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ABSTRACT

It is generally known that barotropic instability cannot account
for the development and intensification of a cyclone by means of conver-
sions between available potential energy and kinetic energy. That is a
baroclinic process. However, after the cyclone has initially developed
due to baroclinic iﬁstability, the barotropic process may explain the
subsequent development of synoptic-scale disturbances. This study will
explore the relation between barotropic instability and the generation
of synoptic-scale disturbances during the extreme tornadic outbreak of
April 3-4, 1974,

The general features of barotropic instability are reviewed and
the effect of smoothing of a wind profile on the stability characteris~
tics is examined., It is found that smoothing eliminates the unstable
waves due to truncation errors or errors inherent in the finite differ-
ence approximation, leaving, as a result, large-scale instability char-
acteristics which have physical significance. The effect 6f extending
the boundaries to infinity on the stability characteristics of a velocity
profile is also studied., It is found that such an extension (which is
more physically meaningful for the data studied) will increase the in-
stability of the velocity profile. -

The stability éharacteristics (unstable waves, growth rates,
most preferred wavelength, momentum transport, etc.) of each wind pro-
file at four mandatory levels during the April 3-4, 1974 tornado out-

break are computed and discussed. It is found that the atmosphere over

iii



the area of maximum tornadic activity was barotropically most unstable
on 0000Z April 4, i.e., shortly before the tornado outbreak. This re-
sult indicates the possibility that barotropic instability may be syn-

optically associated with the tornado outbreak.
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BAROTROPIC INSTABILITY IN RELATION TO
THE GENERATION OF SYNOPTIC-SCALE ATMOSPHERIC VORTICES

CHAPTER 1
INTRODUCTION

The study of hydrodynamic instability of parallel flow U(y) has
been a classical problem in hydrodynamics, but its application to geo-
physical problems is relatively modern. Rayleigh (1880, 1913) has shown
that parallel flow of an inviscid nonrotating fluid is stable if the
velocity profile U(y) has no inflection point, and for instability to
occur, the absolute value of the vorticity of the basic current must
have a maximum in the field of £low. Tollmien (1935) has shown that,
for symmetric velocity profiles in a channel, and for the boundary-layer’

2
velocity profiles, the condition-g—g = 0 at some point in the basic

current is a sufficient ponditiondzor instability, The earlier works
on hydrodynamic instability of parallel flow have been surveyed by Lin
(1955) and Yih (1969). Recent developments have been treated by Drazin
and Howard (1966). The viscous theory of parallel-flow instability has
been summarized by Reid (1965).

Kuo (1949) and Foote and Lin (1950) extended the nonrotating
instability theory of Rayleigh for geophysical applications to &
rotating earth by the addition of the B term. They showed that the

absolute vorticity must be a maximum or minimum at some point(s) in

the basic current. It was also found that the p-effect, in general,



reduces the instability of westerly jets and increases the instability
of easterly jets (see also Kuo, 1973). Kuo (1951) considered the
energetics of barotropic instability and showed that when amplified
waves exist, kinetic energy is fed from the basic current into the
disturbances, while the effect of damped disturbances is to feed the
energy into the basic current. Lipps (1962) considered the barotropic
instability of a nondivergent Bickley jet. Lipps (1963) examined the
instability of a Bickley jet in a divergent, bérotropic fluid and
applied the theory to the Gulf Stream. Howard and Drazin (1964) investi-
gated the stability characteristics of various basic velocity profiles.
Lipps (1965) discussed the stability properties of hyperbolic-tangent
shear flow. Jacobs and Wiin-Nielsen (1966) extended the instability
theory of homogeneous fluids to a stratified atmosphere. Lorenz (1972)
considex~d the barotropic instability of the Rossby wave moticn and
suggested that barotropic instability is largely responsible for the
unpredictability of the real atmosphere.

In the tropics, where the baroclinicity is weak, barotropic in-
stability has naturélly drawn the attention of many authors who have
attempted to correlate it to tropical phenomena. Indeed many studies
have recently been published on barotropic instability in the tropics
as an energy source of easterly flow. Nitta and Yanai (1969) studied the
instability of an easterly current with a symmetric sine-curve profile.
Liﬁps (1970) gxamined the stability characteristics of a hyperbolic tan-
gent wind profile in the tropics. Yamasaki and Wada (1972a) extended Nitta
and Yanai's research and showed that the stability properties of the

easterly current are different from those of the westerly current in



several respects, Yamasaki and Wade (1972b) investigated the verti-
cal structure of the barotropic unstable waves in tropical easterlies.
Despite many investigations of various authors, barotropic instability
associated with the horizontal shear of the easterlies has not yet been
fully explored.

Since the barotropic instability gquation is a nonlinear onme,
the mathematical treatment is very difficult except for limited cases
of special velocity profiles, such as sine-curve velocity profiles,
the Bickley jet and the hyperbolic tangent shear layer. One must re-
sort to numerical methods to determine the stability characteristics
of basic currents with various profiles. Various authors (Wiin-Nielsen,
1961; Haltiner and Song, 1962) have investigated the instability prob-
lem by finite difference methods or finite Fourier series., Yanai and
Nitta (1968) investigated the accuracy of the finite difference approxi-
mation in solving the stability problem of a nondivergent barotropic
current, It was shown that for a sufficiently accurate description of
the instability, a large number of subdivisions, at least 20; are
required for a symmetric sine-curve basic current. Applications of
the finite difference method proposed by them are found in Nitta and
Yanai (1969) and Yamasaki and Wada (1972a,b)., Dickinson and Clare
(1973) used the shooting method and a fourth-order matrix approximatién
to solve the instability problem of a hyperbolic tangent barotrop@c

shear flow, The barotropic stability equation can be formulated as a

variational problem., This allows us to use the finite-element method
to solve the instability problem numerically (see Appendix E for a

description of this method).



In middle latitudes, barotropic instability has been investi-
gated in conjunction with variations of the westerly jet, It is
generally accepted that barotropic instability is not as important as
baroclinic instability in middle latitudes where baroclinicity domi-
nates. Barotropic models rarely predict occurrences of strong intensi-
fication of weather systems, and do not account for the formation of
extratropical cyclones, However, after large-scale disturbances develop
due to baroclinic instability, further development may be produced by
barotropic instability. The purpose of the present work is to attempt
to relate barotropic instability to the generation of synoptic-scale
atmospheric vortices, The data for the present analysis are taken from
the synoptic data of the tornado outbreak during April 3-4, 1974, This
tornado outbreak was the greatest in recorded history in terms of number
of tornadoes, track lengths, area affected and damage. One hundred
énd fifteen‘tornadoes occurred within the area generally encompassed
by a line from Chicago séufhward to the Gulf of Mexico and eastward to
the Atlantic coast., The harde;t hit area consisted of Indiana, Ohio,
Kentucky, Tennesse and Alabama. The barotropic instability.analysis
of the wind profiles over this area is performed for sixteen wind
profiles, i.e., wind profiles for four mandatory levels: 850 MB,

700 MB, 500 MB and 300 MB and for four time steps: 0000Z April 3,
12002 April 3, 0000Z April 4 and 1200Z April 4., The domain considered
is chosen so that the atmospheric flow is quasi-parallel and fhe dis-
turbancés a?e small, #s shown in Figures 46, 47, 48 and 49, The atmo-
sphere over the central and east-central United States is very baro-

clinic during this period of intensification and, following the thermal



wind constraint, the quasi-parallel jet stream is predominantly due to
this baroclinicity. Shortly after 0000Z April 4 a tornado outbreak
took place in this quasi-parallel flow area, It is easily conjectured
that the tornado outbreak might be associated with the parallel-flow
instability, although other instabilities of more complicated processes
may also be possible, It would be interesting and rewarding to examine
a simple physical mechanism such as barotropic instability in the syn-

optic environment which supported a severe tornado outbreak.



