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ABSTRACT

MULTIVARIATE EXPERIMENTAL DESIGN

IN METEOROLOGY

An objective technique, which permits the analysis and
investigation of multivariate as well as univariate data sets,
is discussed. The technique necessitates the determination of
the intrarelationships that exist within each single parameter
data set, as well as the interrelationships that exist between
these data sets. In general, these relationships are described
in terms of anisotropic multidimensional correlation and cross-
correlation functions which model the spatial (x,vy,2) and tem-
poral (t) structure of the phenomenon as reflected in the ob-
servations themselves.

The applicability of this technique is demonstrated
using a multivariate data set comprised of surface and radar
precipitation measurements. Derived spatial-temporal correl-
ation and cross-correlation functions are presented; univariate
and multivariate analyses of the observation set are compared;
and the relative worth of different Z-R (radar reflectivity-
rainfall) relationships is explored.

The combining of this analysis technique with a non-
linear programming (NLP) algorithm for use as an experimental
design tool is also discussed. A multidimensional model of the
signal-plus-noise structure of a phenomenon of interest is
sought. This model is then used by the objective analysis tech-
nique to determine the values of an objective function. The
function in turn is minimized by an NLP algorithm and this min-
imization results in a station configuration for optimally
sampling the phenomenon of interest. The potential of this de-
sign methodology is explored using the surface and radar precip-
itation measurements. Optimal spatial station configurations
are presented and trade-offs between different sensor types are
explored.
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MULTIVARIATE EXPERIMENTAL DESIGN

IN METEOROLOGY
CHAPTER I
INTRODUCTION

Since early in the 17th century, man has been
attempting to measure various geophysical phenomena. During
the last forty years, as technology has advanced, the avail-
ability of quality instrumentation, as well as the accuracy
of measurements obtained, has largely improved. Development
and implementation of sophisticated instrumentation packages,
such as those found in satellites, on aircraft, and at radar
sites, has greaﬁly assisted the scientists' search for more
knowledge. The quantificaticn of geophysical phenomena is a
vital step in the meteorologists' and/or hydrologists' con-
tinuing pursuit of a more complete understanding of his chosen
field. The acquisition of pertinent observations, with respect
to areas of investigation, is essential.

The field study or field experiment is the environment
in which the sophisticated and expensive instrumentation is
often used, in hopes of obtaining those vital, relevant, but

often illusive observations. To hope for good results from



such studies that expend hundreds of thousands of dollars
and more, is no ldnger acceptable. The public's outcry over
the waste of their tax monies for projects that are ill-
conceived, i1ll-planned, and ill-managed will not lessen in
the future. It would seem therefore that forthcoming studies
in atmospheric and related sciences must be structured in
such a way as to produce a benefit-cost relationship that is
acceptable both to the scientist and to those members of
society paying for the research. ©One area in which a minimum
of expenditure, in terms of manpower and expense, could pro-
duce a maximum benefit, in terms of quality experimental
results, is that portion of the field study concerned with
the experiment-planning aspect of the research, sometimes
referred to as experimental design.

In any field study, four steps are required.

1. The problem to be investigated must be
defined in the most concrete and objective
terms possible. This is crucial to the
success of the study, for without defini-
tion a study has no purpose, and withnout
purpose there is no need. (The investi-
gator must formulate, in terms of the
experimental design concept, his null
hypothesis concerning the phenomenon to
be investigated.)

2. A careful examination has to be made of
the tools available for resolving the
definable problem, and the best method
of using those tools must be sought.

This process is an essential (and often
neglected) part of any study. The design
of the study to be undertaken is equally
as important as the problem definition
and field deployment.
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3. The study should be Implemented to
obtailn those observations most likely
to be of use in resolving the defined
problem. An update of the study, using
the desipgn process in conjunction with
incoming experimental results, is also
usually warranted.

i, The resultant observations are analyzed,
.conclusions are drawn, and the initial
hypothesis is either accepted, rejected,
or refined.

Having defined a problem to be investigated, the re-
searcher must plan the manner in which the investigation is
to be carried out. It is 1n this design step of the field
study that objectively-founded decisions should be the norm,
but subjective decisions are often the rule. How does a
scientist make the most efficient use of the instrumentation
available to obtain a best set of observations for his study?
Each instrument type has associated costs, noise character-
istics, and data acquisition problems. Which ones are best
for a particular experiment?' How many are needed, as a
minimum, to resolve the problem being investigated? What
instrument deployment configuration will be most advantageous
to the outcome of the study? Can interrelationships between
various parameters be used to enhance the quality of the
observation set obtained and/or to reduce the cost of the
field operations? Is the study justifiable? That is, with
the known Instrument and given monetary restrictions, dnes the

problem to be investigated have a good chance of being resolved?

During the past few years a number of numerical
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techniques have been developed which permit objective inves-
tigation of these types of questions. A mathematical clari-
fication of these techniques as well as illustrative examples

of their investigative potential are presented in the

following chapters.



CHAPTER II

The experimental design approach to "optimizing"
the return from a field observation study requires the fol-
lowing four processes. First, a statement is needed, as pre-
cise as possible, in some objective language, of the problem
to be investigated, including all known parameters associated
with the prnblem and some statement about the quality of esti-
mation required for each parameter. Second, access 1s needed
to the relevant information existent in the profession, as
seen from the viewpoint of the user. Ideally this would in-
clude, but not be limited to, a mathematical model of the
phenomenon of concern and/or mathematical models of the infra-
structure of the phenomenon to be investigated. Third, a pre-
experiment investigation of the phenomenon is required, using
the tools of experimental design, in order to acquire suf-
ficient information to answer those questions discussed in
the introduction. Fourth, an active open-minded dialogue be-
tween the researcher, the experimental designer, and the sys-~
tem coordinator is necessary so as best to fulfill the needs

of the user. FEach of these steps is an essential link in the

5
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development of an acceptable experimental design. The re-
search effort discussed herein, however, concerns itself with
the "pre-experiment investigation" process of the design
effort, and with those mathematical tools required in order
to accomplish this task.

Two separate but fundamentally related approaches
to the "pre-experiment investigaticn" process have been under-
taken. The first approach was to develop techniques which
would permit examination of previously collected observations
in terms of current experiment objectives. This would allow
earlier experimental results to be used in the design of
forthcoming related investigations. Basically this approach
necessitates the determination of the spatial-temporal signal-
plus-noise structure (as reflected in the observation set) of
the phenomenon of concern, and the comparison of univariate-
multivariate analyses of that phenomenon. In Chapter IV
these concepts are explained and their use as an investigative
tool is explored in Chapter V.

The second approach to the experimental design prob-
lem was a logical extension of the techniques of Chapter IV.
Those techniques were concerned with the analysis of already
acquired data sets so as to investigate such things as signal/
noise ratios, signal-plus-noise structures, and the interrela-
tionships between various parameters of the phenomenon being
studied. Having made those Iinvestigations, it would seem ap-

propriate to use the information thus obtained, in the actual
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design of forthcoming experiments. By combining the analysis
routine of Chapter IV with a nonlinear programming algorithm
(NLP), the incorporation of results from past experiments into
the design phase of related future investigations is possible.
This design approach 1s discussed in Chapter VI and its po-
tentialities, with respect to the problems of instrument num-
ber, instrument type, and instrument placement, are explored

in Chapter VII.



CHAPTER III
DATA

The data used in this research consisted of .-
precipitation observations which were obtained in the form
of surface rainfall meésurements and quantitative radar mea-
surements of reflectivity. The rain gauges used were those
in the Agriculture Research Service, Washita River Watershed
Rain Gauge Network, which is located southwest of Norman,
Oklahoma. The reflectivity information was obtained from
the WSR-57 radar located at the National Severe Storms Labo-
ratory in Norman. Figure 1 shows the respective radar-rain
gauge positions.

Five minute rainfall accumulations, expressed in mm,
were procured for the following four time periods:

1) 21 May, 1974, 0725-0850 local time,

2) 25 May, 1974, 0755-0905 local time,

3) 25 May, 1974, 0935-1010 local time,

4) 25 May, 1974, 1145-1310 local time.

The surface measurements were obtained using breakpoint
(accumulated amounts at times of inflection) data from the
weighing bucket gauges in the network for the appropriate
times. The radar reflectivity was converted into rainfall

8
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amounts using the Marshall-Palmer Z-R relationship, R=.O36SZ‘625,
as well as two empiricelly derived Z-~R relationships;
=.01312'687 for the data of the 21st and R=.01148Z'696 for the

data of the 25th. These latter relationships were determined
by using an aircraft mounted Particle Measuring Systems Pre-
cipitation Spectrometer Probe to sample the precipitation pat-
terns on the dates mentioned.

The network initially consisted of approximately 225
gauges. However, not all of these gauges provided rainfall
measurements for the dates specified. Because of hardware and
other problems, the network consisted of 181 gauges on the 21st
(Figure 2) and 187 gauges on the 25th (Figure 3). The converted
reflectivity amounts from the 181 and 187 radar bins, which were
horizontally coincident with the 181 and 187 surface gauges,
were included in the data sample.

The radar measurements were made at Plan Position
Indicator (PPI) scan rates of 3 rpm at an elevation angle of
1°. ™The resultant data represented measurements at radial
sectors of 2° and at gate lengths of about 1 km. An absence
of reflectivity within a bin converted into 0 measured rainfall.
A more complete description of the data can be found in

Takeuchi, et al. (1974).



CHAPTER IV

In the planning and development stage of a field
study, it is necessary to have some means of investigating the
characteristics of the phenomenon of concern, such as size,
shape, intensity, and duration, as well as having the ability
to determine the effect of instrument induced noise on the
quality of the measurements taken. It 1s also necessary to
have some means of objectively measuring the worth of proposed
instrument configurations, in terms of the instrumentation
type, the instrument number, the sampling rate, and the sam-
pling positions. An objective analysis technique fulfills
these needs, and is an essential part of the experimental

design concept.

A. Analysis Model

Objective analysis is the weighting of observations
in space and time in order to estimate a parameter field at
some specified point (normally a lattice) in space and time.
Much effort has been expended during the past twenty-five
years, in developing and investigating objective analysis

techniques.

11
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One of the earlier analysis schemes was Cressman's
(1959), which is the basls for many of the numerical weather
prediction (NWP) models of today. His method extended the
work done by Bergthorssen and Doos (1955) and essentially
applies a series of corrections to a first guess field during
a series of scans of that [leld, where the corrections are
based on the distance between the grid point and the observation.

Different approaches to the problem were proposed by
Sasaki (1958), who suggested a variational analysis method
which achieves dynamic consistency, and Gandin (1963) and Eddy
(1963), who formulated the use of space-time distance correla-
tions to analyze atmospheric phenomena.

The fitting of a polynomial to observed data using
least-squares, for the purpose of objectively analyzing the
data field at non-observation points, was first proposed by
Panofsky (1949). The more current work using a similar
analysis approach is reflecfed in the papers by Endlich and
Mancuso (1968), and Shapiro and Hastings (1973).

Epstein and Pitcher (1972) adopted a Bayesian approach,
in conjunction with a stochastic, dynamic prediction model, to
the problem of analysis, while Stephens and Polan (1971) have
investigated the problem of spectrum degeneration induced by
objective analysis of the observed parameter field.

Of the analysis schemes available, the technique of
Eddy (1973) was adopted here as the primary tool in the devel-

opment of a systems package for use in field study design. This
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technigque 1is an extension of classical multivariate multiple
linear regression. The extension consists of modeling the
basic signal-plus-noise structure that is representative of
the information contained in the time series data set being
analyzed, and then using that modeled "structure function"
in the determination of the regression weights. FEmploying
this approach, it is possible to filter a parameter field
at positions where data is available, and also to analyze the
parameter field at positions in space and time where no obser-
vations have been made.

Consider the linear regression model for the uni-

variate case

Y = XB + ¢, (1)
where Y = a vector of predictands (Nx1)

X = a matrix of predictors (NxM)

B = the vector of regression weights (Mx1)

€ = the noise vector (Nx1).

In classical regression, if
E[e]=0, VAR[e]=Vo?, and e=N(0,02V) where V=E[ee’]

then the regression welghts determined from the data are

8 = xtvix17trxbviyg, (2)

and the objective analysis may be accomplished by

N

Y = XB. (3)

Looking at the kth, ¢'P clement of equation (2) we
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see that
[xtv“lx] = Izﬂg X.. X v"1 and (4)
k4 13 ik™38'13°
NN
t.-1 N -1
[x*v Y]k = §§ Xiijvij' (5)

The signal covariance Xiksz and Xiij’ as well as the noise
anatomy Vij’ can be computed from the previously modeled
signal-plus-noise structure as reflected in the data set,
within the limits of the model itself. The covariance function
COV(XX) is usually sufficient for determining the regression
weights of equation (2). As the nolise structure reflected in
the observations becomes more complex, the signal-plus-noise
model could become less representative of the actual realiza-
tion. In order to alleviate this problem, the noise matrix V
can be modeled separately (Best, 1973).

Now consider the problem of using the linear regression
model in analyzing § of equation (3) when the predictor set is
multivariate, as would be the case when different sensor types
have been employed in measuring the phenomenon. For the two-
parameter data set previously described, equation (3) can be

rewritten as

where Xl contains the rain gauge measurements and X2 contains

the reflectivity estimates.
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Looking at the kth, g th

element of equation (2) in

terms of this two-parameter data set we see that the signal

covariance quantities Xijsz and Xiij must now be expressed
as

X10f150 97 X111050 OF Xosfase OF XoqpXoje 30d

X175 OF Xoqpf5 o

depending on which parameter mix (gauge measurements and/or
reflectivity estimates) can be best used to analyze § in
equation (6). 1In general for the n-parameter data set, n?
covariance and cross-covariance functions are needed to

th th

determine any of the k™7, 2 elements in equations (4) and

(5). For the two-parameter precipitation data sets, two co-

variance and two cross-covariance functions were needed:
COV(X1X1), COV(X2X2), COV(X1X2), COV(X2X1).

This analysis technique has a number of features
which make it especially suitable for use as an experimental
design tool.

1. The analyses produced are best with
respect to minimizing the error sum of
squares, and are maximum likelihood un-
biased estimates if the errors are
assumed to be independent and normally
distributed with a mean of zero and
variance ¢?. In many physical situa-
tions this assumption is quite sensible.
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2. This technique allows 1nvestigation of the
effect of Instrument-induced nolse on the
analyses produced, which in turn can be
used in the determination of those instru-
ments best suited for a particular experi-
ment. This also allows for investigation
of trade offs that exist between the use of
a large number of high noise instruments,
which are usually less expensive per unit,
and the use of a small number of low noise
instruments, which usually cost more per
unit.

