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CONVEXITY STRUCTURES AND THEIR PRODUCTS
INTRODUCTION

Various attempts have been made to place convexity
in an axiomatic setting, but only scant attention has been
devoted to the product of general convexity structures.

In this paper, as in [11), we consider a set X, a family

of subsets of X closed under intersection (which are

called convex sets), and a closure operator conv on P(X)
satisfying certain convexity properties. Relationships
between the Carathéodory, Helly, and Radon numbers in such
a setting are explored in[ 11] and we consider them here in
connection with products.

Shirley [16] introduced a topology in this setting
culminating in a proof of the Krein-iMii*man theorem. In
Chapter One we will introduce the basic definitions and
axioms needed for the remaining chapters and give proofs
of a few classical convexity theory theorems as applied to
the general setting.

Eckhoff [ 5] was the first to define the product of
these generalized convexity structures and proved a Radon

theorem in a general setting. Reay[ﬁlﬂ] proved a Cara-
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thébdory theorem when the factor spaces in the Eckhoff
product are Euclidean. In Chapter Two we obtain results
concerning the Eckhoff product and bounds concerning the
Carathéodory and Helly numbers in a general setting.

A method of defining lines in the product of two
generalized convexity spaces was recently given by
Sandstrom [15] by considering a family of lines in both
factor spaces and families of real-valued functionals. In
Chapter Three we define a new type of product for gener-
alized convexity structures and give results concerning the
Carathégdory and Radon numbers in the product space.

Finally, in Chapter Four we explore another method
of defining the product of two convexity structures when
the underlying factor spaces are vector spaces. We
prove that this product generates the usual convexity
structure when each factor space has the usual convexity
structure. We then obtain Carathéodory and Helly theorems
for this product and derive results concerning affine

mappings of the factor and product spaces.



CHAPTER 1
AXIOMATIC CONVEXITY

There have been many recent papers dealing with the
theory of generalized convexity structures in which the
authors have defined the class of "convex" sets axioma-
tically and proceeded to develop a theory that yields
analogues of the theorems in the classical setting. See,
for example, Bryant and Webster [2]1, Kay [10], and
Cantwell [4]. 1In this chapter we shall present the basic
definitions needed for the remaining chapters where
products of generalized convexity structures are considered,
and we shall include the proofs of some analogues of class-

ical convexity theorems which have not yet been published.

1,1, DEFINITION. A collection of subsets € of a set X

will be called a convexity structure if and only if

i) X and & belong to &, and
ii) € is closed under intersectionsj that is, if

C.€ € for each i€1I then/MNc.eC.
i jer 1

1,2, DEFINITION. If € is a convexity structure for a set

X and if ECSX then the convex hull of E is denoted by
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conv E and is defined by convE =N {ce€ | ECC}. 4 set E
will be called convex if and only if E = conv E, A
subfamily @ of € is called a basis of € if and only if
each member of @ is obtainable as an intersection of
members of .

In order to promote brevity and permit easier reading.
a singleton set {x} will be denoted by x, and the convex
hull of a two element set, a segment, will be denoted by

juxtaposition, i.e., conv {p,q} = pq.

1.3, THEOREM. If Q€ is a convexity structure and A and B

are subsets of X, then,
i) ACconv A,
ii) if ACB then conv ASconv B, and
iii) conv {conv A} = conv A.
The next two definitions are commonly used as axioms
to be imposed on a convexity structure; see £8] and [11].

The concept of regular segments was recently introduced

in [10].

1.4, DEFINITION. A convexity structure (X,& ) has the

property of domain finiteness if for each S £X,

conv S =U {conv F| F is finite and FCSJ}.

1.5, DEFINITION. A convexity structure (X,& ) is said

to be join-hull commutative if for each S_C_ X,

conv {xUS} = U {xs | s€conv s,
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1,6, DEFINITION. The segment Xy is said to be nondiscrete

if and only if the open segment (X,y) = xy\{x.y};fo. The

segment is decomposable if and only if for every z €xy,

Xys The segment is extendible if

xzNzy = z and xz2Uz2y

and only if xy €xz\z = [x,z) for some z # y« A segment is
called regular if and only if it is nondiscrete, decompos-

able, and extendible,

1.7. DEFINITICN. A convexity structure (X, &) is an

interval_convexity structure when conv A = A if and only

if xyC A whenever x€A and y €A,

As is proved in.[;l]. a convexity structure that is
domain finite and join-hull commutative is necessarily an
interval convexity structure. An interval convexity struc-
ture is domain finite but not necessarily join-hull commu-
tative.

For the remainder of this chapter e will denote a
convexity structure for a set X in which the following
axioms hold:

i) (X, €) is domain finite,
ii) (x,6) is join-hull commutative,
iii) Segments are regular.
That these axioms rare independent can be seen from

the following convexity structures.

1,8, EXAUPLE. a) Let X = R® and let c€® if and only if

C is a closed interval. Then (X,Cg) will be a convexity
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structure satisfying ii) and iii) but not i) b) Let
X = R3 and let C€@ if and only if C = X or C is a convex
set with dimension less than or equal to 2. then (X,&) is
a convexity structure satisfying i) and iii) but not ii).
¢) Let X be any nonempty set and let CEE if and only if
c€ 2X. Then (X,& ) will be a convexity structure satisfying

i) and ii) but not iii).

1,9, ILENMA. In a convexity structure satisfying axioms

ji-i3j, if r€ab and g €cr

Figure 1.1
then there exists an s€cb

such that q € as.

Proof. Since r €ab and
q €cr, then q€conv {a,b,c}.
By axiom ii) gq € conv fa.b,c} =U{ad' d€bc). Hence, there

exists an s€ bc such that q € as.

1,10, DEFINITION. Let S&X. The kernel K of S is the set

of all points z € X such that zx&S for all x€S.

The following theorem was originally proved by Brunn
in 1913C 1] for finite dimensional Euclidean spaces. It
has been extended to linear spaces, e.g. see Valentine [21].
The following shows that it is also valid in our axiomatic

setting.

1,11, THEOREM. The kernel of any set is convex.

Proof. Let S&X and K be the kernel of S, and suppose

x,yEK, x #y, and u€xy. Let z be an arbitrary point of
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S. Ifz=xo0rz =y then uz€S, let v€zu. We know
that 2y&S by the definifion of Ke Also, by Lemma 1.9,
there exists a w€zy such that v€wx. But then w€S and
wxC S by the definition of K; hence VE€S. Since v was an
arbitrary point of zu, then zufS. Hence u€K and xy €K

which says that K is convex.

1,12, DEFINITION. The kernel of a set S will be referred

to as its convex kernel and we denote it by ck S,

1,13, DEFINITION. A set S is star-shaped if and only if

ck S % ﬂo
Valentine [21, Research Problem 9.3] posed the

problem of characterizing the star-shaped sets S in a
finite dimensional linear space in terms of the maximal
convex subsets of S. The problem was solved by Guay L'?_] ’
and extended by Smith 18] for linear spaces of arbitrary
dimension. A characterization of star-shaped sets in our
axiomatic setting is also possible, as the following

development shows,

1,14, THEOREM. Let S be a nonempty subset of X and let

{Mi'; jer be the collection of maximal convex subsets of S,
then S = UMi.

Proof. let x€S and consider the collection of all
convex subsets of S which contain x. The collection is
nonempty since x 1is convex, and this collection may be

partially ordered by inclusion; that is A< B if and only
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if A€B. Also, each linearly ordered subset has an upper
bound, namely the union of the sets in the class, and so
by Zorn's Lemma, there exists a maximal element, namely a
maximal convex set containing X. Thus each element of S is

contained in some maximal convex set, so S = UM-l.

1415, THEOREM. A set S is star-shaped if and only if the

intersection of all the maximal convex subsets of S is
nonempty.
Proof. Let the collection of all maximal convex

subsets of S be denoted by {Mi} If z€ N MN;, let

ieI*
s€S. By Theorem 1.14 sé€ M; for some i€I. Hence szMi
since M; is convex, and since s was an arbitrary point of
Sy S is star-shaped with respect to z.

To finish the proof it will be sufficient to show that
ck SsﬂMi. So suppose z€&€ck S and suppose that there
exists a maximal convex set My such that zﬁMi. Then for
all n€ M, Ufznml mC-Mi} = conv fz.Mi} is a convex set by
axiom 3ii, and morcover it is a subset of S since z€ck S
and it properly contains Mi’ contradicting the maximal
nature of M;. Hence z€M, for each i and ck s€Oy,.

Many of the important theorems of convexity are
intimately related to an underlying topological structure
and it is possible at this time to introduce a topology on
the set X and to relate it to the convexity structure.

womble [ 22) introduced a topology into the convexity
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structure by considering the set X to be in E" with the
resulting topology and hyerplanes. Shirley [167 aid it
by considering the Hausdorff topology for P(X).

