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Abstract 

Interest in the use of two phase reaction systems for the production of biofuels 

and specialty chemicals from biomass has been increasing over the past several years, 

specifically in circumstances in which the feedstock is comprised of both water soluble 

and oil soluble components.  In addition, these immiscible solvents form stabilized 

emulsions in the presence of solid particles, which provide larger liquid-liquid interfacial 

areas. In a two phase reaction system, this increased interfacial area improves the phase 

transfer of any products reacted at the interface into their favored solvent.  In particular, 

Pickering emulsions stabilized by carbon nanotubes (CNTs) have been shown to be 

exceptionally stable due to their one dimensional nature, as well as their ability to become  

highly entangled by their large van der Waals forces.1  This thesis studies the role of 

carbon nanotube surface functionality alterations in controlling Pickering emulsion 

properties.  It is found that the behavior of CNTs in Pickering emulsions is similar to that 

of other solid particles such as silica, although with much higher stability.   

Liquid biphasic reactors are useful in industry as they allow for a reduction in the 

amount of capital required if multiple reactions involving different solvents are needed.2   

In hopes to further increase industry interest within these systems, recovery of catalyst 

via magnetically responsive catalyst supports is studied.  This method of recovery may 

reduce operational cost due to the catalyst loss and environmental issues involved in 

removing the Pickering particles via filtration.3  Additionally, we provide some 

preliminary results that suggest magnetic particles may be of use for controlling reactions 

in biphasic liquid systems.  However, the magnetic support’s mode of operation may be 

fundamentally different from that of many other two phase stimuli responsive emulsion 
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breaking techniques, as its response is not dictated by surface wetting alterations.  We 

observed that when a hydrophilic catalyst support is forced into a hydrophobic 

environment within a biphasic reaction system, the catalyst is not as active. As a 

consequence of this observation, this thesis proposes that the magnetically responsive 

Pickering emulsion may be of use in applications for which a reversible catalyst 

deactivation method is required.   Discussion of the mechanism for the observation of 

catalyst inactivity is provided, as it is hypothesized that the particle obtain an adsorbed 

film of the phase in which they are most soluble.  
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Chapter 1: Emulsions 

History and Introduction 

In 1984, a team of archeologists and explorers set out on a journey to the tomb of 

Nefertari in order to image the various tomb wall paintings, assess the chemical 

components used for their creation, and attempt to preserve the tomb paintings of the 

well-known Egyptian Queen.  Among the team were Laura and Paolo Mora, two 

conservators who assisted in identifying the chemical constituents within the pigments 

and binders for these paintings.  These explorers and their colleagues proposed that the 

wall paintings of Nefertari such as in Figure 1 and other ancient civilizations were created 

using mixtures of water, egg whites, oils, and berry extract.  These common ingredients 

have a tendency to form emulsions (a mixture of two immiscible liquids homogenized 

with a stabilizing component).  This discovery is therefore suggested to be one of the first 

recorded uses of emulsions by man.4,5 

In addition to the long history of artificially created emulsions, these systems have 

been ubiquitous within our experience from natural sources as well.  For instance, dairy 

products are familiar and well-studied systems in our society, which are – or are derived 

 
Figure 1: Ancient Egyptian Wall Painting. 
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from – the natural emulsion of milk. These emulsions are highly important to our 

society and provide a major source for protein and its purified supplements (casein and 

whey) at a rate of approximately 15,800,000 metric tons of protein per year (2013).6  

However, despite our familiarity with emulsions and the success of the many emulsion 

dependent industries (such as the cosmetic, foods, and pharmaceutical industries) the 

area of emulsion studies is still not quite well understood.  Recently there has been an 

exponential increase in the area of emulsion science, in efforts to ameliorate the vast 

gaps in knowledge (see Figure 2).  This new attention in emulsion science is primarily 

due to the ease of which they may be produced in the lab with very little resources, as 

well as the exciting challenge they pose in creating a complete physical theory to 

predict an emulsion’s properties.  

In order to properly explore and predict emulsion behavior, we start by defining the 

characteristics of an emulsion.  An emulsion is defined as a heterogeneous system of 

two immiscible liquid phases in which one phase (the dispersed phase) consists of small 

droplets distributed within a second continuous phase.  Typically these systems consist 

 
Figure 2: Increase in the amount of publications on the topic of emulsions. 



3 

of oil and water, in which the two simple emulsion types are denoted oil-in-water 

(O/W) or water-in-oil (W/O).  In addition to emulsion type, emulsions may be 

characterized by the emulsion stabilizer properties, thermodynamic or kinetic stability, 

and droplet size.  Emulsions are usually categorized into three different groups – 

microemulsions (or micellular emulsions), nanoemulsions (or miniemulsions), and 

macroemulsions (or simply emulsions).7  These different emulsion types are shown in 

Figure 3 and discussed in further detail within the following sections.  

Stability and Formation 

Emulsions must be stabilized by a particle or surfactant in order to prevent rapid 

coalescence of the droplets, due to the strong thermodynamic driving force to minimize 

interfacial surface area.  The thermodynamics of emulsion formation are given by the 

Gibbs free energy equation, which can be reduced to the following:8 

Equation 1 

∆𝐺𝑓𝑜𝑟𝑚 = 𝛾∆𝐴 − 𝑇∆𝑆𝑐𝑜𝑛𝑓 

Where 𝛾 is the interfacial tension between the two phases, ∆𝑆𝑐𝑜𝑛𝑓 is the 

conformational entropy change upon emulsification, ∆𝐴 is the change in interfacial area 

after emulsification, and ∆𝐺𝑓𝑜𝑟𝑚 is the Gibbs free energy change after emulsification.  

In many circumstances, the interfacial energy term dominates due to the large 

interfacial tension between the two phases.  This is can be seen in Figure 4 which 

displays each energy term against the droplet size and number of droplets. It can be 

observed in these figures that low surface tension values (Figure 4a) provide the means 

for a negative value of the Gibbs free energy (shown in green), while high surface 

tension values (Figure 4b) are dominated by very large and positive values of Gibbs free 
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energy.  This figure was created using the following equation for conformational 

entropy:8 

Equation 2 

∆𝑆𝑐𝑜𝑛𝑓 = −
𝑛 𝑘𝑏
𝜙
(𝜙𝑙𝑛𝜙 + (1 − 𝜙) ln(1 − 𝜙)) 

Where 𝜙 is the volume fraction of the dispersed phase, 𝑘𝑏 is Boltzmann’s constant, 

and 𝑛 is the number of droplets of the dispersed phase.  As seen in Figure 4, the Gibbs 

free energy is negative (spontaneous, thermodynamically stable emulsion formed) for 

an average droplet radius of 5000 nm or lower for constant temperature (298K), 

constant total volume, and constant interfacial tension (0.1 nanoNewtons per meter).  

Extremely low interfacial tensions only occur when using surface active agents, as the 

typical values for interfacial tensions between oil and water are on the order of 

milliNewtons per meter (for example, 𝛾𝐷𝑒𝑐𝑎𝑙𝑖𝑛−𝑊𝑎𝑡𝑒𝑟 = 51.5
𝑚𝑁

𝑚
). 

The reduction of surface tension by surface active agents is described by the Gibbs 

adsorption isotherm for multicomponent systems: 

Equation 3 

−𝑑𝛾 = Γ1𝜇1 + Γ2𝜇2 

 
Figure 3: Types of emulsions.   

Here we show the likely emulsion stability plotted against the mean emulsion droplet 

size in nanometers. 
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Where 𝜇𝑖 is the chemical potential of component 𝑖 and the surface excess Γ is the excess 

of solute within the area at the interfacial surface over what would be present if the bulk 

concentration were the same as the interface concentration.  This gives an insight as to 

whether or not a surface active agent will be more present at the surface (yielding a 

positive surface excess value) or more present in the bulk (yielding a negative value for 

the surface excess). The chemical potential for solutes in liquids is a function of the 

concentration of the solute, and provides an ‘availability’ metric for the solute.  The 

Gibb’s isotherm equation provides insight into the types of emulsions as well as  their 

properties and allows us to predict the general behavior of emulsions under the addition 

of different chemical constituents.  For example, the addition of sodium dodecyl sulfate 

to an oil-water mixture decreases the surface tension ~20 dynes / cm.9  However, in the 

case of solid particles, the surface tension reduction from particle adsorption at interface 

is very low.   Tsuneo Okubo was one of the first main researchers to study the area of 

solid particles and their effect on interfacial tension.  His work showed reductions of 

interfacial tension of ~2 mN/m for silica spheres and ~20 mN/m for polystyrene spheres 

 
Figure 4: Gibbs free energy plots for emulsion formation. 

A small negative area for Gibbs free energy is given at extremely low surface tension 

(0.1 nanoNewtons per meter), as shown in (a), while a typical oil-water surface tension 

(b) gives a large positive Gibbs free energy.  
Plot created using the python matplotlib script given in Appendix A – S. 
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at water-air interfaces, although only at particle concentrations high enough to form 

crystalline phases within the water.  Although these studies by Okubo were at gas-liquid 

interfaces, many studies of particles at liquid-liquid interfaces have been published, 

typically in the context of emulsions.   

Pickering Emulsions 

The work of Okubo gives insight into a special type of emulsion, referred to as a 

Pickering emulsion.  Pickering emulsions are two phase systems which have been 

kinetically stabilized by solid particles.  In a typical Pickering emulsion, liquid droplets 

(dispersed phase) are stabilized within a continuous phase by these solid particles (often 

referred to as “Pickering particles”) which strongly adsorb between the two phases at the 

interface.  Although Pickering first wrote about this phenomenon over 100 years ago, 

predicting the properties of a an emulsion created with a given set of parameters remains 

an active area of research.10  Pickering emulsion stability is affected by several 

parameters, such as particle wettability, surface tension of each phase, particle surface 

roughness, pH, temperature, agitation energy, etc., which provides a great deal of 

complexity for understanding the formation and breakdown of emulsions.11–13   

Despite the difficulties in obtaining a complete and predictive theory for emulsion 

kinetics, Tharwat Tadros et al. have provided some preliminary work in this area, such 

as the ∆𝐺𝑓𝑜𝑟𝑚 equations in the previous chapter, as well as several equations describing 

the breakdown of emulsions.14   Figure 5 describes the energetics of emulsion breakdown 
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when energy barriers are present, as in the case for a Pickering emulsion.  This diagram 

indicates that the energy barriers for flocculation and coalescence are likely the most 

important energy barriers for providing the stability of kinetically stable emulsions.  In 

addition, Binks et al. have shown that energy required to remove a particle from the 

interface is proportional to the stability of a kinetically stable emulsion, and is likely 

related to these energy barriers, although this barrier may be affected by many other 

factors as well.11,15  

The thermodynamic equations governing particle adsorption energies for Pickering 

emulsions are often referred to within the literature due to this importance in governing 

stability.  A simple spherical Pickering particle is often cited, as it is the more well 

understood case from the large availability of polystyrene and silica microspheres: 

Equation 4 

𝐸𝑎𝑑𝑠 = 𝜋𝑅
2𝛾𝑜𝑤(1 + 𝑐𝑜𝑠𝜃)

2 

Here, E is the energy required to remove the particle from the interface, R is the radius 

of the particle, 𝛾𝑜𝑤 is the surface tension between the oil and water phases, and 𝜃 is the 

 
Figure 5: Energy schematic for emulsion breakdown.  
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contact angle of the particle.  The provided equation is simplified such that the particles 

do not interact with each other and have no surface roughness.  However, within the 

constraints of equal volumes of dispersed and continuous phases (such that Bancroft’s 

rule holds), the particle adsorption energy indicates the trend in emulsion droplet size for 

both one dimensional as well as zero dimensional particles11,16  

Given the same assumptions as provided for spherical Pickering particles, it can easily 

be seen that one dimensional materials can have much larger surface areas per particle 

when their aspect ratio is large (as in the case for carbon nanotubes), which greatly 

increases the adsorption energy, given here:16 

Equation 5 

∆𝐸𝑐𝑦𝑙  = {
𝛾𝛼𝛽𝑅𝐿(𝜃 𝑐𝑜𝑠 𝜃 −  2 𝑠𝑖𝑛 𝜃),  𝜃 < 90°

−𝛾𝛼𝛽𝑅𝐿((𝜋 − 𝜃)𝑐𝑜𝑠 𝜃 +  2 𝑠𝑖𝑛 𝜃),  𝜃 ≥ 90°
 

Figure 6 displays that one dimensional particles will increase their surface area 

contact with both phases as the product of 𝑅𝐿 (typically much larger than silica’s radius 

term) and can therefore maintain much stronger adhesion at the interface.  In addition, 

some one dimensional materials are flexible or rigid and have varying attraction 

towards one another.  Carbon nanotubes, described in detail within the next chapter, 

 
Figure 6: Energy plot from calculation for removing a cylinder from a liquid-

liquid interface.  

A comparison to the calculation for a sphere (blue) is given for reference.  It can be seen 

that increasing the length ((a) 100 nm and (b) 1 μm) has a large linear effect upon the 

energy required to desorb the particle from the interface. 
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provide great opportunities for manipulating emulsion stability with their great van der 

Waals attraction towards one another, as well as their adjustable rigidity which scales 

with the number of nanotube walls.  This creates a tunable manner to create sprawling 

networks of aggregated and entangled sheets to provide excellent stability for Pickering 

emulsions. 
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Chapter 2: Carbon Nanotubes 

History and Introduction 

Carbon nanotubes (CNTs) have received much attention within the past several 

decades since their reinvigoration by the scientific community at the presumed discovery 

by Iijima in 1991.17  However, it is important to note that an enormous body of literature 

on carbon filaments previous to this date can easily be found when closely analyzing the 

history of CNTs.  Indeed, Morinobu Endo and Angès Oberlin had taken an image of a 

carbon nanofilament in 1976 - years before Iijma or Bethune had sparked the excitement 

within the field in the early 90’s.17,18 However, it is clear that the appearance of Iijima’s 

image of a nanotube (see Figure 7) in a widely read journal such as Nature allowed for 

the large increase in interest to their study over the past few decades.17 

The excitement brought about by carbon nanotubes was due to the massive 

amount of applications in which they may be utilized.  These materials have been 

shown to be useful in solar cells,19,20 computer,21 polymer composites,22,23 water 

treatment,24 oil recovery,25–29 Pickering emulsion stabilizers,2,16,30 catalyst support,2,31 

 
Figure 7: TEM image taken by Sumo Iijima’s group of a single-walled carbon 

nanotube. 
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chromatography,32,33 cancer treatment,34 thin conductive films,35–37 and many other 

applications. The quantum mechanical properties are also widely studied by the physics 

community due to the unique ability to probe the physics of electron-electron 

interactions38–42 such as those in Luttinger liquids43–47 or spin-orbit coupling,48 as well 

as phonon,49–52 plasmon,53,54 and exciton photophysics.55–65 

SWCNT Structure 

Carbon nanotubes can be divided in to different classes of materials: single-walled 

carbon nanotubes (SWCNTs), double walled carbon nanotubes (DWCNTs), triple walled 

carbon nanotubes (TWCNTs), and multi-walled carbon nanotubes (MWCNTs). The 

structure of a single-walled carbon nanotube was theorized many years before its 

observation was revealed to the scientific community.  The theorized structure was 

envisioned by rolling a graphene sheet onto itself and connecting the atoms into a tubular 

construct, as seen in Figure 8.   

The chiral vector given below is derived from Figure 8 as in many previous works, 

and defines the SWCNT via two chiral vector values: (n, m). 

Equation 6 

𝐶ℎ = 𝑛𝒂𝟏 +𝑚𝒂2 

Where 𝐶ℎ is the chiral vector of the SWCNT, 𝒂𝟏 and are the primitive vectors in 

the real lattice of graphene (see Figure 10).  It follows that diameter and chiral angle 

can be calculated from geometry as given here: 

Equation 7 

𝑑𝑡 =
|𝐶ℎ|

𝜋
=
√3𝑎𝑐𝑐
𝜋

√𝑛2 + 𝑛𝑚 +𝑚2 

Equation 8 

𝜃 = tan−1
√3𝑚

𝑚 + 2𝑛
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Where 𝑎𝑐𝑐 = 1.421 Å is the spacing between carbon atoms in the graphene plane. 

These equations describing SWCNT crystalline materials are highly important for 

understanding how to characterize CNT materials.  The different SWCNT structures 

allow for tailored material properties, which can be specified to any application. For 

instance, the number of walls within a CNT can affect its flexural modulus, and 

therefore the nanoscale rigidity of double-walled, triple-walled, or multi-walled carbon 

nanotubes can hinder the ability of the nanotube to adhere its entire axis to liquid-liquid 

interfaces in very small emulsion droplets.66 In addition, for the case of SWCNTs, it is 

often crucial for certain applications to denote the chiral purity, as the optical and 

electronic properties will greatly vary depending on diameter homogeneity and 

electronic structure purity. 

CNT Characterization 

Due to the many synthesis methods for carbon nanotube materials (such as 

CVD, arc discharge, plasma, laser, CoMoCat, and HiPCO), the as-produced CNT 

 
Figure 8: Structure of a (4,2) single-walled carbon nanotube (SWCNT). 
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materials are a very diverse and may have varying amounts of impurities, such as 

transition metals and metal oxides, which are typically used as catalyst support.  This 

large heterogeneity in materials associated with the name ‘as-produced carbon 

nanotubes’ is easier understood by constructing a hierarchy of purity, such as the one 

provided in Figure 9.   This hierarchy of purity is important to researchers, because (due 

to the large diversity of carbon nanotube materials) studies using CNT materials can 

provide largely erroneous results for some applications by comparison of different 

manufacturers.    

Single-walled CNTs possess interesting electronic properties due to quantum 

confinement effects in the transverse direction (normal to the SWCNT axis), which 

create CNT diameter dependent effects such as tunable band gaps.   Several methods 

have been developed to probe the electronic and optical properties of SWCNTs, which 

provide information about their structure, surface chemistry, level of doping, and other 

environmental effects (via solvatochromic shifting and Fermi level shifts).  These 

 
Figure 9: Hierarchy of CNT separations and characterization. 



14 

characterization methods include (but are not limited to) Raman spectroscopy, optical 

absorbance spectroscopy, and near infrared fluorescence spectroscopy. 

Optical Absorbance Spectroscopy 

 SWCNTs display a wide variety of colors (absorption of electromagnetic spectrum) 

depending upon their crystal orientation, providing an excellent characterization method 

for determining chiral purity of SWCNT materials.  Spectrophotometer equipment for 

optical absorption in the ultraviolet, visible, and near-infrared domains is quite 

ubiquitous in academia and industry, and is therefore very desirable as a standardized 

metrology method.  Characterizing SWCNT dispersions via optical absorption 

spectroscopy has been a difficult problem due to spectral congestion, background 

contributions, and lack of individual SWCNT absorption cross section information.67,68  

While attempts have been made to create a standardized characterization program for 

optical absorption analysis69, these issues remain problematic and understudied in order 

to fit experimental results with great accuracy and receive complete information from 

SWCNT photo-absorption spectra. 

