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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to examine the rheological significance of mi­

crostructure in colloidal suspensions. From an industrial point of view, understand­

ing the microscopic behavior of complex fluids under shear flow has applications 

in ceramic manufacturing, where. bulk behavior is determined by the microstruc­

ture. A knowledge of how to predict this microstructure from a rheological mea­

sure~ent may yield a new generation of oriented ceramic materials with taylored 

structural properties. Fundamentally, the shear thinning and thickening observed 

in intermediate and concentrated dispersions pose a complicated problem, whose 

understanding may help progress forward the knowledge of interparticle forces in 

colloidal suspensions as well as mandate the examination of nonlinear rheological 

measurements. 

In this study dispersions of crosslinked polymethylmethacrylate spheres 

swollen in benzyl alcohol have been examined as a function of concentration in 

both equilibrium and sheared nonequilibrium states. Here, the interparticle inter­

action is soft, repulsive, and presumably due to particle deformation. The suspen­

sions are nearly index matched, allowing for characterization via light scattering 

at concentrations exceeding 10% by weight. 

It is the intent of this thesis to present Chapters V and VI more or less as 

an independent units, to be published later as a series of papers. Chapters II and 

III combined are already in the process of being written as an independent paper 

and Chapter IV has previously been published (1]. 
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CHAPTER II 

PARTICLE CHARACTERIZATION 

Introduction 

The particles used in this study were prepared by standard emulsion poly­

merization methods at E. I. du Pont de Nemours and Company, Fabricated Prod­

ucts Department, Philadelphia PA, and supplied by M.S. Wolfe, Central Research 

and Development Department, Wilmington DE. The constituent monomers used 

are methyl methacrylate, with Tetraethylene glycol dimethacrylate (10%) as the 

crosslinker. The particles arrived dispersed in benzyl alcohol and at two initial 

concentrations of 6. 76% and 10%. The resulting suspensions will be referred to as 

polymethylmethacrylate (PMMA) microgels. Here, a microgel may be considered 

a crosslinked particle which swells when dispersed in a suitable solvent [2]. Dis­

persions of microgel particles have been used as ideal polymer solutions, but may 

behave as a colloidal suspension, depending upon the amount of crosslinking and 

swelling [2-5]. A colloidal particle is typically thought of as nonswellable. 

Benzyl alcohol is a better than theta solvent for the constituent polymer in 

PMMA microgels, resulting in swelling. The amount of swelling depends upon the 

amount of crosslinking, and has been studied as a function of crosslinker content 

by Wolfe and Scopazzi [6]. Such swelling reduces the steepness of the interparticle 

potential to a degree where the interaction may be termed soft. 

Systematic study of suspension behavior requires characterization of the in­

dividual constituent particles ( size, shape and polydispersity) as well as a means 

of describing concentration, usually defined as a volume fraction. Particle charac­

terization may be achieved via quasi-elastic light scattering in the single scattering 

regime, where examination of both the static and dynamic scattering can aid in 
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clarifying the structure of unknown particles. Volume fractions, while not straight­

forward for microgel particles, may be obtained from a combination of viscometry 

measurements and knowledge of the constituent polymer density. 

Effective Volume Fraction 

The volume fraction for rigid spherical particles can easily be calculated as 

the ratio of total sphere volume to total sample volume. However, for PMMA 

microgels, the swollen nature of the particles makes direct volume fraction calcu­

lations based on component weights unobtainable. Comparing Einstein's dilute 

limit expression for the reduced viscosity of a suspension of hard spheres 

!]_ = 1 + 2.5</>* 
'T/s 

with a power series expansion in concentration for the reduced viscosity, 

!]_ = 1 + ['TJ]C + · · · 
'T/s 

enables one to write an effective volume fraction, </>*, to first order as 

</>* = ['TJ]C 
2.5 

(1) 

(2) 

(3) 

where ['TJ] is the intrinsic viscosity obtained from a measurement of suspension vis­

cosity in the limit of vanishing particle concentration, and C the particle concen­

tration in g/ml. Here, 'T/ and 'T/s are the shear viscosity of the suspension and pure 

solvent, respectively. Capillary viscometry measurements yield ['TJ] = 36 ml/g [7]. 

Interpretation of the effective volume fraction is complicated by measured 

volume fractions in execess of 0.749, that of closest packing for hard spheres. 

While such volume fractions are unphysical for hard spheres, it is speculated that 

deswelling and/or deformation of PMMA microgels under close packed conditions 

results in physical effective volume fractions greater than that for hard spheres. 
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Light Scattering 

Coherent light scattered from suspensions of colloidal particles contains infor­

mation about the diffusion and structure of those particles. In the Rayleigh-Gans­

Debye (RGD) approximation, the particle is assumed optically small compared 

to the wavelength of incident radiation and made up of a collection of indepen­

dent point dipoles, induced by the interaction of the incident electric field with 

the particle [8]. A rough criteria for validity is given by lnp - nsl ~ >../a, where 

a is a characteristic particle dimension, n8 and np the solvent and particle index 

of refraction, respectively. ).. is the wavelength of incident radiation in vacuum. 

In essence, the RGD approximation requires that the change in phase as a wave 

traverses the particle is negligible. The energy, E, and momentum, p, associated 

with the incident radiation is quantized ( a photon for the visible frequencies we 

shall consider here) as 

E = nw and p = n~ (4) 

where n = 1.055 x 10-34 J sec. is known as Planck's constant, and w the frequency 

of incident radiation. Here, ~ is the incident wavevector, whose magnitude is given 

as 

(5) 

Further, if the change in energy associated with the scattering event is small, the 

momentum is effectively conserved, allowing one to write 

(6) 

where (} is the scattering angle, and ( and k: are the incident and scattered wave 

vectors as shown in Fig. 1, respectively. For light scattering in colloidal suspensions, 

the observed scattered radiation is of the same wavelength as the incident, thus it 

is assumed that the energy change associated with the scattering is negligible, and 

momentum conserved. 



Figure 1. 

5 

k. 
1 

k-;-k 
1 S 

Scattering of radiation from a small dielectric object, depicting the 
incident,(, scattered, k:, and scattering, k = (-£,wave vectors. 
R is the point of observation, assumed much larger than r. () is the 
scattering angle. 
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Static Scattering 

For a plane wave incident on a dielectric particle, the total scattered electric 

field, Et, is given by the sum over all induced dipole fields in the particle. This 

may be generically written as 

Et oc p [ 6( r) exp(ik·r-iwt) dV (7) 

where p is the polarization direction, taken as perpendicular to both ki and k8 • 

The quantity r defines a vector from an arbitrary origin to a point within the 

particle, the integral being calculated over the particle volume. t represents the 

time dependence. 6( r) represents the distribution of dipoles within the particle 

and is considered constant for a uniform, homogeneous particle. Et describes the 

electric field at points far from the scattering source. i.e. I.RI ~ lrl, where R is 
the point of observation as indicated in Fig. 1. 

The measured scattered intensity, I, is given by the modulus squared of the 

electric field. For a single particle, this may be written as 

I(k) oc 1Etl2 oc P(k) (8) 

where P( k) is called the particle form factor, specific to the geometry and structure 

of the particle. It is a measure. of the iri.traparticle structure. In a suspension of 

particles, there is a phase shift associated with each scattering event, all of which 

contribute to the observed scattered·intensity. However, for independent, uniform, 

and randomly distributed particles, averaging E/ over all particle positions may 

be done independently for each particle, resulting in 

I(k) oc nP(k) (9) 

where n is the number of particles scattering (in the laser beam at any given mo­

ment). Provided one has a monodisperse sample which is sufficiently dilute, mea­

suring the static intensity as a function of scattering angle, k, provides a means of 

determining the single particle form factor. The form factor may be calculated for 
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isotropic spherical particles, enabling the particle radius to be obtained from the 

measured static scattered intensity [8]. However, if the particle has an unknown 

and/ or asymmetrical density distribution, or the suspension is polydisperse, diffi­

culties in analytically calculating P( k) can arise, requiring a more complex analysis 

to obtain useful measurements of particle demension. 

For ka < I, Guinier showed that the scattered intensity from a homogeneous 

distribution of dipole oscillators, independent of particle shape, is given by 

-k2R2 
I(k) ex exp( 3 g) (10) 

where Ru is the radius of gyration for the particle and a some characteristic size of 

the particle [9]. A semilog plot of the static scattering intensity versus k2 therefore 

yields a measure of the particles radius of gyration. This result provides at least 

some quantifying measure for particles of complex structure. For rigid spherical 

particles, Rg = ../315 a, where a is now the sphere radius. 

The independent averaging of the phase shifts resulting from particle scat­

tering is not possible in suspensions of higher concentration. Here the particles 

no longer behave independently, with a measure of the suspension structure being 

given by the pair correlation function, g(r). The pair correlation function yields 

the probability density of finding a particle a given distance r from a chosen parti­

cle center. In calculating the scattered intensity for this case, it is natural to define 

a function, S(k), termed the static structure factor [10] 

J sin(kr) 
S(k) = 1 + 41rn (g(r) - 1) · kr r2dr (11) 

which arises due to interparticle interactions. The static scattered intensity for an 

interacting suspension is modified by these interactions and may be written as [10] 

I(k) ex nP(k)S(k). (12) 
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For dilute (random) dispersions, g(r) = 1 resulting in S(k) = l. In principle, one 

may therefore obtain S(k) by dividing the measured intensity obtained from a di­

lute suspension into that measured from a concentrated one. Again, polydispersity 

complicates the analysis in that the individual phase shifts from each particle are 

no longer equally weighted. 

Dynamic Scattering 

Time dependent fluctuations of the scattered intensity also yield information 

about the suspension. Under the same RGD approximations as above, one may 

count photons as a function of time, and measure the intensity autocorrelation 

function, g2 (k, t), where g2(k, t) =< I(k, O)I(k, t) > / /2. For dilute, independent 

suspensions undergoing Brownian motion, Gaussian statistics are obeyed and g2(t) 

may farther be related to the intermediate scattering function (field correlation 

function), g1(k, t), where g1(k, t) =< E(k, O)E(k, t) > / < JEJ 2 > as [11] 

(13) 

, an empirical constant .depending on the experimental set up. For independent 

Brownian particles, the particle probablity distribution obeys the diffusion equa­

tion. Using the Stokes-Einstein relation for the diffusion constant, D0 , the inter­

mediate scattering function may be written as [11] 

(14) 

where 

(15) 

Here, kb, TJ, and T are Boltzmann's constant, solvent viscosity, and temperature, 

respectively. Thus, the correlation in the scattered electric field from any two par­

ticles in the suspension, which decays on the time scale of free particle diffusion. 

By measuring the intensity correlation ·function, the particle radius, termed the 

hydrodynamic radius, can be obtained. Often times one does not have a perfectly 
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rigid sphere or monodisperse distribution, resulting in an effective diffusion con­

stant, Def!· This may be the case if the particles have dangling polymer chains 

on their surface, or allow solvent penetration through them. Polydispersity leads 

to a nonexponential behavior for g1 (k, t), which may be accounted for to a limited 

extent by a cumulant expansion, yielding a measure of the suspensions standard de­

viation in particle size [11]. These effects can result in the measured hydrodynamic 

radius being different from the true geometrical radius, or only representative of 

the dominant size in a distribution. 

Experimental 

Dynamic and static light scattering measurements were made on dilute 

suspensions of PMMA microgels, utilizing a Spectra-Physics Argon Ion laser 

() = 514.5 nm) in conjunction with an ALV-5000 Digital Correlator. Dynamic 

measurements were made over a range of 25 to 50 degrees in two degree increments. 

Successive dilutions of one sample in benzyl alcohol, until a stable hydrodynamic 

radius was obtained, insured the scattering to be in the dilute limit. Static mea­

surements of scattered intensity were obtained for this sample over a range of 20 

to 120 degrees, in 0.5 degree increments, yielding the particle form factor. 

Results and Discussion 

Results from dynamic measurements over all angles yields a average hydro­

dynamic radius, Rh "" 324 ± 16nm. In essence, an effective diffusion coefficient is 

measured and equated to D0 , with the sphere radius as an adjustable parameter. 

Though not definitive, this is one method of characterizing a particle of unknown 

structure. A nonswollen hydrodynamic radius of 150 nm was obtained for particles 

dispersed in water. 

From static measurements, a semilog plot of the scattered intensity as a 

function of the scattering vector, k, is shown in Fig. 2. The large angle plateau ( k > 

0.02 nm-1 ) is most likely due to the particle structure and near index matching of 
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the particles and solvent. In the dilute limit, the measured scattered intensity for 

a sphere drops off rapidly with increasing k, followed by oscillations. The depth of 

these minima in the oscillations depend on the homogeneity and monodispersity of 

the suspension. The microgel particles are not optically homogeneous, as solvent 

penetration into the particle results in a gradual variation in index of refraction 

between the particle and solvent. This is a possible reason for the reduction in 

the observed minima at k,...., 0.02 nm-l. Also, the relatively weak signal at these 

larger angles may account for the inability to see any structure at k > 0.02 nm-l. 

Without knowing some information about particle structure apriori, it is difficult 

to make conclusive statements about the observed static scattering and microgel 

structure. A Gunier plot of the low angle scattering (inset in Fig. 2) resulted in 

a radius of gyration, R9 ,...., 211 nm. The ratio of R9 to Rh is found to be smaller 

than that for hard spheres (R9 / Rh= 0.775) in agreement with previous results for 

microgel dispersions [12]. Here, a decreased polymer density near the surface of 

the sphere which would not affect the radius of gyration in a significant way, but 

would effectively increase the hydrodynamic radius, was attributed to the observed 

decrease in R9 / Rh over that of hard spheres. If a non draining core is covered with 

dangling chains, an increased hydrodynamic radius larger than the physical size 

of the sphere may be measured. Here, the ratio of R9 / Rh may be expected to be 

smaller than that for hard spheres. In the case that the particle is penetrated by 

convecting solvent, the measured hydrodynamic radius is smaller than the swollen 

size. In this case, since the radius of gyration is determined by the distribution of 

mass, it is not clear whether or not the ratio of R9 / Rh would appear smaller than 

that expected for hard spheres. 

By comparing the volume fraction calculated from the known dried weight 

of particles to the effective volume fraction measured via the intrinsic viscosity, 

a ratio of swollen to nonswollen volumes may be calculated. For the suspensions 

examined here, this ratio is found to be nearly 18. Comparison of the swollen 

hydrodynamic radius obtained via dynamic light scattering, with that calculated 

from the nonswollen radius and the swelling ratio, indicates agreement between 
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the two radii to within "' 20%. Since the two radii show a reasonable amount of 

agreement and the microgels show qualitative hard sphere like equilibrium behavior 

(see Chapter III), it is assumed that the particles are essentially nondraining at a 

given concentration, with a decreased polymer distribution near the surface which 

may drain and deform on contact with other particles. However, the extent of 

deswelling with increased concentration is not known. 



CHAPTER III 

EQUILIBRIUM PROPERTIES 

Introduction 

The recognition that the material comprising the earth is made of "stuff'' 

which can transform back and forth between fluid, solid and gas is rooted in an­

tiquity. The most inspiring transitions are between the fluid to solid, particularly 

crystalline solid, phases. The unique patterns of ice crystals, or on a larger scale, 

the spectral iridescence found in opals are a result of the long ranged positional 

order of the materials atoms or particles [13]. Suspensions of the Tipula Iridescent 

Virus provided some of the earliest evidence that solutions of uniform microscopic 

particles could exhibit polycrystalline behavior [14,15] With the accidental pro­

duction of uniform, micron sized latex spheres in 194 7 [16) and the subsequent de­

velopement of the process, monodisperse suspensions of differing size, composition 

and surface chemistry have become readily available for investigation, stimulating 

research of both equilibrium and nonequilibrium phase transitions. 

The study of equilibrium properties of well characterized suspensions pro­

vides insight not only for the behavior of more complex systems such as blood or 

paints, but also atomic and molecular systems, for which they serve as models. 

By treating the fluctuating fluid background of a colloidal system as a mean field, 

a pair potential for the particles can be defined, analogous to the effective pair 

potential found in atomic systems [17]. This essentially allows a degree of corre­

spondence between atomic and collodial systems. However, the correspondence is 

not one to one. For example, a typical suspension will have a number density about 

109 smaller than that found in an atomic solid. Since the strength of a material is 

approximately proportional to the number density [17], colloidal structures are 9 

13 
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orders of magnitude weaker than similar atomic structures. This is easily observed 

by tipping a cuvette of charge stabilized polystyrene spheres which have undergone 

the fluid/solid transition. The suspension easily flows, destroying the crystallites. 