3. Analysis of a parameter set, using the
intrarelationships within that set, and
the interrelationships between two com-
parable parameter sets can be accomplished.
The extension of the analysis technique
to be truly multivariate was a major area
of this research.

4., Modeled estimates are possible, based on
the structure function supplied, of the
amount of variance in the original data
sample that has been explained by a parti-
cular sampling placement in space and time,
with respect to some specified grid lattice.
This allows for the possibility of shifting
sampling patterns in space and time so as
to explain the greatest percentage of the
original data variance. The "shifting" 1is
accomplished by using the analysis tech-
nique in conjunction with a non-linear
programming algorithm. It is this aspect
of the analysis technique that permits
the determination of the instrument loca-
tions, the sampling rate, and the instru-
ment number best suited for a particular
field study. The inclusion of the multi-
variate analysis technique, so as to be
able to estimate the worth (if any) of
interrelationships that exist between
different parameter sets, was another
major research area.

In addition to these features, a number of pragmatic reasons

exist for using this particular analysis scheme.



17

During the past few years much effort has gone into
the development of the mathematical, engineering, and program-
ming concepts needed by this analysis technique. This effort
had been directed toward the analysis of single parameter
data sets (Eddy, 1975; Brady, 1975a). Nevertheless, the
expertise acquired and the knowledge gained in the development
of that analysis system package was beneficial in the develop-
ment of a similar analysis system package for the multivariate
case.

Also, much of the work accomplished in the field of
experimental design as relates to the atmospheric sciences
(Eddy, 1974; Kays, 1974; Yerg, 1973) makes specific use of
the various analysis features discussed previously. As all of
these features were not inherent in any other analysis model,
the Eddy analysis scheme was vital to the experimental design

process discussed herein.

B. Signal-Plus-Noise Model

It was previously stated that a modeled structure
function, reflective of the information contained in the obser-
vation set of the phenomena being investigated, was needed in
order to produce analyses from that observation set. The
structure function idea has been used by different authors to
express different concepts. For example, one definition of a
structure function, in relation to atmospheric phenomena, was

proposed by Gandin (1963). His interest was in measuring the
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strﬁcture of atmospheric phenomena in terms of the non-infor-
mation in an observation set (noise) as a function of separa-
tion distance. Specifically, his structure function is defined
to be the mean square of the difference in the values of the
deviation of the meteorologicai elements from their respective
means, for all observation-pair combinations in the parameter
field. If C is the autocovariance function of an observation
set, which is a measure of the information or degree of signal
in the atmospheric phenomena, and homogeneity and isotrophy are

.assumed, then the structure function is 2(o2-C.).

For the purpose of this discussion, the structure

function of an observation set, which is subsequently used

for analysis of that observation set, is expressed in terms of
the spatial-temporal correlaticn of the data values of that
set, determined for various lag distances in space and time.
The parameter field i1s assumed to be stationary with respect
to the structure function; that is points of equal distance-
separation and the same relative direction have cgual correla-
tion. The structure function is not assumed to be isotropic
that is direction of separation influences the point-pair
correlation coefficient value.

Product-moment correlations have been used f[or more
than half a century to study various geophysical phenomena.
Until recently, quite a bit of the work done related to the
science of hydrology. Indeed, since the first computations by

Sir Ronald Fisher in 1922, correlation analysis of precipitation
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measurements has been used in the investigation of rainfall
patterns. However, in all of the work accomplished using this
technique, correlation analysis has been an end unto itself.
That is, correlation coefficient fields for different separa-
tion distances have been determined, those fields have been
studied to discern various characteristics of the geophysical
phenomenon being investigated, and the results of the studies
have been published with information about pattern shapes,
sizes, etc. No doubt, for a hydrologist or others interested
in such things, the information acquired from this type of
analysis is worthwhile.

In relation to the Eddy analysis technique, however,
the use of correlation analysis is somewhat different. It is
not consideréd an end unto itself. Rather, 1t is but one
step in the determination of an objective analysis of some at-
mospheric parameter. It is true, however, that the more
reflective the structure function is of the physical and
statistical characteristics of the phenomena being analyzed,
the better the resultant analysis will be. Therefore, the
objective is to use the appropriate knowledge available from
the correlation analysis studies to determine the best model
for the structure function, and then determine the parameters
of the model appropriate to the entity being analyzed. With
these ideas in mind, the basic concepts of correlation
analysis are discussed, and the adaptations of these concepts

for use in experimental design are presented.’
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In general, a mutual relationship exists between
data values of an observation set. The correlation coefficient
is a measure of the strength and direction of this relation-
ship. More specifically, the correlation coefficient is a
measure of the relative precision with which one variate can
be estimated from corresponding values of another variate or
variates. If two observations are '"close" to one another in
space and time, their data values would tend to be positively
correlated. As the separatibn distance in space and time in-~
creases between observations, their correlation would be ex-
pected to decrease; and as the separation distance decreases,
their correlation would be expected to increase. This 1s true
for any regression model employed; linear, quadratic, logarith-
mic, etc. However, since almost all the work done in this area
assumes a linear regression model, the correlation coefficient
is usually a measure of the linear relationship that exists
between two variates, normally displaced in space and/or time.

As previously mentioned, almost all of the early
correlation pattern analysis was confined to the study of pre-
cipitation, as was that initial paper by Fisher-Mackenzlie
(1922). Besides discussing the correlation patterns of precipi-
tation fields, Fisher-Mackenzie also expressed some interest in
determining the functional relationship between the correlation
coefficient and separation distance. Boyd (1939) expanded this
work by introducing additional parameters into Fisher's original
formulation. Unfortunately, neither Fisher's nor Boyd's formu-

las fit the data very well. In two papers on rainfall



21

correlations in South Australia (Stenhouse and Cornish, 1958;
Cornish, H1ll, and Evans, 1961) the same formula was used with-
out reference to Boyd's work and without much success.
Meanwhile, in the United States, rainfall correla-
tions were being investigated by Horton (1923), Miller (1931),
Bernard (1943), and Oltman and Tracy (1951). McDonald and
Green (1960) were interested in the value of Spearman's rank-
correlation coefficient in meteorological studies, while the
work of Court (1958) and Buell (1972) accomplished correlation
analysis of other meteorological parameters such as windg,
pressure, and temperature. Even so, there exist problems with
this line of study. For example, the determination of a
functional form that adequately reflects the correlation
pattern characteristics has been of great concern. The need
for some such mathematical formula can be readily developed.
Consider the fact that the correlation fields generated
from a single storm system (in the case of precipitation) for
the number of spatial and temporal lags sufficient to discern
the storm structure in terms of the correlation coefficient can
be quite large; typically 2000-3000 discrete values. 1In deter-
mining an objective analysis of these storm systems the correla-
tion coefficient for tens of thousands of data pair combinations
is needed. Compound this with the fact that some type of scheme
is necessary to interpolate the discrete lag correlation values
to the continuous range of separation distance combinations
possible between observation pairs, and the need for a func-

tional model of the correlation structure becomes more apparent.
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To be able to dispense with the data management problem of
2000-3000 data values is convenient; to be able to dispense
with the interpolation problem, in terms of computational
time required to perform an analysis, is paramount.

Also, the influence of small scale perturbations, as
well as inadequate data samples, in determining correlation
coefficients for some separation distances, can be a problem.
If the value of the "raw" coefficient (which is not con-
strained by modeling) for certain lags does not fit the general
pattern observed in the correlation field, then bias in the
objective analysis will be the likely result. This bias is
introduced by assigning abnormally high (or low) weights to
predictors based on the correlation coefficient values found.

A smoothing of these effects is needed in order to obtain con-
sistent analyses. In fitting a functional model to the co-
efficient fields, and weighting this fit by the number of ob-
servation pairs used to determine the corresponding correlation
values, the effect of unrepresentative perturbations can be
reduced, 1f not eliminated.

And, finally, it is somewhat difficult to conceptu-
alize the physical structure from the data set, by pondering
over raw correlation coefficient matrices. On the other hand,
the parameters of an appropriately chosen and fitted functional
form can quite readily reflect the relevant physical and
statistical information about the system being studied. This
is a tremendous convenience, especially when investigating

the station configuration problem.
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A number of researchers have proposed formulae
to reflect adequately the relationship between the correla-
tion coefficient value and the observation-pair separation
distance (Caffey, 1965; Hutchinson, 1969, 1970, 1971; Anderson,
1970; Hendrick and Comer, 1970; Steinitz, Huss, Manes, Sinai
and Alerpson, 1971; Stol, 1972; Gringorten, 1973; Kraemer,
1974; Longley, 1974). Unfortunately, none of the suggested
formulae take into account all of the characteristics re-
quired to represent the correlation fields.

It is essential that the function be four dimensional
to delineate the spatially (x,y,z) and temporally (t) determin-
able correlation structure. Since the probability is great
that the correlation patterns will be anisotropic, the mathe-
matical model must express the correlation coefficlent as a
_function, not only of distance, but also direction. And,
since the values of the correlation coefficients tend to
become negative as the separation distance increases, pro-
vision for this eventuality must be made.

A major hurdle in the use of the analysis technique
employed, was the search for and determination of an adequate
correlation model function. This concerned not only the
actual model formulation, but also the problem of trans-
forming four-dimensional observation values into aniso-
tropic four-dimensional correlation coefficient fields,
as well as the fitting of the model function to those fields.
These problems were compounded by the fact that the obser-

vations are normally obtained from stations whose spatial
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placement is not uniform.

Two algorithms were devélopéd to generate the
needed correlation coefficiént fields, the first fpr non-
uniform station placements, as 1s the case with normal field
observations, the second for symmetrically generated data
arrays, which 1s the type of output expected from an objective
analysis program or atmospheric numerical simulation model.
The use of both algorithms allows for the initial estimate of

the correlation structure of the observation field, as well as

the determination of the correlation structure from the
objectively analyzed grid values. After fitting the model
function to these fields, an estimate of the ability of the
analysis technique to retrieve the original data structure
is possible. This provides some measure of the disportion
Introduced into an analyzed field by the analysis téchnique
itself. The better the technique used, the less will be
the amount of distortion detected.

The second problem, of fitting the model function

to the generated correlation fields, was solved by employing

an NLP algorithm. Let ri(ux,uy,uz,ut,) be the correlation co-
efficient for spatial lags ux,uy,Ug and temporal lag ut, and
let ni(ux,uy,uz,ut) be the number of observation pairs used in
determining that value. Then the problem of fittiAg the model
function fi(ux,uy,uz,ut) to each of the M lag-categories, re-
duces to the problem of minimizing

M ,
Q = § ni(ux,uy,uz,ut)(ri(ux,uy,uz,ut)-fi(ux,uy,uz,ut))2 (7)
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for all dlscrete lag yvalues of ux,uy,uz, n

algorithm adjusts the parameters of £ until the value of Q,

and u The NLP
the sum of the square of the errors, has been sufficiently

reduced. The present form of the correlation model 1s given

below.

Letting

gluy,uu, ) = al(u;/d) + az(u;/d) + as(uy/d)

+ au(u;/d) + aS(u;/d) + a6(u;/d),
we obtain

f(ux,uy,uz,ut) = g(ux,uy,uz) + (a7—g(ux,u ,uz))

y

expl-((uy/ag)® + (ug/ag)® + (u3/ajq)? + (/% (8)

+ 2 - 2 2
+ (u,/a,5)° + (uz/a13) + (u /a))*)}
where aj, ..., a6; ag, +-+» 413 permit the structure function
to be anisotropic; 8y, .., 8g allow the function to become

negative in the respective spatial directions; ag, ..., ai3
determine the function's spatial shape and size; ajy determines
the function's temporal shape and size; a7 is the correlation
value for a spatial-tempofal lag of zero (See Chapter V, section
B for a more detailed discussion of the ay parameter); and d=
luy | +]uy|+|uz|. Since the particular data set discussed herein
exhibits no vertical distribution, the u, parameters are zero,

and the appropriate form of the function is f(uy,uy,ut).
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C. Nonlinear Programming (NLP) Algorithm

As has been stated, nonlinear programming plays an
important role in the development of an experimental design
systems package. Not only is it needed in the parameteriza-
tion of the structure function, it is also vital for the
investigation of the sensor configuration problem. A number
of NLP algorithms exist, each appropriate to various non-
linear programming applications. The algorithm chosen for
the particular applications previously described, was developed
by Himmelblau (1972), and an updated version of this technique
(Himmelblau, 1974) has been implemented.

The basic idea of the algorithm was described in a
paper by Paviani and Himmelblau (1969), which extended and
generalized the work of Nelder and Mead (1964). Likewise,
the method of Nelder and Mead was an extension and generaliza-
tion of the work accomplished by Spendley, Hext and Himsworth
(1962). The algorithm is a direct search technique which
improves the value of the objective function by using infor-
mation provided by feasible points, as well as certain non-
feasible points (termed 'near feasible' points). The near-
feasibility limits are gradually made more restrictive as
the search proceeds toward the solution of the programming
problem, until in the 1limit only feasible points remain in
the solution space.

The algorithm utilizes a penalty function technique

whereby the constrained problem is transformed into a sequence
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of unconstrained problems by employing a modified definition
of the objective function. For the general case, the NLP

problem 1is expressible as

n

minimize f£(£g) , £ €E

subject to hi(g) =0 , i=1,2, ..., m
gi(é) >0 , I=m+l,m+2, ..., p

where the objective function f(&) and the constraint functions
h(g) and g(£) may be linear and/or nonlinear. Utilizing this
notation, the definition of the modified objective function
becomes

m P

I h;2(E)+ T min(0,g,(8))%  (9)

P(E,t)=min[0, (t-£(E)) 1%+
‘ , LT i=1 i=m+1

where p(g,t) is the Moving Exterior Truncations (MET) penalty
function, t is a truncation level, and the constraints represent-
ing variable bounds have been included as inequality constraints
in the last term of equation (9). The basic procedure for
utilizing the MET penalty function is to minimize equation (9)
for a monotonic increasing sequence of truncation levels {tk}
converging to f¥, the value of the objective function at the

constrained minimum, so that

where the subscript k denotes the kth unconstrained minimiza-

tion. A new technique for generating the sequence of
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truncation levels was incorporated into the algorithm in
order to give a faster rate of convergence than previous
methods utilizing the same penalty function.

