INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in
*“sectioning” the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, 3 somewhat higher quality reproduction could be made from
“’photographs” if essential to the understanding of the dissertation. Silver
prints of “photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106




76-15,798
CHEN, Tommy Fu-Tuan, 1937~
HEAT ABSORPTION VIA ELECTROMAGNETIC FIELDS
IN DROSOPHILA MELANOGASTER.

The University of Oklahoma, D.Engr., 1975
Engineering, electronics and electrical

Xerox University Microfilms, ann aror, Michigan 48106

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.




THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

HEAT ABSORPTION VIA ELECTROMAGNETIC FIELDS
IN
DROSOPHILA MELANOGASTER

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

DOCTOR OF ELECTRICAL ENGINEERING

BY
TOMMY FU-TUAN CHEN
Norman, Oklahoma

1975




HEAT ABSORPTION VIA ELECTROMAGNETIC FIELDS

IN
DROSOPHILA MELANOGASTER

APPROVED BY

DISSERTATION COMMITTEE




ACKNOWLEDGMENT

I would like to express my appreciation to Dr. Leon W. Zelby for
his assistance and guidance in the preparation of this work. His comments
and suggestions were most helpful in performing this research. Finally 1
am indebted to the committee members, who have been very generous in pro-

viding detailed criticisms that significantly improved the manuscript.

iii




ABSTRACT

We, human beings, are exposing ourselves to electromagnetic fields
for the duration of our lifetimes, and we cannot help asking what an
increasing intensity of electromagnetic radiation of all types does to
us. It is important to know whether there is a biological state that can
be affected by this invisible radiation which surrounds us. This problem
calls for worldwide attention; as we know the maximum “safe" limits (as
set by law) for electromagnetic exposure are 10mw/cm2 for the U.S.,
Im/cm? for Sweden, and 0.01 mW/cm’ for the U.S.S.R.

This work is a step to determine the biological effects of
electromagnetic radiation. Drosophila melanogaster have been used as
analytical and experimental objects because their Tifetimes are so short
that they can be reproduced easily.

Drosophila melanogaster is assumed to be an ellipsoid of revolu-
tion (prolate spheroid) or revolution solid of a nephroidal shape with
permittivity e , conductivity o , and permeability u . The input
electromagnetic field is assumed to be a plane wave. Two methods of
determining the electromagnetic field of the prolate spheroid scatterer
have been used: (1) solving the vector Helmholtz's eguation for the
spheroid coordinate and (2) solving the vector Helmholtz's equation for
the spherical elementary vector and then using the boundary conditions

to match both transmitted and scattered waves to find the unknown
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coefficients of the transmitted and scattered fields. The second method
used in solving for the prolate spheroid scatterer has also been used to
solve the nephroidal scatterer.

The power absorbed by the prolate spheroid representing Droso-
phila melanogaster has been calculated at a frequency of 4 GHz. The
following table lists several values of incident power and the corres-

ponding absorbed power :

/W ) ,

Pin\gf) Ez(ﬁ) Qup (W)
1 1.94 x 10 7.19 x 10°12
11

10. 6.14 x 10 7.19 x 10
100. 1.94 x 10° 7.19 x 16710
1000. .14 x 10° 7.19 % 1072
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CHAPTER 1
INTRODUCTION

In our modern environment, we are utilizing all types of electric
and electronic devices at an increasing rate. Thus, the environment is
becoming saturated with electromagnetic radiation of all types — very low
frequency associated with power distributing systems; low and medium fre-
quency associated with broadcasting; very high and ultrahigh frequency
associated with television, radio, navigation, and communication; and
microwave frequency associated with 1ine-of-sight communication radar and
cooking. The biological effects of this radiation depend in part on the
frequency and on the intensity of the signal. Some of the biological
effects of radiation, particularly from radiation in the high energy range
and radiation associated with heating, have been investigated relatively
extensively and are known [1,2,3,4].

The dielectric behavior of human body tissue in the microwave
range led to the introduction of microwave diathermy in the medical
practice at the beginning of the 1950's. At first, the use of microwaves
in medical diagnosis and therapy was very controversial, but through the
years, the behavior of body tissue in a microwave field has become better
understood. In short, wave diathermy frequencies of 27 MHz (11 meters)
and 40.68 MHz (7 meters) are employed. The heating is carried out in the

capacitor or coil field depending upon the part of the body and on the




disease to be treated. The heating of the body area depends largely on
the distribution of the electromagnetic field on the complex dielectric
constant and the volume of different adjoining tissues [5].

The energy density of the radiated wave must not exceed a certain
value, in order to protect the body tissue against biological injury
resulting from strong radiation. Because of the rising radiation capa-
bility of newly developed high power radar installations, the maximum
radiation density permissible for human beings in the microwave range
must be calculated [6].

The biological effects of electromagnetic radiation on the human
body in the microwave range have been discussed by many authors [6-20].
They researched the behavior of various forms of human tissue under the
influence of electromagnetic waves in the microwave range in order to
discover the differences and the advantages and disadvantages of diathermy
derived from the frequency dependence of conductivity, permittivity, and
permeability of tissue. Therapy with electromagnetic radiation is based
solely on the development of heat [7,8] and the tissue changes associated
with it through the dilation of blood vessels. When the radiation energy
absorbed and converted into heat exceeds a particular value, large surface
irradiation has harmful effects because of the general rise or increase
of the body temperature. In the irradiation of small tissue areas, the
danger lies in local temperature increases in organs particularly sensi-
tive to heat such as the lense of the eye, the brain of the head, the
gall bladder, the bladder, and the testicles.

The eye is one of the organs most sensitive to microwave radia-

tion. The eye has a weak vascular system, and the heat produced by




radiation cannot be conducted away quickly enough. Gray cataract is a
typical eye disease occurring through protracted exposure to radiation
when the radiation density exceeds a specified value [9,10]. In this
case, the protein in the lens coagulates into visible white flakes. At
2400 MHz, a radiation density of less than 80 mN/cm2 was calculated by
Carpenter [9,10] for rabbits whose eyes resemble the human eye in size
and shape. A cataract develops above a critical frequency of about

200 MHz. Short radiation periods of high radiation density are consider-
ably more harmful than prelonged radiation with a uniform medium radia-
tion density; in other words, pulse-form overloading can lead to quicker
cataract formation. For example, the eyes of rabbits were exposed for

20 minutes to a radiation density of 140 mN/cm2

without showing any indi-
cation of cataract. When, on the other hand, the energy was supplied in
pulse form, a cataract developed with the same radiation time and density
[9,10,11,12,13,14].

The brain and the extension of the spinal cord are sensitive to
changes of pressure and temperature. Therefore, abnormal temperature
changes induced by irradiation of the head can have serious consequences.
Cranial bones produce strong reflections, and estimating the energy
absorbed by the craniai bones is very difficult. Indication of the radi-
ation absorption can be obtained only in a dummy as done by Antharvedi

Anne.* The temperature rises most rapidly in the brain when it is irra-

diated from above or when the thorax is irradiated, since it is through

*

Antharvedi Anne, Scattering and Absorption of Microwaves by
Dissipative Dielectric Objects: The Biological Significance and Hazards
to Mankind (University of Pennsylvania, 1963).




the thorax that the heated blood flows directly into the head. The

rectal temperature remains unaltered for a long period or only rises very
little. In apes, irradiation of the head led to a condition of somnolence
and subsequently to unconsciousness. With protracted radiation, convul-
sions occurred and then continuous paralysis [15].

The male sex organs are extraordinarily sensitive to heat and are
therefore especially endangered by radiation. The injurious radiation
density was given by Ely [16] at a maximum of 5 mN/cmz, thus it is Towest
in comparison with the densities of other radiation-sensitive organs.
Slight radiation damage to the spermatic duct leads to sterility, which
according to observations disappears again after a short time. If the
prescribed radiation density is exceeded, injuries can occur which result
in permanent sterility [17,18].

Some biological effects which are not due to heat were observed.
McAfee [3,4] was ab]g to observe that animals exposed to a radiation
field are very restless even before their body temperature has risen.
They try to excape from the beam, turn round in circles, and show con-
vulsive spasms. It can be shown that these symptoms are caused by local
temperature rises and are not traceable to irradiation of the brain.

In addition, phenomena were observed in microwave radiation which
are not due to thermal effect [19]. Amoebae and protozoa in a high fre-
quency field of a capacitor (1-100 MHz) move perpendicular or parallel to
the electric field 1ines; the direction of movement and speed vary
according to the frequency of the irradiating field and the species of
amoeba [20]. It can happen that the paths of two amoeba cultures cross

and a further type persists at this point. This persistence is used for




segregating different cultures. Internal structural changes were also
noticed in amoebae, leading to fission and destruction of the body.
Mutations can be produced as well.

Red and white blood corpuscles {erithrocytes and leucocytes) in
the high frequency field display behavior similar to that of the amoebae.
They arrange themselves in the direction of propagation of radiation 1ike
iron filings are oriented in a magnetic field. Fat globules in milk and
1ymphocytes make bead-like chains which also run in the direction of
radiation [20].

It is almost impossible to predict the amount of radiation energy
absorbed by man at a particular area in the electromagnetic field and
converted into heat, because to a great extent radiation is dependent on
the prevailing electrical properties (the position, size, and structure
of the muscular and fatty tissue and the incident direction of the wave),
that is to say, on the input impedance of this complex structure. The
direction of polarization of the incident wave in relation to the body
axis also plays a considerable part here. In each individual case, the
symptoms demand an exact study of the existing conditions. The actual
amount of temperature rise in the body is determined by such environ-
mental conditions as temperature, humidity, and the cooling mechanism of
the body. A simple successful and precise method of measurement can be
obtained by reproducing the human body in a 1ife-size dummy of equal
dielectric properties.

A. Anne used the solution of KCZ-Dioxane-Water mixture in the
spherical dummy to simulate the electrical properties of human tissue.

The relative absorption cross section was calculated. In order to simulate




the shape of mankind and its effect on relative absorption cross section,
hollow plastic dolls of the type used by children were adapted as dummies
which were filled with saline solution. The plastic dolls were believed to
be relatively accurate models of babies or children of the same physical
size. Hence the results could also be applied to an adult if the doll

dummies were scaled to the correct size.




CHAPTER 2

EFFECTS OF ELECTROMAGNETIC FIELDS ON DROSOPHILA
CAUSING SOME GENETIC PHENOMENA

Very little is known about the biological effects of an electro-
magnetic field which does not produce heating (i.e., low average power -
density) or of a low energy field* (e.g., in extra low frequency range).
In order to consider some biological effects in this frequency range, the
athermal influence of nonionizing electric and magnetic fields on several
genetic phenomena in Drosophila melanogaster is being tested [21]1. These
biological effects include mutation, meiotic exchange, nondisjunction of
chromosomes, and effects on developmental time and fecundity.

2.1 Electric Fields

Recent work at this institution on Drosophila melanogaster using
static electric fields, both homogeneous and inhomogeneous, with field
intensities up to 300 kV/m, involved both males and females kept in the
fields for 11 days with no noticeable untoward effects on viability and
fertility. This appeared somewhat inconsistent with the report of tests
by Horlacher [22] for sex-linked recessive lethal mutations in Drosophila.

kV

In Horlacher's first experiment with 33 = at 60 Hz, treatments from 1 to

30 minutes had obvious immediate effects on the flies, with those not

*

The distinction here is that the power density is proportional
to the square of the field amplitude, whereas the energy is proportional
to frequency.




immediately killed being seriously affected. Apparently only a small
proportion of the flies surviving returned to normal. In his second
experiment with 225 5%-at a frequency of 1.225 MHz, a one minute exposure
was the longest practical time used, and this short treatment killed half
the flies. Horlacher used alternating currents in his work which appar-
ently generated heat internally by induction in the treated male flies.
This heat was probably responsible for these striking effects.

2.2 Magnetic Fields

Chevais and Manigault [23] indicated in a preliminary report that
an inhomogeneous magnetic field with intensities of several tenthsof a
Tesla produced some genetic effects in a D. melanogaster egg that had been
in the fields for 24 hours and then removed to develop. The CIB method
for sex-Tinked lethals was employed, and some visible wing mutants as well
as some lethals were recovered.

A recent study by Close and Beischer, cited by Beischer [24],
indicated a lack of effect in an extremely high intensity homogeneous
magnetic field on all stages of Drosophila development. Base (Muller-5)
females were mated with treated males. One possible mutation at the
y-locus was observed, but only 258 treated gametes were tested.

Mulay and Mulay [25] reported the production of noninheritable
abnormalities or deformities in flies that had been reared in magnetic

fields of 3. x 107} -1

and 4.4 x 10 ° Tesla for two or three generations.
Fields of lower intensities (1.5 x 10'1 Tesla and less) did not appar-
ently produce any deformities. The authors claimed that possibilities
for dominant, recessive, viable, and recessive lethal mutants (both

autosomal and sex-linked) were checked and ruled out.