It might be natural to ask what additional axioms
would be required to yield the usual convex structure when
X is the Euclidean space E" with the usual topology. Kay
and Womble [1£] have succeeded in listing a set of axioms
for the convexity structure on E® that will give the usual
convex sets,

Recently in a paper by Nah, Naimpally, and Whitfield
[12], a characterization of a linear topological space

among all topological convexity structures was given.,



CHAPTER 1I
THE ECKHOFF PRODUCT

The concept of defining the product of two mathema-
tical systems is a logical outgrowth of the mathematical
process in almost all areas of mathematics. The first work
on the product of generalized convexity structures was done
by J. E. Eckhoff in [5J. Recently Reay [14] considered
Eckhoff's product in a restricted setting, and Sandstrom
[15] considered products of generalized linear spaces.

The following definition follows the one given by

Eckhoff.,

2.1, DEFINITION. Given two convexity structures (X.ch)

and (Y,C?y). a set C in the Cartesian product space XxY
is convex if and only if C is the Cartesian product of a
convex set in é?x with a convex set in C?y. This product

will be termed the Eckhoff product of X and Y, and denoted
(x=xy,&5 )

xxy’*®
The following three definitions will be used in the

. s . . /
remaining chapters. Relationships between the Caratheodory,
Helly, and Radon numbers for generalized convexity struc-

tures were proved in [11].

10
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2,2, DEFINITION. A convexity structure (x.(‘Z) is said to

/
have Caratheodory number ¢ if and only if ¢ is the least

cardinal number for which it is true that for any A £ X,

conv A =YU fconv BIB L A, card B & ct.

2.3. DEFINITION. A convexity structure (X,C ) is said to

have a Helly number h if and only if h is the least

cardinal number for which it is true that each finite
subfamily T of 6 having h+1l members has nonempty intersection

1f each h of them meet.

2,4, DEFINITION, A convexity structure (X, &) is said to

have Radon number r if and only if r is the least cardinal

number for which it is true that each set A S X having
cardinality at least r possesses a partition (A,B) such
that (conv A) N (conv B) # H.

We state here for later reference a result of Eckhoff

on the Eckhoff product. The proof may be found inLC 51.

2.5. THEORZM. (Eckhoff) If (X,@X) and (Y,gy) are

convexity structures with Radon numbers m and n respesctively,
then (XxY, ei*y) has a Radon number r and,
max (m,n)<r&ntn+l,

It was recently proved by Sierksma and Boland [17 ]
that the least upoper bound for r in the above theorem is
m+ne Also, Reay [14] had proved earlier +that if the
factor spaces are Euclidean spaces having the usual

convexity structure then QE will have a Carathe’:odory

Xxy



12
number less than or equal to the sum of the dimensions of
the factor spaces.
A few original results concerning the Eckhoff product
will now be given; alternative definitions for products of

generalized convexity structures will be considered later,

2.6, LEMNA. For any subsets ASX and BEY,

conv (AXB) = conv A Xconv B,
Proof. Since conv A¥Xconv B is a convex set in X XY

containing Ax B, we have conv (AXB) C conv A Xconv B. To

E
xzy’

conv (AXB) = CXD for some Cé@x. Déey. But for any x €A,

reverse the inclusion, since conv (AX B)EQ

yEB we have (x,y)€conv (AXB) » x€C and y€ D, so C and D
are convex sets containing A and B, and thus conv AC.C,

conv B&€D. Hence conv AXconv BSCXxD = conv (AXB).

2.7 COROLLARY. If pl.pz.o...pké}(XY then

conv (pysPpseessBy) = conv (T (D) s T, (By)aeses T (p)) X
conv (T (Py)y M (Dp)sesss Ty (D))

Therefore we know that if ACX*Y and (x,y) €conv A,
where there exist m points pl,....pme A with
x €conv {ﬂ'x(pl)..... ‘n'x(pm)} by X having Carathéodory
number less than or equal to m, and n points ql....,qne A
with y € conv {Wy(ql).....ﬁy(qn)} by Y having Carathe/odory
number less than or equal to n, then
(x,y) € conv {ﬁx(pl).....Wx(pm).TTx(ql)....,’frx(qn)}x

conv {77 (Py)seses T (0)s M(Qy)sene, T (a )}

= conv {pl.....pm.ql..u.qn} .
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This result yields the following two theorems.

2.8, THEOREM, If X is domain finite and Y is domain

finite, then XX Y is domain finite,

/
249 THEOREM. If X has a Caratheodory number m and Y has

Carathéodory number n, then X XY has a Carathé%dory number

less than or equal to m+n.

2,10. REMARK. Although it is an open question as to

whether the upper bound, m+n, for the Carathébdory number

can be improved, it is possible to show that max (m,n) is

E
xxy*

Thus, max(m,n)< c<mi+n, DMNoreover, this lower bound is the

less than or equal to the Carathe/odory number ¢ for @

best possible result as the following example shows,

2,11, EXAMPIE. Let (X, @) be defined as X = R*

1

with &
and (Y,ciy) as Y = R,
€y = {y | 1y1< 1. Then A = conv §(1,1), (2,1)} is the

horizontal line segment joining the two pointsj hence

the usual convexity structure on R

(3/2,1) €A and (3/2,1) is not in the convex hull of less
than the two original points.

We shall now prove the assertion made in the above
remark concerning the lower bound on the Carathéodory

number in the product spaces

2,12, THEOREM. let (x,ex) and (Y, 6y) be two convex

/
structures having Caratheodory numbers m and n respectively,
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7
then the Caratheodory number c¢ of the product structure

(X% Y, ef:cxy) satisfies the inequality max (m,n)% c.

Proof. Assume m = max (m,n), then since there exist
m points XyveoesX and m is the Carathéodory number of
(x.@x). there exists a point p such that pé€ conv{xl,...,xm}
and p does not belong to the convex hull of any m-~1 of the
points. Let y€ Y; we claim that (p,y) € conv f_(xl.y)....,
(xm,y)} but not in any proper subset. That (p,y) belongs to
the convex hull is clear from the definition of the
Eckhoff product. Now assume that (p,y) belongs to the
convex hull of {(X;s¥)saees(X5_3o¥)o(X5 10¥)0eses(x 4¥) T
But then {(Xy¥)seeas(X5_10¥)0(Xs q0¥)s0ees(x s¥)} &
conv {xl,....xi_l.xiﬂ,....xm}XY, which is a convex set
excluding (p,y) contrary to our assumption.

Having obtained results concerning the Radon and
Carathéodory numbers one would naturally hope for a result
concerning the Helly number for the Eckhoff product. This

is contained in the following theorem.

2,13, THEOREM. Let (X.ex) and (Y.ey) have Helly numbers
of hjand h,, respectively, and let h=max{h1,h2"5 . Then
(X xY, Gg‘y) has a finite Helly number which is less than
or equal to h.

Proof. Suppose # is a finite subfamily of €, having
h+l members such that for every h.members of ¥,
their intersection is nonempty. Then consider the family

13 defined to be {'n’xci |c;€3 . The intersection
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of every h1 members is non-empty and hence the intersection
of the whole family is non-empty. That is, there exists
a py such that for each Cie ??. there is ¥; such that
(pl.yi)é Cyo Similarly there exists p, such that for
each CiE"é-. there is Xy such that (xi,pz)éci. By the

definition of the Eckhoff product (pl’pz) belongs to each

E

xxy) has a Helly number less than or

Ci' hence (XxY,©C
equal to h.

It is natural to ask if the result in Theorem 2.13 is
the best possible. The following example answers in the

affirmative.

2,14, EXaMPIE. Let G = {c]lcj¢4], €, ={c lic)< 23,
then hy for & =5, h, for €

y = 33 also let

a= (1,2) b = (2,2) c = (3,2) d = (4,2) e = (5,2)
X=(1,1) A=(21) ¥=(3,1) d=(41) €= (51)
and G, = {a,b,c,d,%.46,8d3 C, = fa,b,c,e,%,4,%,63

03 = {aobodoeﬁ‘oﬂﬂfve} Cu = {a.c,d,e."‘,!,ef.é}

]

Cs z’b,c,d.e'ﬁ"{’.ar,é}
It is routine to show that the intersection of any four of

the above sets is not empty but C; = #o A similar

i=1
example could be constructed for any two numbers hl and h2,
showing that h = max {hl,hzf is the best possible result.

A final remark concerning Eckhoff's product is in order.
A basic property concerning convexity structures is how

they are related to line segments and lines, The Eckhoff



16

product of two interval convex-

ity structures may contain two 4:\\

distinct lines having more than a [\ N
. . . N 7

one point of intersection, o I

where the line containing a 1§E§S§§ - L (a,b)

and b, L (a,b) is defined as :\t\C\

abUjc |a€ bcU (dl b€ daj. Figure 2.1.

If X = Y = the ordinary convexity spaée R1

s the line
containing points a and b is as illustrated in the shaded
region in Figure 2.1,

Also, iIf X =Y = R' and .6): and @y are the convexity
structures consisting of closed convex sets, then C € eixy
if and only if C is a closed rectangle in RZ. Let S be
the open rectangle with vertices at (1,1), (1,2), (3,1),
(3,2)s Then the convex hull of S is the closed rectangle
having the same vertices but yet xy£S for each x,y€S;

i.e. the convexity structure is not generated by its line
segments, and thus, is not an interval convexity structure.