Since the advent of uniform colloidal particle synthesis, the order/disorder 

transition for purely repulsive and fluid/solid transition for weakly attractive po­

tentials has often been observed [18-20,22,23]. There are two obvious areas of 

study concerning such phase transitions: What governs the the crystals formation 

and growth, and once formed what are its structure and properties. The former 

is presently an area of discussion, and amenable to modified classical theories of 

crystallization [24,40-42) The latter can be characterized via light scattering and 

linear elastic measurements. 

In this chapter, the equilibrium phase behavior of PMMA microgels is ex­

amined and compared with previous hard sphere data. Although thermodynamic 

properties such as an equation of state can be defined for a suspension (i.e. va,n't 

Hoff's Law) [17], the aim of the present examination is to illustrate where the tran­

sition occurs in particle concentration, and with what equilibrium structure the 

crystallization manifests itself. Visual observation and Bragg (powder) scattering 

measurements were made on the suspension in order to achieve this goal. The 

dynamics of crystal growth in these suspensions is left as future work. 

Computer simulations predict an order/disorder transition as a function of 

volume fraction for particles with a hard sphere interaction. Here, the freezing 

and melting point volume fractions are found to be </>J = 0.494 and <pm = 0.545, 

respectively [25,26]. A phase transition at these volume fractions subsequently was 

observed in suspensions of charged stabilized spheres at high ionic strength [27]. 

More recently, sterically stabilized suspensions have been found to undergo this 

transition, the freezing and melting point volume fractions also in near agreement 

with simulation results [20,21]. 

Computer simulations for atomic systems have shown that crystallization 

kinetics is greatly dependent upon the steepness of the pair potential [28], while 

Monte Carlo studies of spheres interacting via a 1 / rn type repulsive potential, 



15 

indicates a decrease in the fractional density change on melting with decreas­

ing n [29,30,32]. Modified approaches to Rowlinson's hard sphere perturbation 

method [35] result in agreement with simulation results [36,37], where density 

functional theory has met with less success [33,34]. 

Kose and Hachisu (1974) observed phase separation into ordered and disor­

dered states in crosslinked PMMA spheres swollen in benzene [23]. The spheres 

were swollen to approximately 3 to 6 times that of their dry volume. The freezing 

point effective volume fraction, obtained by scaling the nonswollen volume frac­

tions with the ratio of swollen to dry particle volumes, was found to be ,...., 50%. 

However, their effective volume fractions are in error due to partial dissolution 

of the particles, resulting in the presence of free polymer. The addition of free 

polymer has been demonstrated by Wolfe to result in particle deswelling in micro­

gel _dispersions [38], making the comparison of Kose and Hachisu's freezing point 

effective volume fraction with that of simulation results for hard spheres difficult. 

Examination of the ordered phase iridescence led Kase and Hachisu to the conclu­

sion of crystallite structure being face centered cubic (fee). 

Smits (1990) has examined index matched sterically stabilized silica disper­

sions in which the steepness of the interparticle potential could be varied via the 

stabilizing layer [39]. Here, light scattering measurements on the crystalline phase 

yielded possibly random stacked hexagonal close packed (hep) planes for the sam­

ples with steepest interparticle potentials. Those with softer potentials resulted in 

either fee, hep or mixtures of fee and hep crystal structures. 

Equilibrium Phase Diagram 

Experimental 

In an effort to examine equilibrium phase behavior, a series of ten 8cc vials 

were prepared. Weighed vials were partially filled with premixed, highly concen­

trated ( </>* > 1) microgel suspension. By keeping track of the weight of added ben­

zyl alcohol, each vial could be diluted until the desired concentration was achieved. 
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In this way, samples were prepared at effective volume fractions of </>* = 0.503, 

0.514, 0.524, 0.535, 0.548, 0.557, 0.566, 0.582, 0.599, and 0.612. The vials were 

sealed with screw tops and parafilm, tumbled overnight to homogeneously mix the 

solvent and microgel, and left to stand undisturbed for observation. 

With incandescent back lighting of the vials, the heights of phase separated 

regions could be examined. A telescope equipped with a horizontal retical and 

mounted on a vertical translation stage, capable of resolving vertical displacements 

to within 0.005 cm, enabled determination of the colloidal liquid and crystal inter­

face. 

Results 

Detailed nucleation times were not obtained. However, the rate was on the 

order of days. Within ,..,, 82 hours, the </>* = 0.599 sample appeared iridescent as if 

fully crystalized with very fine crystals, although no graininess could be observed 

with the eye, and the </>* = 0.582 sample exhibited sparse nucleation in the bulk 

colloidal liquid. The sample of largest volume fraction, </>* = 0.612, as well as all 

samples of </>* < 0.582, showed no crystallization at this time. 

At 70 days, the sample at </>* = 0.612 still showed no crystallization 

and is termed glassy. However, a few crystallites were observed in the menis­

cus, presumably due to shear ordering from countertop vibrations. Samples of 

0.582 ::; </>* ::; 0.599 appeared fully and homogeneously crystallized, with crystal­

lite size being markedly smaller at </>* = 0.599 than lower effective volume fractions. 

A coexistence region from 0.548 ::; </>* ::; 0.566 was observed, with sedimentation 

of crystallites out of the bulk suspension, leaving a crystallite depleted region of 

suspension above. For samples </>* ::; 0.535, liquid like behaviour was found, with 

no crystallization observed, even after a period of greater than one year. No clear 

supernatant was observed in any of the ten samples at any time, indicating near 

density matching between the swollen particles and benzyl alcohol. By measuring 

the ratio of crystal sediment height to total sample height, a percent crystallization 

could be calculated for samples in the coexistence region, and an equilibrium phase 
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diagram constructed as shown in Fig. 3. Here L, C, X and G correspond to liq­

uid, coexisting, fully crystalline and glassy regions, respectively. The freezing and 

melting points are found, via linear regression through points in the coexistence 

region, to be 0.548 and 0.573, respectively. 

Powder Pattern Scattering 

Experimental 

Scattering results were obtained using HeNe laser with the beam expanded 

to approximately 1cm in diameter and made to pass through a cylindrical lens. 

The beam was made incident upon the sample placed in the center of an index 

matching bath of benzyl alcohol and the cylindrical lens adjusted relative to the 

bath such that the incident wave vector was parallel to the detector plane. The 

index bath was used as a cylindrical lens, focusing the scattered light onto a focal 

plane, at which a vertical slit and diffuser plate were placed. Light incident upon 

the diffuser plate was transmitted through an optical fiber to an RCA photo­

avalanche diode. The collection optics were mounted on a goniometer which could 

be stepped in 0.25 degree increments. Computer control allowed for the collection 

of intensities as well as goniometer control. The sample vial was rotated at 0.5rpm 

and intensity data collected for a period of not less than 2 minutes at each angle, to 

insure proper orientational averaging of the crystallites. For the liquid and glassy 

phases, rotation of the sample was not necessary. 

Results 

The results for measured intensity versus k, typical of samples in the liquid, 

coexisting, fully crystalline and glassy regions of the phase diagram are shown in 

Fig. 4. The profiles exhibited by samples in the coexistence and fully crystalline 

regions of the phase diagram are shown in (c) and (d), respectively. The insets 

show the highest order peak measured. Small oscillations in the data are due 

to drift in the laser output intensity and the 'peaks' at k > 0.018 nm-1 due to 
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back reflections from the index bath. These results are nearly identical to those 

measured in the equilibrium crystal of hard sphere suspensions. 

Discussion 

Equilibrium· Phase Behavior 

The coexistence region for the PMMA microgels is greatly narrowed, as 

well as shifted in effective volume fraction compared to the simulation results 

for the freezing/melting transition in hard sphere suspensions of ¢> f = 0.494 and 

<Pm = 0.545, respectively. It is possible, that due to particle deswelling with in­

creased concentration, the assumed swollen particle radii are in error to the actual 

radii, thus shifting the measured freezing point volume fraction above that of hard 

spheres. A decrease in the swollen radius of"' 3.4% would bring the microgel freez­

ing point coincident with that of hard spheres. However, this does not explain the 

narrowing of the coexistence region. Although some deswelling may occur with 

increased concentration, it is believed that this narrowing is an indication of a soft 

interparticle potential compared to that of hard spheres. 

Comparing </>j with that obtained from computer simulation results for 

spheres interacting via a 1/rn type potential, where n = 4, 6, 12, and oo, yields an 

estimate of the interparticle potential. As shown in Fig. 5a, a polynomial fit to 

1/n versus ¢>1 obtained from the simulations, results in n "' 20 for the microgels 

examined here [29-32]. The error bars indicate the value of 1/n for n = 20 ± 5. 

The value of n and the fractional density change upon melting, ( <f>:n - ef>j) / </>j, 

defines another point which can be compared with the simulation results as shown 

in Fig. 5b. As can be seen, the fractional density change upon melting for the mi­

crogels compares well with estimated simulation results for n = 20. The softness 

of the interaction is presumably due to the deformation of a polymer density dis­

tribution near the surface of the particle. In this sense, the particles are deswelling 

at their point of contact due to deformation. 
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Wolfe [7] has observed frequency independent, roughly power law behavior 

in the dynamic storage modulus, G', versus </>* for microgel suspensions at high 

concentrations (see Chapter VI for definition of the moduli). In Fig. 6, the data 

of Wolfe for the same particles examined here, is shown along with the dynamic 

moduli measured in this study. Here, the storage modulus obtained by Wolfe versus 

effective volume fraction is shown as Q, v', and D for w = O.l, 1.0 and 10 rad/sec., 

respectively. The data of this study is represented as 6. and O for w = 0.63 and 

6.3 rad/sec., respectively. A passing note here, to be discussed in more detail in 

Chapter VI, is that the 'global' microstructure as observed in light scattering, does 

not appear to have a large effect on the equilibrium dynamic storage· modulus. 

While underlying microstructure was not an issue for the data of Wolfe, it is 

important for the present study. The open symbols represent measurements made 

on initial microstructural state in which the closest packed direction of an hep 

plane was directed along the velocity direction. The closed symbols are for initial 

states where the closest packed direction is aligned parallel to the vorticity axis 

(see Chapter IV for details of the shear induced microstructures). This observation 

aside, for </>* ~ 0.758, the data shows the storage modulus is roughly frequency 

independent over the range examined. Such independence is indicative of an elastic 

response in the suspension, in which the frequency used to probe the suspension 

is faster than some viscous relaxation time associated with the system. Buscall, 

et al. [80] derive an expression for the equilibrium storage modulus based on the 

interaction potential between pairs of particles as 

(16) 

where r is the center to center to center separation between particles, and /3 a 

constant related to the number of nearest neighbors associated with the details of 

the microstructure. The interparticle distance in a suspension of spheres, r, may · 

be related to the closest packed volume fraction as 

(17) 
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where d is the sphere diameter and </>~ the closest packed volume fraction. Exami­

nation of the above two equations in relation to the assumed form of the interaction 

potential for the microgels, V ex 1/rn, yields 

(18) 

where m = (n/3) + 1 is a power law exponent. For qualitative purposes, d and 

</>~ have been absorbed into the proportionality constant. Assuming the dynamic 

storage modulus of Fig. 6 to be exhibiting roughly power law behavior, this result 

may be used as an independent means of checking the relevancy of n "' 20. Setting 

3(m - 1) = 20 yields m = 7.7. The results of using this exponent is given by the 

solid straight line shown on Fig. 6. The </>* = 0 intercept was used as an adjustable 

parameter. Given the limitations of the above derivation, such agreement may 

seem fortuitous. Since Eqn. 16 is derived under the assumption of no viscous relax­

ation, G0 represents the high frequency limit of G', usually observed as a frequency 

independent plateau. It is possible that the observed frequency independent G' 

for the microgels is not the high frequency limit, but due to some intermediate 

relaxation time much slower than that associated with G~=oo. It is interesting to 

note that power law behavior in G' has previously been observed in flocculated 

dispersions (81]. For comparison, the dashed lines indicate 3(m - 1) = 25 and 15. 

Equilibrium Crystal Structure 

Results for the powder pattern scattering from samples which exhibit crys­

tallization appear nearly identical to those previously found in sterically stabilized 

PMMA hard sphere suspensions (43]. Here, the powder pattern profiles are ex­

plained as random stacked, hexagonal close packed planes. Starting with a single 

initial hep plane with a particle labeled A, there are two choices for the next layers 

registration, B or C ( see for example Fig. 11). In this way, an fee crystal struc­

ture can be built with a stacking sequence ABCABC ... or ACBACB ... , and hep 

crystal structure as ABAB ... or ACAC .... Letting o: denote a stacking probabil­

ity, where o: = 1 results in fee stacking and o: = 0 hep stacking, purely random 
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stacking (ABCBCA ... ) is given by o: = 0.5. As described in Chapter II, the scat­

tered intensity, I(ka), is a product of a particle form factor and structure factor, 

I(ka) = P(ka)S(ka). Solvent scattering being negligible, the scattered intensity 

obtained from a dilute suspension, where S(ka) = 1, yields P(ka). Typically, the 

particle form factor is assumed independent of particle concentration. However, 

the degre_e to which the particle form factor varies with concentration due to de­

formation of the microgel particles, as well as multiple scattering effects, is not 

known. Therefore, the dilute scattered intensity shown in Fig. 2 is not suitable for 

dividing the particle form factor out of the measured intensities. It is likely some 

deviation occurs, making detailed analysis of structure factors relative to hard 

spheres suspect. However, a qualitative comparison can be made at relatively low 

angles. Fitting the measured intensity shown in Fig. 2 with a polynomial, allows 

the structure factor to be extracted from the measured powder pattern results. 

Following the same procedure as outlined in ref. [43], and described in Appendices 

A and B, calculated structure factors are compared to measured results for samples 

in the coexisting and fully crystalline regions of the equilibrium phase diagram. A 

Lindemann ratio of,...., 14% was used, which is consistant with a slightly soft inter­

particle interaction [33]. The crystallite size was estimated to be ,...., 20 to 30 µm 

based on the half width of a gaussian fit to the central peak (indexed to the [111] 

direction for an fee crystal). 

A comparison of these calculations with the measured data is shown in Fig. 7a 

and 7b (samples c and d of Fig. 4, respectively). Agreement with calculated pro­

files is found to be quite good. Here, a stacking probability of o: = 0.52 was 

found for Fig. 7a, a sample in the coexisting region of the phase diagram. This 

indicates a slight tendency for fee, and is consistent with the results of sterically 

stabilized, hard sphere like suspensions [43]. The longer nucleation times asso­

ciated with the coexistence region is a possible reason for this tendency, as the 

particles have a longer time to find a favorable lattice position. A purely random 

stacking, o: = 0.5, was found for the fully crystallized sample shown in Fig. 7b. 

It should be noted that deviations at small angles is assumed due to the simple 
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independent oscillator model used to account for thermal motion, which does not 

take into account correlated particle vibration. The deviations at higher angles is 

attributed to use of the dilute limit particle form factor and multiple scattering 

effects. Although these deviations are present, the excellent agreement in peak 

positions should be noted. The ratio of the [111] peak position to the position of 

the highest order peak measured (shown as insets in Fig. 4c and d) agrees to within 

rv 4% of the ratios obtained from their calculated profiles. Polydispersity effects 

have been neglected, although we note that the observed crystallization indicates 

the polydispersity to be less than 10%, due to the instability of colloidal crystals 

at larger polydispersities [1 'Z]. 



CHAPTER IV 

NONEQUILIBRIUM PHASE BEHAVIOR 

Introduction 

As already noted, the characteristic particle size of colloids generally allows 

probing of microstructure with visible light or neutrons. However, microstruc­

turally perturbing shear rates, 1', can also be experimentally realized and applied. 

This makes colloidal suspensions unique in the ability to examine nonquilibrium 

microstructure while under applied shear. Under applied shear, hydrodynamics 

and the competition between hydrodynamics and thermal motion results in a com­

plicated interplay between fluid and particles within a suspension. Here, the Peclet 

number, defined as Pe= 7l2 / D0 where l is a characteristic length of the particles 

and D0 the free diffusion constant, indicates the relative importance of diffusive 

to convective time scales. Since it is the thermodynamic driving force which re­

laxes the system to equilibrium, and convection which perturbs the equilibrium, 

the Peclet number gauges the systems departure from equilibrium. Configurational 

relaxation times for atomic and molecular systems is rapid enough, unlike colloidal 

systems, that experimentally unobtainable shear rates would be needed to probe 

this departure. Also, in concentrated dispersions, long lived metastable states 

can be induced which may be examined in their unique state (the measurements 

of Chapters V and VI, for example). Finally, since colloidal suspensions mimic 

atomic systems, observations made on them may qualitatively describe the dy­

namics of atomic system which are not directly observable [48]. However, caution 

is due in part to the lack of hydrodynamic interactions in atomic systems. 