In order to characterize CNT materials via any spectral data, we must first 

predict the output we would expect from theoretical or pristine materials.  Optical 

absorption spectra of surfactant suspended SWCNTs have been shown to be 

approximated by the linear sum of each SWCNT absorption profile:69 

Equation 9 

𝐴𝑏𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑏𝑠𝑏𝑘𝑔 + ∑ 𝐶(𝑛,𝑚) ∗ 𝐴𝑏𝑠(𝑛,𝑚)
(𝑛,𝑚)

 

Where 𝐴𝑏𝑠𝑡𝑜𝑡𝑎𝑙 is the total calculated spectra to be fit to the experimental data, 

𝐴𝑏𝑠(𝑛,𝑚) is the calculated optical response from each individual chiral species,  𝐴𝑏𝑠𝑏𝑘𝑔 
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is the background contributions to the optical absorbance from π-plasmon resonances, 

and 𝐶(𝑛,𝑚) is the concentration of the (n, m) nanotube within the solution.  Therefore, 

we must first predict the SWCNT absorption profile 𝐴𝑏𝑠(𝑛,𝑚) for each (n,m) species in 

order to perform a linear fitting.  This is typically done by assuming a Lorentzian, 

Gaussian, or Voigt profile for which the peak center (exciton energy), width, and height 

(cross section) are estimated using various solid state and optical physics theories.   

In order to find the electronic transition energies, we may begin by realizing that 

the electrons within the system are quantum mechanical in nature, and therefore are 

described as waves.  Therefore, by taking a Fourier transform of the real space lattice to 

obtain the reciprocal space (i.e. momentum or k-space) lattice, we arrive within a lattice 

space in which the primitive vectors describe the wave vectors of electrons within the 

system.  This is the standard solid state physics approach, in which the energies of 

transitions are found by creating an electron energy surface within the reciprocal lattice 

primitive cell (i.e. Brillouin zone or BZ).  SWCNT structures are all derived from the 

graphene crystal structure, and therefore it is customary to start with the graphene 

Brillouin zone (Figure 10).  Subsequently, we may realize that the rolling of graphene 

onto itself for SWCNT construction quantizes the wave vectors allowable along the 

SWCNT circumference, creating “cutting lines” along the BZ (see Figure 11).  There 

 
Figure 10: Graphene real space and reciprocal space. 
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are many methods to find the relation between the wave vector (k) and the associated 

energy, including tight binding theory, k·p theory, density functional theory, and others.  

Tight binding theory has been written about extensively within the SWCNT literature, 

yielding the dispersion relation given here:70 

Equation 10 

𝐸𝑔2𝐷(𝑘𝑥, 𝑘𝑦) =  ± t { 1 +  4cos (
3𝑘𝑥𝑎𝑐𝑐
2

 ) cos (
√3𝑘𝑦𝑎𝑐𝑐

2
) +  4 cos2  (

√3𝑘𝑦𝑎𝑐𝑐

2
)} 

Where t is the tight binding overlap energy (~ -3eV), 𝑎𝑐𝑐 is the carbon carbon 

bonding distance (0.144 nm), and 𝑘𝑥 are the x and y components of the electron wave 

vector or momentum vector.  This famous result for calculating the Fermi surface is 

shown in Figure 11, where it can be seen that the surface has a linear character near the 

K point (Dirac point).  Indeed, when a Taylor expansion of the above equation is taken, 

a linear dispersion relation can be extracted: 

Equation 11 

𝐸(𝑘) =
3𝑡𝑎𝑐𝑐
2

√𝛿𝑘𝑥
2 + 𝛿𝑘𝑦

2 = ℏ𝜐𝐹|𝒌| 

Where 
3𝜋𝑡𝑎𝑐𝑐

2ℎ
= 𝜐𝐹(~10

6 𝑚

𝑠
)  because the Fermi velocity is defined as the group 

velocity at the Fermi vector (𝜐𝐹 =
1

ℏ

𝜕𝐸

𝜕𝑘
).  This linear E vs. k is typically used to 

simplify the calculation of transition energies in graphene and SWCNTs, although there 

are certain deviations from this relation for small diameter SWCNTs and for transitions 

far away from the Dirac point.  

The red lines cutting across the Fermi surface over the graphene Brillouin zone in 

Figure 11 are shown giving rise to the van Hove singularities in the SWCNT density of 

states (DOS).  The density of states for any material is a hugely important feature to be 
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understood for any fundamental study involving electrons and their behavior in a 

nanoscale system.   

This expression of van Hove singularities (vHS) in the SWCNT joint density of 

states (JDOS) due to the quantum confinement of the electrons in the 1- dimensional 

wire allows the band gap energies of SWCNTs to be varied over the visible and near 

infrared regions by manipulating their diameter.  It can be seen from this quantum 

confinement effect that as the diameter of the SWCNT grows and approaches the band 

 
Figure 11: Overview of nanotube electronics and photophysics. 

(a, b, d, e) Visualization of periodic boundary conditions (Born-von Karman) for a wave 

along a closed loop and its effect on quantizing allowable wave vectors within the 

graphene Brillouin zone (BZ).  The BZ in (c) shows the allowable wave vector cutting 

through the Dirac point (or K point, shown in (h)), creating a metallic SWCNT.  

Conversely, the bottom (f) BZ has wave vectors offset from the Dirac point, creating a 

semiconducting CNT with a bandgap (shown in (i)). These bandgaps shown in the DOS 

(i) give rise to peaks in the optical absorption spectra via excitonic transitions, as shown 

in (j). 
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structure of graphene, the distance between allowable wave vectors grows closer and 

the band gap energy becomes quite small.  Similarly, as the SWCNT diameter grows 

smaller, the band gap grows larger due to the increase in the distance between allowable 

wave vectors states. 

  While many past studies have relied heavily on tight-binding formulations of 

the SWCNT excitonic transition energies, more recent models have been extended to 

include electron-electron interactions and trigonal warping effects.38,42,71  The simplest 

and most predictive model to date has been developed by noticing the linear dispersion 

given in Equation 11.  Higher order terms for anisotropy and other effects are added 

with an electron wave vector (k), and transition number (p) dependence: 

Equation 12 

𝐸𝑝(𝒌) = 2ℏ𝜈𝐹(𝑝) × 𝑘 + 𝛽 × 𝑘
2 + η(𝑝) × 𝑘2 cos 3θ 

Where 𝐸𝑝 is the excitonic energy associated with a transition number 𝑝, 𝛽 

accounts for the electron-electron interactions and effective mass, and η accounts for 

trigonal warping effects, and 𝑘 is the standard electronic wave vector.   

These exciton energies provide the peak centers for the calculated absorption 

profile for each (n,m) species; however, line widths, cross sections and any other side 

band features from phonons are also required to create a theoretical SWCNT profile.  

Several reports have provided these terms with differing theories, such as GW Beth-

Salpeter equations, Hubbard ab initio models, and empirical parameters.56,72–77  The 

most general of these approaches has led to the following relation, which is applicable 

to any given (n, m) structure: 
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Equation 13 

𝐴𝑏𝑠(𝑛,𝑚) = 
Σ𝑝

𝜋
·

𝑤𝑝

(𝐸 − 𝐸𝑝)
2
+ 𝑤𝑝2

+
Σ𝑝

𝑎 · 𝜋
· 𝑐𝑜𝑛𝑣

(

 
𝑏 · 𝑤𝑝

𝐸2 + (𝑏 · 𝑤𝑝)
2 ,
Θ[𝐸 − (𝐸𝑝 + Δ)]

√𝐸 − (𝐸𝑝 + Δ) )

  

The first term within this equation describes the excitonic transition and the 

second term describes the phonon side band (PSB) contributions. Here, E is an arbitrary 

energy, 𝑤𝑝 is the half linewidth of the excitonic peak transition, Σ𝑝 is the oscillator 

strength, and 𝐸𝑝 is the excitonic energy described previously, while the PSB has terms 

to modulate these parameters. The 𝑐𝑜𝑛𝑣 is the convolution function for convolving the 

Heaviside step function Θ, placed at an offset of Δ away from the higher energy tail side 

of the main exciton transition, with modulations of the line width and oscillator 

strength, 𝑏 and 𝑎 respectively.  The work done to provide this equation has great 

reaching power to characterize nanotubes, and to provide support for many fundamental 

studies involving SWCNTs. 

A python script using this SWCNT profile and the exciton energies from above 

was made by the author of this thesis and is given on in Appendix A – Scripts  and 

GitHub (https://github.com/chaxor/Spectro) with the intention of assisting researchers 

with the characterization of SWCNTs via optical absorption data automatically and 

ameliorate some of the issues listed above.  The python script provided is capable of 

fitting experimental data into each individual SWCNT absorption profile, in addition to 

simultaneously fitting a number of background contributions considered in previous 

works.67   

https://github.com/chaxor/Spectro


20 

Temperature Programmed Desorption 

 Tuning the surface chemistry of carbon nanotubes has been an intensively 

studied area for applications in polymer processing, emulsion stability, medicine, 

catalysis, and batteries. The surface chemistry of carbon can be altered with many 

different approaches such as ozone, plasma treatments, strong acids, microwave 

irradiation, and peroxide functionalization.  The quantification of these functional 

groups is useful for determining contact angle and interactions with their environment.  

One of the most well-known methods for determining the surface functionality of a 

carbonaceous material is temperature programmed desorption (TPD), wherein a small 

aliquot of material is slowly heated in an inert environment such that the oxygen groups 

desorb from the surface as the temperature rises.  In the case of CNTs, the profile of the 

resulting data can be interpreted to provide the amount of differing surface groups such 

as carboxylic acids, lactones, quinones, phenols, etc. 

 
Figure 12: TPD fitting of MWCNT.  
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 In order to extract the functional group character of a given nanotube material 

from the experimental TPD data, either the energy of desorption for each functional 

group and support structure combination within the studied material must be known, or  

empirical parameters may be given to estimate the desorption profile for each functional 

group.   Ideally, the energy of desorption, heating rate, exponential pre-factor, surface 

coverage dependence of the energy of desorption, and order of reaction should be used 

with Arrhenius kinetic modeling in order to fit the experimental data for each functional 

group.   However, many studies estimate surface chemistry of CNTs using the empirical 

approach as, although it may be less accurate, it requires less data acquisition78,79.   

This method of fitting using Gaussian profiles centered at specific temperature 

was employed on MWCNT samples treated in nitric acid at different molarities and 

differing times of treatment.  The choice of a Gaussian profile arises from a continuous 

probability distribution of desorption energies for each associated surface group.  The 

temperatures for each oxygenate species were obtained from the work of Renju 

Zacharia, which is summarized in Table 1.80    Data analysis and quantization of total 

functional groups on the MWCNT surfaces have been discussed in Chapter 3: MWCNT 

Surface group Product Temperature 

Carboxylic CO2 453–573 K 

Acid 

anhydrides CO, CO2 673–720 K 

  710–930 K 

Lactones CO2 410–430 K 

  463–923 K 

Peroxides CO2 823–873 K 

Phenol CO 873–973 K 

Quinones CO 1073–1173 K 

 

Table 1: Surface functional group temperatures of desorption. 
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Sample Characterization.  However, since only the total oxygen content is reported in 

Chapter 3, here we study the features of the experimental profile and gather information 

about the amount of each surface group.  This is done by taking the area of each 

functional group’s corresponding profile, as shown in Figure 12.  The results of these 

analysis can be seen in Figure 13.   

While previous reports have shown that quinone groups decrease with 

increasing oxidation of carbon surfaces, the data we have obtained suggests a different 

outcome.81  However, there are several key differences between the study proposing 

quinone conversion to carboxylic acid and our analysis here.  First, the nanotube 

materials used when finding that quinone decreases with acid functionalization were 25-

40 nm in diameter, while our SMW100 material is characterized to be 6-9 nm, which 

may affect the reactivity of the surface and the selectivity towards forming certain 

structures.  In addition, our report has studied time of reaction in a constant molarity of 

acid, whereas they studied the effect of concentration.  Further study is required to show 

a plausible mechanism for this reaction.  In order to facilitate future works, this thesis 

 
Figure 13: Results of Non-linear fitting of TPD experimental data for SMW100 

treated with Nitric acid for varying times. 
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has also provided the python script for TPD analysis which may be helpful as a starting 

point for researchers studying oxygen groups on carbon materials.   
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Chapter 3: Wettability of multi-walled carbon nanotubes tuned to 

control Pickering emulsion properties 

Introduction 

Despite extensive work done with Pickering emulsions stabilized with silica, 

much fewer studies have focused on multi-walled carbon nanotubes as the Pickering 

emulsion stabilizer within these two phase systems.  Specifically, one previous study 

has looked at the behavior of zero dimensional and one dimensional carbon based 

systems (such as SWCNTs and C60) in Pickering emulsions, where it was noted that 

zero dimensional carbon (C60) was not a good emulsion stabilizer in comparison to 

SWCNTs.82  Some works have commented on the role of CNTs in two phase systems, 

such as in CNT purification and separations processing, although the emulsion systems 

were not the main focus of the studies.  Typically these newer studies have focused on 

bulk phase characteristics, such as the increase in nanotube individualization and optical 

properties after trapping nanotube bundles at liquid interfaces. This process allows for a 

scalable way to mimic high speed centrifugation experiments for removing bundled 

SWNTs with less sophisticated equipment.83–85  Studies which have focused on 

MWCNTs typically focus more on emulsion properties and other macroscopic effects, 

as the optical and electronic properties and particle physics of MWCNTs are not as 

precisely tunable as SWCNTs, mimicking that of bulk carbon.  Reports have shown that 

MWCNTs have been oxidized via acids and plasma treating and used to make O/W or 

W/O emulsions, the latter of which was used to produce microcapsules.30,86  However, 

these studies provide little information on the emulsion characteristics, while, to the best 

of the author’s knowledge, there have been no reports in the control of nanotube 
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functionalization via acid surface modification in order to study the effect on Pickering 

emulsion properties. Studying Pickering emulsions stabilized with multi-walled carbon 

nanotubes may provide new opportunities to understand emulsion property 

fundamentals. In addition, studying the fundamental physical material properties and 

their manipulation has historically led to discoveries of even further unique features of 

these materials, allowing for greater impact and research into many fields. For example, 

MWCNTs have already seen such wide variety of applications in catalyst supports2, 

coatings87, batteries88, sensors89,90, field effect transistors91, high strength yarns92,93, 

hydrogen storage material94,95, thermal management96, compressible foams97, and 

energy adsorbing hybrid composites98. 

The work provided in this thesis aims to study Pickering emulsions stabilized 

with a range of functionalized MWCNTs. These Pickering emulsions were studied by 

varying oil type, oil-water ratios, MWCNT concentration, MWCNT functionalization 

degree mass ratio, and initial nanotube dispersion phase. Three competing hypotheses 

are provided, each which may contribute to the formation of the Pickering emulsion 

properties.  

First, changing the particle wettability changes the dispersion of the nanotubes, 

which will increase the available material for covering interfacial area. Second, as the 

wettability of the MWCNTs is changed, the energy required for particle desorption 

from the interface will change, affecting the number of MWCNTs at the interface. 

Lastly, due the differences in particle wettability, the nanotubes can re-orient 

themselves to occupy higher or lower specific surface areas depending on the energy 
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with which the MWCNT is held at the interface. This change in orientation has been 

hypothesized and shown with fumed silica.15  

Experimental 

Multi-walled carbon nanotubes were obtained from SouthWest 

Nanotechnologies, Inc. designated by the company as SMW100 (lot 48). The MWCNTs 

have average diameters of ∼6-9 nm, 3-6 walls, and lengths less than 1 µm. Nitric acid 

(70%), dodecane (99%), heptane (99%), and toluene (99%) were purchased from Sigma 

Aldrich. 18 MΩ ultra-pure water was obtained from a Cole Parmer filtration system. 

Oxidation of the MWCNTs was carried out by colleague Nick Briggs, with 1 g 

SMW100 in 6 M or 12 M HNO3. This solution was refluxed for 1.5 hours or 24 hours at 

110°C (where time was used to control the number of functional groups). The MWCNT 

solution was then filtered by the colleague Nick Briggs with a 0.22 µm PTFE filter and 

rinsed with 18 MΩ water until the pH was neutral.   MWCNT samples resulting from 

these treatments have been tabulated in Table 2.  MWCNT Pickering emulsions were 

made with horn sonication using a Fisher Scientific Model 505 Sonic Dismembrator 

with a 0.5 inch horn tip. MWCNTs were added to reach 0.03-0.26 wt. % (with respect 

to water) of a 100 mL dispersion in a beaker.  A concentration of 0.07 wt. % of 

MWCNTs was used for all emulsions, unless otherwise stated. Water or dodecane was 

 0.8 

MWCNT 

2.3 

MWCNT 

3.1 

MWCNT 

4.4 

MWCNT 

HNO3 Molarity [M] 0 6 6 12 

Acid Treatment time [h] 0 1.5 24 24 

 

Table 2: Description for the functionalization of each sample 
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then added to this dispersion and sonicated for 5 minutes at 75% amplitude using a 0.5 

inch horn tip. This step was done to disperse the MWCNTs, as they are typically highly 

agglomerated and bundled naturally in the solid state. The opposite phase was then 

added to this dispersion. Emulsification was performed by horn sonicating the solution 

for 5 minutes at 100% amplitude using a 0.5 inch tip horn tip.  All dispersion were 

performed by colleagues at OU, either Nick Briggs or Brian Li. 

Optical microscopy was used to obtain the average emulsion droplet size for 

each emulsion. ImageJ software was used to measure the diameter of 100 emulsion 

droplets from captured images. Emulsion type is determined to be o/w (oil in water) or 

w/o (water in oil) by placing an aliquot of the emulsion phase into a beaker of pure 

water and observing if it disperses well. If it disperses well it is an o/w type emulsion 

and if not, it is a w/o type. The opposite phase was used in the same manner to check 

the result.  

All temperature programmed desorption (TPD) experiments were performed 

under Helium flow (35 
𝑚𝑙

𝑚𝑖𝑛
) in a Thermcraft furnace (Model SST-0.75-0-12-1C-D2155 

A).  Each MWCNT sample was prepared by drying at 120°C in a vacuum oven in order 

to remove any moisture, weighed to 50 mg, and placed in a thin (3 mm diameter) quartz 

tube. These samples were heated from room temperature to 900°C at a heating rate of 

10°C min and held isothermal for an additional 30 mins. The outlet gas from the furnace 

was then sent to a Nickel catalyst to convert the carbon oxide gases to methane. This 

stream is then sent to a flame ionizing detector (FID) (SRI 110 detector Chassis) which 

provided a TPD spectra.  Total integrated TPD signals were used in order to determine 

the atomic percentage of oxygen groups on the CNT material. This was achieved using 
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Simpson’s rule for integration of the FID signal against time. The total moles of carbon 

desorbed was determined by the product of this integrated area and a constant. This 

constant was determined by pulsing 64 µL volumes of CO through the TPD system 

under the same conditions. Treating this CO as an ideal gas provides a molar value 

associated with the total integrated signal, 1.3×10−13 
𝑚𝑜𝑙 𝐶

𝑠 ∙ 𝑠𝑖𝑔𝑛𝑎𝑙
. It was assumed that the 

carbon desorbed from the CNT material during the TPD was equivalent to the oxygen 

functional groups created by the acid treatments, due to the lower thermal stability of 

these groups which convert to CO or CO2.  Therefore, the atomic percentage of 

thermally unstable oxygen groups was found by the ratio of total molar carbon desorbed 

(found by the process above) and the total molar carbon in the initial sample.   

