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ABSTRACT

Two methods of analysis have been used in this study,
namely Hartsock and Lefkovits et al. Equations were de-
rived using the assumptions and boundary conditions stated
by these methods. The difference between the two methods
is that Hartsock has taken into consideration the force of
gravity which has been neglected by Lefkovits et al. The
equations derived taking the force of gravity into consid-
eration suggest some analysis techniques that can be used
to determine the effective permeabilities of the individual
layers if the initial pressures of the two zones or fheir
difference Ap is known. It is further suggested that it is
possible to determine the initial pressure of any of the
zones if either the other initial pressure or the initial
pressure different Ap is known. This study suggests that
it is possible to use the pressure drop equation of the
upper or lower zone for such estimates.

The equations derived by neglecting the force of
gravity can be used to study the effects of permeability
contrast, thickness ratio, skin factor and well-bore stor-

age in pressure build-up curves for an infinite two-layered

reservoir.

iv
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Both methods can be used to determine the kh product
and to study the effects of permeability and thickness ratios.
Using the pressure drop equations derived for the
case where the force of gravity is not neglected, equations
have been derived to determine the skin factors for the upper
and lower zones.
The derivations of the equations used in this study
are shown in the Appendices, and similarities between two-

and single-layered reservoirs have been indicated.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS .

LIST OF TABLES .

LIST OF FIGURES

Chapter
I.
I1.
III.
Iv.

VI.

INTRODUCTION .

SCOPE . . . & v v v v v ¢ v v e e e e e e e

LITERATURE REVIEW

MATHEMATICAL EQUATIONS AND THEORETICAL
BUILD-UP RELATIONS . . . « e e e e e

A.
B.

Basic Assumptions . . . . . . . . . . .

Pressure Build-Up Analysis Using hartsock's

Pressure Drop Equation . . . .

Pressure Build-Up Analysis Using the
Outlines of Lefkovits et al. .

RESULTS AND DISCUSSION .

A. The Effects of Fermeability and Thickness
Ratios e e e e e e e e e e e e e

B. The Effects of Producing Time and Constant
Production Rate . .

C. The Effect of Skin . . . . . . . . . . .

D. The Effect of Variable Flow Rate Due to
Well-Bore Storage . P

CONCLUSIONS . . . . . . .

vi

Page

111

viii

ix

13
13

16

25
33

33

51
52

56
65



NOMENCLATURE

REFERENCES .

Appendices

A.

Hartsock's Method of Derivation of Pressure
Drop Equation for an Infinite Two-Layered
Reservoir .

Derivation of Pressure Drop Equation Without
Skin and Well-Bore Storage Effect

Derivation of Pressure Drop Equation Wit.
Skin Effect e e e .

Derivation of Pressure Drop Equation With The
Effect of Well-Bore Storage ..

Example Calculations for an Infinite Two-
Layered Reservoir .

vii
Page

67

70

82

92

96

101

110



Table

LIST OF TABLES

Page
Reservoir Parameters Used in this Study . 74
The Effect of kh Product on Slope m, with
Variation of Permeability Ratio . . e o o« 15
The Effect of kh Product on Slope m, with
Variation of Thickness Ratio . . . . .. 75

Dimensionless Pressure versus Dimensionless Time
with Variation of Permeability Ratio for an

Infinite Two-Layered Reservoir without the Effects
of Skin and Well-Bore Storage and with a

Thickness Ratio of One . . . . . . « . « « « « « 77

Dimensionless Pressure versus Dimensionless Time
with Variation of Thickness Ratio for an Infinite
Two-Layered Reservoir without the Effects of Skin
and Well-Bore Storage and with a Permeability

Ratio of 4 . . . . . & v v v v « v « « « « « .« . 18

Dimensionless Pressure versus Dimensionless Time
Showing the Effect of Skin for an Infinite Two-
Layered Reservoir with a Permeability Ratio of

10 and Thickness Ratioof 1 . . . . . . . . . . 79

Dimensionless Pressure versus Dimensionless Time

for Variable Flow Rate with Loading Constant 8
ranging from (0.00001 to 0.00008, with a Per-
meability Ratio of 1 and Thickness Ratio of 1 . 80

Dimensionless Pressure versus Dimensionless Time

for Variable Flow Rate with Loading Constant B
Ranging from 0.0001 to 0.0008, with a Permea-

bility Ratio of 2 and a Thickness Ratio of 1 . . 81

viii



Figure

10.

11.

12.

13.

LIST OF FIGURES

Page
Mathematical model of an infinite two-layered
TESETVOLIT . & & + ¢« & « & o & o o o o o « « « . 14
Plot for a constant rate well in an infinite
two-layered reservoir using Equation 22a. . . . 35
Plot for a constant rate well in an infinite
two layered reservoir using Equation 2Z2a. . . . 36

Plot for a constant rate well in an infinite
two layered reservoir using Equation 22a. . . . 37

Plot for a constant rate well in an infinite
two layered reservoir using Equation 22a. . . . 38

Plots for a constant rate well in an infinite_
two-layered reservoir showing the effect of kh
product, using Equation 222 . . . . . . . . . . 40

Plot for a constant rate well in an infinite
two layered reservoir using Equation 23a . . . 43

Plot for a constant rate well in an infinite
two layered reservoir using Equation 23a . . . 44

1 and 3 are plots using Equation 22a; 2 and 4
are plots using Equation 23a . . . . . . . . . 45

Plot for a constant rate well in an infinite
two layered reservoir using Equation 55 . . . . 47

Plot for a constant rate well in an infinite two
layered reservoir using Equation 55 . . . . . . 48

Plot for a constant rate well in an infinite
two layered reservoir using Equation 55 . . . . 49

Plot for a constant rate well in an infinite
two layered reservoir using Equation 55 . . . . 50

ix



Figure

14.

15,

16.

17.

18.

19.

20.

21.

22.

23.

24,
25.

Selected plots for different constant rates at
different producing times using Equation 22a

Effect of positive skin on pressure decline
curves .

Effect of positive skin on pressure decline
curves .

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.00002

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.00008 .

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.0002

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.0008

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.00002

Plot showing the effect of variable flow rate
during build-up with a dimensionless loading
constant of g = 0.00001, 8 = 0.0001, g = 0.001,
T
General characteristics of modified Bessel
functions of the first and second kind of zero

order .

Contour of integration in the complex plane

Example of pressure build-up curve in an
infinite two layered reservoir

Page

53

55

57

59

60

61

62

63

64

85
105

111



ANALYSIS OF PRESSURE BUILD-UP IN AN
INFINITE TWO-LAYERED OIL RESERVOIR

CHAPTER 1

INTRODUCTION

4’5’14’22 has assumed

The work of other investigators
that the initial pressures in dual zone reservoirs are equal.
As a result, they have not been able to determine properties
of the individual layers from a combined build-up curve.

The work of Lefkovits et a1.14

has shown that it is
possible to determine the permeability-thickness product,
well-bore damage and static reservoir pressure.

Cobb4 investigated the behavior of a two-layer bounded
reservoir with varying permeability contrast. He used the
methods of Muskat, Miller-Dyes-Hutchinson, and Horner for his

analysis. His results confirmed those of Lefkovits et al.14

Raghaven et al.22

extended the work of Cobb by study-
ing the effect of thickness ratio of dual zone reservoirs

for various permeability contrast. Their work showed that it

is possible to calculate permeability ratio for a given thick-
ness ratio.

Earlougher et al.s presented results to show that

there is no particular shape for the pressure build-up curve

1
2



for a multiple-layered system without cross flow.

Hartsock7 showed that it is possible to determine
the effective permeability of the individual layers if the
initial pressures are known or the difference in the initial
pressures. In his analysis, he also showed that the initial
pressure of any zone can be estimated if Ehe initial pressure
of the other zone is known or the difference in the initial
pressures. In his procedure, he used the pressure drop of
one of the zones.

The present study was conducted to utilize the pres-
sure drop of either zone for the estimation of the initial
pressures and effective permeabilities of the individual
layers as outlined above. This study also suggested equa-
tions, derived from the pressure drop equations for the esti-
mation of skin factors for the individual zones. The effect
of permeability contrast, thickness ratio, skin factors, and
well bore storage were studied. The outer boundary consid-
ered in this study is that of an infinite two-layered res-

ervoir.



CHAPTER I1
SCOPE

The purpose of this study is to obtain a set of ex-
pressions and procedures that can be used to determine the
reservoir parameters from pressure build-up curves for an
infinite two-layered o0il reservoir. Equations were derived
which define the pressure behavior at the well bore.

Pressure drop equations were derived for the upper and lower
zones using Hartsock's method. From these pressure drop
equations other equations were derived which describe theo-
retical build-up for this system when the well is shut in.

From these equations it is possible to determine the
initial pressure of one zone if the other initial pressure
or the difference between the two initial pressures of the
respective zones are known. The effective permeabilities can
also be computed under the above conditions; that is, if the
initial pressure in either zone is known or if the difference
in pressure between the two zones is known.

Hartsock7 used only the pressure drop of the upper
zone for these derivations and determinations, but this study
shows that either the pressure drop of the upper or lower
zone can be used. Further, this study shows that from the

3
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pressure drop and shut-in pressure equations, other equations
can be derived to determine the skin factors for the upper
and lower zones.

This study also shows under what conditions an infinite

two-layered 0il reservoir is similar to a single-layered res-

ervoir.

Hartsock7 and Lefkovitset al.14

‘methods have been used
to show the effects of permeability and thicknéss ratios on
pressure build-up curves. Also studied were the effects of
skin and well-bore storage using the equations derived for an
infinite two-layered reservoir with the boundary conditions

at the well-bore outlined by Lefkovits et al.14



CHAPTER III
LITERATURE REVIEW

Pressure build-up analysis is one of the well test
procedures usually carried out in reservoir engineering
studies. Pressure data are very useful in analyzing the
permeability, capacity, transmissibility, calculation of skin
effect, productivity index, flow efficiency of a well, and
the estimation of static and average reservoir pressure.
Pressure data and hydrocarbon properties can be used to-
gether for volumetric and material balance calculation for
the determination of o0il or gas in place.

Several methods of pressure build-up analysis have
so far been studied. These methods can be classified as:

i. Pressure build-up in single-layered reservoirs.

ii. Pressure build-up in layered reservoir with
cross flow.

iii. Pressure build-up in layered reservoir without
cross flow (commingled fluid production).

Methods of analysis of build-up curves are outlined
as follows:

The initial work on pressure build-up analysis was
started by Muskat19 when he related the slope of the straight

5



portion of a semilog plot of pressure versus time with the
permeability and thickness of the formation.

Miller, Dyes and Hutchinson17’18

also established a
method for the estimation of average permeability, effective
permeability and static reservoir pressure for a single finite
layer reservoir. Their work included the estimation of the
above parameters for oil and gas flow in the reservoir if the
gas is distributed in the oil phase.

Hurstgandvan.Everdingenzghaveplottedshut-inpressure
versus (t + At)/At for an infinite reservoir and have deter-
mined the effective permeability from the slope of that graph,
and the static pressure at the point where (t + aAt)/at = 1.
Both have also considered the problem of reduced permeability
near the well-bore.

Arps1 introduced a graphical method of computing the
completion factor which is related to the damage around the
well-bore. In the determination of the completion factor,
Arps has utilized the equations suggested by Van Everdingen.

Horner8 proposed analysis of pressure build-up for
a well in an infinite reservoir, a well close to a fault
but far from any other boundary and a well in a finite res-
ervoir. His method of analysis is suitable under the above
condition for a single layer reservoir to estimate effective
permeability, static reservoir pressure, and the distance
of a fault from a well.

Thomas28 further utilized tue method of Horner and

introduced the skin effect. The skin factor is responsible




for increased resistance to flow if positive, and there is
increased flow rate when the skin factor is negative. In
addition, the Thomas method could be used to calculate the
effective permeability and static reservoir pressure.

Gladfelter 23_51.6 have suggested pressure correc-
tion for after production and the 'condition ratio" which
accounts for the formation permeability by comparing the
pressure build-up and productivity-index estimates.

Perrine21 in his work has summarized the above
methods of pressure build-up analysis and noted that the
importanf difference is in the boundary condition assumed.
He further suggested a procedure that should be followed in
pressure build-up analysis.

