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ABSTRACT

Utilizing fractional ammonium sulfate precipitation and DEAE- 

cellulose chromatrography, two anodic isoenzymes of glucose-6-phosphate 

dehydrogenase were isolated from tobacco suspension culture WR-132.

The pH optimum of isoenzyme Band I was determined to be 9.0 and for Band 

IV it was 8.0 - 8.3. Isoenzyme Band I exhibited Michaelis-Menten kinetics 

for both substrates, glucose-6-phosphate and NADP"̂ , with Michaelis 

constants of 0.22 mM and 0.06 mM respectively. Band IV exhibited Michaelis- 

Menten kinetics for glucose-6-phosphate with a Michaelis constant of 

0.31 mM. The NADP"*” double reciprocal plot contained an abrupt transition 

between two linear sections. This transition corresponds to an abrupt 

increase in the apparent and V^^^ values with increasing NADP"*", 

denoting negative cooperativity. The two Michaelis constants for high and 

low NADP^ concentrations were 0.06 mM and 0.015 mM, respectively.

Molecular weights of the isoenzymes as determined by SDS disc 

gel electrophoresis were 85,000 - 89,000 for Band I and 54,000 - 59,000 

for Band IV. Gel filtration chromatography on Sephadex G-150 yielded 

values of 91,000 for Band I and 115,000 for Band IV. A probable dimeric 

structure for Band IV is suggested with two NADP'*' binding sites.

Effector studies with these two isoenzymes revealed that both 

are inhibited markedly by certain coumarin derivatives but not by various 

phenolic acids tested. The glucosylated coumarins were much more inhibitory



than their nonglucosylated forms. The enzymatic reaction catalyzed by 

Band I is accelerated by two coumarins, scopoletin and esculetin. This 

activation is not observed for Band IV. Chlorogenic acid inhibited both 

Band I and Band IV almost completely. The activation of Band I by 

scopoletin and esculetin may explain the enhanced activity of the hexose 

monophosphate pathway that has been reported when plants are subjected to 

stress conditions.

XI



CHAPTER I

INTRODUCTION

Phenolic compounds are second in abundance only to carbohydrates 

in plants. The phenolic compounds include the mono- and dihydric phenols, 

phenolic glycosides, flavonoids, anthocyanins, aromatic amino acids, 

coumarin derivatives and lignin. The exact role of these phenolics in 

plant metabolism is still not understood though there have been some 

notable efforts made toward elucidating their role (24,74).

Many phenolics, such as scopolin, scopoletin and chlorogenic 

acid, form a relatively large pool in plant tissue with a significant 

portion of the pool being metabolically inactive (41). The pool could 

serve as a reservoir for waste products, but this seems unlikely because 

it would be more advantageous to the plant to degrade these compounds for 

use in the metabolism of the plant. Alternately, the phenolics may serve 

as a defense against infection due to viruses, bacteria or fungi. This 

role is advocated by many investigators (21,41,65).
The pathway responsible for the production of phenolic compounds 

in microorganisms and higher plants is the shikimic acid pathway (fig 1). 
Since chorismic acid serves as a precursor for phenolic compounds, the 

pathways for the synthesis of various phenolics become unique after 

chorismic acid (33). The phenolic acids, ferulic acid, caffeic acid,

-1-



-2-

Erythrose-4-phosphate 

Phosphoenolpyruvic acid

5-Dehydroshikiinic acid <-

Shikimic acid

CHORISMIC ACID 4-

3-Deoxy-D-arab ino- 
heptulosonic acid-7-phosphate

5-Dehydroquinic acid

Shikimic acid-5-phcsphate

3-Enolpyruvyl- 
•Shikimic acid-5-phosphate

Isoprenoid Quinones
4-Aminobenzoate

L-TryptophanL-Tyrosine

L-Phenylalanine

Folate

FIGURE 1 AN OUTLINE OF THE SHIKIMIC ACID PATHWAY
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/Yrm-coumaric acid and trans-cinnamic acid as well as lignin are synthesized 

In one well characterized branch pathway (fig 2). The phenolic acids are 

Incorporated into lignin by a pathway which has not been well-characterized. 

Gross et al. (30) have shown that trans-cinnamic acid, para-coumaric acid 

and ferulic acid are incorporated into lignin, and Innerarity et al. (34) 
were able to demonstrate the incorporation of radioactive scopoletin, an 
intermediate of the pathway, into scopolin, fabiatrin and a lignin-like 

substance.
-f-Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate; NADP 

oxidoreductase, E.G. 1.1.1.49), with its coenzyme, niacinamide adenine 

dinucleotide phosphate (NADP"*”), is the first enzyme of the hexose mono­

phosphate pathway, catalyzing the conversion of glucose-6-phosphate (G-6-P) 

into 6-phosphogluconolactone. Glucose-6-phosphate dehydrogenase and

6-phosphogluconic acid dehydrogenase are the controlling enzymes of the 

hexose monophosphate pathway due to the limited availability of NADP"*" (60). 

One of the intermediates of this pathway is erythrose-4-phosphate. This 

sugar phosphate can combine with phosphoenolpyruvic acid, an intermediate 

in glycolysis, to initiate the shikimic acid pathway. Because of the 

plausible Involvement of the hexose monophosphate pathway in phenolic 

biosynthesis (fig 3), a change in the phenolic concentration could be 

postulated to influence the activity of the enzyme glucose-6-phosphate 

dehydrogenas e.

It is an established fact that under stress conditions, the 

concentrations of many phenolics change in higher plants. There are numerous 
reported instances in which the phenolic concentration changes with infection 

due to bacteria, viruses or fungi. Usually, there is an accumulation of
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CHORISMIC ACID Prephenic acid

Phenylalanine 4- Phenylpyruvic acid

t-Cinnamic acid p-Coumaric acid

Ferulic acid*■ Caffeic acid

Feruloylglucose
I

I

i
Lignin •4- - ---------------------------

(or lignin-like compound)

Glucosidoferulic acid
I
I
I

Scopolin^ Scopoletin

FIGURE 2 THE SHIKIMIC ACID PATHWAY FROM CHORISMIC ACID 
TO LIGNIN. Solid lines ■ -> represent one step metabolic sequences.
Dashed lines — ---- ► represent possible metabolic sequences, which may
or may not be one step processes.
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FIGURE 3 AN ABBREVIATED OUTLINE CONNECTING THE HEXOSE MONO­
PHOSPHATE PATHWAY AND THE SHIKIMIC ACID PATHWAY. Solid lines ----- »
represent one step metabolic sequences. Dashed lines — — —  
possible metebollc sequences.
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phenolic compounds around the location of stress (21). In tobacco plants 

infected with Pseudomonas solanacecarmf there is an increase in the 

scopoletin (6-methoxy-7-hydroxycoumarin) and scopolin (7-glucoside of 

scopoletin) concentration around the infected regions (61). The rapid 
increase in the scopoletin concentration is not due to hydrolysis of 

scopolin. Other reported stress conditions which lead to an accumulation 

of scopolin and/or scopoletin include: boron deficiency in tobacco plants 

(68); treatment of tobacco plants with 2,4-dichlorophenoxyacetic acid 

(2,4-D) (15,24,70), 4-amino-3,5,6-trichloropicoline acid (70), maleic 

hydrazide (71), ultraviolet irradiation (39) and X-ray irradiation (2). In 

grapefruit peel, gamma irradiation also caused the accumulation of scopoletin 
and scopolin (57).

Another phenolic compound undergoing a concentration change 

during certain changes in environment is chlorogenic acid (3-0-caffeoyl- 

quinic acid). Tobacco plants when grown with a mineral deficiency of 

nitrogen showed an increase in chlorogenic acid (5). Tobacco plants grown 

at daytime temperatures of 5.5°C, instead of the control temperature of 

29°C, accumulated chlorogenic acid (39). Ultraviolet irradiation, however, 

caused only a slight increase in the chlorogenic acid concentration.

An enhancement of the shikimic acid pathway might be responsible 

for the accumulation of phenolic compounds. However, no direct evidence 

is available to support this supposition. An alternative course would be 

through an increased utilization of the hexose monophosphate pathway.

Godin (28) originally reported that it is an enhancement of the hexose 
monophosphate pathway that leads to an accumulation of phenolic compounds. 

Neish (48) observed that it does not require the complete operation of
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the hexose monophosphate pathway for increased phenolic biosynthesis.

In tobacco tissue surrounding lesions produced by tobacco mosaic virus, 

the activity of glucose-6-phosphate dehydrogenase increased 300% over 
the control (64). In tobacco leaves infected with potato virus (16) and in 

potato tuber cells after slicing (36), the same enzyme, glucose-6-phosphate 

dehydrogenase, increased in activity. In general, it can be stated that 

with an increase in phenolic biosynthesis due to infection, there is an 

accompanying increase in the activity of the hexose monophosphate pathway 

(35,63,67) as well as glucose-6-phosphate dehydrogenase.