The TPD data suggests that our 4 samples have 0.8, 2.3, 3.1, and 4.4 wt. % 

thermally unstable carbon on their surfaces as seen in Figure 14. We then designate the 

sample names used within this study based on their TPD thermal stability, as seen in 

Table 2. 

 
Figure 14: TPD results of MWCNT samples.  

Percent carbon desorbed for each MWCNT sample. 
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Results and Discussion 

MWCNT Sample Characterization 

MWCNTs are inherently hydrophobic and tend to agglomerate due to van der 

Waals forces. A typical method to increase the hydrophilicity and decrease 

agglomeration is to oxidize the MWCNTs with nitric acid or a mix of nitric and sulfuric 

acid to create hydrophilic functional groups.99–101  This study uses the latter method 

with HNO3 in order to control the number of hydrophilic functional groups and the 

concentration of these groups was determined by TPD (Figure 14). TPD plots showing 

the carbon desorbed as a function of temperature for each sample are in the 

supplementary information, Supplemental Figure 1. 

Previous work by Binks et al. have shown the emulsion inversion point will 

change at different oil-water ratios depending on the hydrophobicity of spherical silica 

particles.11  A very highly reported rule of emulsions, known as the Bancroft rule, states 

that hydrophobic particles favor w/o emulsions at a 1:1 o:w ratio, while hydrophilic 

O:W Ratio 0.8 MWCNT 2.3 MWCNT 3.1 MWCNT 4.4 MWCNT 

1:04 w/o o/w o/w o/w 

2:03 w/o o/w o/w o/w 

1:01 w/o w/o o/w o/w 

3:02 w/o w/o o/w o/w 

4:01 w/o w/o w/o o/w 

1:04 w/o o/w o/w o/w 

 

Table 3: Emulsion type for each o:w ratio of the MWCNT samples. 
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particles favor o/w emulsions.11,102 A quick characterization of the particles 

hydrophobicity can be accomplished using this phenomenon. A high o:w ratio is 

required for emulsion inversion when hydrophobic particles are used, while more 

hydrophilic particles require a low o:w ratio. Intermediate hydrophobic group coverage 

is required in order to achieve an equal o:w ratio. Using this method, we found different 

o:w ratios were required for emulsion inversion for each MWCNT sample, as shown in 

Table 3. This indicates the hydrophilicity of each MWCNT sample is unique, which 

correlates with the TPD results. Initially no inversion in emulsion is obtained, due to the 

MWCNTs inherent hydrophobicity, while as the number of hydrophilic functional 

groups increase on the MWCNTs the emulsion inversion points requires a higher o:w 

ratio. 

Role of MWCNT Wettability 

Emulsion droplet size and interfacial area change with the hydrophilicity of the 

MWCNTs as indicated in Figure 15. This trend observed here with MWCNTs is also 

 
Figure 15: Change in droplet diameter as a function of MWCNT wettability  

Results are for dodecane and water system (0.07 wt. % MWCNTs) when dispersing 

MWCNTs in (a) water or (b) dodecane previous to emulsifying.  

Circles (black) denote droplet diameter while squares (red) denote interfacial area. 
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observed with fractal silica.11  The emulsion droplet diameter is large at first then 

decreases and then increases again with the most hydrophilic and hydrophobic particles 

being the largest, while the emulsion flips at intermediate hydrophilicity, as can be seen 

in Figure 16.  Interfacial area follows a similar trend; however, the data follows a 

volcano plot trend, rather than a valley plot which is expressed for droplet diameter (see 

Figure 15a). Dispersion of silica particles of intermediate hydrophobicity have been 

shown to control emulsion type based on the phase the particles are initially dispersed 

in, with the continuous phase of the emulsion being the phase of which the particles 

were initially dispersed.102  No difference in emulsion type was found when dispersing 

the MWCNTs initially in water or oil (Figure 15).  Studying the variation in the 

MWCNT concentration shows the same trend, as shown in Figure 17.  Previous work 

has shown that as the concentration of particles in an emulsion system increases, the 

emulsion droplet size decreases to a point, and then plateaus.103 The initial decrease in 

emulsion droplet size is due to a larger availability of particles to stabilize more 

interfacial area which keeps droplets from coalescing. However, at some point there are 

 
Figure 16: Optical microscope images for dodecane and water system (0.07 wt. % 

MWCNTs).  

Scale bar in image is 100 µm.  
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sufficient particles to cover the emulsion droplets and the droplet size no longer 

changes.  

Emulsion Stability 

 Agglomeration of carbon nanotubes has been shown to enhance emulsion 

stability over silica particles. Strong van der Waals forces between carbon nanotubes 

forms a rigid network over an emulsion droplet surface which stabilizes emulsion 

droplets during coalescence. Charge repulsion between silica particles creates a weak 

network over an emulsion droplet surface which is easily destabilized during droplet 

coalescence. Emulsions stabilized with silica of variable wettability have been shown to 

have different emulsion stability.102  The most unstable emulsions were made with 

hydrophobic and hydrophilic silica.  Stable emulsions were made with silica of 

intermediate wettability.  The hypothesis that the change in MWCNT wettability may 

have induced similar emulsion stabilization alterations as those seen with silica was 

tested to contrast zero dimensional particles with one dimensional particles. To test if 

changing the MWCNT wettability weakened the MWCNT network over the emulsion 

 
Figure 17: Effect of concentration of MWCNTs on emulsion droplet size. 

 Diamonds (blue) denote 0.8MWCNT, squares (red) denote 2.3MWCNT, triangles 

(green) denote 3.1MWCNT, and circles (black) denote 4.4MWCNT.  
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droplet surface, emulsion stability tests were conducted by comparing the interfacial 

area 24 hours and one month after emulsification. Small changes in interfacial area 

occurred during the emulsion stability test for all samples (as seen in Figure 18). The 

emulsion stability test shows the emulsion type and droplet size can be changed by 

changing the MWCNTs wettability and have good emulsion stability. MWCNTs of the 

most hydrophobic and hydrophilic have high emulsion stability in contrast to 

hydrophobic and hydrophilic silica which have poor emulsion stability.  

 

Different Oils 

Two parameters which affect the energy required for a particle to desorb from a 

liquid-liquid interface are contact angle and interfacial tension. We may observe the 

effects of these parameters by varying oil type. Table 4 shows that heptane and 

dodecane vary the most in contact angle, while toluene and dodecane vary the most 

with respect to oil-water interfacial tension. Therefore, these two oils allow for one 

parameter to be held roughly constant while changing the other. Admittedly, the values 

 
Figure 18: Change in interfacial area 24 hours and one month after emulsification. 
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cited are for an oil-water interface and do not take into account the role of the particle at 

the interface. While the emulsion droplet diameter, interfacial area, and emulsion 

inversion point change depending on the oil, the trends (decrease in the emulsion 

droplet diameter or increase in interfacial area at intermediate hydrophobicities) seen 

for dodecane emulsions are displayed in a similar fashion for heptane and toluene (see 

Figure 19).  This shows the oil type has an effect on the emulsions properties, which 

may be related to the oil-water contact angle and interfacial tension, in turn affecting the 

energy required for particle desorption.  

Oil to Water Ratio 

Changing the oil-water ratio of an emulsion allows for one to tune the emulsion without 

having to change the particles properties, oil phase, or aqueous phase. When changing 

the oil-water ratio for hydrophobic MWCNTs (sample 0.8MWCNT), a decrease in 

emulsion droplet size is observed, as the oil fraction increases while no change in 

emulsion type occurs (Figure 20a).  Stiller et al. showed for a similar trend for 

hydrophilic titanium dioxide, except the emulsion droplet size increased with increasing 

oil fraction.104   Emulsion droplet size decreases due to the MWCNTs having to 

stabilize less water in the system. As the oil fraction decreases, more water is present 

O:W Ratio γ (
𝒎𝑵

𝒎
) θ 

Dodecane 52.5 122 

Heptane 50.7 105 

Toluene 35 125 

 

Table 4: Information about oils used within this study. 
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and the emulsion does not invert, which indicates the inherent hydrophobicity of the 

MWCNTs. Interfacial area also increases with the increase in oil fraction. As the 

amount of water decreases, the MWCNTs have less emulsion droplets to stabilize 

consisting of water, allowing the MWCNTs to stabilize smaller emulsion droplets.  

MWCNTs with intermediate hydrophobicity (sample 2.3MWCNT) display emulsion 

droplet sizes and interfacial areas which tail off at high and low oil fractions (Figure 

20b).  The emulsion inverts below an oil fraction of 0.5. Due to the emulsion inversion 

occurring close to an oil fraction of 0.5, the MWCNTs equally wet the oil and water. 

This may be why the greatest interfacial area is obtained at an oil fraction close to 0.5 

and the change in emulsion droplet size at the inversion point is not catastrophic. 

Sample 3.1MWCNTs shows this catastrophic phase inversion as the emulsion droplet 

size is small until an oil fraction of 0.8 is reached (Figure 20c). This catastrophic phase 

inversion has been observed with hydrophobic and hydrophilic silica.105  Emulsion 

droplet size increases drastically once reaching the oil fraction which causes emulsion 

inversion from o/w to w/o. The drastic change in emulsion droplet size is also seen with 
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interfacial area.  This catastrophic phase inversion is not seen with sample 2.3MWCNT.  

This may be due to sample 3.1MWCNT being more hydrophilic than 2.3MWCNT. The 

point of emulsion inversion is further away from an equal 1:1 ratio for sample 

3.1MWCNT than for 2.3MWCNT.  The most hydrophilic MWCNTs (sample 

4.4MWCNT) shows no change in emulsion type (Figure 20d). Emulsion droplet size 

decreases as the oil fraction decreases, while interfacial area increases. With less oil in 

the system, the MWCNTs do not have to stabilize as much interfacial area, allowing for 

smaller emulsion droplets. At an oil fraction of 0.8, the emulsion droplet size deviates 

from the trend by decreasing. However, the interfacial area follows the expected trend 

by decreasing further. We believe this is an indication of the emulsions stability playing 

 
Figure 19: Change in emulsion droplet size and interfacial area for a) heptane and 

b) toluene oil phases.  

Circles (black) denote droplet diameter and squares (red) denote interfacial area. 
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a role.  During sampling, the emulsion fraction was small and emulsion droplets were 

difficult to find. Therefore, the emulsion droplets at this oil fraction may be smaller 

because of high emulsion instability (only the small droplets survive). Hence, we 

highlight the importance of measuring the oil, emulsion, and aqueous fractions to 

calculate the interfacial area. 

Mixed Types of MWCNTs 

Due to the potential challenge of obtaining the desired hydrophilicity of a particle there 

may be an advantage to mixing two particles each with a different hydrophilicity. 

Simply by changing the ratio of particles one can tune the emulsions properties. To test 

this idea 0.8MWCNT (hydrophobic MWCNTs) and 3.1MWCNT (hydrophilic 

 
Figure 20: Effect of changing the oil (dodecane) to water ratio on droplet diameter. 

Sample (a) 0.8MWCNT, (b) 2.3MWCNT, (c) 3.1MWCNT, & (d) 4.4MWCNT.  

Circles (black) denote droplet diameter and squares (red) denote interfacial area. 
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MWCNTs) were mixed together at different fractions, while keeping the total MWCNT 

concentration constant. Both MWCNTs were initially dispersed in the water. As stated 

previously, no significant change was observed when dispersing the MWCNTs in oil 

initially. 

Increasing the fraction of 0.8MWCNT to 3.1MWCNT produces an increase in emulsion 

droplet size initially, but rapidly increases with a fraction of 0.8MWCNT sample 

followed by an inversion in emulsion type (Figure 21). Emulsion type does not change 

until reaching a 0.97 fraction of 0.8MWCNT. This trend agrees well with what has been 

seen when silica particles of different hydrophobicity are mixed together in 

emulsions.106 

Emulsion Droplet Size Change 

Great difficulty arises when trying to determine the true cause for the change in 

emulsion droplet size as a function of MWCNT wettability. Carbon nanotubes 

inherently agglomerate together99 and can be cut in length during sonication, or when 

 
Figure 21: Effect of changing the ratio of MWCNTs with different wettability.  

0.7 wt. % total MWCNT was maintained while varying the fraction of 0.8MWCNT to 

3.1MWCNT. Change in emulsion droplet size and interfacial area per mass are shown.   

Circles (black) denote droplet diameter and squares (red) denote interfacial area. 
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mixed with acid during oxidation treatment.107  Furthermore, carbon nanotubes are not 

perfectly straight. All of these factors make it difficult to come up with an absolute 

conclusion to why the emulsion droplet size changes with carbon nanotube wettability.  

Therefore, we have come up with three hypotheses which are based on our results and 

information about Pickering emulsion in the literature and provide an explanation for 

which hypothesis we believe in.  Our first hypothesis is based on carbon nanotube 

agglomeration due to van der Waals forces. A common way to increase the dispersion 

of MWCNTs is to oxidize the MWCNTs, creating hydrophilic functional groups which 

will generate charge repulsion between the MWCNTs.  If the initial MWCNTs are not 

entirely dispersed or in some cases driven to the interface as thick mats then there will 

not be as many MWCNTs to stabilize all of the interfacial area created during 

emulsification. By oxidizing the MWCNTs, the degree of MWCNT agglomeration 

decreases. With less agglomeration of MWCNTs more MWCNTs are available to cover 

more interfacial area. However, if this were to be the dominant factor then the emulsion 

droplet size should decrease further for sample 4.4MWCNT. Instead, the emulsion 

droplet size increases, which can be seen with two different oils, dodecane (Figure 15) 

and heptane (Figure 19a). In fact, for the case of toluene, the emulsion droplet size 

increases for both 3.1MWCNT and 4.4MWCNT samples (Figure 19). 

Our second hypothesis is based on the energy to adsorb/desorb a particle from 

the interface, which is a maximum when the contact angle is 90°.  Therefore, when the 

MWCNTs have contact angles far above or below a contact angle of 90° the energy to 

remove the particle from the interface is low. When the MWCNTs can be easily 

removed from the interface there are not as many particles at the interface as when the 
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particles contact angle is 90°, thus more droplet coalescence occurs. Our calculations 

(see Equation 4 and Equation 5), as well as others85,108,109, show a valley plot is obtained 

for cylinders with the highest energy required to remove the particle from the interface 

being at 90°.  Cylinders at all contact angles require a greater energy to desorb from the 

interface than a sphere (Figure 6). Even when both the cylinders and spheres are the 

same diameter, the length of the cylinder increases the energy required much more than 

the sphere. This may explain why there was no noticeable change in emulsion droplet 

size or fraction of oil, emulsion, or water after a three month period. Very hydrophobic 

and hydrophilic fumed silica has been reported to produce emulsions with poor stability 

and large emulsion droplets110, the size of which is similar to our most hydrophobic and 

hydrophilic MWCNTs.  MWCNTs inherently agglomerate due to van der Waals forces, 

which will further increase the energy required to desorb them from the interface. The 

energy to remove a particle is dependent on its size; larger particles require more 

energy, as can be seen in Equation 4 and Equation 5.  A surfactant,111,112 polymer,113 or 

salt114 must be added for silica to flocculate together to obtain the same effect. In this 

regard the shape and agglomeration of MWCNTs makes them ideal emulsion 

stabilizers.  However, the energy required for the MWCNTs to desorb from the 

interface being greater than a sphere leads us to believe this is not causing the change in 

emulsion droplet size.  Our third hypothesis considers the idea that the MWCNT 

orientation may change depending upon the particle hydrophilicity which in turn causes 

a high or low surface area coverage state for the particles at the liquid-liquid interface.  

This phenomenon was hypothesized by Binks et al. for the change in emulsion droplet 

size when carrying the hydrophobicity of fumed silica particles through 
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functionalization.15 Droplet coalescence continues to occur while the particles are 

adsorbing to the interface under non equilibrium conditions until the particles cover the 

entire droplet surface. The surface of the droplet becomes saturated with particles at 

some point; however, due to inhomogeneities in particle hydrophilicity, not all particles 

will have the same adsorption energy, and therefore may have different affinities for 

differing orientations. The more extreme hydrophilic or hydrophobic particles (residing 

more within the bulk phase) may flip their orientations to be in a state which occupies 

lower surface area upon the droplet, allowing for more coalescence of droplets. Particles 

strongly held at the interface do not change orientation and maintain their occupancy of 

high surface area, thereby limiting coalescence. Binks et al. attributes the fractal 

particles of fumed silica with causing changes in emulsion droplet size. Ellipsoidal 

polystyrene stabilizing particles have been observed in parallel and perpendicular 

orientations while stabilizing emulsion droplets.115  In previous studies, we have 

observed MWCNTs in a perpendicular, slanted and parallel orientations, although most 

resided in the parallel orientation.116  MWCNTs are cylindrical shape, not spherical, just 

as the fractal particles are non-spherical.  Taking into account our results and previous 

studies we believe the same effect is occurring with the MWCNTs. MWCNTs held 

weakly at the interface can change orientation from occupying a high to low surface 

area, while MWCNTs that are held strongly at the interface occupy a high surface area. 

The energy with which the MWCNTs are held to the interface is dependent upon the 

MWCNTs wettability. MWCNTs held strongest at the interface have contact angles 

close to 90° and MWCNTs held weakly at the interface have contact angles 

approaching 0° or 180°. 
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Conclusion 

Controlled functionalization of MWCNTs has allowed the properties of 

Pickering emulsions to be adjusted, while droplet size and emulsion inversion trends 

have been observed to be consistent amongst different oil-water systems. Different oil-

water interfacial tensions reveal the trends expected from the proposed theory of energy 

required to remove a particle from the interface.  Changing the oil-water ratio allows for 

emulsion type and emulsion droplet size to be changed when the MWCNTs are 

intermediately in hydrophobicity. In contrast, the most hydrophobic or hydrophilic 

MWCNTs do not change emulsion type when changing the oil-water ratio, although the 

droplet size may change. Mixing MWCNTs of different wettability in different ratios 

allows for control of emulsion droplet size and type. Our current evidence suggests the 

emulsion droplet size is dependent on the surface area occupied by MWCNTs at the 

interface, which is controlled by the MWCNT orientation and therefore the energy 

required to remove the particle from the interface. Further work may elucidate the 

mechanism which controls this phenomenon.  
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Chapter 4: Superparamagnetic Pickering Emulsions – Evidence for 

Facile and Reversible Catalyst Deactivation in Liquid Biphasic 

Reaction Systems 

Introduction 

Iron oxide nanoparticles, and in particular magnetite (Fe3O4), are one of the 

most widely studied superparamagnetic nanomaterials for catalyst supports and general 

engineering applications.  These particles have been observed and studied for ages due 

to magnetite (lodestone) being one of the only naturally occurring magnetic materials.  