The Eckhoff product is easy to define but the convex
sets in the product space are noticably restricted. Even
for the simple case when X and Y are one-dimensional
Euclidean spaces with the usual convexity structures, the
class of convex sets in the product space are the rectangles
with sides parallel to the coordinate axes., It would seem
desirable to have a product concept which, when restricted

to the classical setting, yields the classical convex sets

in the product space.



CHAPTER III
THE COMPLEMENT PRODUCT

In this chapter we shall define a product of two
convexity structures which contains more convex sets than
the Eckhoff product. Our definition is motivated by the
Tychonoff Product in general topology.

As before, it suffices to define the product of two
convexity structures, as the method of defining the product
of any finite number of structures will then be obvious.

For convenience let coxA denote the relative complement of A

in X3 that is, for arbitrary sets A €X, co A = fa€x|a ¢as.

3.1, DEFINITION. Let (X,G,) and (Y,@y) be two convexity

structures. In the Cartesian product X XY, define the

complement convexity structure @ix by taking as a basis

Y
sets of the form cox‘y(coxCXcoyD) where Cé-@x and
De Cy. Then C ea?{xy if and only if there exists an
indexing set I and a family of sets C; € €, and D:.Le @y for
. -N
i €I such that C ¢'=1°°xxy(°°xcix coyDi).

3+2. RENARK. Since there is little chance of confusion,

we shall drop the subscript notation and simply use "co" for

17
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cony' CO, s and coy. It is then a routine exercise to show

that g, XXYeef“y and @iy is closed under intersection and
hence ngy is a convexity structure on X XY.

The following lemma is presented to shorten some of
the later theorems. The proofs are omitted since they are

elementary set theoretic exercises.

3.3. LEMMA. For all ACX, BSY,

a) co (AXB) = ((co A)xB)U (ax (co B))U ((coA)X (coB))
b) co ((coA)X(coB)) = ({(coA)XB)U (Ax (coB))J (AXB).

¢) conv (AXB)S conv AXconv B,

3.4, EXANPLE. If (X.jx) and (Y.Jy) are two topological
spaces and (X.@x) and (Y, Gy) are the convexity structures
obtained by defining a set to be convex if and only if it

is a closed set in the topology. Then the convexity struc-

ture @i‘y

topology for XX Y., For if C and D are closed sets in X

is precisely the closed sets in the product

and Y respectively, then co CXco D 1is the product of open
sets and hence open in the topology for X XY, and

co (co CXco D) is closed in the topology for Xx Y, so that
if F is in @i‘y then F is closed. Finally if F is a
closed set in the topology for XX Y and p# F then by the
definition of the product topology there are open sets A
and B in X and Y respectively such that p€ AX B and

(A x B)I\F = g, But then co (AXB) is a convex set containing

F but excluding p, showing that if F is closed in the

C

product topology then it is in 6xxy'
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3.5. EXANPLE. Let X = Y = R' and suppose that €_ and g
are the closed convex sets in X and Y. Then a basis for
Gﬁxy consists of any three closed quadrants in Ez and their
translations. The shaded portions of Figures 3.1 and 3.2
below illustrate two convex sets in the basis and Figures

3.3 and 3.4 illustrate two convex sets in 62

y ”
P87 94
N

N

N\

N

Figure 3.1 Figure 3.2
| /. )
Zn //%
. - =
Figure 3.3 Figure 3.4

3.6, THEOREM. If X = R™ and Y = R", and @x and G , are

the usual convexity structures for X and Y, and S is a
convex set in the usual sense in the linear space XX Y = gD
then S belongs to the product convexity structure of

Definition 3.1.
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Proof. It is sufficient to show that for each
z€XXY\S there is a set in @  which contains S but not
z, Let z = (x,y) where x€X and y€Y. We know that'h»;l(x)
and A = ﬂ:]‘(x)f\s are ordinary convex sets in XX Y= Rm+n.
Note that if A = # then co(co 'ﬂ;(S)Xco #) is a convex set
containing S but not z, so we may assume A # @. Also 'ﬂ}(A)
is a convex set in Y which excludes y. Hence there exists
a maximal convex set My in Y containing '17’y(A) but excluding
Y. (See fizure 3.5.)

Similarly, B = 17;1(y)ns is a convex set in the
usval sense and ﬂ’x(B) is a convex set in X which excludes
Xe Hence there is a maximal convex set I, containing ﬂ;c(B)
but excluding_x.

We then claim that co(co Mx" co My) is a convex set in

o
C which contains S but not z. It is obvious that

XXy
z #co(co MxX co My). since x € co M, and y €co My. To show
that S€co(co Vi X co My) let ¢ = (a,b)€ES where a €X, beY.,
It is then sufficient to show that if a €, then b €itye
Assume b¢My. Again the maximal property of My implies
y € conv ({b}U'ﬂ'y(A)). for if not, then letting M& be a
maximal convex set containing conv ({ b}U'ﬁ'y(A)) but not
y, then M;( contains’n}(A) and not y or M&SMy implying the
contradiction bé.My. Hence there exists a d eﬂ‘}(A) such
that ¥ lies on the segment bd, and we may suppose p €A such
that 77;(p) = d. Since 'ﬂ‘; maps segments onto segments, T)"y
takes cp to bds then yé’ﬂ;(cp) or cp meets’TY;J‘(y). That

is, since cp€S and B =1T;1(y)n S, cp meets B at a point q.
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Now consider fﬂ;(B) and M, . Since 47; maps the segment cp
onto segment xa, then esfﬂ;(q)éxa. But e €M, and under the

assumption that aéMx then xaNM, = g, a contradiction.

Y

Figure 3.5

3.7« REMARKS. Using Definition 3.1 for the product of two

ordinary convexity structures, the projection of a convex
set may not be connected. Also the connected components of
the projection of a convex set need not be convex in the
factor space. To see this one need only study the example
illustrated in Figure 3.6.

Although the projections of convex sets to the factor
spaces do not behave as well as in the Eckhoff product
(where the projection of a convex set is always convex), the
next theorem shows a result that can be obtained and will
serve as a comparison for the definition introduced in the

next chapter.
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a convex set in the comple-
ment product of El and E2--
' it is the hull of the 10
indicated points.

us (p)

s
<

pa—
/ = R’

Figure 3.6

3.8. THEOREM. If ECX XY, then 17;: convmy*r"._c-_comrx ﬂ"x(E).

but equality need not occur.

Proof. The example shown in Figure 3,6 shows that the
inclusion may be proper. Assume x¢convx'rrx(E) and let
A= convx'ffx(E). Then co(co AXco f) is a convex set that
contains E but not (x,y) for any y€Y. Hence, for each

y€Y, (x.y)#convxxy(E) and then x¢17;convxxyE.

We now show that the definition of the complement
product of two convexity structures is an associative
operation which will indicate a method for defining the

product of a finite number of convexity structures.

3.9. THEOREM, For any three convexity structures (X, ex),
(Y,Cy), and (Z,€,) and under identification of the

points in (XXY)X Z and X X(YXZ) then gfcx(yxz)'_' ec(;xxy)xz'
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C —
Proof. Let C G(x‘y)xz Then C—‘,‘(\Ico(coDix coEi)

e 2C .
where D @my and E. € ez. Also, for each 1 €1 there

exists an index set J(i) such that D.= N co(CoA; ;X COB. .)
J‘J—(l) J 1]
where for each 1 €I and jeJ(i), A. .e@x and Bij € gy.

We define Fij=co(coB ij X COE. )eec

752 for each 1 €I, j€J(i).

We shall show that C=C’/ where
[ﬂ co(co Ay 3 X co F. )] e g°
liI

J€Jcy xx(yx2)"
Then ((x,y),z)ﬁco Dix co Ei for all i€ I. Hence either

Let (x,y,z)€C,

(x,y)¢ co D; or z ¢co Ei' 1f z ¢co Ei then it follows
that (y,z) €co F.lj and (X,y,2) = (x,(y,z))¢co Aijx co Fij
or (x,y,2) €co(co Aij)(co Fij) for all j€J(i). Hence
/

(x,ys2)EC",

If (x,y)ico D; then (x,y)¢co AlJXCO Bij for all
j€J(i)e Again, it follows easily that (x,y,z) €C’.
showing CQ—C'. If (x,y,z2)€C’/, then (x,(y,z))¢coA.l)(coB-l for
all i and je« We now fix 1€ I and consider the two cases
z€co E; or z éco Ese If z¢co E; then, obviously,

(x,y,z)éco(coD.x co E.) for each i&l. If z€co Ei then

either x € co A, ij °f (y,2) ¢ co Fyj = co Biijo E;t then
x§co Ay ij or y €co Bij for all j&€J(i). That is

X encocoA..xcoB..)=D. and again

(xyy) Jedy ( ij ij i &

(x,y¥,2) &co(co D.lx co E.l). Since i was arbitrary,

C G
(x,y.z)é‘C. Thus e (xxy)ngexx(yAZ)'

reverses the inclusion, proving 8

A similar argument

_ oC
(xxy)xz = Pxx(yxz)"*

The next results will compare and contrast the defini-

tion of convexity product as given in this chapter with
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the Eckhoff product in the previous chapter and the

definition to be given in the next chapter.,

1

3410, THEOREM. Let X = R™ with the usual convexity struc-

/
ture and a Caratheodory number of two, and let (Y.C?y) be
. /
any convexity structure with a Caratheodory number of n.