CHAPTER II-
BASIC EQUATIONS

In this study the atmospheric motion is assumed tc be hori-
zontal, nondivergent and barotropic. The equations of motion, conti-
nuity equation, vorticity equation and energy equation take the form

(e.g. see Haltiner, 1971)

-ag+u-a—‘£+v§9--fv -2
X

ot d Ay T @)
%%+u%§+v%‘}-:+fu=-'g§' 2)
§%+u%§+vg—§;+va=o %)
%%:%%fj w2 + v dxdy = 0 0B

where u and v are the x- and y-component of velocity, £ is the CoriolisA
parameter, & = gz the geopotential, g the acceleration of gravity, z .~
the pressure height, { the relative vorticity, B = %5 the Rossby param-
eter and E the kinetic energy. Eq. (4) expresses the conservation of
absolute vorticity and Eq. (5) the conservation of kinetic energy. Since
the effect of the variation of the density p is assumed to be small, p

will be taken as constant and will not enter into the equations defining

physical quantities,

()]



We define
u=u(y, t) +u' (x, y, t)
v=v'(xy,t)
=T ' - 3u (6)
C=¢ (@G, t) +¢' (x, ¥ t)’c=-.a—y-
8=3(y, t) +3 (x, ¥, t)

Here the barred quantities denote‘average values in x-direction, which
are zeroth order functions., The primed quantities denote the departures
from the average values, which can also be taken as representing first
order perturbations. The u (y, t) is assumed to be parallel to the x=-
axis and v is assumed to be zero. From Eq. (6) it is obvious that the

average values of the departures are zero, i.e. uw =v = ¢' =§' =0,

On substituting

g%+u'b-‘1'+v' u' g

3% dy (7)
AR TN '
u 3% + v ay+fu— 3y (8)
ot 4 J
Sre v S0, )
The continuity equation is automatically satisfied..
If we define the mean-flow kinetic energy E as
E = % JEZ dy
and the perturbation kinetic.energy E' as
B = k[ @)ir ey
Then from Eq. (5) we obtain
E E' 2 2
Lo B2 Wi’y (10)

Note that the dimension of E and E' is different from the dimension of E.'



Substituting (6) into (1), (2), (3) and (4) and using the relations (7),

(8) and (9) we get, to lowest order, the following equations for the

perturbations:

' - 1 - '

-g—‘é-+u§§ +v'%-fv'=-g§ (11)
] - ]

X T s =--§§' (12)
gu' L av'

S S <o | (13)
] B

"aé' +u§; +v'g'g+v'B =0 (14)

This kind of formulation is characteristic of the regular per-
turbagion theory. When we want to formulate the prognostic equation
for the perturbations, we ignore the time rate of change of the mean
flow, since the latter is of second order, as can be seen from (7), (9)
and (10). After the quantities of the perturbation have been calculated,
we can find the time rate of change of the mean flow. However, these
second order variations are essential in determining the stability of the

mean flow.

From equations (11) and (12) one finds the time rate of chanée

of the perturbation kinetic energy

L2 [ @)?+ e
- [T Ry [ B (158)
. .
5 2 o | (L5b)

where u'v' is the y-direction momentum transport and T = -u'v' is the
Reynolds' stress. For the inviscid theory, the mcmentum transport and

the Reynolds' stress should vanish at solid boundaries. From Eq. (10)



the time rate of change of the mean-flow kinetic energy becomes (e.g,

see Eliassen and Kleinschmidt, 1957)

3E _ . u
3¢t J.'r ay dy (16a)
= f ° %{; dy (16b)

The integrand T %1;; in (16b) represents the rate of work done by the

Reynolds' stress and therefore the rate of increase in mean-flow kinetic

energy. The integrand 7 %‘;‘ in (15a) correspondingly represents the rate

at which the Reynolds' stress increases the kinetic energy of perturbations,
If the perturbations are assumed to be cyclic in x, from (7) and
(9) we obtain the time rate of change of the momentum of the relative

vorticity of the mean flow in the form (e.g, see Eliassen and Kleinschmidt,

1957)
%% = -g-;{' = -sa}; u'v! Qa7)
L .27 as)

vhere the term v'(' is vorticity transport.

Normal Mode Solution of Perturbation Equations

The continuity equation for perturbation flow (13) allows us

to define a stream function for the perturbation flow

s Rt~ 19



and it follows that

' = -a—z-%'+ ﬁ%'
ox’ dy -

If we now set

¥ =g (y) l0ECE) (20)

i.e., proceed with the normal mode solution, the vorticity equation

for a two-dimensional disturbance (1l4) becomes (Kuo, 1949)
@-c) @ -a%9)+ (B-UM =0

Here we use a prime to denote a differentiation with respect to y and
use U =T (y) for convenience in the following discussion., « is the
real wavenumber in x-direction, c the complex phase velocity. We now

define the dimensionless variables as follows

U-u
y* =g, Uk=3 m-%g > ¥ =3@ ci’u y °
max min max mnmin
2
ak = ab , B*-—.U—QPF_— ’
max min
c-U
c* = cr*+ici* ='ﬁ——_.ﬁ'm}l‘ s
' max min
e * = ¢ Unin o o !
= T . ’ - -
r Umax Umin i Umax Umi.n

where b is a characteristic length for a specified problem (here
defined as half the width of the channel or the shear zone). Umax
and Umin are the maximum and minimum value of the basic current U(y)

in the field of flow., The nondimensional parameter B* measures the

ratio of planetary vorticity to the scale of the shear vorticity.,
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The nondimensionalized equation without the asterisks assumes the
form

(U-c) (9" - ach) +@B-0)P=0 (21)

Note than when B = 0 Eq. (21) becomes the Rayleigh stability equation,

i.e., inviscid form of the Orr-Sommerfeld equation,
W-c) @ - o) - V' g = oz @727 + oM (22)

where R is the Reynolds number.

For an easterly basic current Ue’ if we set U = - Ue and use .
the same dimensionless variables we obtain the same Eq. (21), excepé
the dimensionless B becomes negative (Kuo, 1973). 1In fact the stability
characteristics of an ehsterlx current under the influence of B are
exactly the same as those of the westerly current under the influence
of -B. Hence we shall use a negative B to characterize the flow prop-
erties of an easterly current., Dimensional and dimensionless atmo-
spheric profiles are s;hematically shown in Figure 1., It is easily
seen that with proper nondimensionalization, all the equations from

(1) to (20) are also valid in dimensionless form.

Boundary Conditions

At a rigid wall, such as shown in Figure 1, the normal veloc-

ity v' of the disturbances. vanishes, This can be shown to imply that’

= 0 at y=0,2 23)

if we take the position of rigid walls at dimensional y = 0, 2b., If

the flow extends to infinity, then, by physical requirements ¢ must
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be bounded there. Thus boundedness of ¢ at infinity in general implies
that ¢ must tend to zero there, and we may use boundary condition (23)

at an infinite as well as at a finite boundary (Drazin and Howard, 1966).
Other boundary conditions have been discussed by Kuo (1949) and Yanai and
Nitta (1969) (for the symmetric aﬁd antisymﬁetric velocity profiles ex-
tending to infinity, i.e., the profiles shown in Figure 15b,d), and by
Drazin and Howard (1966) (for the profiles in which U or U' is discon-

tinuous in the field of flow).

- =~

N Eq. éélilis.aﬁ eigenvalue probleh unde; appfopkiate'bdundéry
conditions for a given profile U of the basic current., We can find ¢
as an eigenvalue by solving (21) with the wavenumber o specified. The
phase speed ¢ may in general be complex. When its imaginary part ey
"is equal to zero, the disturbance is neﬁtral, and when ey # 0, the dis-
turbance is amplified or damped. The.finite difference approximation
to solve (21) and find ¢ as an elgenvalue, as proposed Sy Yanai and

Nitta (1968), will be .discussed in the Appendix.