In this chapter, the scattered intensity from concentrated suspensions of mi­

crogel particles is examined. Here, microstructure is examined under the influence 

28 
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of applied oscillatory shear as a function of concentration, frequency, and am­

plitude, with no regard for measuring the stress. These results are interpreted 

relative to hard sphere behavior and on geometrical grounds, rather than more 

sophisticated theories [46]. An exploratory examination of Bragg spot position 

and intensity as a function of applied shear stress in steady state fl.ow will also 

be presented. A more detailed connection between rheology and microstructure is 

discussed in Chapters V and VI. 

There have been a number of attempts to correlate microstructure and rhe­

ology by connecting the applied shear to bulk stresses in the suspension, via a 

constituitive equation. These efforts have been two fold. Based on the early work 

of Batchelor [50-54] and further effort of Felderhof [55-57], Russel [58,59], and 

Wagner [60], theories have been devised which connect bulk rheological properties, 

such as shear viscosity, to suspension microstructure. Due to the complications of 

many body hydrodynamics, success has generally been only in the vanishing shear 

rate limit of concentrated suspensions or the dilute limit. Analytic examination of 

the shear rate dependent structure factor has been used to connect microstructure 

with the experimentally observed distortion of Debeye-Scherer ring under applied 

shear [61-71]. However, experimental complications due to multiple scattering ef­

fects and analytic complications at increased. concentrations have circumvented a 

complete solution. If the suspension is sufficiently concentrated, equilibrium crys­

tallites may form and have been observed to shear melt under applied shear [72]. 

Further, long range structure may develope under applied shear·, evidenced as a 

collapse of the Debey-Scherer ring into Bragg peaks [73-76,46,77,78,39,l]. The 

formation and evolution of such shear induced structure is presently not well un­

derstood. 

A second method of approach is through computer simulations. Here, both 

particle "snapshots" and bulk properties can be simultaneously obtained. Simula­

tions provide a means of examining the induction and evolution of shear ordered 

structures along with the ability of probing microstructure in regions unaccessible 

to experimentation. However, the cost of including N-body hydrodynamics in a 
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simulation of Brownian particles leads either to their neglect or small simulation 

sizes limited to two dimensions [79]. 

Nonequilibrium Phase Diagram 

Experimental 

Light scattering measurements of PMMA microgels while under applied shear 

were made with the scattering geometry as shown in Fig. 8. Here, ( and £ 
represent the incident and scattered wave vectors, respectively. n is the vorticity, 

3. the shear and v the velocity directions. With passage of Helium Neon beam 

(>, = 632.8nm) through the center of the shear cell and perpendicular to the axis 

of rotation, small scattering vectors, ( - £, probe the vO plane. Immersion 

of the cell in a square glass box filled with glycerin provided index matching, 

allowing scattering from the couette to be imaged directly on a flat screen placed 

perpendicular to the incident beam. With this design, the diffuse Debye Sherrer 

ring associated with liquid like structure as well as Bragg spots to first order could 

easily be monitored. The couette cell used was made by machining a glass plunger 

with a uniform 250µm step cut into the bottom 2 cm, to fit into a 20 ml glass 

syringe. This allowed for loading of the cell by injecting the suspension through 

the bottom of the syringe, filling the gap. A single drop of benzyl alcohol placed 

at the top of the cell, between the plunger and syringe wall, was used as a seal 

between the sample and air, as well.a lubricant for the plunger/syringe interface. A 

computer controlled stepper motor capable of 25000 steps/rev. was used to rotate 

the plunger in an oscillatory fashion. 

Structural studies for the microgels consisted of measurements in which sam­

ples were subjected to a shear oscillation of fixed frequency throughout a range of 

amplitudes. Here, the amplitude is reduced by the width of the couette gap and 

results reported as strain amplitude. Each oscillatory measurement was conducted 

for a period of five minutes, at which point most samples appeared by eye to have 
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The scattering geometry showing the incident beam normal to the axis 
of rotation. Here (, £ and k = ( - £ are the incident, scattered 
and scattering wave vectors, respectively. fi, .&, and v represent 
the vorticity, shear, and velocity directions in the scattering volume, 
respectively. Note, the fiv plane is probed at small scattering angles. 
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fully evolved into a definite microstructural state. Samples of concentration coin­

cident with the equilibrium phase diagram were measured at frequencies of 1 Hz 

and 4 Hz, over a range in strain of O to 16. 

Results and Discussion 

The oscillatory shear measurements made on the microgels yield essentially 

the same results as observed in hard sphere like suspensions of sterically stabilized 

PMMA. At effective volume fractions greater than </>j, shear ordering of the mi­

crogel suspensions, qualitatively similar to that found for hard spheres, has been 

observed. Previous experimental studies (76,46] for hard sphere suspensions have 

indicated and determined five basic types of microstructures associated with shear 

flow: amorphous, registered random stacked hexagonal planes, fee, sliding layer, 

and string. With the exception of the string structure, the measured scattered 

intensity distributions for the microgels under applied oscillatory stress are as in­

dicated in Fig. 9a-9f. Samples of effective volume fraction less than the freezing 

value ( </>j = 0.548), exhibited only amorphous ordering. Such a correlation has 

been observed by Ackerson and Pusey in sterically stabilized hard sphere suspen­

sions (46]. It is interesting to note that the equilibrium freezing point concentration 

for the microgels was initially determined from this observation. The results for 

all samples measured are shown in Fig. 10a and 10b, where the structures associ­

ated with 5 minutes of oscillation are given as a function of strain amplitude and 

effective volume fraction. Here (+) is amorphous, (0) face centered cubic, (D) 

sliding layer, (l~) mixed fee and sliding layer structures, (-,) amorphous /fee, (Iii) 

amorphous/sliding layer, and (~) amorphous/mixed fee and sliding layer struc­

tures. The ordering of structures, separated by /, indicates the prominent order 

with which they appeared in the scattering. 

The registered random stacked structures consist of planes of hexagonally 

close packed particles aligned parallel to the cell walls ( the vfi plane) such that a 

closest packed direction within the layer is parallel to v. The slippage of planes 

over one another in a shear flow results in a registered random stacking of these 
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Figure 9. Observed scattering patterns, from microgel suspensions, imaged on a 
screen. Induced structures are identified as (a), (b) fee twin struc­
tures, (c) random stacke hep, (d) sliding layer, (e) mixed fee and 
sliding layer, and (f) amorphous structures. 
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planes. This corresponds to a stacking sequence shown in Fig. 1 la, where the first 

plane is positioned with a particle at A. Neighboring planes may be registered 

at positions B or C. In a random stacking, either choice is equally likely, giving 

a random (ABCBCA ... ) sequence. The sequence for a hexagonal close packed 

crystal is ACAC ... or ABAB. .. , while an fee crystal is ABCABC ... or ACBACB .... 

At large shear rates or strain amplitudes, the sliding layer structure is observed, 

where the planes of hexagonal close packed particles no longer register with one 

another, but are found along paths located halfway between registration sites as 

indicated by the dashed line in Fig. lla. The centering of layers diminishes the 

intensity of the six fold symmetric spots lying on the n axis. At the largest strain 

amplitudes, the hexagonal close packed planes of particles break up into strings of 

particles regularly spaced in the v direction. 

In the fee structures, the planes of hexagonal close packed particles aligned 

parallel to the cell walls are oriented with a close packed direction parallel to n 
rather than to v, as shown in Fig. 11 b. This orientation could be achieved in two 

ways. Manually pulling the rotor up and down a fraction of a millimeter was enough 

to drive the system to fee ordering. This was done in preparing the initial state 

for the </> = 1.03 sample, as a return to the amorphous state was not possible once 

structure had been introduced. The </>* = 0.92 sample was observed to order into a 

weak fee structure upon injection of the suspension into the couette (presumably 

due to the vertical injection). Although made as amorphous as possible prior 

to each run, this sample evidenced sliding layer structure within a few cycles of 

applied oscillation, indicating residual order prior to the run. The suspensions 

could also be driven from an amorphous into an fee state via the 1 and 4Hz 

oscillations of the plunger, as shown in Fig. 10a and 10b. This ordering is usually 

not as strong and is accompanied by more amorphous scattering than that induced 

from vertical movement of the plunger. The cause of this oscillatory transition 

from amorphous to fee is not obvious. The fee orientation of layers 'only permits 

homogenous shear deformation for a limited range of starting amplitudes. The 

largest strain amplitudes are produced by ABCABC ... or ACBACB. .. stacking, fee 
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Figure 11. (a) Layering of close packed hexagonal planes within the shear cell gap. 
As shown, the stacking of planes is in the shear direction. Here the 
dashed line represents particle positions of the neighboring layer in 
a sliding layer structure. (b) Orientation of close packed hexagonal 
planes within the gap when the sample has been prepared in an 
fee microstate. The double headed arrow represents the allowed 
range in strain amplitude for neighboring layers, before significant 
restructuring of the layer occurs. 
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twin structures. In fact, the scattering observed in these measurements indicates 

an oscillation between fee twins. The double headed arrow in Fig. 11 b indicates 

the range in strain amplitude allowed for neighboring layers. 

The c~rve shown on each graph of Fig. 10 represents the maximum allowed 

strain for an fee structure comprised of hard spheres, as a function of volume 

fraction. In this purely geometrical model, the layers become freely slipping for 

<p :::; 0.40 and caged by their nearest neighbors for <p ~ 0.64, random close packing. 

At volume fractions between this range, the layers may slide within a range of 

strain consistent with the observed twinning behavior, schematically represented 

as the arrow in Fig. llb. While agreement is not expected, it is observed that 

the trend in development of an fee state from an amorphous structure with strain 

is maintained in the microgels, relative to hard spheres. The open and half filled 

circles relevant to a 1 Hz oscillation, qualitatively follow the model prediction, 

shifted to larger strains and volume fraction. At 4 Hz, agreement is less. A 

possible explanation is the increased importance of the hydrodynamics neglected 

in this simple model, as the shear rate increases with frequency. The data shown 

at <p* = 1.03 is not in contradiction to the above argument, as this sample was 

intialized in a fee microstate. 

The evolution of these structures exhibits a frequency dependence. The most 

pronounced difference in structure development with frequency is observed in the 

<p* = 0.54 sample. As shown in comparison of Fig. 10a and 10b, 4 Hz shear 

oscillations induced microstructures much more readily at low strain amplitudes 

than 1 Hz, melting back to amorphous structure upon cessation of shear flow. 

Here, the ability to induce microstructure with a 1 Hz. oscillation was realized 

only after the sample had ordered at 4 Hz, indicating an incomplete return to the 

amorphous state prior to begining the next run. 

It is presumed that the microstructures observed here, as in sterically sta­

bilized suspensions, occur in order to reduce the interparticle stresses while under 

shear. If there is not enough free space available to accomodate the applied strain, 

a structural change occurs. The softness of the interparticle potential and particle 
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deformation is assumed responsible for the increased amplitudes associated with 

these structures, above that of hard spheres. 

Bragg Spots Under Steady Shear 

In this section, a set of exploratory measurements were made in order to not 

only correlate microstructure with observed shear thinning, but also quantify that 

microstructure by examining the position and intensity of the spots as a function 

of shear. 

Experimental 

The scattering geometry used in these measurements is the same as that for 

the nonequilibrium phase diagram, only now a Bohlin constant stress rheometer 

equipped with a glass couette was utilized rather than the syringe cell described 

previously. The couette gap is 0. 7 mm and the radius of the inner bob, 7 mm. The 

sample was presheared at a shear rate of,...., 66 seC1 for 300 sec. followed by,...., 180 

sec. of quiescence. This oriented the microstructure such that the closest packed 

direction in an hep plane was along the velocity direction. Once presheared, a 

constant stress was applied and the scattering monitored from one spot on and 

one off the central axis of the couette. Symmetry considerations only necessetate 

these spots be monitored in order to determine the particle spacings within an hep 

layer. The shear stress was stepped from zero up to values well into the high shear 

rate plateau and intensities recorded as a function of applied shear stress. Care 

was taken so that the spot intensity did not saturate the video camera. Samples 

of effective volume fraction </>* = 1.22, 1.03, 0. 783, and 0.681 were examined. 

Results and Discussion 

Treating each Bragg spot as a distribution of intensities within a 120x120 

grid of pixels, the first moment for the x and y position was calculated resulting 

in a measure of the spot center. In this way, the position of each spot could be 
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found as a function of applied shear stress, relative to the zero shear position. 

From these data, assuming hexagonal close packed symmetry for the lattice plane 

producing the scattering, the real space lattice point positions were calculated. The 

position of these points normalized to zero shear are shown in Fig. 12, where 0 
and • indicate center to center particle spacing parallel, v, and perpendicular, e, 

to the flow direction, respectively. It can be seen that for the two lowest effective 

volume fraction samples examined, </>* = 0.681 and 0. 783, the hep layers seem 

to compress in both the velocity and vorticity directions, with perhaps a slight 

bit more compression in the velocity direction over that of the vorticity for the 

</>* = 0.681 sample. This is roughly consistent with what has been observed in 

poly(styrene) dispersions [75]. Regretably, absolute measurements could not be 

obtained due to distortions in the images. At zero shear, variations of up to 10% 

were observed between the reciprocol space positions of the on and off axis spots, 

relative to the origin (scattering angle --:- 0). It is presumed that this observation 

is due to misalignment of the camera with respect to the screen, and/or a lensing 

effect due to the optical couette and imperfect index matching. With increasing 

</>* ~ 1.03, the results are somewhat unusual. Not only does the compression 

along the vorticity direction now appear to be slightly greater than that of the the 

velocity direction, but the spacing along the velocity direction increases somewhat, 

with the spacing at higher shear stress never decreasing much below its equilibrium 

value (in fact, increasing for the</>*= 1.218 sample). 

The spot positions as a function of shear rate are shown in Fig. 13. Here it is 

observed that the minimum in relative particle spacing in the velocity direction is 

greatest for the lowest effective volume fraction and decreases with increasing </>*. 

This is intuitively satisfying, ·as more free space is available for lower volume frac­

tion samples, making the relative change larger. This trend appears opposite for 

the particle spacing parallel to the vorticity direction. For both v and e directions, 

this minimum occurs at increasing shear rate with increasing </>*. This may be 

due to congestion at high effective volume fractions as the hep layers are jammed 

against the outer couette wall, requiring larger stresses to increase the density of 
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particles within an hep layer. The reason for the apparent reversal of this trend 

with the </>* = 1.218 sample is unclear. Since these data are obtained in the shear 

thinning region and such nonNewtonian behavior is due to the hydrodynamic and 

microstructural interactions, no simple scaling is observed. 

The position data presented here can only be taken as suggestive of possible 

behavior. Experimental difficulties prevented accurate results in the following 

ways: The 'run out' for the chuck holding the bob is quoted as < 10µm/16mm. 

This manifests itself as a wobble as the bob rotates, which alters the gap by 

,...., 45µm at its end. It is unfortunate, but even such a small deviation causes the 

spot positions to vary with strain and shear rate, as the shear is no longer simple. 

This effect appeared more pronounced at higher shear rates, presumably due to 

larger normal stresses as the gap was squeezed and expanded with each rotation. 

A 40 frame average was used in an attempt to compensate for this irregularity. 

The error bars associated with the data are an attempt to represent this deviation. 

Also, as the shear rate increased, the spot shapes tended to become anisotropic, 

deform and at sufficiently high shear rates, disappear. While this reflects the 

changing microstructure, it makes determining the spot center, perhaps somewhat 

ambiguous. Also, it would he best to divide the form factor out of the spot 

intensities before finding the centers. This was not possible due to the inability to 

obtain particle form factors at high concentration. 