Mathews et al.15

developed a method whereby pressure
build-up can be used to find the average reservoir pressure by
volumetric averaging of the individual drainage zone pres-
sures of each well. Their concept is based on the fact that
at steady state each individual drainage volume is propor-
tional to a well's production rate. The method suggests
that the extrapolated pressure to an infinite time for a
well in a bounded reservoir should be corrected to obtain
the average pressure within that boundary.

Extended methodsls’24

of pressure build-up analysis
can be used for the analysis of after production and the
late transient portions of the build-up curve. Using these

techniques, it is possible to estimate kh, transmissibility,



skin factor, average reservoir pressure and contributory
pore volume.

Ramey's23 study on short-time well test data can
be used to supplement conventional interpretation of the
straight line portion of pressure build-up analysis. Inter-
pretation of short time well tests before the straight line
portion is reached is useful to detect the presence of skin
and well-bore storage. This is done by using type curve
matching. The type curve matching approach uses a set of
curves plotted on a log-log paper which are compared to a
published set of curves until a match is found.

In practice, production of o0il from heterogeneous
reservoirs is of interest to petroleum engineers. One of
these heterogeneous reservoirs is the layered reservoir with
cross flow.

Russell and Prats25 investigated mathematically the
performance of a bounded two layer reservoir in which flow
is possible from a layer of low permeability to that of
higher permeability. Their studies show that except for the
early time when the reservoir behaves as that of a strati-
fied system, the performance of the reservoir is identical
to that of a single layer with the same pore volume, drain-
age and well-bore radii. The total "kh" and "¢h" products
are the sum of the individual layers.

Later Russell and Prats26 showed that from the pro-

duction performance and pressure response, it is possible




9
to detect if there is interlayer cross flow between layers.
They further established that if there is communication be-
tween layers, the above conclusions apply. They also con-
cluded that production from a reservoir with interlayer cross
flow has a shorter period of production life and high pri-
mary recovery.

The studies of Katz and Tek11 confirmed those of

25,26

Russell and Prats and included the method of extending

the solution to three layers. They have shown that inter-layer
cross flow is affected by the vertical permeability and the
ratio of system thickness to the drainage radius.

Pendergrass and Berry20 used both analytic and nu-
merical methods to study the interlayer crossflow in res-
ervoirs. Their studies confirmed those of other investi-

gators, 11»25,26

They added that it is not possible to detect
the effect of stratification on reservoir transient data

at long time transient performance except at the early trans-
ient period, which is so short as to be of little practical
concern.

Another type of heterogeneous reservoir that is of
practical interest to petroleﬁm engineers is the stratified
reservoir without crossflow, where the layers are only in
communication with each other at the well-bore. Lefkovits

14

et al. studied the behavior of bounded reservoirs composed

of stratified layers. They found that when the shut in pres-

sure P . versus At/ (t + At) is plotted on a semilog graph



10
paper, a curve with a straight-line section and subsequent
leveling, rising and flattening sections is obtained. Their
work showed that the time necessary to reach pseudo-steady
state is much longer for a two-layered reservoir than for a
single layered reservoir. This is due to changing rates of
production or differential depletion between layers at the
transient stage of the reservoir. As a result of this longer
time, it will be necessary to shut-in a well penetrating a
multilayered recervoir much longer in order to obtain useful
results of any analysis.

3,4,22 have utilized the conven-

Recent investigators
ticnal methods of Muskat, Miller-Dyes-Hutchinson and Horner
for the interpretation of pressure build-up behavior in
bounded layered reservoirs. These investigators made a sig-
nificant contribution by establishing that static pressure
can be obtained in the same way as in single layered reser-
voirs. Their studies also show that the early straight
line portion of Horner and Miller-Dyes-Hutchinson plots
can be used for the determination of kh product, and the
extended Muskat method can be used to compute the flow ca-
pacity and the pore volume of the reservoir.

In addition, Raghaven gg_gl.zz showed that it is
possible to determine a permeability ratio for a given
thickness ratio, using the dimensionless pressure rise.

Earlougher et al.5 recently studied the behavior

of pressure build-up in a closed square layered systen,
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with variation in porosity, permeability and thickness ratios.
In their studies, they varied the number of wells and the
shape of the system. Their study also included a developed
system, where there is a shut in well among producing wells.
They used the principle of superposition and the exponential
integral for their calculation. The results of their study
show that curves of build-up obtained for layered reservoirs
vary and may not necessarily identify layered reservoirs.

Hartsock7 derived expressions that will enable the
reservoir engineer to compute the permeabilities and initial
pressures of the drainage areas with a dual zone producing
well. He utilized the pressure drop of one zone for his
derivation. All that is needed to compute the above para-
meters is a reliable build-up curve and either the initial
pressure of one of the zones or the difference in the initial
pressures of the two zones.

Apart from pressure build-up analysis, other kinds
of well test procedures have also been applied to study the
behavior of multiple-layered reservoirs, namely, pressure
limit test and pulse test.

Kazemi12 studied pressure build-up analysis in
reservoir limit test of stratified systems. He concluded
that the conventional equations used in the analysis of
homogeneous single layer reservoirs and heterogeneous res-
ervoirs with crossflow are not applicable to heterogeneous

reservoirs without crossflow. He established that those
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equations used in pressure build-up analysis for stratified
systems can also be used for reservoir limit test of strati-
fied reservoirs.

Woods30 made a study of pulse test in a two-zone
reservoir using a single layer model. The purpose of his
study was to determine what errors could be caused by using
a single layer model for two layers. The conclusion of his
study shows that the properties of the individual layers
can be obtained using a combination of single well tests
provided there is no communication between layers except at
the well-bore. It was further estabiished that apparent
transmissibility is either equal or greater than true trans-
missibility and apparent storage is either equal or less

than the total storage.



CHAPTER IV

MATHEMATICAL EQUATIONS AND THEORETICAL
BUILD-UP RELATIONS

A. Basic Assumptions

Figure 1 shows schematically the model of the res-
ervoir studied. The reservoir is divided horizontally into
two layers, and there is no communication between the two
zones except at the well-bore. The reservoir is overlaid
and underlaid by an impermeable layer. The two layers of
the reservoir are infinite, homogeneous and of uniform thick-
ness throughout. The layers are completely saturated with
a single fluid. Over the range of pressures and temperatures
encountered, the fluid is of constant compressibility and
viscosity. The two layers are penetrated by a single well
and production is commingled. The flow of fluid is axially
symmetrical and obeys Darcy's law.

For a radial system the partial differential equa-

tion defining the flow of fluid is given as:

1 3 oP. 1 aP. ]
T el e =n—j—lat ’ =1,z (1)

where Pj(r,t) is the pressure drop defined as:

13
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Fig.| MATHEMATICAL MODEL OF AN INFINITE TWO LAYERED RESERVOIR
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Pj(r,t) = pi,.

- p.(r,t j = 1,2 2
3 pJ(r ), j (2)

for the case of Hartsock's pressure drop equation, and

Pj(r’t) = pl N pj(r,t)9 J = 1’2 (3)

14 7

for the case outlined by Lefkovits et al. Hartsock' as-

sumed that due to the force of gravity the pressure drops

for the two layers are different while Lefkovits et al.

have neglected the effect of gravity. As a result, for the

case of Lefkovits et al. the initial pressures in both layers

are the same and the reverse for that considered by Hartsock.
For the conditions considered, equation 1 has been

solved varying the boundary conditions at the well for the

two layers. From the basic assumptions, it can be defined

that
Twl = Tw2 (4)
) (5)
Hp = My (6)

For simplicity of notation, Lefkovits et al. made

the following substitutions:

k.
n, = ——i— jo=1,2 (7)

1

1,2 (8)

B. = J3 j =1,2 (9)
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and the mean permeability and porosity are defined as:

I, kh,

k = _l__?;;L;L , j=1,2 (10)

3 2?=1 ¢o:h,

$ = _l__};;L;L , j = 1,2 (11)
where

h= )i b, jo=1,2 (12)

B. Pressure Build-Up Analysis Using Hartsock's
Pressure Drop Equation

In addition to the basic assumptions as given above,
Hartsock took into consideration the force of gravity to
obtain the pressure drop equation for the upper zone. With
such an assumption, the initial pressures for the two zones
are not the same. Likewise, the flowing bottom hole pres-
sures for the two layers are not the same. He also assumed

that the well has produced long enough before shut in for

a build-up analysis.

i. Pressure Drop Equation

The initial and boundary conditions used in solving

equation 1 are:
At t = 0, P. =0, j =1,2 (13)

As T +» =,

J
i
()
-
A
1l

1,2 (14)



AtT=r, o, Pi=P o), §=1,2 (19
and
2 2 oP.
Zj=1 qj (t) = -2 Zj=1 Bj T ——‘Lar er =q (16)
W,]

The solutions obtained are expressions for pressure
drop equations for the upper and lower zones and are given
as:

For the upper zone:

1
B1 [ g ]
pil - pwfl(t) ST T {4“32(1n t + 0.809 + 1n a;) + (v- 1) ap}
By B (17)

and for the lower zone:

1
B,
- = 2 q - -
Piz owz(t) T T {4“81(1n t+0.809+1n a,) + (1 v) op}
81 8, (18)
where
] k.
aj = _J_Z_ , j = 1’2 (19)
¢jucrw
y = °08(% ~ %) (20)
(P;_ - P;)
2
and
Ap = Pi, ~ Py, - (21)
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The difference between equations 17 and 18 is in the
terms (y - 1) and (1 - y)‘respectively and also 51 and 52.
Details of the derivation of equations 17 and 18 are given
in Appendix A.

To obtain expressions for analyzing pressure build-up
curves, the principle of superposition16 is applied to equa-
tions 17 and 18. At the time the well is shut-in, the build-
up pressure is equal to the pressure at (t + At) due to
flow-rate +q plus pressure at At due to flow rate -q. Then

equations 17 and 18 become

1
. __ B 4 [1p L2285} 4 2(y - 1)a (22)
Pi, "Pus = T, T \%me, At Y P
By B
and
1
; .2 9 f1n EXAL) 4 201 - y)a (23)
Pi, " Pus © T T @6 At YJ 2P
B By

From equations 20 and 21, it can be seen that a

semilog plot of shut in pressure P,s Versus (t + At)/Aat will

yield a slope of

1.151 q =— X
81 B2
m =
1

(24)
1

Zn[—— + ]
81 B2
Substituting equations 6, 9, 10 and 12 into equation 24 and

simplifying, the following equation is obtained:
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m= 1131 au (25)
27kh

The intercept at the point where (t + At)/At is equal to unity

is given by the following equations:

X - - -
P =y - 2by(v - Lep (26)
and
P3 =By - 2by(1 - vop (27)
where
1
81
e (z8)
8, By
and
1
B2
A a (2%)
1 B

Equations 26 and 27 differ not only in terms of b; and b,
but also in terms of (y - 1) and (1 - y). From equations
26 and 27 it can be seen that at the point where (t + At)/at
is equal to unity is not an indication of the initial pres-
sure for an infinite two layered reservoir.

At At equal to unity, equations 22 and 23 can be
written as:

1

B
- = 1 q -
P " Pl " T {mag(n tD 20 - Dep} (30)

B1 B
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and
1
82
Piz Py hr T T, T {4“81(1n t+l) + 2(1 - Y)AP} (31)
B B
1 2

Subtracting equation 17 from equation 30 and equation 18

from 31, the following equations are obtained:

b,q
Py hr owl(t) 4w82 In t * bl(Y 1)ap
b;q
- 4"‘32(0 809 + 1n al) (32)
and
b,q
_ _ 2 t+l }
P1hr ~ Pug,(t) = gpg In g+ (1 - v)ep
b,q
- 4n81(0 809 + 1n az) (33)
For t >> 1, t:l ~ 1. Then equations 32 and 33 simplify to:
b;q
P1 hr ~ pwfl = bl(y - 1)ap - e BZ(0 809 + 1n al) (34)
b,q
P1 hr ° pwfz = bz(l - y)Ap - P 81(0 809 + 1n az) (35)

ii. Application
Either equations 26 and 34 or equations 27 and 35
can be used for the analysis of pressure build-up curves.