Momentum Transport
The physical ﬁechanism of moméntum and vorticity transport
associated with the stability of mean flow has been discussed by Kuo
(1951), Here we briefly review the momentum and vorticity transport
equations, From equations (19), (20), and (21) we obtain the y-

direction momentum transport equation (Foote and Lin, 1950),

2njo
J

u'v' dx

e
=-l'.1a (;P.d_(e -(P*:—ilg)ezacit



de de
1 i r, _2ac,t
= -5« (cpr iy P ---dy) e 1 (24a)

o |U-c|2
or ac 2 |
ar . . X1 B-um ol 20ck 2he)
oy : |U-c|2

It should be remembered that the physical quantities u', v', ¥', (', etc.
are understood to be the real part of their representation., The term

2 in Eq. (24b) and (24c) is proportional to (vi)z. The momentum

[
transport can also be expressed in terms of the tilting of the troughs
and ridges, defined as the curves along which v' is zero. Thus, the

| location of trough and ridge curves is determined by (Kuo, 1951)

P
tan @ (x - crt) = - =

Pr

and therefore the tangent of the angle of tilt g, measured from positive

y direction, is (Kuo, i951)

tan g = %}; == T (25a)
- J%. u‘v; e-Zacit (25b)
ol (]

From the above equation we see that the momentum transport is

proportional to the tilting of the troughs and ridges.

Vorticity Transport

The vorticity transport can either be obtained in the same

way, or simply by differentiating (24) with respect to y. Thus, we
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have the vorticity transport equation (Kuo, 1951)

"-’TC-,- 2acit

g Gvr ¢2 - wi ¢:) e

-2 Enlel? e (26)
2 ume]

This equation shows that the vorticity transport produced by the
amplifying disturbance is in the direction of decreasing absolute

vorticity of mean flow,

Time Rate of Chaﬁge of Momentum of Mean Flow

Substituting Eq. (24) into (17) we get the time rate of change

of momentum of mean flow

U 1 20c .t

SE-7 o @ 0 - @ 9 e (272)
oc 2
- - Az:{ (g~-u") |(2Pl eZacit (27b)
|u-c]|
=9Ce (27¢)

it follows that the effect of the damped disturbance (ci < 0)
is to produce an increase of U in the region where B-U" is positive
and a decrease where B-U" is negative, thus their effect is to sharpen
the mean velocity profile. The effect of the amplifying disturbances
(c1 > 0) is in the oppositive direction, that is to flatten the mean

velocity orofile.
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Time Rate of Change of Kinetic Energy of Mean Flow

Substituting the expression for %% (24c) into the energy equation

of mean flow (16b), we obtain

— oc _m 2
E..G fz uee-u lol dy (28)
o |u-cf
= . &
ot

Since the only energy which the disturbances can withdraw for
.the growth is the mean-flow kinetic energy, the expression at the right-
hand side should be negative. Thus, if the perturbation kinetic energy
is to increase (ci > 0), then, we must also have positive B-U" associated
with higher values of U and negative B-U" with lower values of U, 'This

result is essentially due to Fjortoft (1950).



CHAPTER III
GENERAL THEOREMS OF BAROTROPIC INSTABILITY

In this chapter we briefly review some known properties of
the solution of Eq. (21) subject to the boundéry conditions (23).
When we set y = 2 in the Eq. (24b) and since the momentum transport
or Reynolds' stress vanishes at the upper boundary, we obtain the
following expression

2 2 |
ey f (B-U") I‘;' dy = 0 (29)
lU-cI . ..

from which follows the Kuo's theorem (1949): A necessary condition

for barotropic instability (ci > 0) is that at some value of y, say

T

- " =
B~-TU 0 at Y, 0 < v, <2 (30)

This is an extension of the well-known theorem originally derived by
Rayleigh (1880, 1913). In other words, this condition states that
the absolute vorticity must be & maximum or minimum at some point in
the basic current., From Eq. (29) it might be supposed at first sight
that we have proved that damped disturbances (c1 < 0) also require
B-U" to vanish at some point in the field of flow. This is not the
case, however, as was pointed out'by Lin (1955), and the abové result
applies only to amplified disturbances. It should be noted that this

is only a necessary condition. The profile U(y) = %¥(1l-cos %g),

16
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0 <y < 2, which satisfies (30) bﬁt is stable, is a classical counter=-
example to the sufficiency of the Rayleigh-Kuo's necessary condition,
Kuo (1949) showed that for the symmetric jet which he considered, (30)
is both necessary and sufficient for the existence of amplified waves,
There are several theorems for the neutral solutions of (21) which are
relevant to the instability problem. Based on Sturm's oscillation
theorem, Kuo shows that the phase velocity of neutral waves can never
exceed the maximum wind speed, but may be less than the minimum wind.
speed: these are Rossby-Haurwitz waves., If the neutral waves whose
phase velocity ¢ lying between the maximum and the minimum of the
basic-current velocity are to exist, there must be a critical point
y=7v, where p-U" chagges sign., If there is just one point yn (in
each half of the basic current), then there is just one neutral wave
and its phasé velocity is Uu (Un = U(yu)). For amplified waves to
exist, the absolute vorticity must have a maximum or a minimum within
the field of flow and, if no such points exist, all waves with a phase
velocity greater than the minimum wind speed will be damped. Waves
with phase speeds between Uhin and Un’ il.e., Umin < c. < Un’ are
amplified and_their wavelength L >~Lu. On the other hand, the faster
moving waves, . >-Uu, are damped aad L < Lu' These characteristics
are illustrated in Figure 2 in dimensionless quantities. The above
statement is applicable for the symmetric westerly jet that Kuo con-
sidered, There are some controversies as to whether the amplified
disturbances may travel with a phase velocity . less than Umin (in
dimensionless form c, > 1) for an easterly jet (dimensionless B < 0)

(See Chapter IX).
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In 1950 Fjortoft proved the stronger necessary condition for
instability that (B-U") (U'Un) > 0 somewhere in the field of flow. His
extension of Rayleigh's theorem can be shown to be equivalent to the
statement: for instability, the absolute. value of the absolute vorticity
of the basic current must have a maximum in the field of flow.

Stern (1961) and Lipps (1963) extended the Rayleigh-Kuo's
necessary condition (30) to a divergent flow: A necessary condition
for instability for a divergent barotropic fluid is that the potential
vorticity must be a maximum or minimum at some point in the basic
current.

Taylor (1915) gave a physical interpretation of Rayleigh's
necessary condition of instability. Lin (1955) also has interpreted
physically the mechanism of parallel-flow instability by consideration
of the migration of vorticity. Brown (1972) re-examined the physical
interpretation of Rayleigh's condition of instability.

Modification oﬁ the proof of the semi-circle theorem (Howard,

1961) for the Eq. (21) shows that instability (ci > 0) implies that
Igl 2
(cp - »? + °12 S G+E 57 (31)
o

This implies that ¢ lies in the upper semicircle with center (%, 0)
and radius % (1 + lﬁl) in the complex ¢ plane. It can further be
shown that ¢, < 1 when B > 0 (westerlies) and that c. > 0O when 8 <0
(easterlies). .These modifications of Howard's semi-circle theorem
are essentially due to Pedlosky (1963). This theorem is as pretty

a gem as ever has been polished in the hands of hydrodynamicists, as

stated by Yih (1969). However, this theorem is too general to be used to
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‘detect "spurious" unstable waves., The inequality (31) may be used

to obtain an upper bound on cye According to (31),

2
c; <

oj

1 1B
+ 3 J;-zl' (32)

The embarrassing feature of (31) and (32) is that the semi-circle in
which ¢ must lie and the upper bound on ¢ increase as lB' / az in-
creases. The upper bound on the growth rate is

du

1 .
@¢; 25 | 3y lnax (33)

which was due to Hoiland (1953) and Howard (1961). This states that
the growth rate can never be larger than half the absolute value of the

maximum shear of the basic current. Actually the semi-circle theorem

(31), upper bound on g (32) and the growth rate (33) have limited

practical applications.