However, there is still active study to obtain a complete understanding of its magnetic 

properties at the quantum scale, such as in the Verwey transition of magnetite at ~130K.  

Recently, many works have focused on using this simple and ubiquitous material in 

stimuli responsive Pickering emulsions. 

Controlling Pickering emulsion properties via stimuli responsive systems has 

been an intensely researched area in the past several years, with possible applications in 

oil recovery117 and liquid phase catalysis2,118.  Several possible parameters are available 

for controlling the stability of these emulsions including surfactants119, pH120, 

temperature, light121, and magnetism.  These methods typically involve modulation of 

the surface properties of a Pickering particle which stabilizes the oil-water interface.  

These surface modifications can be applied in situ via chemical alterations from an 

externally available tool (surfactant adsorbs to particle surfaces, heat and light can cause 

a conformation change in a molecule adsorbed to particle surface, etc.).  Typically in 

these cases, the surface alteration, and therefore alteration of the hydrophobic or 

hydrophilic nature, causes a shift in the favorability for the particle to wet an oil or 
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water interface within the system.  While this discovery is quite useful in many fields, 

this alteration of the surface chemistry may be a disadvantage in the application of these 

features in two phase reactions involving a solid supported catalyst, it potentially 

changes the catalytic activity of an active site.    

In the first case of surfactants, the addition of any ionic surfactants in the system 

causes catalytic poisoning to take place via adsorption of sulfates, phosphates, or 

nitrates.  Furthermore, in addition to interacting with the Pickering particle surface, 

there is potential for the surfactants to emulsify the system and potentially alter the 

solubility of the different small molecule organics or other chemical constituents, 

thereby creating a more complex system.  This can be shown within aqueous two phase 

extractions, and may extend to any liquid-liquid system, although it is likely severely 

reduced in high surface tension oil-water environments.122   In the case of light or heat, 

the surface typically responds in a manner which alters the Pickering particle’s 

hydrophobicity, which may lead to larger (or smaller) mass transfer limitations for 

reactants.   

However, one exception to these examples is magnetism.  In the case of 

magnetically controlled Pickering emulsions, the particle stabilizers within this system 

do not change their surface chemistry or require the chemical environment to change in 

order to destabilize the system, but rather rely on force in order remove themselves 

from the kinetically stable system (A non-Janus Pickering particle emulsion is typically 

a kinetically stable system)123.  One may hypothesize that this provides a few 

advantages for performing stimuli responsive reaction catalysis at liquid-liquid 

interfaces, as the emulsion thermodynamic state may remain unaltered.  In addition, this 
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allows recovery of potentially expensive catalyst, which typically employ precious 

metals.  Furthermore, although the effect of magnetism on catalytic properties of 

reduced metals is an active area of research124, one may also hypothesize that by using 

an externally applied field to which only the catalyst support responds, the catalytic 

properties may be left intact. 

However, the work presented here provides evidence to support the contrary.  In 

this study we show that using magnetism to switch the position of magnetic particles 

within two phase systems using a hydrophilic catalyst support creates a mass transfer 

limited system via a film layer on the catalyst surface.   One feature which segregates 

the magnetically controllable particles from the other emulsion switching methods is the 

potential to reversibly deactivate catalyst in situ for two phase reactions by removing 

the catalyst from its thermodynamically favored phase.  Other stimuli responsive 

emulsion stabilizers are irreversibly deactivated via alteration to the catalytic active 

sites (salt adsorption and poisoning).  In addition, to the potential use for reversible 

catalytic deactivation, this study provides experimental support for the computational 

modeling done by Fan et al.125 
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Results and Discussion 

Fe3O4@SiO2-Pd catalyst 

 In this work we have used magnetite nanoparticles (<50 nm) with a silica 

coating in order to create stimuli responsive catalyst particles for doing reactions in two 

phase systems.  This has been achieved using a standard method for creating core-shell 

particles via a modified Stöber process.126   In order to control the growth of silica on 

magnetite, rather than growing silica only particles, we have performed the reaction at 

room temperature, with very little water present, and a small amount of TEOS present.  

This is due to the selectivity for the condensation reaction over the hydrolysis reaction 

 
Figure 23: TEM images of Fe3O4@SiO2-Pd particles.   

Palladium oxide particles are measured at ~6 nm in diameter. 

 
Figure 22: TEM images of Fe3O4@SiO2 particles. 
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at low temperature, low pH, low TEOS concentration, and low water content.126    TEM 

images were taken to confirm that the magnetite was well coated with a uniform layer 

of silica.  It was found that the approximate thickness of the silica shell is about 15 

nanometers on top of Fe3O4 particles with a diameter of about 25 nanometers.   

 Following the silica deposition, we have impregnated and calcined our core-

shell support with a water soluble palladium nitrate and found the resulting palladium 

particles to be approximately 5 nanometers in diameter, as indicated by Figure 23 and 

Figure 24.  TEM images confirm the separation of magnetite from palladium catalyst 

particles. It is highly unlikely for iron oxide to be reduced to metallic iron until very 

high temperatures (~600°C) in a hydrogen environment.  However, the hydrogen 

dissociated by palladium at low temperatures may reduce iron oxide to metallic iron at 

the local active site.  Therefore, we have gathered temperature programmed reduction 

profiles for our catalyst. 

 
Figure 24: Palladium catalyst particle diameter. 
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Although the reduction temperatures for magnetite and palladium are well 

documented127, temperature programmed reduction (TPR) data were acquired for Fe3O4 

and Fe3O4@SiO2-Pd in order to demonstrate 1) our material does have some amount of 

other iron oxide forms which have been reported to reduce at ~250°C (hematite or 

Fe2O3), 2) our reactions will operate at well below the reduction temperature of 

magnetite or any iron oxide (70°C), and 3) there is an apparent absence of reduction for 

Fe3O4 and Fe2O3 in the magnetite silica catalyst.  This implies that the silica shell is 

providing a mass transfer limitation to the hydrogen diffusing to the iron oxide layer.  

This observation provides support for the iron oxide remaining catalytically inactive 

while the palladium performs its typical catalyst role. 

 
Figure 25: TPR of magnetite and magnetic catalyst. 

. 
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Reactions 

 Here, we have chosen to study the hydrogenation of alkenes over palladium, as 

it is a well-studied reaction that is capable of being performed at low temperature and 

low pressure.  Following our beginning hypothesis and goal of controlling phase 

selectivity, we have selected two alkenes which are highly soluble and partition strongly 

in water and oil.  Therefore, a very small diol (cis-2-butene-1,4-diol) was chosen for the 

water phase reactant, providing a high density for hydrogen bonding, and a long, linear 

alkene (1-dodecene) was chosen for the oil soluble reactant.   
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In order to use optically transparent laboratory glassware which allows more 

precise control and monitoring of magnetically manipulated catalyst placement, the 

reaction conditions were chosen at 70°C and 1 atm of pure H2 at 125 sccm (further 

 

 

 

Figure 26: Illustrations of each reaction condition used within this study. 



51 

reaction conditions given in the Experimental section).  This turned out to be a key 

observation within the study, as the two phase heights were approximately the size of 

the neodymium magnet used to control the particles, requiring careful adjustment of the 

magnet placement for exclusion of phase contact with catalyst particles.   

 The magnetic catalyst’s behavior in responsive reactions was characterized via 

conducting three different magnetically controlled catalyst position conditions for our 

reaction system.  The three positions and an overview of the reactions are shown in 

Figure 26.  The figure displaying the switching of the magnet from the water to oil 

phase (c) shows an exaggerated image of the film created by pulling the catalyst 

particles across the interface from the water to oil phase.  A more microscopic image of 

the hypothesized behavior is shown in Figure 27. 

 
Figure 27: Illustration of a water film around the hydrophilic Fe3O4-SiO2-Pd 

catalyst.   

1-dodecene conversion of dodecane is hindered from mass transfer limitations through 

the water phase. 
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Figure 28 shows the reaction results in terms of yield of each alkane product 

after reaction in each condition for two reaction times.  Each condition indicates an 

increase in the yield of 1,4-butanediol (water phase product), while the oil phase 

product is nearly constant and non-reacting.  This result is surprising; however, is 

typical of phase transfer limitations, with reactants of low solubility.  While the 

reactions performed completely in the oil phase are unexpected (the catalyst was 

carefully not allowed to come into contact with the water phase), one potential 

explanation is the transfer of moisture from the interface via hydrogen bubbling (the 

hydrogen inlet was placed at the bottom of the water phase).  This may have allowed for 

the buildup of a film regardless of the placement of the catalyst. Another potential 

hypothesis is that heat transfer limitations were created by only having agitation 

available from hydrogen bubbling provided to the system without stirring.  Stirring was 

not used for this study in order to ensure that the reaction was operating under a severe 

 
Figure 28: Oil and Water phase yields for different reaction times and magnet 

locations. 
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mass transfer limited regime in order to test for phase selectivity after applying a 

magnetic field to alter catalyst placement.  Therefore, further study is required in order 

to validate the hypotheses provided here.  

Experimental 

Materials and Equipment 

Fe3O4 particles (<50 nm), 1-dodecene (95%), dodecane (99%), 1,4-butanediol 

(99%), and cis-2-butene-1,4-diol (95%), tetraethyl orthosilicate (95%), ammonium 

hydroxide (50%), palladium nitrate dihydrate, and ethanol (99%) were all obtained from 

Sigma Aldrich.  All water used within the experiments was obtained from an 18 MΩ 

ultra-pure Cole Parmer filtration system.   

Fe3O4@SiO2: Hydrophilic core-shell catalyst support particle synthesis 

5 g of Fe3O4 particles were dispersed in 160 ml of H2O (18 MΩ) with a Fisher 

Scientific Model 505 Sonic Dismembrator (¼ inch tip) at 20% amplitude for 10 

minutes.  This dispersion was then added to 700 ml ethanol and 20 ml of 25 wt. % 

NH4OH while 80 ml of TEOS was added dropwise.  This solution was sonicated at 20% 

amplitude with a ¼ inch tip for 5 hours, allowed to cool and recovered via Neodymium 

magnet (~ 1 Tesla) overnight before the paramagnetic Fe3O4@SiO2 solids were 

collected and washed 5 times with acetone. 

Fe3O4@SiO2-Pd:  Addition of palladium catalyst for reactions 

Following Fe3O4@SiO2 collection, 131.7 mg Pd(NO3)2·2 H2O was dispersed in 

200 μL H2O (2.47 M Pd aqueous solution) and was added to 1 g of the catalyst support 

(Fe3O4@SiO2) dropwise while mixing with a mortar and pestle for wet impregnation of 

the Palladium catalyst in order to create a 5 wt. % Pd loading on the Fe3O4@SiO2.  
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These particles were then calcined at 250°C for 2 hours after a 2 °C/min temperature 

ramp and recovered for subsequent reactions. 

Reactions 

25 ml of water, 25 ml decalin, and 5 mg of Fe3O4@SiO2-Pd catalyst were placed 

into a 50 ml three neck round bottom flask and heated to 70°C in pure H2 flowing at 125 

sccm.  The system was held in this state for 1 hour in order to reduce the palladium 

oxide to palladium metal, after which 5 ml of each liquid phase, containing 1.2 M 

reactant was injected (taken from a batch of 5.905 g cis-2-buten-1,4-diol in 50 ml H2O 

and 13.795 g 1-dodecene in 50 ml decalin) .  The reaction was allowed to continue for 

either 30 minutes or 1 hour, after which the heat was removed via placing the reactor in 

cool water and purging the system with atmospheric nitrogen.  The three different 

configurations of the reaction systems were manipulated by placing a magnet on the 

side of the reactor and adjusting the location of the particles until they visually resided 

within the desired phase.  The first configuration (denoted as “water phase”) was the 

simplest case, in which the catalyst particles were first added to the reactor, followed by 

water in order to wet them.  Careful addition of the oil phase ensured that the oil had no 

contact with the catalyst particles.  The second configuration (denoted as “oil phase”) 

was performed by placing the magnet at the side of the reactor, followed by pouring in 

the water and oil phases while ensuring the water phase did not contact the particles.  

After this, the catalyst was adjusted to visually be within only the oil phase.  The third 

configuration was done by combining the first configuration (no magnet is provided at 

the start of the reaction), followed by a change in catalyst particle position to the oil 

phase after injection of the reactant. Approximately 30 seconds were allowed for 
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mixing of the system’s reactants was given before moving the catalyst particles to the 

oil phase. 

The catalyst was then separated from the two liquid phases via magnetic 

separation by a strong neodymium magnet and syringe filtration through a 0.45 μm 

filter, followed by the addition of external standards (225 mg decane in 

decalin/dodecane/dodecane phase, 100 mg butanol in water/cis-2-butene-1,4-diol/1,4-

butanediol phase) to 10 ml of each phase in order to more precisely calculate the 

molarity of the reactants and products.  Small aliquots of each phase were then provided 

to a gas chromatography system (Agilent 7890B GC) for analysis. 
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Conclusion 

 Magnetically controllable superparamagnetic particles were synthesized and 

utilized for hydrogenation in two phase reaction systems.  Some evidence has been 

provided that in systems which contain solvents of differing hydrophobic and 

hydrophilic character, films are created on catalyst supports consisting of the solvent in 

which the particle is more soluble.  This film is hypothesized to create a special type of 

mass transfer limitation recently referred to as a phase limitation within the literature.  

Although more study is required, this work has provided some experimental validation 

of the water bridging effect noted by Fan et al and has potential for controlling and 

reversibly deactivating catalyst in two phase systems in situ.  
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Future Prospects 

 Many other potential avenues for using CNTs within two phase systems are 

available to study for the coming years.  In order to provide the future graduate student 

or researcher some inspiration, I have provided several ideas which were uncovered 

throughout this work, yet were not fully explored.  These ideas include the following: 

 Phase transfer catalysis (PTC) with water solubilized CNTs 

 Aqueous two phase systems (ATPS):  

o Phase separation of small sugars from water soluble potential biofuel 

chemicals 

o Phase selectivity via controllable separation of SWCNT supported 

catalysts 

o Removal of humins into separate aqueous phase 

Phase Transfer Catalysis (PTC) with CNT 

 While pristine nanotubes are not typically soluble in any liquids other than 

superacids and strong electrolyte solutions,128–130 with extensive surface modification 

they can be made to be much more hydrophilic with the addition of oxygen containing 

groups and sulfate groups.  This allows for a separation of CNTs by length via 

hydrophobic and hydrophilic interactions by introducing an oil phase to the water 

dispersed CNTs.  In the case of highly sulfonated CNTs, we may employ a cationic 

surfactant known as CTAB in order to ionically interact with the sulfate groups on the 

CNT surface.  This in turn acts as a standard phase transfer catalyst, creating a more 

hydrophobic complex, and transfers the CNT into the oil phase.  This method has been 

used to length fractionate CNTs, although it is easy to envision this system within a two 
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phase reaction for biofuel production with the addition of transition metals via 

impregnation and calcination of catalyst onto the surface of the CNT.   

SWCNT Separationss 

 In order to have high performance from certain carbon nanotube applications, 

some level of separation is typically required.  For example, Jain et al. were able to 

observe that purification of SWCNTs by pure chirality yielded an increase by 3,000% 

(30X) in the efficiency of an organic solar cell when comparing an 80:20% (6,5):(6,4) 

mixture and a 100% (6,5) nanotube solution.19  It should be noted by the reader that 

both of these samples are remarkably well separated, and that having a SWCNT 

material with >45% of any chirality is a very difficult task to achieve.  The study 

performed by Jain et al. clearly shows the importance of separating SWCNTs by 

electronic character for any application in which electronics are contributing to the 

function of the product.  

Various methods for separating CNT materials by length, diameter, defect 

density, and chirality have been proposed and studied.131,83,132,129,133  These methods 

consist of standard silica gel chromatography, adsorption, amine functional group 

functionalization, polymer wrapping, and two phase transfer systems. 

Aqueous Two Phase Extraction (ATPE) 

In light of recent reports of interfacial reaction engineering for biofuel 

production2, much attention has been paid to particles within two phase systems and 

their behavior at interfaces.  Oil-water systems typically provide large interfacial 

tensions which (when combined with the low solubility of CNTs in almost any solvent) 

tend to form Pickering emulsions.  However, one may envision a system in which the 
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solubility of the SWCNT in the bulk phase is more preferable, and the surface tension 

between the phases is low.  This is the case of aqueous two phase systems, which have 

been developed at NIST for separating SWCNTs83 and, while the idea is not fully 

studied here, this observation may be used to perform phase transfer catalysis (PTC) 

with SWCNT supported catalyst. This idea can be demonstrated in Figure 29. 

The benefits of performing reactions at the interface of a two phase system have 

been shown in many works; however, the pyrolysis of biofuel feedstock provides not 

only a portion of water and aqueous phase soluble products, but also reactants which 

form insoluble polymers (humins) which are undesirable for biofuel production.  It is 

therefore of considerable interest to either research facile separation techniques for the 

polymer (humins) removal, or to hinder their formation during reaction.  Although there 

is much work to be done within the area, there is potential that the aqueous two phase 

system may provide solutions to this problem using either of these methods (formation 

hindrance or polymer removal).      

The aqueous two phase system typically consists of a sugar polymer (such as 

dextran) or salt, and a slightly more hydrophobic polymer phase (typically polyethylene 

glycol).  This can be extended to provide systems with up to 5 or more phases, all 

 
Figure 29: SWCNTs switching phases in ATPS.   

PEG and DX denote polyethylene glycol 6000 MW and dextran 75,000 MW.  The 

percentages are given as weight percent of total, while the other constituents are sodium 

cholate and sodium dodecyl sulfate (SC:SDS) at a 9:7 ratio at 1.47 wt % total 

surfactant. 
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consisting of a continuous water environment.134   These different phases provide 

different environments which may be tuned very precisely by varying temperature, 

polymer type, polymer molecular weight, polymer weight percent, pH, surfactant type, 

surfactant amount, as well as chaotropic and kosmotropic salts. 

The enormous parameter space given by the ability to vary pH, temperature, 

molecular weights and loading of polymers, surfactant loading, etc. is a wonderful tool 

for potentially creating a precisely tuned reaction system for phase transfer catalysis; 

although one’s experimental plan for exploring the number of available variables can 

become quite burdensome when considering the lab work required.  

 Reports within the SWCNT separations community have shown the phase transfer 

of different SWCNT (n,m) species at very specific conditions (~0.04 wt % sodium 

deoxycholate, ~6 wt % polyethylene glycol [6000 molecular weight], ~6 wt % dextran) 

by varying the surfactant sodium dodecyl sulfate between ~0.5-1.4 wt %.83  The 

 
Figure 30: Effect of dextran on chirality of SWCNTs in dextran phase. 
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literature has documented the partitioning behavior of most common (n,m) species, 

revealing that the large diameter semiconductors partition to more hydrophobic 

environments (PEG), while the metallic SWCNTs and smaller diameter SWCNTs (<1 

nm) prefer the hydrophilic phase.  The partitioning of the smaller diameter 

semiconductors has been attributed to the ability for structures less than ~1 nm to ‘hide’ 

within the hydrogen bonding network of water.135  

 
Figure 31: Effect of sodium cholate on chirality of SWCNTs in dextran phase. 