Then (X XY, CC ) has Carathéodory number 2n.,

Xxy

Proofe Let SCX%Y and let p = (x,y)€conv S, Note
that yeconvy'ﬂ'y Sy for if not, then co Cco ﬁXCo(convyn&S)]
is a convex set containing S and not p, which contradicts
the hypothesis that p €conv S,

We claim that there exist n or fewer points sl....,sn
such that y € conv {Try(sl),....ﬂ’y(sn)} and such that
TWe(s1)reses T (s )€ (-2x] = Ay If not, let
S, = {s esln’x(s) €A}, If y €conv ﬂ; S, then
co Cco(co A) x co(conv ﬂ’y Sa)] is a convex set which
contains S but not p, which is a contradiction. Similarly,
there exists a second set of n or fewer points
{tl,...,tn“ggs such that yéconvy{f,vy(tl);:sa,ﬂ‘y(tn)}
and {ﬂ’x(tl),...,ﬂ'x(tn)}e [x,2°). We now claim that
p€ conv {sl,...,sn,tl,...,tn’s. To that end, let
conv(sl.....sn,tl,...,tn) = Qxco(co Aix co Bi)’ where
Ai' B.l are convex in ex and ey respectively. Now for
each i, {sl....,sn,tl.....tn’ggco(co Aix co Bi)' let
s, = (xj,yj) and t. = (}'Ej.i'rj) for j = 1,eeeyn, and we shall

J J
suppose p ¢co(co A; % co Bi) =>x¢Ai and y¢.,Bi. If for
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every Jj we have xj¢Ai and xjﬁAi then xj,xjeco Ai from

which it follows that Y3

Sy0ty €co(co A;X co B.) or yj.{rjeBi for every j). But

this means that

.ijé co By (since

y € conv {ﬂ’y(sl)...., f?&(sn)} = conv{yl,...,ynis_Bi, a
contradiction. Hence for some j, X or ijéAi. The
argument being symmetric, suppose xj eAi. Then for every
j and yeconv{*n’y(tl)....,'fry(tn)}= conv{i?l....,yngg By
a contradiction. Hence pé€co(co Aix co Bi) or

PE conv {sl,...,sn.tl....,’cn} as asserted.

Elementary examples may easily be constructed to show
that the upper bound for the Carathéodory number in the
preceding theorem is the best possible result.

Although we were able to obtain a result concerning
the Carathéodory number for the product space when one of
the factor spaces is El, in general there does not exist
a finite Carathéodory numbere. We present an example below
to show that the product of E2 having the usual convexity
structure with itself is infinite.

It then follows as an immediate corollary that in
general, the convexity structure defined by the complement
product of two spaces need not be domain finite, even if
the factor spaces have this property.

Also, it should be mentioned that since any subset of

the line y = x is a convex set in the convexity structure
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obtained by using E1 with the usual convexity structure for
both of the factor spaces, no finite Radon number exists.
We shall now end this chapter with an example showing
that the Carathébdory number of E2>4E2, where the usual
convexity structure is used for each factor space, is
greater than or equal to 32, Similar examples can be

constructed for any power of two, showing that the

Carathéodory number is infinite.

3411, EXAWMPLE., Let p = ((0,0),(0,0)) and let

Py = ((cos 0,sin 0),(cos 0, sin 0)),
((cos(1/32)-21F, sin(1/32)-2 17,
(cos(1/16)+2 17, sin(1/16)-247))eses
P3p= ((cos(31/32)-2 1Y, sin(31/32)-21Y),
(cos(15/16)-21, sin(15/16)-217)),

3
N
"

Figure 3.7 shows the method by which all 32 points
are defined, where the points 1Tk(pi) and 1ﬁ&(pi) have been
labeled as the point i for convenience.

It is then routine to show that the point p (the
origin in Eu) is in the convex hull of the 32 points. That

is, it is impossible to find a convex set C in E2 = X that

does not contain the origin, and a convex set D in E2 =Y
that does not contain the origin but such that 1rx(pi)e<:
or ﬂ’y(pi)eD for each i. (Again, if one tries to exclude
the origin from convex sets in both X and Y, then one also

excludes both projections of some point pi.)
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It is now an elementary exercise to show that p does
not belong to the convex hull of any proper subset of the
original 32 points. That is, it is possible to find a

convex set C in E2 = X that excludes the origin in X and

a convex set D in E2

= Y that excludes the origin in Y and
such that 'ﬂ’x(pi)éc or ﬂ'y(pi)GD for all i except one.

Figure 3.8 shows the convex sets needed in each factor
space to construct a convex set in the product space that
will contain.(t){pif )\{pg but not the origin p.

Figure 3.9 shows the convex sets needed in each factor
space to construct a convex set in the product space that
will contain (L){pi})\fb13§ but not the origin p.

Figure 3.10 shows the convex sets needed in each factor
space to construct a convex set in the product space that
will contain ((}{pi})\\{p14§ but not the origin p.

Figure 3.11 shows the convex sets needed in each factor

space to construct a convex set in the product space that

will contain (L){pi})\\{ng} but not the origin p.
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CHAPTER IV
THE PROJECTIVE PRODUCT

In this chapter, in contrast to the product concepts
considered in the preceding two chapters, we define a true
generalization of the ordinary product of the usual
convexity structures in real vector spaces. We shall
restrict our attention to only those factor spaces that are
point-convex convexity structures and to only the case X=R"
and Y=R". Throughout this chapter 7, and ﬂ;, will denote

R™1 45 R™ and

the orthogonal or Cartesian projections from
R? respectively, i.e. ’f’;((a,b)=a and 'ﬁ;(a.b)=b. Also,
Py and py will denote projections (not necessarily ortho-
gonal) from R™™ onto R™x {0} and £03 XR" respectively.

That is, Dy is a linear operator with domailn Rm+n and

range R" X §£ 03 such that pi = Do

We let (Px and (Py
denote the respective classes of all such projections.
Since there is little chance of confusion we can identify

R™X {0} with R™ and say Py is a projection onto R™,

4.1, DEFINITION. Let (R", € ) and (R", é’y) be point-convex

convexity structures, and define the projective product

33
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convexity structure cixy on Rm+n

of all sets C such that 'ﬁ‘;(p;l(a)ﬂc)éey and
f)’x(p;l(b)ﬂc)éex for each projection pxe@ and pye CPy

and for each a €R™ and b€R".

as the collection

The set convxxyc will denote the convex hull of a set
C relative to ei:(y and 8; will denote the usual convexity
structure for X = R™ and u-conv (A) for the usual convex

hull of A.
4,2,1, EXAMPLE., If (X, 8x) is the convexity structure

where X=R' and Aegx if and only if A=X or | AY<£1, and

(Y.ey) is the convexity structure Y=R1, with Be @y if and

P

only if | B] £1 or B=Y, then Ce@xxy

if and only if Jcl < 1

or C is a line 1in Rz.

4,2,2. EXAMPLE, If X=Y=R1 and if 6x= 8: and Beey if

and only if |B]<1 or B=Y, then Cé@ixy if and only if

C is any convex subset of a horizontal line in X X Y.

4.2.3. EXANPLE. If X=Y=R' and if A€8 = €, if and only if
141 £2 or A=R' then C e@ixy if and only if either C=RZ, C
does not contain three collinear points, C is a line or pair
of lines in Rz, or C is a line together with 2 points from

a line parallel to it.

4,2,4, EXAMPLE. If X=Y=R1 and if A€@x= gy if and only if
a=rl or the diameter of A is less than or equal to one,

then C € @ixy if and only if either C=R2, C is any line
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2, or C is any subset of a unit square with sides

in R

parallel to the coordinate axes.

1

4.2.5. EXAMPLE, If X=R' and A€@, if and only if a=r!

or 1A} <1 Y=R2 and Béey if and only if B=R2. IBl<1,

or B is a vertical line in R® then Cécixy if and only if
either C=R3, Icl]€£1, or C is a plane, or any line in

that plane, of the form 7)—;1( J ) where { is a vertical

line in Y.

4,3, LENNA. If z, and z, belong to XX Y and

1ry(z1) # ﬁ&(zz) then there exists a projection from
X XY onto X such that the images of 24 and z, coincide,

Proof. The identity map on X is a projection from X
onto X and our problem is to find an extension of this
linear map that will satisfy the conditions of the theorem.

Let M be the space spanned by X and ﬁy(zz—zl). Then
each element of M can be written uniquely as an element
of X and a multiple of 47§(zz-z1) in the form
x+0‘-(ﬂ3’(z2-z1)) where & 1is a real scalar.

In particular , z2-z1=77‘x(z2-z1)+1-(ﬂ’y(zz-zl)). We
now define an operator F_ from M onto X by setting
Fo(x+°<-'ﬂ“y(zz-zl))=x+°((-ﬂ;c(zz-zl)). Then F_ is linear,
a projection, an extension of the identity on X, and
Fo(zz-zl)=Fo(ﬂ;{(zz-zl)+1°ffy(zz-z1))=1);(z2-zl)+1°(-':g(zz-zl)):O.
Hence Fo(zl)=Fo(22).
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It is now a standard result to extend F° to all of

XXY. See, for example, Taylor [19], p.40.