The data for peak spot intensities is equally susceptible to the above exper­

imental difficulties, but nonetheless interesting and at least suggestive in interpre­

tation. Fig. 14 shows the peak intensity data versus shear stress for the spot on 

• and off O the vorticity axis, respectively. At all effective volume fractions, the 

intensity is observed to decrease with applied stress. Consistent with observations 

in sterically staibilized hard sphere PMMA and charge stabilized polystyrene sus­

pensions, the spots on the vorticity axis diminish in intensity much more rapidly 

than the off axis spots [46]. This is due to the zig-zagging of registered hexagonal 

close packed layers past one another. Upon increasing the shear stress, the on axis 

spots continue to diminish, and the off axis spots broaden into elongated nodes 
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Figure 14. Peak intensities for the e on axis and O off axis Bragg spots versus 
applied stress. a </>* = 0.681, b </>* = 0. 783, c </>* = 1.03, d </>* = 1.218. 
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along the vorticity direction. This indicates that the hep planes are disrupted, and 

now oriented as strings of regularly spaced particles along the velocity direction. 

However, increasing the stress further causes the on axis spots to brighten, while 

the off axis continue to diminish and elongate parallel to the vorticity direction. 

This may indicate that the microstructure has evolved into a structure in which the 

regularly spaced particles in the strings along the velocity direction have become 

sufficiently jammed together as to form a nearly solid line. Since it is observed 

that the on axis spots appear to move to smaller angles at approximately the same 

stress they brighten, it is possible that the form factor is responsible for the in­

creased intensity. However, more controlled measurements are necessary to sort 

out these difficulties. 

The microstructural transitions from random stacked to sliding layer and 

sliding layer to string like structure are hydrodynamically driven. However, the 

scattering only depends on the final geometrical result of those hydrodynamic in­

teractions. The scattering images observed for each effective volume fraction are 

overall very similar. The necessary shear stress to drive different effective volume 

fraction samples into similar scattering patterns increases with particle concentra­

tion. Assuming Brownian motion to be negligible at these applied stresses, one 

might expect the shear rate to be the important parameter in determining the 

observed intensity of the Bragg spots. Fig. 15 shows the observed scattering in­

tensity for the (a) off axis and (b) on axis spots as a function of shear rate. Each 

sample was shifted by an arbitrary.factor in intensity to bring all of the curves into 

coincidence. The significance of this scaling is presently not clear. 
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CHAPTER V 

STEADY STATE OPTO-RHEOLOGY 

Introduction 

The importance of correlating macroscopic rheological properties with under­

lying dispersion microstructure has already been outlined in Chapter IV. However, 

no connection was made there between the observed shear induced structures and 

their rheological properties. In this chapter, a connection of these structures with 

rheology will be explicitly examined in the concentrated limit. Unique with re­

spect to the present rheo-optical measurements being made, specific shear induced 

microstructural states are introduced and compared rheologically by observing the 

strain response under a specific applied stress ( creep and creep recovery measure­

ments). A requirement for making such measurements is that the induced structure 

be stable once there. For the microgels examined, this sets a lower bound on the 

effective volume fractions suitable for study at "' 0.55 [1]. Below this value, Brow­

nian motion tends to melt the induced microstructure back to amorphous order 

upon cessation of shear flow. The actual measurements were made at </>* > 0.65 

in order to increase the effects of microstructure by increasing interparticle inter­

actions. The samples examined are therefore in what may be termed a glassy 

state. 

Dispersion rheology is governed by viscous and thermodynamic contributions 

to the bulk stress. The viscous (hydrodynamic) interactions arise from interac­

tions between the particles and surrounding fluid. These include forces due not 

only to an applied shear flow, but also a Brownian contribution from incessant col­

loidal particle motions. The thermodynamic contributions result from interparticle 

forces, to which Brownian motion also contributes in the form of a thermodynamic 
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driving force. An indirect contribution to bulk stress arises from the particle con­

figuration - the equilibrium microstructure. When thermodynamic interactions 

between particles becomes significant enough to produce structure in the equilib­

rium radial distribution function, the contribution to bulk stress is increased above 

that of that due to purley viscous contributions. The effect of these interactions on 

the rheology of dispersions is typically observed as shear thinning (59]. Here, the 

viscosity as a function of applied shear stress exhibits a Newtonian plateau at low 

stress, which decreases as the stress is increased, until a high shear stress plateau 

is reached. The Newtonian plateau at low stress is governed by Brownian motion 

and the equilibrium structure of the suspension. If Brownian motion is strong 

enough relative to other interparticle interactions that an equilibrium state may 

be maintained under shear flow, the plateau is observed. At high stresses, viscous 

forces overcome the thermodynamic contributions and a high shear stress plateau 

is observed. As mentioned in Chapter IV, the Peclet number gauges diffusive to 

convective time scales. Thus, for Pe> 1 nonNewtonian (shear thinning) behavior 

should be observed. 

In the case that the interparticle interactions become strong enough that 

Brownian motion is negligible, the low shear rate plateau may vanish and the 

viscosity appear to diverge as the stress is reduced. For hard sphere like dispersions, 

this is typically observed when the suspension volume fraction is increased to near 

random close packing <p "' 0.64, decreasing the relative particle spacing and thus 

reducing the self diffusion (82]. In -charge stabilized systems, the same effect has· 

been observed by reducing the ionic strength at a constant volume fraction (83]. 

An equivalent but perhaps more general dimensionless number which can be used 

to classify suspension behavior is the Deborah number (84], 

D _ time of relaxation 
e - time of observation 

(19) 

If the 'time of relaxation' is identified as that given by diffusion and the 'time 

of observation' identified as the shear rate, the Peclet number is recovered. How­

ever, the utility of thinking in terms of the Deborah number becomes apparant 
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when examining creep measurements in 'glassy' nonequilibrium colloidal suspen­

sions. Here, it becomes not a question of whether the suspension flows, but on 

what time scale it flows. 

At the effective volume fractions examined for the PMMA microgels, the 

shear viscosity versus applied stress appears to diverge at low stress, as shown 

in Fig. 16. Unable to achieve the low shear rate limit, the common ground of 

linear viscoelasticity is not present and the comparison of rheological results with 

that of, say, hard spheres not possible. However, this does not eliminate the 

ability to examine microstructural evolution in the microgels within the context of 

their own rheological behavior. Comparison of microstructural states is examined 

through nonlinear creep and creep recovery measurements. From these results, 

the viscous response due to the applied stress is observed and an instantaneous 

viscosity calculated and correlated with microstructural evolution. These results 

also suggest the observed elastic recovery is due to local suspension microstructure 

and/ or particle deformation. 

Creep and Creep Recovery 

The viscoelastic behavior of suspensions require the formulation of a constitu­

tive equation which encompases the ability to both store and dissipate mechanical 

energy. With no regard for microstructure, such a relationship can be contructed 

by considering viscoelastic materials as those which posess a memory [85]. If the 

stress applied to a material is changed, the material responds to this change, along 

with a continued response to the initial stress. That is, the present state of defor­

mation is due to the entire past history of applied stress. It is expected that this 

memory effect fades with time, so that the present state of stress is most strongly 

determined by its most recent state of deformation. For homogeneous materials 

in which the displacements are kept infinitesimal, a formal expression of such a 

relationship in simple shear may be written as [85], 
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Figure 16. Shear viscosity versus shear stress for O </>* = 1.218, • </>* = 1.03, 'y 

</>* = 0. 783, T </>* = 0.681. 
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(20) 

which represents the stress at time t resulting from a change in strain, 1 ( r ), at 

time T, weighted by the past history of all applied strains for t < T. G( t) represents 

mechanical properties of the material, termed a relaxation function, as it represents 

the stress behavior after deformation. It is assumed positive and decreasing with 

time, consistent with the concept of fading memory. The amplitude of G(t) is the 

elastic shear modulus for the material. Note that for a viscoelastic solid, intuition 

tells us that G( oo) = constant, where as for a viscoelastic fluid, G( oo) = 0. That 

is, for a viscoelastic solid the induced stress state remains nonzero for all times. 

For a viscoelastic fluid, the stress state induced will eventually decay to zero. 

To gain a better physical understanding of relaxation functions, it is useful 

to decompose G(t) as 

G(t) 0° + G(t) (21) 

G(t) ---+ 0 as t---+ oo 

where G0 represents the long time modulus. G0 = 0 for a viscoelastic fluid, and so 

a viscoelastic fluid behaves as such for long time scales ( G( oo) ---+ 0). A viscoelastic 

solid will likewise behave as a viscoelastic solid for long time scales ( G( oo) ---+ G0 ). 

However, on short time scales, a viscoelastic material will behave like a viscoelastic 

solid regardless of whether or not its long time behavior determines it to be a fluid. 

Note, if both G0 and G(O) are defined to be zero, then one is no longer describing 

a viscoelastic, but a purely viscous material. An important distinction to be made 

here is that the time scale your measurement probes ultimately determines whether 

you are measuring G(O), G(oo) (or both), and they are not the same. Moduli are 

meaningless unless the corresponding time scale under which it was measured is 

given. The short time moduli is also known as the equilibrium modulus, G0 , which 

presumably yields the unperturbed elasticity of the equilibrium structure. The 

long time modulus, G0 , yields a 'system' elasticity for a state which is deformed 
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but in steady state. Consistant with G0 = 0, a viscoelastic fluid can sustain shear 

flow, with a steady state viscosity, T/o· 

These limits will have important consequences later on in this chapter where 

creep and creep recovery ( defined below) results are compared with that obtained 

from dynamic data ( see Chapter VI for dynamic measurements). 

Similar to the expression for stress relaxation, the strain response as a func­

tion of imposed stress may be written [85] 

r du(r) 
'Y(t) = Jo J(t - r)a;;:-dr (22) 

where J(t) is termed the creep function, which like G(t), represent macroscopic 

mechanical properties of the material. The results presented in this chapter were 

obtained under the conditions of an applied constant stress. Since physical in­

tuition as to the nature of J ( t) may be less abundant than for stress relaxation 

functions, it is important to make a connection between the two. The form of 

Eqns. 20 and 22 are amenable to the convolution theorem, which states 

1:,-1 { i(;)~)} = 1t f(t - r)m(r)dr (23) 

where the tilde represents the Laplace transform of a given function, with s the 

transform variable. 1:,-1 is the inverse Laplace transform. Given the above, the 

Laplace transform of Eqns. 20 and 22 results in 

u(s) - G(s)(s'Y(s) - ,'(0)) 

'Y(s) - J(s)(su(s) - u(O)). 

(24) 

Although they are related over all time scales, the relationship is most useful in 

the limit of small and large times. The initial and final value theorem for Laplace 

transforms allows one to write, 

limG(t) 
t-->O 

lim sG(s) 
S-->00 

(25) 
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limJ(t) - lim sJ(s) 
t-+0 8-+00 

lim G(t) lim sG(s) 
t-+oo 8-+00 

lim J(t) 
t-+oo 

lim sJ(s) 
S-+00 

from which it can be seen, 

limJ(t) r 1 - 1m--
t-+0 t-+o G(t). 

lim J(t) r i (26) im G( )" t-+oo t-+oo t 

This provides a more physical meaning to the creep functions, and is important 

when attempting to obtain elastic moduli from creep data. 

The creep function can be obtained from a simple rheological measurement. 

Allowing u(t) = u0 h(t), where h(t) is a unit step function, Eqn. 22 yields 

J(t) = { 
0 t < 0 

~ t~O. 

It is therefore possible to experimentally measure the creep function by applying 

an instantaneous step in stress to some finite value, u0 , and observe the resulting 

strain response, -y( t), as a function of time. 

The behavior of the creep functions depend, of course, upon whether the 

system is a viscoelastic fluid or solid. For a fluid, J(t) will be a continuously 

increasing function of time, achieving steady state when J(t) is linear in time, 

with dJ(t)/dt = l/r,0 in this limit. The material exhibits a shear viscosity, which 

for a shear thinning fluid represents the low shear rate Newtonian value. For· a 

solid, J(t) will eventually plateau at some constant value, and of course has no 

defined shear viscosity. Such statements are all consistent with Eqn. 26. The short 

time response of the creep function depends upon the physical process of energy 

storage and dissipation in the material. That is, J(O) may or may not have a 

measurable nonzero value. J(O) is also known as the glassy compliance, Jg. From 

the above considerations, it is clear that Jg= l/G0 • 
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Correspondingly, upon removal of the applied stress the recoverable strain, 

"'fr(tc, t), can be observed in time, yielding a measurement of the recovery function, 

Jr(tc, t) = "'fr(tc, t)/a. Here, tc is the length of time_ the stress is applied and t 

the recovery tiine. (at time tc, t = 0). It is assumed here that tc is long enough 

such that the material is in steady state at the begining of recovery. That is, 

for all practical purposes, the material views tc as oo. In essence Jr(tc, t) is a 

measure of the recoil of the material, or the recovery of stored energy. Here, 

Jr(tc, 0) = 1/G(O) = 1/Go = Jg for both a fluid and a solid. However, Jr(tc, oo) = 
1/G(oo) = 1/G0 for a viscoelastic solid, but not for a viscoelastic fluid. For a 

viscoelastic fluid,. Jr(tc, oo) = J 0 , where J 0 is the long time compliance, much 

like G0 is the long time modulus for a solid. Note that J 0 =J. l/G0 • They are 

two fundamentally different quantities based on the different nature of viscoelastic 

solids and fluids. 

The above results are for linear viscoelastic measurements. Although this 

makes the creep and relaxation functions quantities which are strictly defined only 

within those constraints, this does not preclude one from making the same mea­

surements in the stress sensitive nonlinear region. Here, instead of obtaining one 

master curve for J(t), relevant for all stresses below some critical stress (above 

which the flow becomes nonNewtonian), one will measure a family of functions, 

Ju(t), which depend on the stress applied, a0 • The question now becomes whether 

or not any useful information can be teased from such measurements. Are the mod­

uli obtained at all relevant? Certainly, beyond the linear regime the elastic moduli 

are no longer constant. Also, the glassy compliance measured would no longer 

repre~ent a measure of the equilibrium modulus since by definition, Jg is a linear 

quantity. Such consequences present a dilema in trying to correlate suspension 

microstructure with the rheology. Therefore, in terms of linear viscoelasticity, the 

results presented in this chapter must be interpreted with caution. However, this 

makes the analysis all the more interesting, as an "in spite of ... it is observed ... " 

tenor can sometimes yield fruitful results. 
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One final note about semantics. In an attempt not to confuse linear and 

nonlinear creep functions, it should be assumed that all creep functions mentioned 

from this point on are nonlinear, which may functionaly exhibit linear and/or 

nonlinear regions. 

Instantaneous Viscosity Measurements 

The nonequilibrium phase behavior of these suspensions has been described 

m Chapters III and IV. As noted there, microstructures consisting of ordered 

layers of hexagonal close packed (hep) planes, randomly stacked parallel to the 

shear direction in a simple shear measurement, can be induced. Further, the 

closest packed direction can be oriented either parallel to the velocity or vorticity 

direction, depending upon the initial preparation. All samples examined in this 

study are sufficiently concentrated that long lived microstructural states could be 

induced. That is, once a specific microstructural state was induced, it remained in 

that state for an indefinite period of time; Relaxation of the structure was exhibited 

on the time scale of hours, typically by a narrowing of the diffraction spots. This 

narrowing may be an indication that the induced crystal structure is annealing 

out defects. Though interesting, this effect was not studied. All measurements 

reported were on induced structures which were only minutes old. 

A Bohlin Instruments constant stress rheometer, equipped with a glass C14 

concentric cylinder shear cell, was used to measure the creep and recovery response 

to an applied stress, while simultaneously monitoring suspension microstructure. 

The radius of the rotating inner bob is 7 mm, with a gap size of 0. 7 mm between the 

bob and fixed outer cup. The temperature of the shear cell was not controlled, and 

left to the ambient value ("' 20°C). To prevent solvent evaporation, a solvent trap 

consisting of a a knife edge and trough filled with benzyl alcohol was utilized. The 

low volatility of benzyl alcohol coupled with the solvent trap allowed measurements 

to be made over a period of days with no appreciable evaporation. Viscosity as a 

function of applied shear stress was periodically measured to monitor any volume 

fraction changes due to solvent evaporation. 



55 

The scattering geometry is identical to that shown in Fig. 8 used in the 

nonequilibrium studies in Chapter IV. Here, a helium cadmium laser ( >. = 442 

nm) probes the suspension microstructure approximately in the vfi plane. Further, 

to reduce the effects of refraction, the couette was immersed in a rectangular 

index matching bath of glycerin, and the scattering imaged directly on the front 

of the index bath container. The observed scattering patterns were video taped 

for digitizing. 

Nonlinear creep, Ja(t), and creep recovery, Jr,a(tc, t), measurements were 

made on samples of effective volume fraction </J* = 1.22, 1.03, 0.783, and 0.681, 

over a series of discrete times ranging from t = 2 to 22000 sec. Measurements were 

repeated over a range of applied stresses for each effective volume fraction. The 

initial microstructural state of each run consisted of two different orientations of 

random stacked hexagonal close packed planes_, indicated by the scattering patterns 

shown in Fig. 17a and 17b, respectively. 