CHAPTER 1V
GENERAL STABILITY CHARACTERISTICS

In this chapter we shall discuss some features of the deter-
mination of critical wavelengths and phase speeds for barotropic in-

Stability-

Lower Critical Wavelength of an Unstable Wave

According to Kuo (1949), the lower critical wavelength Lu can
be found by solving (21) after setting c = Uu’ i.e., by solving the

eigenvalue problem

AN
x I3

‘P"+%:'g:<?-a2<p=o, @ = (34)

The finite difference scheme will be discussed in the Appendix, For
a velocity profile expressible in mathematical functiomns, the Lu's
can be determined quite accurately by solving (34)., However, for
actual atmospheric wind profiles we had better solve (21) and deter-
mine ¢ as an eigenyalue by specifying ¢ and locate the wavelength Lu

at which the phase speed of an unstable wave first becomes complex.

Upper Critical Wavelength of an Unstable Wave

For a westerly basic current, the upper critical wavelength

L° of an unstable wave can be found by solving (21) after setting

20
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¢ =0, i,e., by solving the eigenvalue problem (Kuo, 1949)

7L 2
cp"+p'U-U—<p-atP=°a a:%‘l (35)
o

=0 at y=0,2

The finite difference scheme will be discussed in the.Appendix. In
general L, can be determined quite accurately. For an easterly cur-
rent (B < 0) there arise some problems in determining L, by solving
(35) when we set ¢ = 1, It is possible that an unstable wave may
travel with a phase speed <, > 1. We may solve (35) to determine a
relation between ¢ and L for real ¢ > 1 and find the minimum value of
I,. Thus this L is the upper critical wavelength of the unstable wave

(See Chapter IX).

(cr, ci)-L Diagrams

If we want to know the general feature of stability character-
istics, the best method is to solve (21) and find c and ¢ as functions
of ¢ or L, Figure 4, called a (cr, ci)-L diagram in this study, shows
an example of the relationship.between phase velocity ¢ and the wave-
length L for the symmetric sine-curve profile U(y) = % (1 - cosmy),

0 <y < 2 vhen the dimensionles; B=0.375 and the number of subdivisioﬁs
N = 20. We obtain nineteen series of phase velocities c, among which
a pair become complex for intermediate wavelengths as denoted by the
thick line in the figure. The other seventeen series cofrespond to
"singular" solutions having phase speeds equal to the velocities of

the basic current somewhere in the field of flow. Forba more detailed

description of this figure, see Yanai and Nitta (1968).
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Figure 5 shows the (cr, ci)'L diagram for the atmospheric pro-
file at 500 MB, 0000Z April 3, 1974. The number of subdivisions is 20.
The values of the dimensional and dimensionless velocity profile, dimen=-
sionless absolute vorticity gradients, and the lower and upper critical
wavelengths for the unstable waves found from (34) and (35) are shown
in Table 1, For this wind profile, there are four critical points and
five unstable waves., The real parts of the phase speeds of these un-
stable waves are denoted by thick lines and the imaginary part by
dotted lines, It is difficult from Figure 5 to tell the "true" un-
stable waves from "spurious'" unstable waves due to truncation errors
or errors inherent in the finite difference approximation. A closer
examination of the value of B-U" at each point in Table 1 shows
that the critical points at y = 1.64 and y = 1,79 are very close to
each other. These two critical points can be easily smeared out by4
smoothing the basic current. Hence it is possible that four of the
unstable waves are actudlly the same unstable wave, which will be con-
tiguous to a Rossby-Haurwitz wave. The effect of smoothing of the
wind profiles on the stability characteristics will be discussed in
Chapter VI, It is also found that the Lu's calculated from Eq. (34),
shown in Table 1 are in general different from those shown in Figure
5. The Lu for one of the unstable waves is especially difficult to
find accurately since the real part of the phase speed ¢, for this
.unstable wave changes little as L increases, A little inaccuracy in
interpolating Y, and Un will change Ln significantly. On the other
hand, the unstable wave associated with the Rossby-Haurwitz wave has

de
its |—3%| quite large and therefore it is easier to find its L, more
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accurately, This type of unstable wave in general contributes to
larger growth rate, It is interesting to note that for all the atmo=-
spheric wind profiles considered in this study, the eigenfunctions ¢
for the singular waves which become this type of unst#ble wave at Ln
are of first mode. The unstable waves of this type are in general the
"true" unstable waves for an atmospheric wind profile and are in gen-
eral of practical importance, since they contribute larger growth rate.

There are other unstable waves which change into singular waves
or exist even at infinite L. Their cr's in general change 1little as
L increases and thus it is more difficult to determine their ;n's
accurately. They contribute in general less growth rateé as compared
to the unstable waves contiguous to a Rossby-Haurwitz wave. An examplé
of the unstable wave due to truncation errors will be shown in Chapter
VI, and that due to errors in the finite difference approximation will
be shown in Chapter V.

Since it is not economical or feasible to increase the number
of subdivisions N for the actual atmospheric wind profiles, the best
method to determine whether an unstable wave is spurioﬁs is to use the
technique of smoothing. For a velocity p:ofile expressible in mathe-~
matical functions, true unstable waves can be identified by their

insensitivity to variations of number of subdivisions N,

Unstable Waves

In Figure 6 and Figure 7 the eigenfunctions for éome unstable
waves are shown in terms of their amplitude |¢| and phase angle arg .

Also plotted is %% expressed in terms of the component in phase and
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the component out of phase with ¢:

dg " a4 i d 107 +

_d
((Py) in - dy
@) oue = 19] 35 (278 @)
y’out dy

For small cys it can be found that the in-phase and out-of-
phase component of~%§ has a distinct singular behavior at the points
where . is equal to the velocity of the basic current; For c; equal
to zero, i.e., for a singular wave, this singularity is more profound
and wiil be discussed later, |

The disturbance stream function of an unstable wave can be

calculated from (20), i.e.,

yr= [¢r'cos ax -e, t) - ¢; sin a(x - c, t)] eyt
In Figure 19a is shown the disturbance stream functioﬁ of the most
unstable wave for 500 MB 0000Z April 3 wind profile, which has a
wavelength of. 2.6 (2476 km) and amplifies by a factor of e in 3.44
days. The maximum amplitude of the disturbance occurs at y = 1.0,
just at the middle of the channel, The letter C and A represent the
primary centers of cyclonic and anticyclonic vorticity. The dashed
lines show the trough and ridge line, where v' vanishes. The loca-
tion of trough and ridge line is determined by

P
tana(x-cr)r:--—

b
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and the tangent of the angle of tilt @ measured from positive y direc=-
tion is given by (25a) and (25b), which is proportional to the momentum
transport, -

The momentum transport u'v' is given by Eq. (24a;b) and is repre-
sénted by a curve in Figure 8b. It goes from zero to a minimum at the
first critical point, then increases from here to a maximum positive value
at the second critical point. From this critical point it decreases to
zero at the upper boundary except at the two critical points c}ose to each
other, where it is negative. It is seen from Figure 8b that u'v’' %—;}- is
mainly negative so that the time rate of change of mean-flow kinetic energy,
given by (16) and (28) is negative, i,e., the perturbation is withdrawing
the kinetic energy from the basic current,

The time rate of change of the basic current is given by (27) at
every point of y. From Figure 8a, in which are plotted the basic current
U and its time rate of change %%, it is readily seen that the momentum
transfer reduces the maximum shear in the mean flow and hence intensifies
the disturbances. |

It is found that the 29 calculated by (27a) and (27b) can be used

ot

as a measure of the accuracy of the finite difference approximations.
The maximum root mean square difference between these two calculations
for the wind profiles considered in this study is 0.7935 x 10-3. The
maximum percentage error is less than 0,01%. Therefore, the accuracy of
the finite difference approximation of Eq. (21) is satisfactory.