 
Figure 32: Optical effect from increasing PEG molecular weight. 

. 
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Some preliminary data was gathered for studies which changed the surfactant 

concentration, polymer loading, and polymer molecular weight.  Increasing the dextran 

loading appears to quickly shift the smaller diameter SWCNTs to the dextran (more 

hydrophilic) phase, although it is quickly quenched.  The subsequent quenching may be 

due to bundle formation, which leads to the observed linewidth increases or broader 

energy spectra.  The increase of sodium cholate causes the SWCNTs and any other 

forms of carbon to migrate to the dextran phase, as indicated in Figure 31.  We may also 

vary the polymer molecular weights, which appear to wrap the SWCNTs better within 

the top phase, creating smaller line widths for the peaks, indicating better 

individualization. Additionally, we can see optical effects of solvatochromic shifts 

occurring in the E11 transition for (6,5) in Figure 32.  

 
Figure 33: Effect of PEG molecular weight on the line widths of the SWCNT 

optical absorption excitonic transitions in the PEG phase. 

. 
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Further, one may use a different facile SWCNT separation technique such as the 

chirality dependent gel adsorption method developed at JIST131,136,137,137–140,133, in order 

to obtain specific SWCNT (n,m) species, and subsequently place those within the NIST 

developed aqueous two phase system.  In this manner, one may impregnate and calcine 

a different metal catalysts upon two differing SWCNT (n,m) catalyst supports, and have 

the ability to perform different reactions within each phase.  This allows for the 

treatment of strikingly similar molecules in completely different manners.   

Although the potential applications for highly tuned environments in reaction 

engineering with aqueous environments may run into difficult issues such as poisoning 

and deactivation of catalyst from salts and surfactants, mass transfer problems caused 

from presence of large polymers, and competitive reactions from catalytic breakdown of 

polymer, other useful applications may still exist for using ATPS in reaction 

engineering.  For example, some work has shown that the two phase system has the 

potential of removing humic acids, which are a large problem within biofuel production 

due to the condensation of furfural, HMF, furfuyl alcohol, etc.141  Therefore, the ATPS 

may be tuned such that the catalyst is soluble to perform reactions within the 

hydrophilic aqueous phase, while the hydrophobic aqueous phase is left to remove the 

humic acids. 
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Conclusion 

Methods for the facile characterization of carbon nanotube materials have been 

presented along with procedures and scripts that may provide a starting point for future 

scientists researching CNTs and their applications.  These methods have been applied to 

understanding the role of CNT wettability in emulsions and their stability, and paved 

the way for creating stable and tunable biphasic reaction systems.  Furthermore, while 

studying stimuli responsive Pickering emulsions, we have elucidated a potential 

fundamental difference for magnetically controllable particles within stimuli responsive 

liquid-liquid systems.  Although, further work is required to confirm this hypothesis, 

this work has provided some promising preliminary results for evidence of reversible 

in-situ catalyst deactivation.    
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Supplementary Figures  

 

 

  

 
Supplemental Figure 1: TPD data of all nitric acid treated SMW100 MWCNT. 

 
Supplemental Figure 2: Illustration of sphere adsorbed at a liquid-liquid interface. 
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Appendices  

Appendix A – Scripts 

Data Retrieval Script (required import for TPD program) 

import numpy as np 
 
def retrieve_XY(file_path): 
    # XY data is read in from a file in text format 
    file_data = open(file_path).readlines() 
     
    # The list of strings (lines in the file) is made into a list of lists while splitting by whitespace and removing commas 
    file_data = map(lambda line: line.rstrip('\n').replace(',',' ').split(), file_data) 
 
    # Remove empty lists, make into numpy array 
    xy_array = np.array(filter(None, file_data)) 
 
    # Each line is searched to make sure that all items in the line are a number 
    where_num = np.array(map(is_number, xy_array)) 
     
    # The data is searched for the longest contiguous chain of numbers 
    contig = contiguous_regions(where_num) 
    try: 
        # Data lengths 
        data_lengths = contig[:,1] - contig[:,0] 
        # All maximums in contiguous data 
        maxs = np.amax(data_lengths) 
        longest_contig_idx = np.where(data_lengths == maxs) 
    except ValueError: 
        print 'Problem finding contiguous data' 
        return np.array([]) 
    # Starting and stopping indices of the contiguous data are stored 
    ss = contig[longest_contig_idx] 
 
    # The file data with this longest contiguous chain of numbers 
    # Float must be cast to each value in the lists of the contiguous data and cast to a numpy array  
    longest_data_chains = np.array([[map(float, n) for n in xy_array[i[0]:i[1]]] for i in ss]) 
 
    # If there are multiple sets of data of the same length, they are added in columns 
    column_stacked_data_chain = np.hstack(longest_data_chains) 
 
    return column_stacked_data_chain 
 
#http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array 
def contiguous_regions(condition): 
    """Finds contiguous True regions of the boolean array "condition". Returns 
    a 2D array where the first column is the start index of the region and the 
    second column is the end index.""" 
 
    # Find the indicies of changes in "condition" 
    d = np.diff(condition) 
    idx, = d.nonzero()  
 
    # We need to start things after the change in "condition". Therefore,  
    # we'll shift the index by 1 to the right. 
    idx += 1 
 

 
Supplemental Figure 3: Illustration of cylinder adsorbed at a liquid-liquid 

interface. 
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    if condition[0]: 
        # If the start of condition is True prepend a 0 
        idx = np.r_[0, idx] 
 
    if condition[-1]: 
        # If the end of condition is True, append the length of the array 
        idx = np.r_[idx, condition.size] # Edit 
 
    # Reshape the result into two columns 
    idx.shape = (-1,2) 
    return idx 
 
def is_number(s): 
    try: 
        np.float64(s) 
        return True 
    except ValueError: 
        return False  
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TPD Analysis Script 

import sys 
import os 
 
from data_retrieval import * 
 
from Tkinter import Tk 
from tkFileDialog import askopenfilenames 
from os.path import splitext, basename 
import matplotlib.pyplot as plt 
from PyQt4.QtGui import QMessageBox 
import numpy as np 
import scipy.integrate 
import scipy.optimize as opt 
 
def transform_TPD(data, hertz, temp_ramp, max_temp, t0, tf): 
    end_time = len(data) / hertz / 60. # time in minutes 
    dt = 1./hertz/60. 
    time = np.arange(0., end_time, dt) 
    # Temperature is calculated from the time array 
    # and taking into account when the temperature controller is turned on 
    temp = temp_ramp * time - t0 
    # Room temperature assumed to be 22C 
    RT = 22 
    temp[temp<RT] = RT 
    # isothermal at max temperature 
    temp[temp>max_temp] = max_temp 
    # Assume temps are the same 
    furnace_temp = temp 
    sample_temp = temp 
     
    rawFID = data[:,0] 
    bkg_subFID = data[:,1] 
   
    my_bkg_FID = np.zeros(len(data)) 
    # All of the Data 
    tTy = np.array( zip(time, sample_temp, rawFID , bkg_subFID, my_bkg_FID), dtype=[('time', float), ('sample_temp', 
float),('raw_FID', float), ('machine_bkg_sub_FID', float), ('my_bkg_FID', float)]) 
    # Now we get the data when the experiemnt was run 
    sample_data = np.array([]) 
    cond_between_times = np.logical_and(t0<=tTy['time'], tTy['time']<=tf) 
    cond_after_t0 = t0<=tTy['time'] 
    if tf!=-1: 
        sample_data = tTy[np.where(cond_between_times)] 
        # Subtract linear background for each detector type 
        y = np.copy(tTy['raw_FID'][cond_between_times]) 
        x = np.copy(tTy['sample_temp'][cond_between_times]) 
         
    else: 
        sample_data = tTy[np.where(cond_after_t0)] 
        # Subtract linear background for each detector type 
        y = np.copy(tTy['raw_FID'][cond_after_t0]) 
        x = np.copy(tTy['sample_temp'][cond_after_t0]) 
 
    bkg_func = TPD_bkg(x, y) 
    # Final Sample Data 
    sample_data['my_bkg_FID'] = sample_data['raw_FID'] - bkg_func(x) 
 
    return tTy, sample_data 
 
def TPD_bkg(iter_x, iter_y): 
    for i in range(10): 
        z = np.polyfit(iter_x, iter_y, 1) 
        p = np.poly1d(z) 
        iter_bkg = p(iter_x) 
        diff = (iter_y-iter_bkg) 
        mask = np.where(diff<0.0) 
        iter_y = iter_y[mask] 
        iter_x = iter_x[mask] 
    return p 
 
def TPD_fit(temp, FID): 
    temp_vary = 75 
    #amp_vary = None 
    width_vary = 100. 
    default_amp = np.max(FID) 
    default_width = 100. 
    # Weak acidic carboxylic acid 
    WA_temp = 300 #C 
    WA_temp_min = WA_temp - temp_vary/2. 
    WA_temp_max = WA_temp + temp_vary/2. 
    WA_amp = default_amp 
    WA_amp_min = 0. 
    WA_amp_max = None 
    WA_width = default_width 
    WA_width_min = WA_width - width_vary/2. 
    WA_width_max = WA_width + width_vary/2. 
    # Strong acidic carboxylic acid 
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    SA_temp = 400. 

    SA_temp_min = SA_temp - temp_vary/2. 

    SA_temp_max = SA_temp + temp_vary/2. 
    SA_amp = default_amp 
    SA_amp_min = 0. 
    SA_amp_max = None 
    SA_width = default_width 
    SA_width_min = SA_width - width_vary/2. 
    SA_width_max = SA_width + width_vary/2. 
    # Carboxylic anhydride 
    CAn_temp = 500. 
    CAn_temp_min = CAn_temp - temp_vary/2. 
    CAn_temp_max = CAn_temp + temp_vary/2. 
    CAn_amp = default_amp 
    CAn_amp_min = 0. 
    CAn_amp_max = None 
    CAn_width = default_width 
    CAn_width_min = CAn_width - width_vary/2. 
    CAn_width_max = CAn_width + width_vary/2. 
    # Lactone 
    LC_temp = 650. 
    LC_temp_min = LC_temp - temp_vary/2. 
    LC_temp_max = LC_temp + temp_vary/2. 
    LC_amp = default_amp 
    LC_amp_min = 0. 
    LC_amp_max = None  
    LC_width = default_width 
    LC_width_min = LC_width - width_vary/2. 
    LC_width_max = LC_width + width_vary/2. 
    # Phenol 
    PH_temp = 700. 
    PH_temp_min = PH_temp - temp_vary/2. 
    PH_temp_max = PH_temp + temp_vary/2. 
    PH_amp = default_amp 
    PH_amp_min = 0. 
    PH_amp_max = None 
    PH_width = default_width 
    PH_width_min = PH_width - width_vary/2. 
    PH_width_max = PH_width + width_vary/2. 
    # Carbonyl Quinone 
    CQ_temp = 900. 
    CQ_temp_min = CQ_temp - temp_vary/2. 
    CQ_temp_max = CQ_temp + temp_vary/2. 
    CQ_amp = default_amp 
    CQ_amp_min = 0. 
    CQ_amp_max = None 
    CQ_width = default_width 
    CQ_width_min = CQ_width - width_vary/2. 
    CQ_width_max = CQ_width + width_vary/2. 
 
    temps = np.array([WA_temp, SA_temp, CAn_temp, LC_temp, PH_temp, CQ_temp]) 
    widths = np.array([WA_amp, SA_amp, CAn_amp, LC_amp, PH_amp, CQ_amp]) 
    amps =  np.array([WA_width, SA_width, CAn_width, LC_width, PH_width, CQ_width]) 
    params0 = np.ravel(np.column_stack((temps, amps, widths))) 
    params_bounds = np.array([(WA_temp_min, WA_temp_max), (WA_amp_min, WA_amp_max), (WA_width_min, WA_width_max),\ 
                            (SA_temp_min, SA_temp_max), (SA_amp_min, SA_amp_max), (SA_width_min, SA_width_max),\ 
                            (CAn_temp_min, CAn_temp_max), (CAn_amp_min, CAn_amp_max), (CAn_width_min, CAn_width_max),\ 
                            (LC_temp_min, LC_temp_max), (LC_amp_min, LC_amp_max), (LC_width_min, LC_width_max),\ 
                            (PH_temp_min, PH_temp_max), (PH_amp_min, PH_amp_max), (PH_width_min, PH_width_max),\ 
                            (CQ_temp_min, CQ_temp_max), (CQ_amp_min, CQ_amp_max), (CQ_width_min, CQ_width_max)]) 
    params, f, d = opt.fmin_l_bfgs_b(func = residual, x0 = params0, bounds = params_bounds, args = (temp, FID), approx_grad = 
True) 
    models = TPD_models(temp, FID, params) 
    return models 
 
def residual(params, *args): 
    temp_array = args[0] 
    FID = args[1] 
    model = TPD_models(temp_array, FID, params)['model'] 
    return sum((model - FID)**2) 
 
def TPD_models(temp_array, FID, params): 
    WA_temp = params[0] 
    WA_amp = params[1] 
    WA_width = params[2] 
    # Strong acidic carboxylic acid 
    SA_temp = params[3] 
    SA_amp = params[4] 
    SA_width = params[5] 
    # Carboxylic anhydride 
    CAn_temp = params[6] 
    CAn_amp = params[7] 
    CAn_width = params[8] 
    # Lactone 
    LC_temp = params[9] 
    LC_amp = params[10] 
    LC_width = params[11] 
    # Phenol 
    PH_temp = params[12] 
    PH_amp = params[13] 
    PH_width = params[14] 
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    # Carbonyl Quinone 

    CQ_temp = params[15] 

    CQ_amp = params[16] 
    CQ_width = params[17] 
 
    WA = gaussian(temp_array, WA_temp, WA_amp, WA_width) 
    SA = gaussian(temp_array, SA_temp, SA_amp, SA_width) 
    CAn = gaussian(temp_array, CAn_temp, CAn_amp, CAn_width) 
    LC = gaussian(temp_array, LC_temp, LC_amp, LC_width) 
    PH = gaussian(temp_array, PH_temp, PH_amp, PH_width) 
    CQ = gaussian(temp_array, CQ_temp, CQ_amp, CQ_width) 
    model = WA + SA + CAn + LC + PH + CQ 
    models = np.array(zip(model, WA, SA, CAn, LC, PH, CQ) , dtype=[('model', float), ('Weak Carboxylic', float), ('Strong 
Carboxylic', float), ('Carboxylic Anhydride', float), ('Lactone', float), ('Phenol', float), ('Quinone', float)]) 
    return models 
     
 
def gaussian(x, center, amp, width): 
    if width==0: width=0.00000001 
    return amp * np.e**(-((x-center)**2./(2.*width**2.))) 
 
def desorbed_dict(time_array, FID_array, mol_sample, cal): 
    area = scipy.integrate.simps(FID_array, time_array) 
    mol_desorbed = area*cal 
    mol_percent_desorbed = mol_desorbed/mol_sample*100. 
     
    return {'area':area,'mol desorbed':mol_desorbed,'mol% desorbed':mol_percent_desorbed} 
     
def TPD_properties(sample_data, mol_sample, cal): 
    prop_dict = {} 
    raw = desorbed_dict(sample_data['time'], sample_data['raw_FID'], mol_sample, cal) 
    my_bkg = desorbed_dict(sample_data['time'], sample_data['my_bkg_FID'], mol_sample, cal) 
    machine_bkg = desorbed_dict(sample_data['time'], sample_data['machine_bkg_sub_FID'], mol_sample, cal) 
    prop_dict['mol sample'] = mol_sample 
    prop_dict['raw'] = raw 
    prop_dict['my_bkg'] = my_bkg 
    prop_dict['machine_bkg'] = machine_bkg 
     
    return prop_dict 
 
def plot_TPD(tTy, sample_data): 
    fig = plt.figure() 
    ax = fig.add_subplot(131) 
    ax2 = fig.add_subplot(132) 
    ax3 = fig.add_subplot(133) 
    ax.plot(tTy['time'], tTy['raw_FID']) 
    ax2.plot(sample_data['sample_temp'], sample_data['raw_FID']) 
    ax3.plot(tTy['time'], tTy['sample_temp']) 
    plt.show() 
 
def get_data(): 
    # Get and manipulate data 
    data = {} 
    Tk().withdraw() 
    Tkfilepaths = askopenfilenames() 
    filepaths = Tk().tk.splitlist(Tkfilepaths) 
 
    for filepath in filepaths: 
        file_name = splitext(basename(filepath))[0] 
        xy = retrieve_XY(filepath) 
        OU_bool = False 
        if "<TYPE>=CHROM" in open(filepath).readline(): 
            OU_bool = True 
        if len(xy)>0: 
            data[file_name] = xy, OU_bool 
        else: 
            QMessageBox.about(self, 'Error', 'File at\n' + str(filepath) + '\ncould not be parsed to get the xy data.\nTry 
making a tab delimited text file with two columns of x and y data.') 
    return data 
 
if __name__== "__main__": 
    print "This program will determie the % of carbon desorbed from a sample of pure carbon (carbon nanotubes) in a temperature 
programmed desorption experiment." 
 