For the present illustration of the application, equations
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26 and 34 are used. The following properties of a two-layered
reservoir can be determined:
(1) The initial pressure of one zone can be determined if
the initial pressure of the other zone is known or if Ap is known.
(2) The kh product of each zone.
Equations 26 and 34 are solved simultaneously in
order to establish the above conditions. For example, if

P; is known, kl/u can be determined by eliminating

1
by (v - 1)ap (36)

from both equations 26 and 34 and solving for kl/u. With

the use of ejuation 24, l/s2 can be determined. If p; or

2
Ap is known, replace b1 by

1.151 q -
B2

and also replace kl/u by

Bo
b R (38)

1 1

in equations 26 and 34. Equations 26 and 34 are then solved
to determine 1/82 and subsequently 1/61 and pil. The sub-
stitution for b1 and kl/u have been done using equation 24.
If P1 hr does not fall on the straight line portion of the
semilog plot of shut-in pressure versus (t+ At)/At, an ex-

trapolation of the straight line portion is necessary.
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iii. Determination of Skin Factor

Skin factor is a dimensionless number which expresses
to what extent the permeability around the well-bore has
been reduced or increased. If the permeability around the
well-bore has been reduced due to infiltration of drilling
mud into the formation during drilling and well completion,
the skin factor is a positive dimensionless number. On the
other hand, if the permeability around the well-bore has
increased due to acidization or fracturing, the skin factor
is a negative dimensionless number.

The skin factors for the individual layers can be
determined with the use of equations 17 and 18. For the

sake of completeness equations 17 and 18 are repeated.

1
81 q -
pil - pwfl = T, T {4“62(1n t + 0.809 + 1n al) + (v -l)Ap}
By B (17)
and

1
By q -
Pi, P, T ITLUL {4n81(1“ 40800 4 dn 3y ¢ (-
B, ©F (18)

From this point only equation 17 is used for the determina-
tion of S1 which is the skin factor for the upper zone. The
same procedure can be used for the determination of SZ’

which is the skin factor for the lower zone, using equation

18.
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As stated by Van Everdingen, the skin factor S1 of
the upper zone relates the pressure drop in the skin to the
dimensionless flow rate; that is,

_ qv
AP¢kin = S1 Zrk Ry (39)

Equation 17 can be rewritten as:

B
S W - ; i
Puf) " P1, T {41r32(1n trO.809 anay) v by mp}
By 8, (40)

The introduction of equation 39 into equation 40 leads to:

1
By a i
pwfl(t) =P, T I I E, In t + 0.809 + 1In a;
81 B2
28,9 gL ¥ é;
191 P11 B
f =TT * O - Dot (41)
B2

Equation 40 has been reduced by the amount

qlu
S1 Z?EIHI . (39)

From equation 22, the build-up pressure can be expressed as:

1

B

1 t+ At
Pys " P31 " T . 1 {4;% [ln At ] vy - I)AP} (42)
1 -B-I‘*"E-z- 2

Eliminating P; between equations 41 and 42, and substituting
1
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equations 24, 28 and 29, the following equation is obtained:

2519,

Pyus ~ owl(t) = m{ln t + 0.809 + 1n a; + —353_]

t + At
+ bl(Y - 1)Ap - m 1]’1[——-At—'] - Zbl('y - 1)ap (43)

Substituting equation 19 into equation 43 and simplifying

leads to:
t At kl Zslq1
P -p (t) = m{ln + 0,809 +
ws wiy (t+ At)¢1ucr£ ab;
- by(y - 1)ap (44)

Choosing At = 1 << t, then (t+ At)/t = 1 and equation 44

becomes
ky 25794
P71 hr ~ Puf (t) = miln —— ¥ 0.809 + i bl(y-l)Ap
1 ¢ucrw 2

(45)

Rearranging equation 45, an expression for the skin factor

for the upper zone is:

qbZ Pi hr owl(t) + bl(Y - 1)ap kl
S, = - 1n - 0.809
1 2q m 2
1 ¢1ucrw

(46)
Similarly, an expression for the skin factor for the lower

zone 1is obtained as:
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Py nr * Pug, (8) * bp(1-)ep K,

¢2UCTW

S, = qbl - In
2 2q2 m

- 0.809

(47)

qp and q, can be determined by equations suggested by Lef-
kovits EE_El-l4 They suggested that for an infinite two-
layered reservoir, the fractional production rate from each
zone is equal to the kh product of each zone divided by the

total kh product. For a two layered reservoir, we have

q k.h
a kb + kyh,
and
q q k,h
22 . 1 - it 2 2 (49)
q a  khy *+ kohy

Equations 48 and 49 can be used to evaluate a3 and
q,- The values of qq and q, can then be substituted into

equations 46 and 47 for the determination of the skin factors.

C. Pressure Build-Up Analysis Using the Outlines of

Lefkovits gg_gl.lg
In addition to the basic assumptions given above, the

effect of gravity is neglected. As a result, the initial

pressures and flowing bottom hole pressures are the same

for both layers. With these assumptions, three cases of

pressure drop equations have been considered, namely, pres-

sure drop equation without skin and well-bore storage;
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qbl P1 hr ~ owz(t) * bz(l’ Y)Ap k

52 = zqz o - 1n

2

¢2ucrw

- 0.809

(47)

aq and q, can be determined by equations suggested by Lef-
kovits gg_gl.l4 They suggested that for an infinite two-
layered reservoir, the fractional production rate from each
zone is equal to the kh product of each zone divided by the

total kh product. For a two layered reservoir, we have

klh

4 1
—_— = 48
a  kyhy + kohy (48)
and
q q k,h
__2_. = 1 - .__]_' = 2 2 (49)
q a  khy + kphy

Equations 48 and 49 can be used to evaluate q; and
q,- The values of aq and q, can then be substituted into

equations 46 and 47 for the determination of the skin factors.

C. Pressure Build-Up Analysis Using the Outlines of

Lefkovits gz_gl.lg
In addition to the basic assumptions given above, the

effect of gravity is neglected. As a result, the initial

pressures and flowing bottom hole pressures are the same

for both layers. With these assumptions, three cases of

pressure drop equations have been considered, namely, pres-

sure drop equation without skin and well-bore storage;
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pressure drop equation with skin effect; and pressure drop

equation with well-bore storage effect.

i. Pressure Drop Equation Without Skin and
Well-bore Storage Effects

A detailed derivation of the pressure drop equation
for an infinite two-layered reservoir without skin and well-
bore storage effects is shown in Appendix B. Equation 1 has
been solved with the following initial and boundary condi-
tions:

At the initial time, the pressure drop is zero in the

two layers; that is,
Pj =0 at t = 0, j =1,2 (13)

As the well bore radius approaches infinity, the

pressure drop is equal to zero in both layers; that is,

Pj =0 as 7T > », j=1,2 (14)

At the well the pressure drops in all the layers are equal
since the pressure in all layers at the well are also equal;

that is,

P. = ow(t) atr=r

3 j=1,2 (15)

w’
The production rate which is a combined total from

the two layers is constant; that is,

2 2 aP.
Ij=1 a5(8) = -2v J5.) 5|7 57+ ey .0 (16)
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With these boundary conditions, equation 1 has been

solved and the pressure drop obtained is:

i - _qu_ )
p. - p L {1n 7t - Q} (50)
i “wE o okh
where
72¢1ucr£ 72¢2ucr5

Kby 10| | * Koy T

Q= T ER : (51)
1M1 207

v is Eulers constant, v = 1.78;
y =1ny = 0.5772 (52)
The dimensionless pressure drop is defined as

27kh
qu

(Pl = ow) = PD(tD) (53)
where ty is the dimensionless time based on T and is given

as

_ _kt

¢ucrw

Multiplying equation 50 by 2wkh/qu, a dimensionless
pressure drop for an infinite two layered reservoir is ob-
tained; that 1is,

2nkh
qu

(P, - p,g) = 3 UIn(roty - Q) (55)

where _ 2

- ¢ucrw

g = ~ . (56)
k
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Equation 55 is used for the analysis of pressure build-up
for the case of an infinite two-layered reservoir, where

the force of gravity is negieccted.

ii. Pressure Drop Equation With Skin Effect

A detailed derivation of the equation for pressure
drop with the effect of skin is shown in Appendix C. The
solution for equation 1 is sought with the boundary conditions
similar to those for a pressure drop equation without skin
and well-bore storage effects with the exception of the
boundary condition at the well.

According to Lefkovits gg_gl.l4 the skin factor

for any layer can be stated as

P _ - P,.
S5 = ﬂ.(:{u /zf% ) (57)
") J )

Rearranging equation 57 the boundary condition at the well

is obtained as:

S.q.(t)u,
ow(t) = PfJ + _%7%}?_1‘ > ] = 1)2 (58)
For this case, the well-bore pressure drop is given as:
- = qu
P P —{1n vt + Q¢} (59)
i "wE 4ikh S

where

2
Y ¢ ucTy 72¢2ucrw
Qs = kR

(60)
1t Khy
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With the exception of the skin factors S1 and S2
for the upper and lower zones respectively, equation 51 is
similar to 60.
Multiplying squation 59 by 2nkh/qu, a dimensionless
pressure drop for an infinite two layered reservoir with
skin effect is obtained; that 1is,

2mkh
qu

(p; - P = FlIn(raty) + Q] (61)

Equation 61 is used for the analysis of pressure build-up
for the case of an infinite two-layered reservoir with skin

effect.

iii. Pressure Drop Equation With the Effect
of Well-bore Storage
In this study, the method used for investigating
the effect of well-bore storage is that of flow into casing

and tubing with a loading constant, B. Van Everdingen29

and
Hurst9 observed that in many cases the formation (or sand
face) flow rate can be approximated by a formula of the
type:

at

a e = a(l-e %) (62)

where q is the constant flow rate from the two layers and
a is a constant whose dimension is given by 1/tD.

Equation 62 shows that the formation flow rate starts
from zero and increases exponentially until it gets to the

constant rate q. A detailed derivation of the pressure drop
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equation for the case of a variable flow rate expressed by
equation 62 is shown in Appendix D. After the pressure drop
equation has been derived for a constant flow rate q, the
principle of superposition16 is applied to obtain the pres-
sure drop equation for a variable flow rate. For the vari-
able flow rate expressed by equation 62, the pressure drop
equation obtained for an infinite two layered reservoir is

given as:
= pe Ot
P; - Pyp = Pug(t) - SZ_EE_[Ei(“t) - 1na - Q] (63)
w

where ow(t) is the pressure drop for the case without skin

and well-bore storage effects, described by equation 50;

that is,
P o(t) = p; - p e = —2= [In vt - Q] (50)
wf P wf avkh
and
at a
Ei(ut) = [ (e"/u) du (64)

is the exponential integral whose numerical values are given

in Tables of Sine, Cosine and Exponential Integrals.27

9

Van Everdingen2 showed that

B (65)

- 2 -
a¢ucrw/k
and

Bty = at (66)
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From equation 65 and expression for o is obtained as:

a = _Bk 5 (67)
pucr,

Substituting equation 56 into 67 leads to:

B/o (68)

a

Multiplying equation 63 by 2nkh/qu and substituting equations

66 and 69, equation 63 reduces to:

_ -8t
P (t D

- 1
D = Pp(t) - 5e

D) [E; (Bty) - 1n B/5 - Q] (69)

where PD(tD) is described by equation 53, and
2wvkh

(tp) = S5 (Py - Pyg) (70)

ol

D

For a single layered :eservoir, Q can be expressed

as .
72¢ucrwz .
Qp = In|—7x—— (71
Equation 71 can further be expressed as
Qg = 2y -1n4+1no (72)
where
Yy = 1n v = 0.57722 (52)
and
- ¢ucrw2
SL T TR (73)

for a single layered reservoir.
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Substituting equation 72 into the second term on the
right of the equality sign of equation 69, the following
equation is obtained:
1 'étD _ _
5 e [Ei(BtD) - In g - 2y + 1n 4] (74)
Equation 74 is the same as the second term on the right of

the equality sign of equation 6 of Van Everdingen.29



CHAPTER V
RESULTS AND DISCUSSION

In the presert study the effects of the parameters
of an infinite two layered reservoir were investigated. The
effects of the variation of permeability and thickness ratios
were investigated using the Hartsock7 and Lefkovits gg_gl.14
methods. 1In addition, the effects of skin and well-bore

storage were investigated using the Lefkovits et a1.14

method.
All the equations used for these investigations were derived

in this study and they are shown in Appendices A, B, C and D.
A. The Effects of Permeability and Thickness Ratios

i. Hartsock's Method

This is the method where the force of gravity between
the two lavers has been taken into consideration in deriving
equations to be used for the determination of the parameters
for an infinite two layered reservoir. These equations
have also been used to study the effects of permeability

and thickness ratios.