The vorticity transport ;TET s Which is numerically equal to the
time rate of change of the basic current g% for a plane parallel flow, is

given by (26). It is found from Figure 8c that the vorticity transport is
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in the direction of negative y at the center part of the channel and

in the direction of positive y near the boundaries.

Rossby Waves

In Figure 4 and 5 it is seen that Rossby-Haurwitz waves appear
at a certain wavelength Lo' They are Rossby-Haurwitz waves.of the first
mode. Rossby-Haurwitz waves abbear in the ordér of the number of modes,

as can be seen from the classical frequency relation of Rossby-Haurwitz

waves. Let U(y) =-Uﬁax é 1, Uﬁin = 0, then the frgquency relation reads
n.?'n'2 + ﬂﬂi -
4 L2 l-c.

Keeping the right-hand side constant, we can sée that the number of
modes n increases if the wavelength L increases, That is, the Rossby-
Haurwitz waves of higher modes will apéear first at larger wavelengths,
Figure 30a showé the (cr, ci)-L diagram for the 700 MB 0000Z April 3 |
win& profile and Figure 9 shows the eigenfunction ¢ of the three Rossby-

Haurwitz waves for this profile.

Singular Waves

In addition to the regular solutions (unstable waves and Rossby-
Haurwitz waves) mentioned above, there are "singular" or "continuum'
solutions, which are denoted by thin solid lines in Figures 4 and 5.
These solﬁtions.correspond to continuous eigenvalues of ¢ which are
equal to the basic current U somewhere in the field of flow. It is
clear from Eq. (21) that these singular solutions possess discontinuous

%%. The eigenvalues @ at L = 1,0 for 500 MB 0000Z April 3 wind profile
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are shown in Figure 10 in order of ﬁumerical values of the phase speed
c¢. The singular waves possess real phase velocity which are equal to
the velocities of the basic current shown by dots, These waves have
discontinuous first derivatives of ¢ at the points, although a small
discrepancy due to the coarse finite difference is observed.

The singular solutions are best illustrated by Drazin and Howard
(1966). They showed how ‘to attack the instability problem as an initial
value problem by the use of Fourier-Laplace transforms., It is found
that the solution contains a discrete.spectrum (regular solutions),
which is the same as the normal mode solutibn, and a continuﬁm spectrum
(singular solutions). Case (1960) and Dikii (1969) have indicated that
the integral over the continuum spectrum decays like 1/t, so the dis-
crete spectrum aloneAis associated with the instability. Thus, in
seeking a criterion for instability, we may use the method of normal
modes and ignore the continuum spgctrum. The singular or continuum
solutions correspond to continuous eigenvalues of ¢ which are equal
fo U somewhere in fhe field of flow. Casé (1960) has shown that these
continuum modes are needed to form a complete set of solutions for
arbitrary initial disturbances, But, as noted above, we can proceed
with the normal mode solution and ignore the cortinuum mode., It should
' b; remarked that the singular waves shown in Figures 4 and 5 wonld form
a continuous spectrum of phase velocities when the number of subdivi-
sions N is increased to infinity, i.e., only ;he unstable waves and
Rossby~-Haurwitz waves are distinguishable.

Finally, let us discuss some important features of (cr, ci)-L

diagrams. It is found that
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a. c_-curves, i.e., the curvesc = cr(L). for singular solu-
tions rarely cross each other, however, they may cross the c.-curves
for unstable waves..

b. The singular waves of first mode in general travel mor..
slowly than those of higher modes. |

¢. For the unstable waves contiguous to Rossby~Haurwitz waves,
the gradient of c_ with respect to L, i.e., E%f' is larger.

d. The c . -curves for the singular solutions tend to decrease
as the wavelength L increases, if they do not cross each other or the
¢ .-curves for the unstable waves, However, when they cross the c."
curves for unstable waves, their slope may increase as L increases.‘

If they cross the unstable ¢ -curves at large angles, then it is possible
that there is a discontinuity in the slope of the ci(L) for the corres-
ponding unstable waves.

e, Two singular c.-curves may converge into one unstable c.”
curve at some wavelength Ln' Also, at Pn the gradient of c. for
singular waves with respect to L is infinite whereas that for unstable
waves is finite,

f. The gradient of ¢, with respect to L in the vicinity of the

i
lower critical wavelength Lu and upper critical wavelength L, becomes
infinite, as proved by Yanai and Nitta (1968).

g. Only those singular waves that are associated with unstable

waves, or that cross the unstable waves, have their real part of the

phase speed <. increasing as L increases.



CHAPTER V

STABILITY CHARACTERISTICS OF SINE-CURVE PROFILES

In a later chapter, we shall compare the instability charac-

teristics of our atmospheric wind profiles with those of sime-curve

profiles, so let us now discuss some stability characteristics of

westerly currents (B > 0) with symmetric and antisymmetric sine-curve

profiles.

Consider a sine-curve profile given by

U(y) =-§- @ - éosrrry), 0<y<2

where r is a measure of wavelength of U(y) in the y~direction and

needs not be an integer. The critical points are found by

_m -1 .28
Y, =% * cos (22) 0<yu<2

L
e mr

and the U at critical points by

1 28 -
v, = 7 Q-5

" X

where m is an integer and should be chosen such that 0 < Y <2, In

order that the gradient of absolute vorticity may vanish somewhere in

the channel, the following relation should hold

29
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Following Kuo (1949), we determine the characteristic wavenumber of
the neutral solution which is relevant to the stability problem. Sub-

stituting U and Un into Eq. (34), we get

M o= (oF -rP YR . (37)

(37) admits the solution

? = sinpy

where

p2 = 11'2'1'2 - 02 . ' . (38)

(39)

vhere n is an integer. Hence from (38) and (39) the critical wavelength
-is

L S

* 44r2 - n?
For a real Lu’ n should be chosen such that n < 2r. The acceptable
}argest value of the integer m is actually the number of unstable
waves for the sine-curve profile, Since our atmospheric wind profiles
correspond to the sine-curve profile (36) with r less than 2, only the
case r < 2 is considered in this study.