    # Use this calibration from CO2 pulses 
    # 1.24 to 1.3 *10^-11  
    cal = 1.3*10**-11 # mol C / area 
 
    main_fig = plt.figure() 
    main_ax = main_fig.add_subplot(111) 
 
    print "Please choose the '.asc' files given from the TPD/TPO machine" 
    file_data = get_data() 
    for name, (xy, OU_bool) in file_data.iteritems(): 
        hertz = float(input("Input data rate in Hertz.\n(OU's instrument typically gathers data at 2 Hertz):")) 
        temp_ramp = float(input("Input temperature ramp in K/min.\n(OU's instrument typically ramps at 10 K/min):"))#10. # K/min         
        max_temp = float(input("Input max temperature in Celsius.\n(OU's instrument typically ends at 900 C):"))#900. # C 
        t0 = float(input("Input time in which the experiment started and the furnace was turned on (minutes).\n(It is easiest to 
save separate files when waiting for the baseline to stabalize, then to get the sample data starting at time 0):"))#0 # min 
        tf_bool = input("Input 0 if you want the ending time to be when the final temperature is reached,\nor 1 if you would 
like the final time to be the last data point gathered:") 
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        if tf_bool == 0: 

            tf = max_temp/temp_ramp 

        elif tf_bool == 1: 
            tf = -1 # end of data 
        sample_mass = float(input("Input carbon sample mass in grams:"))#0.050 # grams 
        mol_sample = sample_mass / 12. 
         
        tTy, sample_data = transform_TPD(xy, hertz, temp_ramp, max_temp, t0, tf) 
 
 
 
 
        print  
        print str(name), ":" 
        for k, v in TPD_properties(sample_data, mol_sample, cal).iteritems(): 
            try: 
                print str(k), " is: ", str(round(v['mol% desorbed'],2)) 
            except: 
                print str(k), " is: ", str(round(v,2)) 
                 
 
        models = TPD_fit(sample_data['sample_temp'], sample_data['raw_FID']) 
 
        for name in models.dtype.names: 
            d = desorbed_dict(sample_data['time'], models[name], mol_sample, cal) 
            print str(name), " is: ", str(round(d['mol% desorbed'],2)) 
         
 
 
     
        main_ax.plot(sample_data['sample_temp'], sample_data['raw_FID'], 'r-', \ 
                     sample_data['sample_temp'], models['model'], 'g-',\ 
                     sample_data['sample_temp'], models['Weak Carboxylic'], 'r--',\ 
                     sample_data['sample_temp'], models['Strong Carboxylic'], 'r--',\ 
                     sample_data['sample_temp'], models['Carboxylic Anhydride'], 'r--',\ 
                     sample_data['sample_temp'], models['Lactone'], 'r--',\ 
                     sample_data['sample_temp'], models['Phenol'], 'r--',\ 
                     sample_data['sample_temp'], models['Quinone'], 'r--') 
         
    plt.legend(file_data.keys(), loc='upper left') 
    plt.show() 
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Figure 4 Python Matplotlib Script 

# Import required libraries 
import numpy as np 
from pylab import * 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import axes3d, Axes3D  
 
# Decalin-water surface tension 
# Rose, William E. "The interfacial tension of several hydrocarbons against water." Retrospective Theses and Dissertations, 
1919-2007 (1949). 
gam_ow = 0.0000000001#0.0515#0.0000000001#0.0515 # N/m 
# Boltzmann Constant 
k_b = 1.3806488*10**-23 # m2 kg s-2 K-1 
Temp = 298 # K 
# Total Volume 
V_t = 0.001 # meters cubed (0.001 m^3 = 1 L) 
 
# Number of points in mesh grid in one direction 
num_steps = 100 
 
 
# Drop Radius initial and final to graph 
Ri = 1 * 10**-9 # meters (1*10^-9 m = 1 nm) 
Rf = 7000 * 10**-9 # meters (20,000 *10^-9 m = 20 um) 
 
# Maximum and minimum droplet number 
n_max = 1*10**9 
n_min = 1 
 
# Drop Radius array  
R_arr = np.linspace(Ri, Rf, num_steps) # meters 
# number for droplets array 
n_arr = np.linspace(n_min, n_max, num_steps)  
 
# Single droplet volume 
def V_drop(r): 
    return (4./3.) * np.pi * r ** 3 
 
# Volume Fraction of dispersed phase 
def phi_d(n, r): 
    # Volume of dispersed phase 
    V_d = n * V_drop(r) 
    phi_d_raw = V_d / V_t 
    problem_loc = np.where(V_d>=V_t)[0] 
    phi_d_raw[problem_loc] = 1 
    return phi_d_raw 
 
# Function for calculating entropy of conformation 
def S_conf(n, r): 
    S_conf = Temp * n * k_b * (np.log(phi_d(n,r)) + ((1-phi_d(n,r))/phi_d(n,r)) * np.log(1-phi_d(n,r))) 
    return S_conf 
 
# Surface area change from adding droplets 
def delta_area(n, r): 
    return n * 4 * np.pi * r**2 
 
# Function for interfacial energy 
def E_int(n, r): 
    return delta_area(n, r) * gam_ow 
 
def create_plot(fig_name): 
    # Reshape Contact Angle and Radius into meshgrid for 3D plotting 
    n, r = np.meshgrid(n_arr, R_arr) 
 
    # Calculate Energies with functions 
    S_arr = S_conf(n, r) 
    E_int_arr = E_int(n, r) 
    G_form = E_int_arr + S_arr 
    G_form_neg = np.where(G_form<0, G_form, np.nan) 
 
    # Plotting functions 
    fig = plt.figure() 
 
    ax = fig.add_subplot(1, 1, 1, projection='3d') # num rows, num columns, subplot number, 3d projection 
    p_S = ax.plot_wireframe(n, r*10**9, S_arr, color="Red") 
    p_E = ax.plot_wireframe(n, r*10**9, E_int_arr, color="Blue") 
    p_G = ax.plot_wireframe(n, r*10**9, G_form, color="Green") 
    #p_Gn = ax.plot_wireframe(n, r*10**9, G_form_neg, color="Gray") 
    axes = fig.gca(projection='3d') 
    xLabel = axes.set_xlabel("Number of Droplets)") 
    yLabel = axes.set_ylabel("Droplet Radius (nm)") 
    zLabel = axes.set_zlabel(r"$\Delta G_{form}$") 
 
    constants_label = 
r'$\gamma_{o/w}=$'+str(gam_ow)+r'$\frac{N}{m}$'+'\n'+'$T=$'+str(Temp)+'K\n'+r'$V_{Tot}=$'+str(V_t)+r'$m^3$' 
 
    axes.text(0,0, np.max(G_form), constants_label, zdir=None, style='italic', bbox={'facecolor':'white', 'alpha':0.5, 
'pad':10}) 
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    p1 = Rectangle((0, 0), 1, 1, fc="r") 

    p2 = Rectangle((0, 0), 1, 1, fc="b") 
    p3 = Rectangle((0, 0), 1, 1, fc="g") 
    ax.legend([p1,p2,p3], ["Conformational Entropy", "Interfacial Energy", "Gibbs Free Energy of Formation"]) 
    ax.view_init(elev=20, azim=-45) 
    plt.tight_layout() 
 
    plt.savefig(str(fig_name) + '.eps', format='eps', dpi=1000) 
    plt.savefig(str(fig_name) + '.jpg', format='jpg', dpi=1000) 
 
    plt.show() 
create_plot('G_form') 

 

Python Optical Absorbance Fitting 

## Spectro 
## ======= 
## This program analyzes UV-VIS absorption spectra from aqueous surfactant suspended dispersions of carbon nanotubes. 
## It does so by fitting absorption profile models from the literature with a linear regression at each step of a non-linear 
regression fitting of the background (amorphous carbon and pi plasmon resonances) model. 
## 
## This program is written using python 2.7 with a Qt4 Gui and has the following dependencies: 
## 
## pythonxy: 
## http://www.mirrorservice.org/sites/pythonxy.com/Python(x,y)-2.7.6.1.exe 
## 
## lmfit: 
## https://pypi.python.org/packages/2.7/l/lmfit/lmfit-0.7.4.win32-py2.7.exe 
## 
## This program was written by Chase Brown and is under the GNU General Public License.  (A Copyleft License) 
## This program is free to use for any research, as long as this this thesis and github page are cited: 
## https://github.com/chaxor/Spectro 
## Brown, Chase. “CARBON NANOTUBES AND MAGNETIC PARTICLES AS PICKERING EMULSION STABALIZERS:  
## PARTICLE CONTROL FOR PHASE SELECTIVE REACTIONS” Master’s thesis, University of Oklahoma, 2016. 
 
from PyQt4 import QtCore, QtGui 
import sys 
from math import factorial 
import matplotlib 
matplotlib.use('Qt4Agg') 
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas 
import numpy as np 
from scipy import * 
import scipy 
import lmfit 
import multiprocessing as mp 
import time 
import datetime 
import xlsxwriter 
import operator 
 
## 
## CONSTANTS 
## 
 
# A value of 1 for APP_SCREEN_RATIO will open the program in a 'maximized' type of position. 
APP_SCREEN_RATIO = 0.7 
# Due to the Global Interepreter Lock (GIL) in python, we have to switch the main thread from updating the GUI front end to 
doing calculations in the back end  
UPDATE_TIME_IN_MILLISECONDS = 300 
 
# E=hc/lambda , and hc=1240 eV*nm 
WAVELENGTH_TO_ENERGY_CONVERSION = 1240.0 # eV*nm 
 
# Using Dresselhaus' convention for carbon nanotubes (CNTs), (n,m), we can create all CNTs within two (n,m) values 
lowestNM = 5 
highestNM = 10 
 
## Pi Plasmon ## 
# Starting pi plasmon amplitude as a ratio of the absorbance at the peak center 
AMP_RATIO_PI = 0.6 
# Starting peak center for the pi plasmon 
PI_PLASMON_CENTER = 5.6 
# Allowable variance in pi plasmon center 
PI_PLASMON_CENTER_VAR = 0.6 
PI_PLASMON_CENTER_MAX = (PI_PLASMON_CENTER + PI_PLASMON_CENTER_VAR) 
PI_PLASMON_CENTER_MIN = (PI_PLASMON_CENTER - PI_PLASMON_CENTER_VAR) 
# Full width at half maximum for pi plasmon 
PI_PLASMON_FWHM = 0.6 
PI_PLASMON_FWHM_MAX = 5.0 
PI_PLASMON_FWHM_MIN = 0.1 
 
## Graphite Lorentzian ## 
# Starting graphite amplitude as a ratio of the absorbance at the peak center 

https://github.com/chaxor/Spectro
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AMP_RATIO_GRAPHITE = 0.5 
# Starting peak center for the graphite 

GRAPHITE_CENTER = 4.1 

# Allowable variance in graphite 
GRAPHITE_CENTER_VAR = 0.4 
GRAPHITE_CENTER_MAX = (GRAPHITE_CENTER + GRAPHITE_CENTER_VAR) 
GRAPHITE_CENTER_MIN = (GRAPHITE_CENTER - GRAPHITE_CENTER_VAR) 
# Full width at half maximum for graphite 
GRAPHITE_FWHM = 0.6 
GRAPHITE_FWHM_MAX = 5.0 
GRAPHITE_FWHM_MIN = 0.5 
 
# Extinction coefficients for types of amorphous carbon 
# Source: "Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra" (Anton V. Naumov, Saunab Ghosh, Dmitri A. 
Tsyboulski, Sergei M. Bachilo, and R. Bruce Weisman) 
alpha_N134 = 0.155 # L/mg 
alpha_aCB = 0.082 # L/mg 
b_N134 = 0.0030 # nm^-1 
b_aCB = 0.00155 # nm^-1 
 
# Metallic Background coefficients 
alpha_METAL = 0.048 # L/mg 
b_METAL = 0.00155 # nm^-1 
 
# Energy Transitions given by Reference 2: "An atlas of carbon nanotube optical transitions" 
# Equation used for energy transitions can be found in the supplementary information 
# Below is the list of anisotropy prefactors and fermi velocity renormalization constants used in the equation 
 
# Supporting Info: 
beta = -0.620 # eV * nm 
alpha = [1.532, 1.474, 1.504, 1.556, 1.560, 1.576, 1.588, 1.593, 1.596, 1.608] # eV * nm 
eta   = [0.148, 0.097, 0.068, 0.058, 0.058, 0.061, 0.050, 0.052, 0.058, 0.058] # eV * nm^2 
gamma = [-0.056,-0.009,-0.002,0.014, 0.016, 0.009, 0.000, 0.000, 0.011, 0.004] # eV * nm^2 
# Main Paper: 
beta_mainpaper = -0.173 # eV * nm^2 
eta_mainpaper = [0.142, 0.097, 0.068, 0.058, 0.058, 0.058, 0.047, 0.052, 0.047, 0.054] # eV * nm^2 
vF_mainpaper =  [1.229, 1.152, 1.176, 1.221, 1.226, 1.236, 1.241, 1.244, 1.248, 1.256] # 10^6 m s^-1 
 
 
## Useful functions for getting data from arbitrary data files 
## Since most data files contain contiguous sets of data in columns, these functions extract the data and disregard the other 
information 
def retrieve_XY(file_path): 
 # XY data is read in from a file in text format 
 file_data = open(file_path).readlines() 
  
 # The list of strings (lines in the file) is made into a list of lists while splitting by whitespace and removing 
commas 
 file_data = map(lambda line: line.rstrip('\n').replace(',',' ').split(), file_data) 
 
 # Remove empty lists, make into numpy array 
 xy_array = np.array(filter(None, file_data)) 
 
 # Each line is searched to make sure that all items in the line are a number 
 where_num = np.array(map(is_number, xy_array)) 
  
 # The data is searched for the longest contiguous chain of numbers 
 contig = contiguous_regions(where_num) 
 try: 
  # Data lengths 
  data_lengths = contig[:,1] - contig[:,0] 
  # All maximums in contiguous data 
  maxs = np.amax(data_lengths) 
  longest_contig_idx = np.where(data_lengths == maxs) 
 except ValueError: 
  print 'Problem finding contiguous data' 
  return np.array([]) 
 # Starting and stopping indices of the contiguous data are stored 
 ss = contig[longest_contig_idx] 
 
 # The file data with this longest contiguous chain of numbers 
 # Float must be cast to each value in the lists of the contiguous data and cast to a numpy array  
 longest_data_chains = np.array([[map(float, n) for n in xy_array[i[0]:i[1]]] for i in ss]) 
 
 # If there are multiple sets of data of the same length, they are added in columns 
 column_stacked_data_chain = np.hstack(longest_data_chains) 
 
 return column_stacked_data_chain 
 
#http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array 
def contiguous_regions(condition): 
 """Finds contiguous True regions of the boolean array "condition". Returns 
 a 2D array where the first column is the start index of the region and the 
 second column is the end index.""" 
 
 # Find the indicies of changes in "condition" 
 d = np.diff(condition) 
 idx, = d.nonzero()  
 
 # We need to start things after the change in "condition". Therefore,  
 # we'll shift the index by 1 to the right. 
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 idx += 1 
 

 if condition[0]: 

  # If the start of condition is True prepend a 0 
  idx = np.r_[0, idx] 
 
 if condition[-1]: 
  # If the end of condition is True, append the length of the array 
  idx = np.r_[idx, condition.size] # Edit 
 
 # Reshape the result into two columns 
 idx.shape = (-1,2) 
 return idx 
 
def is_number(s): 
 try: 
  np.float64(s) 
  return True 
 except ValueError: 
  return False 
 
 
## Useful functions for spectral processing 
 
heaviside = lambda x: 0.5 * (np.sign(x) + 1) 
 
# https://gist.github.com/RyanHope/2321077 
def savitzky_golay(y, window_size, order, deriv=0, rate=1): 
 r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. 
 The Savitzky-Golay filter removes high frequency noise from data. 
 It has the advantage of preserving the original shape and 
 features of the signal better than other types of filtering 
 approaches, such as moving averages techniques. 
 Parameters 
 ---------- 
 y : array_like, shape (N,) 
  the values of the time history of the signal. 
 window_size : int 
  the length of the window. Must be an odd integer number. 
 order : int 
  the order of the polynomial used in the filtering. 
  Must be less then `window_size` - 1. 
 deriv: int 
  the order of the derivative to compute (default = 0 means only smoothing) 
 Returns 
 ------- 
 ys : ndarray, shape (N) 
  the smoothed signal (or its n-th derivative). 
 Notes 
 ----- 
 The Savitzky-Golay is a type of low-pass filter, particularly 
 suited for smoothing noisy data. The main idea behind this 
 approach is to make for each point a least-square fit with a 
 polynomial of high order over a odd-sized window centered at 
 the point. 
 Examples 
 -------- 
 t = np.linspace(-4, 4, 500) 
 y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) 
 ysg = savitzky_golay(y, window_size=31, order=4) 
 import matplotlib.pyplot as plt 
 plt.plot(t, y, label='Noisy signal') 
 plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') 
 plt.plot(t, ysg, 'r', label='Filtered signal') 
 plt.legend() 
 plt.show() 
 References 
 ---------- 
 .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of 
    Data by Simplified Least Squares Procedures. Analytical 
    Chemistry, 1964, 36 (8), pp 1627-1639. 
 .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing 
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery 
    Cambridge University Press ISBN-13: 9780521880688 
 """ 
  
 try: 
  window_size = np.abs(np.int(window_size)) 
  order = np.abs(np.int(order)) 
 except ValueError, msg: 
  raise ValueError("window_size and order have to be of type int") 
 if window_size % 2 != 1 or window_size < 1: 
  raise TypeError("window_size size must be a positive odd number") 
 if window_size < order + 2: 
  raise TypeError("window_size is too small for the polynomials order") 
 order_range = range(order+1) 
 half_window = (window_size -1) // 2 
 # precompute coefficients 
 b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) 
 m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) 
 # pad the signal at the extremes with 



92 

 # values taken from the signal itself 
 firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] ) 

 lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) 

 y = np.concatenate((firstvals, y, lastvals)) 
 return np.convolve( m[::-1], y, mode='valid') 
 
 
# Optical transition from i (valence) to j (conduction) 
# Metallics may have a splitting between high and low energies (trigonal warping effect) 
class Transition: 
 def __init__(self, swcnt, i, j=None, k = 0): 
  self.swcnt = swcnt 
  self.i = i 
  self.k = k 
  if j is not None: 
   self.j = j 
  else: 
   self.j = i 
 
  # Solvents affect optical transitions (redshifting or blueshifting) due to differences in dielectric 
constants and refractive indexes, etc. 
  # Silvera-Batista, Carlos A., Randy K. Wang, Philip Weinberg, and Kirk J. Ziegler. 
  # "Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments." 
  # Physical Chemistry Chemical Physics 12, no. 26 (2010): 6990-6998. 
  self.epsilon = self.swcnt.spectra.epsilon 
  self.eta = self.swcnt.spectra.eta 
  self.Dswcntsolvent = self.swcnt.spectra.Dswcntsolvent 
 
  # Calculate the properties of the transition and store them 
  self.p = self.p() 
  self.k_p = self.k_p() 
  self.theta_p = self.theta_p() 
  self.Eii = self.Eii() 
  self.fs = self.fs() 
  self.FWHM = self.FWHM() 
  self.a = self.a() 
  self.b = self.b() 
  self.delta = self.delta() 
   
  self.shape = 1.0 
  self.amp = self.fs 
  if self.swcnt.spectra.X is not None: 
   E = self.swcnt.spectra.X 
  else: 
   E = np.array([0]) 
 
  # Absorption profile from: 
  # Liu, Kaihui, Xiaoping Hong, Sangkook Choi, Chenhao Jin, Rodrigo B. Capaz, Jihoon Kim, Shaul Aloni et al.  
  # "Systematic Determination of Absolute Absorption Cross-section of Individual Carbon Nanotubes." 
  # arXiv preprint arXiv:1311.3328 (2013). 
  self.line = self.fs/np.pi * \ 
     self.FWHM/((E-self.Eii)**2+self.FWHM**2) + \ 
     self.fs/(self.a*np.pi) * \ 
     np.convolve( (self.b*self.FWHM)/(E**2+(self.b*self.FWHM)**2), \ 
         (heaviside(E-(self.Eii + 
self.delta))/np.sqrt(abs(E-(self.Eii + self.delta)))) 
         , mode='same') 
    
 
   