4,4, THEOREM. Using the definition 4.1. given above,

(XrYy , gixy) is a convexity structure.
Proof. It is easily seen that X % Y=R™ ang # belong

P

Xay is closed under

to @ixy. thus we must show that §

intersections. Let Cié = )I:x for every i €17 then

Yy

-1 _ -1
'ﬂ"y(Px (a)n (‘(‘}Ci))—')‘f’y(ﬁ (py (a)ﬂci)), and we shall now

-1 _ -1 .
show that ﬂ;(‘(‘][px (a)nci)-g;ﬁ‘;(px (2)NC;). This will
complete the proof, since the argument is symmetric in
X and Y.

-1 .

If deﬂ,y(fgx p, (a)N C;) then there exists a c €X such
that (c,d)é(ﬁ p}zl(a)(\ci). and therefore
(c.d)ép;]'(a)f\ci) for every i €I. Therefore

-1 . -1
dG‘ﬂ;(px (a)/‘tCi) for every i €1 and défi"\zn&(px (a)nCi).

- Np-t )€ -1 ).
show.v:urxg't'l’y(‘.ﬂpx (aincl)_glm(px (a)N Ci)

€ - . - .

If d ‘[.\Iﬂ&(px (a)NC;) then d€77;(px (a)NC;) for
every i€ 1, and therefore there exists a 5 for every 1 €1
such that (c:.L,d)ép;l(a)f\C:.L for every i€I. Since p, is

j? for every i,j€ 1, and therefore

there exists a ¢ such that (c,d)ép;l(a)/\ C; for every i€ 1.

a linear projection, cy=c

Therefore (c,d)é Qx(p;l(a)nci) and thus
déﬂ;(gl pz (2)Nc, ).

The next theorem shows that our main objective for

P .
ex‘y has been achieved,
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k.5. THEOREM. If @, andf’y are the usual convexity

structures for R™ and R" respectively, then iry is
precisely the usual convexity structure for Rm+n.

Proof. Let Céeixy, and let r=(a,b) and s=(c,d)
belong to C,where a and ¢ belong to R™ and b and 4 belong
to R"e We must show that the usual convex hull of r and
s belongs to C to show that ezxy is a subset of the class
of usual convex sets. Assume that t €u-convir,s} and
that t¢C. If b#d then by Lemma 4.3 there exists a

projection 2 from RMTH

onto X such that px(r)=px(s)=px(t).
Since C is convex in the product space,ﬂ;(p;l(px(r))fw)é&y.
Since this set contains b and d and since it is a usual
convex set in Y, it also contains ’fYy(t). We know p, is
a linear projection onto X; thus t€C, which is contrary
to our assumption.

If b=d, then the orthogonal projection 'ﬂ‘y is such
that 'ify(r)=’l‘l’y(s)= TYy(t). Then since C is convex in @iry.
M (517, (£))nC)e B and hence 4 (+) €M, (755} (m, (£))N C),

and t€C; again a contradiction to the assumption. It then

P

follows that & XXy

is a subset of the class of usual convex
sets.

Now let Dee:xy and let a€R"™, p, and p
m+n

y be arbitrary

linear projections of R onto R™ and R" respectively. We

must show that ﬁy(p;l(a)nD)éeg. Since Py is a linear

. . +n - .
projection of R™™ onto R™, pxl(a) is a usual convex set in

R™7P* hence p;l(a)n pe@u

X3y and since usual convex sets are
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preserved by linear projections, T)"y(p;l(a)n D)ée;.
Similarly, ﬂ"x(p;l(b)f) D)€€Y for any bER®, showing that

@ixy contains the usual convex sets.

The next result follows immediately from the defini-

tion of the projective product and is stated without proof.

4,6, THEOREM. The product (XXY,@}IZW) is point convex

if and only if both (X, @,) and (Y,ey) are point convex,

Some questions about the existence and uniqueness of
factor spaces which generate a given product space will
now be considered., First, if we start with a convexity

structure (X.@x) and a structure exx for X XY, it may

y
be that there are no structures or many structures for

(Y,@y) such that @ixy= gxxy'

b,7. EXAMPLE., If (X, ex) is the usual convexity structure

1

on R* and if ceex,‘y if and only if C=XxY or 1C\ £2, then

there does not exist a @V for Rl such that exsv is the

projective product of @x and ey'

4,8, EXAMPLE., If @x is the usual convexity structure on

RY, then if Y=r!

and Ceey if and only if C is empty or

C contains all rational numbers, then the product structure

P
xRy

’ 7/
the structure @y defined by Céey if and only if C is enmpty

is the trivial product structure {;ZI.RZ?; o Likewise

or C is a superset of the irrationals, also yields the

trivial product structure.
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We shall now consider a concept introduced by

calder [ 3J.

4,9, DEFINITION. A convexity structure (X, @x) is an

interval convexity structure when conv A = A if and only

if xy& A whenever X €A and y €A.

4,10, THEOREM. If (X,£,) and (y,é’y) are both interval

convexity structures, then (XX Y, gi‘y) is an interval
convexity structure.
Proof., If A is convex in eizy then zlzng whenever
zke A, k=1,2 by the definition of the convex hull operator.
Assume zlzZSA whenever zke A, k=1,2., We shall show
P .
that Aegxxy by showing for all px‘px’ pyGQy. a €X,
-1 ~1
€Y that - (p, (2)N 4)€ € and ™, (p)"(b)N A) € Ly
Since the arguments for X and Y are symmetric, it suffices
to prove the first of these. Let yl.yze'ﬂ&(p;l(a)nA).
. -1 — =
Thus there exist z, € p, (2a)N A such that Wy(zk)—yk. k=1,2.
By hypothesis zizz_C_A, Therefore, since
-1 ]
1‘fy(px (a)Nz,z,)€ ey by the product convexity of z,z,,
-1 _ -1 -1
¥1¥, Seonv [ (037 (a)Nzy2, 0= (p) " (@) Nzy2,)C a0, (077 (2)N08)
Since e y is an interval convexity structure this proves

'n'y(p;l(a)n A)E ey. as desired.

There are two conditions on pairs of convexity struc-
tures which will be useful later. It is easy to construct

convexity structures which are so inherently dissimilar
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that the product structure contains only some of the
translates of convex sets in the factor spaces. For
example, if X=Y=R" and C€Q_ if and only if C=X or [C}%1
or C= [n,°°) for some integer n, and D€@y if and only if
D=Y or {Dl<1, then @ixy
of points of the form [n.°°)x r where n is an integer and

contains only points and sets

r is a real number.

At times it will be desirable to avoid such behavior

for products.

4,11, DEFINITION. If p;l(C)G@)lzxy for every €@, p, ¢B,

[respectively, ‘ﬂ";l(c)é eixy, for Ce@xj , then ex is

said to be compatible in the product, [ respectively,

orthogonally compatible in the product J.

We state a preliminary result concerning this concepte.

4,12, LENMA., If Qx is compatible Erespectively,
orthogonally compatible] in the product then for ACX XY
e ~ . r P
and p.e(”, px(convx‘yA)=convxpx(ﬂ), | respectively,

tn‘x(convxxyA)S_'-, convxTT'x(A) i

. -1
Proof. It suffices to prove conv,, A_C_px (conv,p, (4)).

y
Since;convxpx(A) is convex in X, by compatibility,

-1 P
Py (convxpx(A))é @xsy'

-1
c:onvxxyAgconvxxy(px (px(A) )) Cconv

Thus

x,,y(p;l(convx,r)x(l»‘x))) =

P;l(convxpx(A)), proving the contention. The statement

regarding 'ﬂ';c may be proved similarly.
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A condition somewhat analagous to that of compatibility
in the product, in that it also deals with the interplay
between the product and each of the factor spaces, is

introduced next.

4,13, DEFINITION. A convexity structure will be said to

be projective in the product [respectively orthogonally

projective in the product] if px(C)ée x Whenever Ce€ eP

Xry
and pxéyx Erespectively. if 'ﬂ‘x(c)e@x for C egiy].

L,i4, TIEMMA. If ex is projective Erespectively. ortho-

P
Xxy

yA ) Lrespectively,

gonally projective ] in G then for ACX*Y and p§ (?x'

convxpx(A) c px(convx“

convxﬂ‘x(A)S’n‘}’c(convmyA)J .

Proof. Since ex is projective in ep

Xxy A)

' Fx(convx"y

is convex in X., Hence,
c =
convxpx(A)__convxpx(conVXxyA) px(convxxyA).
The statement regarding fo may be proved in an
analagous manner.,

4,15, COROLLARY. If Cx is compatible and projective in

the product then for any set ASX XY and projection pxe@x'

px(convxxyA) = convx(px(A)).

4,16, EXAMPLE. If X=Y=R' and if @, ={clic12 23,

_Pu . . . . .
6’,_Gy then neither @x nor ey is compatible or projective
in the product. In Example 4,2.5 both ex and ey are

projective but not compatible in the product, and in
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Example 4.2.3 both 8x and gy are compatible but not

projective in the product,.