Thus, there appears more than a casual relationship between 

the phenolic accumulation in plant tissue and the activity of the enzyme 

glucose-6-phosphate dehydrogenase. In the present study, two isoenzymes 

of glucose-6-phosphate dehydrogenase have been isolated from a tobacco 

suspension culture. The kinetic and physical properties of both isoenzymes 

were measured. Effector studies were performed to ascertain what, if 

any, effect particular phenolic compounds have upon the activity of a 

mixture of isoenzymes as well as the two separated isoenzymes.



CHAPTER II

MATERIALS AND METHODS

WR-132 TOBACCO SUSPENSION CULTDRE

The source material for the isoenzymes used in the following 

studies was a tobacco suspension culture line {.Niaotiana tabactav L., var. 

Xanthi). The suspension culture was obtained from Dr. A.C. Olson, U.S. 

Department of Agriculture, Albany, California. The cells were collected 

by centrifugation and then resuspended so that in 10 ml of suspension 

there were 2 grams of tobacco cells. Ten ml were then used as an inoculum 

and added to 40 ml of medium in a 125 ml erlenmeyer flask. All transfers 

were made in a Laminar flow hood (Agnew-Higgins) utilizing sterile 

techniques. The suspended cells were then grown at room temperature in 

continual subdued light (1 foot candle) on a New Brunswick Model "V" 

gyrotary shaker (190 rpm). The cells were harvested after 10 days of 

growth. The medium used was a revised medium of Linsmaier and Skoog (43) 

in which 2,4-dichlorophenoxyacetic acid was substituted for indole-3- 

acetic acid, and kinetin was deleted (Table 1).

ELECTROPHORESIS

A) Anodic Disc Gel Electrophoresis

Polyacrylamide gel electrophoresis was used to separate the 

anodic isoenzymes according to the procedures of Ornstein and Davis (51).

-8-
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Table 1

COMPOSITION OF REVISED WR-132 CULTURE MEDIUM

COMPOUND mg/1 COMPOUND mg/1

sucrose 3000.0 S ^ 3 6.2

KNO3 1900.0 glycine 2.0

V 3 1650.0 KI 0.83

CaCl^'ZHgO 440.0 niacin 0.5

MgSO^-TH^O 370.0 pyridoxine-HCl 0.5

KH PO 170.0 2,4-dichlorophenoxy-6 4 acetic acid 0.5
myo-inositol 100.0

Na_Mb0.'2H_0 0.25
Na-EDTA 37.3 Z 4 Z
2 thiamine-HCl 0.10

FeSO,•7H-0 27.84 L CuS0.'5H_0 0.025
MhS0.'4H,0 22.3 4 Z

4 2 CoCl_'6H_0 0.025
ZnS0̂ *4H20 8.6 z z

A Buchler Polyanalyst Disc Electrophoresis Apparatus was utilized for the

separations. The running pH was 9.3 with bromophenoi blue used as the

tracking dye. The electrophoresis gels were 7.5% acrylamide and 0.2%

N,N*-methylene bisacrylamide. After completion of electrophoresis, the

isoenzymes were visualized according to a modified procedure of Bames,

Kuehn and Atkinson (6) by placing the gels in 100 mM tris-HCl buffer
+2 +(pH 8.0), 5 mM glucose-6-phosphate, 5 mM Mg , 0.5 mM NADP , 0.04 mM 

nitroblue tétrazolium and 0.02 mM phenazine methosulfate.

B) Cathodic Disc Gel Electrophoresis

Cathodic electrophoresis was performed in the same manner as 

anodic electrophoresis except that the electrical current was reversed. 

The running pH was 4.3 with methyl green used as the tracking dye.
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Potassium persulfate was used as the gel polymerization catalysis instead 

of ammonium persulfate. After completion of electrophoresis the isoenzymes 

were visualized according to the same procedure as that used for anodic 

isoenzymes.

C) Starch Gel Electrophoresis

Starch gel electrophoresis was performed utilizing the 

procedure of Brewer (8). The gel was 10% electrostarch (Electrostarch Co.) 

in 5 mM histidine (pH 7.0). Electrophoresis was performed for approximately 

4% hours at a constant voltage of 400 volts. The staining procedure was 

that used to visualize enzyme bands on polyacrylamide gels.

MOLECULAR WEIGHT DETERMINATIONS

A) Gel Filtration Chromatography

Molecular weights of the isoenzymes were determined by gel 

filtration chromatography using Sephadex G-150 according to the procedure 

of Andrews (4). Sephadex G-150, equilibrated in 30 mM g-mercaptoethanol,

10  ̂M NADP"*" and 100 mM imidazole-HCl buffer (pH 6.5), was packed in an 

Ace Glass chromatography column so that the bed was 58 X 1.5 cm. The 

above buffer was used as the eluting buffer with the flow rate adjusted 

to 20 ml/hr. Two ml fractions were collected using a Gilson Escargot 

Fractions tor. Model SC-15, and the absorbance at 280 nm was followed to 

detect the presence of protein. Enzymatic activity was measured to 

determine the elution volume of the isoenzymes. For one of the isoenzymes, 

a different eluting buffer had to be used. The buffer was a 100 mM KCl 

and 50 mM tris-HCl buffer (pH 7.5). Using this buffer the absorbance at 

230 nm was used to detect the presence of proteins. Molecular weights 

of the isoenzymes were calculated using a semi-logarithmic plot of
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molecular weight versus elution volume.

B) SDS Polyacrylamide Gel Electrophoresis

A second method used for determining molecular weights was 

sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis utilizing 
the procedure of Weber, Pringle and Osbom (69). Seven cm gels with an 

acrylamide concentration of 7.5% were prepared. Two mg of each standard 

protein as well as 2 mg of lyophilized isoenzyme powder or a concentrated 

isoenzyme solution were mixed with 0.01 M sodium phosphate buffer (pH 7.0) 

containing 1% 6-mercaptoethanol and 1% SDS. Sufficient buffer was used so 

that the weight ratio of SDS to protein was at least 3:1. This solution 

was incubated in a 100°C water bath for 2 minutes and cooled to room 

temperature. One ml of this solution was mixed with 0.04 ml of 0.05% 

bromophenol blue and 0.04 ml of g-mercaptoethanol. A few crystals of 

sucrose were added for increased density. One hundred fifty yl of this final 

protein solution (approximately 0.4 mg of protein) was applied to the tops 

of the electrophoresis gels using a micropipette.

Electrophoresis (8 mA/gel) was performed at room temperature for 

approximately 5 hours. After completion of electrophoresis, the gels 

were removed from the glass tubes and placed in an aqueous solution of 

0.25% wt/vol Coomassie Brilliant Blue 45.4% vol/vol in methanol and 9.2% 

vol/vol in glacial acetic acid for 4 hours. The gels were destained by 

diffusion with 5% vol/vol methanol and 7.5% vol/vol glacial acetic acid solution. 

The dark protein bands were then visible against the light destained background. 

Mobilities (M) were calculated using the equation:
jj _ Distance of protein migration ^ Gel length before staining

Gel length after destaining Distance of dye migration
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Molecular weights were calculated using a semi-logarithmic plot of molecular 

weight versus mobility.

ENZYME ASSAYS

The assay procedure of Brown and Wray (10) was used to measure 

enzymatic activity. The conversion of glucose-6-phosphate to 6-phospho­

gluconolactone was followed by measuring the increase in absorbance at 

340 nm due to the production of reduced NADP"*". The reaction was initiated 

by the addition of NADP"**, producing linear rates of reaction for the first
4-6 minutes.

Each assay consisted of 100 mM tris-HCl buffer (pH 8.0), 5 mM
+2Mg plus enzyme in a total volume of 3 ml. The concentrations of G-6-P 

and NADP"*" were varied depending upon the situation. Saturating levels of 

G-6-P and NADP^ were 5 mM and 1 mM respectively.

A Varian Techtron Model 635 UV-Visible Recording Spectrophotometer 

was used for all enzyme assays.
THIN LAYER CHROMATOGRAPHY

Thin layer plates were prepared using a Desaga-Brinkmann spreader 

set to a thickness of 0.375 nm. Avicel SF was suspended in water (22.2 g 

per 100 ml) and mixed in a blender for 30-45 seconds. The suspension was 

set aside for 15 minutes to remove any large air bubbles, and then used to 

prepare the thin layer plates. Ascending chromatography was utilized to 

develop the chromatograms. Four different solvent systems were employed to 

develop the chromatograms. The solvents employed were: methylisobutyl 
ketone, formic acid and water 14:3:2 (KFW); benzene, ethyl acetate, formic 
acid and water 9:21:6:3 (BzEFW); benzene, acetic acid, water and nitromethane 

34:32:5:18 (BzAWN) and ethyl acetate, pyridine and water 2:1:1 upper layer
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(EPW). The developed chromatograms were viewed under a UV light (366 nm 

Black Ray B-lOO). Plates were also passed over NH^OH to increase the intensity 

of fluorescence of the spots.