In practical units, equation 22 can be written as:

t + A
Pys ™ P; - M log 52 - 2 by (y - 1)ap (22a)

33
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where

m = m 11} 2.2 (24a)
+
IE1“1 IEZHZ
or equivalently
162.6 q_uB
m = 0 (25a)
‘ kh

which is the slope per cycle of the straight-line portion

of the build-up curve plotted on a base ten semilog graph

paper;
u
by = 11 (28a)
B, _u
kihy o kphy
ijs a dimensionless number, and
y = Oizs p‘.’(:? 5 W (20a)
i, i

is also a dimensionless number.

Equation 22a is used in generating pressure build-
up curves. The build-up curves obtained can be described
as ideal curves. Such curves are shown in Figures 2, 3, 4
and 5. An ideal build-up curve is a straight line curvé
without the effects of skin and well-bore storage. Such
ideal curves are similar to those of single layered reser-

voirs, except for the slope and intercept.



WELL-BORE -PRESSURE, PSIG

3015

T 1 I
3010 -
3005#— —
SLOPE =6.50 psi/cycle

3000
29954~

kh =3750 md.-ft.
2990~ ki/ko=2

(PMe), /(PMC)=1

t=1x103 hours
2985~ q=200 bbis/day
2980 1 | 1

I 10 102 103
t+D ¢
At

Fig.2 PLOT FOR A CONSTANT RATE WELL IN AN INFINITE
LAYERED RESERVOIR USING EQUATION 22a.

TWO



WELL-BORE -PRESSURE, PSIG

3015

3010

3005
SLOPE = 3.25psi/cycle
3000 psi/ey
2995
kh = 7500 md.-ft.
2990 k)/k>=5 -
h|/h2= |
(PUC), 7 @PHC)y= |
t=1x103 hours
2985 q=200 bblis/day -
298 - | 1
10 102 103 104
t4D ¢ o
Ot >

Fig.3 PLOT FOR A CONSTANT RATE WELL IN AN INFINITE TWO
LAYERED RESERVOIR USING EQUATION 22a.



WELL-BORE -PRESSURE, PSIG

3010

3005
SLOPE=4.06psi/cycle
3000
2995}-
kh =6000md.-ft.
2990}~ hy/hy=2 -
k'/k2= l
(pkc),/ PMc)p=1
. t=1x103 hours
29854~ q=200 bbis/day -
1 | |
2980| 10 |02 |03 |04
t+4At
Ot

(93]

Fig.4 PLOT FOR A CONSTANT RATE WELL IN AN INFINITE TWO
LAYERED RESERVOIR USING EQUATION 22c



WELL-BORE - PRESSURE, PSIG

i T T
3010~ -
3005 -
30001 i

SLOPE 5.08psi/cycle
2995}
, kh =4800md.-ft.
2990 h/h=5
ky/kp= |
(Ppmc), /(PMC)p=1
t= 1x 103 hours
2985 g=200 bbls/day
2980 i | 1
I 10 102 103 104
t+A¢t ’
Aot %

Fig.5 PLOT FOR A CONSTANT RATE WELL IN AN INFINITE TWO
LAYERED RESERVOIR USING EQUATION 22a.



39
In this study, it is observed that the slopemof a build-
up curve for an infinite two layered reservoir depends more on
the kh product and not on the permeability rationor thickness
ratio. From tables 2 and 3 it can be seen that it is the kh product
that affects the value of the slope and not the permeability nor
the thickness ratio. The same observation can be made with
Figure 6. Fromthese observations it can be concluded that with
an increase in the kh product the smaller the slope and the reverse
is observed with a decrease in kh product.
The intercept of a semilog plot of shut-in pressure
versus (t + At)/4at is given as:

Pl = Py, ~ 2by (v - 1)Ap (26)

pWS

where b1 is described by equation 28a, y by equation 20a and Ap
by equation 21. From equation 28a, it can be seen that bl

will depend on the sum of u/]clh1 and u/kzhz. The greater the
sum, the smaller bl’ the greater the intercept. For the sum
of u/klh1 and u/kzh2 to increase, the kh product of the indi-
vidual layers have to be small. Therefore, the smaller the ca-
pacity of the individual layers the greater the intercept.

In addition to the kh product of the individual layers,
the term y - 1 in equation 26 also affects the intercept. If
y-1 is greater than zero, that is (y - 1) >0, the smaller the
intercept. On the other hand, if (y - 1) <0, the greater the
intercept. In the present study, the values of y -1 obtained
are less than zero and as a result the values of the intercept are
greater than 3000 psi which is the assumed initial pressure of

the upper zone.
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In practical units equation 23 can be written as:

-t + At
Pys = p:.l2 - m long - sz(l - y)Ap (23a)

The slope m of equation 23a is the same as the slope of equa-
tion 22a described by equation 24a and 25a. So all condi-
tions as discussed above for the slope of equation 22a will
hold for equation 23a.

If equation 23a is used for the analysis of pressure

build-up, then the values of the intercept,

p3 = piz - 2b,(1 - y)ap (27)
will depend on
|1}
IEZHZ
b, = — (29a)
wooo, o u
kihy o kphy

and the term 1 - y.

Similarly, as discussed above with regards to bl’
the value of b, will depend on the sum of u/klh1 + u/kzh2
except for the fact that the numerator of b, is u/kzh2 un-
like the numerator for b, which is ”/klhl’

Unlike the term y - 1 as discussed above with re-
gards to equation 22a, the intercept (equation 27) for equa-
tion 23a will depend on the term 1 - y. If (1 - y) > O,
the intercept value will be less. On the other hand, if
(1 - y) < 0, the intercept value will be high. In the pres-

ent study, with the use of equation 23a, the intercept at
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(t + at)/at = 1 is always less than 3030 psi which is the
assumed initial pressure of the lower zone. This fact is
illustrated graphically in Figures 7, 8 and 9. As a result,
the intercept values obtained in this study either by using
equation 22a or 23a lie between the initial pressures of

the upper and lower zones.

ii. Lefkovits et 31.14 Method

This is the method where the force of gravity be-
tween the two layers has been neglected in the derivation
of the equations used in studying the effects of permeability
and thickness ratios; skin and well-bore storage for an in-
finite two layered reservoir.

The analysis used in this study for this method has
been done with the use of dimensionless pressure and time.
The dimensionless shut-in pressure used for this analysis

is given as:

27kh — - -
I8 (p; - Byg) = Pplt + at)p - Pplaty) (75)

All that is needed for a semilog plot of dimensionless shut-
in pressure Pws versus (t + At)/At is a table of dimension-
less well-bore pressure and time. For an infinite two
layered reservoir with the variation of permeability and
thickness ratios, dimensionless well bore pressure and time
are given in tables 4 and 5 for the case without skin and
without well-bore storage effects. From these tables and

with equation 75, semilog plots of dimensionless shut-in
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pressure versus (t + At)/At have been produced as shown in
Figures 10, 11, 12 and 13. These plots are straight lines
of ideal pressure build-up curves without the effects of
skin and welil-bore storage. The intercepts of these plots
at (t + At)/Aat = 1 are all zero. This shows that at an
infinite shut-in time, the shut-in pressure is equal to the
initial pressure of an infinite two layered reservoir with
both layers having the same initial pressures.

The slope of all the plots is 1.151. Thus a plot
of the shut in pressure versus (t + At)/At on a semilog

paper of base 10 will yield a slope of

« 224:2qu8 (252)
kh

Similar to Hartsock's7 method described above, the slope
for the case where the initial pressures in both layers are
the same for an infinite two layered reservoir, will depend
on the kh product and not the permeability nor thickness
ratios.

In this study, it has been shown that under certain
conditions, an infinite two layered reservoir can behave
like a single layered reservoir. Repeating equation 51 we

have,

72¢1ucrw 72¢2ucrw2
iy Inl—g ) * el Inl—

1 2
Q = (51)
klh1 + kzh2
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If the following conditions hold, that is

Twl = Tw2 (4)

¢, = ¢ (5)

Wy = Wy (6)

k1 = k2 (76)

¢1 = 4’2 (77)

Q reduces to:
Y ¢ucrw2
Q = 1n ———41(——— (78)

From equation 78 it is obvious that if the above
conditions hold, pressure drop from a two layered reservoir
will be similar to that for a single layered reservoir ir-
respective of the thickness ratio, provided the initial pres-
sures of both layers are the same. As a result, pressure
drop can only depend on the thickness ratio if there is a

permeability or porosity contrast of the two layers.

B. The Effects of Producing Time and Constant
Production Rate
In this study it is observed that the effect of pro-
ducing time is not noticeable in the semilog plots of shut-
in pressure versus (t + At)/At for an infinite two layered
reservoir. The only effect that producing time has is that
it is necessary to shut-in the well for a long time to have

a good build-up.
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Usually the production rate is kept constant before
a well is shut-in for pressure build-up. In any case, the
constant rate of production before shut-in for pressure build-
up will decrease with increased drainage radius. In this
study, it is assumed that four shut-in pressure build-ups
were made at different times during the life of a well. At
each time there is a decline in the constant production
rate before shut-in. For the case shown in Figure 14, it is
assumed that the decline is exponential. The curves show
that with the increase in life of the reservoir, the shut-in
time required for a build-up also increases. All the curves
have the same intercept at an infinite shut-in time, that is
at (t + At)/At = 1. Thus the semilog plots for all build-
ups for a well in an infinite two layered reservoir will

have the same intercept.

C. The Effect of Skin

A positive skin is caused by the reduction of the
permeability around the well-bore due to infiltration of
drilling mud and completion fluids; and the presence of mud
cake, cement and high gas saturation in the producing for-
mations. A negative skin is an increase in permeability of
the producing formation due to fracturing and acidization.

In this study it has been shown that for the case
of an infinite two layered reservoir where the initial pres-
sures are not the same in both layers, the skin factors can

be determined with equations 46 and 47. 1In practical units
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these equations can be expressed as:

1.151 qb,|P1 hr ~ Puwf, * by &y - 1)2p k
S1 = - logio 7 * 3.32
9 m pucr
w
(46a)
and
1.151 qby |P1 hr * Pug, 7 by(1 - v)ap k,
SZ = -~ - logie > + 3.32
LY ducr
w
(47a)

Thus using pressure drop equations as derived by
Hartsock's7 method, it is possible to obtain equations to
determine skin factors for upper and lower zones of an in-
finite two layered reservoir.

With the outlines of Lefkovits SE_EL-’14 it is not
possible to determine the skin factors, but it is possible
to investigate their effects. Three plots of dimensionless
well-bore pressure versus dimensionless time are shown in
Figure 15. Curve 1 was obtained using equation 55 which
does not include skin factors. Curve 2 was plotted with
equation 61withS;=1andS,=10. Curve 3 has been plotted
with the same equation as for curve 2 but with S1 = 10 and
52 = 1. The subscripts 1 and 2 refer to the upper and lower
zones respectively. The permeability ratio of the upper
zone to the lower zone is 10. Therefore, curve 2 is a plot

of dimensionless pressure versus dimensionless time with
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higher skin in the less permeable layer while curve 3 1is
also a semilog plot 1like curve 2 but with higher skin in the
more permeable layer. Curve 2 shows an increase in pressure
drop while curve 3 shows a further increase in pressure drop.
The skin factors considered in Figure 15 are all positive.