It is easily seen that sets in ng:y are always ortho-
gonally compatible and orthogonally projective in the
product, and the complement product is orthogonally compa-

tible but not generally projective in the product.

4,17. THEOREM. If £ and ey are compatible and
orthogonally projective in the product, and are domain

finite, then the product 6}1:“3, is domain finite.

Proofs Let ACX XY and define the set
C= U{conv BI BCA, lB|<°°}. Since ACC EconvxKyA it
suffices to prove that C is convex, for it would then follow
that convxxyA=U{convxxyB | Bca, | B l(-O}, thus proving
eixy is domain finite. Consider be Y and pyé @y. He show
that M (p3*(0)nc)e@,.

Let xéconvx‘n‘x(p;l(b)nc). Then there exist
xl,...,xkéﬂ’x(p;l(b)ﬂc) and thus z3=(x;,y;) €XXY
such that x€conv, {x,,eee,x, 3 and z€ p;l(b)nC, 121 <k.
Hence py(z.l)=b and ziGC for all i. But by definition of
C there must exist finite subsets BigA such that

zy éconv B 1£i<4k. Define the finite subset of A,

Xry“i
=V
B =, Bj+ Then conv, BCC so that convx,y{zl,...,zn} cc.
-1 -1
Therefore,‘n;['py (b)('Icomrxwle....,zk}_jg'f]}’((py (v) N c).

By compatibility and point-convexity of @x and @y,
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"1(‘o)é€my Hence p;l(b)nconvxxy{zl,....zk.g is a

convex set in XX Y containing ZiveseyZ It follows that

k.
-1
convxxy{zl,...,z};ﬁgpy (v)N convxxy{zl,...,zk"g. Therefore,

using the above and Lemma 4,14,
X éconvx {xl,...,xk} = convx{dvx(zl),....'ffx(zk)'}
C.’Y (convxxy{zl,....zk})c'ff(p;l(b)nc). That is,

convx'ﬂ’x(py (vp)AOc) "‘ﬂJ (p-l(b)nc) proving that

'ﬂ'x(p;l(b)f\ C)éex. Similarly, it may be shown that for
-1 P

a€X, and p, €FPy» y(px (a)f\C)e@y. Therefore, Ce@xxy

as was to have been shown.

The next two examples show that join-hull commutativity
and regularity of segments are not, in general, productive

properties.

4,18, EXAWPLE. Let X=R" and C €€_ if and only if C=X
2 u P
4 o = = "
or lc\¢1, Let Y=R® and @y Qy Then C @xxy if and
only if either C=XXY, C is a usual convex set in a plane

orthogonal to X, or C is a line or plane in XX Y,

Then if 21,12.23 are three non-collinear points in a
plane parallel to X and if 2, and 23 are in a plane ortho-
gonal to X, then convxxy{zl,zz,z;% is the plane containing
the three points but | {z,qs, where q62223, is a proper
subset of that plane, showing that join-hull commutativity

is not productive.

4.19., EXAMPLE. Let X=R® and let T: R%»R% be the

homeomorphism of R® defined by T(x,y)=(x,y3)- Define
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¢ €G, if and only if C = T(D) where D€& Y, Let Y = R'

and €y=€;. Then G

X and @y have the property that

segments are regular, but ei_y

Cantwell's Axiom A [ 47, which says that

does not have that property.

each 1line is order isomorphic to the reals, 1is not
productive as can be shown from Example 4.19. Thus the
projective product of two Cantwell spaces need not be a

Cantwell space,

4,20, LENWA., Given an r-flat S in XXY = 2 with r £d4dimX,

there exists a projection € CPx such that Py is one-to-one
on S.

Proof. Without loss of generality, we may assume that
S is a subspace of 2. If SE&X then p,=TT, is the desired
projection. If S¢X then {=dim(SNX)< dimX=m, Hence,
m32+1, and the following bases for the various subspaces
of Z may be assumed: S MNX=span izl,...,z‘e},
X=span {zl....,zjz 'Z,Q+1"°"Zm}’
S=span{zl....,zk,zm-‘_l....,z;’g , t=m+r-f. {(Since Séx,
dimS > { and z_,18Xists.) Since {zl....,zt} is linearly
independent, it may be extended to a basis foria:
Z=span {zl....,zt....,zk\s where k=dimZ2., Now define
1 @ z"@xu {03, where ®z and @x are the bases for

Z and X respectively, by setting
f(zi) = 2.

l'
f(zi)
f(zi)

1£ism

. +1£1%t
Z:.-m+£' m+iZ 1

0, t+1< 1L k.
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Since t-m+{=r &m, f(@z)_c_ CBXU{O} . Define the linear
& : K
extension p, of f to all of 21 p,(E Ajzy) =2 A 5(z;).
It is then clear that p, is linear, onto X, and is the
identity map on X, so pxé @x' Finally, if px(s)=0 for
some s €S then
s) = E A.z.) = A.f(z.) =0
px( ) px(l’;iéf i l) 15‘-& 5 ( l) ’
m+leict m+leist
2 -
or 2121"12%*'"*7‘121+>\m+1’"g+1+1 m+22g+2teset T2y = Oo
By the linear independence of Bx'
7\1=12=...= 1£=0=7\m+1=...=1t and s=0, Hence the kernel

of Py is zero and Py is injective on S.

4,21. DEFINITION. In a convexity structure (X,Cx), if

whenever x5€ X1 X, and x4€ x1x3 there exists an
x66 x3x5n X5X), then the convexity structure is said to

satisfy the Ellis property.

4422, THEOREM. If (X,&,) and (Y, ey) have regular

segments and are compatible and projective in the product,
then the Ellis property is productive,

Proofs Let dim X =dim ¥ =1, 2 = XXY and in Z2 let
zsezlzz, zue 2.123. Without loss of generality we may
assume there is a p € G)X such that px(z2)=px(z,+)=x,+. Let
px(zl)=xl‘,px(z5)=x5 and px(23)=x3. Since ZSG Z1%5y DY
compatibility xSG XyX), and since 2462123’ xuexle. Then
1x3=x1x5U XXy
Since segments are regular xﬁ xlx5 so xue x5x3. But then

P .
x5 xlx3 and xuex1x3 so by regularity, xue pd
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by projectivity, there exists a z6€ z5z3 such that
Px(zé) = X

Now let py be such that p (25) P (23)—y3 Let
py(zl)=y1, py(z“_)=y4 and py(zz)—yz. Since z662523 then
by compatibility, py(26)=y3. Now z,€ 2924 hence by
compatibility Y, € y1y3 and by regularity y3& ylyuu Yo
and by decomposability, y3eyuy2. Hence 24 € 2,2, as we
wished to show,

If dim X222 then the points 21125029 and 25€z1z2
and z, € 2124 all lie in some 2-flat F, by Lemma 4.20 there
is a projection of F onto X that is one-to-one. 1t is
then clear that the points in the Ellis property can be
mapped into F, proving it for X XY,

4,23, COROLLARY. If (X, ex) and (Y,ey) are compatible

and projective in the product then regularity of segments

is a productive property.

4,24, DEFINITION., Two non-empty convex sets C,Décixy

are said to be complementary if CUD=XxY and CND=g,

The following theorem is a basic separation theorem
for convex sets, The theorem for linear spaces is proven
in Kakutani [9 ], and Tukey [20], and was extended by
211is [6 ], The following proof is an adaptation of the
one used by Valentine [Zl]for linear spaces to our more

general setting.
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4,25, THEOREM. Suppose (X, €,) and (Y, ey) have regular
segments, are compatible and projective in the product,
and suppose @ixy is join-hull commutative. If A and B

are non-empty disjoint sets in XX Y then there exist

P

complementary convex sets C and D in exxy

such that ACC
and B &D.

Proof. Let P be the class of all ordered pairs (Ai’Bi)
of convex sets in eixy such that Aiﬂ Bi=¢, A12 A, By2B.
First we note that P is non-empty since (A,B)S P. Part-
ially order P by defining (Ai,Bi)< (Aj'Bj) if and only if
Ai_C.- AJ. and Big:_ Bj' The union of every linearly ordered
subset of elements in P belongs to P and then by Zorn's
Lemma, there is a maximal element (C,D) in P, To show
that CUD = XX Y, suppose p€XxY\{CUD}. Since
convxxy(C(J{p})
convxxy(DU{p})

maximal, there exists d1 € DNconv

UfpclceC$ and

Ufpdld €D} and since (C,D) is

x*y{CU{p}} and there
exists ¢, € Gnconv, , {DU {r}¥. Since d,€cC, c;¢D then
there exist points c€C and d €D such that dlé intv(cp)
and ¢, € intv(dp). By Theorem 4.22, ddlﬂ cc; # #, which

is a contradiction.

The following associative law is presented to show
how to define the projective product of a finite number

of convexity structures.,
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4,26, THEOREM. Let (X, €, ) and (Y, ey) and (Z, §,) be

convexity structures on R'. Rm. and R" respectively. Then
P _ PP
exx(yxz)' e(xxy)xz‘

Proof. Let C €¢CF

(xxy)xz x(yxz)
we must show that given (0,y¥,z) and onto projections

, to show that ceei

t Xx(YxZ2)-2YxZ and ﬂ'x: Xx(Yx2)-X that,
-1 - -

a) M (py,,(0.y,2)NC) €6,

and given X €X and onto projections p, and ‘ﬂ;‘z that
- P

b) T,,,(%,0,0)N0€C .