POLYCLAR AT
The Polyclar AT used in the homogenization was washed with several 

solvents prior to use. First, 250 grams of Polyclar AT was soaked in 1000 

ml of deionized distilled water for 1 hour and suction-filtered. The 

Polyclar AT was placed in the following solvents consecutively to be soaked 

for 30 minutes, washed with deionized distilled water and suction-filtered.

The solvents were: 385 ml dime thy1formamide, 770 ml glacial acetic acid,

2310 ml deionized distilled water, 1540 ml redistilled methanol and finally 

2000 ml deionized distilled water. The wet Polyclar AT was air-dried. This 

dry Polyclar AT was hydrated for 30 minutes prior to use in the homogenization 

mixture.

CHEMICALS

All the chemicals, except those noted below, were obtained from 

Sigma Chemical Company.

Chemical Source

Ferulic acid Aldrich Chemical Company

para-Coumaric acid Calbiochem

Caffeic acid California Foundation for
Biochemical Research

Esculetin Fluka AG
Chlorogenic acid

Avicel SF (microcrystalline Americal Viscose Division
cellulose) of FMC Corporation

Polyclar AT OAF Corporation Chemical Division
(polyvinylpolyprrolidone)
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Sourcê
Reeve Angel Corporation

Pharmacia Fine Chemicals Incorporated 

Worthington Biochemical Corporation

Chemical

DEAE-cellulose 
(DE-52 preswollen 
microgranular)

Sephadex G-I50

g-galactosidase 
Creatine kinase 
Polyphenol oxidase 
Glyceraldehyde-3-phosphate 
dehydrogenase

The phenolic solutions used in the effector studies were prepared 

just prior to use and kept wrapped in aluminum foil. It was found that the 

phenolic solutions were stable for only a few days. This was determined in 

initial studies by subjecting the solutions to extensive study through use 

of thin layer chromatography.



CHAPTER III

ISOLATION OF ISOENZYMES AND GROWTH OF CELLS

PREPARATION OF ENZYME
Crude glucose-6-phosphate dehydrogenase as isolated from a 

tobacco suspension culture exists as 4 anodic isoenzymes. Visualized on 

polyacrylamide gel electrophoresis (fig 4), the 4 isoenzymes are designated 

as Band I, II, III and IV with the corresponding mobilities of 0.12, 0.20, 

0.28 and 0.38. Cathodic polyacrylamide gel electrophoresis of the same 

extract indicated that no cathodic glucose-6-phosphate dehydrogenase iso­

enzymes were present. Starch gel electrophoresis also confirmed the 
existence of only 4 anodic isoenzymes with no cathodic bands.

The isoenzymes of glucose-6-phosphate dehydrogenase were separated 

utilizing DEAE-cellulose chromatography. The separation procedure is sum­

marized in table 2.

Sixty grains of WR-132 tobacco tissue was mixed with 30 grams washed 

glass beads, 30 grams Polyclar AT which had been hydrated 1/2 hour prior to 

use and 120 ml of 2 mM EDTA, 30 mM g-mercaptoethanol, 100 mM tris-HCl buffer 

(pH 8.5). The g-mercaptoethanol was necessary in the buffer to maintain 

enzymatic activity. The Polyclar AT was present to absorb any phenolic 

compounds released from the cells. This mixture was homogenized in a 

Sorvall Omnimixer at 5000 rpm for 5-1/2 minutes. The Omnimixer cup was 

Immersed in an ice bath during the homogenization with all subsequent

-15-
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FIGURE 4 ANODIC POLYACRYLAMIDE DISC GEL ELECTROPHORESIS OF 
GLUCOSE-6-PHOSPHATE DEHYDROGENASE ISOENZYMES FROM TOBACCO SUSPENSION 
CULTURE WR-132. Mobilities are relative to bromophenol blue. Bands were^ 
visualized with: 100 nM tris-HCl buffer (pH 8.5), 5 mM G-6-P, 5 bM NADP , 
0.04 oM nitroblue tétrazolium and 0.02 mM phenazine methosulfate and 5 mM 
Mg^.
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TABLE 2

ISOLATION PROCEDURE FOR GLUCOSE-6-PHOSPHATE 
DEHYDROGENASE ISOENZYMES BAND I AND BAND IV

STEP 1

Homogenize WR-132 tobacco tissue in 2 mM EDTA, 30 mM g-mercapto- 

ethanol, 100 mM tris-HCl buffer (pH 8.5) for 5-1/2 minutes at 5000 rpm. 

Filter through 4 layers of cheesecloth. Centrifuge 15 minutes at 34,800 x 

g. Save the supernatant.

STEP 2

Bring the supernatant to 30% saturation with solid (NĤ )2S0̂ . 

Centrifuge 10 minutes at 34,800 x g. Save the supernatant.

STEP 3

Bring the supernatant to 70% saturation with solid (NĤ )2S0̂ . 

Centrifuge 10 minutes at 34,800 x g. Dissolve the pellet in a small volume 

of 30 mM g-mercaptoethanol, 100 mM imidazole-HCl buffer (pH 6.5). Dialyze 

overnight against 100 volumes of the same buffer.

STEP 4

DEAE-cellulose chromatography. Elute isoenzymes using buffer

made 10  ̂in NADP^ and 50 mM NaCl.
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operations carried out at 4*C. The homogenate was filtered through 4 

layers of cheesecloth and centrifuged at 34,000 X g for 15 minutes. The 

supernatant was saturated to 30% with solid (NĤ )2S0 ,̂ centrifuged for 

10 minutes at 34,000 X g and the pellet discarded. The resulting super­
natant was saturated to 70% with solid (08̂ )280  ̂and centrifuged at 

34,000 X g for 10 minutes. The pellet which contained the enzyme was 

dissolved in a small volume of 30 mM g-mercaptoethanol, 100 mM imidazole- 

HCl buffer (pH 6.5). The crude enzyme preparation was dialyzed against 

100 volumes of the same imidazole-HCl buffer.

The dialyzed enzyme preparation was applied to the top of a
"5DEAE-cellulose column equilibrated with 10 M NADP , 30 mM g-mercapto­

ethanol and 100 mM imidazole-HCl buffer (pH 6.5). Isoenzyme Band I eluted 

from the column with the elution buffer, while Band IV was eluted from 

the column using the elution buffer made 50 mM in NaCl. The flow rate 

was maintained at 1 ml per minute with 10 ml fractions collected using 

a Gilson Escargot Fractionator. A typical elution pattern from a DEAE- 

cellulose column is shown in fig 5. The major activity peak for Band I 

is tube no. 14 and the activity peak for Band IV is centered around tube 

no. 24. Band I usually was contaminated with other proteins while Band 

IV was found to be contamination free of other proteins as determined by 

anodic polyacrylamide gel electrophoresis. The gels were stained with 

Coomassie Brilliant Blue. After DEAE-cellulose chromatography. Band I 

was extremely unstable, usually losing all catalytic activity within 36- 

48 hours. Therefore, all kinetic measurements on Band I had to be 

performed immediately. However, Band IV posed no such problem and usually 

exhibited sufficient catalytic activity at the end of a week of storage
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FIGURE 5 ELUTION PROFILE OF BAND I AND BAND IV FROM A DEAE- 
CELLULOSE COLUMN. The buffer is 10“ M NADP , 30 mM 6-mercaptoethanol 
and 100 mM imidazole-HCl (pH 6.5). ̂ - - ^ m g  protein/tube at 280 nm 
O — — O glucose-6-phosphate dehydrogenase activity
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at 4°C to perform kinetic studies.

A crude preparation of isoenzymes usually had an activity of 

approximately 0.232 ymoles of NADPH formed/min with a specific activity 

of 0.0211 ymoles of NADPH formed/min/mg of protein. Band I as isolated 

from a DEAE-cellulose column usually exhibited an activity of approximately 

0.1514 ymoles of NADPH formed/min with a corresponding specific activity 

of 0.0757 ymoles of NADPH formed/min/mg of protein. Band IV, after DEAE- 

cellulose chromatography, had an activity of 0.4148 ymoles of NADPH 

formed/min. The specific activity of this Band IV preparation was 0.5926 

pmoles of NADPH formed/min/mg of protein. A typical purification scheme 

for Band I and Band IV would start with approximately 80,000-100,000 

total counts of enzymatic activity, where one count was defined as a 

concentration change of 0.001 ymoles of NADPH/min. After DEAE-cellulose 

chromatography. Band I had approximately 7,600 total counts and Band IV 

had approximately 20,800 total counts of activity. Band I and Band IV

therefore accounted for 9% and 25% respectively of the initial total

activity. The purification scheme for Band I and Band IV resulted in a 

3.6 and 28.1 fold purification respectively. Acticities expressed in 

AOD/min were converted into ymoles NADPH formed/min by using the following 

equation:

ymoles NADPH formed/min = AOD/min X 3/6.22

Kajinami (37) had reported that Polyclar AT was not necessary

in the initial cell homogenization in order to obtain enzymatic activity. 