In Figure 16 is shown the effects of negative skin
factors. The permeability ratio is the same as for those
used in the investigation of positive skin factors above.
Curve 1 in Figure 15 is the same as curve 1 in Figure 16
which is a plot of dimensionless well-bore pressure versus

dimensionless time without the effect of skin. Curve 2 was

plotted with equation 61 with S, = -1 and S2 = -10. Simi-
larly curve 3 was plotted with equation 61 but with S1 = -10
and S, = -1. Curve 2 is a plot of dimensionless pressure

versus dimensionless time with a lower skin in the less
permeable layer while curve 3 is also a semilog plot like
curve 2 but with lower skin in the more permeable layer.
Curve 2 shows a decrease in pressure drop and curve 3 shows

a further decrease in pressure drop.

D. The Effect of Variable Flow Rate Due to
Well-Bore Storage
The method used for investigating well-bore storage
in this study is that of flow into casing and tubing with
a loading constant, 8. Equation 69 was used to generate
dimensionless pressures and dimensionless time tabulated

in tables 7 and 8. Values from these tables with equation
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75 were used to plot graphs of dimensionless shut in pres-
sure Pws versus (t + At)/At. Figures 17, 18, 19, 20 and 21
are examples of such graphical plots. These graphs show
that there is early distortion of the build-up curves due
to flow into casing and tubing when the well is shut-in.
Such distortions are similar to those of single layered
reservoirs obtained by Hurst9 and Van Everdingen.29 On
Figure 22 is shown that with an increase in the loading con-

stant, pressure build-up curves approach ideal curves.
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CHAPTER VI

CONCLUSIONS

Mathematical equations have been developed that can

be used to determine the parameters of the individual layers

of an infinite two layered oil reservoir. In addition, the

effects of the reservoir parameters, skin and well-bore

storage have also been studied. The conclusions obtained

in this study are given as follows:

1.

In order to obtain equations to compute the reservoir
parameters of an infinite two layered reservoir, the
initial pressures of the two layers must be different;
that is, the force of gravity between the two layers
is not neglected. If the initial pressures are the
same, the equations obtained can only be used to
study the effects of the reservoir parameters, skin
and well-bore storage.

Using the Hartsock's method, it is possible to deter-
mine the initial pressure of one zone and the per-
meabilities of the individual zones if the initial
pressure of one zone or the difference in the initial

pressures is known.
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Pressure build-up curves obtained for an infinite
two layered reservoir without the effects of well-
bore storage are similar to those for an ideal single
layered reservoir.

Permeability and thickness ratios for an infinite two

layered reservoir do not affect the slope of the build-

up curve but only the kh product affects the slope.
Equations have been developed that can be used to
determine the skin factors of the individual zones.
Further, the study of the skin effect show that
there is a greater pressure drop with a higher posi-
tive skin in the more permeable layer than a higher
positive skin in a less permeable layer. Also, there
is a lesser pressure drop with a lower negative skin
in the more permeable zone than a lower negative in
the less permeable zone.

Equations were derived to show the effects of well-
bore storage. It was found that the effect of well-
bore storage in an infinite two layered reservoir

is the same for that of a single layered reservoir.
The results of the analysis demonstrate the validity
of the equations derived for the analysis of pres-

sure build-up in an infinite two-layered reservoir.



NOMENCLATURE

total compressibility, pSi-l

depth of formation, feet

exponential function

exponential integral function

acceleration due to gravity, ft/sec2

formation thickness, feet

total formation thickness, feet. Eq. 12

modified Bessel function of the second kind of zero
order

permeability, millidarcy

harmonic mean of the permeabilities of the upper
and lower zones, milli-darcy. Eq. 10

modified Bessel function of the first kind of zero
order

natural logarithm

base ten logarithm

slope of plot of P o versus (t + at)/At, psi/cycle
formation pressure, psi

pressure drop

pressure drop at the well

flowing well-bore pressure, psi
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pressure drop at the well-bore

flowing bottom hole pressure due to well-bore stor-
age, psi

pressure drop due to well-bore storage

shut in bottom-hole pressure, psi

intercept pressure, psi. Eq. 26 and 27

pressure difference between the upper and lower
zones, psi

pressure drop in "skin'" region next to well-bore, psi
constant for two layers, Eq. 51

constant for two layers with skin, Eq. 60

constant for single layer, Eq. 71

total flow rate from the two layers, bbls/day
fadial distance, feet

skin factor, dimensionless

time, hours

dimensionless time for an infinite two layered res-
ervoir based on well radius

shut in time, hours

dimensionless shut-in time

independent variable for time in Laplace equation
loading constant, l/tD

formation volume factor

dimensionless loading constant

Euler's constant, v = 1.781, In vy = 0.5772
porosity

harmonic mean porosity, Eq. 11



p 0il specific gravity

u viscosity, cp

Subscripts

D dimensionless

f formation

1h one hour

i initial

j index number for the layers

sf sand face

1,2 numbers indicating upper and lower zones
SL single layer

w well
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TABLE 1
RESERVOIR PARAMETERS USED IN THIS STUDY

c, = 1.5 x 107> psi!

d, = 5000 ft
d2 = 5050 ft

L L 0.75 cp
pP; = 3000 psi
1
p; = 3030 psi
2
q = 200 bbi/day
T, = 0.25 ft
¢1 = ¢, = 0.20
Py = 0.825
g. =1.0

Thickness and Thickness Ratio Permeability and Permeability

" N he /h Ratio

£t £t o kg ks ky 7k,
md md

50 10 5

40 10 4 80 80 1

60 20 3 100 50 2

50 25 2 150 50 3

25 25 1 200 50 4

25 50 0.5 250 50 5

10 50 0.2 500 50 10
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TABLE 2
THE EFFECT OF kh PRODUCT ON SLOPE m,
WITH VARIATION OF PERMEABILITY RATIO

162.6 quB,
, k,/k, K mE
md md- ft psi/cycle
80 1 4000 6.1
50 2 3750 6.5
50 3 5000 4.88
50 4 6250 3.90
50 5 7500 3.25
30 6 5250 4.65
20 7 4000 6.10
40 8 9000 2.61
45 9 11250 Z.17
50 10 13750 1.77
where kh thl ; kzhz h1 = h2 = 25 ft
qp = 200 bbls/day

2 p=0.75 cp
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THE EFFECT OF kh PRODUCT ON SLOPE m,

WITH VARIATION OF THICKNESS RATIO

162.6 apHB,
By By hy/h, kh T
ft ft md-ft psi/cycle
10 50 0.2 4800 5.08
25 50 0.5 6000 4.07
25 25 1 4000 6.10
50 25 2 6000 4.06
60 20 3 6400 3.81
40 10 4 4000 6.10
50 10 5 4800 5.08
- klhl *+ kyh,
where kh = - k1 = k, = 80 md
- " ar = 200 bbls/day
and h = h, +

1

B =

0.75 cp
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TABLE 4

DIMENSIONLESS PRESSURE VERSUS DIMENSIONLESS TIME WITH VARIATION OF
PERMEABILITY RATIO FOR AN INFINITE TWO-LAYERED RESERVOIR WITHOUT
THE EFFECTS OF SKIN AND WELL-~BORE STORAGE AND WITH A
THICKNESS RATIO OF ONE,

'y Py
kl/k2
1 2 3 4 5 10
1.00E 02  2.7071  2.7260  2.7516 2.7739  2.7926  2.8521
2.00E 02  3.0537  3.0735  3.1004 3.1237  3.1432  3.2045
4.00E 02  3.4003  3.4209  3.4488 3.4729  3.4930  3.5560
6.00E 02  3.6030  3.6240  3.6524 3.6770  3.6974  3.7611

8.00E 02 3.7469 3.7681 3.7968 3.8216 3.8423 3.9065
1.00E 03 3.8584 3.8799 3.9089 3.9338 3.9546 4.0191
2.00E 03 4,2050 4.2270 4,2567 4.2822 4.3033 4.3687
4.00E 03 4.5516 4.5741 4.6043 4.6302 4.6517 4.7180
6.00E 03 4.7543 4.7770 4.8075 4.8338 4.8554 4.9220
8.00E 03 4.8982 4.9210 4,9517 4.9781 4.,9998 5.0667
1.00E 04 5.0097 5.0327 5.0636 5.0900 5.1118 5.1789
2.00E 04 5.3563 5.3796 5.4109 5.4377 5.4597 5.5272
4.00E 04 5.7029 5.7265 5.7581 5.7852 5.8074 5.8754
6.00E 04 5.9056 5.9294 5.9612 5.9884 6.0107 6.0790
8.00E 04 6.0495 6.0733 6.1053 6.1326 6.1550 6.2234
1.00E 05 6.1610 6.1850 6.2170 6.2444 6.2668 6.3353
2.00E 05 6.5076 6.5318 6.5641 6.5917 6.6143 6.6830
4.00E 05 6.8542 6.8786 6.9111 6.9389 6.9616 7.0307

6.00E 05 7.0569 7.0814 7.1141 7.1420 7.1648 7.2340
8.00E 05 7.2007 7.2253 7.2581 7.2860 7.3089 7.3782
1.00E 06 7.3123 7.3370 7.3698 7.3978 7.4207 7.4900
2.00E 06 7.6589 7.6837 7.7167 7.7448 7.7678 7.8374
4.00E 06 8.0055 8.0304 8.0636 8.0919 8.115C 8.1847
6.00E 06 8.2082 8.2332 8.266¢€ 8.2949 8.3180 8.3879
8.00E 06 8.3520 8.3771 8.4105 8.4389 8.4620 8.5320
1.00E 07 8.4636 8.4886 8.5222 8.5506 8.5738 8.6437
2.00E 07 8.8102 8.8353 8.8688 8.8972 8.9204 8.9909
4.00E 07 9.1568 9.1820 9.2156 9.2441 9.2074 9.3375

6.00E 07 9.3594 9.3848 9.4185 9.4471 9.4703 9.5406
8.00E 07 9.5033 9.5287 9.5625 9.5911 9.6144 9.6846
1.00E 08 9.6149 9.6403 9.6741 9.7027 9.7261 9.7963
2.00E 08 9.9615 9.9870 10.0209 10.0496 10.0731  10.1435
4.00E 08 10.3081 10.3337 10.3677 10.3965 10.4200  10.4905
6.00E 08 10.5108 10.5365 10.5705 10.5994  10.6229 10.6935
8.00E 08 10.6546 10.6803 10.7145 10.7433 10.7669  10.8375
1.00E 09 10.7662 10.7919 10.8261 10.8550 10.8786  10.9492
2.00E 09 11.1128 11.1386 11.1728 11.2018 11.2254  11.2962
4.00E 09 11.4593 11.4853 11.5196 11.5486 11.5723 11.6431
6.00E 09 11.6621 11.6880 11.7224 11.7515 11.7752 11.8460
8.00E 09  11.8059 11.8319 11.8663 11.8954  11.9191  11.9900
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TABLE 5

DIMENSIONLESS PRESSURE VERSUS DIMENSIONLESS TIME WITH VARIATION OF
THICKNESS RATIO FOR AN INFINITE TWO-LAYERED RESERVOIR WITHOUT
THE EFFECTS OF SKIN AND WELL-BORE STORAGE AND WITH A

PERMEABILITY RATIO OF 4.

t PD
h,/h,
0.2 0.5 1 2 4 5
1.00E 02 2.7737 2.7844 2.7739 2.7547 2.7365 2.7317
2.00E 02 3.1240 3.1349 3.1237 3.1035 3.0843 3.0793
4.00E 02 3.4736 3.4847 3.4729 3.4518 3.4319 3.4267
6.00E 02 3.6780 3.6890 3.6770 3.6554 3.6352 3.6299
8.00E 02 3.8229 3.8340 3.8216 3.7998 3.7790 3.7740
1.00E 03 3.9352 3.9464 3.9338 3.9118 3.8911 3.8858
2.00E 03 4.2839 4.2951 4.2822 4,2596 4.,2384 4.2329
4,00E 03 4.6323 4.6436 4.6302 4,6071 4.5856 4.5800
6.00E 03 4.8360 4.8473 4,8338 4.8103 4.7886 4.7830
8.00E 03 4.9805 4.9918 4.9781 4.9545 4.,9326 4.9270

1.00E 04 5.0926 5.1038 5.0900 5.0663 5.0444 5.0387
2.00E 04 5.4405 5.4518 5.4377 5.4136 5.3913 5.3856
4.00E 04 5.7883 5.7995 5.7852 5.7608 5.7383 5.7324
6.00E 04 5.9917 6.0029 5.9884 5.9638 5.9412 5.9353

