENT AT POINT B

«Q
o

Scale
1 in = 37,500 ft-1b
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3. SETTLEMENT OF SUPPORTS

Determine the end moments of the six span beam shown in Fig. 21, due

to the vertical displacements of the supports,

ZSB = 9 1y

Ag = +8 in, E=30 10° 1b/in,
Ap = 1.0 in, I = 720 in®,
Ay = o8 in, L = 360 in,

Z}F = 5 ine

—
=

H
=

ia B c D E F G
% I I I I

L s [ —tt— [ —ptt— [, —pper— L__.--_L4|

Fig. 21
SOLUTION
1, Select table: Case A60 Six Span Beam - Equal Spans.,

2. Determine the fixed end moments due to the displacements:

B 6x30x10% 720
M = _-.-A_ 65350 L\ Alo 1b.

The fixed end moments at the low end of each span must be multi-

plied by (~1), then the tables may be used.

My, = - B, = 5:10° in-1b, R, = - B = - 2:10° in-1b,
Fi, = - Pl = 3¢10° in-1b, Rl = = ALy = - 310° in-Ib,
M = - B, = 2x10° in-1b, R = - B = - 5410° in-Ib.
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M IR = (TR = [ZRg = [ZRg = (S
~8x10°| -5¢10°| O +5x10° |  +8x10°

-5x10° | -.2680 | .0718 | -.0192 | .0051 | -.0013

~5x10° | =.5360 | .1436 | -.0384 | .0102 | -.0026

5x10° | .5360 | =.1436 | .0384 | -.0102 | .0026

g || =307 | -a242 | -o4973 | 1345 | -.0359 | L0090
Mo | 320 | 24z | w4973 | -a1345 | 0359 | -.00%
My | =210 | .0333 | -.1333 | -.5000 | .1333 | -.0333
My | 2x20% | =.0333 | 1333 | ~.5000 | -.1333 | .0333
Mo [l =3x10° | -.0000 | L0359 | -.1345 | 4973 | 1242
Moo || 37107 | L0090 | -.0359 | 1345 | -.4973 | 1242
Mo [ -5¢20° | 0026 | -.0102 | 0384 | -.1436 | 5360
M. | 5%10° | -.0026 | 0102 | -.0384 | 41436 | =.5360
Mep | 510° | 0013 | L0051 | -.0192 | .0718 | -.2680

My = = 5x10° - .2680(-8410°) + .071L8(~5x10°)
+ .0051(5'1b5) - .0013(8x105) — - 3.205¢10° in-1b.

In a similiar manner
_ _ > 3

M =-MD=3nﬂ$imm.

CB c '
M, = - My = - 1.20x10° in-Ib.
Moo = = M = ,373+10° in-lb,

Moo= = Moo = = 1.40610° in-1b.

M. = 3.205x10° in-1b.

GF
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