However, in this study, as well as others (22,40), it was essential that 

Polyclar AT be in the homogenization step. When tobacco cells were broken 

without Polyclar AT there was no enzymatic activity. When the inactive
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preparation was run through a Sephadex G-25 column equilibrated in the 

homogenization buffer, the effluent did exhibit activity, indicating that 

the inhibitor was a small molecular weight compound. The two extracts, 

with and without activity, were subjected to ascending thin layer 

chromatography utilizing 4 different solvent systems to develop the 

chromatograms. In each of the developed chromatograms, there appeared 

three major phenolic compounds from the inactive preparation which were 

not visible in the active preparation (fig 6). In the solvent system KFW, 

the three phenolic compounds had values of 50, 27 and 20. In BzEFW, the 

values were 71, 61 and 54; in BzAWN the R̂  values were 89, 84 and 72. 

The R̂  values in EPW were 38, 28 and 14. The three phenolic compounds 

could be extracted with methanol, but not butanol. The methanol extracts 

of the tobacco cells were streaked on Avicel SF thin layer plates and 

developed in BzAWN and BzEFW. The three spots were extracted from the 

Avicel using 100 mM imidazole-HCl buffer (pH 6.5). When 0.3 ml of the 

extracted phenolics were present in a glucose-6-phosphate dehydrogenase 

assay, there was a 35-40% inhibition of the control activity.

Five and one-half minutes was also selected as the optimum 

breaking time. An increase in the breaking time did not increase activity. 

It was determined that 5h minutes was the optimum homogenization time 

producing a preparation with maximum activity and one which retained the 

greatest amount of glucose-6-phosphate dehydrogenase activity after 

storing at 4°C.

growth OF WR-132 TOBACCO CELLS

A study was undertaken to observe the growth of WR-132 tobacco 

suspension cultures to ascertain whether the age of the cells altered the
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FIGURE 6 THIN LAYER CHROMATOGRAM OF CRUDE ENZYME EXTRACTS. 
BzAWN - benzene, acetic acid, water and nltromethane 34:32:5:18.
BzEFW - benzene, ethyl acetate, formic acid and water 9:21:6:3
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rclativc percentages of the 4 isoenzymes of glucose-6-phosphate 

dehydrogenase. The cells were aseptically transferred as usual and harvested. 

The weight of cells, volume of medium and pH of the medium were recorded.

The cells followed an exponential growth curve with the volume of the 

culture medium decreasing proportionally (figs 7 and 8). The pH of the 

culture medium increased from an initial pH of 4.3 at the time of transfer 

to a maximum pH of 6.15 at day 8 followed by a slight drop in pH for 9 and 

10 day old medium (fig 9). Concurrently, relative amounts of the isoenzymes 

of glucose-6-phosphate dehydrogenase were examined (Table 3).

TABLE 3

RELATIVE INTENSITY OF ISOENZYMES WITH RESPECT TO AGE

Age of tobacco cells 
BAND 2 3 4 5 6 7 8 9  10

I 5 5 5 4 4 3 3 1 0

II 5 4 5 3 4 3 3 2 1

III 2 2 2 3 4 3 4 4 5
IV 2 2 3 3 4 4 5 4 5

0-5 represent the relative intensities of the various isoenzymes 
as observed on anodic polyacrylamide gel electrophoresis. 5 is the most 
intense band with 0 meaning that a band was not visible.

It was observed that with young tobacco cells. Band I and Band II 

were the most prominent bands. As the cells aged. Bands III and IV became 

the most prominent bands. This feature was used in later isolations of 

Bands I and IV. When Band I was the object of investigation, younger 

cells were harvested. The weight of cells per flask was less than after
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FIGURE 7 GROWTH CURVE OF WR-132 TOBACCO SUSPENSION CULTURE. 
The weight of cells is a wet weight. The deviations in weight are shown.
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FIGURE 8 CHANGE IN THE VOLUME OF WR-132 CULTURE MEDIUM WITH 
RESPECT TO AGE OF THE CELLS. Deviations from the average are shown.
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10 days of growth, but this was compensated for by increasing the number 

of flasks transferred. Alternately, when Band IV was being studied, much 

older cells were harvested. In this manner, the relative concentration 

of Band I was decreased with a much higher percentage of Band IV present.



CHAPTER IV

KINETIC AND PHYSICAL PROPERTIES OF ISOENZYMES 
BAND I AND BAND IV

Initial kinetic studies of glucose-6-phosphate dehydrogenase 

involved enzyme preparations containing all 4 isoenzymes. A plot of 

reaction velocity versus pH revealed a broad activity peak with a maximum 

between a pH of 7.5 and 8.5 (fig 10). All the buffers used for the plot 

were adjusted with NaCl to the same ionic strength (300 mM) to alleviate 

any problems that might arise because of variances in activity due to 

Ionic strength differences. The activity peak, instead of being a sharp 

p ' usually associated with a single enzyme, is a broad activity peak.

Wit isoenzymes present, each exhibiting it’s own pH optimum, a curve 
could produced exhibiting the combination of pH optimums.

A plot of the reaction velocity versus glucose-6-phosphate con­

centration is shown in fig 11. The curve is not typical of an enzyme 

exhibiting Michaelis-Menten kinetics because of the intermediary plateau 

region. However, as with the pH profile, a mixture of isoenzymes is 

present. The saturation curve that could be generated from a mixture 

of enzymes could exhibit an intermediary plateau due to the four iso­

enzymes, each with its own Michaelis constant. A Lineweaver-Burk plot (44) 

of the data (fig 12) reveals a break in the line giving rise to 2 different 
Michaelis constants: 0.38 mM for low glucose-6-phosphate and 0.90 mM

—28—



-29-

.20

.16

c
Ê
Q
O
<
>*

.08

.04

6.0 8.56.5 7.0 7.5 80 9.0

pH

FIGURE 10 pH PROFILE FOR GLUCOSE-6-PHOSPHATE DEHYDROGENASE 
ISOMZYME MIXTURE. The assays contained 5 mM G-6-P, 5 mM Mg and 0.5 mM 
NADP in the following buffers; O —— O  phosphate, O — — O  tris-HCl 
and ^ gl y ci ne -Na OH.
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FIGURE 11 GLUCOSE-6-PHOSPHATE SATURATION CURVE FOR A MIXTURE 
OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE ISOENZYMES. Each assay consisted of 
5 mM Mg+2, and 0.5 mM NADP+ in 100 nM tris-HCl buffer (pH 8.0). G-6-P 
was varied for the curve.
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FIGURE 12 GLUCOSE-6-PHOSPHATE DOUBLE RECIPROCAL PLOT FOR A 
MIXTURE OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE ISOENZYMES.
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FIGURE 13 GLUCOSE-6-PHOSPHATE HILL PLOT FOR A MIXTURE OF 
GLUCOSE-6-PHOSPHATE DEHYDROGENASE ISOENZYMES.
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FIGURE 14 NADP SATURATION CURVE FOR A MIXTURE OF GLUCOSE-6- 
PHOSPHATE DEHYDROGENASE ISOENZYMES. Each assay consisted of 5 mM G-6-P 
and 5 mM Mg^^ in 100 nM tris-HCl buffer (pH 8.0). NADP"*" was varied for 
the curve.
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GLUCOSE-6-PHOSPHATE DEHYDROGENASE ISOENZYMES.
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DEHYDROGENASE ISOENZYMES.
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for high glucose-6-phosphate concentrations. The corresponding Hill plot (fig 13) 

(46) has a change in slope, changing from a slope of 0.7 for low substrate 

concentrations to a slope of 1.27 for high substrate concentrations. Fig 14 

illustrates the NADP"*” saturation curve for a mixture of isoenzymes. A double 

reciprocal plot (fig 15) is linear with an Sq  ̂value of 0.19 mM. The 

Hill plot (fig 16) has a slope of 1.02 denoting one NADP"*" binding site 

per enzyme molecule. Kajinami et al. (38) reported Michaelis constants,

K̂ , for glucose-6-phosphate and NADP^ as 0.30 mM and 0.045 mM respectively.

The same source material was used for the isolation of glucose-6-phosphate 

dehydrogenase. An explanation for the discrepancy might be the relative 

concentrations of the 4 isoenzymes. The age of the tobacco cells affects 

the isoenzyme concentration. Kajinami*s preparation could have contained a 

higher concentration of one isoenzyme, giving different K^ values.