8.00E 04 6.1359 6.1472 6.1326 6.1079 6.0851 6.0793
1.00E 05 6.2478 6.2591 6.2444 6.2196 6.1968 6.1909
2.00E 05 6.5953 6.6066 6.5917 6.5666 6.5436 6.5377
4.00E 05 6.9428 6.9540 6.9389 6.9136 6.8905 6.8845
6.00E 05 7.1460 7.1571 7.1420 7.1166 7.0933 7.0873
8.00E 05 7.2901 7.3013 7.2860 7.2606 7.2372 7.2312
1.00E 06 7.4019 7.4131 7.3978 7.3723 7.3489 7.3429
2.00E 06 7.7492 7.7603 7.7448 7.7192 7.6956 7.6896
4.00E 06 8.0963 8.1075 8.0919 8.0660 8.0423 8.0363
6.00E 06 8.2989 8.3106 8.2949 8.2689 8.2452 8.2391
8.00E 06 8.4430 8.4546 8.4978 8.4129 8.3891 8.3830
1.00E 07 8.5547 8.5659 8.5506 8.5245 8.5007 8.4946
2.00E 07 8.9019 8.9130 8.8972 8.8713 8.8474 8.8413
4.00E 07 9.2490 9.2601 9.2441 9.2179 9.1940 9.1879
6.00E 07. 9.4520 9.4631 9.4471 9.4208 9.3968 9.3907
8.00E 07 9.5960 9.6071 9.5911 9.5647 9.5407 9.5346
1.00E 08 9.7076 9.7188 9.7027 9.6764 9.6523 9.6462
2.00E 08 10.0548 10.0658 10.0496 10.0231 9.999 9.9928

4.00E 08 10.4018 10.4128 10.3965 10.3699  10.3457 10.3395
6.00E 08 10.6047 10.6157 10.5994 10.5727 10.5485 10.5423
8.00E 08 10.7487 10.7597 10.7433 10.7167 10.6924 10.6862
1.00E 09 10.8604 10.8714 10.8550 10.8283 10.8040 10.7978
2.00E 09 11.2073 11.2183 11.2018 11.1750 11.1507 11.1444
4.00E 09  11.5542 11.5652 11.5486 11.5217 11.4973 11.4910
6.00E 09 11.7571 11.7681 11.7515 11.7245 11.7001 11.6938
8.00E 09 11.9011 11.9121 11.8954 11.8684  11.8440 11.8377



. 00E
. 00E
.00E
.00E
. 00E
. 00E
.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E

N 00O N

TABLE 6
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DIMENSIONLESS PRESSURE VERSUS DIMENSIONLESS TIME SHO%WING THE
EFFECT OF SKIN FOR AN INFINITE TWO-LAYERED RESEICIR WITH

02
02
02
02
02
03
03
03
03
03
04
04
04
04
04
05
05
05
G5

05

06 .

06
06
06
06
07
07
07
07
07
08
08
08
08
08
09
09
09
09
09

12.0339
12.3863
12.7378
12.9429
13.0883
13.2009
13.5506
13.8998
14.1038
14.2485
14.3607
14.7091
15.0572
15.2608
15.4052
15.5171
15.8649
16.2125
16.4158
16.5600
16.6718
17.0192
17.3665
17.5697
17.7138
17.8256
18.1727
18.5193
18.7224
18.8665
18.9782
19.3253
19.6723
19.8753
20.0193
20.1310
20.4780
20.8249
21.0278
21.1718

10

4.6703
5.0227
5.3742
5.5793
5.7247
5.8373
6.1869
6.5361
6.7402
6.8849
6.9971
7.3454
7.6936
7.8971
8.0415
8.1535
8.5012
8.8489
9.0521
9.1964
9.3082
9.6556
10.0029
10.2060
10.3501
10.4619
10.8091
11.1557
11.3588
11.5028
11.6146
11.9616
12.3087
12.5117
12.6557
12.7674
13.1143
13.4613
13.6642
13.8082

t

1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E

02
02
02
02
02
03
03
03
03
03
04
04
04
04
04
05
05
05
05
05
06
06
06
06
06
07
07
07
07
07
08
08
08
08
08
09
09
09
09
09

A PERMEABILITY RATIO OF 10 AND THICKNESS RATIO C&

-6.3297
-5.9773
-5.6258
-5.4207
-5.2753
-5.1627
-4.8131
-4.4639
-4.2598
-4.1151
-4.0029
-3.6546
-3.3064
-3.1029
-2.9585
-2.8465
-2.4988
-2.1511
-1.9479
-1.8036
-1.6918
-1. 3444
-0.9971
-0.7940
-0.6499
-0.5381
-0.1909
0.1557
0.3588
0.5028
0.6146
0.9616
1.3087
1.5117
1.6557
1.7674
2.1143
2.4613
2.6642
2.8082

1.0339
1.3863
1.7378
1.9429
2.0883
2.2009
2.5506
2.8998
3.1038
3.2485
3.3607
3.7091
4.0572
4.2608
4.4052
4.5171
4.8649
5.2125
5.4158
5.5600
5.6718
6.0192
6.3665
6.5697
6.7138
6.8256
7.1727
7.5193
7.7224
7.8665
7.9782
8.3253
8.6723
8.8753
9.0193
9.1310
5.4780
9.8249
10.0278
10.1718



1.00E
2.00E
4,.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E

-8.00E

1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E

TABLE 7

DIMENSIONLESS PRESSURE VERSUS DIMENSIONLESS TIME FOR VARIABLE
FLOW RATE WITH LOADING CONSTANT B RANGING FROM 0.00001 TO

02
02
02
02
02
03
03
03
03
03
04
04
04
04
04
05
05
05
05
05
06
06
06
06
06
07
07
07
07
07
08
08
08
08
08
09
09
09
09
09

0.00008, WITH A PERMEABILITY RATIO OF 1 AND A
THICKNESS RATIO OF 1.

1

0.7934
0.7430
0.2980
0.0426
0.0527
0.0334
0.0734
0.1591
0.2482
0.3389
0.4303
1.0001
1.7883
2.4790
3.1145
3.6521
5.3776
6.5668
6.9358
7.1249
7.2555
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

2

0.7423
0.2966
0.0499
0.04694
0.0550
0.0665
0.1455
0.3123
0.5269
0.7480
0.9373
1.6740
2.9238
3.8711
4.5672
5.0779
6.2266
6.7785
7.0477
7.2005
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.0615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

PD
B (x 107°)
4

0.2953
0.0472
0.0495
0.0755
0.1038
0.1319
0.2856
0.6968
1.0325
1.3117
1.5598
2.7328
4.2906
5.1341
5.6033
5.8863
6.4320
6.8539
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

6

0.03490
0.0404
0.0707
0.1106
0.1531
0.1960
0.4648
0.9892
1.3774
1.7104
2.0748
3.4873
4.9498
5.5638
5.8633
6.0421
6.4984
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.46306
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

8

0.0444
0.0440
0.0928
0.1463
0.2020
0.2590
0.6455
1.2168
1.6555
2.1238
2.5420
4.0140
5.2709
5.7206
5.9422
6.0855
6.5074
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.0282
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5108
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

80



1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4 .00E
6.00E
8.00E
1.00E
2.00E
4 .00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E
1.00E
2.00E
4.00E
6.00E
8.00E

TABLE 8
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DIMENSIONLESS PRESSURE VERSUS DIMENSIONLESS TIME FOR VARIABLE

02
02
02
02
02
03
03
03
03
03
04
04
04
04
04
05
05
05
05
05
06
06
06
06
06
07
07
07
07
07
08
08
08
08
08
09
09
09
09
09

1

0.02194
0.05059
0.1139
0.1811
0.2504
0.3208
0.7914
1.4087
1.9596
2.4805
2.9243
4.3821
5.4366
5.7873
5.9740
6.1042
6.5076
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10. 3081
10.5108
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

2

0.04373
0.1003
0.2237
0.3967
0.5778
0.7286
1.2945
2.2897
3.0667
3.6483
4.0825
5.0964
5.6275
5.8964
6.0492
6.1610
6.5076
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10. 3081
10.5108
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

jacdil

D

B (x 107

4

0.08674
0.1971
0.5265
0.7868
0.9964
1.1802
2.0988
3.3717
4.0873
4.4990
4.7562
5.2811
5.7027
5.9056
6.0495
6.1610
6.5076
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

6

0.1290
0.3346
0.7436
1.0294
1.2715
1.5554
2.6828
3.9029
4,4439
4,7215
4,8937
5.3471
5.7029
5.9056
6.0495
6.1610
6.5076
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.0282
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059

FLOW RATE WITH LOADING CONSTANT £ RANGING FROM 0.0001 TO
0.0008, WITH A PERMEABILITY RATIO OF 2 AND A
THICKNESS RATIO OF 1.

8

0.17045
0.4753
0.9014
1.2166
1.5796
1.9080
3.0951
4.1665
4.5788
4.7928
4.9346
5.3561
5.7029
5.9056
6.0495
6.1610
6.5076
6.8542
7.0569
7.2007
7.3123
7.6589
8.0055
8.2082
8.3520
8.4636
8.8102
9.1568
9.3595
9.5033
9.6149
9.9615
10.3081
10.5101
10.6546
10.7662
11.1128
11.4593
11.6621
11.8059



APPENDIX A

HARTSOCK'S METHOD OF DERIVATION OF PRESSURE
DROP EQUATION FOR AN INFINITE
TWO LAYERED RESERVOIR

The mathematical solution to obtain the pressure drop
equation for an infinite two layered reservoir, taking into
consideration the force of gravity is presented. The dif-
fusivity equation and the boundary conditions for this deri-
vation are given:

The diffusivity equation is:

12 3P, 1 aP.
T oar|’ o =Fj‘at ’ j=1,2 (1)
where
P;(r,t) = p; 5 - pj(r,t), j=1,2 (2)
The initial condition is:
At t = 0, Pj =0, j =1,2 (13)
The boundary conditions are:
As t » =, Pj = 0, j=1,2 (14)
At r = T3’ Pj = Pw,j(t)’ j=1,2 (15)




83
Since the flowing bottom hole pressures and initial
pressures are not the same for the two layers due to the

force of gravity, equation 15 can be expressed for the two

zones as:
Py =p; - Pue (V) (A1)
1 1
and
Py = piZ - prZ (t) (A2)
Also at r = rw,j:

(16)

L}
Ne]

2 2 [ apj]
2 q.(t) = -2n Ji_. 8.
5e1 95 (0) ] G T

w,J

Taking the Laplace transform of equation 1 and ap-

plying equation 13 yields

0P,
123 _—-l - _Z—. P. = 1 =
-i_- a—l-_-[r ] - P 0 ] 1,2 (AS)

a ?
T T\JJ

Taking the Laplace transform of the boundary con-

ditions, the following equations are obtained:
When t + =, P. =0, j =1,2 (A4)

At T = T P. =P .(2) (AS)

and for the two zones we have

pil
Py == - owl(z) (A6)

and
piZ
2 /i ow2 (Z) (A7)

o
n
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Also, at r =1r_ .,

W,
ZZ ifi = - ﬂlél. (A8)
j=1 Bi|\Tar ) . T 7 TZm

w,]

The general solution of equation A3 is:
— _ 7 7
P(r,2) = AjKo(r /ﬁg] + leo(r /é;] (A9)

where Aj and Bj are constants of integration and Ko(r/77ﬁg)
and Io(r/77ﬁg) are modified Bessel functions of the first
and second kind respectively.

When r » =, Io(r/Z7F;) + »; see figure 23. So Bj
must be zero.