In order to find the initial truncation level tl,
which is not known a priori, the parametric quadratic loss

penalty function

1 m
Py (g,r)=r(E)+ if__lhiz(gH

L

r .

P
z
i=

min[O,gi(g)]2 (10)
m+1

is minimized on the first stage, where r is a weighting para-
meter. Because a point minimizing equation (10) also minimizes
equation (9) for an appropriate value of t, the initial trunca-

tion level 1s found from
6. = fleg'(ry)] - iy (11)
1 1 2

where E'(rl) denotes the point minimizing equation (10) for
the parameter value rl.

The method of Fletcher (1970) was used for the un-
constrained minimizations of the penalty function. Fletcher's
method is a variable metric method modified to eliminate uni-
dimensional searches. His algorithm was modified to accept
difference approximations for derivatives (Stewart, 1967) so
that analytical derivatives need not be furnished in order to
use the NLP algorithm.

The criteria which must be satisfied before final
convergence to the problem solution is assumed are the

following:
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rLe (e, )] - ¢, < ¢ ' (12)
|n,Le e, )] < ¢, 1=1,....,m (13)
g[8 (£, )] > ¢, i=m#l, ...., p (14)

where ¢ is a small positive number and g'(tk) denotes the
point minimizing the MET penalty function for the truncation

level tk‘

Stocker (1969) made a comparison of five search
methods, and the results appeared in a text by Beveridge and
Schechter (1970). The five search codes tested were

1. A modification due to Paviani (1969) of

the unconstrained search technique c¢f
Nelder and Mead, which combined all re-
strictions into a single tolerance.

2. A modification due to Barnes and Himmelblau

(1966) of the basic method proposed by
DiBella and Stevens (1965). '

3. A modification of the Rosenbrock method
(1960) to allow for constraints.

4. The method of Fiacco and McCormick (1964)
using penalty functions.

5. The program developed by H.V. Smith and
distributed through the IBM Share General
Program Library.
The conclusion was that the method of Paviani was "the most
reliable direct-search method" tested. This modification by
Paviani formed the basis for the subsequent algorithms of
Himmelblau (1972; 1974).
There were other reasons for the selection of this

particular NLP code. For example, since the objective function

of both problem applications mentioned is not expressible in
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a closed form, it was necessary to obtain an algorithm which
allowed for this possibility. Also it was desirable to have
the ability to include inequality as well as equality con-
straints in the problem statement. These reasons, as well as
the fact that the algorithm was readily available as a com-
puter code, influenced the choice of this NLP technique.

Finally, the previous work of Yerg (1973) and Eddy
(1974) demonstrated the adaptability of this algorithm, and
the results of that work clearly showed its potential.

It should be noted, that there exist specific NLP
algorithms for solving least-squares problems similar to the
correlation-model-fitting problem previously discussed. The
implementation and subsequent testing of such an algorithm
was not accomplished. It was decided that since the least-
squares problem need be solved only once for each phenomenon
analyzed, the "cost" of acquiring such a specialized technique,
in terms of time required and effort expended, would exceed
the advantages of having same. As Himmelblau's algorithm
(1974) was already available, and as it could satisfactorily
solve these types of problems, it was used in the fitting of

the structure model to the correlation data.



CHAPTER V
ANALYSIS RESULTS

Objective analyses were obtained using the pre-
viously described Z-R relationships in three different data
configurétions. Analyses of the surface precipitation filelds
were accomplished by

1) using only the surface-gauge measurements,

2) using only the converted-reflectivity estimates, and
then

3) wusing the multivariate predictor set of surface-gauge
measurements and reflectivity estimates.

In order to compare objectively the results of
these different analyses, the following criteria were used.
Denoting the observed surface rainfall amount at the ith
station as Vi the analysis discrepancy for that station was
determined by

e; =V
where §i was the analyzed value at the ith station. The

N
1793

variance of these discrepancies for all stations, written

N N
02 = i(ei—e)z, where € = (iei)/N,

was used to compare the effectiveness of the three data con-
figurations for each analysis time. For the May 21st data

31
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set N=181, and for the May 25th data sets N=187.

In determining §i’ two procedures were used. Pro-
cedure 1 was to withhold from the predictor set the observed
value at the ith station for the time at which the analysis
was accomplished. For example, the May 21st data set had
18 time series observations for each of the 181 surface
gauges, and for the ith station, the vector of observations
could be written Yi = [yi(0725), yi(0730), yi(0735),....,
yi(08h5), yi(0850)]. When the analysis at the ith station
was then required for some specific time, say 0735, the ob-
servation at that station for the time specified, in this
case yi(0735), was withheld from the set of possible predic-
tors. This procedure permitted a comparison of the worth of
the different analysis methods per se; i.e., a comparisoﬁ of
the univariate vs. the multivariate analysis approach.

Procedure 2 was a slight modification of the first.
Instead of withholding just the surface observation at the
time of the analysis, the entire time series observation set
was withheld for the station being analyzed. As an example,
when accomplishing the analysis at the ith station for the
May 21st data set, the entire vector of 18 observations (Yi)
was withheld from the predictor set. By using this second
procedure, a comparison could be made of the worth of the
different data configurations for analyzing surface precipi~

tation.

In all the results presented, it is assumed that
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the best analysis was the one which produced the smaller
value of c;. In other words, a smaller &ariance of the com-
puted error field implies that the analysis technique used
and/or the data configuration employed made it possible to
better recover the observed precipitation measurement values.
The rest of this chapter presents the results obtained for

the four storm systems analyzed.

A, 21 May, 1974, 0725-0850
The deduced correlation and éross—oorrelation'model

parameters for this particular precipitation data set are

shown in Table 1. Parameters A8, A9, Al0, and All are in

POSITIVE X POSITIVE Y NEGATIVE X NEGATIVE Y TIME

Al A8 A2 A9 A3 A0 AL A1l A1l A7
CORR{X;X;} .05 9.3 =~.14 10.6 .09 10.4 ~-.17 8.6 34.0 .35
CORR(X,X,) =-.05 10.1 =-.03 8.5 .14 8.4 -.02 4,7 18.1 .58
'CORR(X,X,) .02 11.3 -.03 10.5 .06 7.9 -.13 5.8 24.5 .39
CORR(X,X;) -.01 7.1 =-.13 9.7 .09 14.2 -.03 8.7 23.3 .35
CORR[X,X,] =-.05 12.2 -.07 9.0 .09 11.6 .o 4.2 19.2 .53
CORR[X,X,] .05 12.1 =-.05 10.5 .03 9.5 =-.10 5.2 26.5 .38
CORR[X,X,} -.05 -6.8 -.11 8.5 .06 16.1 -.00 7.5 25.0 .3%

TABLE 1.-~The signal-plus-noise model parzmeters for 21 May, 0725-0850. The
parentheslzed model designation, CORR(X;XJ), denotes the parameters
obtained from the'Marshall-Palmer Z-R conVersion, while the bracket-
ed model designation, CORR[X;X;], denotes the parameters obtained
from the empirically derived Z-R conversion.

nautical miles, while parameter ‘AlY4 is in minutes. Figures 4
and 5 visualize the anisotropic CORR(X2X2) model for a
temporal lag of 0 minutes and a temporal lag of 10 minutes,

respectively. As the spatial and/or temporal distance in-
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Fig. U: The May 21st Fig. 5: The May 21lst
CORR(X2X2) model CORR(X2X2) model
for u_, = 0 min. for u, = 10 min.

Mgdel \lgalueg 0 Model values
SQE%Z rom 0.0~ range from 0.0-

0.426.

creases, the correlation between observation pairs decreases,
as illustrated in these two figures. The spacing between
grid lines corresponds to a horizontal distance of 2.0
nautical miles.

Grid analyses for the entire May 21st storm are
presented in Figures 6 thru 23 in order to show the type of
precipitation pattern of that date. These analyses were
produced using the Marshall-Palmer derived multivariate data
configuration as were all the grid analyses presented in this
chapter. 1In general the rainfall rate for this data set was

between 0.2 and 1.3 inches/hour, with the higher rates
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Fig. 21: 0840 - 21 May.
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occuring but a few times at a few stations. The area cover-
ed by each grid analysis presented in this chapter, corre-
sponds to the area enclosed by the corner brackets shown in
Figure 1, pége‘9; approximately 41 x 41 square miles. Iso-
hyetal lines correspond to rainfall increments of = .14 mm.
It should be noted that the precipitation pattern covers a
rather large portion of the sensor network.

Table 2 shows the analyses results for the May 21st
data set obtained when using procedure 1l; that is withholding
only the pertinent observation from the prediction set. It
is seen that for the 18 analyzed times, the multivariate data

configuration using the Marshall-Palmer Z-R relationship was

best 11 times, the multivariate data configuration using the air-



ANALYSIS
TIME

725

740

145

755

800

820

e3s

840

845

850

TABLE 2,
INDICATED BY THE
INCLUCED FCR CCMPARISCN PURPOSESe.
MARKED (*)e

5CTS

ANCES ARLC
EACH ANALYSIS TIME IS

ARE YHE MOCECLED VARIANCE ESTIMATES.

OosmRvaTIion

VARIANCE

C. 06 &1

0. 0441

00,0420

0e1416

04 05€S

0.0731

0. 09406

0e3131

Oesl11182

01174

01021

00740

0.0576

0.0315

0.0402

4o

MARSHALL-PALMER

2-R
RAD AR

0.0448
(C.N509)

C-0268
(0.0227)

0.0312
(0.,0316)

Ce1177
{01050}

C.0522
(0.0419)

0.0624
(0«0542)

Ce0715
(0.0701)

Ce2506
(Ce2322)

C.1182
(D1272)

€Ce1109
(011621

Ces0Q0EAQS
(0.C877)

Ce0710
(0.0871)

060734
(0.0757)

00551
(0.0549)

Ne0454
€0.0427)

C.0143
(0:.01€9)

0.0189
(0.0233)

0.020¢C
(0.0303)

RELATIONSHLP

GAUGES
ERADAR

0.0419%
(0.0519)

0.0219=
(0.C336)

040256
(0.0324)

0. 11381
(0.1078)

040441
(004301

060443
(060556}

Q. 0571 %
(0.0720)

0.2323%
(0.2383)

0. 0626%
{0.,1306)

Qe 08552
(0.1192)

0e0572%
(0.0900}

0. 0607%
(0.0894)

0.0E36%
(0.0777)

O.CHn10%
(0,0563)

C. 0436
{0.0439)

0.0120
(0.0173)

0.01€2
(0.0239)

060257%
(0.G307)

GAUGES

0e0478

(0.0527)

C.0281
{Ce034C)

0.0284
(0.C32E)

C.107C#
(C.1082)

0 0357%
{0.C83€)

0.0460
(040562}

0.0675
(0.0726)

Oe 243 €
(0.2414)

0, 0Q08
(0.,1322)

0, 0932
(C.1208)

0. 068¢C
(0.0911)

0. C741
(0.000¢%)

Ce C74E
(0075712

8. 060C
(C.0570)

C.Ta94q
(0 DG4 YG)

0.016¢2
(0.017S1)

0.C201
(0.0242)

Ce340
(C.0311)

AIRCRAFT—-DETERMIHMNED

Z-R
RACAR

00527
(0.0528)

0.0315
(0.0341)

0.0351
(CsC329)

0.,1229
(Ce10GE)

0.0484
(004 27)

0.0550
(C.05€5)

0.0655
(0.0731)

Ce25830
(Ce2421)

0.11°0
(0.1326)

Cell€6
(Ce1211)

CeCR7C
(0.06G614)

C.CE82C
{(C.060€)

CeC7G3
(0.0750)

C. 0ES6
(0.0572)

Ce C479
{0.0446)

Ca0166
(0.0176)

Ce0223
(0.0243)

0.0212
(0.0313)

RELATIONSHIP

GAUCGES
ERADAR

0.0458
(0.0519)

0.0226
(0.0337)

0. 255%
(0.0325)

0.1173
(0.10€0)

0.0306
{0.0431)

0.04206%
(0.0557)

0.0595
(0s0721)

0.2329
(0.23€82

0.0732
(0.13C8B)

0.0907
(0,13165)

00615
(0.0501)

0e30:C7
(0.082%6)

0.0%¢%8
(0.0779)

0.0428
(0.05€4)

040434 %
{00429)

De0115%
(0.0173)

04C1€0%
(0.C240)

0.02€¢3
(0.03207)

A LISTING OF ANALYSIS ERROR VARIANCES CCMPUTED USING THFE DATA

VARICUS

CCLUMN

HEADINGS.

THE OPSERVATICN VARI-

THE LOWESY VARIAKNCE FCR
THIS INCICAYFES wriIdCk ANALYSIS DATA
CONFI CURAT ION PROCUCED THE BEST RESULTS.

THE VALLELES
THIS DATA 15

IN THE

PARENTHESES
FFOM THE 21ST OF MAYe.
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craft determined Z-R reiationship was best 5 times, and the
surface~gauge data set produced the minimum error variance
for the timesAOYMO and 07T45. Graphics of these results are
shown in Figures 24 and 25 for the Marshall-Palmer Z-R re-
latiohship and in Figures 26 and 27 for the aircraft deter-
mined Z-R relationship. Figures 24 and 26 compare the
analyses results with the original data variance. Since the
variance in the original data set is due to the measurement
of the signai plus the noise in the phenomenon, and since the
variance of the error field reflects only the noise in the
observation set, the error variance should always te less
than fhe variance of the data set itself, assuming that some
'signal' was indeed observed. This is one way to assess the
worth of an analysis technique (See section E of this chapter
for a more detailed discussion of analysis filtering proper-
ties). The observation variance is includea in Figures 24
and 26 (and similar figures throughout this chapter) in order
to make the above assessment more apparent. Figures 25 and
27 express the analysis error variance as a percentage of the
variance of the respective observation set for each time

period analyzed.

From these results, it might be conjectured that

the multivyariate approach does indeed produce better analyses

of the surface precipitation field than does either of the

other analysis approaches presented. It can be readily seen

from Figures 25 and 27 that the multivariate approach (M)

produces as small or smaller an error variance, for 16 out of
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the 18 analyzed cases, no matter which Z-R relationship is
employed. However, it would be tenuous at best, to make any
definite conclusions based on this one storm realization.