Band I was separated from the other glucose-6-phosphate dehydrogenase 

isoenzymes by DEAE-cellulose chromatography. The pH profile of this isoenzyme 

yields a sharp peak with a maximum activity at a pH of 9.0 (fig 17). A 

saturation curve with respect to glucose-6-phosphate as a substrate is 

shown in fig 18 with the corresponding double reciprocal plot shown in fig 19,

Band I exhibits Michaelis-Menten kinetics as denoted by the smooth saturation 

curve and the linear Lineweaver-Burk plot. The Sq  ̂value obtained from the 

double reciprocal plot is 0.22 mM. A Hill coefficient of 1.01 calculated 
from the Hill plot (fig 20) indicates that there is one glucose-6-phosphate 
binding site per enzyme molecule.

NADP"*” also gives a smooth Michaelis-Menten type of saturation 

curve (fig 21). The calculated Sq  ̂value from the double reciprocal 

plot (fig 22) is 0.06 mM. The Hill plot (fig 23) is linear with a slope
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of 1.04.

The molecular weight of Band I was determined by 2 different 

methods. The first method was that of Andrews (4) utilizing a Sephadex 

G-150 column. The column was first standardized using y-globulin (MW 

150,000), lipoxidase (MW 108,000), creatine kinase (MW 80,000), serum 
albumin (MW 68,000), ovalbumin (MW 43,000) and a-chymotrypsinogen-A 
(MW 25,700). The standards were dissolved in 2 ml of elution buffer to 

which a few crystals of sucrose had been added to increase the density.

The entire 2 ml was applied to the top of the column bed using a Pro pipettor. 

After the column was standardized, 2 ml of Band I enzyme preparation from a 

DEAE-cellulose column was applied to the column in the same manner. Glucose- 

6-phosphate dehydrogenase activity was checked to determine the elution 

volume of Band I. The molecular weight obtained from a semi-logarithmic 

plot of molecular weight versus elution volume (fig 24) was 91,000.

The fractions from the Sephadex G-150 column containing Band I 

were saved for molecular weight determinations utilizing the SDS electro­

phoresis procedure of Weber, Pringle and Osborn (69). Three or four samples 

were obtained, combined and concentrated by lyophilization. After concentration, 

the sample was dialyzed extensively against 3000 volumes of deionized distilled 

water. The water was changed several times. The sample was lyophilized 

again and the lyophilized powder was used for the molecular weight determination. 

The standards used for SDS gel electrophoresis were 8-galactosidase (subunit 

MW 130,000), lipoxidase (MW 108,000), serum albumin (MW 68,000), catalase 

(MW 58,000), ovalbumin (MW 43,000) and a-chymotrypsinogen-A (MW 25,700).
A molecular weight of 85,000 ± 4000 was obtained from a semi-logarithmic 

plot of molecular weight versus mobility (fig 25).
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FIGURE 17 pH PROFILE OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE 
ISOENZYME BAND I. Assays contained 5 nM G-6-P, 5 mM Mg"̂ ,̂ 0.5 mM NADP"̂  
and enzyme in the following buffers: O— —O  phosphate, 0 ~  Qtris-HCl 
and ' A  glycine-NaOH.
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FIGURE 18 GLÜCOSE-6-PHOSPHATE SATURATION CURVE OF GLUCOSE-6-, 
PHOSPHATE DEHYDROGENASE ISOENZYME BAND I. The assays contained 5 mM Mg 
and 0.5 mM NADP in 100 mM tris-HCl buffer (pH 8.0). G-6-P was varied.
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FIGURE 20 GLUCOSE-6-PHOSPHATE HILL PLOT OF GLUCOSE-6-PHOSPHATE
DEHYDROGENASE ISOENZYllE BAND I.
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FIGURE 21 NADP'*’ SATURATION CURVE OF GLUCOSE-6-PHOSPHATE 
DEHYDROj^^ASE ISOENZYME BAND I. The assays contained 5 nM G-6-P and 
5 mM Mg in 100 mM trls-HCl buffer (pH 8.0). NADP"*” was varied.
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FIGURE 22 NADP DOUBLE RECIPROCAL PLOT OF GLUCOSE-6-PHOSPHATE
DEHYDROGENASE ISOENZYME BAND I.
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FIGURE 24 DETERMINATION OF THE MOLECULAR WEIGHT OF GLUCOSE-6- 
PHOSPHATE DEHYDROGENASE ISOENZYME BAND I BY GEL FILTRATION CHROMATOGRAPHY 
ON SEPHADEX G-150. The elution buffer was 100 nM KCl and 50 nM tris-HCl 
(pH 7.5).
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Band IV as obtained from a DEAE-cellulose column was usually 

free from other detectable contaminating proteins as determined by poly­

acrylamide gel electrophoresis. The effect of pH on enzymatic activity of 

Band IV is shown in fig 26. The pH optimum appears to be 8.0-8.3. The 

glucose-6-phosphate saturation curve is shown in fig 27 with the corres­

ponding Lineweaver-Burk plot in fig 28. The curves are that of a Michaelis- 

Menten enzyme with an Sg  ̂value of 0.31 mM. A Hill plot (fig 29) has a 

slope of 0.98 indicating one glucose-6-phosphate binding site.

The NADP"*" saturation curve for Band IV is shown in fig 30. When

the double reciprocal data are plotted (fig 31), there is an abrupt transition

between 2 linear sections. Teipel and Koshland (66) attribute this type 

of phenomena to a multi-site enzyme in which the relative magnitude of 

the binding constants of the sites first decrease and then increase as 

saturating levels of substrate are reached. This transition corresponds 

to an abrupt increase in the apparent and V^ values with increasing 

NADP"*". The 2 apparent Michaelis constants are 0.06 mM and 0.015 mM. Using 

the V^ value which corresponds to the Sg  ̂value of 0.06 mM, a Hill plot
was constructed (fig 32). Again, there is a change in slope at 0.1 mM NADP̂ .

For NADP"*" concentrations greater than 0.1 mM the Hill coefficient is 1.05.

With NADP"*" concentrations less than 0.1 mM, the line is nonlinear. Re graphing 

the Hill plot using the small V^ and only NADP"*" concentrations less than 0.1 

mM, a straight line is generated with a slope of 1.09. This type of phenomena 

is not uncommon, being reported for glutamate dehydrogenase from pig heart 
(29), ox liver (13,19,20) and yeast (23), and for glyceraldehyde-3-phosphate 

dehydrogenase from rabbit muscle (11,14) as well as glucose-6-phosphate 

dehydrogenase from human erythrocytes (55), yeast (3) and sweet potato (47).
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FIGURE 26 pH PROFILE OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE 
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FIGURE 28 GLUCOSE-6-PHOSPHATE DOUBLE RECIPROCAL PLOT OF
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FIGURE 30 NADP'*’ SATURATION CURVE OF GLUCOSE-6-PHOSPHATE 
DEHYDROGENASE ISOENZYME BAND IV. The assays contained 5 mM G-6-P and 
5 mM Mg'*’̂ in 100 mM tris-HCl buffer (pH 8.0). NADP"*" was varied.
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FIGURE 31 NADP DOUBLE RECIPROCAL PLOT OF GLUCOSE-6-PHOSPHATE
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FIGURE 32 NADP HILL PLOT OF GLUCOSE-6-PHOSPEATE 
DEHYDROGENASE ISOENZYME BAND IV. The larger Is used to plot the 
graph. ^
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FIGURE 33 NADP HILL PLOT OF GLüCOSE-6-PHOSPHATE 
DEHYDROGENASE ISOENZYME BAND IV. NADP"*" concentrations less than 0.1 mM 
and the smaller are used to plot the graph.
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FIGDRE 34 DETERMINATION OF THE MOLECULAR WEIGHT OF GLUCOSE-6- 
PHOSPHATE DEHYDROGENASE ISOENZYME BAND IV BY GEL FILTRATION CHROMAT­
OGRAPHY ON SEPHADEX G-150. .The elution buffer is 10"5 M NADP*, 30-tiM - 
6-mercaptoethanol and 100 mM imidazole-HCl (pH 6.5).
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PHOSPHATE DEHYDROGENASE ISOENZYME BAND IV BY ELECTROPHORESIS ON SDS 
POLYACRYLAMIDE GELS.
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The data suggest there are at least 2 NADP^ binding sites, one with a much 

lower than the other site. The abrupt increase in the apparent and 

Vjj values with increasing NADP^ concentrations corresponds to negative 

cooperativity.
The molecular weight of Band IV was determined by the same procedures 

as were used for Band I. The results of the first technique, Sephadex G-150 

column chromatography, are shown in fig 34. The standards are the same as 

those used for Band I. The molecular weight calculated from the curve is

115,000 ± 9,000. However, using SDS gel electrophoresis, a procedure known 

to disrupt subunit structure in proteins, a single band was visible with a 

MW of 54,000-59,000 (fig 35). Since the value of 115,000 obtained by Sephadex 

G-150 column chromatography is approximately twice the value obtained from 

SDS gel electrophoresis, a probable dimeric structure of identical subunits 

for Band IV is suggested.