In a recently published study of the effects of magnetic fields
in D. melanogaster, Tegenkamp [26], using two permanent U-shaped magnets,

2 Tesla. He

subjected flies to field intensities of O through 5.2 x 10~
reported the effects on the sex ratio, the induction of autosomal mutants,
and a sex-lTinked recessive lethal. Braver and Zelby consider the authen-
ticity of these effects to be questionable. The reported alteration in
sex ratio, in favor of male offspring, is interesting in that quite often
in normal cultures, female progeny outnumber their brothers. In many of
Tegenkamp's crosses with treated flies, the males were in excess. This
also appeared to happen in the controls, although the alterations in sex
ratios were not as great as in the experimentals. The fact that some
matings occurred with a highly excessive male count, and one of these in
the control series, may indicate that something other than the treatment
was responsible for the excess of male progeny.
2.3 MWork Conducted at the University of Oklahoma

At this institution, Braver and Zelby have been looking for
genetic effects of static electric fields in Drosophila and have, to this
date, confined their studies to possible electric field and magnetostatic
field influence on chromosome movements. If the chromosomes were to
respond to the fields, then their movements prior to and leading to
pairing during gametogenesis could be affected. This could lead to
altered frequencies of meiotic exchange in females or altered rates of
nondisjunction in both sexes.

Research to date has centered on the degree to which microwave
radiation can induce sex-linked recessive lethal mutations in males of

D. melancgaster. The flies were exposed to microwave radiation by being
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placed about 5 c¢cm from the mouth of a pyramidal horn. The frequency in
use was 16.5 GHz produced by an SDF-342 Varian magnetron. Power delivered
to the horn was measured with an HP432A power bridge, a P486 thermistor
mount, and 30 dB couplers; the frequency was measured by a Polarad Spec-
trum Analyzer Model SA84 WA. The average power was 43 watts delivered to
the horn at 9 ma filament current and 9.75 kV on the anode. Peak power
measured at the center of the horn was 62 kW, with a duty cycle of
0.00072 produced by a pulse width of about 1.2 microsecond and PRF
slightly below 600 Hz.

Attempts to determine the extent of heating of the flies were
made with standard thermocouple and a YSI model 47 scanning telethermom-
eter. Initially, the flies were contained in glass vials with the
thermocouple measuring the temperature of the air in the vial. Several
measurements indicated that the rise in temperature was due primarily to
the heating of the vials themselves rather than the flies. Subsequent
experiments were therefore conducted by eﬁc]osing the flies in specially
made containers of balsa wood and bolting cloth. This prevented the
heating of flies due to heating of the walls of the containers and also
allowed for free air flow and ventilation during the experiments. Thermo-
couples were inserted into the containers, and the temperature was moni-
tored throughout the treatment period and recorded on a Bausch & Lomb
recorder. In the experiments with the latter containers, the temperature
of the air in the containers was kept below 30°C and usually ranged from
room temperature (23°C - 25°C) to 27°C. The control temperatures stayed
at room temperature.

Several tests were made to determine whether the thermocouples
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absorbed microwaves and recorded the temperature as a result of absorption
rather than as a result of changes in the ambient temperature. The
thermocouples were first exposed to microwaves, and the temperature was
monitored. With air flow provided by a special fan, thermocouples indi-
cated the room temperatdre (23°C - 25°C). The thermocouples were then
inserted into glass vials with cotton stoppers, with and without flies,
and temperatures in excess of 41°C (the 1imit of the bridge) were
recorded.

As a final determination of the validity of temperature measure-
ment, a number of flies were packed very closely between two layers of
bolting cloth. This produced a dense volume of flies with a microwave
exposure area of about one square centimeter and thickness of about one
millimeter. Two such sets were exposed to microwave radiation simultan-
eously, each monitored by a thermocouple, one on the side of the micro-
wave source with one set of flies and the other away from the microwave
source with the other set of flies. The two sets were moved laterally
in the radiation field and were also rotated 180 degrees. Under the
usual experimental conditions using forced air cooling, no heating was
evident, even though the fly density was very high. In vials with
slighly lower fly density, the flies were heated above 41°C within a few
minutes and were all killed.

Continuous measurements of temperature in various locations in
the radiation field, interchange of thermocouples, and constant moni-
toring indicated that the temperature measurements were reasonably reli-
able and that the flies were not being significantly heated by the

microwaves.
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Other temperature measurements of the flies were also attempted,
one using cholesteric crystals and one using thermography. The former
was not very productive because of the problem associated with painting
the flies with crystals and then observing them in the electromagnetic
field. Thermographic measurements using flies heated by an infrared
lamp were very promising.

Thus far, some of the biological uses and effects of electro-
magnetic radiation have been mentioned. In the following chapter the
energy absorbed by a prolate spheroid representing the Drosophila mela-
nogaster has been calculated. The fly is represented as a prolate spheroid
and also as a nephroid of revolution upon which a plane electromagnetic
wave is incident. The calculation of energy absorbed is checked using

the optical theorem.




CHAPTER 3
BACKGROUND

3.1 The Scattering of an Electromagnetic
Wave by a Spheroid [27]

The problem of a perfectly conducting prolate spheroid illumi-
nated by a plane wave at arbitrary incidence has been considered by
T.B.A. Senior [27]. The known low-frequency solution is presented in a
much simplified form; based on symmetries, the next terms in the expan-
sion are predicted. T.B.A. Senior reviewed a classic paper published by
Stevenson [28] on the solution of electromagnetic scattering problems as
power series in the propagation constant k . He pointed out that
Stevenson's theory provides the only systematic approach to the caicula-
tion of more than the leading term in a low-frequency expansion. The
scope of the method is so great that any homogeneous body of finite
dimensions can be treated, and in view of this generality, it is not sur-
prising that the solution is not always obtained in a form convenient
for specific applications. Even in a companion paper [29], where the
analysis for an ellipsoid is presented, the results in such limiting
cases as a metallic spheroid still demand considerable simplification

before they can be put to practical use.
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3.1.1 Stevenson's solution [29]

The problem considered here is that of a plane wave incident on
a perfectly conducting prolate spheroid. In terms of the Cartesian
coordinates the spheroid is defined by the equation
_2_.LX2+ 2+£§_=d2 (3.1.1)
g -1 3
with 1 < ¢ < . The semimajor and semiminor axes are &d and

(52-1)]/2d respectively. Following Stevenson [29], the incident field

is assumed to be

m
|

= (2],m],n]) exp[Ak(ex + my + nz)l1, (3.1.2a)

g

Y(zz,mz,nz) expl4k(2x + my + nz)1, (3.1.2b)

where k is propagation constant, and (2,m,n), (21,m],n]), and (zz,mz,nz)
are three sets of direction cosines of direction of propagation, electric
vector, and magnetic vector respectively, which satisfy the relations

(E] am-lsn]) = (zzsngnz) X (Z’msn)s (3-]-33)

(zz,mz,nz) = (g,m,n) x (z],m],n]). (3.1.3b)
Y is the intrinsic admittance of free space, and a time factor e“‘“t
has been suppressed. The expressions for far-zone electric field com-

ponents provided by Stevenson are as follow:

51 AKR
- [P 1 aP]e*
s = 3%+ s Eler (3.1.4a)
=+ AkR
I Y A -
E¢ - [sin 8 3 ae] R (3.1.4b)

Here, (R, 8, ¢,) are the spherical polar coordinates of the field

point. P and P are functions of associated Legendre function [27].
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3.1.2 Senior's alternative representation {27]

For any finite body, the components of the scattered electric

vector in the far-zone can be written as:

SR [ PL(cos o)
By = "R v20 s } rs ae s(COS 8) + rs s sin 8 cos(ro)

_ P;(cos e)l )

+ {srs SE'P "(cos 8) - r g ——375—5——’ sin{re)|

. r
eA.kR Ps(cos 8) .

E¢ “TTR rzo szl %ps ae S(cos 8) - rByg sin 6 cos(re)
‘ Pg(cos 8) )
I rs ae S(cos 8) * ra s ~sme sin(re)]
where the four sets of coefficients s> Bpg? Cpg? and B.g are, as yet,

unrelated to one another and specified only by the boundary conditions
at the surface of the body [27].
3.2 Scattering by Spherically Symmetrical
Objects [30]

According to L. Shafai [30], scattering by spherically symmet-
rical objects can be expressed in terms of two auxiliary functions,
related respectively to the phase and amplitude of the resulting field.
It is shown that these auxiliary functions satisfy first-order differ-
ential equations of the radial coordinate, and the scattered field is
described by the phase functions alone. Furthermore, the differential
equations satisfied by the phase functions are found to be independent
of the amplitude functions and are solved numerically by using the ini-

tial phase shifts obtained from the boundary conditions.
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An electromagnetic field in a spherical coordinate system may be
found from two radial vector potentials A and F , respectively, for the
electric and magnetic vector potentials. The solutions of these func-
tions in a radially stratified region and in terms of the spherical

harmonics are readily known and given by [31]

cos ¢ = .n-1 +
B cﬁi nfl i H,Z: T Pplcos o) W (R) (3.2.1a)

. @ .n=-1(2n + 1) 41
sin ¢ LA pinE Pn(cos 8) Gn(R) . (3.2.1b)

where R = kr , the propagation constant of free space and the radial
distance in the spherical coordinates are k and r , respectively. The
functions Gn(R) and wn(R) are two radial functions with Nn(R) satis-
fying the following differential equation

2

d°W ds dW
n 1 n n(n + 1) _
7 T W dR+[rar‘ ]wn-o (3.2.2)

dR r R™

where € and u. are the relative permittivity and permeability of the
medium. The function Gn satisfies a similar differential equation
which may be obtained by interchanging € and . in the above equation.

Equation (3.2.2), however, may be modified to

2

d™W

0+ -J_-l"";‘ Wo= LW, (3.2.3)
dr R nowoan

where Lw is an operator given by
de
. d_rd_
Lw‘]'urE +€ R dR ’ (3-2.4)

and a similar operator Lg for the function Gn may be found by inter-
changing €y and My in equation (3.2.4). Equation (3.2.3) is a Sturm-

Liouville equation and has a solution of the form
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W, (R) = €3, R) + 25 (R) + L (RORaR* 5, (R1)5,R) - 5 (R (RY)]
(3.2.5)

1 2
where Cn and Cn

are two constants yet to be determined, and jn(R) and
Qn(R) are Riccati Bessel functions of order n . Now, similar to the
case of a conducting sphere, the solution of wn and Gn may be expressed

in terms of two auxiliary amplitude and phase functions of the form

Nn(R) = An(R)[sn(R) cos sn(R) + ;n(R) sin dn(Rﬂ . (3.2.6a)

6, (R) = B, (R)[§(R) cos ¢ (R) + y,(R) sin e (R)] .  (3.2.6b)

where An(R) and sn(R) are the amplitude and phase functions associated
with wn , and Bn(R) and en(R) are the aplitude and phase functions
associated with Gn . An introduction of these functions into the dif-

ferential equations satisfied by wn and Gn gives

-(L.W)
d
aiA"(R) = A‘é’ n W (3.2.7a)
n
a-g-An(R) = -(wan)[jn(k) sin &_(R) - §n(R) cos én(R)], (3.2.7b)
and

-(L G )

% e (R) = —ig‘— 6 (3.2.7¢)
n

d—g B (R) = -(Lgen)[j‘n(R) sin e (R) - §n(R) cos er(R)]. (3.2.7d)

Equations (3.2.7a) to (3.2.7d) provide a set of first-order differential
equations which may be solved numerically to give the required scattered

field.
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3.3 The Inverse Problem of Scattering from a Perfect
Conducting Prolate Spheroid [32]

F. H. Vandenberghe and W. M. Boerner {32] have discussed the
inverse problem of electromagnetic scattering from a prolate spheroidal
scatterer. The approach is based on the inverse scattering model theory
as developed in Boerner, Vandenberghe, and Hamie [33] and Boerner and
Vandenberghe [34] for the circular cylindrical and the spherical cases,
respectively. In this model theory, the transverse scattered field is
expressed in terms of a truncated series expansion of the associated
wave functions. The unknown expansion coefficients are recovered from
the bistatic scattered field data by employing a matrix inversion proce-
dure. Based on the hypothesis that all the information pertaining to
these simple shapes is implicitly contained in the expansion coefficients,
closed form expressions for the electrical radii ka are derived in terms
of a Timited number of contiguous expansion coefficients. Instead of
directly using an expansion in spheroidal wave functions, an alternative
expansion of the scattered field by Senior [27] is employed. It is then
shown that the characteristic parameters of the ellipse generating the

prolate spheroid (the interfocal distance d and the eccentricity

€ = %- ) can be directly recovered from Senior's expansion coefficients.
In order to formulate the scattered far field matrix, Senior's
[27] solution is again reviewed. He considered the plane wave incidence
given by equations (3.1.2a) and (3.1.2b). The perfectly conducting pro-
late spheroid is defined by equation (3.1.1). Fig. 3.3.1 illustrates

the case of nose-on incidence on a perfectly conducting prolate spheroid.
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Senior then showed that the transverse scattered far field com-
ponents can be represented by equations (3.1.4a) and (3.1.4b), where
(R, 8, ¢) define the spherical coordinate parameters at the observation
point. Retaining only the leading expression in a low-frequency expan-

sion, P and P are given by

P = kz[k] cos ¢ + k, sin ¢)sin & + ky cos o] + o*y, (3.3.1a)

P = k2[(EH cos ¢ + Eé sin ¢)sin 6 + Eé cos 6] + 0(k4), (3.3.1b)

where the coefficients kj and E& (3 = 1,2,3) are explicit functions of
the direction cosines (2],m],n]) and (zz,mz,nz) and implicit functions
of the geometrical parameters d and £ of the prolate spheroid. Fol-

Towing Senior [27], the coefficients kj and Eﬁ can be expressed by

1 1, \s
N T L o N AL
T3 Tl T3 2

1 1

P.(¢) P.(g)!
23 P — 23 P
"2"3""‘101() s ky = - 3dTmy 5

1 (€ Q; (¢)

0 0/ vy
1 A _ 1 R
3 3 ]Q?(z) 3 3 2Q?(a)'

where Pg(g), Qi(g) are associated Legendre functions of order o and
degree 8 of the first and second kind, respectively, and the primed
expressions represent first-order partial derivatives with respect to
E .