For the case r < 0.5, there is no lower critical wavelength

Ln and therefore no unstable waves exist, For 0.5 <r <1,0 and n = 1;
there is one lower critical wavelength and therefore only one unstable

wave, For L. < r <1l1l,5 and n = 1, 2; there are two Ln's and two unstable
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waves., For 1,5<r <2 and n =1, 2, 3; there are three Lu'é and
three unstable waves, For r=0,5, the sine-curve velocity profile is
a classical counter-example to the sufficiency of the condition for
instability (30). The (cr, ci)-L diagrams for various values of r

are shown in Figure 11, It should be noted that for non-symmetric
sine-curve profiles, i.e., the profiles with r not équal to an integer,
the amplitude function ¢ of the singular solutions is not symmetric or
antisymmetric except at the lower critical wavelength Ln where it is
symmetric or antisymmetric. In addition to these critical values of

r, i.e., those r equal to 0.5, 1,0, 1.5, 2,0, etc., it is easily seen

from Figure 11 that there are other critical values of r which demar-

cate the number of Rossby-Haurwitz waves existing for the sine-curve éro-

files. In Figure 12 is shown the number of unstable waves and Rossby-
Haurwitz waves as a function of r and dimensionless B for the sine-
curve profile (36). With these facts in mind, we can interpret the
appearance of the false unstable wave, shown in Figure 1lld, for the
sine-curve profile (36) with r = 1 and the number of subdivisions

N = 6 and U"(y) expressed in differential form, i.e., U"(y)= ﬂggiosﬂrjd
instead of in difference form, U"(y)= g% (Uj+1 + Uj-l - 2Uj). Yanai
and Nitta (1968) have not been successful in analyzing the condition
for the "false" instability. Indeed as we compare Figure 11d with
Figure lle (r = 1,0625), we find that the ﬁain features are the same.
Since the r value of the profile considered by Yanai and Nitta (1968)
is on the boundary which determines whetherr the number of unstable

wave is 1 or 2, it is possible that errors in the numerical calcula-

tion will shift the value of r exactly equal to 1 to that slightly
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larger than 1 or to that slightly less than 1, In thé latter case
there are no false waves since the number of unstable waves with r = 1
is the same as that with r slightly less than 1. 1In the former case
a "false" unstable wave appears, A spurious wave also appears when
r = 2,0 with the number of subdivisions N = 20 and U" expressed in
differential form, as shown in Figure 11j. Hence it is possible that
a spurious unstable wave will appear for the sine-curve profile (36)
with r equal to 0.5, 1.0, 1.5, 2.0, etc. when numerical methods are
used to calculate the ;tability characteristics. For other values
of r, quite different from 0.5, 1.0, 1.5, 2.0, etc., no false unstable
waves are reported. When U" is expressed in difference form, it
happens that the numerical method will change the value of r = 1 or
r =2 to that of slightly smaller than 1 or 2 respectively, so there
are no false unstable wave existing, even when the number of subdivisions
N is small,

It can be concluded that for the small value of N, fhe numeri-
cal calculation with U" expressed in differential form will increase
the value of r slightly, and when r is equal to 0.5, 1.0, 1.5, 2.0,

a spurious unstable wave will appear and the stability characteristics

will be changed,



CHAPTER VI

EFFECT OF SMOOTHING OF VELOCITY PROFILES ON STABILITY CHARACTERISTICS

As stated above, smoothing techniques may play an important
role in the determination of stability characteristics of actual
atmospheric wind profiles. Since what interests us is the "large-
scale" instability, we should smooth the basic current in order to
isolate a result of physical significance and to remove the insfability
due to the noise. The treatment of smoothing and filtering techniques
can be found in éhapiro (1970). First we consider the simple one-
dimensional three point operator

[}

j - 2U,) (40)

=U,+8 (U, , +U
i (J"‘l j-1 h|

With smoothing element S = 0,25, this smoother will remove two grid-
length waves in the basic current. It can be easily shown that the

absolute vorticity gradient Z = B ~ U" satisfies (40), i.e.,

Z,=2,+8 (2,4 +2, , ~ 22 41

i3 i1+ 250 3 @b

It can be proved that if Zj+1 and zj_1 are of the same sign and Zj is
and 2 then, with 8 = 0.25, if

of opposite sign to Zj+1

j-1’

1
25 <3 12500+ 254l

the smoo;hed Ej will be of the same sign as Zj+1 and Zj-l' That is,
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the two critic%l points will be smoothed out. We may take |Zj+1 + Zj-ll
-2 |Zj| as the strength of the two critical points against the smoothing.
If this strength is positive, then the two critical points will disappear
after the basic current is smoothed once with the smoothiné e;ement 5=0.25,
If it is negative, then the two critical points will still exist after
smoothing.,

It is apparent that repeated applications of the simple smoother
(40) would be undesirable because of excessive damping of even medium and
long waves in the basic current., In fact, it would be desirable to leave
waves longer than several gridlengths relatively unaffected. It is poss-
ible, by combining several smoothing elements, to design a filtering
operator to suit specific requirements. Successive application of two
smoothing operators of the form of Eq. (40), with smoothing elements
8§y = 0.25, 32 = =-0,25 will produqe significantly less damping of the
intermediéte wavelengths,

It is easily seeP that smoothing tends to decrease the shear of
the basic current and therefore make the basic current more stable. 1In
other words, it will decrease the upper critical wavelength Lo of an un-
stable wave, since the Rossby-Haurwitz wave can be more easily maintained
when the shear is small, Smoothing wi}l also decrease the imaginary part

of phase speed ¢, and, therefore, the growth rate. Smoothing will also

i
increase the lower critical wavelength Lu for stability.

In order to study the effect of smoothing further, let us con-
sider the symmetric sine-curve profile U(y) = % (l-cosTry), r = 1,
0 <y < 2, which has been examined numerically by Yanai and Nitta (1968).
Figure l3a is the (cr, ci)-L diagram for the above profile, except

all the digits past the hundredth were truncated when the numerical
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values of U(y) at the grid points wérg computed, It is found that a
spurious unstable wave appears from the wavelength L § 2 to L ~ 13,
Howevér, as shown in Figure 13b, after applying the operator (40), the
undesirable unstable wave disappears, although there is a-slight change
of phase'velocities and lower and upper critical wavelengths, as shown
in Tables 2 and 3., It seems that smoothing is a powerful technique to
eliminate the undesirable unstable waves due to the truncation errors
or errors inherent in the finite difference scheme, This enables us

to obtain a result of physical significance. The occurrence of the un-
degirable unstable wave shown in Figure 13a may be interpreted by the
fact'that a slight change of numerical values of U for the profile with
r = 1 will shift its stability characteristics into those for the pro-
file with r slightly larger than one, as stated in the last chapter.
Therefore, it is possible that the effect of smoothing will reduce the
actual value of r for the sine-curve profile. For the sine-curve pro-
file (36) with.r = %, it is found that the profile is still stable after
it was smoothed once or twice (S1 = 0,25 = Sz).

Let us now consider the effect of smoothing of the actual
atmospheric wind profiles, Take the wind profile at 500 MB, 0000Z
April 3, for instance. As mentioned above, in Chapter IV, there are
five unstable waves for this wind profile, which are in such a chaotic
manner that we are not able to tell the unstable waves of physical .
significance from other '"undesirable'" waves due to truncation errors
or possibly due to errors inherent in the finite difference approxi-

mation, The (cr, c,)-L diagram for this profile has been shown in

i) )
Figure 5. After the profile is smoothed one time (S1 = 0,25), there

remain only two unstable waves, as shown in Figure l4a, and the unstable
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wave which exists at infinite L before smoothing is no longer present
in this figure. There is also some combination of unstable waves,
This (cr, ci)-L diagram represents a 'better" conf;guration since the
instability due to shorter waves in the basic current ha; been sup-
pressed, If we apply the smoothing twice with S1 = 82 = 0,25, there
remains only one unstable wave, as shown in Figure 14b, The real
part of the phase velocity L for this unstable wave decreases to zero
very quickly as the wavelength L increases and it becomes a Rossby-
Haurwitz wave at a certain wavelength Lo' Only this unstable wave

is of physical significance and represents a "large-scale" instability.
There is of course a slight change in the critical wavelengths and
growth rates, as shown in Table 4, |

In Figure l4c is shown the (cr, ci)-L diagram for this profile
smoothed twice with smoothing elements S1 = -82 = 0,25, In this case .
there are two unstable waves, since the two critical points close to
each other can not be smoothed out by successive application of two
smoothing operators of the form of Eq. (40) with 81 = =Sy = 0.25.
However, the growth rates of unstable waves are closer to thoée for
the nonsmoothed profile.

In conclusion, smoothing is a powerful technique to determine
the large-scale instability characteristics which are of physical
significance and to eliminate the undesirable waveé due to truncation
errors or errors inherent in the finite difference approximation. In
other words, the unstable waves of physical significance can be identi-

fied by their insensitivity to smoothing.