It is difficult to make comparisons of the data from the crude 

mixture of isoenzymes with data for glucose-6-phosphate dehydrogenase from 

other sources. The crude mixture did contain isoenzymes, whose relative 

concentrations changed with the age of the tobacco tissue and, therefore, 

the apparent values for glucose-6-phosphate and NADP"*" would change with 

the age of the tissue harvested. Â comparison can be made using Bands I 

and IV. In Table 4, the apparent values obtained from Bands I and IV 

are somewhat similar in several cases to those reported for glucose-6-phosphate 
dehydrogenase from other sources.

Band I erfxibits Michaelis-Menten kinetics for both substrates, 
glucose-6-phosphate and NADP̂ , with one binding site for each substrate.

The enzyme appears to contain no subunit structure, as both gel filtration
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TABLE 4

COMPARISON OF MICHAELIS CONSTANTS (K̂ ) OF 
GLÜCOSE-6-PHOSPHATE DEHYDROGENASE FROM VARIOUS SOURCES

SOURCE
MICHAELIS
CONSTANTS SUBSTRATE REFERENCE

Tobacco suspension 
culture MR-132

Band I 6 X 10“  ̂M NADP'*' -

2.2 X 10"̂  M G-6—P -

Band IV 6.0 X lO"̂  M High[iîADP‘*’J -

1.5 X 10“  ̂M Low[nADP'̂ ] -

3.1 X 10“  ̂M G—6-P -

Sweet potato 2.97 X 10"\

5.27 X lO”  ̂M

1.27 X lO"̂  M 

3.25 X lO”  ̂M

NADP"̂

High[g-o-^

Middle [g-6-pJ 

Low|g-6—pj

44

Spinach leaves 4.0 X 10“  ̂M 

3.3 X 10“  ̂M

Chloroplastic G-6-P 

Cytoplasmic G-6-P

59

Yeast 1.9 X lO"̂  M 
8.0 X lO"̂  M 

3.4 X 10“  ̂M

NADP"̂

High[G-6-p] 

Low 1^6—pj

3

Yeast Candida utiVis 6.7 X lO"̂  M 

2.3 X lO"̂  M

NADP'*'

G-6-P

16
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TABLE 4 (cont.)

MICHAELIS
SOURCE CONSTANTS SUBSTRATE REFERENCE

Bacteria Lenaonosroc 5.69 X 10  ̂M NADP"*" 47
msenteroides

8.1 X lO’  ̂M G-6-P

Aaetobaater xytiion 4.0 X 10  ̂M NADP"*"

1.64 X 10“  ̂M G-6-P

Rat manmary gland 8.9 X 10  ̂M NADP"*" 39

3.0 X 10“  ̂M G-6-P

Cow adrenal cortex 5.6 X 10  ̂M NADP"*" 11

4.2 X 10“  ̂M G-6-P

-6 +Human erythrocytes 4.4 X 10 M NADP 72

3.9 X 10“  ̂M G-6-P
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and SDS gel electrophoresis indicate a molecular weight of 85,000 to 91,000. 

Furthermore, Band I is not a glycoprotein. When Band I was stained for 

glycoprotein using the method of Classman and Neville (27), no glycoprotein 

bands were visible. This was verified using ovalbumin, a well characterized 

glycoprotein.

Glucose-6-phosphate as a substrate for Band IV erfiibits a typical 

saturation curve with one binding site on the enzyme. However, NADP"*" 

produces an abrupt transition in its Lineweaver-Burk plot indicating negative 

cooperativity. It is suggested that there are 2 NADP'*’ binding sites on Band 

IV, one with a much lower than the other site. The molecular weights suggest 

that Band IV is a dimer, with a subunit molecular weight of 54,000-59,000 

and a native molecular weight of 115,000. When Band IV was checked to determine 

if it were a glycoprotein, it was found to contain no carbohydrate moieties.

The molecular weights of Band I and IV are compared with glucose-6- 
phosphate dehydrogenase from other sources in table 5. The molecular weights 

of the enzymes isolated in this study are consistent with many of those 

reported in the literature.
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TABLE 5

MOLECULAR WEIGHTS OF GLUCOSE-6-PHOSPHATE 
DEHYDROGENASE FROM VARIOUS SOURCES

SOURCE

Tobacco suspension 
culture WR-132

Band I

Band IV

MOLECULAR WEIGHT REFERENCE

85.000-91,000

115,000 - dimer

54.000-59,000 - subunit

Sweet potato roots 110,000 44

Potato tubers 260.000 - with NADP

130.000 - without NADP’’

24

Spinach leaves 105,000 59

Brewer's yeast 101,600 73

Yeast Candida utitia 104,000 16

Bacteria Levaonoatoc 
meaenteroidea

135,000 - without NADP 48
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TABLE 5 (cont.)

SOURCE 

Neurospora arassa

MOLECULAR WEIGHT

206.000 - tetramer

104.000 - 114,000 - dimer

57.000 - subunit

REFERENCE

60

Rat mammary gland 241,000 - with NADP 39

Cow adrenal cortex 236,000 - with NADP 11

Bovine adrenals 130,000 57

Human erythrocytes 240.000 - with NADP

123.000 - without NADP"̂

43.000 - subunit

72



CHAPTER V

EFFECTS OF VARIOUS COMPOUNDS ON THE ACTIVITY 

OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE

To ascertain the significance of glucose-6-phosphate dehydrogenase 

in the metabolism of phenolic compounds in tobacco tissue, several phenolic 

compounds as well as other compounds were tested for their effect on the 

enzyme. The compounds tested were; scopoletin, scopolin, esculetin, ferulic 

acid, trans-ctnnamic acid, para-coumaric acid, caffeic acid, chlorogenic 
acid, indole-3-acetic acid and erythrose-4-phosphate. Indole-3-acetic 

acid was studied because it is an in vivo growth hormone whose biosynthesis 

includes the shikimic acid pathway. Erythrose-4-phosphate was of interest 

because it is one of two compounds which initiate the shikimic acid pathway. 

The concentrations of the phenolic compounds in the assays varied from

0.04 mM to 0.4 mM. The glucose-6-phosphate concentration was also varied

using saturating,  ̂and Sq (1/3 R̂ ) concentrations. The reactions were
+2 +5 mM in Mg and 0.5 mM in NADP . All the reactions were initiated by the

addition of NADP^, due to a lag period associated with glucose-6-phosphate

when it was used to initiate the assays. For the mixture of isoenzymes, the 

results are summarized in table 6. Sĵ q refers to saturating levels of

glucose-6-phosphate (5 mM G-6-P), Sq  ̂refers to the substrate concentration

at 1/2 Vm or Km (0.38 mM G-6-P) and Sq refers to the substrate concen­

tration at 1/4 Vm or 1/3 Km (0.127 mM G-6-P).
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TABLE 6
EFFECT OF VARIOUS COMPOUNDS ON GLüCOSE-6-PHOSPHATE DEHYDROGENASE

ISOENZYME MIXTURE

PER CENT OF CONTROL ACTIVITY
EFFECTOR 
 CONC. 0.04 mM0.1 mM0.2 mM0.3 mMEFFECTOR

SCOPOLETIN

0.5 G-S-f 
0.25 100100

ESCULETIN
100102G-6-P 101

1031050.5 1000.25
SCOPOLIN

1.0 G-6-P
0.5 G-6-P 
0.25

ESCULIN
104

0.5 G-S-P 
0.25 G-^-^

FERULIC ACID
1011051.0 G-6-P

0 .5  G-6-P 

0 .2 5  G-6-P

CAFFEIC ACID
100

0.5 G-6-P 
0.25 G-̂ "'’
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TABLE 6 (cont.)

PER CENT OF CONTROL ACTIVITY
EFFECTOR 
  CONC. 0.1 mM 0.04 mMmMEFFECTO: mM mM

TRANS-CINNAMIC ACID
G—6—P 105 100103
G-6-P0.5
G-6-P0.25

PARA-COUMARIC ACID
106 101G-6-P 1061.0

G—6—P0.5
0.25

CHLOROGENIC ACID
G-6-P 100

0.5
0.25

INDOLE-3-ACETIC ACID
106 101G—6—P 1081.0

G-6-P0.5
G—6—P 1030.25

ERYTHROSE-4-PHOSPHATE

G-6-P0.5
106106G—6—P 1061270.25

SHIKIMIC ACID
120 102G—6—P 120
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A very low concentration of some of the phenolics will inhibit a 

mixture of glucose-6-phosphate dehydrogenase isoenzymes. The compound 

which had the most pronounced effect was chlorogenic acid. Scopoletin, 

scopolin and esculin have substantial effects on the dehydrogenase reactions. 

Scopolin, in the experiments performed, was found to be much more inhibitory 

than scopoletin. The phenolic acids - ferulic, caffeic, para-coumaric 

and imns-cinnamic acid, though inhibitory at low glucose-6-phosphate con­

centrations, are not nearly as potent inhibitors as the coumarin derivatives. 