 # Energy Transition Functions from Reference 2: 
 # Optical transition index 'p' 
 def p(self): 
  if(self.swcnt.mod_type==0.): p = 3.*self.i 
  elif(self.swcnt.mod_type==1. or self.swcnt.mod_type==2.): 
   if(self.i%2.==0.): p = self.i+(self.i/2.)-1. # If i is even 
   elif(self.i%2.==1.): p = self.i+int(self.i/2.) # If i is odd 
  else: print("Error in electronic type") 
  p = int(p) 
  return p 
  
 # Length of polar coordinates vector from the K point (Reference 2): 
 def k_p(self): 
  k_p = 2.*self.p/(3.*self.swcnt.dt) 
  return k_p 
 
 # Angle of wave vector around K point in radians 
 def theta_p(self): 
  theta_p = [] 
  if(self.swcnt.mod_type==0.): 
   if(self.k==0): 
    # lower energy sub band 
    theta_p = self.swcnt.theta + np.pi 
   if(self.k==1): 
    # higher energy sub band 
    theta_p = self.swcnt.theta 
  elif(self.swcnt.mod_type==1.): 
   theta_p = self.swcnt.theta + self.i*np.pi 
  elif(self.swcnt.mod_type==2.): 
   theta_p = self.swcnt.theta + (self.i+1.)*np.pi 
  return theta_p 
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 # Energy Optical Transitions from Valence Band (i) to Conduction Band (i) given by Reference 2: "An atlas of carbon 
nanotube optical transitions" 

 # Equation used for energy transitions can be found in the supplementary information of Reference 2 
 def Eii_vacc(self): 
  theta_p = self.theta_p 
  k_p = self.k_p 
  p = self.p 
 
  # Supporting info algorithm   
  Eii = alpha[p-1]*k_p + beta*k_p*np.log10(1.5*k_p) + (k_p**2.)*(eta[p-1]+gamma[p-
1]*np.cos(theta_p*3.))*np.cos(theta_p * 3.) 
  return Eii 
 
 def Eii(self): 
  Eii_vacc = self.Eii_vacc() 
  # Silvera-Batista, Carlos A., Randy K. Wang, Philip Weinberg, and Kirk J. Ziegler. 
  # "Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments." 
  # Physical Chemistry Chemical Physics 12, no. 26 (2010): 6990-6998. 
  Eii_shift = -self.Dswcntsolvent*self.Onsager()/(Eii_vacc**3.*self.swcnt.dt**5.) 
  Eii = Eii_vacc + Eii_shift 
  return Eii 
   
 def Onsager(self): 
  fe = 2.*(self.epsilon-1.)/(2*self.epsilon+1) 
  fn = 2.*(self.eta**2-1.)/(2*self.eta**2+1) 
  return fe - fn 
 
 
 # Optical osciallator strength per atom for semiconducting tubes 
 # Liu, Kaihui, Xiaoping Hong, Sangkook Choi, Chenhao Jin, Rodrigo B. Capaz, Jihoon Kim, Shaul Aloni et al. 
 # "Systematic Determination of Absolute Absorption Cross-section of Individual Carbon Nanotubes." 
 # arXiv preprint arXiv:1311.3328 (2013). 
 def fs(self): 
  return 45.9/((self.p + 7.5)*self.swcnt.dt) 
 
 # Full width at half maximum 
 def FWHM(self):    
  if(self.swcnt.electronic_type!=0): 
   FWHM = 0.0194 * self.Eii 
  else: 
   FWHM = 0.0214 * self.Eii 
  return FWHM 
  
 def a(self): 
  if(self.swcnt.electronic_type!=0): 
   a = 4.673 - 0.747 * self.swcnt.dt 
  else: 
   a = 3.065 - 0.257 * self.swcnt.dt#0.976 + 0.186 * self.swcnt.dt 
  return a 
 
 def b(self): 
  if(self.swcnt.electronic_type!=0): 
   b = 0.97 + 0.256 * self.swcnt.dt 
  else: 
   b = 0.976 + 0.186 * self.swcnt.dt#3.065 - 0.257 * self.swcnt.dt 
  return b 
 
 def delta(self): 
  if(self.swcnt.electronic_type!=0): 
   delta = 0.273 - 0.041 * self.swcnt.dt 
  else: 
   delta = 0.175 - 0.0147 * self.swcnt.dt 
  return delta 
  
 # Returns a string which gives information about the transition 
 def transition_string(self): 
  NM_Eii_string = "SWCNT" + self.swcnt.NM() + '_E' + str(self.i) + str(self.j) 
  if(self.swcnt.electronic_type!=0): 
   transition_string = NM_Eii_string 
  if(self.swcnt.electronic_type==0): 
   if(self.k==0): 
    transition_string = NM_Eii_string + "_low" 
   if(self.k==1): 
    transition_string = NM_Eii_string + "_high" 
  else: 
   transition_string = NM_Eii_string 
  return transition_string 
 
# Single-walled carbon nanotube object 
# each SWCNT is defined by its characteristic (n,m) chirality 
class SWCNT: 
 def __init__(self, n, m, spectra): 
  n = float(n) 
  m = float(m) 
  self.n = n 
  self.m = m 
  if spectra is not None: 
   self.spectra = spectra 
  else: 
   self.spectra = Spectra('default', np.zeros(0), np.zeros(0)) 
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  # Electronic type test: 

  # 0 - metallic 

  # 1 - semiconducting type 1 (S1) 
  # 2 - semiconducting type 2 (S2) 
  self.electronic_type = np.mod(2.*n + m,3.) 
   
  # Alternative nomenclature: 
  # 0 - metallic 
  # 1 - mod type 1 <=> semiconducting type 2 (MOD1 <=> S2) 
  # 2 - mod type 2 <=> semiconducting type 1 (MOD2 <=> S1) 
  self.mod_type = np.mod(n - m,3.) 
   
  # Basic Nanotube Properties from Reference 1: 
  # Chiral vector length in angstroms (1.421 is the C-C distance in angstroms) 
  self.Ch = np.sqrt(3.0)*1.421*np.sqrt(n**2. + m**2. + n*m) 
  # CNT diameter in angstroms  (/10. --> nanometers) 
  self.dt = self.Ch/np.pi/10. 
  # Chiral angle in radians 
  self.theta = np.arctan(np.sqrt(3.)*m/(m + 2.*n)) 
  # Consider S11, S22, S33, S44, S55, S66, S77 and M11 M22, M33, with high and low tranisitions for metals 
  upper_ij_metal = 3 
  upper_ij_sc = 7 
  if(self.electronic_type==0): 
   if(self.n==self.m): 
    self.allowed_transitions = [Transition(self, i) for i in range(1,upper_ij_metal+1)] 
   else: 
    self.allowed_transitions = [Transition(self, i, i, k) for i in 
range(1,upper_ij_metal+1) for k in range(0,2)] 
  else: 
   self.allowed_transitions = [Transition(self, i) for i in range(1,upper_ij_sc+1)] 
 
 # A model line for each nanotube is the sum of each of the transitions that can occur for the nanotube 
 @property 
 def line(self): 
  arrays = np.array([transition.line for transition in self.allowed_transitions]) 
  return np.sum(arrays, axis=0) 
   
 # Other useful functions for debugging and documentation 
 def print_electronic_type(self): 
  if(self.mod_type==0): return "Metallic" 
  elif(self.mod_type==1 or self.mod_type==2): return "Semiconducting" 
  else: return "Error in n,m indices" 
   
 # Returns the Dresselhaus nomenclature "(n,m)" for each nanotube 
 def strNM(self): 
  string_tube = "(" + str(np.int(self.n)) + "," +  str(np.int(self.m)) + ")" 
  return string_tube 
  
 # For paramters, we cannot store "(,)" symbols 
 # So this is just a string of "NM" - such as "66" for "(6,6)" 
 def NM(self): 
  NM = str(np.int(self.n)).rstrip(".") + str(np.int(self.m)).rstrip(".") 
  return NM 
 
# Psuedo Voigts can create lorentz and Guassian functions or a convolution of both 
# It is useful for background creation 
def pseudoVoigt(x, amp, center, width, shapeFactor): 
 LorentzPortion = (width**2./((x-center)**2.+width**2.)) 
 GaussianPortion = np.e**(-((x-center)**2./(2.*width**2.))) 
 try: 
  Voigt = amp*(shapeFactor*LorentzPortion+(1.-shapeFactor)*GaussianPortion) 
 except ZeroDivisionError: 
  width += 0.001 
  pseudoVoigt(x, amp, center, width, shapeFactor) 
 return Voigt 
 
# Function to create all of the tubes and store them in a list 
def initialize_SWCNTs(lowestNM, highestNM, spectra): 
 SWCNTs=[] 
 # Create a list of all tube species we are interested in 
 for n in range(0,highestNM+1): 
  for m in range(0,highestNM+1): 
   if(n<lowestNM and m<lowestNM): break 
   elif(n<m): break 
   else: SWCNTs.append(SWCNT(n, m, spectra)) 
 return SWCNTs 
  
# Spectra object which holds the X and Y data and the sample name 
class Spectra(QtCore.QObject): 
  
 # Signal/slot setup uses signals to tell the program when to update the GUI  
 update_signal = QtCore.pyqtSignal(QtCore.QObject) 
 done_signal = QtCore.pyqtSignal() 
  
 def __init__(self, spectra_name, X, Y): 
  QtCore.QObject.__init__(self) 
  self.spectra_name = spectra_name 
  self.X = X 
  # The given spectra is smoothed using the savitsky golay smoothing algorithm 
  self.Y = savitzky_golay(y=Y,window_size=5, order=2)  
  self.model = Y*0 
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  self.background_model = Y*0 

  self.model_without_background = Y*0 

  self.step = 0 
 
  # Solvents affect optical transitions (redshifting or blueshifting) due to differences in dielectric 
constants and refractive indexes, etc. 
  # Silvera-Batista, Carlos A., Randy K. Wang, Philip Weinberg, and Kirk J. Ziegler. 
  # "Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments." 
  # Physical Chemistry Chemical Physics 12, no. 26 (2010): 6990-6998. 
  self.epsilon = 2.3 
  self.eta = 1.33 
  self.Dswcntsolvent = 0.09 # eV^4*nm^5 
   
  # All the single-walled carbon nanotubes to be used in the deconvolution process 
  # The list will be an array of SWCNTs from (n,m)=(lowestNM, 0) to (n,m)=(highestNM,highestNM) 
  self.SWCNT_list = initialize_SWCNTs(lowestNM, highestNM, self) 
  self.transition_list = [transition for swcnt in self.SWCNT_list for transition in 
swcnt.allowed_transitions] #if(self.in_spectrum(transition)==True)] 
  # First, create our SWCNT profile matrix 
  self.SWCNT_matrix = np.matrix(np.column_stack([swcnt.line for swcnt in self.SWCNT_list])) 
  self.swcnts_soln = np.ones(self.SWCNT_matrix.shape[1], dtype=np.float64) 
   
  self.params = lmfit.Parameters() 
   
  self.species_percentage_dictionary = {} 
  self.species_percentage_error_dictionary = {} 
  self.metallic_percentage = 0.0 
  self.mean_diameter = 0.0 
  graphite_amp = AMP_RATIO_GRAPHITE * np.interp(GRAPHITE_CENTER, self.X, self.Y) 
  PP_amp = AMP_RATIO_PI * np.interp(PI_PLASMON_CENTER, self.X, self.Y) 
 
  self.bkg_soln = np.array([0.0, 0.0, 0.0, 0.0, \ 
          graphite_amp, GRAPHITE_CENTER, 
GRAPHITE_FWHM, \ 
          PP_amp, PI_PLASMON_CENTER, 
PI_PLASMON_FWHM]) 
  self.bkg_soln_bounds = np.array([(0.0,None), (0.0, None), (0.0, None), (0.0, None), \ 
           (0.0, None), 
(GRAPHITE_CENTER_MIN, GRAPHITE_CENTER_MAX), (GRAPHITE_FWHM_MIN, GRAPHITE_FWHM_MAX), \ 
           (0.0, None), 
(PI_PLASMON_CENTER_MIN, PI_PLASMON_CENTER_MAX), (PI_PLASMON_FWHM_MIN, PI_PLASMON_FWHM_MAX)])   
 
 
  self.sample_params = np.array([self.epsilon, self.eta, self.Dswcntsolvent]) 
  self.sample_params_bounds = np.array([(1.,5.),(1.,5.),(0.0,0.1)]) 
   
  self.timer = QtCore.QTimer() 
  self.timer.timeout.connect(self.send_update_GUI) 
  self.timer.start(UPDATE_TIME_IN_MILLISECONDS) 
 
 def calc_species_norm_amps_dictionary(self): 
  species_norm_amp_dict = {} 
  for i, swcnt in enumerate(self.SWCNT_list): 
   species_norm_amp_dict[swcnt] = self.swcnts_soln[i]/swcnt.allowed_transitions[0].fs 
  return species_norm_amp_dict 
 
 def calc_species_norm_amps_error_dictionary(self): 
  species_norm_amp_error_dict = {} 
  for swcnt in self.SWCNT_list: 
   for transition in swcnt.allowed_transitions: 
    try: 
     Eii_amp_error_value = self.params[transition.transition_string() + 
'_amp'].stderr 
    except KeyError: 
     Eii_amp_error_value = -1.0 
    try: 
     species_norm_amp_error_dict[swcnt] = Eii_amp_error_value/transition.fs 
    except TypeError: 
     species_norm_amp_error_dict[swcnt] = -1.0 
    break 
  return species_norm_amp_error_dict 
  
 def calc_species_percentage_dictionary(self): 
  species_percentage_dict = {} 
  species_norm_dict = self.calc_species_norm_amps_dictionary() 
  # First get the sum of all of the amplitudes, while normalizing them using the optical oscillator strength 
  sum_Eiis_norm_by_fs = sum(species_norm_dict.values()) 
  for swcnt in self.SWCNT_list: 
   try: 
    species_percentage_dict[swcnt] = 100.*species_norm_dict[swcnt] / sum_Eiis_norm_by_fs 
   except (ZeroDivisionError, KeyError): 
    species_percentage_dict[swcnt] = 0.0 
  return species_percentage_dict 
 
 def calc_species_percentage_error_dictionary(self): 
  species_percentage_error_dict = {} 
  species_norm_error_dict = self.calc_species_norm_amps_error_dictionary() 
  # First get the sum of all of the amplitudes, while normalizing them using the optical oscillator strength 
  sum_Eiis_norm_by_fs = sum(species_norm_error_dict.values()) 
  for swcnt in self.SWCNT_list: 
   try: 
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    species_percentage_error_dict[swcnt] = 100.*species_norm_error_dict[swcnt] / 
sum_Eiis_norm_by_fs 
   except (ZeroDivisionError, KeyError, TypeError): 
    species_percentage_error_dict[swcnt] = -1.0 
  return species_percentage_error_dict 
 
 def calc_metallic_percentage(self): 
  metallic_percentage = 0.0 
  for swcnt in self.SWCNT_list: 
   if(swcnt.electronic_type==0.0): 
    metallic_percentage += self.species_percentage_dictionary[swcnt] 
  return metallic_percentage 
  
 def calc_mean_diameter(self): 
  mean_diameter = 0.0 
  for swcnt in self.SWCNT_list: 
   mean_diameter += self.species_percentage_dictionary[swcnt]/100. * swcnt.dt 
  return mean_diameter 
  
 
 @QtCore.pyqtSlot()  
 def deconvolute(self): 
  self.state = 0 
  x, f, d = scipy.optimize.fmin_l_bfgs_b(func = self.residual, x0=self.bkg_soln, 
bounds=self.bkg_soln_bounds, approx_grad = True, factr = 10) 
   
  self.done_signal.emit() 
   
 def residual(self, bkg_params): 
  self.step += 1 
  # Initialize 
  residual_array = np.zeros(len(self.X)) 
  temp_background_model = np.zeros(len(self.X)) 
  temp_model = np.zeros(len(self.X)) 
  temp_model_without_background = np.zeros(len(self.X)) 
 
  # Calculate the background first and add SWCNT voigt profiles on later 
  self.bkg_soln = bkg_params 
   
  aCBConc = bkg_params[0] 
  N134Conc = bkg_params[1] 
  aCBy0 = bkg_params[2] 
  N134y0 = bkg_params[3] 
  GLamp = bkg_params[4] 
  GLcenter = bkg_params[5] 
  GLFWHM = bkg_params[6] 
  PPamp = bkg_params[7] 
  PPcenter = bkg_params[8] 
  PPFWHM = bkg_params[9] 
 
  aCB = aCBConc * alpha_aCB * (aCBy0 + np.exp(-b_aCB * (WAVELENGTH_TO_ENERGY_CONVERSION/self.X))) 
  N134 = N134Conc * alpha_N134 * (N134y0 + np.exp(-b_N134 * (WAVELENGTH_TO_ENERGY_CONVERSION/self.X))) 
  GL = pseudoVoigt(self.X, GLamp, GLcenter, GLFWHM, 1) 
  PP = pseudoVoigt(self.X, PPamp, PPcenter, PPFWHM, 1) 
   
  temp_background_model = aCB + N134 + GL + PP 
 
  # In the first state, solve the fitting for just the background parameters and nanotube amplitudes 
simultaneously  
  if(self.state==0): 
   # bkg_sub, if the background is fit properly, will contain just the absorption profile from van 
hove singularity transitions from nanotubes 
   bkg_sub = self.Y - temp_background_model 
    
   # Solve the system with swcnts: 
   self.swcnts_soln, residual = scipy.optimize.nnls(self.SWCNT_matrix, bkg_sub) 
 
   # Change the amplitudes for each SWCNT in the SWCNT object 
   for i, swcnt in enumerate(self.SWCNT_list): 
    swcnt.line = self.swcnts_soln[i] * np.array(self.SWCNT_matrix[:,i]) 
 
   temp_model_without_background = np.inner(self.SWCNT_matrix, self.swcnts_soln) 
     
  temp_model = temp_model_without_background + temp_background_model 
 
  # The background model should not exceed the given spectrum at any point 
  # Therefore, if it does, apply a large residual to that point 
  for x_index in range(0, len(self.X)): 
   if(temp_background_model[x_index] > self.Y[x_index]): 
    residual_array[x_index] = -999.*(temp_model[x_index] - self.Y[x_index]) 
   else: 
    residual_array[x_index] = temp_model[x_index] - self.Y[x_index] 
 