Table 3 shows the analyses results for the May 21lst
data set obtained when using procedure 2; that is withholding
the entire time series observation vector from the predictor
bset. It is seen that for the 18 analyzed times: when using
the Marshall-Palmer Z-R conversion, the multivariate data
configuration was best 4 times while the radar data alone
produced the better result 9 times; when using the empirically
derived Z-R conversion, the multivariate data configuration
was best only 1 timé while the radar data alone produced the
better result 3 times; and the surface-gauge data set pro-
duced the minimum error variance for the analysis time 0820.
Graphics of these results are shown in Figures 28 and 29 for
the Marshall-Palmer Z-R relationship and in Figures 30 and
31 for the aircraft determined Z-R relationship. Figures 28

and 30 compare the analyses results with the original date

SM]

§

variance while Figures 29 and 31 express the analysis error
variance as a percentage of the variance of the respective

observation set for each time period analyzed.

From these results, it might be conjectured that the
converted radar precipitation estimates constitute a better
predictor set for the observed surface precipitation field,
than does either of the other data configurations utilized.

As can be seen from Figures 29 and 31 the radar data set



ANALYSIS OBSERVATION

TIME

725
730
73S
740
745
7S50
755
800
805
810
815
820
825

830

840
845

850

TABLE 3.
SETS INDICATED BY THE VARICUS CCLUMN HEADINGS.
ANCES ARE INCLUDED FOR CCMPARISCN PURPOSESe
EACH ANALYSIS TIME IS MARKED (%),

VARTANIE

0.0681
0.0441
06 0426
0+1416
0+ 0565
00731
000946
003131
0.1715
Ool§67
0.1182
0.1174
0.1021
00740
00575
0. 0227
00315

0. 0402

by

MARSHALL-PALMER
Z-R RELAYIONSHIP

RADAR

0.0448%*

(0.0509)

Qe.0288%
€0.0327)

0e«0312%
{0.03106)

Oel 177
(0.1050)

00522
(0.0419)

00624
(0.0542)

0.0715
(0e0701)

0.2509%
(0.2322)

0e.1182
(0.1272)

041109
(0.1162)

0.0845
(0.0877)

0.0710
(0.0871)

00734
(007571}

Ce 0G5S %
(Ce0549)

0.04542%
(0e0427)

Q0e0143%
(00169}

Ce0189%
(00233)

0.0260%
(00303)

GAUGES
ERADAR

00,0483
(0.0496)

0.0212
(0.0323)

00343
(00312)

0e1142%
(0.1037)

0.0537
(0e0414)

0.0651
(0.0535)

0.0709
(0e0652)

0.2596
(02292}

0.1088%
(0.1255)

0¢1057%
(01147}

0.0846
(0. 08E65)

00703
(0.08591)

0.0707%
(0.0748)

060615
(0.0542)

00515
(0.0422)

0.0176
(0.0166)

0.0200
(0.0230)

0. 0280
(0.0293)

GAUGE S

0. 052¢

(060494)

0e 037S
(0.0319)

0e040€S
{00307}

0el222
(01022}

00528
(00408)

00694
(0.0528)

0.0838
(0.06823)

02807
{02260}

01372
(0«1238)

0.1107
(0.1131)

0.0840
(0.08%53)

0.069S%
(00848}

00820
(0.0737)

00051
(0.0534)

0.0538
(0.041€)

0.0207
(0.0164)

0.0261
(0.0227)

Ce0348
(0.0292)

AIRCRAFT-DETERMINED
2-R RELATIONSHIP

RADAR

Ce 0527

(0.0528)

00315
(0.0341)

00351
(0+0329%)

0el1229
(Cel1095)

ODe0484%
(00437)

0e05€0%
(0.0565)

0e06SS%
(0e0731)

Ce2580
(Ce2421)

Oe.118C
(01326}

0.1166
(0.1211)

0.0870
(0«0914)

0.0820
(00908)

00753
(00790}

C.C596

(0.0572)

0e 0479
(Ce0446)

00169
(0.0176)

040223
(0«0243)

0.0312
{(0.0313)

GAUGES
ERADAR

0.0528
(0.0522)

00359
(0.0339)

0.0346
(0.0327)

O«1161
(0.1088)

0.0512
(040434

040636
(0.0561)

0.07¢9
(0.0726)

062640
(02405}

0e1269
(De1318)

Oel 156
(0.1203)

0.0824%
(C.0908)

00667
(0.0902)

00793
(0.078S}

C.0528
(0.0568)

060546
(00443)

00174
(Ce0175)

00233
(0.0222)

0.0304
(0.0308)

A LISTING OF ANALYSIS ERRUR VARIANCES CCMPUTED USING THE ODATA

CONFIGURATION PROCUCED THE BEST RESULTS.

ARE THE MODELED VARIANCE ESTIMATES.

THE OBSERVATION VARI-

THE LGWESYT VARIANCE FCR
THIS INDICATES WHICKH ANALYSIS DATA
IN THE PARENTHESES

THE VAULUES
THIS DATA IS FROM THE 21ST OF MAYe
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produces as small or smaller an error variance 14 and 12
times respectively, for the 18 analyzed time perlods. Once
again, however, it would be hazardous to make any conclusions
based on this single storm realizatioﬁ.

In addition to the comparisons already mentioned,
it was also possible to investigate the relative worth of the
different Z-R relationships used, the results of which are
shown in Figures 32 and 33. Both graphics compare the error
variance using the multivarlate data analysis configuration.
The first figure is the result of employing procedure 1, and
the sgcond figure is the result of employing procedure 2. These
comparisons would tend to imply that neither Z-R conversion
was predominantly better than the other when used in a multi-
variate analysis environment.

‘And finally, employing procedure 1 for this particular
storm system, the effect of offsetting the radar derived
data set by 1 time unit (5 minutes) was explored. The results,
using the aircraflt determined Z-~R relationship, are given in
Table 4. For the 17 analyzed time periods, the "normal"
analysis produced the smallest error variance 11 times, the
offset radar data set produced a better result 4 times, and

the surface-gauge data set was best for the times 0740 and

0745. From these comparisons it was tentatively concluded
that poorer analyses were produced by offsetting the radar
data set a minus 5 minutes. This was consistent with the

results found in Takeuchi, the implication being>that it
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Pig. 32: Scmperison of the effect of different 2-2 re~ Fig. 33: A comperison of the effect crf ¢iff nt o-% -

lationsnips cn the zralysis of surface precipi-

lationships on the analycis of surs
tation for May 2ist when procedure 1 was used.

tation for Mey 21st when procedure

ac? presinl-

2 wzs used.

took considerably less than 5 minutes for the radar detected
precipitation to reach the surface. (Remember the radar
élevation angle was only 1°.) Based on these findings, the
observed temporal relationship between all data sets was

maintained for all other analyses presented in this chapter.

B. 25 May, 1974, 0755-0905

The deduced correlation and cross-~correiation model

parameters for this particular data set are shown in Table 5.

while

Parameters A8, A9, A10, and All are in nautical miles,

parameter All is in minutes.
Grid analyses for this storm system are shown in

Figures 34 thru 48. In general the rainfall rate for this
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AeDe Z-R RELATIONSHIP Aefe Z-R RELATICNSHIP
REGUL AR DATA SET CFFSEY DATA SET
ANALYSIS OBSERVATICN PADAR GAUGES GAUGES RACAR CAUCES
T IME VAR IANCE ERADAR ERADAR
725 0. 0681 0.0527 0.0458 00478 0+00020¢ 0.000CH*

(0.0528) (0.0519) (0.0527) (CeCCCO) (040000)

730 0. 0441 C.0315 0.0226% 0.C281 O.N321 0.0286
(D%.0341) {0.0337) (0.034¢0) (Ce0344) (0.0335)

738 0e 0426 0.0251 0. 0255 00284 0.0311 0.0232%
(0.0329) (0.0325) (0.032€) (0.0330) (040323}

740 Oe.1416 0. 1229 0.1173 Oe107Cx 0.1328 0.1195
(21095) (0.1080) (C.1092) (Ce1C32) (0.1076)

745 0. 05865 Ce 0484 0. 0396 0.0357% CenN491 0.0371
(0.0437) (0.0631) (0e043¢C) (C0e042F) (040429)

750 0.0731 Ce 0550 0. 04 06% 0.046C 00646 0.,0423
{0.0565) (0.0557) ({0.0562) (0.08¢67) (0.0555)

7S5 0.094606 0« 0€55 0. 0595« 0.067¢S 0.0783 D.0511
(0.,0731) (0.0721) (040726) (0.C734) (0.0718)

8090 0e 3131 c.258€¢C 0.2329% 0.243¢€ 0.2868 0.26419
(0.2421) (0.2388) (0.2414) (Ce242S) (0.2379)

805 041715 C.118C 0.0732&  C. 0908 0.1844  0.0818
(0.1326) (0.1308) (0e1322) (Ce1231) (0.13C3)

810 0.1567 Cel1166 0. 0G07% 0.093¢2 Cel217 0.0915
(0.1211) (041195) (0.1208) (0e1215) (0.1190)

e1s 0.1182 CsC87C 0.0€15% 0.cC68C CeaeCG76 0.071S
(0.0914) (0.0901) (0.0911) {0.0G517) (0.0858)

820 O«1174 c.0820 0.0667% 0.0741 CeCc23 0.0671
(0.0908) (0.08906) (0.090%) (Ce0G11) (0.08G2)

825 0.1021 00793 0.0558 0. 074¢ CeC?G0 - 040543 %
’ (0.0790) (0.0779) (0.0787) (0.0792) (0.0?76)

839 00740 0.0596 De.042E% CeCEOC C.C616 00432
(0.0572) (0.0564) (0.0570) (0D0574) (0.0562)

835 040576 0.0479 0.0434 OsCAQA O«CS11 0e0431%
(0sD446) (00439) (0sD844) (0.0447) (0.0438)

840 0e0227 0.0169 040115 0.0162 Ce0163 O.0111%
{0.0176) (0.0173} (00175) (0.0176) {(0.0173)

845 00315 0.0223 0.0160% CeC201 Le022E Q. C1CE
(0.0243) (0,0240) ({0.0243) (0.0244) (0.C239)

850 0.0402 0.0312 0+0263% Ce03a90 CeC2SC C. 0272
(0.0313) (0.0307) (0.0311) (0.0314) (0.0305)

TABLE 4. A LISTING OF ANALYSIS ERROR VARIANCES CCMFUTED USING THE DATA
SETS INOICATED BY THE VARICUS CCLUMN HEADINGS. THE OPSERVAYICN VARI-
ANCES ARE INCLUCED FCR CCHMPARISCN PURPOSES., THE LOWE ST VARIANCE IFCR
EACH ANALYSIS TIME IS MARKED (*)e THIS INCICATES whHICH ANALYSIS DATA
CONFICURATION PROCUCED THE BREST RESUL TS. THE VALLES IN THE PARENTHESES
ARE THE MOCCLED VARIANCE ESTIMATES. THIS DATA 15 FPOM THE 21ST OF MAYe.



SHNEL OF CATA voLuls PaCa  §.2I0F-08 1C

8.34%0 €3 wiTw & CURTCLOIPE IRTEEVM CF @.T7¢88 @0

b9

asnce or co1s

YNl Paiw 9.3305-0) NC

$.309¢ 53 BITN & (CNIOVRING INTERVY F

9.1esc 3

(R
[RXEAR VAR R L)

AT Y ey foue
PXTI2IIRIRR2]
119010273y

Y L L L L L L Y )

Fig. 34:

BANCE €% CaTA sailes Faun  0.2)0Le0)

"® ot

0755 ~ 25 May.

1]

S3000 01 DT A COPYCURING ERICAVM, CF @aded

LARRRRNYR Y

R N N T ST R ISR R PR T

IR R R T TR

[IRIRRITNRS) 1l
t

NEESLEERERTR}
QL]

v s 0 0 w8 o0 w00 o 0 B4 g S8 0 g O 0 06 0 O P 0 OB O U0 ) B 4 00 0P 00 5 OB 00 & 09 om r O e 04 WA g &0 T WD w0 00 O 0y 07 S

BANCE P DATA VALLLS FaCe

Fig. 35:

9.3308-91 Ic

0800

25 May.

0,244 81 WI1lm A CCAYOUMING INTERVA OF

P L L L LT T TR LT LY

-

1
]
]
3
4

- e 0 S8 e B e B0 O e B G0 e e P

(LLAERNEET Y]

RO NN TR R ]

PRIIIIIIENIIII 800
(ERLEREY)

- o ¢ 50 s 0 0 o Vo 00 s O D g B P m S B s 8 s e am Ba o 0 B S 00 e B G Y A B g O s e

- - 0 oy 04 T 2o o = e

36

Fig. 37:

0810 - 25 May.



50

212 ETEY

i
[YERTSTRLE)
LLLETRES)

1)
t
1]
{
1
3
]
t
’
1
13
r

13
)
1
13
t
1
3
[l
1
1
1
s
t
3
1
g
1
1
1
L
]
1
1
i
t
t
1
3
1]
3
t
]
13
3
1
1
3
1
L3
t
t
1
L
1
13
L]
2
t
]
Ll
13
1
1]

XXLITEREEEREEE)

e 20 o s g g U 50 05 Ol o8 oy 6 04 0 84 O% o s 0t g B OO 0 R e o 4 % On e W o

)
)
[}
1]
]
v
L]
)
L]
3
3
]
3
T
X
3
1
3
3
2
1
L3
1
13
8
3
2
s
t
s
1]
3
L3
1
Tt
X
[
1]
L]
)
1]
L]
z
L]
3
¥
z
(]
s

e 50 0 e e 0 et g O s e e 0 00 g O o e A e e R S e 0 R e o e S e e e m S e e e e %0 e e e e

‘
1

Fig. 38: 0815 - 25 May. Fig. 39: 0820 -~ 25 Hlay.

2062 ) a1 b <X Ssmes OF €ATI VALULS FHCK  Ca226Co8) 1C £.20%7 €1 w8dn 8 CErACUR NS
M oae -

BaNLL o 4274 AILLLY Puly  B.33CL-0Y TC

RN INRSRYRNLE)
(RLEINIRERR Yoy
eskegatreie
[IRIXERN)

XIETTEENY
EXERTLREY)
3109840

[SYTTRLT)
URLEEEA ]

- e O . o o 0 e e 0 ey oy 0 O om 8 e W e % O e O v 04 e e

e o g D P D 0 0 50 W &0 G B0 6 BN S5 w50 0 g o OBy B0 O A By 8 N 6 O s e O G 0
e 50 e o G 0 e B8 8 4 e o 00 A P 0 oy B O PP B SO e 4 e T e N e Y e

Fig. yo: 0825 - 25 May. Fig. 41 : 0830 - 25 May.