Chlorogenic acid, at 0.4 mM inhibits glucose-6-phosphate dehydrogenase 

almost 100%, with the inhibition decreasing as the concentration of the acid 

is reduced. It is puzzling as to why this derivative of quinic acid could 

have an effect of such dimensions. Chlorogenic acid and its isomers, are 

quite common in plant tissue (32,33,70), yet it will inhibit almost completely 

an enzyme apparently involved in its synthesis. Chlorogenic acid has been 

reported to inhibit several other enzymes markedly; in particular, gluta­

thione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase 

from rat lung (53), isoperoxidases Ĉ  and Ĉ  from tobacco suspension cultures 

WR-132 (53,56) and isoperoxidases Â , and A^ from tobacco tissue culture 

W-38 (52,54,56). Shikimic acid was also tested using the crude mixture.

Shikimic acid activated the reaction 120% of control.

Bands I and IV were tested to determine how these phenolics 

influenced a single isoenzyme. The results are shown in table 7. The 

compounds are grouped together for structural similarities. Some other compounds 
tested, but not listed, were glucose, sucrose, shikimic acid, ferulic acid- 

g-D-glucoside and coumarin. None of these compounds had any significant 

effect upon the reaction velocities of either Band I or Band IV.
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TABLE 7
EFFECT OF VARIOUS COMPOUNDS ON GLUCOSE-6-PHOSPHATE DEHYDROGENASE 

ISOENZYMES BAND I AND BAND IV

SCOPOLETIN

PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

= 1.0 G—6—P =0.5 G-6-P ^0.25 G—6—P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 34 27 42 56 110 45

0.3 mM 76 85 93 103 151 105

0.2 mM 90 101 96 105 140 112

0.1 mM 96 105 97 99 100 103

0.04 mM 98 102 91 94 97 89

ESCULETIN HO

HO

PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

Sl.O G—6—P 0̂.5 G-6-P 0̂.25 G-6-P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 79 68 78 73 158 91

0.3 mM 80 97 77 96 125 105

0.2 mM 90 98 76 100 107 104

0.1 mM 96 102 89 95 100 96

0.04 mM 98 99 91 92 99 92
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TABLE 7 (cont.)

SCOPOLIN 0 ^ 0

PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

^1.0 G-6-P 0̂.5 G—6—P 0̂.25 G—6—P
BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 21 14 17 14 24 18

0.3 mM 50 50 49 52 64 50

0.2 mM 82 85 74 84 76 79

0.1 mM 101 101 88 93 90 89

0.04 mM 103 95 96 93 94 85

ESCULIN

PER CENT OF CONTROL ACTIVITY
Cone, of 
Phenolic 
Compound

Sl.O G-6-P So.5 G—6—P 0̂.25 G—6—P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 30 21 34 30 50 16

0.3 mM 64 63 38 72 75 68

0.2 mM 90 90 91 94 101 92

0.1 mM 98 98 94 95 94 86

0.04 mM 100 93 92 93 97 86
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TABLE 7 (cont.)

FERULIC ACID

OH
PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

^1.0 G-6-P So.5 G—6—P ^0.25 G—6—P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 86 89 78 86 67 94

0.3 mM 88 95 82 88 70 96

0.2 mM 91 98 88 87 83 92

0.1 mM 95 95 96 86 91 86

0.04 mM 97 99 100 88 95 92

CAFFEIC ACID HO

HO
OH

Cone, of 
Phenolic 
Compound

=1.0 G—6—P 0̂.5 G—6—P ^0.25 G-6-P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 86 90 85 89 80 82

0.3 mM 88 98 96 89 87 83

0.2 mM 93 97 93 90 89 82

0.1 mM 101 97 91 88 92 79

0.04 mM 101 94 93 87 93 87
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TABLE 7 (cont.)

TRANS-CINNAMIC ACID

OH
PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

= 1.0 G-6-P 0̂.5 G—6—P 0̂.25 G-6-P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 106 94 108 91 97 100

0.3 mM 114 99 110 96 101 100

0.2 mM 113 97 110 94 103 96

0.1 mM 110 102 106 90 100 94

0.04 mM 111 94 103 96 102 92

PARA-COUMARIC ACID

OH
PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

^1.0 G-6-P ^0.5 G-6-P 0̂.25 G—6-P

BAND
I

BAND
IV

BAl̂ D
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 102 90 100 94 94 98

0.3 mM 106 97 100 95 94 95

0.2 mM 106 96 100 94 96 92

0.1 mM 108 101 100 91 101 90
0.04 mM 112 94 100 91 99 90
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TABLE 7 (cont.) 

H0/„. ^COOH
CHLOROGENIC ACID

OH ^  ^OH
PER CENT OF CONTROL ACTIVITY

Con. of
Phenolic
Compound

=1.0 G-6-P 0̂.5 G-6-P 0̂.25 G-6-P

BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 1 7 0 4 10 8
0.3 mM 25 28 0 24 23 23
0.2 mM 75 76 60 74 66 69
0.1 mM 90 94 100 85 84 84
0.04 mM 93 95 100 92 85 91

IND0LE-3-ACETIC ACID

J •CHj— COOH

PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

^1.0 G-6-P 0.5 G-6-P 0̂.25 G—6—P
BAND
I

BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 93 86 91 90 94 96
0.3 mM 95 92 96 92 100 95
0.2 mM 95 92 91 92 97 90
0.1 mM 98 93 94 92 93 92
0.04 mM 98 92 100 91 99 92
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TABLE 7 (cont.)

ERYTHROSE-4-PHOSPHATE
C H O

HC OH
H C O H

H2COPO3H2

PER CENT OF CONTROL ACTIVITY

Cone, of 
Phenolic 
Compound

Sl.O G—6—P S0.5 G-6-P So.25 G—6—P
BAND

I
BAND
IV

BAND
I

BAND
IV

BAND
I

BAND
IV

0.4 mM 89 111 91 91 98 79

0.3 mM 90 110 89 91 96 86

0.2 mM 89 107 93 92 97 100

0.1 mM 93 107 93 104 99 100

0.04 mM 93 112 97 109 100 92
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Sj Q refers to saturating levels of glucose-6-phosphate (5 mM 

G-6-P), Sq  ̂refers to concentrations of glucose-6-phosphate (0.22 mM 

for Band I and 0.31 mM for Band IV) and Sq refers to 1/3 1^ concentra­

tions (0.073 mM for Band I and 0.103 mM for Band IV). The data for Bands 

I and IV follow the same trend as that of the mixture of isoenzymes. Chlorogenic 

acid inhibits the reactions almost completely. The coumarins are inhibitory 

while the phenolic acids are not. The glucosylated compounds, scopolin and 

esculin, are much more inhibitory than their hydrolysis products, scopoletin 

and esculetin, respectively.

Band I is quite different from Band IV in one aspect. At low 

glucose-6-phosphate concentrations, scopoletin and esculetin accelerate 

tiie reaction, 151% of control for scopoletin and 158% for esculetin. There 

is a threshold effect at the lower substrate levels. Only scopoletin and 

esculetin exhibit this activation. The ring substitutions and their positioning 

might be the determining factor for the observed inhibition and activation. 

Phenolic acids with analogous ring substitutions might then be expected to 

exhibit the same patterns as the coumarins. Ferulic acid has the same ring 

substitution pattern as scopoletin, ferulic acid-g-D-glucoside is similar 

to scopolin and caffeic acid is similar to esculetin. However, these 

phenolic acids do not inhibit the dehydrogenase reaction the same percentage 

as the corresponding coumarins. Therefore, more than the ring substitutions 

could be involved in the inhibition and activation shown by the coumarins.

To ascertain the validity of the observed inhibition activation 
patterns, three other enzymes were studied. The enzymes were: glucose-6- 

phosphate dehydrogenase from Torula yeast. Type XII (Sigma Chemical Company),

NADP specific malate dehydrogenase and NADP specific isocitrate dehydrogenase.
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The raalate and isocitrate dehydrogenases were from crude preparations 

of WR-132 tobacco suspension cultures. The only phenolic compounds used 

as effectors were scopoletin, esculetin and chlorogenic acid. The results 

are shown in table 8. It is interesting that malate and isocitrate dehydro­

genase are inhibited much more than glucose-6-phosphate dehydrogenase from 

either WR-132 tobacco suspension cultures or Torula yeast. All of the enzymes 

are NADPH producing enzymes and are inhibited by the coumarins, scopoletin 

and esculetin, as well as the quinic acid derivative, chlorogenic acid.

The activation observed with Band I is not observed with any of the other 

NADPH producing enzymes. However, this is not unexpected because the three 

enzymes tested contained isoenzymes and from the crude mixture in this study, 

no activation was observed. Therefore, no conclusions can be drawn between 

the different NADPH producing enzymes.