The same initial preparation was followed for each measurement, which con­

sisted of preshearing the suspension at a shear rate of-- 66 sec1 for 300 sec followed 

by "' 180 sec· of quiescence. This was the preparation for what is termed the pres­

heared microstructure. This oriented the closest packed direction of the hep planes 

along the velocity direction. For the microstructure termed here as fee, the prepa­

ration was the same as the that of the presheared, except the bob was moved up 

and down (vertically) a set number of repetitions, prior to beginning the measure­

ment. This oriented the closest packed direction of the hep layers in the vorticity 

direction. Strictly speaking, such a_ microstructural state is not in an fee stacking 

sequence. However, as this structure evolves into an fee twin when strained, it is 

termed an fee structure for the purposes of this and future chapters. The preshear­

ing shear rate, time of preshearing, quiescence, number, and amplitude ("' strain 

of one) of vertical repetitions were all determined by experience with the microgels 

as reasonable parameters which brought the sample back to some uniform initial 

state. Reproducibility of the observed scattering is reasonable. 
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Figure 17. Scattering images from structures identified as random stacked hexag­
onal close packed planes with the closest packed direction oriented 
parallel to ( a) the velocity direction, (b) the vorticity direction ( as 
depicted in Fig. 8). 
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Results and Discussion 

The results of the above measurements supply one with a set of nonlinear 

creep and creep recovery curves which vary in magnitude of applied stress, time for· 

which the stress is applied, intitial microstructure, and effective volume fraction. 

A typical example of such creep functions are shown for </>* = 1.03 at u 0 = 5 Pa 

and 8 Pa, in Fig. 18a and 18b, respectively. Here, the distinct form for each creep 

function is peculiar to the initial microstructural state, as well as applied stress. 

The open circles in each graph, 0, correspond to the microstructure shown in 

Fig. 17a, and the solid circles, e, 17b. These scattering patterns are indicative of 

hexagonal close packed planes aligned parallel to the shear cell wall, but randomly 

stacked in the shear direction. However, due to the different orientation of the 

closest packed direction in these layers, relative to the velocity direction, each 

structure exhibits vastly different strain behavior for a given applied stress. The 

structure exhibited in 17a may accomodate.an unlimited amount of strain, provided 

the shear rate is low enough that the close packed planes themselves do not become 

disrupted. Here, the closest packed direction lies along the velocity direction, 

allowing the layers to slide past one another while still maintaining registration 

between each layer. It would thus be expected that no large structural evolution 

would occur during a creep measurement. · The scattering shown in Fig. 17b is 

produced by an alignment of the closest packed direction parallel to the vorticity. 

A limited amount of strain will remove the randomness of the stacking, causing the 

layers to stack in an order indicative of a face centered cubic (fee) crystal with the 

[111] direction oriented perpendicular to the cell wall. As described in Chapter IV, 

the fee structure can only accomodate a limited amount of strain before evolution 

into the sliding layer structure begins. If unlimited strain is imposed, the hep 

planes themselves will become disrupted, eventually evolving back to the random 

stacked hep alignment of 17a. The creep behavior observed in Fig. 18 supports 

the 'geometrical' considerations above, as the fee structure strains less for the 

same applied stress and given time, than the structure which allows. unlimited and 
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relatively easy slippage of hep layers. It is simply easier to slide layers past one 

another, as in a presheared structure, than to restructure the hep planes as in 

a strained fee structure. The initial oscillation at short times appears in nearly 

all measurements and is an instrumental artifact due to the inertial response of 

the measuring system. Depending on how the rheometer controls the stress, this 

'ringing' may or may not contain useful rheological information. However, this 

possibility was not pursued. 

The measured nonlinear creep functions only become of interest when exam­

ined in light of the their respective recovery measurements. Certainly, the family 

of creep functions represent valid measurements. Yet, taken as a single result their 

interpretation is not clear, as they presumably represent a mixture of elastic and 

viscous responses to applied stress and microstructure. As will be shown below, the 

elastic relaxation appears to be relatively short, rendering the nonlinear behavior 

of the creep curves due to a viscous restructuring of suspension microstructure. 

This allows an instantaneous viscosity, as a function of strain and microstructure, 

to be calculated. 

The total recoverable strain obtained over a series of different applied times, 

for several applied s'tresses, and for each effective volume fraction sample examined 

is shown in Fig. 19. Here it is observed that the total recoverable strain, 'Yr,u ( tc, oo ), 

is nearly constant over all time scales measured and that it appears independent of 

the microstructure. This result indicates that the suspension is elastically relaxed 

within "' 2 sec., the shortest time scale probed. This is initially surprising since 

the creep curves clearly indicate nonlinear behavior at the time at which the stress 

was removed, tc, and recovery measured. For example, comparing Fig. 18a over 

the measured time with the results of Fig. 19b, u0 = 5 Pa, clearly shows that 

the same amount of recoverable strain was measured throughout the nonlinear 

region, independent of microstructure. * Since the standard thinking in terms of 

*The data plotted in Fig. 19b was not obtained from the single creep curve 
of Fig. 18a, but a multitude of measurements, each starting with the same initial 
state as that of Fig. 18a, but with varying times of applied stress, tc, before which 
a recovery measurement was begun. 
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Figure 18. Typical nonlinear strain response versus time for </>* = 1.03, (a) u0 = 

5 Pa O presheared structure, • fee structure, (b) u0 = 8 Pa 0 
presheared structure, • f cc structure. 
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creep measurements is that the nonlinearity observed is in general, due to elastic 

relaxation of the material, and yet the microgels exhibit such nonlinear behavior 

in spite of appearing elastically relaxed, the observed nonlinearity in the creep 

curves must be due to a viscous restructuring of the suspension. An immediate 

consequence of this is that an instantaneous viscosity, 'T/i, may be calculated directly 

from the long time creep functions 

1 _ dJu(t) ---
'T/i(,) - dt 

(27) 

This result is shown in Figs. 20, 21, 22, and 23, and dramatically illustrates the 

effect of microstructure on the suspensions viscous response under applied con­

stant stress. The peaked curve in eac:h graph, indicated by e, is the measured 

instantaneous viscosity versus strain for an initial microstructure with the closest 

packed direction oriented parallel to the vorticity direction ( what is called an fee, 

here). The corresponding scattering patterns labeled A through F are associated 

with the evolution of this structure at the indicated strains. It is observed that 

this structure evolves from that of random stacked hep planes, to that of an fee 

twin as indicated by the three fold symmetric pattern. The relatively constant 

instantaneous viscosity indicated by Q, is for an initial microstructure where the 

closest packed planes are oriented parallel to. the velocity direction ( what is called 

presheared, here). The scattering pattern for such a structure is identical to that of 

image F, and shows relatively little evolution under the stresses applied, compared 

to that of the fee. Thus, the susp·ension microstructure is in two different initial 

states which evolve differently under applied stress, and ultimately end up in the 

same final microstructural state. This is reflected in 'T/i where differences in mi­

crostructure, aside from orientation, do not appear significant at small strains, but 

increase dramatically as the strains become large enough to significantly disrupt 

the structure, and again approach the same value as the microstructures approach 

similar orientation. These results are qualitatively consistant with a geometrical 

interpretation, as the peak instantaneous viscosity observed for the fee twin struc­

ture occurs at an increased strain with decreased effective volume fraction, where 
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there would be more free space available for interacting hep layers. However, these 

measurements are in the shear thinning region where hydrodynamic interactions 

play a dominant role in the rheology. Measurements of T/i at applied stresses larger 

than those of Figs. 20 - 23 typically show a broadening of the peak, with the 

initial rise in instantaneous viscosity occuring at smaller strains and peaking to 

a lower value. This is shown in Fig. 24 where T/i for the fee structure is plotted 

for </J* = 0. 783 at applied shear stresses of 0.3 Pa to 0.5 Pa. The microstructure 

typically shows a twinning at strains less than 0.1, which is maintained through 

the peak. As T/i starts to decrease, the fee twin begins to exhibit some distortion, 

which typically worsens as the strain increases and 'f/i levels off. Therefore, the 

observed form of T/i and strains at which it peaks need to be treated with caution. 

For a given effective volume fraction, they depend on the applied stress. It is also 

observed that while the general form of the curve may be the same, errors in the 

peak viscosity of up to 30% can occur. The scattering appears the same initially 

for these runs, indicating either the lack of sensitivity in the scattering to predict 

detailed creep behavior, or the need for more careful intensity measurements. It 

is probably a combination of the two. The minimal increase observed in the 

recoverable strain for the </J* = 0. 783 shown in Fig. 19 may be due to the increased 

microgel spacing, allowing for more particle compression and increased elastic be­

havior. The viscous response may therefore contain some small component of 

elastic relaxation. Data for the </J* = 0.681 sample is incomplete and scattered, as 

inertia of the bob caused difficulties in determining when the creep stopped and 

recovery begun. 

There does not appear to be a significant difference between the recoverable 

strain and observed microstructure. This is an indication that the elastic recovery is 

due to local microstructure and/or particle deformation. However, more surprising 

is the results shown in Fig. 25. Here it is observed that the recoverable strain scales 

on the applied stress. The suspension is therefore behaving with a linear elastic 

response, even though the applied stress is clearly in the nonlinear region. A 

possible mechanism for this is a strain triggered viscous response, where by the 
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Figure 20. The instantaneous viscosity as a function of strain for microgel sus­
pensions ( <p* = 1.22, a-0 = 20 Pa) prepared in presheared and fee 
microstructural states. Observed microstucture is shown by above 
scattering images, which correlate with the viscous response, as 
noted by A, B, C, D, and E. 1 = strain. 
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Figure 21. The instantaneous viscosity as a function of strain for microgel sus­
pensions ( ¢* = 1.03, 0'0 = 5 Pa) prepared in presheared and fee 
microstructural states. Observed microstucture is shown by above 
scattering images, which correlate with the viscous response, as 
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Figure 22. The instantaneous viscosity as a function of strain for microgel sus­
pensions ( ¢* = 0. 783, o-0 = 0 .40 Pa) prepared in presheared and 
fee microstructural states. Observed microstucture is shown by 
above scattering images, which correlate with the viscous response, 
as noted by A, B, C, D, and E. 1 = strain. 
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Figure 23. The instantaneous viscosity as a function of strain for microgel sus­
pensions ( </>* = 0.681, (]'0 = 0.25 Pa) prepared in presheared and 
fee microstructural states. Observed microstucture is shown by 
above scattering images, which correlate with the viscous response, 
as noted by A, B, C, D, and E. 1 = strain. 
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suspension alters its microstructure, viscously dissipating any increase in energy 

beyond that which it is capable of storing in a linear way. Such a mechanism 

could be realized in the suspensions local equilibrium particle configuration. Under 

applied stress, the local configuration would be altered from its "equilibrium" state, 

against the restoring forces due to particle deformation and perhaps randomizing 

effects of Brownian motion. If the suspension is strained beyond some critical 

value, the microstructure viscously evolves, keeping the elastic energy stored in the 

altered configuration constant. This is not contradictory to fact that the applied 

stresses are in the shear thinning regions, as any stress strain relationship can be 

considered linear provided the strains are small enough. These considerations are 

corroborated by the observations of Berry, Hager, and Wong in solutions of poly( o:­

methylstyrenes) [86]. Here, they find that exceeding a critical stress is a necessary 

but not sufficient condition to bring about nonlinear viscous flow. A critical strain 

must also be exceeded, which is suggestive of a viscous microstructural transition 

with strain. They define the following functions to describe nonlinear behavior in 

creep, 

~,(t) 111 (t) ~ ut/110 

, 11 (t) - uJCT(t) - 1r,CT(t, oo) 

(28) 

(29) 

where 171 represents the viscous contribution to strain due to a nonlinear creep 

measurement, and ut/170 the viscous contribution to strain in the linear limit. 

It can therefore be seen that ~,(t) represents a departure from linearity when 

greater than zero. Berry, Hager and Wong find that ~,(t) = 0 for strains up 

to some critical value, %, above which ~,(t) increases for their solutions. This 

is observed in spite of applied stresses being in the shear thinning region. Below 

some critical stress, of course, there is no nonlinearity found in the creep behavior, 

even for strains an order of magnitude larger than%· 

As a verification of this behavior in the microgels, it was attempted, although 

not expected, to find 170 for the presheared structure in the </>* = 0. 783 suspension. 
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Figure 25. Total recoverable strain scaled on applied stress as a function of time, 
for effective volume fractions and applied stresses noted below. (a) 
</>* = 1.22, 020 Pa, .6.10 Pa, (b) </>* = 1.03, Q0.14 Pa, .6.1.0 Pa, 
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70 

Utilizing a double gap couette, it was hoped that the "' two orders of magnitude 

decrease in minimum applied stress afforded by this geometry, below that of the 

optical couette, would yieled T/o· As may be expected, the viscosity diverged at 

low applied stresses, becoming immeasureable for u < 0.09 Pa. Since it becomes a 

philosophical question as to whether or not 'f/o exists for stable, glassy suspensions 

(i.e. apply a small enough stress and wait a long enough time) the following track 

was taken. Although 'f/o could not be measured, the results from the double gap 

provided a range for which it might be said 1000 Pa.sec < 'f/o < oo. With this 

in mind, D..1 is plotted versus 1 , for 'f/o = 1000 Pa.sec and 'f/o = oo, as shown in 

Fig. 26. In both cases, a linear region is observed for strains below"' 2%, in spite of 

the applied stress (~ = 0.092 Pa) being at a value which promotes shear thinning. 

This result warrants a similar examination in microgel suspensions of lower effective 

volume fracion, where 'f/o is defined both experimentally and conceptually. Limited 

sample availability prevented a complete set of these data as a function of </>* and 

microstructure. It is interesting to note, that over all, the strain amplitude defining 

the linear region in a dynamic measurement ( Chapter VI) is of the same order as 

the critical strain observed here. 

Since the recovery measurements are observed to be linear, 'Yr ,u ( tc, oo) / u is 

the measured compliance, J 0 , obtained typically from a linear creep measurement. 

Plotting the average value of the total recoverable strain for each stress shown in 

Fig. 19 versus the stress, yields a straight line. The slope of this line is a measure 

of J 0 • Fig. 27 depicts the data for </>* = 1.22, 1.03 and 0. 783 along with their 

respective linear fits. The </>* = 0.681 data is too incomplete and is not shown. A 

comparison of 1/ J 0 with the measured value of G' at w = 1 and 0.006 rad/sec. 

is shown in Fig. 28. Although J 0 is typically measured at strains associated with 

the nonlinear region, and on a time scale shorter than that probed in the dynamic 

measurements, agreement between the two is observed. 
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CHAPTER VI 

DYNAMIC OPTO-RHEOLOGY 

Introduction 

The steady state measurements of Chapter 5 are structure evolving. Equi­

librium measurements could not be made in the sense that steady shear perturbed 

the microstructure at even the lowest possible applied stresses. By applying an 

oscillatory stress over a range of frequencies rather than a constant stress, this 

problem can be circumvented as the suspension is probed over a large number of 

time scales. In this way, suspension behavior ranging from elastic to viscoelas­

tic to viscous may be examined within the context of a single measurement. If 

the frequency is high enough and the strain small enough, such measurements can 

probe the "equilibrium" structure in a non perturbative way, providing insight into 

interparticle interactions and the equilibrium modulus, G0 • Low frequencies probe 

the dissipative nature of the suspension, yielding a measure of the low shear rate 

viscosity, T/o, if indeed such a region is present. 

The evolution of microstructure as it is observed in the creep measurements 

of Chapter V is a rheologically nonlinear phenomena. In this chapter, a similar 

evolution is examined dynamically. The interpretation of nonlinear results will be 

qualitative and in the form of recongnized patterns. Linear behavior is examined 

within the context of its usual meaning. 

Dynamic Rheology 

The dynamic moduli may be derived beginning from the same stress strain 

relationship examined in the creep and creep recovery measurements, 

74 
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u(t) = 1t G(t- r)d~~) dr (30) 

where now a time varying strain history is applied, 

,(t) = 'Yo expiwt. (31) 

Consistant with the constitutive form found previously, the stress may be written 

as 

u(t) = IG*(iw)l,0 expi(wtH) (32) 

where cp is a phase shift between the applied strain and response in stress. G*(iw) 

is known as the complex modulus, which may be further decomposed into its real 

and imaginary components, 

G*(iw) = G'(w) + iG"(w). (33) 

Here, G' and G" are termed the storage and loss modulus, respectively. In a sense, 

they represent the storage and dissipation of energy in a dynamic measurement. 