To establish a) we note that p

Pysz

yxz and ﬂ; have the

following block matrix representations,

0 0 0 II 0 0
py‘z = A Im 0 ’ ﬂ; = 0 0 0
B 0 In 0 0 0

where A is an mx{ matrix, B is an nxf matrix and {l. I
and In are identity matrices of order ﬂ, m, and n

respectively. We define

/II 0 0 O 0 O \ 0O 0 0
ﬂ’x,y =fo 1 o0, p,={0 O 0/ » PyT A I 0
0 0 O B 0 I 0 0 0

then it is routine to show that

M (B g (0454 E)AC)=10 (71 (0,5, 00N, (277 (0,0,2)0C))),

where the right side of the above equation belongs to ex
. P . .
since C € e(xxy)xz, establishing a).
To establish b) there are two similar arguments. We

will show that given (0,y,0) and onto projections
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X 1 153 4
Py YXZ~—Y and T+ Yx2-—Z that ﬂ;(py (0,y,0NT)€G,,
- -1, =
where T= ﬂ;xz(px (x,0,0)NC),
We note that p s+ XX (YX2Z2)~>X and pyz OXxYx2Z2—>Y

have matrix representations

Ip D E 0 0 0
px = 0 0 0 ’ py = 0 Im F ’
0 0 0 0 0 0

where D,E, and F are of order {xm, fxn, and mxn respectively.

If we define I,Q 0 E-DF
Pyxy = o Iy F
0 0 0

and let q=(X-Dy,y,0)€ XX Y, then it is routine to show that
-1 - 1 . .
'r);(py (O,y,0)!'\T)=T?'Z(pxxy(q)ﬂc), where the right side
. . eCP
of the above equation belongs to @z since C 6()“),)”.

establishing b), and completing the proof,

We now present some results leading to a Carathe’odory

theorem for the projective product.

4.27. LEmva. If @ and are compatible in the
X Y

P

product then the usual lines of Z=XX Y are members Of@xxy‘

Proof. Let F be any line in Z; then by choosing
q €F the set S=F-q 1s a one-dimensional subspace of 2.
It is clear that either SNX=0 or SNY=0, say S1X=0, Let
S=span{s} . First, if s €Y then assume the following
bases for X and Y, X=span {zl....,sz 0 Y=spam{zm+ R

m+n
where 2 +1°Se Define the projections 7rx(i§11.lzi)=i§.l;\iz.l.

mend
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and Py (E ;25 )=( Ezlzl) A4p?1» 24T&n. We note
that p, e@ and p, (s) 0 for every r=2,.es,ns We now

claim that S= il (0)n (f‘i p'1(0)), for if
z= r:+n) 2,6 ker/r ﬂkerp f\...nker;i,, then A —...-1 n=0
= 2

and ﬂm+2 Am+3_"'"1m+n , or z= Rzmﬂ:\s as desired.

If s ¢Y define the following bases for X and Y,
X=span {zl, ""Zm3 where 2,= ‘n’ (s) and

Y=span { z 3 where 2 —ﬂ’ (s)s Define

m+1'****Znn m+1
m+n
px(l£=1 ﬁizi)‘(.glxizi)' xm_,,lzll

m+n
Py (&) Aj24)=(, =" Ai23)- Ajz,qe Note that p, e (P,

i=m+1
P, € @ and s € ker pxﬂker Py We claim that S=p;1(0){)p;1(0
for if z= 2 )\ € ker pxnker py then
x 2 X x "'O and 1 1m+1' .Xm+2=000=xm+n=o

1~ “me1?
and so z=lzl+)\z =}\(ﬁ“x(s)+'fry(s))= As as desired.

m+l

4,28, LENMA., If Cx and 8y are compatible and projective
in the product, then for any one-dimensional member C of
Cx and affine map T+ X—¥X, T(C)€ @x, and similarly

for ey. That is, the subfamilies of & and ey
consisting of their one-dimensional members are closed
under affine maps.

Proof. Suppose CCF where F is a 1-flat in X. Since
the problem is trivial if C is singleton, assume without
loss that 0€C, x €C with x_# 0, and T(0)=0, Let x_=T(x_)
and consider a point z°€ ﬂ’;l(xo)\ X. The line L(O’Zo)

belongs to eity Lemma 4.,27. Also there exists
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pxe@x such that px(z°)=x;. Both p, and 77; are one-to-one
_ -1

on L(O.zo) and hence 'l‘(C)-px['lfx (C)nL(O,zo)J € ex‘

4,29. LEMMA. Let ex, fy be compatible and projective
in the product and suppose that segments in ex are closed
topologically, relative to X=R™. Then each segment pad in

e

or the line determined by p and q.

X is either {p,q} , the usual segment joining p and g4,
Proof. Let x ,x, €X and suppose X, €x x; where
xZ;!x.l, i=1,2, By Lemma 4.27 x X1 & L(x 1Xq ); then without
loss of generality assume XZEu-conv X, Xqe It is clear
that a sequence of affine transformations TZ""’Ti""
and a sequence of points x3.....xi+l,... 1Z 2 may be
constructed such that if Q.= {xj | 0<j<i} then

1) Ti(x2)=xi+1’

2) 7,(Q))<Qy, and

3) Q= U]_Ql is topologically dense on u-conv X X;.

Each ’1‘i may be assumed injective so that if S is any
one-dimensional subset of X ihen T.(conv S)=00nv T.(s) by
Lemma 4,28, To show Q< x oX1? it suffices to show Q X Xy
for 121, Obviously, Q& X;x, so assume Q,;& X X, and

consider Q. we have Xy =T. (x )ET (x xl) T (conv Ql)-

1+l’

convxTi(Ql)_conv Q.Sx o¥y+ Hence Q, =X, .4 Qi__xoxl.

Hence ngoxl and then X Xy contains the closure of Q or

- : j - C
u-conv X Xy So if x xlyf {xo.x_l} then u-conv x x X _X

1= “o™1°
If there is an X, €X xl\u conv X X, then by Lemma 4.28

x°x1=L(x°,xl). Otherw;se X Xq=U-conv X X .
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4,30, REMARK. The segments of ex can be the ordinary

lines of X so it does not necessarily follow that the
betweeness relations in R™ coincide with those of Cax

under the hypothesis of Lemma 4.29,.

4,31, RENARK. Inductive proofs of the classical Cara-

the’odory theorem are rare; only one is known to the
author, namely that advanced by B. Peterson in [13]. 1If
we specialize to the case @x=3: and €y= @; then the
following theorem becomes an inductive proof of the class-

m+n

7
ical Caratheodory theorem in R y different from that

given by Peterson.

4,32, THEOREM. Suppose (X, @x) and (Y,@y) are convexity

structures that are compatible and projective in the
product having topologically closed segments, and

such that G}:xy is join-hull commutatives., Then if @x has

Caratheodory number ¢ and Y-R then @P has Carathéodory
number less than or equal to c+1l,

Proof., Let z éconvxxys for S€X XY and let 77;(z)=y.
First, if S&W;l(y) then x=ﬂ;(z)éﬂg(conv“yshconvxﬁ’x(s),
SO there exist ¢ points X ,esesX, in ﬂ;(s) such that
xeconvxixl....,xc} and then there exist points sie S such
that ﬂ’x(si)zxi. i=1,ses5Ce Since ﬂ;c is bijective on

V'yl(y), z €conv {sl,...,sc'f the convex hull of ¢ or

XXy
fewer points of S.
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Now suppose Sén';l(y) and let s*€& S be such that
ﬂ}(s*);!y. By join-hull commutativity

. . P
2 € convxxyEs*U (S\\s*) =s*jn convxxy(S\s*). Since exxy

is domain finite by Theorem 4.17 S\ s* may be assumed to
be finite so there exists a minimal subset S*C S\\s* such

3% 3 #*
that z € s¥jn convxxyS .

Case 1, If z¢conv S* there exists a q €conv S#*

XXy
S*, z#q., Also, zgs*

Xxy

such that z €qgs¥*, Since 2z éconvx,‘y

since Wy(s*);ffry(z). By Lemma 4.29 gs* 2 u-conv gs#*,
Since s*¢7)—'1(y) let pxe CPX such that px(q)=px(s*). Then

= p,(a)€p (conv S*)=conv p (S*) so there exist points

XXy
sie S#, i=l,eeeyC such that

oe convx{px(sl).....px(sc)}=px(convx‘y{sl,...,sc} )o Thus
there exists an seconvx‘y{sl....,sc} so that q’=px(s).
There are now a number of cases corresponding to the
possible locations of s on the usual line containing q and
s*, If s¥€u-conv zs then z € u-conv gs. Now either
qs={q,s} or gs2u-conv gqs, but since the one-dimensional

members of @i‘y are affinely related and gs## {q.s*} then

qs# {q,s}. Thus gs2u-conv gds and z€qs£convxxys*, a

contradiction. If s € u-conv zs* then 2z € u-conv qs and

again z € u-conv qs€ gs < conv l‘yS'*, a contradiction.