To establish that the activation by scopoletin was not caused by

a "scopoletin oxidase", several enzyme assays were run using scopoletin

and esculetin as substrates. The assays contained either scopoletin or
+ +2esculetin as substrates, 0.5 mM NADP , 5 mM Mg and enzyme in 100 mM tris- 

HCl buffer (pH 8.0). Other assays contained permutations of the assay 

ingredients. No reduction of NADP"*" was observed at 340 nm. In svtu assays 

were also performed. After completion of electrophoresis of the enzyme 

solution, the polyacrylamide gels were placed in a dehydrogenase staining 

solution containing scopoletin or esculetin as substrates instead of glucose- 

6-phosphate. Again, permutations were tested. There were no visible 

bands to record. Therefore, the activation observed with scopoletin and 

esculetin is not due to a "scopoletin oxidase" using scopoletin or esculetin 

as substrates and NADP"*" as a coenzyme.
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TABLE 8
EFFECT OF PHENOLICS ON THE ACTIVITY OF THREE DEHYDROGENASE ENZYMES

l.GLUCOSE-6-PHOSPHATE DEHYDROGENASE FROM TORULA YEAST,TYPE XII
PER CENT OF CONTROL ACTIVITY

EFFECTOR 
  CONC. 0.04 mM0.2 mM0.4 mM 0.1 mM0.3 mMEFFECTOR

SCOPOLETIN
G—6—P 
G-6-P
G-6-P0.25

ESCULETIN
G-6-P
G-6-P
G-6-P0.25

CHLOROGENIC ACID
G-6-P
G-6-P0.5
G-6-P0.25

2.ISOCITRATE DEHYDROGENASE (NADP ) FROM WR-132 TOBACCO SUSPENSION CULTURES

PER CENT OF CONTROL ACTIVITY
_____ EFFECTOR
EFFECTOR"---- ----- CONC. 1 0 .4  mM 0 .3  mM 0 .2  mM 0 .1  mM 0.04  mM

SCOPOLETIN
Sl.O G-S-f 5 19 67 88 92

Sq .S G-S-f 6 46 69 95 95

So.25 G-G-P 1 75 88 72 100

ESCULETIN
=1 .0  G-6-P 49 74 78 85 84

=0.5  G-G-P 77 100 95 87 89

=0.25 G-G-P 60 57 67 63 93

CHLOROGENIC ACID
=1 .0  G-G-P 6 13 37 77 84

=0.5  G-G-P 6 16 49 74 89

=0.25 G-G-P 0 7 40 75 103
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TABLE 8 (cont.)

3.MALATE DEHYDROGENASE (NADP ) FROM WR-132 TOBACCO SUSPENSION CULTURES

PER CENT OF CONTROL ACTIVITY
-----  EFFECTOR
EFFECTOR ---------- 0.4 mM 0.3 mM 0.2 mM 0.1 mM 0.04 mM
SCOPOLETIN

^1.0 6 24 61 91 93
^0.5 8 40 65 75 86
^0.25 17 50 67 88 100

ESCULETIN
"l.O 56 80 67 91 88
So.5 G-G-P 92 100 89 75 100
So.25 G-6-P 92 90 89 88 86

CHLOROGENIC ACID
Sl.O G-s-f 7 13 39 79 93
Sq .5 G-S-f 23 10 33 62 57
Sq .25 G-S-f 8 10 44 62 71



CHAPTER VI

DISCUSSION

Glucose-6-phosphate dehydrogenase, as isolated from WR-132 tobacco 

suspension cultures, exists as 4 isoenzymes. The data from the mixture of 

isoenzymes are misleading and only emphasize the importance of obtaining 

single isoenzymes for future investigations.

The molecular weights presented in table 5 indicate that the

molecular weight of glucose-6-phosphate dehydrogenase from some sources,

namely potato tuber (26), Neuroepora arassa (61) and human erythrocytes
+ +(72), changes in the presence or absence of NADP . NADP , in all three 

cases, causes the enzyme to form either a dimer or a tetramer. It might be 

assumed that the active catalytic configuration of the enzyme is the form 

produced in the presence of NADP"̂ . The molecular weight of Band I as 

determined by gel filtration was 91,000. The elution buffer was 100 mM 

KCl and 50 mM tris-HCl (pH 7.5). The molecular weight as indicated by 

SDS gel electrophoresis was 85,000 ± 4,000. It is therefore difficult 

to conclude whether or not Band I is a dimer because NADP"̂  was not in the 

elution buffer for gel filtration.
The elution buffer used in the gel filtration of Band IV did 

contain NADP"*". The molecular weight of 115,000 as determined by this procedure, 

is approximately twice the value of 54,000 to 59,000 as determined by SDS 

gel electrophoresis. A probable dimeric structure of identical subunits
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for Band IV is suggested. |

Grossman and McGown (31) have reported that pH affects the kinetic

behavior of glucose-6-phosphate dehydrogenase. At a pH of 6.7, the enzyme

exhibits Michaelis-Menten kinetics. However, at a pH above 7.4, the enzyme

exhibits sigmoidal kinetics with respect to glucose-6-phosphate. All of the

kinetic studies on Band I and Band IV were performed at pH 8.0, except for
the pH profiles. The intermediary plateau in the saturation curve for Band IV

could be a result of pH. An interesting situation could exist in which pH

might influence the kinetics of the enzyme.

In response to phenolic compounds, both isoenzymes are inhibited

by certain coumarins tested and chlorogenic acid, but showed little response

to the phenolic acids. Scopoletin and esculetin are less inhibitory than their

glucosylated forms. Band I is activated at low substrate concentrations by

scopoletin and esculetin, while Band IV is not. The activation of Band I

by scopoletin appears to be a threshold effect. At high scopoletin and

high G-6-P concentrations, the reaction is inhibited; however, at the low

G-6-P concentration (1/4 V_ G-6-P levels) the reaction is activated by scopoletin.M
This situation occurs at 0.4, 0.3 and 0.2 mM concentrations of scopoletin. At 

concentrations lower than this, namely 0.1 and 0.04 mM, scopoletin will not 
activate the reaction. Einhellig et al, (17) reported that scopoletin also 

has a threshold effect on the growth of tobacco, sunflower and pigweed.
-3Scopoletin was supplied to the plants in a nutrient culture. At 10 M,

-4scopoletin was inhibitory to growth. A scopoletin concentration of 10 M
to 10  ̂M produced no major growth effects, while scopoletin concentrations 

*3 —Aof 5 X 10 M to 10 M did appear to stimulate growth in all three plants.
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There are several reports that two hexose monophosphate pathways 

exist in plant tissue, one localized in the cytosol and the other in the 

chloroplasts (1,59,60). The exact location of the shikimic acid pathway 

is in doubt. The final step, lignin production, is associated with the 
cell wall, but the location of pathway sequences is unsettled. The chloro- 

plast is the site most mentioned. If the chloroplast is the correct site, 

then a question of localization of isoenzymes is raised. Band I and Band 

IV might occupy different subcellular locations in a plant cell. Band IV 

might be the cytoplasmic enzyme, functioning in a pathway responsible for 

NADPH and pentose phosphate production. The other isoenzyme. Band I, might 

be responsible for producing not only NADPH but also erythrose-4-phosphate 

for phenolic biosynthesis. When a plant is subjected to stress, the phenolic 

concentration would increase somewhat, creating a demand for precursors, 

namely erythrose-4-phosphate. This, in return would require the activation 

of glucose-6-phosphate dehydrogenase. The level of glucose-6-phosphate 

in the chloroplast probably is quite low. Therefore, an increase in the 

coumarin concentration would activate the enzyme. Glucose-6-phosphate is 

not freely permeable through the chloroplast cell wall, but sugar phosphates 

which are easily interconvertible to glucose-6-phosphate are permeable (32). 

Because the phenolics are localized in a subcellular organelle, it would 

be unnecessary for the phenolics to activate Band IV located in the cytosol. 

At this point, however, these suggested ideas are still speculative.
Peculiar as it may seem, phenolic acids have essentially no effect 

on the activity of either Band I or IV. Lignin biosynthesis can proceed 

from the phenolic acids (30,45). Cinnamic acid can be incorporated directly 

into lignin while hydroxycinnamic acids cannot. These acids include:
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para-coumaric acid, caffeic acid and ferulic acid. For these acids to 

be incorporated into lignin, they first must be reduced to the corresponding 

aldehydes and alcohols prior to polymerization (9). This reduction is 
dependent upon ATP, coenzyme A and a reduced pyridine nucleotide. Thus, 

if glucose-6-phosphate dehydrogenase is responsible for supplying NADPH, 

it would be unlikely that the phenolic acids would inhibit the reaction, 

preventing their incorporation into lignin.

The results on two isoenzymes of glucose-6-phosphate dehydrogenase 

have emphasized the importance of obtaining information on the two other 

isoenzymes. Band II and III, as well as the other controlling enzyme in the 

pathway, 6-phosphogluconic acid dehydrogenase.
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