Generally, it is the high and low frequency limits of the dynamic moduli which 

are of interest, as they represent the equilibrium modulus, G0 or zero shear rate 

viscosity, 'T/o, respectively. If the relaxation function, G(t), is represented as in 

Chapter V, 

G(t) = G0 + G(t) (34) 

then it may be shown that the following limits exist [85], 

G'(O) G0 

G"(O) - 0 (35) 

and 



G'(oo) 

G"( oo) 

G0 + G(O) = G0 

0. 
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(36) 

The above expressions point out the peculiar behavior of viscoelastic material 

and the importance· of time scales. As can be seen, viscoelastic solids behave as 

elastic solids at both short and long time scales, where as viscoelastic fluids behave 

viscously for slow processes and elastically for fast processes. Further, a complex 

viscosity may be defined as 

(37) 

in which r,' may be related to the dissipation of energy [88] and is termed the 

dynamic viscosity. Since very low frequency, small amplitude oscillations can be 

considered nearly steady flow, r,'(w---+ 0) = 'T/o· 

In a standard simple shear dynamic measurement, the magnitude of the 

applied strain, sample stress response and phase angle is measured, yielding a 

measure of G*, 

* G* Uo i.1. U =-exp'l'=-
10 ,* (38) 

The measurements made in this chapter were under an applied oscillatory stress, 

rather than strain. However, the analysis and applicability of the above equations 

is the same. In the case where nonlinear behavior is examined, these results do 

not hold. 

Dynamic Measurements 

The sample preparation, effective volume fractions and scattering geometry 

are identical to those described in Chapter V. The microstructures termed 'pres­

heared' and 'fee' are as described in that chapter. Here, a sinusoidal stress was· 

applied in lieu of the constant stress. The output strain response and phase shift 



77 

between the stress and strain were monitored. Fourier transforming the strain re­

sponse results in relative contributions of higher order harmonics and observations 

of a departure from linearity. 

Two sets of data were routinely taken for each effective volume fraction 

examined. One set consisted of measurements at a constant frequency, but over 

a predetermined range in strain. Examination of the magnitude of G* resulted in 

determination of the linear region for each sample. The region in strain where the 

dynamic modulus is constant yields the linear viscoelastic region. Typical values of 

frequency examined were 5 Hz to 0.001 Hz, over a range in strain of 1 % to 1000%. 

Sample response could be monitored as a function of microstructure and effective 

volume fraction, through the linear and into the nonlinear viscoelastic regions. 

Since the microstructure typically evolves with increasing strain, all measurements 

were started at small strains, which gradually increased as the applied stress was 

increased. Similarly, holding the applied stress constant and sweeping through a 

series of frequencies results in the frequency response of the suspension. Depending 

on the stress, the measurement either probed the linear, nonlinear, or combination 

of both, viscoelastic regions. Here, the measurement was begun at high frequencies, 

probing small amplitudes and gradually decreased, probing larger strains. 

Results .and Discussion 

Rheological behavior observed in the evolution of specific microstructural 

states is inherently nonlinear. However, the linear region may be examined if the 

applied strains are sufficiently small. One must therefore know what the upper 

bound on strain is and remain below that critical value, ,c· The 'plateaus' asso­

ciated with the linear viscoelastic region of the microgels examined are shown in 

Fig. 29 and 30, where G' and G" are shown plotted versus strain for </>* -:- 1.218, 

1.03, 0. 783, and 0.681. Here, the oscillation frequency associated with each graph 

is w = 1, 0.1, 0.01 and 0.001 Hz. The open and closed symbols are for initial 

microstructures termed presheared and fee, respectively. For the three largest ef­

fective volume fractions, G' > G" at all frequencies, indicating the microgels are 
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behaving more elastically than viscous. In the case of <p* = 0.681, G' is only 

slightly larger than G", indicating a relative viscous response above that of the 

higher concentration samples. Note that the linear region could not be reached 

for the <p* = 0.681 sample for w > l Hz. A stress small enough to insure linearity 

could not be applied here. 

Evidence for the effect of microstructure on the linear and nonlinear regions 

is sought thro1,1gh examination of G' and G". In the linear region, it is observed 

that the moduli are not greatly affected by microstructure, except for a slight shift 

in G' to larger values for the fee structure, perhaps indicating the fee orientation 

to be a more rigid structure. It is not clear why this trend is violated for the 

<p* = 1.218 sample at 0.1 Hz and 0.01 Hz. This sample certainly does not exhibit 

this behavior when examined in a frequency sweep measurement (see Fig. 32) and 

is likely due to an unknown experimental difficulty. No similar clear distinction 

can be made for G". The scattering images associated with this region indicate 

only a slight departure of the initial fee microstructure from its quiescent state. 

The Fourier transform of the strain response also indicates linearity of the system 

in this region. These results are perhaps not surprising. Linear measurements are 

presumably displacing the particles only slightly from there equilibrium positions 

and due to the random stacked nature of each initial microstructure, they should 

have approximately the same amount of free volume to move around. Also, imper­

fections which must surely exist in each of the microstructures may tend to average 

out any deviations. However, since the closest packed direction reiative to the shear 

flow direction is different for each microstructure, some difference is expected. The 

plateau in G' is observed to shift to slightly smaller strains and its value increase in 

magnitude as the effective volume fraction increases, which intuitively agrees with 

the importance of interparicle interactions at higher concentrations. Although the 

gross evolution of microstructure observed in the scattering measurements made 

in this study are too insensitive to distinguish where the nonlinear regions begin 

for each effective volume fraction, the plots of G' versus strain shown yield this 

information directly. A measure of where the linear region ends as a function of 
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Figure 29. The (a,c) storage and (b,d) loss moduli versus strain for an oscilla­
tion frequency of 1 and 0.1 Hz, respectively. 0 <p* = 1.218, V 
<p* = 1.03, D <p* = 0.783, and D. <p* = 0.681. The open and closed 
symbols indicate presheared and fee initial m1crostructural states, 
respectively. 
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volume fraction is shown in Fig. 31. Here, the critical strain is termed the strain 

above which G' breaks from linearity. The strain at which G' begins to fall roughly 

2 to 5% below a line drawn at the plateau value determines the break. Although 

perhaps crude, a trend is clearly present. Differences between the presheared and 

fee initial microstructures were not clearly resolveable. 

The insensitivity of G' with frequency for a given effective volume fraction 
. . 

is shown in Fig. 32, where within the linear region, the suspension is probed over 

a range of frequencies. This insensitivity has already been noted in Chapter III, 

in reference to the results of Wolfe. Here, however, it is also observed that G' is 

relatively insensitive to microstructure. As shown, moduli for the presheared and 

fee microstates track one another, with only a slight increase in those of the fee 

above that of the presheared. The uncomplicated behavior of the moduli further 

indi~ate that the suspensions are behaving in a 'elastoviscous' manner. That is, 

their elastic properties are dominating the viscoelastic behavior. Given the high 

concentration and extremely (if existant at all) limited amount of particle diffusion 

possible, it seems reasonable that dynamic behavior of the microgels would appear 

largely elastic even at frequencies of 0.001 Hz. Data could not be obtained in the 

linear region for <p* = 0.681 sample, as a low enough stress could not be applied to 

insure linearity. 

As shown in Fig. 33, the dynamic viscosity appears to indicate a divergence 

in 'f/o = "l*(w -+ 0) at all effective volume fractions and for both microstructures 

examined. Also shown is the steady state results for 'f/, which can be seen does 

not mirror the dynamic result. Thus, the Cox-Merz rule does not apply in the 

microgel suspensions examined [89]. 

Beyond the linear region, any interpretation of the moduli is tenuous at 

best. Previous studies have attempted to predict nonlinear behavior of G' with 

little success [90,91]. However, for the microgels there may be trends which can 

be examined in light of the underlying microstructure. It is observed that the 

deviation of G' in the nonlinear region, between the presheared and fee structures, 

is generally characteristic of twinning in the fee miscrostructure. The images shown 
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in Fig. 34 document the typical evolution of microstructure from the fee to the 

presheared structure, with increasing strain. They correspond to the moduli for 

</>* = 1.03, w = l Hz shown in Fig. 29. Here, it can be seen that while G' 

does indicate a microstructural change occuring, it does not correlate well with 

the observed scattering much beyond a strain of 0.8. This can be observed by 

comparing the scattering image for , = 1.6 of Fig. 34d with the corresponding 

G1 from Fig. 29a. Here, G' for the presheared and f cc structures appear to be 

merging together at a point where the evolution in microstructure seems to be 

the most dramatic. One may argue that G" is showing behavior which indicates 

this change. That is, G" shows differences at values in strain coincident with 

this evolution. However, the data is not conclusive in this regard. This poor 

correlation between the moduli in the nonlinear regin and observed microstructure 

is also evident in other effective volume fraction samples and at other frequencies. 

This is, of course, not to say that microstructure does not effect the rheology in 

the microgels. The results of the creep measurements indicate otherwise. It must 

be remembered that G1 and G11 are quantities defined strictly in the linear region. 

Using the fundamental from the response spectrum under the assumption that 

it corresponds to the usual G' of linear viscoelasticity is in error. It has been 

demonstrated that for a viscoelastic system driven into the nonlinear regime, even 

the first harmonic is affected [87]. A true set of nonlinear material functions which 

properly account for higher order harmonics may indicate a stronger dynamic 

dependence of the material on microstructure. However, the physical meaning of 

such functions may not be so readily identifiable as the storage and loss moduli of 

the linear theory. 

It is observed that the lower the applied frequency, the larger the strain 

required to evolve the fee microstructure into a mixed state. Again, however, the 

behavior of the storage modulus for the fee structure as a function of strain does 

not yield a correlation with the scattering. This is evidenced in Fig. 35. Here, the 

loss and storage moduli for the </>* = 1.03 at 1 and 5 Hz are plotted for comparison. 

As shown by the accompaning scattering images for , "' 0.8, the moduli do not 



0 O 

0 /) 0 

a , ... J:'J 

C 

• 0 

o r) c 
(!) ,D 

" 0 .r_J . 
' .:~ 0 

• Q 
0 Q 

0 ~ o 
0 ' J ' O 
~ .0() . ... 

e 

86 

b 

d 

Figure 34. Evolution of cp* = 1.03 sample at 1 Hz. (a) 1 = 0, (b) 1 ,...., 0.2, (c) 
1 ,...., 0.85, (d) 1 ,...., 1.6 (e) 1 ,...., 6.6 



87 

reflect the relative underlying differences in microstructure between the presheared 

and fee observed for each frequency. It cannot be determined whether or not 

this strain/evolution effect is dependent on the frequency or applied stress. They 

are unfortunately coupled in the nonlinear region. The higher frequency requires 

a larger applied stress in order to reach the same strain amplitude as a lower 

frequency run. 

Examination of the Fourier transformed strain response at a given frequency 

yields the results shown in Figs. 36 - 42. Here, the higher order harmonics nor­

malized by the fundamental are plotted as a function of strain. The axis labeled 

'harmonics' represents w1 ,w2 ,w3 ... , which are the first, second, and third, ... har­

monics generated, respectively. The vertical axis is the amplitude of each harmonic 

normalized by the amplitude of the fundamental. Generally, it is observed that 

higher order harmonics appear in the suspension response at points roughly coinci­

dent with the onset of nonlinear behavior in the moduli. Although this may not be 

surprising, several points of observation can be made concerning the less expected 

behavior. For each effective volume fraction, it is observed that the contribution 

of higher order harmonics decreases with increasing frequency of oscillation, inde­

pendent of whether or not the strains are sufficiently large that the moduli and 

scattering clearly indicate the measurement to be in the nonlinear regime. This also 

occurs independent of the microstructure (i.e. both the fee and presheared states 

show the same behavior). In connection with this observation, it is also found that 

for those frequencies which do show harmonic content in the nonlinear region, the 

harmonic contribution consistently decays with increasing strain. Examining the 

effect of concentration at a given frequency, it is found that as the effective volume 

fraction is decreased, this decay becomes more rapid in strain, with the higher 

order harmonics eventually disappearing altogether. The frequency at which the 

harmonics disappear also decreases with decreasing effective volume fraction. This 

apparent complicated dependence on concentration, frequency and strain can be 

understood by considering the applied stress. 
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Since these are nonlinear measurements, the stress, strain and frequency 

are coupled in a complicated way. In an attempt to understand why higher order 

harmonics appear and disappear with frequency, the corresponding stress behavior 

as a function of strain was examined for each frequency. It is here that the key 

to the behavior of the observed higher order harmonics resides. If the stress is 

sufficiently large, the higher order harmonics are quenched, independent of the 

strain. For a given frequency, as the stress is increased (thus increasing the strain), 

the higher order harmonics decrease until vanishing. For the sake of discussion, 

let this stress be represented as uc. If the frequency is high enough such that 

the stresses associated with the linear region are greater than uc, then no higher 

order harmonics will be observed, even into the nonlinear region. That is, by the 

time the system reaches the nonlinear region in strain, the applied stresses to get 

it there are large enough to diminish any higher order harmonics. On the other 

hand, if the frequency is reduced, thus reducing the necessary stress required to 

maintain linearity in strain, the system may evolve into the nonlinear region at 

stresses which are smaller than uc. In this case, the system will develop higher 

order harmonics, which may decay with increased strain, as the stress increases up 

to and beyond uc. 

Unfortunately, uc must be concentration dependent, which would describe 

the observed effect of concentration on the frequency at which the harmonic con­

tributions tend to disappear. That is, the stress which quenches the higher order 

harmonics is observed to be smaller for a lower concentration sample, when com­

pared to a more concentrated sample at the same frequency. Examination of the 

critical stress at different frequencies for a given effective volume fraction, indicates 

it to also be frequency dependent. It is not clear why the stress appears to govern 

the harmonic content, while the dynamic moduli show nonlinearities. Since these 

observed effects appear to change with effective volume fraction, it is believed that 

they are not an artifact of the measuring aparatus. At the time of this writing, 

the physical underlying process is not understood. The data is sketchy at best and 

further analysis and thought is required to fill in much of the missing framework. 
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The microstructure associated with the Fourier analysis provides an addi­

tional piece of information. For the fee microstructure, twinning between the 

ABCABC ... and ACBACB ... stacking appears to occur at about the initial peak 

in harmonic content. However, the occurence of a similar peak for the presheared 

structure, indicates perhaps local microstructure is governing the suspensions de­

parture from linearity and not the 'global' structure observed in the scattering. 

When higher order harmonics are present, the shear induced microstructure does 

not initially appear to greatly effect the harmonic content of the strain response. 

The'presheared and fee structures are not dramatically different, even though the 

scattering is quite unique for the evolution of each 13tructure. There is, however, 

a slight dip observed in the amplitude of the higher order harmonics for the fee 

structure as the strain is increased. This dip is consistently observed for all samples 

wh~re the higher order harmonic content has not been quenched. The observed 

scattering in the dip is still twinning fee, with a distortion of this structure as the 

harmonic amplitudes begin to again increase. This is shown in Fig. 44 for the 

<p* = 1.03 sample at a frequency of 0.1 Hz, and is typical observed behavior in the 

microgel suspensions. Consistent with the observation that the fee microstructure 

distorts at smaller strains with increased frequency, the dip is found to shift to 

smaller strains as the frequency is increased. 

The harmonic behavior of the strain response appears to reasonably correlate 

with the underlying microstructure, where as the linear moduli do not. This is 

expected as the harmonic data represents the fundamental data, uncorrupted by 

a linear analysis. 
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Figure 37. Continuation of Fig. 36. 
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Figure 39. Continuation of Fig. 38. 
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CHAPTER VII .. 