BANZYL 05 LATA SALULE PICO A FICR-0Y T £.2407 @8 Wite & CCMTOLAINE IRVERYSL ({2 PP IYE 31

forcrecancrismen

P T T L L LT T TR

[}
[}
]
[}
]
5
1
1]
1
)
?
13
1
L}
[}
2
L
4
1
[}
1}
[}
[
1
1
3
1
3
]
.
1
L}
1
3
)
s
)
1
1
1]
1
I}
L]
1
1
»
3
3
)
?
13
L}
1
3
L}
t

[ T T L L L LT PR PR LY g

Kats v LNIL Prer

€08

V€ @.209P Q) WITH B CLRIGURENS FNIESYAL O

1 (N
(CEXRTTRESTRNTINEANSRET)

IR EN IR RTEN NI AR RN RO
AEIRBIEBNIINIINNINbY
IRLLEL NI

N Y L L I R T L TR
F N T T L L L L Y P P P PP P L L D

Qomsctane

51

ornie or €4

g Face

P2ICAS0L U7 4 344C €1 1Y B CORILV

(RIRTITSITINITEN)
ERIRSTIIERRENAN)

o 0 0 0 e a0 o0 4 4 O 0 S e e 8y o e B 4 D O e b

F

ig.

42

0835 ~ 25 May.

mnnn
”"
3

)

4
1
2
]
1
'
L]
1
1]
1
3
1

P L L L L
P Ty o e e e N el Ll e el L T

Fig. 43: 0840 - 25 May.

(€ OF TATA VALLLY PeCm 10001 W

®.r406 €8

@.9250 OF wltw & CCBICue e

Latgavey o

F

ig.

by

.
.

0845 - 25 May.

B e o R L LT L L L Ty pupeey-

Fig. 0850 - 25 May.

US'



52

SONCL CF COTH VALULS PECE  $.3I0L<€0 T §.3402 81 wiTn @ COMICLAIIE IN'TBYM OF @,300y 8¢

..................... R T et ST PN

PANLE CF CFTA VALUES FAO%  GD1(R=03 S ®,24%3 4} altn & CCorCLONNG IATESNAL CF  §.346% @F

Jucuaueseemnacsssseceorsnnsvinaeon P
3
3
H )
'. e
H 19
H )4
’

)
3 aniasinveing

(TR R

O L L L L LT iy S e T T T T T T TN

B L L L L L L L T oy A e T T T T )
R T T L L L L L L L LI T P YO Sy e Dpip ey

Fig. 46: 0855 - 25 May.

T T,

g%;

£

D 00 % 00 U B 0045 0 0 00 S0 00 U0 5% 0 gy 0 0 U R 0 0 0 0 T W e S0P a D B0 By O 0 S D e B e 4B o6 06 B S i 0 P g ke Bm

Fig. 48: 0905 - 25 May.



53

POSITIVE X . POSITIVE Y NEGATIVE X NEGATIVE Y TIKE
' Al A8 A2 A9 A3 A10 Al All ALl AT
_CORR{X;X;} -.11 9.0 .09 9.0 -.19 8.9 -.04 9.1 25,1 .i
CORR(X,X,)  =-.08 6.9 .01 12,1 ~-.28 7.6 ~.09 6.1 23.0 .41
CORR(X;X,) -.04 5.2 -.00 9.1 ~-.16 8.9 =~-.01 8.7 25.0 .36
CORR(X,X,) .01 9.0 .07 9.0 -.19 8.8 -,17 8.9 24,7 14
CORR[X,X,] -.08 5.7 .09 7.2 -.2h 7.0 -.05 4.8 10,7 .53
CORR(X,X,] -.04 5.2 -.00 8.7 =-.20 8.8 -.03 8.5 248 .35
CORR[X,X;] -.05 9.0 .09 9.0 -.20 8.8 ~.15 8.9 24.7 .14

TABLE 5.--The signal-plus-nolse model parameicrs for 25 iay, 0755-090%5. The
parenthesized model desigration, CORR(XiX }, denotes the parameters
obtained from the Marshall-Palmer Z-R conversion, while the bracket-
ed model designation, CORR[X3X;], denotes the varameters obtained
from the empirically derived ZZR conversion.

data set varied from 0.3 inches/hour to as much as 3.5
inches/hour, with these higher fates occurring only a very
few times at but a couple of stations. isohyetal lines
correspond to rainfall increments of = .35 mm. Noctice
that this precipitation pattern, in contrast to the one of
21 May, covers a much smaller percentage of the sensor

network at any given time. This is true for all three storm

conditions that occur%ed on this date.
Table 6 shows the analyses results for the first
storm occurrence of May 25th obtained when using procedure
1. For the 15 analyzed times, the Marshall-Palmer Z-R
relationship procduced the best analysis 2 times using the
radar data alone and 4 times when the multivariate approach
was usedq while the aircraft determined Z-R relationship

produced the best analysis the remaining 9 times when used in
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a multivariate environment. The éurface—gaﬁge univariate
analysis produced as good a result as the aircraft determined
multivariate analysis for the time 0845. Figures 49 thru
52 compare these results in the same manner as did Figures 2l
thru 27 for the May 2lst data set.

It should be noticed.from Figures 50 and 52, that
although the multivariate analysis approach gave the consis-
tently better results, it is difficult to discern this fact
from these graphs. A closer look at Table 6 will show that
the multivariate analysis approach generally produced the
better results only in the U4th or less significant digit,
and for all practical purposes, the surface-gauge univariate
analysis did just as well. The reason for this can be found
in Table 5. It ié seen that the A7 cross-correlation values,
CORR(XlXQ) = ,36 and CORR[X1X2] =‘.35, were smaller than the
A7 correlation value .41, which was found for the surface-
gauge data set alone. The A7 parameter is an indication of
the amount of signal, or the amount of usable information,
within the respective data set, and the quantity; AT/(1-AT7),
is an estimaté of the signal/noise ratio. In an observation
network when the measurements taken reflect perfectly the
signal present (a situation that is rather difficult to
achieve) the value of the A7 parameter is exactly 1, and
when measurements of white noise are made, the value of
the A7 parameter is exactly 0. For the four storms analyzed,

the values ranged from a low of .09 to a high of .87.
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The relatively smaller cross-correlation values
for this particular storm imply that if an énalysis of
surface precipitation is desired, it is generally more
beneficial to use a surface-gauge predictor in the regression
equation as compared to a reflectivity derived predictor.
However, as the spatial-temporal separation between a
predictand and possible predictors becomes greater within
the surface-gauge data set itself, it is;possible for a radar
bin position to have a relatively higher Qbrrelation value
and to theréfore be included in the predictor set. The
reason that fhe multivariate analysis was almost always just
a bit better than the surface-gauge univariate appfoach, was
because occasionally 'a radar bin position was indeed closér
to the predictand than the next available surface-gauge
position. This radar bin position was then incorporated
into the predictor set, a better regression equation resulted
(as compared to the regression equation determined for the
surface-gauge univariate approach), and the multivariate
analysis produced slightly better results. The separation
distance -at which a predictor is chosen from one para-
meter set as opposed to another, is a function of the rela-
tive A7 values of the respective correlation and cross-—
correlation models.

For the May 21st data set, as seen in Table 1, the
A7 cross-correlation values, .39 and .38 respectively,

were larger than the A7 surface-gauge correlation value of
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.35. There was therefore some advantage in including the
reflectivity data in the predictor set, as opposed to
using the surface-gauge data by itself. Based on this
information, the multivariate analyses should have produced
consistenly better results than did the univarilate approach,
which was indeed the case.

The results using procedure 2 are shown in Table 7.
Employing the Marshall-Palmer Z-R conversion, the radar uni-
variate configuration and the multivariate approach produced
the.best results 6 ﬁimes each. For the times 0820 and 0850,
the univariate configuration using the empirically derived
7-R conversion of the radar data produced the best results,
.while the surface-gauge data was best at 0855. Figures 53
thru 56 are a comparison of these results.

Notice from Figures 54 and 56 that either the multi-
variate approach or the radar reflectivity univariate con~
figuration produced the consistently better analyses. Also
note, that by withhelding the entire time series surface
observation vector from the set of possible predictors, the
close correspondence between the multiyariate analysis and
the surface-gauge univariate results is no longer eyident.
This is because the A7 cross-correlation values were just
slightly worse than the A7 surface-gauge correlation value,
reducing the possible predictors that could be included
from the surface-gauge data compensated for the relative

weakness of the cross-correlation term. For a given pre-
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dictand then, the worth of a reflectivity estimate increased,
and a greater number of these were used in determining the
regression equations, resulting in different regression
weights and different analyzed fielus.

Figures 57 and 58 compare the relative worth of the
different Z-R relationships, as was done for the May 21st
data set. The first figure corresponds to procedure 1
results; Figure 58 corresponds to procédure 2 results. As
before, no predominant difference exists between these two

Z-R ‘conversions when used in a multivariate analysis con-

figuration.



model parameters for this particular data set are shown in
Table 8.

miles, while parameter Al4 is in minutes.

62

C. 25 May, 1974, 0935-1010

The deduced correlation and cross-correlation

Parameters A8, A9, Al0, and All are in nautical

POSITIVE X POSITIVE Y NEGATIVE X NEGATIVE Y TIME

Al A8 A2 A9 A3 AlO Al All All4 AT
CORR{Xlxl} .01 8.9 .09 9.0 -.01 9.0 .03 8.9 25.0 .36
CORR(X2X2) -.04 9.0 ~.1h 8.9 ~-.00 9.0 ~.56 8.9 25.0 .38
.CORR(Xlxz) .02 9.0 -.03 8.9 .05 9.0 ~.0H 9.0 25.0 W1l
CORR(szl) -.02 9.0 .15 9.0 .06 9.0 ~-.11 9.0 24,9 Az
CORR[X2X2] -.03 9.0  -.17 9.0 -.02 9.0 ~.09 9.0 25.0 .37
CORR[X1X2J .03 9.0 ~.00 g.0 .02 9.0 ~.05 9.0 25.0 W15
CORR[X2X1] .04 9.0 .06 9.0 .03 - 9.0 ~.04 9,0 2h.9 .09
TABLE 8.--The signal-plus-noise model parameters for 25 May, 0935-1010. The

parenthesized model designation, CORR(XiXJ), denotes the parameters

obtained from the Marshall-Palmer Z-R conversion, while the bracket-

ed model designation, CCRR[X;X;]}, denotes the parameters obtained

from the empirically derived Z-R conversion.

Grid analyses for this storm system are shown in

Figures 59 thru 66. In general the rainfall rate for this
data set was betwecon 0.1 and 1.0 inches/hour. Isohyetal
lines correspond to rainfall increments of = .06 mm.

The data set consisted of only 8 observation times,
with the majority of the precipitation occuring at 0935 and
0940. The temporal size of the data set was so short, and
the number of sensors involved in the measurements were so
few, that accurate signal-plus-noise models of the precipita-

tion field were difficult to obtain. If the temporal length



63

BANCR OF Q415 waLlag FEUN 0,0 1C 04842 00 wIVH A CCOTOUELNE [NTIBYA, OF O,8827-01 SouCe CF OATA wvaLUIY PRCS 0.8 YO 6.¢020 (O D1In A CONICLMERG TATRAVAL CF P .ualR-d)
) .o "
s '
' ]
' [
H ]
H 3
! [
H H
H t
. H H
H T
. t
1]
(]
13 . N 1
H 1
H ’ [
8 - H
H [
4 ]
1

v o 0 00 o 06 T g O g @5 O A 0 U 0 D 0 e OF 0 gy SO 5P B PP R WO 0 S 55 R BB 45 04 48 W v
LTI L T T T

PP T L r e ey peyea=]

wvnb2zazaazzazn

Fig. 59: 0935 - 25 May. Fig. 60: 0940 - 25 May.

SANGE OF DATA yaLWiy PaQE 8,8 L @ U020 €O R(fK & CONTOUNING ATERYAL OF $,P£20-0)  BANGE OF CATA yALLES FRON  §,0 YO 0.BAJR (O S|TM & CORTOUBING UNTEAVAL CF €.3020-01
"

P T L LT LYY Y Y P L LY L T Y

[ ]
13
L]
]
t
]
1
t
]
]
14
]
)
1
)
3
L4
3
]
3
]
]
1
1
]

o e o0 o on 0 s 0 0 00 %y S 50 O e 80 04 0 T b gy PO O o e B 5 0m o S e 0 D 4D D o

i7373z32272000
222322212127201

Fig. 61: 0945 - 25 May. Fig. 62: 0950 ~ 2

a0 o 5 0 e e % B bu 4% e T 0 0% OB e WP P s 0 O um e 0 00 A4 B 08 g B W0 g B0 B 00 00 Y S8 G 4N OB 4 e B 0B e %0 O




64

Sanss OF Cata vALVCY FACS 0.0

lllllllllllllllllllllllllllllllllllllllllllllllllllllllll

IE BLUPIR SR NIVM 8 CPRITIVANAC INSUOYIL EF D.9827 -0

TC Q.3el¢ 62 BITM 3 CLaID N Ing INVERDYXN OF C,0ELT1-61

aLves sagcn 6.

0955 - 25 May.

BAngE OF ORtA ¥

1000 - 25 May.

6U4:

Fig.

63:

Fig.

vaLure PRCe O.e

BANCE Co CO0S

FC #.902€ 00 WITH & CONTOUMIND INTEOVAL OF 0.381¢-Cf

GANIE OF COTP VALURY S2CR 0.0

TC 0.U0FL €0 witw & CONIULRING InTPAVAL OF D.9A1L

llllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllll

1010 - 25 lay.

Fig. 66:

1005 - 25 May.

Fig. 65:



65

of the observation set is‘short, but the number of statilons
involved in the measurement of the phenomenon is relatively
large, or if the numbef of stations is small, but the temporal
length of the observation set is relatively -long, then
accurate model estimates are possible. The size of the sen-
sor network and/or the length of the observation set ﬁecessary
for determining these accurate model'parameters is a function
of the phenomenon being investigated, the characteristics of
the storm situation, the network spacing, the sampling

fate, etc. For this particular case the data set was border
line. Of the four storms studied, this one -had the shortest
recorded 1life span, was confined to the smallest area, had

the smallest rainfall rates, and subsequentiy produced the
lowest corfelation and cross-correlétion values.

Table 9 shows the resulﬁs obtained when using
procedure 1. It should be noticed that the multivariate
analyses for both Z-R relationships were identical to the
results obtained by using the surface-gauge univarilate
configuration, for all but the last time analyzed. By com-
paring the A7 correlation and cross~correlation values of
Table 9 respective of the discussion in section B of this
chapter, the reason for this development is obvious. The
strength of the cross-correlation structure was so weak
combared to the correlation within the surface-gauge data
set itself; that the reflectivity data was never included

in the regression equation even in a multivariate environ-

ment .