CHAPTER VII
STABILITY CHARACTERISTICS OF VELOCITY PROFILES EXTENDING TO INFINITY

The question naturally arises as to the effect of extending
the boundaries to infinity on the stability characteristics., Figure
15 shows the symmetric and anti-symmetric sine-curve velocity profiles
within a chamnel, and those extending to infinity. The latter have

the same sine-curve velocity profiles as given by
Uly) = @A -cosmry) r=%1

in the central belt 0 <y < 2 and are constant outside this belt, This
will in general tend to increase the instability, since the shear will
increase slightly and the boundaries which prevented the momentum trans-
port necessary to maintain unstable disturbances no longer exist, Take
the profile with r = % for instance. This profile kFigure 15¢) is
stable if it is in a channel with boundaries at y = 0 and 2, while the

profile (Figure 15d)

Uy) =% L-cos T o0<y<2
U@y) =0 y<o0
U(y) =1 y>2

is unstable (e.g. see Yanai and Nitta, 1968). The profile U(y) = %
(1 -cos my), 0 <y < 2, shown in Figure 15a is more stable than the

following profile, plotted in Figure 15b

37
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U(y) =3 (Q-cosmmy) 0<y<2

Uy =0 y<0, y22
Furthermore, the profile in Figure 15b has two unstable wa@es, while
the profile in Figure 15a has only one uﬁstable wave (e.g. see Yanai
and Nitta, 1968). The increaée in the number of unstable waves may
also be interpreted by the fact that tﬁe extension of the boundaries
may increase the actual r slightly.

Now let us consider our atmospheric wind profiles. A glance
at the weather maps (Figure 46, 47, 48 and 49) for the levels and time
considered in this study shows that the atmosphere below the lower(south~
eastern) boundary, i.e., over the Gulf of Mexico and Atlantic Ocean south
and southeast of Florida, was quite inert., The pressure and wind fields
did not change very much as compared to those over the U,S. continent,
It seems that we may get a more realistic result of stability character-
istics if we extend the lower boundary to infinity with the values of
the velocity outside the original boundary equal to the values on this
boundary. Then the wind profile will consist of a shear belt in the
region 0 <y < 2 and a constant wind belt for y < 0., Since we do not
want wind profiles which have a discontinuity in U'(y), we had better -
use smoothing techniques to eliminate this undesirable discontinuity.
For easier manipulation of numerical calculation we place the lower
boundary at y = -1, i.e., we add ten grid points outside the shear zone
to 21 grid points within the shear zone, and use the same boundary con-
dition, i.e., o = 0 at y = -1,

Figure l6a shows the (cr,ci)-L diagram for the 500 MB 00002

April 3 wind profile extending to infinity and smoothed once and
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Figure 16b for that profile extending to infinity and smoothed twice.
When we compate Figure 16a and 16b with Figure 14, it is found that the
overall features of (cr’ci)'L diagram do not change very much, The un-
stéble wave contiguous to the Rossby-Haurwitz wave is'not sensitive to
the extension of the lower boundary, while the unstable wave existing
even at infinite L remains after moving the lower boundary from y = 0
to y = -1, This unstable wave is insensitive to émoothing in contrast
to the case for the bounded wind profile, Practically speaking, this
unstable wave is not imporgant since its growth rates are small as com-
paréd to those of the unstable wave contiguous to the Rossby-Haurwitz
wave, There are many (theoretically infinite) singular solutions which
originate from the constant-wind belt (Yanai and Nitta, 1968). This

can be easily seen from Eq. (21)., As oo » «, i.e., L =0

U=-c)e=0

or

0
L}
(=}

which states that as L - 0, the phase speed is equal to the basic
current at the grid points. These singular ¢, -curves, originating

from the constant-wind belt, densely cover a portion of the (cr,ci)-L
diagram, It is also found that no unstable waves are contiguous to the
singular waves which originate from the constant-wind belt., The singu-~
lar waves which originate from the constant-wind always become a Rossby-
Haurwitz wave if the constant-wind speed is close to zero (Yanai and
Nitta, 1968). 1t is also found that the growth rates for the semi-
infinite wind profile is, in general, larger ;han those for the corres-

ponding bounded profile, as shown in Table 4, Thus, the extension of
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the boundary will tend to increase the instability in the sense that it
will increase the growth rates of an unstable wave inherent in a bounded
profile and produce additional unstable waves.

In Figure 17 is shown a comparison of the amplitude functions
¢ of unstable waves for the 500 MB 0000Z April 3 wind profile (solid
lines) with those for the corregponding extended profile (dotted
lines). 1In figure 18 is shown the |¢| of an unstable wave at various
wavelengths for the extended 500 MB 0000Z April 3 wind profile. It
is found that the amplitude of unstable waves is confined in the shear
belt 0 <y <2, The general features of the amplitude do not change
much within the shear belt after the extension of the lower boundary
fromy =0 to y = -1, The disturbance stream functions of the most un~
stable wave (at L = 2,6) for the 500 MB 0000Z April 3 in a channel and
the corresponding extended profile are shown in Figure 19.. The centers
of cylonic and anticyclonic vorticity are marked by C and A. The dashed
line shows the trough and ridge lines, where v' vanishes. -The stream-
functions cover one wavelength in x, The streamlines are drawn at
equal intervals on an arbitrary scale. There is only one cyclonic
vorticity centgr and one antiqyglonic vorticity center in one wave-
length, since the aﬁplitude |¢| has oply one maximum for this unstable
wave, shown in Figure 17#; It i; found that‘for botﬁ casés the maxi-~
mum amplitude of the disturbance occurs at y = 1., The location of
cyclonic and anticyclonic vorticity centers and the angle of tilt ¢ do
not change much after the extension of the lower boundary to y = -1,
However, the amﬁlitude of the disturbances fbf the extended profile is
larger than that for the boundeé profile. This again indicates that

the extension of lower boundary to infinity (actually to y = -1 for
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numerical calculations) tends to increase the degree of instability.
The numerical values of momentum transport u'v', vorticity transport

v'C', and the time rate of change of mean moment:um.-ég are shown in

ot
Table 5 for both-cases, It is found that the direction of momentum
and vorticity transport is the same in the shear belt for both éases;
However, the magnitudes of the transports are intensified due to the
extension of the lower boundary; In the constant-wind belt, there were
positive momentum transport and negative vofticity transports, the mag-
nitudes of which are negligibly small., The time rate of changé of the
mean-flow kinetic energy for the bounded profile is -7.0940, while that
for the extended profile is -10,7061. Froﬁ,the ébove facts, it is con-
cluded that the extension éf the lower boundary will increase the degree
of instability. | .

The amplitude of the additional singular waves due to the exten-
sion of the lower boundary to "iﬁfinity" is confined to the'constant-
wind belt, while tﬁe ;mﬁlitude of the original éingular waves is con-
fined to the shear belt., Thus, it is easy to identify the additional
singular waves due to the extension of the lower boundary from the origi-
nal singular waves for the bounded wind profile.. From Figure.ZO we see
that this is the case. These singular waves possess discontinuous first
derivatives of ¢ at some points where their phase velocities are equal
to the velocities of the basic current., For larger c. this singular'
behavior can be seen from the figure, whilé"for smaller € only one of
the discontinuities is visible in the figure. The additional singulhr
waves have their %% discontinous in the constant-wind belt and are re-
flected in the figure as zigzags in the @,

It should be noted that one of the ten additional solutions ¢

is a Rossby-Haurwitz wave, whose phase épeed is negative. The amplitude
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function @ of this Roésby-Haurwitz is confiﬁed in the constant-ﬁind

belt, As L increases, the amplitud;s tend to spread into thevshear

belt, In Figure 21b are shown the ¢ of Ros;by wave of this type for
successive wavelengths. It.caﬁ.be seen that for L > 5.4 the maximum
amplitude is shifted into the shea; belt.