Therefore,

Pj(r,Z) = AjKo[r_/ggl (A10)

o 7
ow,j(ﬁ) - AjKo[rw F; (A11)

Differentiation of equation Al10 with respect to r yields

L - 'Aj“l[r /n‘z}_] /- (A1)

J

[r -g-z-]r = -AsaK) (a;VT) /T (A13)
=7 .

where
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Ko (X) Io (X)

-
—

Fig. 23 GENERAL CHARACTERISTICS OF MODIFIED BESSEL
FUNCTIONS OF THE FIRST AND SECOND KIND
OF ZERO ORDER
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T,
a. = W) (8)
/s
J
Multiplication of equation Al3 by Bj and substituting equa-
tion A8 yields,
- a4(2)
Aijaj/TKl(aj/T) > (A14)

From equation Al4, Aj can be expressed as:

A = 91%% 1 — (AL5)
z .a. .
2n BJaJKl(aJ )

Substitution of equation Al5 into All leads to:

Ko(aj/f)

() = q(2)

ow,j

With the substitution of equations A6 and A7 into Al6, ex-

pressions for the two zones are given as:

Pj q,(2)X_(a,"vZ)

e )
1 21V/Z BlalKl(al/Z)

Pj a,(2)X _(a,vI)

- - Pyg, (2) = 0 (A18)

27VZ BzazKl(az/Z)

The difference between the flowing bottom hole pressures

can be expressed as:
pwfz(t) - pwfl(t) = constant = Y(Piz - pil) (A19)

where the subscripts 1 and 2 represent the upper and lower
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zones respectively, and

p.g(d, - d;)
0 2 1
Yy ® r - (AZO)
P; p; )
o |
Equation 49 can be repeated as:
Q) * q, =q = constant (16)
The Laplace transform equations Al9 and 16 give
Y(Piz - pil)
Pug,(2) - Pyg (D) - . (A21)
q(2) + q,(2) = # (A22)

From here only the pressure drop for the upper zone
will be considered. Similar steps can be used to determine
the pressure drop in the lower zone.

Subtracting equation Al7 from Al8 yields

Pi, ~ Pij ) . a,(2)K, (a,YZ)
L= o (2) - P (2)
2 1 27VZ Z8,a. K, (a,vZ)
2927172
a,(2)K_(a,/Z)
_ 1 o 1 (A23)
27VZ EBlalKl(al/Z)
Substitution of equation A2l into A23 leads to:
P; - P; y(p; - p; )
i, iq i i, iy . qz(Z)Ko(aZ/Z)
z Z 207 28,2,K, (a,/T)
q,(2)X_(a,"7)
S R A (A24)

27vZ Tgia,K; (al/f)
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By rearranging equation A24, the following equation is ob-

tained:
(Z)K_(a,vZ) q, (Z)X_(a,"7)
%3{1 Sy = 4214085142 _ 11997 (AZS5)
2nVZ BZaZKl(az/Z) 2nV/7 BlalKl(alff)
where Ap = p. - p. . (A26)

) ol

From A25 an expression for qZ(Z) can be obtained as:

q,(2) = szazKl(aZJT){[Zn/T BlalKl(al/f)(l - ¥)Ap

+ ) (1)K, (a7 /7Y 2/ (82K, (a; /DIK (a/ )21} (A27)

Eliminating qZ(Z) between equations A22 and A27 and solving

for ql(Z) gives

a; () = 3] (A28)
where
Ml = qualKl(alff)Ko(aZ/T) (A29)
M2 = 21/ BlalszazKl(al/Z)Kl(az/f)(Y - D)ap (A30)
M3 = slalKo(aZ/Z)Kl(allf) (A31)
and
M4 = szazxo(alff)xl(aZ/Z) A32)

Substitution of equation A28 into Al7 leads to:

Pi 1 [MMl + MMZ] (A33)

1 -
Z pwfl(z) T 2wz \MM3 + MM4

where
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MM1 = qKo(alff)Ko(az/f) (A34)
MM2 = 2nV/Z BzazKo(al/T)Kl(aZ/Z)(y - Dap (A35)
MM3 = V7 BlalKo(az/Z)Kl(al/T) (A36)
and
MM4 = V7 BzazKo(aI/Z)Kl(az/f) (A37)
a.vZ
lim Ko(aj/f)= - {1n -%r— + 1n v (A38)
a.vZ-+0
j
where Yy =1n7y = 0.5772 (52)
lim K, (a.vZ) = —* (A39)
aj/Z->01 ] as /I

With the substitution of equations A38 and A39 into A29 and

simplifying, the following equatici: is obtained:

P
1 _ 1 (__MS1 - Ms2
7z 7 Pug, (B * 4n81(Z[MSS ¥ MS4]] (A40)
where

r 3\
MS1 = q 1n|Q 793 Z) 4 (0.793 2 (A41)

4 A
MS2 = 4xg,(y - 1)ap 1n|2:l23 % (A42)

a

| 1)

Ms3 = 1n|%:733 2 (A43)
32

and
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B8
MS4 = -2 1n{941§5—5} (A44)
B a
1
Subsequently

] k.

a,o= —i (19)
J ¢quI‘w

Dividing the numerator and denominator of the term on the
right hand side of the equality sign of equation A40 and

observing that

the following equation is obtained

D. q 1n 94135—5] - 4mg, (v - 1)ap
_il - (Z) = - 1 71 - (A45)
Z =~ Puf 478 l B
1 1 [ 2]
Zil1 + =
B1

The inverse Laplace transform of equation A45 gives the pres-

sure drop equation for the upper zone as:

8
1 -
pil - pwfl(t) =3 1 {4:%2(1n t + 0.809 + 1n al) + (v -l)Ap}
—— N —
Bl B2
(17)
Similarly, the pressure drop equation for the lower zone

can be obtained and is expressed as:



(81) {dvUL - 1) +

l T
g g
4 Tgup) T * T TS
(E‘UI+608'0+1UI)b} z = (3) 77d - °d
]
T

16




APPENDIX B

DERIVATION OF PRESSURE DROP EQUATION
WITHOUT SKIN AND WELL-BORE
STORAGE EFFECT

The mathematical solution to obtain the pressure
drop equation for an infinite two layered reservoir is pre-
sented. The method of this derivation assumes the Lefkovits
gg_gl.l4 approach whereby the initial pressures in both
layecrs are the same and the gravitational force between the
two layers is neglected. For sake of completeness the dif-
fusivity equation and the boundary conditions for this case
are repeated.

The diffusivity equation is

1 3 3P. 1 oP. .
T 37|t 3T "n'j'at’ j=1.2 (1)
where
Pj(r,t) = pi - pj(r)t)’ j=1,2 (3)
The initial condition 1is:
at t = 0, Pj =0, j=1,2 (13)
The boundary conditions are:
as ¥ > ® Pj = 0, j =1,2 (14)

92
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at r = r Pj = ow(t) , j =1,2 (15)
and
5 ) [ aP.] iy
- .(t) = -2 . dr =
051 a0 = -2 Doy s5lr 57t] = (16)
w,J

Taking the Laplace transform of equation 1 and ap-

plying equation 13 leads to:

13 aP Z 5 - ..
T 5—[r 3?] ;— Pj = 0 » ] = 1,2 (AS)

j
The Laplace transform of the boundary conditions leads to:

when v > «, Pj =0, j=1,2 (A4)
at r = Tw? Pj = PWf,j ’ j =1,2 (AS5)
and
3P - - 9
I3-1 8 [ ar]r=r = " 7nz (A8)
W,j

The general solution of equation A3 is:
Pj(r,Z) = Ajno(r¢z7nj) + Bon(r/“7“j) (A9)

where Aj and Bj are constants to be determined with the
boundary conditions.
As T »> o, Io(r¢Z7nj)-Ho (see figure 23). So Bj

must be zero. Therefore,

Pj(r,Z) = AjKo(r¢77nj) (A10)

ow,j(Z) = AjKo(rW/Z7F;) (A11)
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T .
a. = 2] (8)
J n.
)
Therefore
ow,j(Z) = AjKo(aj Z) (A10)

Differentiation of equation Al0 with respect to r yields

- A K (rVZ70 ) (VZ/ny) (A12)
At T = rw,j
[r %%] = - AjKl(rw/77ﬁ;)(/77nj)rw (B1)
T,

315
- .a. . v

Multiplying equation Al3 by Bj and substituting equation A8

leads to:
= 9
Ajsjaj/f Kl(aj/f) 77 (A14)
Therefore,
1
A, = =4 (A15)
J 2 23/2 zp.a.K,(a.vZ

By substituting equation AlS5 into equation Al0, the follow-

ing equation is obtained:

B (@) = gy —oi (A16)
we 202°/% 28,a,K, (a;/T)
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lim K (a.vZ) = -[1n(a.vZ2Z/2) + 1n 7) (A38)
0] J
a.vZ-+0 :
j
. 1
1lim K. (a.vZ) = (A39)
aj/%'-*O 1273 aj/f

Substituting equations A38 and A39 into Al6 and simplifying
leads to:

P e(2) = - x é; [1n(a;/Z/2) + 1n 7] (B2)

Multiplying the numerator and denominator of equation B2
by ZEBj and simplifying leads to:

a’

P (2) = —d [zsjclh 4 +InZ+n v%4)] (B3)

477 (Z8.
mZ( BJ)

The inverse Laplace transform of equation B3 is:

Pug(t) = ———p(z8;(1n 7¢ - 1n —D1 (B4)

Substituting equations 7, 8, 9 and 10 into B4, the following

equation is obtained:

- = qu -
P; P Lo [in vt - Q] (50)
i SwE oy kh
where
P.g(t) =p; - D¢ (B5)
and
7202 2 2o crl
k.h. 1n|—3ai—¥| + k. h. 1n|—2—W
1%1 Tk 212 %,

Q = 2
kihy + koh,



APPENDIX C

DERIVATION OF PRESSURE DROP EQUATION
WITH SKIN EFFECT

The mathematical derivation of pressure drop for an
infinite two layered reservoir with skin effect is shown in
this Appendix. Apart from the boundary conditions, the
assumptions used in this derivation are basically the same
used in Appendix B. For the sake of completeness, the dif-
fusivity equation and boundary conditions are repeated.

The diffusivity equation is

P
1 L .__.i = _l... .a_P 1 =
T ar[r Br] n; 3t ) =12 (1)
where
PJ (rvt) = pJ = pj(r’t) ’ J = 1’2 (3)
The initial condition is:
at t =0, Pj =0, j=1,2 (13)
The boundary conditions are:
as r > =, Pj =0 , j=1,2 (14)
S.q.(t)u.
at r = 1 g P g(t) = £ * _%?%;H;_l
j=1,2 (58)
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and
: oo
Zj=1 qj(t) = -27 Zj=1 B5\T 37 o = q (16)

The Laplace transform of the diffusivity equation with the

application of equation 13 gives
13 9P Z 3 .
?—%—%-rk=0, j =1,2 (A3)

The Laplace transform of the boundary conditions are given

by the following equations:

when r »+ =, ﬁj =0, j =1,2 (Ad)
at r = rw,j

B} 3 $:q;(2)n;

P,(2) = Pg 5(r,2) + _%?igﬁg_l (C1)
and

2 3P - . 9

L3-1 Bj(r ar]r=r T 7wz (A8)
W,)

The general solution of equation A3 is:
P.(r,2) = AjKo(r¢Z7nj) + BjIO(r¢Z7nj) (A9)

By substituting the equations for the boundary con-
ditions into equation A9, the constants A. and B. are deter-
mined and subsequently an equation for pressure drop for
an infinite two layered reservoir with skin effect is ob-

tained.