X
Finally, if s € u-conv gz or q € u-conv sz then

z € u-conv ss*< ss*, and then z € conv {sl,....sc,s*}-—the

xRy
convex hull of c+1 points of S,
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Case 2. If 2z éconvxxys*. we repeat the procedure
and consider the two cases S*Q‘n’;l(y) and S*fn-;l(y). If
S*E_ﬂ’;l(y), then as before it follows that z lies in the
convex hull of ¢ or fewer points of S*C S. If S*¢ n';l(y)
then we choose S* € S*\'ﬂ’;l(y) as before, let S*C S*\ s*

be minimal such that z € s*jn conv__, S*, and then s* and

XXy
§# play the roles of s* and S* in the preceding argument.
But in this case since S#* is minimal such that

*
7 € s*convxxys* we cannot have 2 econvx*yﬁ » Hence
z¢ convxxyé'* and it ultimately follows that z lies in the
convex hull of c+l1 or fewer points §1.§2.....§c.§* of

S*C. S, which completes the proof,

We shall now prove a Helly theorem for the projective
product. The lemma following the next two definitions is

an adaptation of a theorem in Valentine Ca211.

4,33, DEFINITICN. A polyhedron in a convexity structure

(X,ex) is the convex hull of a finite set,

4,34, DSFINITION. A convexity structure (XXY, e;’xy) is

said to have the polvhedron sevaration property if and

only if given a polyhedron P and a convex set C there
exists a projection pze@x()@y and a point a€ XUY such
that p;'l(a)n(PUC)=}Zf, and if zle P, z2,€ C then

p;J‘ (a)N conv zlzzfﬁ.
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4,35, LENMA. Let Ci' i=l,.00,h+l be h+l convex sets

in a convexity structure such that the intersection of each
h of them is nonempty. Then there exist h+l polyhedrons
P;y i=1,¢e.,h+l such that P;&C; and the intersection of
each h of them is nonempty.

Proof. Since every h of the h+l sets C, has nonempty

intersection, there exists p.le i=lyeee,n+l,

1pj_sh+1 Cj»

J#L
] = U . . . i=
Define Pi conv(iéjsh'*'l{ PJ} ), then Plg._Cl, i=l,e0e,h+l,
Jj#1
and P ﬂ( M %ﬁ, 241 ¢h+l, hence P, can replace
253<h+1
i#i

Cl. It then follows by finite induction that each set Ci
can be replaced by a polyhedron Pi such that the intersection

of every h of the polyhedrons is nonempty.

4,36, THEOREM., If (X,@x) and (Y, Qe ) have finite Helly
numbers h1 and h2 respectively, and 1f eixy has the poly-
hedron separation property, then @}I:‘y has a finite Helly
number h< max {hl.hz} +1,
Proof. By the above lemma, it is sufficient to prove
that all members of a family % of h+l polyhedrons have
a point in common if every h have nonempty intersection.
Suppose that this is false, that there exist h+l
polyhedrons Pi,i=1....,h+1 such that each h of them have a
point in common but PilP:.L:ﬂ. Since Plﬂ ...ﬂPh' and P

h+1
are disjoint, by the polyhedron separation property there
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exists, without loss of generality, a projection P, and 2
point a € X such that p;l(a)n f(Pln eee) Ph)u Ph+1] =g, and
. -1
if 2, € pln...n P, and 2,€P, ., then p (a)n conv{zl.22§ #8.

Since P and every combination of h-l1 members of

h+l

Pl,....P have nonempty intersection, then the intersection

h
of every h-1 members of Pl""'Ph must have a nonempty

P
xry’

'n‘y(p;l(a)nPi) is convex in Y for 14 i4h and each h-1 of

intersection with p;l(a). Since each Pi is convex in &

them have nonempty intersection. But h-l ..’.h1; therefore
all h sets ﬁy(p;l(a)nPi) have nonempty intersection. That
. . h -1

is, there exists a y€ Y such that yezg ﬂ"y(px' (a)ﬂPi), and

then there exists a point QEp;l(a)n{Pln...nPh}. a contradiction.

We shall end this chapter with some results relating

the projective product and affine mappings.

4,37, THEOREM. If (X.@x) and (Y.ey) are convexity
structures that are compatible in the product, then @x
and ey are closed under translations.

Proof. Let T: X—X be a translation; i.e. T(x)=x+a
for some a€X., Let 'n; and ’ﬂ'y be the orthogonal projections
from XXY onto X and Y respectively, and let Oy €Y. Let
Py be a projection onto X such that px(x+a.y)=x. It is

then routine to show that T(C)=C+a='n;{(1v;l(y)npgl(C)),

-1(

xc)

and since ex and @y are compatible in the product, p

is a convex set in eixy and hence

-1 “1, 0y .
1rx(1ry (y)hp, (C))—T(C)eex, which completes the proof.
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If (X.@x) is the usual convexity structure on R1

and
. @ . . 1 ee .

if (y, y) is the structure defined on R~ by C y if and
only if card C£ 2 or C=Y, then both ex and é’y are closed
under translations, but (X, ex) and (Y,@y) are not
compatible in the product, showing that the converse to

the above theorem is not necessarily true.

4,38, THEOREM. If (X, ex) and (Y.Ey) are convexity

structures that are compatible in the product and if 6§“y
is closed under affine mappings then Gx and 8y are both
closed under affine mappings,

Proofs Let T: X—X be an affine map on X« Then
77(x,y)=(T(x),y) defines an affine mapping T/ on XXY,
and hence if C € £, 1(C)=T(r ;1 (0)N1 (7} c)) belongs
to @x.

As a counterexample to the converse of the above
theorem, let X=R', C€€_if and only if 1G22 or C=X,
and Y=R%, €y= {clc=Y or C is a pair of parallel linesj}
U{C | C consists of the vertices of a non-degenerate
parallelogram} U {c ] C is a set of three non-collinear
points} U {c] tclc23 . Then € and €y are compatible
in the product and both are closed under affine mappings
since a set of cardinality five, no three of which are
collinear and lying in a plane containing X, will belong
to eixy but the image of this set under a rotation need

P
not belong to @x*y



58
The following example shows that even if (X,@x) and
(v, ey) are compatible in the product, f,x and ey need

not be closed under affine mappings.

2

4,39, EXAUPLE. Let X=R° and let C¢G_ if and only if

C=X or C€ {C | c is a line or a pair of parallel lines$U
{CI 1cl < 4, no three of which are collinear} U

{C’ C is a translate of y=x2 } .

Let Y=R' and let CE€ @, if and only if C=Y or |Cl £2. Then
it is tedious but routine to show that (X, Gx) and (Y, ey)
are compatible in the product but @x is not closed under

affine mappings.

The following theorem presents a positive result

relating compatibility and affine mappings when X= =Rl.

4,40, THEOREM., If (X, @x) and (Y, Cy) are convexity
structures on X=Y=Rl such that @ixy is closed under affine
mappings, then (X,@x) and (Y, ey) are compatible in the
producte

Proof. It is routine to show that the mappings
R(X)= (o5} (v)N 031 (%)) and G(R)=T7,((pf) ™ (x)n P} (X))
are either trivial or affine mappings from XX {0fto X

and X x {03 to Y, respectively.

441, EXAWPLE. Let X=Y=R®, € = €=fclicie or c=R%%.

Then ei*y={c| ICI<1 or C=R’+}’ and é’x, ey and E)Ic’xy are

all closed under affine mappings but (X.@x) and (Y,6 y)
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are not compatible in the product since 8}: and ey do

P

not contain lines, forcing exxy

e.g.’ﬂ';l(OJ.

to not contain planes,

Finally, there appears to be no connection at all
between the closure of ex and Gy under affine maps
and the property of (f;lzxy being projective as the examples
below show,

1f x=y=R" and if € =€ =fc|o=R" oric1<23, then
G, and Gy are closed under affine maps but not projective
in the product: Three non-collinear points will belong
to @ixy but their projection will not necessarily belong
to g, or éy.

If X=R® and @x= {c|ict £1, C is a 1line not parallel
to the x-axis or C=R2} and Y=R1, @y={C,\CI £1 or C=R1},
then (X,@x) and (Y,ey) will be projective in the product

but not closed under affine mappings.

We remark that we have been only partly successful
in creating a product concept for exxy that is both natural
and useful. We have been unable to remove the requirement
that X and Y are themselves vector spaces so that the
product concept could be defined for more general convexity
structures. Also, we have been unable to obtain a Radon
theorem or general Carathe’odory and Helly theorems for

this product,



Symbol

dim X
span{xi§

IC|
conv S

ckS

XXy
co_A

C
XKy

Px
@y

P
oy
Gy

u=-conv

APPENDIX

SYMBOLS USED IN THE TEXT

Meaning

Empty set

Dimension of X

Linear space spanned by {xi}
Cardinality of a set C
Convexity structure

Convex hull of a set S

Convex hull of {p,q}

Convex kernel of a set S
Eckhoff product of X and Y
Complement of A in X
Complement product of X and Y
Orthogonal projection
Projection onto X

Class of projections onto X
Projective product of X and Y
Usual convexity structure on X

Usual convex hull operator
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