CONCLUSION 

The foundation of any complete study on the rheology of colloidal suspen­

sions requires that the suspension is characterized at the particle level. Knowledge 

of particle shape, composition and interparticle interaction all aid in determin­

ing the macroscopic properties measured when applying a stress. Some of this 

information is known or at least suggested from the chemistry involved in man­

ufacturing the particles. Dilute limit equilibrium phase behavior, electrophoretic 

measurements, dynamic and static light scattering and neutron scattering can help 

complete the picture. For sterically stabilized suspensions of spheres, this infor­

mation is usually interpreted in terms of very simple models. i.e. hard spheres 

with Stokes drag. Charge stabilized suspensions are similarly interpreted, except 

here, the rigid particle core is surrounded by counterions. The key element in these 

interpretations is the rigidity of the particle. Independent of how the interparticle 

interactions affect the suspension behavior ( equilibrium or nonequilibrium), there 

is a common invariant - the volume fraction. For spherical particles, one knows 

there is no packing fraction which can be greater than 74%. This provides an upper 

limit to the concentration for which a suspension is likely to flow under applied 

shear, and a minimum in interparticle separation. This also implies invariability 

of the particle form factor. Even though the particle may not be optically ho­

mogeneous when near index matching, a fit to the scattered intensity data in the 

dilute limit should apply at higher concentrations, allowing the structure factor to 

be extracted from scattered intensity data with a reasonable degree of confidence. 

Thus, the effect of shear may directly be examined through the structure factor. 

For the microgels examined in this study, the volume fraction is ill defined rela­

tive to a maximum packing fraction. The particles are swollen sufficiently that 
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they must compress at higher concentrations, not only raising questions as to the 

nature of the interparticle interactions, but also the particle form factor. Does 

the scattering result mostly from a central undisturbed core, or does the shape of 

the form factor change with concentration? How much does the particle distort 

under shear? The interaction potential between particles presumably results from 

a distortion of the particle. The amount of that distortion before the particles 

can approach no closer, relative to the overall particle size, determines the error 

in defining a rigid core. Presently, the best one may characterize the microgels is 

by c·omparing their equilibrium and nonequilibrium phase behavior to some ref­

erence system (hard spheres in this case). Future work in determining PMMA 

microgel particle structure is certainly warranted. Previous core shell models used 

to estimate microgel structure have met with some success in predicting scatter­

ing results [92]. Correlating the meaning of effective volume fraction with such 

structure can only serve to strengthen and perhaps quantify arguments concerning 

shear thinning, elasticity and microstructure, with Brownian, hydrodynamic and 

nonhydrodynamic interparticle interactions. 

The intent of this study has been to correlate suspension microstructure with 

gross, macroscopic rheological measurements. In this sense, the emphasis may be 

placed less on the question as to why the microstructure evolves, and more on how 

this evolution affects the observed rheology. Such a course restricts one to volume 

fractions greater than 50% (below which induced microstructure is not observed). 

Due to experimental difficulties with inertia of the measuring system, which mani­

fests itself as a DC drift in the oscillatory measurements, a decision to work at high 

effective volume fractions was made. Here, the effects of measuring system inertia 

are decreased due to increased viscous forces. A consequence of this is that the 

samples were concentrated enough ( <p* ~ 0.681) that once microstructure had been 

induced, it was no longer possible to bring the suspension back to an amorphous 

state. Stable structures in which the closest packed direction in an hep plane was 

oriented either in the velocity or vorticity direction could be induced. This result 

makes it natural to perform the series of measurements detailed in Chapter V and 
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VI, in which the evolution of each structure is examined from zero strain to strains 

approaching 1000%. The correlation between specific microstructural states with 

stress and strain has been demonstrated in the creep measurements. Where the 

system becomes frustrated, indicated by an increased instantaneous viscosity, the 

structure is seen to be evolving into a state which jams layers of particles into one 

another. In dynamic measurements, the linear moduli are observed to indicate a 

small dependence on microstructure. The storage modulus for the random stacked 

structure oriented with the closest packed along vorticity axis (fee of Chapter VI) 

is found to be"' 15% larger than for the random stacked structure with the closest 

packed structure oriented along the velocity direction (presheared structure). This 

behavior is observed over a frequency range of 1 Hz to 0.001 Hz, with little varia­

tion in G'. A microstructural correlation in the nonlinear region is clearly exhibited 

in the harmonic content of the strain response, where the moduli (linear quantities 

by definition) show a poor correlation. Taken as a whole, the steady shear and 

dynamic measurements appear to offer many connections, many of which are yet 

to be found. An aid in making some of these connections may be in found future 

experiments. There are several either incomplete or new measurements which may 

prove interesting for the microgel suspensions. 

Similar to the measurements used to generate the nonequilibrium phase dia­

gram of Chapter IV, a series of dynamic stress relaxation runs were made over all 

but the most concentrated samples examined. Here, the sample was initialized in a 

presheared state. An oscillatory stress was applied at a fixed frequency and strain. 

The dynamic stress was then observed and correlated with the microstructure. 

The results shown in Fig. 45 are shown for only the <p* = 0.681 sample and may or 

not be typical of other samples. Here, the dynamic stress is shown as a function 

of time, along with the corresponding microstructure. The trend indicates the 

relaxation of stress as the microstructure evolves either into a more defined ( 0) 

presheared or ( e, V) presheared/fcc structure. Difficulty in obtaining consistant 

results due to drift (presumably manifested as the oscillations shown), prevented 

a complete set of data from being taken. For the data shown, no higher order 
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harmonics were present in the response signal, thus a* is thought to be a valid 

quantity. The strains were in the nonlinear region. 

Where as the above measurements are at strains which probe the gross evo­

lution of one microstructural state into another, one could induce either a pres­

heared or fee structure and perform the same measurement as outlined above, only 

at small strains. Here, at a constant frequency, the strain could be maintained in 

the linear region and the moduli observed as a function of time. Although gross 

microstructural changes would not be expected, careful scattering measurements 

could be made on the structure in which the spot size and intensity is measured. 

This would essentially provide information about the dynamic stress as a function 

of 'working' the induced structure. Such a measurement would be the linear ana­

log to that described in the previous paragraph. It would be curious to observe to 

what extent a 'linear' measurement would alter the microstructure. Perhaps the 

sample would anneal out defects, causing a sharpening of the Bragg spots? 

The observation of a dip in the harmonic content for fee microstructural 

states is indicating a softening of the system from nonlinearity. Since this dip 

appears to occur at about where the maximum amount of twinning may occur 

without distorting from an fee to a mixed state, it would be of value to probe 

that region of strain as a function of time. What would happen to the harmonic 

amplitude if the system was held at the dip over a longer period of time? 

In the context of steady shear measurements, stress relaxation would be of 

interest as a complement to the observations made in creep and creep recovery. 

Here, the time required for elastic relaxation may be independently checked with 

such measurements. 

Overall, much effort was extended to making the rheological measurements 

reported in this study. Since the scattering images observed for the microgels 

qualitatively appear to be the same as those observed in hard sphere like PMMA 

suspensions, much of the time it was assumed the microstructure was behaving 

according to the geometrical model developed for those results [46]. In this regard, 
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more careful intensity measurements of the Bragg spots under applied shear and 

along different k vectors may prove enlightening. 
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APPENDIX A 

RANDOM STACKING OF HCP PLANES 

Unlike the randomly dispersed particles of a liquid, a crystalline structure 

has long ranged order associated with it .. This unique property requires that the 

lattice associated with the crystal is invariant under translation [44]. That is, one 

can move to any lattice point in the crystal by a translation, T 

(39) 

where a1 and a2 are fundamental translation vectors and u1 and u2 arbitrary 

integers. As a consequence of this, any local, periodic property of the crystal, 

n( r), must also be invariant under translation 

n(r + f) = n(r'J 

This periodicity can be used to Fourier expand n( r) as 

n(r) = L CgexpiG·r 
a 

( 40) 

(41) 

resulting in a connection between the real space lattice and its dual in Fourier 

space. The lattice in Fourier space is known as the reciprical lattice, where G is ·a 

reciprical lattice translation vector, analogous to f. Here, translantional invariance 

reqmres 

G · f = 21r x integer (42) 

where 

(43) 
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with vi, v2 , and m integers and b1 and b2 are the reciprical translation vectors. 

They may be constructed as [44) 

(44) 

b... _ 2 ii1 Xa2 
3 - 7r ... (... ... ) 

a1 · a2Xa3 

The diffraction pattern of a crystal is given by the reciprocal lattice; which may be 

constructed from the reciprocal translation vectors. The condition for diffraction 

to occur such that the crystal structure in real space is mapped by the reciprocal 

lattice in a light scattering measurement is given by Laue: constuctive interference 

between scatterers will occur, only if the scattering wave vector is a vector of the 

reciprical lattice, k = G = ks - ki. This is nicely illustrated by the Ewald Con­

struction shown in Fig. 46. Here, in reciprical space, a sphere of radius ki is drawn 

about ki, The condition for a diffraction peak occurs only if the reciprocal lattice 

vector G connects two reciprocal lattice points on the surface of this sphere. A 

more formal way of stating the Laue condition is 

'I' · G = 'I' · k = 21r x integer (45) 

from which it can be seen that a one, two, and three dimensional lattice in real space 

results in planes, tubes and points, respectively, in reciprical space. To compare the 

measured results of the powder pattern scattering with that of randomly stacked 

layers of hexagonal close packed planes, the reciprocal space structure must be 

calculated and suitably averaged over all crystallite orientations. 

First consider a single hep layer as shown in Fig. 47a, with fundamental 

translation vectors, scaled on nearest neighbor distance 

r ... b I XA + ~y·A - 2 2 

(46) 
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• • • • • • • 
• • • • • • • • 

• • • • • • • • • • • • 
Figure 46. Ewald construction for diffraction. ki, ks, and k = ( - ks are the 

incident, scattered, and scattering wave ... vec~ors, respectively. A 
diffraction maximum will occur only if G = k connects two recip-
rocal lattice points on the surface of a sphere of radius 1(1, drawn 
about ki. 
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The reciprocal space structure associated with this plane is shown in Fig. 47b, 

where the points of real space are now lines in reciprocal space. Depending on the 

size and/or disorder of the hep plane, the lines will be broadened into tubes. In a 

scattering measurement, the intensity distribution of these tubes as a function of 

k, is obtained from the geometrical form factor, F(k), of the plane 

N 

F(k) = P(k) L exp(ik · r;) (47) 
j=l 

where Pis the particle form factor, N the number of spheres in the plane, and f; 

representing the position of the /h sphere in the plane, referenced to an arbitrary 

ongm 

( 48) 

where m and n are integers. The layer form factor results from summing the 

scattered radiation from each of the spheres, along with their phase shift. The 

intensity may be obtained as the modulus squared of the form factor IF(k)j2 • 

Stacking of the hep planes results in a further modulation of the tubes along 

the z axis. This modulation may be accounted for in the intensity by a phase 

factor associated with the scattering between hep planes, as 

J(k) = N L IF(k)l2(exp-ik-R1) 
M1 

( 49) 

where N now represents the total number of particles and M the total number 

of layers (hep planes). R1 represents the postition of the zth layer. In calculating 

the sum over all configurations, it is useful to examine the stacking of hep planes. 

Once the first layer is placed, there are two choices of placement for the next 

layer. If A denotes the initial layer, then B and C denote the possible choices 

of placement of the next layer. This results in the possible stacking sequences 

ABCABC ... , and ACBACB ... , or ABABA ... , and ACACA ... , corresponding to fee · 

or hep crystal structures, respectively. Such stacking sequences can also be realized 

by the application of successive stacking along one of two vectors, R1 and R2 
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z 
a 

X 

b 

Figure 47. (a) Single hexagonal close packed plane with translation vectors Ta and 
Tb, respectively. (b) Reciprocal space construction of the real space 
plane, depicting lines (tubes) perpendicular to that plane. 



R.... }A+ 1 A /2A 
I - 2x 2,j3Y + V 3z 

R.... }A 1 A /iA 
2 - 2x - 2,j3Y + V 3z 
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(50) 

Ackerson recognized this property and utilized a transfer matrix technique to gen-

erate the possible layer configurations Here, the propogation of a scattered wave 

vector from plane to plane is given by the successive multiplications of the transfer 

matrix 

_ ( aexpik·R1 (1 - a) expik-~ ) 

- A = (l - a) expik·R1 a expik·R2 
(51) 

The parameter a determines the randomness of the layer stacking, with a ranging 

from 1 to O for fee to hep stacking, respectively. Thus, the scattered intensity may 

be written, 

I(k) = ~ IF(k)I' [[<A)'+ l + [<A•)'] (52) 

where * represents the complex conjugate and J the unit matrix. Under the as-

sumptions of perfect stacking and convergence of the above summations, the scat­

tered intensity froll\i,registered, stacked hep planes is found to be 

.... M .... .... ....... 
I(k) = N IF(k)l2 a(l - a)[l - cos k · (R1 - R2)]/ (53) 

2 2 _, _, _, _, 2 _, _, _, 
[1-2a+3a -2a (cosk-R1 +cosk-R2)+a cosk-(R1 -R2)+ 

(2a - 1) cos f. (R1 + R2)] 

The above can be used to find the modulation of intensity along the tubes in re­

ciprocal space. However, in calculating the powder scattering from a sample of 

randomly oriented crystallites requires orientational averaging. This is achieved 

via a method devised by Guinier [9]. Assuming that all of the powder grains 

are identical, the powder scattering profile is obtained by rotating in all direc­

tions about the center of the reciprical lattice for a single crystal. Projections of 

the intersection of modulated tubes onto the Ewald sphere of radius k are then 
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integrated over the entire sphere, yielding the scattering intensity at that angle 

(defined by k). Repetion of this process over a range in k produces the powder 

pattern signature for random stacked hep planes. This calculation is carried out 

by the program listed in Appendix II. 



APPENDIX B 

POWDER PATTERN PROGRAM 

II CALCULATE THE SCATTERING FROM A CRYSTALLITE COMPOSED OF 
II RANDOMLY STACKED HEXAGONAL CLOSE PACKED PLANES 
II A1=stacking probability (A1=1 is fee, A1=0 is hep, A1=0.5 is random) 
II Based on the original basic code of Bruce J. Ackerson (1989). 
II S.E. Paulin modified: 
II Temperature diffuse scattering added 12191 
II Converted to C 5192. 
II Revised tube correction factor 1193. 
II 

#include <math.h> 
#include <stdio.h> 
#include <string.h> 

FILE *indata, *outdata, *andata; 

double A8,A9,B1,R1,R2,R3,R4,R5,R6,K1,K2,K3,K4,K5,K9,L1,V1,V2,V3,V4,N9,D9; 
double Q9,Q4,Q5,S1,VIB,fac,abt,A1,L9,K,C1,A,B,K6,U6,U5,ZZ,dia,thet,net; 
int I1,I2,I3,J1,J2,pn,nps,scl; 
char *oufi; 

main(int argc, char* argv[]) 
{ 

I*** FCC - HCP RANDOM STACKING POWDER PATTERN CALC 5-3-92 ***I 

printf ( 11 Y.s 11 , "Filename 11 ) ; 

scanf("Y.s",oufi); 

if((outdata = fopen(oufi,"w")) == NULL) { 
fprintf(stderr,"ERROR*** cannot open Y.s\n",oufi); 
exit(1); 

} 
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printf( 11 Y.s 11 , 11A8 (100.0) and A9 (7.): "); 
scanf( 11Y.lfY.lf 11 ,&A8,&A9); 
printf( 11 Y.s 11 , 11 VIB (0.0) and fac (1.0): "); 
scanf("Y.lfY.lf",&VIB,&fac); 
printf ( 11 Y.s 11 , "dia: 11 ); 

scanf ("Y.lf" ,&dia); 
printf( 11 Y.s 11 , 11 start angle (degrees): 11 ); 

scanf ( "Y.lf", &L1) ; 

pn = 5; 
abt = 12; I*** integrate out to 3 standard deviations ***I 

fac=fac; 

net= 1.0/sqrt(2.0*A9); I*** net is the standard deviation ***I 
net= net/4.0; 

f*** BASIS VECTORS ***I 
R1 = dia*(1.0 / 2.0)~ 
R2 = dia*(1.0 / (2.0 * 1.732051)); 
R3 = dia*0.8164966; 
R4 = dia*(1.0 / 2.0); 
RS= -R2; 
R6 = R3; 

'*** TUBE WAVE VECTOR POSITION ***' 
K1 = (2.0 * 3.1415)/dia; 
K2 = (2.0 * 3.1415 / 1.732051)/dia; 
K3 = (2.0 * K2); 

f*** FCC STACKING PROBABILITY***/ 
printf ( 11 Y.s 11 , "FCC stacking probability: 11 ); 

scanf ( 11Y.lf 11 ,&A1); 

/~** A1 = 0.5; ***I 

f*** HCP ~TACKING PROBABILITY***/ 
B1 = (1.0 - A1); 