Neglecting terms of 0(k4) and higher-order of equations

(3.3.1a) and (3.3.1b), the transverse scattered far field components can
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be expressed in a matrix form. Extracting the radial components according
to equations (3.1.4a), (3.1.4b), (3.3.1a), and (3.3.1b), the normalized
field components are related unknown coefficients kj and E& (the
coefficients kj, Es for j =1, 2, 3 are retained in this low-frequency
expansion) by

[E] = [S(6,6)1 [K]

where
Eoy ] Cl
Ee, k,
€ -3, w3,
By K
Eoy K
Ee3) K3
and
Coso cosg; cOsesing, -sine, -Sin¢] c0S¢, 0
€058,C0S¢, cosezsin¢2 -sine2 -sin¢2 cos¢, 0
(5(6.6)] = C0SB5C0S¢ cose3s1'n¢3 -sine3 -sin¢3 COS¢q 0
-sin¢] COS¢y 0 ~C0S8,C0S ¢, -cose]sinq;1 sine]
-sin¢2 coso, 0 -€0$6,C0S¢, -cosezsincp2 sin62
L. -sin¢3 COSéq 0 ~C0584C0S¢4 -coseasim3 sineg-

3.4 Scattering Properties of Oblate Raindrops and Cross
Polarization of Radio Waves Due to Rain:
Calculations at 19.3 and 34.8 GHz [35]

T. Qguchi in his paper [35] explained that boundary value problems

for scattering of radio wave by oblate raindrops may be solved by three
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different techniques: (a) point-matching technique, (b) spheroidal func-
tion expansions, and (c) perturbation method.
A raindrop is assumed to be an oblate spheroid, and the relation

between deformation and drop size is approximated by a linear relation

S=1- =R (3.4.1)

where S 1is the ratio of minor tc major axis and R is the effective
drop radius in mm, meaning the radius of the sphere with a volume equal
to that of the oblate drop.

The geometry for calculation of the scattering property is illus-
trated in Fig. 3.4.1. If the electric field of a unit plane wave

impinging on the oblate drop is denoted by
—>1. ~ n
E'=¢e exp(-Lkor kikz) , (3.4.2)

the electric field of the scattered wave, in the far field region, is

written as

s T oyl
E> = f (k],kz)r exp(-LkOr) (3.4.3)

where e is a unit vector specifying the polarization state of the inci-

~

dent field, k] is a unit vector in direction of propagation of the
incident wave, Ez is a unit vector directed from the origin to the

observation point, k0 is the free-space propagation constant, r is

>

A

the distance from the origin to the observation point, and f(ﬁ],kz) is

-)
a function denoting vector-scattering amplitude. E5 in (3.4.3) is
obtained by the solution of the boundary-value problem on the surface of
>

a spheroid. The following three techniques are used for obtaining g

+A ~
[hence, obtaining f(k],kz) 1.




g

m)

Fig. 3.3.1. Prolate spheroid scattering Fig. 3.4.1.
geometry for nose-on incidence.

0OBS

Geometry for calculation of the
scattering property of an
oblate raindrop.

2¢
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3.4.1 Point-matching technique

The incident field is expanded in terms of a spherical elementary
vector solution with known expansion coefficients, and scattered and
transmitted fields are expanded by spherical elementary vector solutions
with unknown expansion coefficients. If the infinite modal summations in
the expressions of fields are truncated at some modal index (M,N) and
if the boundary conditions are satisfied for the representative points on
the spheroid [whose number is appropriate to the index (M,N) 1, these
conditions give simultaneous linear equations for the determination of
unknown coefficients. Truncated modal summations with these coefficients

-> —)A ~
give approximate fields ES and f(k],kz) .

3.4.2 Spheroidal function expansions

Incident, scattered, and transmitted.fields are expanded in terms
of spheroidal elementary vector solutions with known and unknown expan-
sion coefficients respectively. Application of the boundary conditions
for the field gives simultaneous linear equations of infinite extent for
the unknown expansion coefficients, because the spheroidal elementary
vector solutions are not orthogonal. These equations are solved as in
section 3.4.1 after they are truncated at some modal index (M,L) .

These procedures are almost analogous to those used in the electromagnetic
scattering by a conducting spheroid [36, 37, 38], except that the fields
exist also in the lossy dielectric spheroid. The procedures of calcula-
tion are shown in appendix 2 of Oguchi's paper [35].

3.4.3 Perturbation method

If the eccentricity of a spheroid is small, electromagnetic

scattering by a spheroid can be formulated as a perturbation of the
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. . . al
corresponding solution for a sphere [39]. By setting v =1 - = (where
a and b denote the minor and major semiaxes respectively), thebscattered
fields can be expressed as a power series in v . Only the first order
perturbation is considered in numerical computation in the paper [35].
This background information, though based on only four papers
[27, 30, 32, 35] represents, I believe, the most important work in dealing
with scattering from a spheroid object and is the most relevant informa-
tion to the problem at hand. The main difference, aside from specific
solution techniques, is that the foregoing work dealt with far-field
scattering and asymptotic solutions; whereas in the problem at hand, the
concern is the field distribution within the scatterer. Furthermore the
other solutions represent approximations, in the following work the basic
analytic solution is exact. Approximation were introduced subsequently
by the elimination of terms whose contribution to energy absorption would
be negligible because of the size of the spheroid and the frequency at

which the calculation was made.




CHAPTER 4
MODELING

In order to determine the electromagnetic energy absorbed by a
Drosophila melanogaster exposed to an electromagnetic field, it is neces-
sary to calculate the field distribution inside that insect. To make
this problem tractable, it is necessary to generate some simplifying
assumptions. First, the Drosophila melanogaster is assumed to be an
ellipsoid of revolution (prolate spheroid) or revolution solid of
nephroidal shape with permittivity e , permeability u , and conduc-
tivity o . Second, the incident field is assumed to be a plane wave.
This last assumption is not limiting, as other wave fronts can be synthe-
sized by superposition of plane waves.

Two methods of determing the electromagnetic field of the prolate
spheroid scatterer have been used in this research: (1) solving the
vector Helmholtz's equation for the spheroid coordinate and (2) solving
the vector Hemholtz's equation for the spherical elementary vector and
then applying the boundary conditions to match both transmitted and
scattered waves to find the unknown coefficients of the transmitted and
scattered fields. The second method used in solving for the prolate
spheroid scatterer has also been used to solve the case of a nephroidal

scatterer.

25
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After the electromagnetic field distribution of the Drosophila
melanogaster has been found, the power which is dissipated in Joule heat
->
was calculated using .fblElde , With calculation confirmed by the use
v

of the optical theorem.




CHAPTER 5

SOLUTION ANALYSIS

5.1 Prolate Speroid Scatterer

5.1.1 The scalar Helmholtz wave equation

The scalar Helmholtz wave equation is:

o+ Ky =0, (5.1.1)

where k2 = uemz + L uow (5.1.2)

with the Laplacian of the sca]ar,. ¥

: £ \1
2y 1 |_a 2" aw) N i aw) RN el aw” .
hihohs | 3u \ hy oy, “auy\ hy 23U, ug\ hy u

(5.1.3)
If ¢ measures the angle of rotation from the x-axis in the z-plane and
r the perpendicular distance of a point from the z-axis, then (see
Figs. 5.1.1 and 5.1.2):
X=rcos¢ , Yy=rsing . (5.1.4)
In prolate spheroidal coordinates, the variables are

Uy =€, Up=n, U3=¢. (5.1.5)

z r 2 ya r 2
+ =d” and =5 - =d, (5.1.6)
27' gz -1 nz 1 - n2

from which we deduce

27
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Figure 5.1.1.

Two confocal systems given by

8¢




é =const

¢=m/2
L5

Figure 5.1.2 Prolate spheroidal coordinates (£,6,50).
Coordinate surfaces are prolate spheroids
(¢ = const) , hyperboloids of revolution
(6 = const) , and half-plane (¢ = const)
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1/2
d[(g2 -0 - nz)] cos¢ ,

x =
2 2.11/2
y=d k& -0 - )] sing and z = den , (5.1.7a)
where gE>1, -1<n<1,and0<¢<2n.
With the metrical coefficients,
1/2 1/2
2 2 2 2 1/2
h, = d(E—'—L) , h, = d(L‘—ﬂ—) , and h, = d[(gz -1 - n2)] .
1 2 2 2 3
g= -1 1-n
(5.1.7b)

Substituting equations (5.1.3), (5.1.5), and (5.1.7b) into (5.1.1) leads

to
-9'[(52 - 1)?-111] + —g[ﬂ - nz)i\b-] + [ 1, 1%
g 3g mn an 52 211 - n2J3¢2
+ K2d2(e% - o2y = o.
(5.1.8)
-Lwt

Letting ¢ = w1(5) wz(n) w3(¢) [an e time convention is assumed

and is suppressed], equation (5.1.8) separates in the following three

equations:
dlez gyl oo m-n2e )y =0, (s.0.9)
dg | dg "1 | m2 62 -1} ? T
—dr(l-z)—gw.+-A (h) - hZn? - n’ 4, =0, (5.1.9b)
dn*' T " dn Y2l T ['me I it > A3
d? 2
——2' ¢3 +m w3 =0 > (5.].9(:)
d¢

where h = kd = Eg-=-%g d, and Am (h) 1is a separation constant.
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The solutions of equations (5.1.9a to 5.1.9c) are (see

appendix A):

.2 m/2 , .
je, (h,g) = H(%‘) %&"“‘“ﬂ'—;,ﬁﬂh d (h|m,2)j .. (he)

g
(5.1.10a)

(2 o\ :
. ] .

mg £
(5.1.10b)
he ,(h,g) = je  (h,£) +ine  (h,E) , (5.1.10¢c)
- - m - 2,M/2 m
vpln) =S (hom) =2d P (n)=(1-0") zd Tin),
(5.1.11)
v3(e) = conlme) (5.1.12)

where jemg, ne__, and hemz are the spheroidal radial functions of the

me
first, second, and third kind respectively. Tﬁ(n) is the Gegenbauer
polynomial*, P$+n(”) is the associated Legendre function, and sz is
the spheroidal angle function.

The complete solution of the scalar wave equation (5.1.8) is

cos

cin(me); for outside the prolate

<
|

= mz,:lheml(h] sn) sz(h] ,n)

(5.1.13a)

cos
sin

o (hys8) S (hy,n) Coo(me); for inside the prolate

m’29%m

(5.1.13b)

* +m
d2

m
m _d 21 2 1%
TomX) = dx" [PQ(X)] 2tgr gx*m G-
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where

k]d = d(u]e]mz + 0 u]c-lw)]/z s (5.1.14a)

=
]

hy = kyd = dliyepu® + L uop) /2 (5.1.14b)

[The "h] 2" variables used here should not be confused with the metrical

coefficients h h2, h3 of equation (5.1.7b).]