MAR SHALL-PALMER ALRCRAFY-CETERNMINED
Z-R RELATIONSHIP Z-R RELATIONSHIP
ANALYSIS QOBSERVATION RADAR GAUGES GAUGES FADAR GAUCES
T IME VAR JANCE ERADAR ERADAR
GZES 0« 0268 0.0263 Ce 0204 Ce02008x% 0,0251 0204 %

(0.0284) (0.0227) (0e0227) (Ge02€2) (0a0227)

G40 0« €291 Ce 0237 0 01 44% OeDl44ax% 0;0?25 . 0.01a4%
(0.0278) (0,0221) (0.0221) (Ce0276) (0.0221)

545 0. 0064 C.0040 0, 0020% 0. 002C% 0.0035 0.0C2C %
(D4N0061) (0.0048) {0.0048) (0«0CE0) (0.00e¢8)

9s0 0+.0051 200390 0. 0C23% 0.0023% 0.0035 0.,0023%
(0.00489) (0.0039) (0.0029) (0.0Ca8) (0.0029)

959 0.0006 0.0005 Ce 0004 % 0.0004x 0.000S 0.0004
(0.0005) (0.0C00) (0.0004) (C.00CE) (0.0004)

1000 0.0004 Ce 0004 0. 0C04% 0. COO4G% 0.0004 0+0004 %
(0.0004) (0.0003) {(0.0002) (C.0004) (0.0003)

1005 0.0035 C.0024 00031« N« C031% C.CC3S 0.0021 %
(0.,0033) (0.0027) (0.0027) (0.0C232) (0.0Q077)

1C10 0.0028 C.002€¢ (.0C28 Q. 002¢& CsOC2P 0.0C28
(0.,0027) (0.0022) ({0.0022) {0.0C027) (0.0022)

TABLE 9. A LISTING DF ANALYSIS ERKROR VARTIANCES COVWPUTED USING THE CATA
SEYS INSICATEC QY THE VARICUL CLCLUMN FEACINGS. TS OSSEIRVATIAON vaR -
ANCES ART INCLUDEL FOP CCVPARISON PURPCUSES. THE LGWEST VARTANCZ FOR
EACH ANALYSIS T IMC 1S MARKED (#)e THIS INDICATES wHICH ANALYSIS DATA
CONFIGULRATION PRODUCED TH= 8FEST RKESULTS. THE VALUES 1h THE PARENTHESES
ARE THE MODELED VARIANCE ESTIMATES. THIS DATA IS FRKCNM THE 25TH CF NMAYe
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The analyses results, when procedure 2 was used,

are shown in Table 10. Once again the multivariate analyses

" for both Z-R relationships were identical to the results

obtained using the surface-gauge univariate configuration.

Notice that for all the analyses, the radar data alone gener-

ally produced as good or better results, no matter which Z-R

conversion was used.

D. 25 May, 1974, 1145-1310

The deduced correlation and cross~correlation model

parameters for this particular data set are shown in Table 11.

Parameters A8, A9, A1l0, and All are in nautical miles, while

parameter A1l is in minutes.

CORR{Xle}

CORR(X2X2)
CORR(Xlxg)
CORR(szl)
CORR[XZXZJ
CORR[xlx ]
CORR[qulj

POSITIVE X POSITIVE Y NEGATIVE X NEGATIVE Y TIME
Al A8 A2 AQ A3 Al0 Al All Alh AT

~.01 6.8 ~-.03 0.6 -~.16 4.8 .06 8.4 18.6 .51
-.07 6.0 -,04 7.0 -.24 3,0 -.02 4,6 10.4 .87
-.02 5.2 .00 9.6 ~.17 5.2 -.04 5.9 15,8 .58

.04 7.6 -.01 8.6 ~.13 3.7 -~-.04 6.6 14,9 .55
-.04 5.4 .02 7.5 «.21 4,3 -,03 4,5 11.0 .87
-.04 5.4 ~,03 210.3 -.28 4.8 -.03 5.8 16.7 .57

.05 7.8 -~01 9.5 -.12 3,6 ~.05 6.3 13.8 .55

. TABLE 11.--The signal-plus-noise model parameters for 25 May, 1145-1310. The

parenthesized model designation, CORR(XiX ), denotes the parameters
obtained from the Marshall-Palmer Z-R conversion, while the bracket-~
ed model designation, CORR[Xixj], denotes the parameters obtailned
from the empirically derived Z-R conversion.

Grid analyses for this storm are shown in Figures

67 thru 84. In general the rainfall rate for this data set
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MARSHALL-~-PAL MER ATJRCRAFT-DETERMINED

Z-R RELATIONSHIP Z2-R RELATIONSHIP
ANALYSIS ODBSERVATION RADAR GAUGES GAUGES RADAR GAUGES
TIME VARIANCE ERADAR ERADAR
935S . 0.0298 0.0263 Oe.0282 0.0282 0.0251% 06,0281

(0.02284) (0.0212) (0.0212) (0.0282) (0.0212)

940 0.0291 0.0237 0. 0230 0.0230 0.0225% 040230
(0.0278) (0.0206) (0.020¢€) (0e0276) {040206)

945’ 00064 0.0040 0.0045 0.,0045 D.0035% 0.0045
{00061} (00045) (04.0045) (00060) (0.0045)

©50 00051 0.0030% 040035 0.003€¢ 00035 00035
(00239) (0.0036) (0.003€) (0.0048) (0.0036)

9585 000006 0.0005 0. 0005 0.000% CeNODS* C.0005
(0+0005) (0.00C3) (0.0004) (0e000S%) (0.000%)

1000 040008 0.0004% 0.0004 0.0004 0.0004 00008
(0.0004) (0e0003) (0.0003) (Ca0004) (0+0003)

1005 00035 0.0034% 00,0037 0.0037 0.0035 0.0037
(0.0033) (0.0025) (0.002%) (00033) (0.0025)

1010 0.0028 0.0028% 0.0031 00,0031 0.0C28 0.0031
(0.0027) (00,0020} (0.0020C) (0.0027) (0G«0020)

TABLE 10, A LISTING OF ANALYSIS ERROR VAXrIANCES CCHMPUTEL USTING THE DATA
SETS IKROICATED B7 THE VARIUVUS CCLUMK HEADINGS. THE ODBSCRVATION VARI-
ANCES ARE INCLUDEDC FCR CCMPARISUEN PURPOSESe THE LOWEST VARTANCE FOR
EACH ANALYSIS T IME IS MARKED (%) THIS INDICATES wHICH ANALYSIS OAYA
CORFIGURATICN PROCUCEL THE 2EST RESULTSe THE VALUES IN THE PARENTHESES
ARE TFE MODELED VARIANCE ESYIMATES. THIS DATA IS FRCVM THE 25TH OF PAYe
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varied from 0.5 inches/hour to as much as 7.0 inches/hour.
The higher rates invariably were isolated anomalies. For
a specific time the rainfall rate measured at the surface
varied by as much as 5.0 inches/hour from the rainfall
rate estimated at the horigontally collocated radar vin.
Nevertheless, this storm exhibited the strongest correlation
and cross-correlation of the four storms examined, a fact
reflected in the magnitudes of the A7 parameters for the
respective signal-plus-noise models. Isohyetal lines in
Figures 67 thru 84 correspond to rainfall increments of
= 72 mm.

Table 12 shows the results obtained when using

procedure 1. It is seen that for the 18 analyzed times, the
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MARSHALL-PALVER AIRCRAFT-CETERMINED

. Z2-R RELATIONSHIP Z-R  RELATICNIHIP
ANALYSIS OBSERVATICN RADAR GAUGES CAUGES RADAR GAUGES
T IME VARIANCE ERADAR ERADAR
1145 0. 5952 0.6034 0.5205 0.5421 0.64€8 0.5060%
({0e3344) (0.3443) (0e2297) (Ce33G8) (0.3478)
11€0 Ce 3783 0.3553 0.,2104 02497 0.3332 0.1843%
(C.2107) (0.2168) (0.206€) (Ce21148) (0.2205)
1155 0. 7263 0.5813 0.3368 0+.3509 0e5271 02925%
(0+44045) (0e.41€48) ({0 20067) (Ce05S) (044233)

1200 100320 0.6220 0.4693% 0.5920 0.6048 0 .4829
: (0.5746) (065914) (0e.S634) (3.5763) (0.6013)
120¢€ 10710 0.6849 0.5846 040624 0.8377 0.39R2%
(0+5968) (0.6142) (Ce508S1) (C.5587) (0.6245)
1210 144460 0.B8169 ' 0.4382 0.8970 N0.5111 0.8166%
(0.8068) (0.8304) (0e7511) (C.8055) (0.8443)

1215 244860 1.3933 1.4670 1.133€% 13680 11903
(1.3848) (1.4253) (1.35878) (1.3852) (1.489}Y)

1220 30,6660 12468 1.0717 141607 1.6083 1.0398%
(Z2.0421) (2.1018) (2.0022) (2.C487) (2.1369)

1225 3.40E€0 1.3688 le1118 CeB491 2 1.5784 1.1728
(1.8983) (1.9538) (1.8612) (1.3044) (1.98¢C4)

1230 262910 1.58C4 12997 1.02432% 15457 12569
(1.2759) (1.3132) (1.2510) ({1.28C1) (1.3352)

1235 3.5570 . 2e3€46 2.5768 1.R8965% 2.9928 241738
(1.9813) (2.0392) (1.942€) (1.9877) (2.0732)

1240 2.76€60 1.3941 1.3115 1« 3985 13235 1.2118%
(1.5404) (1.5855) (1.5104) (1e5454) (1.6119)

1245 247020 Ce9713 0.9C49% 10897 11325 1.0130
(1.5049) (1+5489) (144756) (1.5068) (1.5748)

1250 401400 ce Q0165 Le33CE% 1e 350E ie7C2C 138C5
{(2¢3060) (2.3735) (2.2611) (243128) (2.4121)

12€S 2.€C80 14195 11532% le 1845 16560 1.1824
: (1.4524) (1.4949) (1.4241) (164€72) (145169)
1300 0+.8416 C.4606 0.3€87 0.2732 Ce5343 0e3492%
(046E7) (0.4824) (C.459¢) (0.47C2) (0449305)

1205 04973 02546 O.1€13% Cel7<t C.206ES 0.18¢€8
(0.2770) (0.2851) (0.271€) (0.2779) (0.2898)

1310 03970 O« 3049 0. 3254 Ce 1677 Ce3136 Oe1G44%
(02249) (0.2296) {0.2235) (De2411) (0.2347)
TABLE 12. A LISTING OF ANZ2LYSIS ERPROR VARIANCFS CCMPUTED USING THE DATA

SETS INDICATED B8Y THE VARICUS
ANCES #ARE
EACH ANALYSIS TiIMc

CCLUMN
INCLUCEC FOR COMPARISON

IS MARKED (%)

THIS

CONF IGURAT1ON PRODUCED THE BEST RESULTS.

ARE THE MOCELCD VARIANCE CSY IMATES.

THIS

HEACTAGS »
PURPOSES.
INCICATFS
THE VALLES
DATA

THE OESERVATION VARI-

THE LOWESY VARTANCE FOR

WHICE ANALYSIS DATA

IN THE FARPENTHESES

IS FRONM THE 2STH OF WVAY.
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multivariate data configuration'using the Mérshall—Palmer

2-R relationship was best 5 times, the multivariate data
configuration using the aircraft determined Z-R relationship
was best 9 times, and the surface-gauge data set produced

the minimum error variance for the times 1215, 1225, 1230,
and 1235. A comparison of these results are shown in Figures
85 thru 88.

Referring to Figure 86 (the Marshall-Palmer Z-R
relationship results), the multivariate approach produced
the smallest error variance, 12 of the 18 times, while
Figure 88 shows that this analysis approach was best 11
times when using the aircraft derived Z-R conversion. Once
again, indications are that the multivariate analysis con-
figurafion produces consistently better results than either
of the univariate approaches considered.

The results using procedure 2 are shown in Table 13.
Employing the Marshall-Palmer Z-R conversion, the radar‘uni-
variate confliguration was best for 1285 while the multivariate
approach was best fof the times 1206 and 1300. The air-
craft determined Z-R conversion produced the best results 5
times and 4 times for the univariate and multivariate con-
figurations respectively, while the surface-gauge univariate
approach was best the remaining 6 times. Figures 89-92 are
a comparison of these results.

For the Marshall-Palmer Z-R relationship the radar

univariate approach or the multivariate approach produced
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ANALYSIS
YIME
1145
1150
118S
'1209
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1300
1305

1310

TABLE 13,

SEYS INDICATEC BY THE VARIOUS CCLUMN HEADINGS.
ANCES ARE [INCLUDED FOR COMPARISCN PURPOSES.
EACH ANALYSIS T IME IS

OBSERVATION

VARTANCE

0.5952
0.3783
0.7263
10320
1.0710
14490
2.4860
3.6660
;.4080
22910
345570
247660
247020
441400
2.6080
0.8416
044973

063970

17

HMARSHALL-PALKER

Z-R
RADAR

0.6034

(0.3344)

043553
(02107}

0.5813
(0.4045)

06220
(0.57406)

0«6849
(0.5968)

0.8169
(0.8068}

13933
(l1.3848)

13468
(2.0421)

1.3688
(1.8983)

15884
(1.2759)

3.3646
(198139

13941
(1e5404)

0e9713%
{15049}

240565
(23060)

1.4195
{1.4524)

0.4606
(0.2687)

02546
€0.2770)

043049
€0e2249)

RELATICNSHIP

GAUGES
ERADAR

06012
(0e3437)

0.3410

(0.2162)

0.5€61
(0.4152)

059G2%
(058981

0.6533
(0.6125)

05815
(0es8282)

16806
(144214

144245
(2.0661)

1e2342
(1+9485)

1.5131
(13096}

247194
(2.0337)

13944
(1.58(1)

11200
(165447)

16232
(2367087}

13347
(1.4508)

0.5280
(0.4811;

0.2436%
(0.2843)

0.3222
(0.2286)

GAUGES

0e6123

(03356)

0.4041
(0.2116)

0.5872
{04063)

047604
{0«5771)

0e6162
(0.5994)

047924
(0.8104)

1.575¢
(13909)

14332
(240510)

1.1507%
(1490066}

13056%
(1.2815)

2.078B4%
(198991}

1.433€
(15471}

t.0168€
(1e511€)

i.5193%

(2.3161)

1.3537
(1.4588)

0.4466G%
{0.4708)

02933
(0.2782)

062377%
(0.2256)

AIRCRAFT-DETERMINED

2-R
RADAR

06468
(033981

03332%
(0.2114)

0e5271
(0.4059)

06048
(0eS5765)

0e4377%
(05987}

0.5111%
(0.8065)

1.3680x%
(1.3893)

1.6083
(2.0487)

1.5784
(1.9044)

1.5457
(1.2801)

249628
(l1.98771}

1.3225»
(1e5454)

1.1329
(1.5098)

1.7€€ES
(2e3135)

1656¢C
{1.4572)

05343
(Ca4703)

0.2685
(0.2779)

043139
(De2411)

RELATIONSGHIP

GAUGES
ERADAR

0e5753%
(0.3507)

03662
(0.2216)

0.5124%
(064255)

0.6073
(0.6044)

0.4626
(06277)

0eSE73

€O 84¢86 )

14921
(1645651}

1.3012¢2
(2.2478)

12371
€1.99606)

15166
(1.3420)
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the best results 12 of the 18 times, while for the aircraft
derived Z-R conversion of the radar data, the univariate or
multivariate approacﬁ was best 11 times. Notice that for
the 11th analysis (1235) the radar data produced a rather
large error variance when used in either the univariate or
multivariate configuration. It wWas at this time that the
differences between the surface-gauge rainfall rates and
the reflectivity rainfall rates were the highest, a little
over 5.0 inches/hour for some stations. This analysis
technique (or any other) simply could not adequately handle
this particular situation. When the problem stations
(there were two in number) were deleted from the data
sample, and the analyses using all three configurations were
recomputed, the results were more consistent. However,
sinée no data editing was accomplished on any other data
set, the original results were kept and these appear in
Table 13.