  # Update and store all of the values in the Spectra object 
  self.model_without_background = temp_model_without_background 
  self.background_model = temp_background_model 
  self.model = temp_model 
  self.species_percentage_dictionary = self.calc_species_percentage_dictionary() 
  self.species_percentage_error_dictionary = self.calc_species_percentage_error_dictionary() 
  self.metallic_percentage = self.calc_metallic_percentage() 
  self.mean_diameter = self.calc_mean_diameter() 
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  return np.sum(residual_array**2) 
  
 def send_update_GUI(self): 
  self.update_signal.emit(self) 
  return 
 
# Each tab which holds a spectra gets its own object 
class Spectra_Tab(QtGui.QTabWidget): 
 start_comp = QtCore.pyqtSignal() 
 kill_thread = QtCore.pyqtSignal() 
 def __init__(self, parent, temp_spectra): 
  self.parent = parent 
  QtGui.QTabWidget.__init__(self, parent) 
  self.temp_spectra = temp_spectra 
  self.top_layer_grid = QtGui.QGridLayout(self) 
   
  self.canvas_frame = QtGui.QFrame(self) 
  self.canvas_frame.setFrameShape(QtGui.QFrame.StyledPanel) 
  self.results_frame = QtGui.QFrame(self) 
  self.results_frame.setFrameShape(QtGui.QFrame.StyledPanel) 
   
  self.top_layer_grid.addWidget(self.canvas_frame) 
  self.top_layer_grid.addWidget(self.results_frame) 
 
  self.canvas_grid = QtGui.QGridLayout(self.canvas_frame) 
  
  self.top_left_frame = QtGui.QFrame(self.canvas_frame) 
  self.top_left_frame.setFrameShape(QtGui.QFrame.StyledPanel) 
  self.canvas_grid.addWidget(self.top_left_frame) 
  
  self.bottom_canvas_frame = QtGui.QFrame(self.canvas_frame) 
  self.bottom_canvas_frame.setFrameShape(QtGui.QFrame.StyledPanel) 
  self.canvas_grid.addWidget(self.bottom_canvas_frame) 
  
  vertical_splitter = QtGui.QSplitter(QtCore.Qt.Vertical) 
  vertical_splitter.addWidget(self.top_left_frame) 
  vertical_splitter.addWidget(self.bottom_canvas_frame) 
  self.canvas_grid.addWidget(vertical_splitter) 
 
  self.results_grid = QtGui.QGridLayout(self.results_frame) 
  self.treeWidget = QtGui.QTreeWidget(self.results_frame) 
  self.treeWidget.setFocusPolicy(QtCore.Qt.WheelFocus) 
  self.treeWidget.setAutoFillBackground(True) 
  self.treeWidget.setAlternatingRowColors(True) 
  self.treeWidget.setSelectionMode(QtGui.QAbstractItemView.SingleSelection) 
  self.treeWidget.setSelectionBehavior(QtGui.QAbstractItemView.SelectRows) 
  self.treeWidget.setHorizontalScrollMode(QtGui.QAbstractItemView.ScrollPerItem) 
  self.treeWidget.setAutoExpandDelay(-1) 
  self.treeWidget.setHeaderLabels(["(n,m)/Property","%, [value]"]) 
  self.other_properties = QtGui.QTreeWidgetItem(self.treeWidget, ["Properties"]) 
  self.nm_species = QtGui.QTreeWidgetItem(self.treeWidget, ["(n,m)"]) 
  self.semiconducting = QtGui.QTreeWidgetItem(self.other_properties, ["Semiconducting %"]) 
  self.metallic = QtGui.QTreeWidgetItem(self.other_properties, ["Metallic %"]) 
  self.avg_diameter = QtGui.QTreeWidgetItem(self.other_properties, ["Average Diameter"]) 
  self.step_in_tree = QtGui.QTreeWidgetItem(self.other_properties, ["Iteration #"]) 
  self.dict_of_nm_tree = {} 
  for swcnt in temp_spectra.SWCNT_list: 
   self.dict_of_nm_tree[swcnt] = QtGui.QTreeWidgetItem(self.nm_species, [swcnt.strNM()]) 
  self.results_grid.addWidget(self.treeWidget) 
 
  graph_results_splitter = QtGui.QSplitter(QtCore.Qt.Horizontal) 
  graph_results_splitter.addWidget(self.canvas_frame) 
  graph_results_splitter.addWidget(self.results_frame) 
  self.top_layer_grid.addWidget(graph_results_splitter) 
 
  policy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred,QtGui.QSizePolicy.Preferred) 
  policy.setHorizontalStretch(8) 
  self.canvas_frame.setSizePolicy(policy) 
 
  # Make figure for original line, background line, and total fit line 
  self.top_left_fig = matplotlib.figure.Figure() 
  self.top_left_plot = self.top_left_fig.add_subplot(111) 
  self.top_left_plot.set_ylabel('Absorbance [a.u.]') 
  self.top_left_plot.set_xlabel('Photon Energy [eV]') 
  self.top_left_plot.set_title('Total Absorbance Fit') 
  init_values = np.zeros(len(self.temp_spectra.X)) 
  self.top_left_line, = self.top_left_plot.plot(self.temp_spectra.X, self.temp_spectra.Y, 'r-') 
  self.top_left_background_line, self.top_left_total_fit_line, = 
self.top_left_plot.plot(self.temp_spectra.X, init_values, 'k-', self.temp_spectra.X, init_values, 'b-', animated=True) 
  self.top_left_canvas = FigureCanvas(self.top_left_fig) 
  plotLayout = QtGui.QVBoxLayout() 
  plotLayout.addWidget(self.top_left_canvas) 
  self.top_left_frame.setLayout(plotLayout)     
  self.top_left_canvas.show() 
  self.top_left_canvas.draw() 
  self.top_left_canvas_BBox = self.top_left_plot.figure.canvas.copy_from_bbox(self.top_left_plot.bbox) 
  self.ax1 = self.top_left_plot.figure.axes[0] 
  self.ax1.set_xlim(self.temp_spectra.X.min(), self.temp_spectra.X.max()) 
  self.ax1.set_ylim(0, self.temp_spectra.Y.max() + .05*self.temp_spectra.Y.max()) 
  self.top_left_plot_old_size = self.top_left_plot.bbox.width, self.top_left_plot.bbox.height 
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  # Make bottom figure 
  self.bottom_fig = matplotlib.figure.Figure() 
  self.bottom_plot = self.bottom_fig.add_subplot(111) 
  self.bottom_plot.set_ylabel('Absorbance [a.u.]') 
  self.bottom_plot.set_xlabel('Photon Energy [eV]') 
  self.bottom_plot.set_title('Background Subtracted Fit') 
  self.bottom_line_original_without_background, = self.bottom_plot.plot(self.temp_spectra.X, 
self.temp_spectra.Y, 'r-', linewidth=3, animated=True) 
  self.bottom_line, = self.bottom_plot.plot(self.temp_spectra.X, init_values, 'b-', linewidth=3, 
animated=True) 
  self.swcnt_line_dict = {} 
  for swcnt in temp_spectra.SWCNT_list: 
   self.swcnt_line_dict[swcnt], = self.bottom_plot.plot(self.temp_spectra.X, swcnt.line, 
animated=True) 
  self.bottom_canvas = FigureCanvas(self.bottom_fig) 
  bottomplotLayout = QtGui.QVBoxLayout() 
  bottomplotLayout.addWidget(self.bottom_canvas) 
  self.bottom_canvas_frame.setLayout(bottomplotLayout) 
  self.bottom_canvas.show() 
  self.bottom_canvas.draw() 
  self.bottom_canvas_BBox = self.bottom_plot.figure.canvas.copy_from_bbox(self.bottom_plot.bbox) 
  self.bottom_ax1 = self.bottom_plot.figure.axes[0] 
  self.bottom_ax1.set_xlim(self.temp_spectra.X.min(), self.temp_spectra.X.max()) 
  self.bottom_ax1.set_ylim(0, self.temp_spectra.Y.max() + .05*self.temp_spectra.Y.max()) 
  self.bottom_plot_old_size = self.bottom_plot.bbox.width, self.bottom_plot.bbox.height 
   
  # Make Thread associated with the tab 
  thread = QtCore.QThread(parent=self) 
  self.worker = self.temp_spectra 
  self.worker.moveToThread(thread) 
  self.worker.update_signal.connect(self.update_GUI) 
  self.worker.done_signal.connect(self.closeEvent) 
  self.start_comp.connect(self.worker.deconvolute) 
  self.kill_thread.connect(thread.quit) 
  thread.start() 
   
 @QtCore.pyqtSlot(Spectra) 
 def update_GUI(self, tmp_spectra): 
  # change the GUI to reflect changes made to Spectra 
  # Get the first background of the plots to blits lines to 
  if(tmp_spectra.step==1): 
   self.top_left_canvas_BBox = 
self.top_left_plot.figure.canvas.copy_from_bbox(self.top_left_plot.bbox) 
   self.bottom_canvas_BBox = self.bottom_plot.figure.canvas.copy_from_bbox(self.bottom_plot.bbox) 
  # If the size of the box changes, get that background instead 
  top_left_plot_current_size = self.top_left_plot.bbox.width, self.top_left_plot.bbox.height 
  bottom_plot_current_size = self.bottom_plot.bbox.width, self.bottom_plot.bbox.height 
  if( self.top_left_plot_old_size != top_left_plot_current_size or self.bottom_plot_old_size != 
bottom_plot_current_size): 
   self.top_left_plot_old_size = top_left_plot_current_size 
   self.top_left_plot.clear() 
   self.top_left_canvas.draw() 
   self.top_left_canvas_BBox = 
self.top_left_plot.figure.canvas.copy_from_bbox(self.top_left_plot.bbox) 
   self.top_left_plot.set_ylabel('Absorbance [a.u.]') 
   self.top_left_plot.set_xlabel('Photon Energy [eV]') 
   self.top_left_plot.set_title('Total Absorbance Fit') 
   self.bottom_plot_old_size = bottom_plot_current_size 
   self.bottom_plot.clear() 
   self.bottom_canvas.draw() 
   self.bottom_canvas_BBox = self.bottom_plot.figure.canvas.copy_from_bbox(self.bottom_plot.bbox) 
   self.bottom_plot.set_ylabel('Absorbance [a.u.]') 
   self.bottom_plot.set_xlabel('Photon Energy [eV]') 
   self.bottom_plot.set_title('Background Subtracted Fit') 
   
  # Write to the Top Left Plot with original data, background data, and total fit 
  self.top_left_background_line.set_ydata(tmp_spectra.background_model) 
  self.top_left_total_fit_line.set_ydata(tmp_spectra.model) 
  self.top_left_plot.figure.canvas.restore_region(self.top_left_canvas_BBox) 
  if( tmp_spectra.background_model.max() > tmp_spectra.Y.max()): 
   self.ax1.set_ylim(0, 1.05*tmp_spectra.background_model.max()) 
  elif(tmp_spectra.model.max() > tmp_spectra.Y.max()): 
   self.ax1.set_ylim(0, 1.05*tmp_spectra.model.max()) 
  else: 
   self.ax1.set_ylim(0, 1.05*tmp_spectra.Y.max()) 
  self.top_left_plot.draw_artist(self.top_left_line) 
  self.top_left_plot.draw_artist(self.top_left_background_line) 
  self.top_left_plot.draw_artist(self.top_left_total_fit_line) 
  self.top_left_plot.figure.canvas.blit(self.top_left_plot.bbox) 
 
  # Write to the Bottom Plot with each nanotube peak 
  self.bottom_line_original_without_background.set_ydata(tmp_spectra.Y-tmp_spectra.background_model) 
  self.bottom_line.set_ydata(tmp_spectra.model_without_background) 
  try: 
   for swcnt in self.dict_of_nm_tree: 
    self.swcnt_line_dict[swcnt].set_ydata(swcnt.line) 
    self.swcnt_line_dict[swcnt].set_linewidth(1) 
   current_swcnt = None 
   for swcnt in self.dict_of_nm_tree: 
    if(self.dict_of_nm_tree[swcnt] == self.treeWidget.currentItem()): 
     current_swcnt = swcnt 
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     break 
   self.swcnt_line_dict[current_swcnt].set_linewidth(4) 
  except KeyError: 
   pass 
  self.bottom_plot.figure.canvas.restore_region(self.bottom_canvas_BBox) 
  if( np.amax(tmp_spectra.Y-tmp_spectra.background_model) > np.amax(tmp_spectra.model_without_background) ): 
   self.bottom_ax1.set_ylim(0, 1.05*np.amax(tmp_spectra.Y-tmp_spectra.background_model)) 
  if( np.amax(tmp_spectra.model_without_background) < 0.05): 
   self.bottom_ax1.set_ylim(0, 0.05) 
  else: 
   self.bottom_ax1.set_ylim(0, 1.05*np.amax(tmp_spectra.model_without_background)) 
  self.bottom_plot.draw_artist(self.bottom_line_original_without_background) 
  self.bottom_plot.draw_artist(self.bottom_line) 
  for swcnt in tmp_spectra.SWCNT_list: 
   self.bottom_plot.draw_artist(self.swcnt_line_dict[swcnt]) 
  self.bottom_plot.figure.canvas.blit(self.bottom_plot.bbox) 
 
  # Show percentage of species on the side bar 
  try: 
   percent_dict = tmp_spectra.species_percentage_dictionary 
   percent_error_dict = tmp_spectra.species_percentage_error_dictionary 
   for swcnt in tmp_spectra.SWCNT_list: 
    self.dict_of_nm_tree[swcnt].setText(1, str(round(percent_dict[swcnt], 0)).rstrip('0') 
+ ' % +-' + str(round(percent_error_dict[swcnt], 1))) 
   self.semiconducting.setText(1, str(round(100.-tmp_spectra.metallic_percentage, 0)).rstrip('0') + 
' %') 
   self.metallic.setText(1, str(round(tmp_spectra.metallic_percentage, 0)).rstrip('0') + ' %') 
   self.avg_diameter.setText(1, str(round(tmp_spectra.mean_diameter,2)) + ' nm') 
   self.step_in_tree.setText(1, str(tmp_spectra.step)) 
  except KeyError: 
   pass 
 
 
 def output_results(self): 
  print "Making Excel Workbook..." 
 
  date_time = datetime.datetime.now().strftime("%Y-%m-%d(%H-%M-%S)") 
  name = str(self.temp_spectra.spectra_name) 
  book = xlsxwriter.Workbook(name + ' -- ' + date_time +'_OA_Results.xlsx') 
  OA_sheet_name = "Optical Absorption Data" 
  Results_sheet_name = "Results" 
  Other_params_name = "Other Parameters" 
  OA_sheet = book.add_worksheet(OA_sheet_name) 
  Results_sheet = book.add_worksheet(Results_sheet_name) 
  Other_params_sheet = book.add_worksheet(Other_params_name) 
 
  # Write x, y data for main and all species 
  OA_sheet.write('A1', "Energy (eV)") 
  OA_sheet.write_column('A2', self.temp_spectra.X) 
  OA_sheet.write('B1', name ) 
  OA_sheet.write_column('B2', self.temp_spectra.Y) 
  OA_sheet.write('C1', "Model") 
  OA_sheet.write_column('C2', self.temp_spectra.model) 
  OA_sheet.write('D1', "Background") 
  OA_sheet.write_column('D2', self.temp_spectra.background_model) 
  for i, swcnt in enumerate(self.temp_spectra.SWCNT_list): 
   OA_sheet.write(0, 3+i, swcnt.strNM()) 
   OA_sheet.write_column(1, 3+i, swcnt.line) 
 
  Results_sheet.write('A1', "(n,m)") 
  Results_sheet.write('B1', "%") 
  quant_dict = self.temp_spectra.species_percentage_dictionary.iteritems() 
  for i, (swcnt, amount) in enumerate(sorted(quant_dict)): 
   Results_sheet.write(i+1, 0, swcnt.strNM()) 
   Results_sheet.write(i+1, 1, round(amount,1)) 
  Results_sheet.write('D1', "Semiconducting %") 
  Results_sheet.write('D2', "Metallic %") 
  Results_sheet.write('E1', round(100-self.temp_spectra.calc_metallic_percentage(),1)) 
  Results_sheet.write('E2', round(self.temp_spectra.calc_metallic_percentage(),1)) 
 
 
  Other_params_sheet.write("A1", "(n,m)") 
  Other_params_sheet.write_column("A2", [swcnt.strNM() for swcnt in self.temp_spectra.SWCNT_list]) 
  Other_params_sheet.write("B1", "SWCNT Solution Vector") 
  Other_params_sheet.write_column("B2", self.temp_spectra.swcnts_soln) 
 
  book.close() 
  print "Excel Workbook Made." 
    
 
 
 def start_computation(self): 
  self.start_comp.emit() 
  return 
   
 def closeEvent(self): 
  print 'done with processing' 
  self.kill_thread.emit() 
  
class MainWindow(QtGui.QMainWindow): 
 def __init__(self, parent = None): 
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  self.spectra_list = [] 
  self.tab_list = [] 
  QtGui.QMainWindow.__init__(self) 
  self.setWindowTitle("Spectro") 
  screen_height = app.desktop().screenGeometry().height()  
  screen_width = app.desktop().screenGeometry().width() 
  self.resize(int(screen_width*APP_SCREEN_RATIO), int(screen_height*APP_SCREEN_RATIO)) 
  
  self.setTabShape(QtGui.QTabWidget.Rounded) 
  self.centralwidget = QtGui.QWidget(self) 
  self.top_level_layout = QtGui.QGridLayout(self.centralwidget) 
 
  self.tabWidget = QtGui.QTabWidget(self.centralwidget) 
  self.top_level_layout.addWidget(self.tabWidget, 1, 0, 25, 25) 
   
  open_spectra_button = QtGui.QPushButton("Open Spectra") 
  self.top_level_layout.addWidget(open_spectra_button, 0, 0) 
  QtCore.QObject.connect(open_spectra_button, QtCore.SIGNAL("clicked()"), self.open_spectra) 
   
  process_spectra_button = QtGui.QPushButton("Process Spectra") 
  self.top_level_layout.addWidget(process_spectra_button, 0, 1) 
  QtCore.QObject.connect(process_spectra_button, QtCore.SIGNAL("clicked()"), self.process_spectra) 
 
  save_results_button = QtGui.QPushButton("Save Results") 
  self.top_level_layout.addWidget(save_results_button, 0, 2) 
  QtCore.QObject.connect(save_results_button, QtCore.SIGNAL("clicked()"), self.output_results) 
 
  self.setCentralWidget(self.centralwidget) 
  self.centralwidget.setLayout(self.top_level_layout) 
   
 def open_spectra(self): 
  fileNameList = QtGui.QFileDialog.getOpenFileNames(caption="Select Files for Processing") 
  for file_name in fileNameList: 
   # file_name is form ~ "C:/Users/you/someData.asc", so split it after the last "/" and before the 
"." in ".asc" or ".xls" 
   spectra_name = file_name.split('\\')[-1].split('.')[0] 
   xy = retrieve_XY(file_name) 
   X = WAVELENGTH_TO_ENERGY_CONVERSION/xy[:,0] 
   Y = xy[:,1] 
   self.spectra_list.append(Spectra(spectra_name, X, Y)) 
   self.tab_list.append(Spectra_Tab(self.tabWidget, self.spectra_list[-1])) 
   self.tabWidget.addTab(self.tab_list[-1], spectra_name) 
  return 
  
 def process_spectra(self): 
  for tab in self.tab_list: 
   tab.start_computation() 
  return 
  
 def output_results(self): 
  for tab in self.tab_list: 
   tab.output_results() 
  return  
  
if __name__ == "__main__": 
 app = QtGui.QApplication([]) 
 win = MainWindow() 
 win.show() 
 sys.exit(app.exec_()) 