]’

5.1.2 The;plhne wave expansion

The plane wave expansion in terms of the prolate spheroidal

coordinate is [42]

& ¥ k-
€ = 2m§2 K;;(ﬁy-smz(h,coseo)cos m(¢ - ¢0)Sm2(h,cose)Jemz(h,cosh u)
(see appendix A for an explanation of A, ) (5.1.15)

where ¢ = cosh u, n = cose, and
K + ¥ = hlcosh u cosé cosB, + sinh u sine singy cos(s - 951

8 and ¢g are the coordinates of the angular location of the plane wave

source. The Neumann factor, €y is 1 when m =0 and is 2 when

m>0.
5.1.3 Solutions of the vector Helmholtz wave equation
The vector Helmholtz wave equation is
vh + kKR = 0 (5.1.16a)
or
v -R) -vxvxR+kk=0 (5.1.16b)

Suppose there is a function f which is an arbitrary function of prolate

spheroidal coordinates &, n, and ¢ . We also define a vector M as
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=}
n

v x (4f)

1 3 1
—— = (h f)a
hohy 3n 173 h3h]

3 (h f)n (5.2.17)

[ h], h,, and h, are the metrical coefficients in equation (5.a.7b).]

3
M ois tangential to the surface ¢ = const . Since the divergence of M
is zero, it could be one solution, if f 1is such a scalar field as to
make M satisfy the equation (5.1.16a); that is

%% (since v - M = 0)

9=y M)+ v xuxP=uxyxh=k
We try to arrange the equation so that v x M =V x v x (@f) is equal to
kZ;f plus the gradient of some scalar, because the curl of this will
just be k% .

By taking the curl of both sides of equation (5.1.17), we have

v x v x (¢f)

v xM
_Lg [ 4n9) _a[_'_‘_i__a(hf)]s
h]hz dglhghy 3g™3 anlhyhs 3n 3

~

a ) ar ™ tfarf2 o %
* ighy (e gy 3 ] + h2“3?34’["3“1 a2ty

After rearranging, the preceding
1 h

- ;%‘ [a¢(“3f)] % Py ;;f‘h 37) * Bk o [hz by 5%(h3f)]

h
L 5t [k )|
+ 22 2nf)|t .
hihy 98 Lhyhg 32073

In order to make the curl of ~—%-v{5%{h3f)] equal to zero, we choose a
h
3

function that is independent of ¢ . (We make this choice because

h3 = d(g2 - 1)1/2 (1 - n2)1/2 js already independent of ¢ .) If f
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is the function of £ and n only [i.e., f =®(g,n) ] , then by sub-

stituting this f, v x M can be rewritten as

~

h

h
M=ot [ 1 2 ] 3r 2 3 ]
vxM h]hZ; an[h2h3 g+ ag[h.lh3 3eths®) z

= _?_1 22 2192
- ;ag[(g ”agq’]

i) 2, 2, _ _ (2 - \P) g
+3n[(] -0 )Bn (EZ- na -n2)¢ 6 . (5.1.18)

We now show that & (g,n) 1is equal to w](g) xpz(n) , which is the solu-
tion of the radial and angular parts of the scalar Helmholtz equation
(5.1.8). Let
- cos a
v =@(g,n) o5 (mo) (5.1.19)
be the solution of scalar Helmholtz equation szp + kzw = 0, which is

al,.2 3 3 2, 9 (52 - E) 32
E[(g - ])"a—g‘lb] +sﬁ'[(] -n )a—nib] + (gz i ])(]n- nz) a¢2‘b

+ kz(E2 - nz)w =0
(5.1.20)

Substituting equation (5.1.19) into (5.1.20), we have

3f,. 2 ) 3 2, 9 (gz- 2) 2
zﬁ[(g ) ])EEQ] * _3_Tl-[(] - )S-Y?P] - (gz - 1)(: - n?m ¢

c0o(me) = 0

+ K2(5% - n%)e sin

which simplifies to

e e - st o - ]

2 2
- 2(5 ];(;‘ ) 2)m2<1>£= - k% . (5.1.21)
& - -
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From equations (5.1.18) and (5.1.21) we see that

vxHM= k2¢; s
provided m =1 . By taking the curl of both sides and applying simple
algebra, we obtain Y
S

2 v x (¢$) =0 .

-V xVxM+Kk
By substituting the definiton of M given previously
-VxVxﬁ+k2M=0.
. . . 2% _
From this and the vector identity vM=v(v - M) -vxvxM, wecon-

cluded that M s one of the solutions of the vector Helmholtz equation

cos

Sin(m¢) is a solution of the

Vzﬁ + kzﬁ = 0, provided that y = &(z,n)

scalar Helmholtz equation.

Let f=2 : L s(ke) .~ v.R=0
B=Y : N_ v x (49) S veM=0
and L= vy .

The vector potential A is a combination of W, M, and [

= - 5{ r a L +b M +c N ]

wiM, 2 me mL me me mL me

__ A >
i §[312L11 * blzﬁ]z * C?zﬂlz] (5.1.22)

for m=1 only [52,53]

5.1.4 Electromagnetic fields inside and outside the prolate
spheroid

Having solved for the vector potential 7? , the electromagnetic

field can be found by

—

- )
E=-7¥- 3 A (5.1.23)




where V= 7 2%, -

Substituting equation (5.1.22) into (5.1.23) yields
E= (b, M, + c]zﬁ

1M, (5.1.24)

12) :

Recall that the vectors M and N are:

e o x [Gotem)] = i 2ihg)E -l g2

d(? ] 2!/ 33%[“ i ”2)]/2"’]% - f[(sz - 1)]/2¢]5$ ,
£ -

( h], h2, and h3 are metrical coefficients)

N = oko ,
where
Ocat(82n) = ¥1(E)uy(n) = hey (hyse) S; ((hpon)  (5.1.25a)
o 0(8sn) = vy (E)uyln) = Jey (y.e) Sy {hyon)  (5.1.25b)
where °scat and ¢in represent, respectively, a scattering solution and

a solution inside the spheroid.

The incident plane wave E. is chosen to be

inct

E =kE e‘LE - ¥
inct Zz *
Using equations (5.1.15) and (B.9b, appendix B},
E 1/2. 1/2.
inee = 517z 062 - 1§41 )]
(85 - n%)
s 2iten

x mo2 X;;THET sz(h2’°°seo)c°s m(e - ¢0) sz(hz,cose)jemz(hz,g)

(5.1.26a)
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where Ez is the amplitude of the incident plane wave with propagation

constant K parallel to the x-axis. That is, 8y = %3 ¢ = 0> and E.

inct
are simplified to (see Fig. 5.1.3).
E - n
ginct = ( 7 22 T/Z [ﬂ(ﬁz - ])]/25 + 5(] - .ﬂz)]/zﬂ]
£5 - n")
L Zien S (h,,0)cos(ms)S_.(h,,n)je_ (h,,e) (V-E. . =0)
mseR - (ho) m, 222 COSAME ) Sy 122136, LNy5E inct ~
(5.a.26b)
We can write the E-field inside the prolate spheroid and the field
scattered by the prolate spheroid as
o 1 [ar,, _ 2,172, J
Ein = 1 b1s RN T (0= 02 250y (0005, (ny o) &
3{,.2 1/2. -
= ﬁ[(g - ]) Je]l(h]’g)slﬂ.(h] :N)]ﬂl
0
+ 307 kpdeq, (hy 58357, (hyane | (5.1.27a)
- 1 3 2,1/2 ]*
Escat = & Pz —2172 [an[“ - n7) ey (hp,£)Sy, (hysn) e
d(s® - n%)
_af,.2 1/2 ]’\
- 35[(g - ]) he]l(hZ’F’)S]z(hZ’n) n,
0
+ 7 ¢ kohe (hy, 12(hp0m)e (5.1.27b)

bl

where b]z’ 12° S1e° and ¢y, are constants to be determined by using

boundary conditions. We can immediately set 1 and Ciz equal to zero,

because the Ein and Escat fields do not have ; components when the

incident field Einct does not have ¢ components.
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5.1.5 Boundary conditions [Appendix C]

The normal component of D(=cE) is continuous at the boundary,

or equivalently n - (ﬁé - ﬁ]) =03 i.e.,

€2 £ OutS'lde =€ gg inside at the boundal"y £ = Eb

where E is the £ component of the E-field outside the prolate

£ outside

spheroid (Eg oursIoE EE inct T Eg Scat); i.e.,

3
P1252 'a?[(] L

“ Pl [ - )/ %5e z(hl’gb)s]z(hl’“)]

2,1/2
) he]l(hZ’Eb)S]Z(hZ’n)]

172 2 e

= Zm €ZdEzn(gb -1 .

sz(hz,O)cos(m¢)5m2(h2,n)jmz(h2,€b)

(5.1.28a)
The tangential components of E are continuous at the boundary

or equivalent to ; x (fz - f]) =03 i.e.,

En outside ~ En inside at the boundary £ = & 3 1.8,

302 - /2
ibu ag[(g 1) They (b 2’5)512("2’”)}

£ ¢,
- iy 5282 - 1 Ziep, (0,88, (hyn)]
1s 3¢ I EAL R TR L M
b
'26
= BaEpde, (1= nA)VEEE s () ,0)cos(me)S,,, (nysn)iep, (hysty)

me" 2
(5.1.28b)

We have two equations, (5.1.28a) and (5.1.28b), and two unknowns, by

and biz . These two unknowns can be obtained by means of Cramer's rule.

The solutions are
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'Ezn(gg - ])]/2 'a'a'[ - 2 ]/ZJE]R(h] ’gb)slz(hl’")]
(1 - V2= 2l - 1) ey (05, by
_ £=g
12 A
x E dl;l _(_)' h ,0)cos(m¢)$ (hzsn)Je (hZ’gb)
(5.1.29)
o 52|01 - )/ 2he, (hyo)Sy, (hpon)] - epn(el - 1)1/
2 [(e7 - 1)/ 2ney, (hy.6)s,, (hyon)] 5, (1 - n2)1/?
, £= ¢,
big = A
x E_d 21 €n S_(h,,0)cos(me)S_ (h )’e (h £, )
2% AmzthS me''2° me \Ng2n/J 2°%p
(5.a.30)
where

ezt [(1-n2)hey fhy.5,), fhpm)]  -eys2[(1-n2VEse, fhy 6,05, fhy o) ]

S [(2- e fhyueds fym ] - 52 (P10 ey g s g on)
£=g, £=¢,

(5.1.31)

We are not interested in the particular set of €15 € kla, and k2a
which may cause A to be equal to zero, for that case represents the

natural modes of the system, and is outside the scope of this work.
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5.1.6 An alternate approach

Again we find the E-fields as before, this time in spherical
coordinates. The solutions of the scalar Helmholtz equation in spherical

coordinates are

wmz{gzgn} = Zz(kr) Pg(cose){ggz $$} (5.1.32)
where Z2 is the spherical Bessel function [which may be specified as

jl(kr) or ng(kr) ].
Again, we define two functions which we shall call M and N
[43,443:
> -> ~
M, =7 x (r wmz) (5.1.33)

% v nmz

e~ n (5.1.34)

vV x
The reciprocal relation ﬁﬁz = ———TZJEQ follows from the fact that both
M and N satisfy the vector Helmholtz equation, in addition to being
functions with vanishing divergence. In light of the above, in spherical

component form, the vector solutions are

even| _ m sin m¢ mfcos mo
M)msa'{odd } - 51ne 2(kr)P (cose){cos m¢} -2 (kr)aﬁpz{s1n m¢}¢

(5.1.35)
= feveny _ 2(2+1) m {cos meys . 1. d d m{cos m¢}“
Nmz{odd } " kr Zz(kr)Pz(cose) sin m¢}r * kr dr er(kr) EEPz sin m¢ ®

- _m _d m sin m¢}"
7o g vz, (k) Pl(cose) {500 Mo (5.1.36)
The surface of the prolate spheroid is defined by
2 2 2
XY 4220 or re=—y—py s (5.1.37)
a b (a“cos“e + b®sin®e)=




- -y
E
H
X
X
Figure 5.1.3. Geometry for the prolate Figure 5.1.4. Geometry for prolate
spheroid and the incident spheroid and the

wave. incident wave.
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where X =r sine cos¢ , y =r sino sing , and z = r coso .
The plane wave expansion in terms of spherical coordinates is
[45]

P > o € (l‘m):
ART o2y Ty cosm(e-09)P" (coseq)Py(cose)s, (kr)

(5.1.38)
If the plane wave is propagating in the x-direction; i.e., propagation
constant K // i or K has the spherical angles 8y = %- and %9 = 0
(see Fig. 5.1.4), the above may be reduced to

e (2-m)!

Rd

KTF_ = -0 m m .
e = 2§0(22+I)A,m§0 —TE;ETT—-COS mé Pl(o)Pg(cose)Jz(kr)
(5.1.39)
The incident plane wave, which is denoted by tinct , 15 assumed
to be
_ £ podke?
Einct = Eqke

A el e .Z%em(l-m)! S .
Eo(coser-s1nee)2§0(22+l)A.m_d—rzqﬁyr—cos(m¢)P2(0)P£(cose)Jz(kr)

= Erinct”™ * By inct® (5.1.40)
where Eo is an amplitude of the incident wave.