I*** LAYER CONTINUATION PROB ***I 
I* DEPENDS ON KAND NOT KZ *I 
I*** SWEEPING WAVEVECTORS ***/ 
printf( 11 Y.s 11 , 11Number of points? 11 ); 

scanf ( 11 Y.d 11 ,&nps); 
for(I3 = 1;I3<nps+1;I3++) { 
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thet = 0.25; 
L9 = (6.2832*2.0*i.54/632.8)*sin(thet*3.i4i6/360.0); 
K = (6.2832*2.0*i.54/632.8)*sin((Li+(I3*thet))*3.i4i6/360.0); 
Ci= exp(-A8 * K * K); 
A = Ci * Ai; 
B =Ci* Bi; 

f*** SCANNING PENETRATION ****f 
S1 = 0.0; 

for(Ii = -pn;Ii<pn+i;Ii++) { 

for(I2 = -pn;I2<pn+i;I2++) { 
Q4 = I1 * Ki; 
QS = ((Ii* K2) + (I2 * K3)); 
Q9 = sqrt(Q4*Q4+Q5*Q5); 

if(Q9 <= 0.0) { 
Q9 = L9; 

} 

if (Q9 > K + (abt*net)) { 
continue; 

} 

f*** SCAN ABOUT THE TUBES ***f 
for(Ji = -abt;Ji<abt+i;Ji++) { 

for(J2 = -abt;J2<abt+i;J2++) { 
K4 = Q4 + ((double)(Ji) * net); 
KS= QS + ((double)(J2) * net); 
K9 = sqrt(K4*K4+K5*K5); 

if(K9 > K) { 
continue; 

} 

K6 = sqrt(K*K-K4*K4-K5*K5); 

f*** TUBE DIAMETER FACTOR ***f 
U6 = exp(-A9 * ((Ji* Ji)+ (J2 * J2))*net*net); 

f*** AREA PROJECTION CORRECTION ***f 
if(K6==0.0) { 

continue; 
} 



U5 = net*net; 
U5 = U5*sqrt((K4*K4)/(K6*K6)+(K5*K5)/(K6*K6)+1.0); 

f*** CALC TRIG FUNCTIONS ***/ 
V1 = (K4 * R1) + (K5 * R2) + (K6 * R3); 
V2 = (K4 * R4) + (K5 * R5) + (K6 * R6); 
V3 = V1 - V2; 
V4 = V1 + V2; 

f*** CALC THE MODULATED INTENSITY ***I 
N9 = (1.0-2.0*A*B+2.0*A*A*B*B-pow(A,4)-pow(B,4)) 

+ (B-A+B*A*A-A*B*B-pow(B,3)+pow(A,3)) 
* (cos(V1)+cos(V2))-2.0*A*B*cos(V3); 

D9 = (1.0+2.0*A*A-2,0*A*A*B*B+pow(A,4) 
+ pow(B,4))+(-2.0*A+2.0*B*B*A-2.0*pow(A,3)) 
* (cos(V1)+cos(V2))+2.0*A*A*cos(V3) 
+ 2.0*(A*A-B*B)*cos(V4); 

S1 = S1 + (2.0 * N9 * U5 * U6) / D9; 

} 
} 

} 
} 

f*** TEMPERATURE CORRECTION ***I 
ZZ = fac*(1.0-exp(-VIB*K*K/3.0)) + S1*exp(-VIB*K*K/3.0); 

fprintf(outdata, "Y.f\tY.e\tY.e\n", K, S1, ZZ); 
printf("Y.f\tY.e\tY.e\n",K,S1,ZZ); 
// printf (". "); 

} 

fprintf (outdata, 11 Y.f\tY.e\tY.f\n11 , A8, A9, A1); 
fprintf(outdata,"Y.f\tY.e\n", VIB, fac); 

close(outdata); 

} 
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APPENDIX C 

DRIVER FOR STEPPER MOTOR AND LANGLEY-FORD CORRELATOR 

I* LFI: driver program for stepper motor goniometer and Langley-Ford 
correlator. 

S. E. Paulin 04-12-92 *I 

#include <ctype.h> 
#include <math.h> 
#include <stdio.h> 
#include <conio.h> 
#include <bios.h> 
#include <dos.h> 
#include <string.h> 
#include <graphics.h> 
#include <io.h> 

FILE *fo,*par; 
char *fiout; 
double vplt[SOO]; 

List of variables for main() 

par 
fo 
pff 
fiout 
daf 
cflag 

input file stream for parameters used by LFC 
file output stream 
path for output file (lfc.par variable) 
name of output file 
name of output file with appended path and .int 
flag set to value of GET_COR() upon too many 

overflows or not enough counts 
flag flags program to close if too many overflows 
ovfl maximum number of overflows (lfc.par variable) 
mine minimum number of counts (lfc.par variable) 
slp automatic cycle time (sec) for correlator 
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k index for the number of steps completed from the 
start angle to the final angle in increments of step 
stsi step size in degrees 
prepos the maximum number of steps required to achieve 
the final angle 
delay timing variable for delay loop in STEP_MOT() 
fang final angle goniometer is moved to in degrees 
stdeg number of steps/degree required by the stepper 
motor (25000/360) 
step number of steps required to go from the starting angle 
to the final angle in steps of size stsi 
stang start angle in degrees 
pang present angle in degrees at start of program 
cstep correction for the starting angle to which the motor 
is stepped due to floating-integer round off error. 
i.e. stepper motor must be stepped an integer 
number if steps 
vplt global variable which holds the sine theta corrected 
intensity used in PL_IT() 
in kbhit variable 
gdriver variables used in initializing graphics driver 
*I 

int main(void) 
{ 

int gdriver = DETECT, gmode, errorcode; 
int gflag,ovfl,cflag,flag,slp,k,prepos,step,delay,fang,minc; 
float stdeg,stsi,cstep,stang,pang; · 
register int in; 
char daf[20],pff[20]; 

initgraph(&gdriver,&gmode, 1111 ); 

errorcode = graphresult(); 

if(errorcode != grOk) 
{ 
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printf("Problem here! Closing and exiting ... \n",grapherrormsg(errorcode; 
exit(1); 

} 

restorecrtmode(); 



cf lag = -1; 
stdeg = 69.4444; 

if ((par= fopen( 11 lfc.par11 , 11 r 11 )) == NULL) { 
puts("ERROR*** cannot find parameter file 'lfc.par'\n"); 
exit(); 

} 

f scanf (par. 11 Y.d\n11 ,&:ovfl); 
fscanf (par. 11 Y.d\n11 ,&:mine); 
fscanf (par, 11Y.s\n11 ,pff); 
f close (par) ; 

printf("Enter a filenarne\n 11 ); 

scanf( 11 Y.s 11 ,fiout); 
strcat (fiout, 11. int"); 
strcpy(daf,pff); 
strcat(daf,fiout); 

if (access(daf,O) == 0) { 
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puts("FILE EXISTS ... OVERWRITE? y or n, DO NOT TYPE A RETURN!"); 
printf( 11 Y.s\n11 , 11 11 ); 

in = getch(); 
in= tolower(in); 

if (in== '\x6E') { 
exit(); 

} 
} 

if ((fo = fopen(daf. "w")) == NULL) { 
puts("ERROR*** cannot open file\n"); 
exit(); 

} 

printf ("Enter present angle in degrees\n II); 
scanf ( 11 Y.f 11 ,&:pang); 

printf("start angle in degrees\n 11 ); 

scanf ( 11 Y.f 11 ,&:stang); 

printf("final angle in degrees\n 11 ); 

scanf ( 11 Y.d 11 • &:fang) ; 



printf("step size in degrees\n "); 
scanf ("Y.f" ,&stsi); 

I*** printf("Enter delay (500 is nice)\n "); 
scanf("Y.d",&delay); ***I 

delay= 500; 

printf("How long.to sleep?\n "); 
scanf ("Y.d" ,&slp); 

I* step: number of steps required to move from present angle to 
starting angle, truncated to integer value *I 

step= (stang - pang)*stdeg; 
printf ("Please wait ... \n"); 

STEP_MOT(step,delay); 
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I* 'if' needed for correct calculation for negative angle entries *I 

if(step<O) step= step*(-1); 

I* cstep: calculate correction for angle due to integer truncation 
for number of pulses sent to stepper motor *I 

cstep = (abs(st~g - pang) - (step/stdeg)); 

I* prepos: calculate the number of moves required to move from 
starting to final angle *I 

prepos = abs(abs((fang-stang))/stsi); I*** careful int.float decl. ·***I 

I* 'if' needed for correct calculation for negative angle entries *I 

if(stang<O) { 
stsi=stsi*(-1); 
cstep = cstep*(-1); 

} 

I* 'if' decides which way to move rotor *I 

if((fang-stang<O)) stsi=stsi*(-1); 

I* stang: correct the user entered angle with cstep and report the 



actual angle to which the goniometer was moved *I 

stang = stang - cstep; 
printf("Starting angle: 11 ); 

printf( 11 Y.f\n 11 ,stang); 
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I* step: reinitialize step as the number of pulses required for the 
stepper motor to move to the desired angular increment in degrees *I 

step= stsi*stdeg; 

printf("Turn correlator to autocycle now and strike any key\n "); 
getch(); 

l*****************i*******************************************I 
I* 'for' controlling loop in MAIN() which makes calls for *I 
I* data acquisition and motor control *I 
I* i.e. after rotation to the initial starting angle, *I 
I* the program resides entirely in the loop below *I 
l*************************************************************I 

for(k=O;k<=prepos;k++) { 
printf("Sleeping ... \n"); 
sleep(slp+1); 

if (kbhit()) { 

while(kbhit()) { 

in = getch(); 
} 

in = tolower(in); 

I* 'q' finishes up present data point collection 
then exits the program, keeping the goniometer 
at the last stated angle *I 

if (in== '\x71') { 
printf("Finishing last cycle, closing all files\n"); 
GET_COR(stang,ovfl,minc,k,step); 
fclose(fo); 

printf("Type p for final look at the plot?\n"); 

if(getch()=='\x70') { 
PL_IT(k); 
} 



closegraph () ; 
exit(O); 

} 

I* 'p' plots the data as log(!) vs. theta *I 

if (in== '\x70') { 
printf ("Plotting ... \n"); 
PL_IT(k); 
goto wow; 

} 

} 

wow: 
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I* STEP to the next angle before dumping correlator data *I 

STEP_MOT(step,delay); 
printf ("Getting correlator data ... \n"); 
flag= GET_COR(stang,ovfl,minc,k,step); 

I* 'if' there are too many overflows or not enough 
counts, back up to the last reported angle and 
exit the program *I 

if(flag == cflag) { 
step= (-2)*(stsi*stdeg); 
STEP_MOT(step,delay); 
fclose(fo); 

printf("Type p for final look at the plot\n"); 

if(getch()=='\x70') { 
PL_IT(k); 

} 

closegraph(); 
exit(O); 

} 

} 

fclose(fo); 

printf("Type p for final look at the plot\n"); 



if(getch()=='\x70') { 
PL_IT(k); 

} 

closegraph(); 
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I* step: when all angles have been·measured, back up to last reported 
angle and exit program *I 

step= (-1)*(stsi*stdeg); 
STEP_MOT(step,delay); 

exit·(o); 
return O; 

} 

'********** END OF MAIN **********' 

'*************************************************************' 
I** CONTROL OF THE STEPPER MOTOR VIA THE PARALLEL PORT IS **/ 
I** ACHIEVED WITH STEP_MOT() **I 
'*************************************************************' 
STEP_MOT(step,delay) 

int step,delay; 

{ 

#define STATUS 0 
#define PORTNUM 0 

I* status O means send the byte *I 
I* port number for LPT1 *I 

int i,j,chbyte,clbyte,abyte; 

if (step<O) { 
step = abs(step); 
chbyte = 6; I* high byte for reverse step *I 
clbyte = 4; I* l~w byte for reverse step *I 

} 

else 

chbyte = 7; 
clbyte = 5; 

{ 

I* high byte for forward step *I 
I* low byte for forward step *I 



} 

for(i=O;i<step;i++) { 
abyte = chbyte; 

for(j=O;j<delay;j++) { I* delay loop *I . 

} 
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biosprint(STATUS, abyte, PORTNUM); I* send high to LPT1 *I 

abyte = cl byte; 

for(j=O;j<delay;j++) { I* delay loop *I 

} 

biosprint(STATUS, abyte, PORTNUM); I* send low to LPT1 *I 

} 

return O; 

} 

'********************************************************************' 
I** RETRIEVAL OF CORRELATION FUNCTION, INTENSITY AND CORRELATOR **/ 
I** CONTROL PANEL SETTINGS (see L.F. manual) VIA THE SERIAL PORT **/ 
I** IS ACHIEVED WITH GET_COR() **I 
'********************************************************************' 
GET_COR(stang,ovfl,minc,k,step) 

int k,step,ovfl,minc; 
float stang; 

{ 

#define COM! 0 
#define SETTINGS (Ox80 I Ox02 I OxOO I Ox18) 
#define STATUS 0 
#define PORTNUM O 



int abyte,data[400]; 
unsigned int fdata[80]; 
double vard,stangd; 
int i,n,j,in, out, status,result; 

bioscom(O,SETI'INGS,COM1); 

if(step<O) { 
abyte = 52; 

} 

else { 
abyte = 53; 

} 

biosprint(STATUS, abyte, PORTNUM); 

abyte = abyte - 48; 

j=O; 
n=O; 

while(j<400) 
{ 

if((out = bioscom(2,0,COM1) & Ox7F) !=O) { 
if(isdigit(out)) { 

} 

data[j]=out-48; 
j++; 

} 

} 

for(j=O;j<400;j++) { 
fdata[n] = data[j]*10000; 
fdata[n] = fdata[n] + data[j+1]*1000; 
fdata[n] = fdata[n] + data[j+2]*100; 
fdata[n] = fdata[n] + data[j+3]*10; 
fdata[n] = fdata[n] + data[j+4]; 

I*** printf ( 11 Y.d\tY.d\tY.u\n 11 ,j ,data[j] ,fdata[n]); ***I 
n++; 
j = j + 4; 
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} 

for(i=O;i<80;i++) { 

for(j=O;j<10;j++) { 
printf ( "Y.u ", fdata [i +j]) ; 
I*** fprintf(fo,"Y.u ",fdata[i+j]); ***I 

} 

} 

printf("Y.s\n"," "); 
I*** fprintf(fo,"Y.s\n"," "); ***I 
i=i+9; 

I* 'if' checks for overflow condition *I 

if(fdata[70] > ovfl) { 
OV_FLO(); 

} 

printf("*** overflow limit exceeded, closing files ***\n"); 
biosprint(STATUS, abyte, PORTNUM); 
return(-1); 

stangd = stang + (step/69.4444)*(k); 
vard = ((fdata[66]*(65536))+fdata[67]); 

I* 'if' checks for minimum counts *I 

if(vard < mine) { 
OV_FLO(); 
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printf("*** minimum counts not satisfied, closing files ***\n"); 
biosprint(STATUS, abyte, PORTNUM); 
return(-1); 

} 

vard = vard*sin(3.14159*(stangd/180.)); 
if(vard < 0) vard=vard*(-1); 
fprintf(fo,"Y.f\tY.f\tY.u\n",stangd,vard,fdata[70]); 
printf ("Y.f\tY.f\tY.u\n", stangd, vard, fdata [70]); 

vplt[k] = vard; 



sleep(1); 
biosprint(STATUS, abyte, PORTNUM); 
return O; 

} 

OV_FLO() 

{ 

sound(100); 
delay(2000); 
nosound(); 
return(O); 
} 

f** PL_IT() IS PLOTTING THE DATA **I 

PL_IT(k) 

int k; 

{ 

int i,maxx, maxy,ivplt,xax[500]; 
float crap,divplt; 
double oqvplt,hplt; 

if(k<2) { 
printf("Wait for at least two points please\n"); 
return O; 
} 

maxx = getmaxx() + 1; 
maxy = getmaxy() + 1; 

oqvplt = O; 
xax[O] = O; 

for(i=O;i<k;i++) { 

if(vplt[i]>oqvplt) 
{ 

oqvplt = vplt[i]; 
} 
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} 

hplt = oqvplt; 

setgraphmode(getgraphmode()); 

for(i=O;i<k;i++) { 
crap= log10(vplt[i]); 
divplt = (crap/log10((hplt+1)))*170; 
ivplt = divplt; 
xax[i+1] = xax[i] + ((maxx-(maxx/3))/(k-1)); 
ivplt = maxy - ivplt; 

putpixel(xax[i],ivplt,15); 

} 

getch(); 
restorecrtmode(); 
return(O); 

} 

!********** END OF PROGRAM **********! 
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