Figures 93-94 compare the relative worth of fhe
differént Z-R relationships, as was done for the May 21st
data set. The firsﬁ figure corresponds to procedure 1
results; Figure 94 corresponds to procedure 2 results., As
before, no predominant difference exists between these two
Z:R conversions when used in a multivariate analysis

configuration.
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E. Analysis Filtering Properties

It is of some importance to be able to make a
quantitative statement concerning the filtering properties

of the technigue used in the analysis of a phenomenon of

e

interest. Without a quantitative measure of the ability of
the analysis scheme to filter the signal from the signal-

plus-noise observation set, it would be difficult to attech

much credibility to any results obtained. The two assessment
techniques discussed in this section can be used to help eval-
uate the reliability of any analysis model employed.

The first assessment technique discussed is a

necessary condition for an analysis scheme to be considered
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acceptable. In the results presented in sections A thru D
of this chapter, it will be noticed that in every analysis,
the error variance 1is always less than the respective data
variance for the time period analyzed. This is an expected
result. Obviously, if the error variance determined from

an analysis was larger than the variance of the corresponding
data set itself, either the technique or the data sampie

should be suspect. The fact that this was not the case

is encouraging. Thils simple comparison, however, is rather
negative in its interpretation. Favorable results imply
that the analysis scheme exhibits no gross discontinuities,
Favorable results do not imply that the analysis scheme 1is
worthwhile.

The second assessment technique discussed is both
a necessary and sufficient condition for an analysis scheme
to be considered acéeptable. This technique compares the
Signal—plus;noise structure obtained from the observation
set, with the signal-plus-noise structure obtained from the
analysis of that set. Two things will become apparent from
this comparison. First, and most impcrtant, it is possible
to determine the amount of distortion introduced into the
analyzed field by the analysis technique itself; the poorer
the technique used, the greater will be the distortion
detected. A good technique should be essentially distortion
free. The second thing to be noticed from this comparison,

is the relative value of the structure model A7 parameter



82

for the two structﬁre functions obtained. Since any analysis
technique should do some filtering of the noise from the
signal, fhe'AY parameter value for the analyzed field would
be expected to be greater than the A7 value for the corre-
sponding observation set. The larger the analyzed A7 para-
‘meter value is, respective of a distortion free structure
function, the better the analysis technique employed.

Figures 95 thru 102 show the time ordered
signal-plus-noise structures obtained from the four storm
realizations. The dimensions and orientation of these
-figures are the same as those of Figures U4 and 5. It will
be noticed that in every case the signal-plus-noise structure
obtained from the analyzed field, Figures 96, 98, 100, and
102, is very homologous to the original signal-plus-noise
structure obtained from the observations themselves, Figures
95, 97, 99, and 101. It will also be noticed that the
analyzed correlation coefficient A7 parameter is always
larger, as was expected. |

The results of these two assessment techniques,
indicate that the analysis scheme employed does indeed
filter the signal from the signal-plus-noise observation
set in a distortion free manner.- The fact that the observed
signal-plus-noisc structure was consistently recovered f{rom
the analyzed field, plus the fact that a substantial amount
of noise was consistently filtered from the observation set,
would impiy that the results discussed in the earlier

sections of this chapter have a high degree of credibility.



Fig. 95:

The structure model of
the observed surface
precipitation for May
21st; Ug=0 min. and
AT=.3545.

Fig. 97:

The structure model of
the observed surface
precipitation for May
25th, 0755-0905; Ut=0
min. and A7=4969.
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Fig. 96:

The structure model of
the analyzed surface
precipitation for lMay
21st; Ug=0 min. and
A7=.6011.

Fig. 98:

The structurs model of
the analyzed surface
precipitation for May
25th, 0755-0905; Uy=0
min. and A7=.T481.
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Fig. 99: The sturcture model of Fig. 100:

The structure model of
the observed surface

the analyzed surface

precipitation for May precipitation for Hay
25th, 0935-1010; Ug=0 25th, 0935-1010; Ut=0
min. and A7=.3855. min. and A7=.5662.

Fig. 101l: The structure model of Fig. 102: The structure model of

the observed surface the analyzed surfa?e
precipitation for May precipitation forvﬂay
25th, 1145-1310; Ug=0 25th, 1145-131C; Uy=0

min. and A7=.5264. min. and A7=.8253.



CHAPTER VI
EXPERIMENTAL DESIGN MODEL

The obJective analysis technique previously
discussed can not only determine estimates of the parameter
field, but also modeled estimates of the amount of variance
in the original data sample that has been explained by a
particular sampling pattern in space and time with respect
to some specified grid lattice. Since this determination
is not dependent on having observations of the parameter
field, but is only dependent on the definition of the
structure model supplied, it is possible to shift sampling
patterns in space and time with respect to the analysis grid,
so as to explain the maximum percentage of the original data
variance (Eddy, 1974). The incorporation of this analysis
technique with an NLP algorithm constitutes the experimental
design model alluded to earlier, the particulars of which
are discussed in this chapter.

The multiple correlation coefficient, R, can be
defined as the proportion of variance of the observation Y

N

accounted for by the objective analysis Y. If
R, (15)

85
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t t -1,y1/2 1/2}

then R = Y0v1¥ / (vt iy (3tv~19) (16)

1/2 st,-15,1/2

(vbv1y) (17)

~
where o

y 1)

d o~ = (¥°v
an 5 (

Using the definition of @ given in Chapter IV, we see that

xB = x{xPv o Hxbviny. (18)
Multiplying both sides of this equation by YtV—l, we obtain
A AT A A (40 S AR SRR G S A O D B (19)

Now notice that ?tV_1§ can be written as

§ov 1% = (v Mo Tt Tt i vt
= v i io Tt o, (20)
which is the same aé equation (19). Therefore
yey1g = ?tv;1§, and (21)
R? = YOv7¢ / vByrly (22)

The fraction of variance unaccounted for by the regression
is then given by 1-R2,
Denoting the multiple correlation coefficient be-
tween the observation Y and the objective analysis § at the ith
grid point by R;, the modeled fractional unexplained variance or

G
"residual" variance for the entire grid array is [2Z (1»R§)] / G,
i
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where G is the number of grid points. This summation
constitutes an objective function which can be minimized,
subject to logistic and engineering constraints if necessary,
by employing the NLP algorithm discussed in Chapter IV.

Specifically,
G ) .
£(g) = [§ o, (1-R1)] 7/ 6, ' (23)

where oy is a weighting factor assigned to each grid location

in the analysis space, and
E = (X95¥9585b75 vvnnn s X3V sZgnty) (24)

is a vector of s sensor positions in l-space. Given some
starting vector of sensor positions El, the NLP algorithm
repositions these sensors in space and time so as to minimize
the value of the objective function f(£). The a, are used
to reflect the pertinent climatology for the area relevant
to the forthcoming experiment. The final vector of sensor
positions corresponding to the minimized valuec of f(§) is an
optimal sensor configuration for sampling the phenomenon
specified by the structure function used in the objective
analysis. A modeled estimate of the amount of variance un-
accounted for by the regression, with respect to a particular
sampling scheme, 1s given by

G

{{2 o, (1-R1)] / G}S;. (25)
i

Figures 103 thru 110 compare the computed error
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é, with the modeled error variance (obtained

variance, ©
using formula (25)), for the four precipitation data sets,
in order to illustrate the adequacy of the residual vari-
ance model used. The error variances were obtained from
the multivariate data configuration using procedure 2.
Figures 103, 105, 107, and '109 are the time ordered com-
parisons for the Marshall-Palmer Z-R conversion, while
Figures 104, 10€, 108, and 110 show the results when empiri-
cally derived Z-R conversions were used.

The May 21st results, Figures 103 and 104, and
the May 25th results for the time 0935-1010, Figures 107 and
108, show that the modeled error variance values correspond
very well with the values of the computed error variance.
The coefficients of correlation for these variance com-
parisons are .982, .993, .992, and .992, respectively.

The results from the May 25th 0755-0905 realization,
Figure 105, seem to exhibit a positive bias in the modecled
variance values. This indicates that the actual analysis
results were somewhat better than what could be expected
(in a statistical sense) from the regression model and data
configuration employed. The empirically derived Z-R con-
version for this time period, Figure 106, appears to have
reduced this bias somewhat. The correspondence of relative

variance fluctuations is still very good in either case,

the correlation coefficients being .989 and .988, respectively.
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For the May 25th 1145-1310 realization, Figures
109 and 110, the results correspond surprisingly well,
considering the large amount of variation in this data set,
as well as the peculiarities of the actual measureﬁents,
which were previously discussed in Chapter V, section D.
Notice that for the 7th, 10th, and 1lth analyses, the
regression model predicted better results than those
obtained, while for the 8th, 9th, and 12th thru 15th
analyses, the results obtained were better than what would
be expected. The correlation coefficient values for these
variance quantities are .857 and .881, respectively, which
is still quite high.

When investigating the station configuration
problem with respect to a specified sensor mix, the objec-
tive function as given in equation (23) is used. However,
when the purpose of the investigation is to determine the
relative worth of different sensor types, a modified form
of this equation is needed. As an illustration of this
point, consider the problem of using a surface-gauge radar-
reflectivity configuration for estimating surface pre-
cipitation. Two things must be properly "measured" in
order to obtain an acceptable analysis of the precipitation
field; the variation in the signal, which allows the analysis

model to reflect the detail of the phenomenon correctly, and
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the mean of the signal, which allows for a proper scaling
of the analyzed field. As the overall number of sensors
decreases, the ability to detect the variation in the signal
decreases. As the number of surface sensors decrease, the
ability to recover the mean of the signal (as observed
at the surface) decreases. Equation (23) models the effect
of any overall sensor reduction. The development of a
model to reflect the effect of reducing the number of sur-
face sensors, and the incorporation of this second model
with the first, is presented below,

Let y be the sample mean of the signal being
analyzed, then oi is the variance of the mean, and

y

0% = 0;/N*, (26)

where 0% is the population variance and N* is the number
y

of effective degrees of freedom. For the general case

5 N-1
N¥ = N{1 + 5 I (N-1) Y(U)} , (27)
T
where N is the number of surface sensors, Y is a vector of
N surface observations, and Y(t) = Y(i, i+t) for all i. If

the observations are statistically independent (white noise)

then Y(t) = 0 for all 7 # 0, and N¥ = N. For the purpose
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of this discussion, white noise is assumed, and the proper
incorporation of the mean variance model with the signal
variance model results in the following formula,
G 2 "2 2
{[§ o; (1-R¥)] / G}og + of / N. (28)
It is a well known property, that if x¥ minimizes f(x), then
x¥ minimizes c¢f(x) for any constant ¢ > 0. Note that in
formula (28) o; is a constant > 0 for any analysis period.
Therefore, the objective function can be rewritten as
G

£(g) = [Z ai(l—R;)] + 1/N, (29)
i

W

nd it is this forwulation that is used in the comparison
of different sensor mixes.

By using this design technique, it 1is possible to
discover optimal station configurations in space and time,
in order to detect and analyze a phenomenon whose spatial-
temporal structure can be described by the signal-plus-noise
model supplied to the design algorithm. The results of this
approach can only be as good as the accuracy of the structure
models used, and they can only be as meaningful physically as
the quality and quantity of the climatology information given.
The resultant station configuration will be tuned to the
specified "modeled" phenomenon as well as the climatology of

the region of interest.



CHAPTER VII
DESIGN RESULTS

In order to illustrate the potentials of the design
algorithm, the results of a pre-experiment investigation are
presented. The experimental design for this simulated
field study included: the spatial determination of optimal
sensor positions, the examination of various sampling rates,
and the investigation of different sensor mixes. Specifically,
the surface-gauge signal~plus-~nolse model for the May 25th
1145-1310 realization, waé chosen to be the type of precipita-
tion pattern with which the field study was concerned; and
for the investigation of the sensor mix problem, the respec-
tive correlation and cross-correlation models from the
Marshall-Palmer Z-R relationship were employed. The purpose
of the pre-experiment investigation was to present to the
principal investigator some objective criteria which could be
used in the determination of a best sensor configuration for
sampling the specified phenomenon with respect to the assumed
climatology of the region. The area covered by the field
study was approximately 31x31 square miles.