-—
The scattering wave, which is denoted by EScat s 1S
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= (s) (s)
Escat L m[Amzﬁmz * Bmﬁﬂnz ]
+ -~
= 2Em{am-&%;llhz(kzr)P';'(cose)cos mer
+ [A —h (k,r)P"(cose) + El'-'—'-y‘—[rh ] d m]cosm 6
me, sine K2 /FglC kri g T e ¢
[ e Z(P ) - Bmlm (?‘h ) P ]sin mo ¢ } (5.1.41)
m' _ df.m [ S |
[(Pz) z delP (coseﬂ (rhl) = 5 rh, (k rﬂ and (rJZ) z drl}jl(k]rﬂ ]
The electric field inside the sphere will then be
- i) 4o q(9)
Eﬂl 22 Phﬁhz mg%z

' 2‘2"'1!- m -
X m{Bmz k] Jz(k]r)Pl(cose)cos mer

s m v
[ mg SInerpz Bmzk r[rJ ] (P ) Jcos m¢e

A ' . m .1 amls -
+ [- Amzjz(Pz) - Bm2 E;77§7ﬁ§'[r32] PR]s1n m¢e} (5.1.42)
where the odd function of ﬁ and the even function of ﬁhz are used,

because in the equation for E cos m¢ 1is multiplied by the ;

inct °
and e components.

We do not expect E and Ein to have a ¢ component when

scat
the incident electric field E}nct has no & component. It follows
that

m m m
Anghe (Pe) - Bpy k" sine[rhz] P2

0 (5.1.43)




(. m [ m . m _
Angdo (Py) - Bpg kT sine[rJz] P, =0 (5.1.44)

The unit normal n to the surface of the prolate spheroid, in

terms of a spherical coordinate, is
“Vf_l[*Z]'l ] - -
n= = r+r siné cosé 8 r+n2#
[vF] [vF] (a? b?) M )
(5.1.45)

ab
8 +b

where f=r - 5

, and n_ and n_ are the
(a cos 1/2 r

2s1n 8) Q

components of n in the r and e directions.
By using equations (5.1.43) and (5.1.44) to find Azm in terms
' s 1 s s 3
of Bmz » and Amz in terms of Bmz » We can by substitution rewrite

equations (5.1.41) and (5.1.42) as

—'m-—(r'h ) p
_g - sh Y‘ sing ﬁ(S) ﬁ(S)}

z B {ifillgh Pm COoS m¢ r

25m me k2

Cm Z(Pm 2
B s ]
2 L
= Er scat; * Ee scaté (5.1.46)

-m' - .Pm
E - 5o {k]r sSinog (rJfa) 2 ﬁ(_i) . ﬁ(i)}
me

in  2,mmp jz(P?)' mg
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gsmme ) k.r

L {&i’]ﬂljl P" cosmer

[l ()
. [_ s:(ni sz + k::r(P':)'] (r:jl)'cos mé 8 }
. .

>
>

=E .r+E . 6 (5.1.47)

where Er scat and Ee scat are the r and o components of -Escat s

and E_; and E ; arethe r and e components of Ein

We are now ready to apply the boundary conditions to find the

values of Bmz and Bmz .

The normal component of D is continuous ﬁ-(ﬁz - 5]) =0 at

r= g 3 i.e.,

2(2+1 . (51'::6 Pz)z (P'E)'-I ' 21 _ 1
B ,€> 2P2 + kT [rhz] ro( 5 )sme cose

—

k,r my _ 2
B
] gm) [ (s5ms P:))z (7 )} 2/1 1 |
-B' e P + — + rj. |' ra[— - —=)sine cose
me1) kqyFo : kqgr (Pm) k7o [ ]r=r 0(a‘? bz)
0 0
_ 2/ 1 1 2 2 m(z -m)! pm
= -EOEZ[]-rO(? EZ-)S'H'IG ]COSG (2041) 4 W (O)P J (kZ 0)
(5.1.48)
where ro " ab

[azcosze + bzsi nd ] 1/2
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The tangential components of tscat . ginct , and tin are:
n x Escat B q’("r'Ee scat ~ MeEr scat)
m Pm 2 .
I} m
i} z?msr?z‘{'( sine) + (Pl):'(rh ).
vf m\ k,r '}
[ kor(P7 ) 2
(1 1\ 2(2+1 m :
-r (az bz)sme cosé KT sz}cos mé ¢
(5.2.49)
nx T':L'in = ¢("rEeinct - "eEr inct)»

™

_asm 2{ 1 1 2 . 2 €m(2-m) !
= ToF [-1 -r (;2- - —b?-)cos e}sme EO(ZH])""(é,ﬁT%-

xCOS Mo P?(O)P’,:jz(kzr)q;

(5.1.50)
1
nx E1'n = ongEy 5n - Mgk, in)
2
mpT .
' ') m
) z?rmBT{[(sine) . (Pz)]{rj }.
vf my\' k,r 2
h(]r(Pz) 1
- r?'(—; - —;—)sine coSo %((1‘:—]%;2' cos m¢ ;
a b 1
(5.1.51)

The tangential components of E are continuous or equivalently

ﬁx(E’z-?]):O at r=rg > that is
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f—

2 —
mp™ ) '
% m
B [(Si"e -+ ) ][rh ]' - rz(bz'az)sine coso 2{21) p pm
me kzro(Pg) korg L rrg 0 a2b§ kotg 2 ¢

B!
r~ 2 + I
mp™ ,
siﬁe (PT) 2 bz-a2 2(2+1 m
' s 1 3 3
“Bne v Ko [rJz] T ro('?'?_)51"e cose—é—;—l-szl
kro(fy)  M1To =r, \a‘b 2"0

[ 4

2 2 € m).
_ 2(b”-a 2 1. L m m m.
= l:]"‘l"o(—ra bZ)COS G:lS"\B E0(22+] )4 —(m— PQ(O)PQJZ(erO) (5.].52)

By applying Cramer's rule to equations (5.1.48) and (5.1.52), the coef-

ficients of Bm and Bmz are found to be

2 .2 1
2/b"-a . 2
-52.]-r0(32b2 )51n glcose =B
2 .2 T
1+r2(b -a )cosze sine -8’
o a’b? : .gem(g'm): M~y oM
Bml = EO(ZR.H)A WQ(O)PL‘]R(erO)
01 -B
a[ _Bl (5.] .53)
2 .2
) -52[1-rg(§§;%—>sinze]cose
2 .2
. 2(b"-a 2. |es
- []+r0Q;§Fracos e]S1ne « (gom)!
. LM )l m.
Brg = Eq(2241) &'y, (0)P 5 (k,rg)
a -B

a' -B! (5.1.54)
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5.2 Nephroid of Revolution
This section describes a fly as a revolution solid of nephroidal

shape, which is expressed by rotation of the function
_ 2
r=ry+r, cose (5.2.1)

where r, and r, are constants (see Fig. 5.2.1a).
We use the same method as we did in section 5.1.6. Equation

(5.1.45) is replaced by

~wf 1 [2,% I
n = TV?T.= ToFT r + —=cos sing o (5.2.2)
and the equation (5.1.48) is replaced by
2
mp™ '
+1 (—i) (Pm) 2r2
Bng 2 —1&-—l s1nm Tt i [rhll' —- €0so sine
._kzr(Pz) 270 Il *lr=ry o )
Y
2
m
mP
2(2+1) . om ﬁ'ﬁ') (Pl: )' 2r,
Bﬁz 1 KT j2P2 + i ¥ KT [rjz]' . €os6 sine
1 0 k]rO(Pz) 10 r=r, 0
s

. 2
2rzs1n 8

= - Eoez[l - —YT——]cos (22+1)4 -—(——)L- Pm(O)P':JQ(kzro)

(5.2.3)

where f =r - rp- T cosze and rp=ritr, cosze. Equation (5.1.52)

is replaced by
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( sz) ( m\' .
Sire Pg)} - _ 2r,cos6 sine 2(241) X
B“”‘{ koro(P?) G " ] "o rg

p—

(Pm) . 2r,cose sine )
' [rJz]m.o i o 2:&:::)) 3Py

o

5

2

2r,cos“e
=

(5.2.4)

The coefficients Bm2 and Bﬁz , 1in this case, are found to be

2

2r2cos e
[1 + —————————]sine -5'
To

.2 Em * Mo
B = EO(ZE""] ),4. W PQ(O)Psz(kzro)

(5.2.5)

€n (2-m)!
Br'nsa = - EO(Z.Q.‘H ),4. —(—)-—- pm (O)Pl‘]l(erO)
y' =8' (5.2.6)




a) r=r + rzcosze b) Drosophila c) prolate spheroid
Melanogaster

Fig. 5.2.1.

Comparison of mathematical models with an actual specimen.

0s
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In order to check that the results of solutions (5.1.27a) and
(5.1.47) are the same, the prolate spheroid has been reduced to a sphere.
As we can see from appendix D, equations (5.1.27a) and (5.1.47) are
equivalent in the limit of a sphere to the solution given in Stratton [51].
The absorption of a sphere scatterer has been calculated using the result
on page 569 of Stratton; this solution has been proven to be the optical
Theorem [appendix E], and agrees numerically with cEZdV [appendix F].

In the case of a perfect conductor, k] = as ¢ =« ; thus
jz(k]r) =0 as k]r = » , Therefore, from equation (5.1.27a), the
electromagnetic field inside a perfector vanish.

Some identities, recursion relations,4and behaviors of spherical

Bessel functions and Legendre functions have been Tisted in appendix G.




CHAPTER 6
ENERGY ABSORBED BY A DROSOPHILA MELANOGASTER

The energy absorbed by a Drosophila melanogaster (fly) can be

calculated by the equation

> > >
JE-3 av = folg|%av (6.1)
\) A

which represents the power dissipated in Joule heat - an irreversible
transformation, where o and v are the conductivity and volume of the
fly respectively.

As we can see from equations {5.1.29-30, 5.1.52-53, 5.2.5-§),
the calculation of equation (6.1) is so tedious that it is not practical.
Since the first several terms of the equations (5.1.29-30, 5.1.53-54,
5.2.5-6) are the dominant ones when th is small (i.e., gh <1 ), we
attempt to find the values of equation (6.1) with £ =1 only.

6.1 Power Series Expansion for the d's and
Other Constants for h Small

Power series expansions for the d's and other constants for h

small may be obtained [46]. For instance, setting
Sgo = dgPo(n) * dPoln) + dyPy(n) + .-

_ 2 4
and A00 = azh + a4h + oo

we have

52
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1,2 2 .2 2,2 11,2 4 .2
[30%45 + Gat%, - g, NAOK [64, + §n%d + 3707, + 3pnldy - Aty |Pyin)
12,2 39, 2 30 .2 =
+ [eod, + nla, + B dy + a3 dg = Aggdy|Pyln) + +++ = 0
Setting d2 = [hza2 + h4a4 + ---]do and d4 = [h464 + ---]d0 and equating
the coefficients of Po(n), Pz(")’ -«+ to zero separately, we obtain
=1, =2 R n .
a2—3,a4—] azandaz—-g,-a2a2+6a4+-ﬂ-0.2 0

S22 12 . 1
or a, =435 5 @4 = 557 3nd 208, + 352y = 0 or g, = 5735 .

Consequently

N 1.2 2.4
S00~ %P0 - do[§" - BT ]Pz * —5"0" *

Since S00 is equal to unity at n =1, by applying equation (A.3,

appendix A) we must have

do[l 1p2 + g ]=1

T
.2, 144,
or dg =1+ gh" + 5550 *

By this means, approximate formulas can be built up for small values of h

FO+ %+ P (n) - (37 + g2 )Py(n) + -52-5P4(n)

~—— ——T —_
do(hlo,O) d,(h[0,0) d4(h|0,0)
1.2 2.4 - 2.2 1164]
Aog*3" - 1380 3 Aog® 2[1 g+ 7oz80
Soi(1 + g’ + gEAh )P () - )P()qﬁ—v()
01 25 55125 n 6525 n B 5\1
~— — ——————
d (h]0,1) d3(h|0,1) dc(h[0,1)
oL 32 6,4 . 2. 42 . 92 .4
A2+ 30 - gsh 5 A3t 7 * TR
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2 4
5 2.2 1193 .4,.1 b, 16,41 Wt
S11=(1 + 550" + syEaosh IPy(n) = (5 + yggzEh P3n) + TygasPs(n)
™ ———— ~————TT N [ Sy S
. 1,2 4.4 4,162 , 17104 , 4
A2 +gh” -geh” 5 NP3t st * goggrEh

(6.1.1)
6.2 The Value of h at the Long-Wavelength
Limit (he'<<1)

The values of d and £p related to the size of Drosophila are

assume to be d~1.23 x ]0'3m

- ~ .1_T.~
gb~'l.05 (gb = coshub, np~ 0.2 x 2»«0.3'!).