As T » =, Io(r/Z7nj) + o (see Figure 23). So Bj
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must be zero. Therefore,

13j (r,2) = AjKo(rm_nj) (A10)
At r = rw,j
- S.(-l.(Z)p.
B c(2) = ijo(rw/77;;) + _%?%;H;_l (C2)

Substituting equations 8 and 9 into C2 gives

B S.q.(2)
b g(2) = AjKo(aj/_T—Z ) o+ "%?rJe_J— (C3)

Differentiating equation Al10 and substituting equation A8

leads to:

Ajejaj/f K; (2 V) = -2% (A14)

From equation Al4 an expression for A. is

1
A. = -—9377 (A15)
3 2q2°7¢ 1g.a.K, (a. VD)
3711y
With the substitution of equation AlS5 intc equation C3
leads to:
5 ) Ko(aj/f) S.q.(Z) )
= .—%77. + +J—
wf 212 EsjajKl(aj/T) "8;
12 a;2) = ¢ (cs5)
=1 7%

Substituting equation C5 into C4 results in
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) ) a K (a./Z) qu
P. .(2) = + (C6)
wi 2nz>? 28 a K, (a,vT)  PTEP
lim K (a vZ) = - [1n(a.vZ/2) + 1n 7] (A38)
a; VT>0 1 J
lim X, (a YZ) = 1 (A39)
aJ/Za-O a;

Substitution of equation A38 and A39 into equation C6 leads

to:

[1n(aj/7/2) + 1n 7] S.q

* Ty (c7)

Zgj j

p = - 29

ow(Z) 27l
Multiplication of the numerator and denominator of

the terms on the right hand side of the equality sign by

2 EBj gives

8. [In(a%/4) + In Z + 2 1n 7]  (2%8.)S.q

P _(2) = = J J + J.__J (C8)
wf E%f (Esj)z 4"2(28j)2

Taking the inverse Laplace transform and rearranging equa-

tion C8, the following equation is obtained:

(228.)S. - Z8. 1n(a/4) _
j

J

Adding and substracting ln v to the last term on the right
side of the equality sign and with further simplification,

equation C9 takes the form:
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2 2
Y- a;
(2z8.)S.; - ln[—jrl] .
P (1) = & e ¢ in 7t (C10)
(Eej) Z8j
Expanding equation C10 leads to
P o(t) = <~ [1n vt + Q] (59)
wi 4wkh S
where
72¢1ucrf, 72¢2ucrw
klhl 251 - 1n _Wi__ + kZhZ ZSZ - 1n ——74-_12-2——
Qs =
kihy *+ kb,




APPENDIX D

DERIVATION OF PRESSURE DROP EQUATION
WITH THE EFFECT OF WELL-BORE STORAGE

The solution for the diffusivity equation is sought
for the case of variable flow rate due to the effect of well-
bore storage. The solution for a variable flow rate is
obtaired by using the Duhamel theorem16 (or principle of
superposition). In this derivation, the initial pressures
of both zones are assumed to be the same; that is, the gravi-
tational force between the two layers is neglected.

Van Everdingen29 and Hurstg’10

have shown that for
the case of flow into the casing and tubing, the variable

flow rate can be approximated by

at

age = al - & %) (p1)

where q is the constant flow rate from the two layers, and
o is a constant whose dimension is given by l/tD.

By the principle of superposition16

the pressure
drop equation for an infinite two layered reservoir with
well-bore storage effect can be expressed in an integral

form as:
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§wf(t) = I e'“t' ow(t - t') dt! (D2)
where

P (t) = -2 [1n vt - 50
wg(®) = S [in 7t - Q] (50)

Carslaw and Jaeger2 have shown that

t
JO Fl(t - t')FZ(t')dﬂ = fl(z)fz(z) (D3)

Therefore, equation D2 becomes

5 ) . qKo(aj/Z) (0a)
wi %0 3:23572 55 a.X (a./D)
37371
Constants A and B can be found such that
o _ A B
Z(Z *+ a) ¢ + 7 + o (D5)

Clearing fractions and identifying coefficients of

like powers, we have
o = (A + B)Z + Aa

This is an identity if A + B = 0 and A = 1; thus B = -1.

Therefore equation D5 can be written as

o _ 1 _ 1
T o) 7 T F s (D6)
and subsequently equation D4 takes the form
K . K .
5 - K (a;vZ) ] ak (a;/7) 1
wf 372

212 zsjajKl(aj/Z) 2nv/Z EsjajKl(aj/T) 7+ ¢

(D7)
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The inversion of the first term on the right hand
side of the sign of equality is the solution for constant
rate which is given as equation 50.
The solution of the second term on the right hand

side of the equality sign is given as follows:

lim K,(a.VZ) = —X (A39)
aj/T+-0 1% aj/Z

Then the second term on the right hand side of the equality
sign is:

ak (a; /Z)
2T EBj Z

1
+ (D8)

o

Equation D8 can be solved by using the Mellins inversion

formula, namely

. ext Ko(aj*l/z)
Zn1 Gray @ (D9)
a-iy
where
There is a singularity at
A = ael” (D11)

The solution obtained at this singularity is:

V2in/2) o et 2y (aa?)  (n12)

-at
ce Ko(aja o3
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However,

Yo(ajal/z) - %{Jl(ajullz)[1n(aja1/2/2) + 1n 7]

a_(11/2 2 a.0‘1/2 4 a_0‘1/2 6
g s o

As a.al/z + 0,
j
1/2, _ 2 1/2
Yo(aja ) = F[ln(aja /2) + 1n 7] (D14)
Therefore
-ce™t 3 Y (a;0!h) = ce-1n(azel/2/2) - 1n 4] (D15)

The contour of integration of equation D9 is given
as shown in Figure 24. The integration on the upper half

along the negative real axis of Figure 24 is given as follows:

Set A = ue (D16)
Then

dr = 2u el du (D17)

With the substitution of equations D16 and D17 into D9 the

following equation is obtained:

© 2 iw .
c eu € t Ko(ajuel'ﬂ/z) in
0 (u“e + o)
el = -1 (D19)
in/2y _ _ mi .
Ko(ajue ) = 5 [Jo(aju) 1Y0(aju)] (D20)



105

Y iz
uﬁf:‘\ l
-7 N
— N — |
————— - —_———-——\
\‘ |
\
= =1
NI
/
______________ __/
—_ \ / —
\\ //
~_ |
|

Fig. 24 CONTOUR OF INTEGRATION IN THE COMPLEX PLANE
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Substituting equations D19 and D20 into D18 leads to:

o | w2 (B (a0 - i (a50])
771 | ¢ (o - u?
) u“]

2u du (D21)

Considering only the real and neglecting the complex
part, the integration on the upper half along the negative

real axis of Figure 24 is

> > u du (D22)
)

The integration on the lower half along the negative

real axis of Figure 24 is given as follows:
Set A = ube™i” (D23)
Therefore,
dr = 2u e " du (D24)

With the substitution of equations D23 and D24 into D9, the

following equation is obtained:

0

2 -iq .
. Que t Ko(a.ue-ln/z) i
=T —— 2u e " du (D25)
- (u“e ™™ + a)
el = (D26)
~in/2, _ =i .
Ko(ajue ) = TF[Jo(aju) + 1Yo(aju)] (D27)



107
Substitution of equation D26 and D27 into D25 yields,
0 2 .
N (T3 (a;w) + iY (a,0)]}
2m1 (a - uZ)

-]

(-2u) du (D28)

Changing the limits of integration and considering only the
real and neglecting the complex part, the integration on

the lower half along the negative real axis of Figure 24 is:

® -uzt
e Jo(aju)

(o - uz)

% u du (D29)
0

Summation of the integration on the upper and lower half

along the negative real axis leads to:

® 2
e Ut J, (a;u)
c 3 J u du (D30)
(¢ - u
0
2
Let V=oa-1u (D31)
Therefore u=vya -V (D32)
2 _

u® = a - v (D33)
and dv = -2u du (D34)

Substitution of equations D31, D32, D33 and D34 into equation
D30 yields

dv (D35)
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Ffor ajVa -V -+ 0, Jo(aj/u- v) = 1. Therefore, equation D35

can be expressed as:

If s = vt, D36 can be expressed as

€

£

e _ e
£ ds = ¢ &—E, (at) (D37)

-at at S -at
c
-

With the substitution of equation D10, the solution of equa-

tion D8 is

-at
€
3 1 Inleye

J

/2,3y < 1n v + E, (at)/2] (D38)

Multiply the denominator and numerator of D38 by ZEBj; the

following equation is obtained:
-at

-'ﬂi—z[-ZEB- ln(a-al/Z/Z) - 2Z8, 1n v + 2Z8, E.(at)] (D39)
47:‘(28:]) ) J J J 1

Simplification of equation D39 leads to:

-at
42— [E;(at) - 1n o - Q] (D40)
4tkh
where
72¢1ucr3 72¢21JC1‘;.

qQ = (59) ..
kyhy + kyhy
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Therefore, the pressure drop equation for a variable flow
rate due to well-bore storage for an infinite two layered

reservoir is equation 50 minus equation D40; that is,

P,e(t) =P o(t) - 42— [E (at) - In a - Q] (63)



APPENDIX E

EXAMPLE CALCULATIONS FOR AN INFINITE
TWO LAYERED RESERVOIR

This example shows how equations 26 and 34 can be
used in the analysis of pressure build-up for an infinite
two layered reservoir. In practical units these equations
are written as:

P} = P; - Zb1 B - . ) -1 P; - P; 26a
1 i, 1, 1

2

0.433 5 (d, - d;)
Pl hr " Pug, T P2 g, - P;) - Ly, - py)

1

0.0002637 kl
- m 1og10 i + 0.3513 (34a)

¢1curw

Data:

A plot of shut in pressure versus (t + At)/at for
an infinite two layered reservoir is given in Figure 25.
Stabilized production rate before shut-in is 326 bbls/day.

u = 0.88 cp

Bg = 1.15

ts = 9398 hours
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h1 = 23 ft

h2 = 37 ft

dl = 5023 ft

d2 = 5075 ft
c=1.7x 10°° vol/vol/psi
pwfl = 3253 psi
pwfz = 3271 psi
py = 3226 psi
L 0.25 ft

Po = 0.831

¢ = 0.27

$, = 0.27

Equation 26a can be rearranged to give

0.433 p_(d, - d;)

1 (p; - p; )
1, 11

b

: l]Ap - 30y - ) (E1)

Substitution of E1 into 34a yields

1 . 0.0002637 k1
= 7—(pil -P)) - m log10 i + 0.3513

¢lc“rw

P1 hr ~ ow1

(E2)
From Figure 25 we have,
Pi hr - 3199 psi
p* = 3235 psi
m = 9 psi/cycle

Substituting the values of Py hr’ pwfl, pil, pi, m, ¢;, €,
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u, and T, into E2, the value of k1 is calculated to give,

1-

, = 134.90 md

The equation of the slope is given as:

m= 162.6 qoBo

kyhy o Kohy

(25a)

Substituting the values of m, q, 80, H, klbi‘ and h2 into

25a, the value of k2 is calculated to give,

k2 = 76 md.

py is determined by using equation 26a; that is,

0.433 p_(d, - d))
pi‘ = pi - Zbl ( — - 1 (p-
P P; ) i
1 12 11
o
- kihy
1 u_o, _u
kihy o koh,
) 2.836 x 10
2.836 x 1077 + 3.129 x 10°4
= 0.4754

0.433 o _(d, - d;)

18.71 psi

Therefore, for this example equation 26a is

18.71
¥ =p. -0.951 -
P1 pll (piZ - pil

) -1 (piz

- pil)

P-

)
1

0.433 x 0.831(5075 - 5023)

(26a)

(E3)
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Substituting the values of pI and P; into E3, the value of
1
P; is calculated to give
2

piz = 3254 psi

Sl is determined by using equation 46a; that is,

1.151 ab,|P1 hr ~ Pwg, * P2(y - 1)AP k,
Sl = ql o - 10g10___2-¢ucr
w
+ 3,32 (46a)
H
. Koh,
2 Moo, M
kKR T KRy
i} 3.219 x 1074
2.836 x 10 7 + 3.129 x 10 %
= 0.5246
a, = el } q
1 tkghy * kghy
_ 134.9 x 23
‘[134.9 X 235 * 76 X 37]326

171 bbls/day

0.433 5 (d, - d;)
Pj, = Py

2 1

0.433 x 0.831(5075 - 5023)
3254 - 3226

0.668
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Ap = p; - P
= 3254 - 3226
= 28 psi

Substituting the values of 9> 4 bl’ b2’ P1 pre Py, Ap,
’ 1

v, k ¢, uw, c, and L into equation 46a, the value of S1

1,
is calculated to give,

S1 = -12.53
S2 is determined using equation 47a; that is,
1.151 gqb. |P1 hr ~ Pwe, * D2(1 - Y)p k
- 1 2 _ -2
S, = - - logwau——jz
a EY) ¢ucrw
+ 3.32 (47a)
qZ=q'q1

326 - 171 = 155 bbls/day

Substituting the values of dys s bl’ b2’ P1 hr’ pwfl, Ap,
Y, k2’ ¢, u, ¢ and r. into equation 47a, the value of S, is

calculated to give -

S, = -13.2