The first problem to be investipated was the spatial

determination of optimal sensor positions for 1 sensors, where

94
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i=1, 3, ..., 11, 13, 17, and 21. Figures 111 thru 114 show
the optimal positions found using 5, 9, 13, and 21 sensors
respectively. It was assumed that the climatology of the
region indicated a preferred northeasterly storm track for
the phenomenon of concern, that the probability of a storm mov-
ing on a particular southwest to northeast track through the
specified area could be characterized by a normal distribution
about the southwest--northeast diagonal, and that approximately
68% of the storm tracks would occur between the dashed lines
shown in the aforementioned figures. Figure 115 shows the
original positions of 13 sensors which were optimally re-
located to the positions shown in Figure 116. Notice that
the final positions for these 13 sensors do not coincide with
the positions for the 13 sensors shown in Fipgure 113. This
is because different storm track probability distributions
were supplied to the design algorithm, resulting in the two
dissimilar placements. The distribution for the latter
placement had a much smaller standard deviation resulting
in the much "tighter" configuration of Figure 116. A com-
parison of the two deployments illustrates the influence of
the climatology information on the sensor positions determined.
The same starting vector was used in each case.

The final objective function values are plotted
in Figure 117 for the different sensor quantities investigated.
Notice that as the number of surface sensors increase, the

objective function values decrease, implying that a better



Pig. 111:

The final design
configuration for
5 sensors.

Fig. 113:

The final design
configuration for
13 sensors.
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N\

+ 4
N * ¢ N
Fig. 115: The position start- Fig. 116: The final design
ing vector used for configuration for
the placement of 13 the 13 sensors of
sensors. Figure 115.

sampiing of the phenomenon i1s possible, which was the expected
result.

A problem peculiar to the use of this design model,
concerns the sensitivity of the NLP algorithm to different
sensor starting vectors. In the function fitting of Chapter
IV, the use of different starting vectors had very little
influence on the final objective function values or on the
parameters of the signal-plus-nolise models obtained. This was
because the function being minimized usually had a single
local optimum which was also the global optimum, and regardless
of the starting vector used, the algorithm would eventually
converge to the optimal solution. In the sensor placement
problem, however, the solution space invariably has a number

of local optimums, depending on the number of sensors being
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investigated, the particﬁlar grid network used, the peculiari-
ties of the signal-plus-noise model employed, etc. There~
fore, the best statement that can be made for any station
deployment is that a local optimum has been achieved; the

NLP algorithm guarantees this (Himmelblau, 1972). Realizing
this fact, a number of "good" sensor starting vectors can be
used in different iterations of the design algorithm, and a
comparison of the resulting objective function values would
indicate the better final deployment. The results given in
this chapter are the best deployments achieved for the
several different starting vectors used.

Having examined the spatial arrangement for a
variety of network sizes, various sampling rates were then
investigated. The results of one such investigation, where
21 sensors were deployed, are shown in Figure 118. The
better objective function values were achieved at the faster
sampling rates, while the poorer objective function values
occurred at the slower rates. The objective function value
for the sampling time of 0 minutes 1s the result obtained
from a spatial analysis of the phenomenon, as opposed to the
spatial-temporal analyses results otherwise shown.

In Figure 118, it will be noticed that the object-
ive function was determined for accumulation times of 1, 2,
and 3 minutes as well as for accumulatlon times of 5 and 10
minutes. The May 25th signal-plus-noise model used in this

simulated investigation was actually determined for an
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accumulation time of 5 minutes, which is usually the short-
est accumulation time achievable in a precipitation measure-
ment field experiment, especially when radar is involved.
The investigation of the faster sampling rates was an

exercise to demonstrate that the temporal dimensionality of

the network could also be considered when using this design
model. Obviously, in an actual application, the engineering
limitations on the sensors used (minimum sampling rate, etc.)
would be incorporated into the experimental design process.

An investigation of different sensor mixes was also
made, using the correlation and cross-correlation functions
previously mentioned. The cross-correlation model A7 para-
meters were modified, in order to present the sensor mix
problem as a function of the relative magnitude of the signal/
noise ratio. The relevant A7 parameters were changed from
.577 and .551 to .707 and .681 for a first example and to
.857 and .831 for the second. Notice that since the computed
values of the AT parameter for the surface-precipitation
correlation model and the radar deduced correlation model were
.506 and .865, respectively, the augmented cross-correlation
values still remained within this range; the implication being
that such cross-correlation values could possibly, if not
probably, be achieved.

The 21 surface sensors (type 1 sensor) of Figure
114 were replaced one by one, from the center outward, with:

the corresponding radar estimates (type 2 sensor), and the
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value of the objective function was recomputed. As the
sensors were replaced, since the cross-correlation A7 para-
meter values were relatively high, it was expected that a
better objective function value would result, as is shown

in Figure 119. For example 1, the objective function value
decreases until 14% of the surface gauges have been replaced
with type 2 sensors, while for example 2, the objective
function minimum occurs when #43% of the sampling network is
composed of type 2 sensors. In each example, as the relative
number of surface sensors continues to decrease, the ability
to estimate the mean of the surface precipitation field

also decreases, as reflected In the upward swing of the
respective graphs.

From additional work accomplished in the course of
this research, similar to the type of investigation presented
in Figure 119, the effect of the magnitude of the cross-
correlation A7 parameters on the sensor mix problem became
apparent. It was found that as the relative value of the cross-
correlation A7 parameters increased, the minimum of the sensor
mix curve was shifted to the right with an appropriately
lower (better) residual variance value. A decrease in the
relative value of these parameters resulted in an increase in
the residual variance minimum of the sensor mix curve, with a
corresponding shift to the left. These shifts, along with
the respective changes in the minimum variance values, reflect-

ed the relative worth of the two sensor types being examined.
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A right-shift would have included more type two sensors in

the final sensor mix,

more type one sensors.

while a left-shift would have included

It should also be noted, that the

closer the A7 parameter values for all four signal-plus-noise

models (CORR(X,,X;), CORR(X,,X,), CORR(X,,X,), CORR(X,,X;))

were, the flatter was the sensor mix curve determined, re-

flective of the fact that neither sensor type, under such
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circumstances, was predominantly better than the other.
Obviously the more sensors used and the faster the
sampling rate employed, the better will be the results ob-
tained from the field study. However, the financial, engineer-
ing, and logistic constraints limit the number of stations
and the sampling rates available, making alternative con-
figurations necessary. The decisions which determine these
configurations can be made more easily, more correctly, and
more objectively if the kind of information discussed in

this chapter was available.



CHAPTER VIII
SUMMARY AND CONCLUSIONS

The purpose of this research was the development
of a design package which could be used as an aild in the
planning of forthcoming field experiments. The resultant
package consisted of two major components; an analysis
technique which allowed for the investigation of forthcoming
experiments in terms of previous experimental results, and
a design technique which permitted the incorporation of these
- dinvestigative results into the determination of a best
sampling configuration in order to resolve the proposed null
hypothesis of the intended field study.

In Chapter IV, the multiple regression model was
developed for the analysis of single as well as multiparameter
data sets. It was shown that the technique presupposed no
structure on the data set to be analyzed, but instead deter-
mined a signal-plus-noise model of the observed phenomenon,
and then imprinted this information on the resultant regression
weilghts. The structure model employed was four dimensional,
as well as anisotropic, in order to reflect the spatial-tem-
poral dimensionality encountered in actual experimental en-

vironments. An NLP algorithm was implemented in order to
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determine the pertinent structure function parameters.

Using this analysis approach, the inter- and intra-
correlation structures were explored for a two parameter data
set. The observations consisted of surface-gauge precipitation
measurements as well as reflectivity estimates of rainfall
rates. A determination of the signal-plus-noise configuration
for the four storm realizations was accomplished, and analyses
of these fields were subsequently produced. It is essential
to qnderstand that the purpose of this research was not to
investigate precipitation patterns nor Z-R relationships nor
the relative merits of univariate vs. multivariate data con-

figurations; the purpose was to demonstrate the potentials

of the developed analysils package. The results presented

in Chapter V show the type of investigations that could be
made if this analysis technique were employed. These results
indicate that:

1. The multivariate data configuration produced the con-
sistently better analyses when compared to the uni-
variate configurations explored, the conclusion
being that the analysis approachn used added an addi-
tional and worthwhile dimensionality to the inyesti-
gation of the geophysical data,

2. The Marshall-Palmer Z-R reletionship, as opposed to
the empirically derived Z-R relationship, did not
normally produce noticeable differences in the
results obtained when used in a multivariate environ-
ment. Considering the cost of obtaining the aircraft
derived conversions, the resultant benefits could be
questioned. However, whether or not the differences
obtained were "significant"™ is a decision which must
be based on the experiment for which the measurements
were made.
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The radar data alone produced surprisingly good
analyses when compared to the surface-gauge results,
if the purpose of the analysis was to estimate para-
meter values (procedure 2) as opposed to filtering
the data field (procedure 1). Couple this with the
fact that many more radar bins of information were
potentially available than were actually used in ob-
taining these comparisons, and the relative worth

of the reflectivity rainfall estimates becomes even
more attractive. A thorough cuantitative investi-
gation of the quality of radar precipitation measure-
ments would seem to be a worthwhile undertaking.
Using this analysis package in the manner demonstra-
ted, could aid in this task.

The analysis technique not only filtered the noise
from the signal-plus-noise observation set, but

also produced filtered analyzed filelds that were
distortion free. This said much for the credibility
of the technique itself.

It should be noted that the above interpretations of the

results of Chapter V were based on the assumption that '"the

best analysis was the one which produced the smaller error

variance."

In Chapter VI, a design model was developed which

made use of much of the information discerned from the pre-

vious chapters. The model incorporated the analysis scheme

with an NLP algorithm in order to determine and investigafte

potential network configurations, including sensor number,

sensor placement, sampling rate, etc. The designs developed

were based on the comparison of modeled residual variance

values, which tuned the sensor configurations to the speci-

fied modeled phencmenon and the climatology supplied.

As before, the results of a design effort were

presented, not for the sake of the design itself, but only as
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a demonstration of the potentials of using this approach.

Based on the type of information supplied, tuned to a particu-
lar experimental problem, the decisions faced by the principal
investigator would be much easier to make. The design approach
can be used for deployment of stationary sensor systems, mobile
sensor systems (radiosondes, instrumented aircraft, etc.),

or combinations thereof. Configurations for a single phenome-
non were explored, but configurations based on a variety of
intermeshed and related "system" specifications can be
produced.

The development of the aforementioned design con-
cepts into a workable systems configuration was the primary
goal of this research. It is hoped that forthcoming investi-
gations would make use of these design tools. Future investi-
gations might include:

1) a continuation of the investigation of the pre-
cipitation measurement problem, in order to quantify
the worth of radar reflectivity in estimating sur-
face precipitation. Numerous cases for a variety of

storm types could be examined, using the null hypo-
thesis that the abllity of the radar to measure

surface precipitation accurately is a function of
storm type, as well as storm size, shape, orienta-

tion, and intensity.

2) extending the design configuration to be able to
investigate multivariate data sets of 3 and more
parameters.

3) an actual design of a field experiment, in terms of
the types of sensors to be used, the sensor numbers
and the sensor configurations.
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L) further investigation of the effect of non-white
noise on the design process.

5) extending the structure function models, so that
they more accurately reflect any non-stationarity
in the phenomenon belng investigated.

In conclusion, the techniques described herein have
already been used, by Dr. Eddy's research group, in a variety
of investigations for a variety of reasons. The results ob-
tained have clearly demonstrated the worth of this design
package. For experiments involving geophysical phenomena,

the potential returns of employing the algorithms discussed

would appear to be substantial. They have merely to be useq.
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APPENDIX

In the development of the analysis technique for
implementation as a computer algorithm, a number of unfore-
seen practical considerations were made apparént. These
problems, along with their respective solutions, are the
subject of the following discussion.

1. Axis Rotation

When the implemented analysis technique was
initially used for analyzing modeled as well as observed
precipitation patterns, it was found that the shape and
form of the analyzed patterns did not correspond very well
with the shape and form of the original precipitation fields.
For example, if a modeled circular system was analyzed, the
resultant pattern would often turn out to be eliptical. This
implied that the analysis algorithm was somehow distorting
the original parameter field. The solution to this problem
was twofola. First, it was found that by performing an
apprecoriate axis rotation, it was possible to improve the
analyzed patterns considerably. The development of the
rotation algorithm usz:d was based on the work of Tatsuoka
(1971), where the basic idea was to determine a rotated axils

which would maximize the variance of the original station
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placement pattern. Thls rotated axis was used 1in all
subsequent analysis procedures for that particular station
placement pattern. The results of thils rotation can be
seen by comparing the structure functions of the May 21st
data set in Figure U4 for the rotated CORR(X2X2) model and
in Figure 95 for the non-rotated CORR(XIXI) model. The
shape and size are similar (they won't be exact because one
correlation is for the radar-reflectivity data and the
second is for the surface-gauge data) but the respective
orientation is different. The analyses produced are always
presented with respect to the original spatial axis.

The second part of the solution to the problem was
to make the corresation function model anisotropic, as was
discussed in Chapter IV, section B.

2. Signal-plus-noise model

In generating the raw correlation matrices which
are used to determine the appropriate parameters of the
structure model, 1t is necessary to exerclse some care in
the selection of the number of spatial and temporal lags
determined, as well as the separation distance to which each
of these lags corresponds. It is essential to make these
selections so that a sufficient number of station pairs is
included in each discrete lag category to discern the signal-
plus-noise structure of the observation set adequately, keep-
ing in mind that too many lags, especially in time, will tend

to smooth the structure function so as to destroy any actual
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pattern present.

For example, 1f the average station spacing in.
the observation network is 5.0 nautical miles between
sensors, then an appropriate lag "distance" might be
approximately 5.0 nautical miles. A larger lag distance,
say 50.0 nautical miles, would group too much information
into each discrete lag bin, while a smaller lag distance,
say 0.5 nautical miles, would not group nearly enough in-~
formation to be able to discern the structure present. The
appropriate lag distances as well as the number of lags
to be determined can be rather easily deduced by comparing
the output of the correlation generation programs with the
structure function parameters found by the N.L.P. algorithm.
If the correlation pattern coincides with the structure
function parameters, then the appropriate lags and distances
were used. If they do not coincide, then different sets of
lag values and/or lag distances should be investigated.

3. Analysis progran

If a disproportionate number of predictors used

in the determination of the regression weights have negative

t,~-1

correlation coefficients, the X'V "X matrix tends to become

singular and difficult to invert, and the elements of the
§ vector tend to become unstable. In order to alleviate
this situation, two subroutines are used in the analysis

program for the determination of the structure function

values, the first reduces the "radius" of influence so as
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to include only those potential data values whose correla~
tion coefficients are positive, the second permits the
computation of the respective elements of the XtV"lX matrix
and the XtV-lY vector, regardless of distance separation.
The "radius" of influence is defined to be that distance

from a predictand out to the inflection point of the negative

exponential function for each respective spatial and temporal

"direction.
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