We further assume that the values of Hys €9s and o1 at a frequency of
4 GHz to be (representing known value of tissue [47] )

uym g = 4t x ]0-7 henry/m

- - 1 -9 farad/m
s]~4030 = 40 x 36 10

c]zZ.S mho/m

9 1

w=21 x 4 x 10° sec .
Recall that

2

2 _ 2
_dk]

h] = dz(u-le-lmz + Lu-lo-lw)

or
174
lh]l = dl:(u'le'lwz)z + (u'lo"lw)Z]

~0.664 (6.2.1)

and
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o 1/2 0 1/2
lhy| = dluyenw™) = dlugeqw’)
~0.103. (6.2.2)
6.3 The Value of bi! of Equation (5.1.30) with £=1
In the case of long wavelengh approximation, the Bessel functions
j! are dominated by Jj; ; the remaing terms (222 ) are negligible in

comparison to j1 in the case of the fly.

The value of t:]'] is found to be [see appendix H]:

2 ]/2 .

bi,~3.08 x 1072 d cos (1-n2) &

n-

->
6.4 The Evaluation of olEIzdv
v

The electric field inside the fly can be written as

>

= —

.= (1-
“in d(g _ 21/2 an[

- e [6% - ey ik }

-2

2 1/2

Je-”( ’g )S'”(h'l sﬂ)}g

2,1/2 A f .2
) - 2njeqq&
BV

~3.08 x 10 Ezcos¢(1 -n

- [0+ 23y + (6 - Pbrgigde(1 - ﬁ‘/?]:}

2
> 1 -n ) 2

2 _ 42 2% 2.2, fe2 -1
|E;pl° = 9.5 x 10°Ecos ¢-————(€2 2){471 J](h]E)( 2 )

2 2h, /.2 2
+ (1 - n2) [(] + )3% 3] (E%l)(_Li)jOj]

£ g
h? .
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The volume element dV for prolate spheroidal coordinates is

¢3(sinh%u + sin%e)sinhu sine dudeds

-d3(€2 - nz)dgdnd¢

Tl’

Pe—

R 1.05 2 A\l
JolEldv = -9.5 x 107%2ad? j' cos ¢d¢f : f(h]g)(Lg—‘)_{ 8n2(1 - n?)dn
v 13
2“1 /g ‘ 1\ (2
1+ — , OJ

+_( ]E) g]f (1 - 1?) dn} ~1.89

dv

1.05(.2 1.05
x 10“255{—}6_! (‘5 g ])j]z + —-}5,][ (1 + _a;‘) 25
2
32h, (1.05(,2 2 16h2 (1.05 2.2)
1 1\ (2 -1 1 1
EE 'ir (i ¢ )(‘5 g )JOJ-' i { (g- 5) Joj

The above integrations of transcendental functions can be car-
ried out by approximate integration. Using the Simpson's rule, some
computer work is needed to accomplish the job. The numerical results

are:

1.06,
J (5—51-)j$(h]g)dg ~0.1133 x 10°3
1

2

1
f (1 + —;—)jf(h]g)d ~0.8932 x 107
1 3

2 2
g+ 1\ g = 1), . - -3
.{ ( ( : )Jo(h]g),]](h]g)d 0.959 x 10
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1.05
( - l)2'2(h £)de ~ 0.1394 x 1073
: &-¢/30'\M = 0.

-
The result of the integration of JrUIEIZdV is
v

>
fomzdv =~ 1.91 x 107142 (6.4.1)
v

Using the optical theorem (see appendix E), the amount of ab-

'14Eg , 2 value within 13 %

sorbed energy is approximately 2.19x10
of equation (6.4.1). In view of the approximation the aggrement can be
considered quite good.

Suppose there is an incident plane wave with the input power

W c X .
Pin(ag) s then the E, of equation (6.4.1) can be carried out by the
following:

E
2l < 376.6 o (6.4.2)
"yl
and E, < H | =P (45) (6.4.3)
z Y in m2 ©e
. 2 _
ji.e., Ez = 376.6 x Pin (6.4.4)

The following table lists the power absorbed Qab by the prolate
spheroid representing the fly given the electromagnetic properties of
the spheroid assumed above, and the EZ of the incident plane wave

when power per unit area of the incident wave Pin is known.
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Pin m2 Ez% Qab(w)
1. 1.94 x 10 7.19 x 10712
10. 6.14x10  7.19 x 1071
100. 1.98 x 102 7.19 x 10710
1000. 6.14 x 102 7.19 x 107




CHAPTER 7
DISCUSSION

The models of an ellipsoid of revolution and a nephroid of revolu-
tion have been used to describe a fly. As we can see from Fig. 5.2.1,
both the ellipsoid of revolution and nephroid of revolution models,
although close approximations, are not exactly the same as a fly. Because
it is impossible to model a fly perfectly by a single mathematical func-
tion, some simplifications of the fly's shape have to be made. The
relatively unimportant portions of the fly, such as legs, wings, and the
slight departure from revolutional symmetry, were neglected.

The fly is about 2.6 mm 1long. This length corresponds to a
frequency of 115 GHz. As the skin depth, which fs ) ij;%% s approaches
or exceeds the size of the fly, the shape of the fly becomes uncritical
for that particular frequency w , at which the wavelengh 1is much
larger than the fly.

The skin of the insect is almost an insulator; its body is about
70 percent saline. No information of its a.c. conductivity o , perme-
ability u , and permittivity e are known. The values of a.c.
( o, u, and € ) used in section 6.2 are estimates and, therefore, are
not authoritative. In addition, these quantities vary depending on the

specimen and biological state. Therefore, sections 6.2, 6.3, and 6.4
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serve as an example of how to calculate the power absorbed by a fly for
any given conductivity ¢ , permeability p , and permittivity e of
the fly.

In section 6.1, we are dealing with a small h , which is near
the low frequency (or long wavelength) limit. In the high frequency (or
short wavelength) case, h 1is no longer small, but the ideas used in
approaching the probiem are still the same. Instead of expanding the
functions of Amz(h) and dn(h]m,z) into power series of h , they can
be represented by powers of (h-k) . For example, Aoo(h) = gan(h-k)" s
d,(h]0,0) = ﬁan(h-k)n . dg(h]0,0) = gsn(h-k)n ; etc., where k is some
constant chosen to insure that |h-k| 1is small. In this case, the number
of terms, 2 , necessary to obtain an accurate numerical summation cal-
culating the E—field, must increase to include all the dominant terms.
This ¢ 1is dependent on the magnitude of hgb .

The power absorbed by the Drosophila melanogaster represented
in terms of a spheroid has been calculated, the calculation was performed
at a frequency of 4 GHz. The reason for this choice is the fact the electro-
magnetic properties of fly are not known. Consequently the values of e, .y,
and o of human tissue measured at 4 GHz have been used as an approximation.

Several given incident powers and the corresponding power absorbed by the

spheroid have been listed in the following table.

W v
Pin(;?) Ez(ﬁ) Qap(W)
1. 1.94 x 10 7.19 x 10712
10. 6.14 x 10 7.19 x 1011
100. 1.94 x 10> 7.19 x 10~ 10
1000. 6.14 x 10° -9

7.19 x 10




61

We, human beings, are exposing ourselves to the nonionizing
electromagnetic radiantion fields for the duration of our lifetimes, and
we cannot help but ask what this increasing intensity of electromagnetic
radiation of all types does to us. It is important to know whether there
is a biological state that can be affected by this invisible radiation
which surrounds us. This problem increasingly calls for worldwide atten-
tion; as we know the maximum “safe" limits (as set by law) for elector-
magnetic exposure are 10 mw/cm2 for the U.S., 1 mH/cm2 for Sweden, and
0.01 mW/cm? for the U.S.S.R.[54] .

This work represents another step in an attempt at quantitative
determination of the biological effects. Drosophila melanogaster have

been used in the experiment and were represents by a spheroid in the

analysis.
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APPENDIX A
THE SOLUTIONS OF EQUATIONS (5.1.9a-c) [40]
The solutions of equations (5.1.9a-c) are:
43(8) = Sop (me)

m/2
() = Spg(han) = 34,80, () = (1 - n%) sd,Tin)

where the recursion formula relating successive coefficients is

n(h - 1)h? +{n+2m+1)(n+ 2m + 2)h% p
(2n+2m -1)(2n + 2m - 3) n =2 (2n+2m+ 3)(2n + 2m + 5) "nt+2

2
[h2 2%2n++m%$"++3?(;n]l o ;)] +(n+m)n+m+1)- mz]d =0.

(A.1)
There are two sets of finite solutions of angle for equation
(5.1.9b), one for even values of n and the other for odd values. We
arrange each in order of increasing value of Amz(”) to obtain the final

solution:

m/2
Spg (hon) = ﬁ'dn(hlm,z)P§+m(n) = (1-29) £'dTn)  (A.2)

which is finite and continuous over the range -1 <n <1 for different
allowed values of the separation constant Amz(") (2=m, m+1, m+2, «o) ,
where Am,z(") < Am,2+
that only even values of n are included if ¢-m is even, and odd

](n) . The prime on the summation sign indicates
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values of n are included if 2-m is odd. When h— 0 , the equation

for sz(") reduces to that for a single spherical harmonic Pg(n)

= (1 - nz)m/zT?_m(n) and AmE+2(z + 1) [this can be obtained from equa-
tion (A.1)]. We can normalize our function sz(“) so that its behavior
near n =1 is close to that of P?(n) , no matter what value n has.

In other words, since we have

(e +m).
1) =
2n ) 2™m! (s - m)!

(which can be obtained from the generating function for Gegenbauver poly-

nomials; i.e.,

2'r(m + 1/2)AF

nEotz(n) ; (It] < 1) , we require that

p AL AN g (him,e) = LML (A.3)
n . n 2 -m).

The functions sz represent a set of orthogonal

eigenfunctions. The normalizing constant is:

1
2, _ 2 2 (n +2m): _
j:]lsml dn = 214, (hlm2)] [t O b2 () (A8)

There are three kinds of solutions for the radial equation
(5.1.9a). Solutions of the first kind, finite at £ =+ 1 are:

m/2

] 2 1
je , (h,g) = %i T ,",3. [3 55 ]] g'i"”“‘“ n2m): g (n]m,edi,,p(he)

1 m .
— ¢ costhe - (2 + 1)]5 hg— =

= [A—](F)']sz(“"’;) (.5)

me

where d's are the same coefficients as for sz(h’”) R
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.k (2m+1)
Amz(n) = do(h[m,ﬂ (Zh)mm: 2 2-m S (h 0) H

2=m, m+2, mtd, se-

2271 (ome2) L2m+3) .
d, (h[m,%2) (2n)™ T m 9.-m [dn mz(h’")]no ’

(A.6)

g=m+1, m+3, m+5, «..

and where jm(hg) is the spherical Bessel function of the first kind.

For he¥<<l1 , some particular approximate formulas [41] are:
jegg(hscosh u) = 1 - % he - %hzsinhzu , (A.7a)
jegy (hscosh u) =(n + -1n3)cosh u , (A.7b)
jeu(h,cosh u) = (%h + %h3)sinh u, (A.7¢c)
where u = cosh']g and ¢ = cos']n )
Solutions of the s2cond kind [41] are:
2 : m/2 )
2 {g-m)iie™~ ¢ :n+m-2 (n+2m)!
nem(h,g) ~ (atm l: £2 J i o n: dn(hlm,z)nnﬂn(hg)
"ﬁ% sin[hg - %(9.4-1)]; he—>o (A.8)
For he<<1
201 .2 11,2 1,2 -1 -u]
neoo(h,cosh u) = - F[§ h“coshu + (1 + 7—2-h - -ﬁh cosh2u)tanh e
(A.9a)
. 6 17,2 1,2 -1 -u
neOQ(h,cosh u) = - ;2-{[(1 + m—h )cosh u - Z'Gh cos3u]tanh e

1 1,2 1,2 ]}
- 5[(1 + oo ) gh cosh2u (A.9b)
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.3 1 19, 2 1,2 .2
nen(h,cosh u) = - 2h2 sinhu{[(] - -7-§h )cosh u - 7—h cosh u:l

wm

- 25inh2u [(1 + E%hz) + T%hzcoshzu]tanh’]e'u} .
(A.9c)
Solutions of the third kind [41] are:

he, (hsg) = je (h,£) +ine  (h,g)

21
he

e . heso . (A.10)

—_—

For heY<< » in particular we have
hen, (h,cosh u) = ;*j.(a)h.(8) -(id—z- 1)’ (a)h,(8)
gt L 3ot/ Mg 54, /91t
6% 4% .
+( ————— + ]}32(3)}12(3) - ] 3250,2,4,¢-
d
= 271 12008h uly (o, (s) - (73 + 1)3yleiy(e)

80 5 4 3 . .= cee
(B3 32+ Yiylmgle) - -] se1,38,

(A.11a)
: d
_ .2-1 12sinhu [, 282 _ 5);
heq,(h,cosh u) = 105 (a)hy (8) - (42 : 3)3,(a)hy(8)
d d, |
80 4 2 S . - se e

¥ (1—1_0 -8 4, * 6)33(a)h3(e) - ] ; 2=1,3,5,

(A.11b)

where o = %he'u and B8 = %heu )




APPENDIX B

Unit Vectors in a Curvilinear System

A A

The unit vectors f, j» k 1in the rectangular coordinates are

worked in terms of the prolate spheroidal coordinates:

d[(g2 - 1) - n2)11/2c05¢ = d sinh u sine cos¢

x:
y= d[(&2 -1)(0 - nz)]llzsin¢ = d sinh u sine sing (8.1)
z = dgn = d cosh u cose

let ¥=xi+ yﬁ + zk be the position vector. With the substitution of
equation (B.1) into the position vector ¥ , we have

¥ = d[sinh u sine coss i + sinh u sine sine j + cosh u cose K] (B.2a)

= d[(s2 - 1)]/2(1 - n2 I/2c<>5ct> i+ (52 - 1)”2(1 - nz)”zsimp i+ enkl

(B.2b)
The unit tangent vectors ﬁ, é, @(é,;,¢) are:
> .
ar . . .
- du_ _ cosh u sine cosy i + cosh u sin6 sing j + sinh u cose k
v 2 .2 2 2.\1/2
ar (cosh“u sin“e + sinh“u cos”s)
sl
(B.3a)
oF
: 5 _e(1 - n?)]/zcos¢ i+ el - nz%]/zsin¢ j+ (52 - l)l/znk
LEE (£2 - n2)1/2
og

(8.3b)
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o1 . . .
5 = 36 _ sinh u cose cosy i + sinh u cose sing j - cosh u sine k
gfl (cosh®y sin%e + sinhu cose)!/2
38
(B.4a)
ar 2 /2 - 2 \/2.. = 2\1/2 ¢
N T -n{e€ - 1) “cosp i = n(e" - 1) "“sine j + (1 -n°) """k
li (2 - w2)1/2
on
(B.4b)
ar
6 = —ﬁf}-= sing 1 + cos¢ j (B.5)
’i’:
3¢
We rewrite equations (B.3a-b, B.4a-b, B.5) in matrix form:
ﬁw -%-cosh u sing cosé¢ %-cosh u sine sing %—sinh u cose7 %W
ol = %-sinh U COS6 COS¢ %-sinh u cose sin¢ -%-cosh u sins 5
“;‘ L-W~ LI;—
A
i
=[all; (B.6a)
k
1T _ 174
3 ;]]iﬂ - 12) Y2054 ;—5(1 - n2)Y2sing %n(az - 02|
n| = -%n(g2 - 1)/ 2c0sg -%n(&z - 1) V2in ;—5(1 - a)V2] 3
L;' '_W‘ _IA<_
B




s )

]
=}
x> Ca

where p = (coshzu sinze + sinh2
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u cosze)

1/2 and q = (52

(B.6b)

n2)1/2 )

The determinants and the transposes of A 'and B (as defined above)

are:
det A=1,
'%-cosh u sine cos¢
At = %-cosh u sine sing
L_lp-sinh U coss
'%5(1 - n2)l/2 cOS¢
Bt = %ﬁ(] - nz)}/2 sing
L - 2

O|— T|—~ O|—

det B = -1,
sinh u cose cos¢
sinh u cose sing
cosh u sine
%n(gz . ])]/zcos¢
an(e? - 1)/ %sing
L1 - 102

- sing
coS¢

o |,

.
- sin¢

C0s¢

The adjoint of A , written "adjA", is defined to be the transposed

matrix of cofactors of A .

1

cosh u siné cos¢

adjA = l-cosh u sins sing

_%-sinh u cos

Similarly, we have

Thus,

sinh u cosé cos¢
sinh u cose sin¢

cosh u sin

T|— V|~ O|—

- sin¢w

coSé (B.7a)

0
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- %&(1 - nz)]/zcos¢ %n(sz - 1)]/2cos¢
adjB = | - %ﬁ(] - nz)]/zsin¢ %n(gz - 1)]/zsin¢
B %n(gz nie . %5(1 NV

and

Finally, we get

K> Cuy o>

or

1}

sing|

- €0S¢

(B.7b)

(B.8a)

(B.8b)

(B.%)

(B.9b)




APPENDIX C
BOUNDARY CONDITIONS [48,49]

At the interface of two media, the transition of the tangential

component of E and the normal component of D is expressed by [48,49].
nx (B, -8)=0, n-@-0)=s,

where n 1is the unit normal directed from the medium 1 into 2 and &
denotes the surface charge. The flow of charge across or to the boundary
must also satisfy the equation of continuity in case either or both the

conductivities are finite and not zero.
n = .3
ne @y -3 = -5
Suppose now that the time enters only as a common factor exp(-{iwt) and

that apart from the boundary the two media are homogeneous and isotropic.

Then 1 and 2 together give

€2 = €1 = 8
02E2n - O']E]n = 7:(.06
or
€2fon = ©1E1p = 0
where
. 9 .
€] = E-l - E’ 'y .‘f 02 - 0
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APPENDIX D
REDUCE THE SPHEROID PROLATE TO A SPHERE

The conditions for reducing a spheroid to a sphere are &>« and

d-0 (and h=kd-0) ,

d~k52 - 1)1 - nz) cos¢ + de(1 - nz)%cos¢

x -

L .
y= dJ(tz2 - 10 - n2) sing > de(1 - n2)2s1n¢
Z = En

From the above equations we have

x2 + y2 + 22 = (dg)2 =r

2
When h»0 , the separation constant Amz > 2(2+1) , and equation (5.1.9a)
will give

4l - 1] - [ _h2€2+m2] - 0

AR e ms 214"

which can be reduced to
2d d 2 _ -
o"goYy g t [p - 2(2+ )]w1 =0 (pzhe)
This equation has particular solutions of the spherical Bessel functions

of the first kind jz(p) , the second kind nl(p) , and third kind
h,(o) .
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The equation (5.1.9b)
d—(l-z)d]+A R RN o
dn " fant2 mg ~ M 2)%2
can be reduced to
.d_[(] - Z)d :|+ [2(2.',])-- i]w =0
dn N Ignv2 1212

This equation has a solution of a single spherical harmonic Pg(n) . We

can also directly reduce je - j2 and sz > Pg when h0 .
me

Now, we reduce Ein » which is in a spheroid coordinate, to a

spherical case. The equation (5.1.27a) is

' 1 3 2 3. .
i = 1 7 n2,%3¥[“ - Ve, (hy 65, ()| £

- %[(52 - ]);éjelz(h]’g)su(h]aﬂ)];lf

Letting h+0, &+ , and de>r , it follows
R . m
Jens?d, 0 SpPy

E-*Y' s -8

We rewrite (5.1.27a) as

Ein

. -~ R L -
bthz‘Z"Jl(kﬁ)‘” ¢ 2l qn] (- 9% 6 %; 2=
3 3 .
6232'*1 (kya) - a-r[”‘l ("2")] r=a§2_E0aJl (kp2)

{eam tgabarlrin(n)] - erdy gl (r)]

r=a
x ]F;zcosej](k]r); - -a-%[rj](k]r)] sine ézsine cos¢é (D.1)

where bi] is
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3
cgpel(-n ey syy] et

2 [,200% 2y
% [(5 Deheyysy] - g0-0)
bl = g=¢g

1 A
242 )
xEOdW S11(0,0) cos¢ S;(0,n) Jeqq(0,¢p)
62("2ﬂ)h-| (kza) °€2f1€b
s_e.’[rh] (kzr)] (.l"""\z);5 Eb(]-'nz)% . 2
r-a n Eod%zl(l—n );é cos¢j](k2a)
3
-eZ[Zh (k a) - (r'h ) ]
= r=a 2—7’ Egasine coseij(k,a) 3  £d=a
[Ezh](r.]]) ']J (Y‘h ) ]
r=a r=a
where
Sha __a_ 2\%.
g |(1-02) ey (ho )5, (hgun)]  -eqs2[(1-2) 550y ()53 (g om)]
A= 1 1
§=§b §=5b
52('2ﬂ)h](kza) = E](‘zﬂ)Jl(k]a)
) 3
2y (pr)] (1-02)% = 32[rd (kyr)] (1020

r=a

2'1(]’”2)%382“](kza)a_i[rjl(klr)],.:a - e]j](k]a):(}-?:[rh](kzr)]ﬂa}

The equation (5.1.47) is

2
m Pm]
_ v . oM [smez my R L
Ein = oim Bs El_rtg‘(“] )szzr * [' —amy (Pz )j] [r‘]z e}cos me

(%)




. .
B] 1 E?{ZJ
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s1n26

](k]r)siner - Zcoss

ca 2 (Kp2) = [ g

)

gezhﬁkza)[rj](k]r) | - etk a)[rh](k " f

rj (k r)] e}cos¢ ;  &=1, m=1

3$ E aj](kza)

x %32j](k]r)cose r- sé[rj](klr)]sine ézsine cos¢ (D.2)
where
2 .2
a 2[1 rg(bz g >s1n29]cose
2 .2
a' [1+r§(9§:%—)coszejsine
' a b . g . .
B]] = : x E03z 5 Sing J](kza)
262 .
Fgﬁhl sind - ezcose
. 2 .
sin“e .
- kzacose{rhl] Siné
= -2 E.3isinej,(k,a) ; a=b
25'“’]36 (Y' ) €. i (l"h )l 0 12
7|6 (ri)" - ayrhy )ty
kik,a r=a
1 2
ez[Zh - (rh )'] k]a
- o rza 31 Eq sine J(kya) .
e lephy (rig)! - eqdq(rhy)!
c0so 1 ™
where
a -8 2 sine [
A= ; B = e.v—j.(k,a)sine , B8 = 1] (k Y‘) s
. 8! 1k]a ivtl k1acose 1 rea
= e;rih l(k a) sine ‘= - _§jﬂ§9_ rh, (k r)]'
¢ 2k2a 1 > @ kzacose[ Lkl ISR

From equations (0.7) and (D.2), we concluded that equations

5.1.27a and 5.1

.47 have the same result.




APPENDIX E

NUMERICAL CHECK OF OPTICAL THEOREM [51]

The scattered energy for a sphere of radius a is

E2

0/%2 r 2

W =7r;§- ™ 221(22+1)(la | lbgl 5
2

the sum of absorbed and scattered energies are

2

EO 32
wt-n-?—z—el](z:zﬂ)(a +b)
2

To find the absorbed energy

where

om0 o 0) | - wpd ()Mo (0 |

i u]jl(No)[ohz(p)]' - z(p)[NcJ (No)]

e a0 Mo, 0] - ¥, 6 [od, (o) |

gy (o) [Nod (N0} | = w5 (No) [oh (o) |

Suppose we use the following parameters:
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9. -1 1077
w=2r x 107 Sec €0 = 367 farad/m
o =2.5 mho/m -7
Mg = 4n x 10 henry/m
e =40 ¢, = 40 ¢
! 2 0 a=10"n
T2 %1
ky = 162.5 31(Ne) = 0.05402
k, = 20.94 [ij](Np)] - 0.1078
~ k]/ -
N=Ky2 = 7.77 51(6) = 0.00638
o = kya = 0.02094
ny(p) = -2281.087
No = kja = 0.1625
[pj](p)] = 0.01396
[Ph](e)]' - 0.01396 + 2281.066%
We find that
all = -2.06 x 1077 + 4.58 x 107%
bY = -3.39 x 1071 + 5.82 x 1078
hence
215 2
Wy = -3.8 x 1077 €5 (E.1)

To check absorbed energy, we calculate

W, = d/;]Einlde ~(2.5)(1.0473 x 10‘5)E§~/:zsin2e cos?s d(cos)dsdr

v 42
33

3.7 x 10710 Eg (E.2)

1]
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where

.. §2h (k a) - [rh (k r)]r=a §3Z 0a,]](k a)
in 3€2h](k2a)3;1rj](k]r)]r=a - eij](k]a)s;{rh](kzr)]r=a2

x %%2cosej](k]r)r - S%Irj](k]r)]sine ¢§sine cos¢ ;3  2=1
[2(0.00698-228].087i)-(0.01396+2281.066i)]iE0(10-3)(0.00698)(]62.5)
[(0.00698-228].087i)(0.1078)-(40+45i)(0.05402)(0.01396+2281.066i)]

x [cos® ; - sind 5]sine CcoSd 3 ei = 5 + i%-= (40 + 45i)e0 ’

) k]r
Jilkgr) = ==,

sg{rj](k]r)] = EE%Z .

-7.762 E

= 3 0 3 (cose r - sine é)sine coS¢
5.545 x 10° - 5.175 x 10°%
12 = 1.0473 x 107° €2 sin%6 cos% ;

n

|Ein

dV = -r d(cose)ds dr

As we can see from (E.1) and (E.2), the two methods give values
-3.8 x 10'15Eg and -3.7 x 10']5ES » respectively; they agree within

3 percent.
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In the case of the spheroid, the scattering E-fields
[equation (5.1.27b)] s

|

=) 3
scat 11 d(gz-nz)%

E ™

[(1'712)]ﬁell(hz’g)sll(hz’n)] g

-5 [(52-1)’%”(hz,e)su(hz,n)] A {

At large distances hemﬂ . smg , dg, and n can be reduced ‘to
-1-¢
Akr
hem£—> h£—> T e
m
Sm! I P£
d¢ — r

Asymptotically the scattering field at large distances from the origin

may be written [50]

E ik.r
= _ 0 = 2
EScat = —E;r- (6,0) e
Dk A
=-—0=0° sin o @
v
— 'b
=11, . a
F(0,9) = £, k2 Asine @

Suppose we use the following parameters:

d=1.23x 103 m - 1.05

%
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HiT Mo = Mp= 4rx 10"7 h/m o, = 2.5 mho/m
1070 -9 -1
€] = 4050= 40)('367- f/m w=4x 27 x 10 “sec
[s)
€1 = & +: =(40 +11.25 4)¢y h§= dzki = dz(ulelwz +iuow )
k1= 5.4x102(0.99 + 0.138 4) h1= dk1 = 0.664(0.99 + 0.1384)
hy ~ 0.103 ky % 83.8
A= 1.3 jeyy(hy €,) = 0.07
3 [ L
— (g2 -1 )2 je,,(h g)] = 0.45
g L 11'V1, _
g—gb
3 T(e2-1)%he. . (h, ¢ )] = 0.072 + 281 4
9& | 11'72,°b ‘

By using above data F(e,(p) is found to be

Flo,6) = (5.87 x 107 - 1.1 x 10710 k, sin’e cose
The cross section is
27
- A -
ct=-—zs dcp(-F)-;(’; 8.23 x 10 m

The scattering cross section is

1 2% T
-2 . -20 2
Oscat™ —ZS de X [F|® sinede= 4.07 x 10 m
k2 0 0
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~ 8.23 x 10712 pl

%abs - %t T %scat

The power W absorbed by the prolate spheroid becomes

2o
abs * Eo [ 5

8.23x 10712 x 2.65 x 1073 €

=
n

o]

2
0

14 .2
Eg

2.19 x 10°




APPENDIX F

DERIVATION OF STRATTON'S SCATTERING CROSS-SECTION
FORMULA FROM THE OPTICAL THEOREM [50,51]

On page 235 of Panofsky and Phillips [50], or on page 564 of

Stratton [51], the electromagnetic field scattered by a sphere is given

by
_ @ 2 29+] fi
ES-E *(m -'Lbﬁ]
o 2 22+] S

PN ‘i (] . -~
0 g2 % 2(2+T7l zls1ne hz(k r)P (cose)coss & - hle sing ¢

_ oo j2(etl) 1 S [ 1! .
zbz[ kzr thzcos¢r + k2 rh J P2 cos¢ 6

=t

1 v ol s -
~ k,rsine [rhz] Py Sin¢ ¢J }

- E @ .0 23+] { _S&i]_)_ hlpicos‘b

<>

0 221 © (D) kT
1 . '_l_ ']I ~
* a2s1ne thz - kzr[rhz] Pz.]c°5¢ 6

- b
]. 3 '
- alhlpl -1 —ZE'I_nG-[rhSZ.] P ]smq; ¢} .

Asymptotically, the scattered field at large distances from the

origin may be written as [50].

85




86

E.=E
S 0 k2r

where F(e,4) can be

L 2+]

F(6,6)

@
Z,
=1

L

- [agi'z'lpl

2 22+1 .

251 2(ar1)"
]I

* [azpz

= 2y :
PR(x) = (1 - X2 10 (x) 5

2T$]) -

+b

——

2+m) . T
9
Meat {2-m) "

T 2-1 "

2P2+]

2(1-x

= 2241 i
221 2(e4)

(o]

(2241) ;

{
[[[ne}:]

2 2(z+1)

2\% 3
)* T2+1-1

; { --&L%ill (a2+b2)cos¢ o + &L%ill (a2+b2)sin¢ &}

{- (a2+b1)cos¢ 6 + (a1+b2)sin¢ ¢}

_ 2

e :\i}ﬁ:"ﬁ

1 HE ,cp)eier

extracted from above, we get

~-2-1 Pz

e

sSing
.~ “
- ib —1’—-Pl]sin¢ ¢

w21 "
- zbzz Pz ]cos¢ 8
2 sing 2

PI
2s1ine [}

-[a 4 p Pl ]cos¢ 5

Pl

zsine]Sin¢ ¢}

X = C0s6

= 2!2+]2

2

(2+1) x PR(x) = (2-m#1)P 3 (x)

- (241) x Pi

(x) - (2#1) x (1x7)% T, 4 (x)

6=0

9=0 .

) (20+1)R (2, +b,)



where F(e,4) can be

F(e,0) =

86

= 1 zk,r

extracted from above, we get

1
[ne!

') Y (X3 ) s1ne

Pl
o . 23+] ~2=1 g N ~
{[aE - zblz Pz ]cos¢ )

a0 L 20 sing 5
) ) %2 sine &

o 294] . 2 1! -
{ —[a —_— + bzpz Jcos¢ 8

= 81 0 2sine
1 P! . -
+ [ale + bzg?ﬁg]s1n¢ ¢

Moy = 2y o m . -
P(x) = (1 -x Y2 T, n(x) 5 x = cose

(gtm): T = 2(2+1)
> el 2

TlT&]) ) 2"m! (2-m)!
(1-x8)g2(x) = (241) x PJ(x) - (e-m#1)PT ()
(1-x2)%%%P£ = zP£+] - (2+1) x Pé
= 2185 TY (0 - (141) x (192 T (x)
i.e Pll(l) = Ei%ill
iy | s i 21 o)
6=0

o]

z

(22+1) :

2

{- (a2+b2)cos¢ 8 + (a2+b2)sin¢ ¢}e=0 .

On ©
B % (B = -E% £ (20)R (2, 4))

ik, 2
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From page 421 of Panofsky and Phillips [50], the sum of the cross section

for scattering and absorption is

2n e
';k—z X - (?-? )6=0
2

Qtota] - Qscat * Qab -

where

102", (" =2,
Qeat - k_zso do Sol?l sine deo ,
2

This integration can be evaluated with the help of

T 0 if ofm
d ¢ di, 1
S [de! gdomt 2 Ilpm]smede 292(2+1)2 it g=
0 sin‘e 37 if  g=m

™ p! pt
_m__dp g d
s [sine 3 et Tne de Pmls1nede 0

5 ds S I¥|2sine do = 2" 5 (22+1)(|a 12+ b, | )

T I

which have been shown above to be equivalent to the expression on page

569 of Stratton [51].

5 1 (20+1)R (a,+b))

=~ |
n:nﬂ

Qtota]

@

B (@) (3, 1% + b, 1%)

7¢'I\J
N N A

Qscat




APPENDIX G

SPHERICAL BESSEL FUNCTIONS AND LEGENDRE FUNCTIONS

Spherical Bessel Functions

2.
3,(2) = |5 (2 75 T30 5 (22 )

Z—-N:;_ cos [z - £+] )] % an integer
1e1:3+5-...(2241)
n(2) = [ N, w(2) 75 S

71

Zoe Z 51”[2 - ‘{2+])] 3 nplz) = (-!)2+]j (z)

-g-1

hy(2) = §,(2) + i n(2) =% 5 b (2) = i(-D*Th_(2)

3 (2) = (- 1)z (zdz)2<512 z) »oongl2) = - (- Dk (zdz)l(ggé'z) 3

¥4

o) = 5 (12 )

Zz
jo(z) = ]Z sin 2 5 no(z) = - ]E cos z ho(z) = %eiz
- i - +. .
o) HEELSIEL )Lz o)L (1
Z z 2

If fl(z) is a linear combination of jz(z) and “2(2) , Wwith

coefficients independent of ¢ or z , we have
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1 d/.2d 2(2+1) -
TE(zd_zfz)+[] -T2 ]fz'o

N

z

N

(

(22+1 )£ fz(z) = zfz_l(z) - (zﬂ)fzﬂ(z)

zf)fz(” = faq(2) + f(2)

Legendre Functions

7 m

2)

Q.

m
Pg(z) (1-2z Pz(z) = (1-22)2T$_m(z)

3
EI

_ (1-28)% _g¥m

2_1\% . _ .
G (21 s me =012, 5 e2m

2222

(22+1)(1-22)% P(2) P (2) - P (2)

2+1

(2#m) (24m-1)P771(2) - (me1) (2-me2)PT5) (2)

(2041)2P] (2) = (2-m+1)P, 3, (2) + (s+m)P,7, (2)

(1-22)32"(2) = (141)2PT(2) - (2-m1)PY,; (2)
1

m_
2 ZPIE-] (Z)

m
a%[(l-zz)zP'E(z)] = - (z-m+1)(2+m)(1-22)




APPENDIX H

THE VALUE OF bq

1 OF EQUATION (5.1.30) WITH 2 =1

The values of equations (6.2.1) and (6.2.2) can be substituted
into the d's of equation (6.1.1) to yield

) 2,2, 1193 .4 _
d,(h]1,1) = 1+ 5208 + T1Bd g (h,[1,1) = 1.000
- 1.036
1,2 16,4 _
dy(hy [1,1) = 3 - o=28nt  d,(h,[1,1) = 0.00014
- -0,00588
4
d,(hi|1,1) = M igsx105 o« (h,]1,1) = 1.02 x 107°
gt 11) = gy = 1 4{hal1:1) = 1.
= 0 - 0

and

S11(hysn) = dgPi(n) + dyP3(n) + d,Pi(n)

1

1.036P}(n) - o.oossspg(n) +1.76 x 10'5P;(n)

1

Pi(n) = (1 - n9)1/2

S”(hzm) P:ll(n) = (] - nz)]/z

The value of je]}(h],gb) can be obtained either from equation

(A.5) or (A.7¢), which is
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je]](h],gb) = 0.073 ,
and the values of ]he]](hz,gb)l can be obtained either from equation
(A.9c) or (A.11b), which is

[hey1(hys6,) | g Ineqy(hyag,)] = 386 .

B L 2\1/2 B L 2\1/2
The values of —~[(1 - n%) %Sy (hyn)15 501(1 = %) /%S, (hysn)l,
520(® - 1) Phey (hpel), S20e? - 1)V 256 (hhen , and agg(ny)
£=g, £=g,
are:
210 = 025 (hyom1 = 32001 - ) V2P ())
= 2210 - )20 -8 = g
n
(1 - 2225 (hyan) = <21
2 1/2
dr(2 1/2. _ 9,2 1/2  1lg” -1 -
b

- 12d,j5(hqg) - 30d,3c(hyg) + ...]z
E=E,

*

[

) 1 .
~Sp

el +-£—;-)j](h1g) + (e - By Hotme) - zjg(h]a)){
£=¢,

n

1]

0.452

* d _ .
(2n+1) aifn(z) = "fn-l(z) - (n+1)fn+](z) , Where fn is a
linear combination of jn(z) and nn(z) with coefficients independent
of n or z.
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[ - ”Vzhe”(hz’dl—g = 521(e - 1)”2m=.n(hz,s)‘15_‘E 5 hy<<d
“*b i)

(by using equation A.9¢)

2
. _ 3 19,2y, _h3 2]
Y [(] 75"2)‘5 755

2
h
+ 22 Jkani 1 - (2 - VA3
10 2
2
E=Eb
= 278
and
Ayp(hy) = [dg(h,1,1)F &+ 2= 1.34 [using equation (A.4)]
11\ o\ttt 3o 7= 1 9 &q 4.
The quantity of 4 in equation (4.a.31) is
-5 x 386 x 2n 40e, x (0.073) x 2n
p=f 0 0 = -1275¢, (1 - n2)1/2
278 x (1 - n2)2 _ (0.452) x (1 - 12)1/2
Finally
-eOX386x2n -eon(0.32)
2.1/2 2,1/2 .
1 A 2% . (h.y 211\
12 Nm—— e’
= 1
- 3.08 x 10‘252d coso(1-n2)12 i