The original Rossby-Haurwitz wave, i.e., that inherent in a
bounded profile, will change the number of modes f¥oﬁ one to two, vThis
Rossby-Haurwitz wave,lwhich is contigﬁous to aﬁ ﬁﬁstéble wave, is con-
fined to the shear belt. As L increases it tends to spread into the
constant wind zone, in contrast to the Rossby-Haurwitz wave due ;o the
extension of the lower boundary. This can be seeﬁ from Figure 2la,

In conclusion, the extension of Ehe lower boundary to "infinity"
will increase the degree of instability for a velocitf profile, How-
ever, the general patterns of the streamlines of the unstable wave and
the (cr;ci)-L diagram do not change much for the extended wind profiles
as comﬁared to the’corFesponding bounded wind profiles. As already
noted, we éhall get a more physically meaningful result if we extend
the lower boundary to infinity since the observed atmospheric flow for

our study below the lower boundary was quite inert.



CHAPTER VIII
DISCUSSION ON THE STABILITY CHARACTERISTICS OF EACH WIND PROFILE

In Ehis study the value of B for calculating the stability
characteristics of actual atmospheric wind profiles is assumed constant,
though our results have simple extensions for the more general function
B(y). The dimensional B is taken at latitude 36°. The domain of the
atmosphere considered in this study is shown in Figure 46, 47, 48, and
49, We chose 23 x 35 grid points in this domain and on the boundaries.
Only 21 x 33 values of u were obtained., Thus, we had 21 values of U(y).
Most of our calculations were based on a bounded brofile; i.e., we
assumed the atmospheric motions occurred in a channel bounded by two
rigid walls., This will in general underestimate the growth rates. For
the extended profile wg'add ten grid points in the belt 0 <y < -1,

The gridlength is 95.2 km. Thus it is not feasible to refine the mesh
and use a larger value of N, In the following we shall discuss the

stability characteristics of each wind profile.

850 MB 0000Z April 3

This profile has three critical points, as denoted by black
dots in Figure 22b, There are six unstable waves, as can be seen in
the (c.,c;)-L diagram in Figure 24a, Of the four "isolated” unstable
waves, three are possibly "spurious'" waves due to the truncation errors

or errors inherent in the finite difference approximation. They are
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of no practical importance since their c, are very small, The (cr,ci)-L
diagram for smoﬁﬁhed profile (S1 = -82 = 0,25) is shown in Figure 24c,
in which there remain only four unstable waves. This profile is quite
unstable and no Rossby-Haurwitz wave exists, However, since the shear .
is small (see Figure 22a), the largest growth rate is only 0.176/day,
as shown in Figure 23, corresponding to an e-folding time of 5.68 days
at the most preferred wavelength L = 3.8 (3619 km). The disturbance

stream function of the most unstable wave is shown in Figure 24b,

850 MB 1200Z April 3

This profile has only one critical point located at y = 0,36
with g, = 0.074 and only one unstable wave from L = 1,3 to L = 6.09,
where it becomes a Rossby-Haurwitz wave (Figure 25a), This profile is
similar to the sine-curve profile (36) with r = 0.75 and the stability.
characteristics are the same as the corresponding sine-curve profile,
i.e., it has only one unstable wave and éne Rossby-Haurwitz wave. The
largest growth rate is 0.078/day (Figure 23), corresponding to an e~
folding time of 12,85 days at the most preferred wavelength L = 3,0
(2857 km). The disturbance stream function of the most unstable wave

is shown in Figure 25b.

850 MB 0000Z April &

This profile has one critical point located at y = 0.27 with
Un = 0.13. The critical point is close to the lower boundary and its
u, is small as compared to 1. For this type of velocity profile, the

c; are, in general, very small. Only one unstable wave exists between
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L =3,16 to L = 6,36 where it becomes a Rossby-Haurwitz wave, as can

be seen from the (cr,ci)-L diagram in Figure 26a. This profile is
similar to the sine-curve profile (36) with r = 0,75 and the stability
characteristics are similar, The growth rate is 0.066/day, correspond-
ing to an e-folding time of 15,20 days at the most preferred wavelength
L = 4,8 (4572 km)., The disturbance stream function of the most unstable

wave is shown in Figure 26b,

850 MB 1200Z April 4

This profile has two critical points at y, = 0.17 and'yu = 1.88,
very close to the boundaries, with corresponding g, = 0.14 and Uu = 0,049
respectively. Since the critical points are close to the boundary and
the Un's are small, we expect a small ¢y for this profile. There are
three unstable waves and two Rossby-Haurwitz waves for this profile
(Figure 27a). The maximum growth rate is 0.029/day, corresponding to
an e-folding time of 3%.50 days at the most preferred wavelength L=1.6
(1524 km). The smoothed profile becomes stable with no critical point,
The disturbance streamfunction of the most uﬁstable wave is shown in

Figure 27b,

700 MB 0000Z April 3

This profile has one critical point located at Y, = 1,88 with
corresponding U, = 0.74 (rigure 28). The critical point is close to
the upper boundary and is located in a region where the shear is small,
It is easily seen that the cy of the unstable wave for this profile
is very small. There are three Rossby-Haurwitz waves and one unstable

wave, as shown in Figure 30a. The maximum growth rate is 0.01l/day



46

(Figure 29), corresponding to an e-folding time of 85.38 days at the

most preferred wavelength L = 1.6 (1524 km). The smoothed profile should
be stable since the only critical point can easily be smoothed out,

There are two cyclonic vorticity centers and two anticyclonic centers

in the disturbance stream function (Figure 36b) since the |¢p| has two

maxima (Figure 7).

700 MB 1200Z April 3

This profile has two critical points located at Yy = 0.19 and
Yy = 1.83, very close to the boundaries, with corresponding U, = 0,040
and Un = 0.40 respectively. We do not expect a large growth rate for
this.profile. There are three unstable waves (Figure 3la). One is con-
tiguous to a Rossby-Haurwitz wave and has a peculiar behavior, i.e.,
the gradient of c, with respect to L of this unstable wave increases L
at some wavelengths, This profile corresponds to the sine-curve pro-
file (36) with r somewhgre between 0.75 to 1.50. Also, its stability
characteristics are similar to the sine-curve profile with r = 1,125,
except for this profile one unstable wave is ;n "isolated" one. The
- maximum growth rate is 0.018/day, corresponding to an e-folding time
of 32,96 days at the most preferred wavelength L = 3.6 (3429 km). The

disturbance stream function is shown in Figure 31b,

700 MB 00002 April 4

This profile has two critical points located at y, = 0.23 and
Yy = 1.83 with corresponding Uy = 0.19 and Un = 0,52, The critical

points are also close to the boundaries. There are three unstable waves
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(Figure 32a), two of which should be the same one, as can be easily
seen from the figure. This profile corresponds to the sine-curve pro-
file (36) with r eqﬁal to some value between 0.75 to 1,50, 1Indeed, its
stability characteristics are similar to the sine-curve profile with r
= 1,125, The maximum growth rate is 0.125/day, corresponding to an e-
folding time of 7.89 days at wavelength L = 3.0 (2857 km)., The distur-

bance stream function is shown in Figure 32b.

700 MB 12007 April &

This profile has two critical points located at y, = 0.44 and
Y, = 1,76 with corresponding Un = 0.24 and U, = 0.69, respectively.
The shear of the profile near the latter critical point is small and
thus the unstable wave due to this critical point, if any, is expected
to contribute little growth rate. There are three unstable waves
(Figure 33a), one of which is obviously spurious. The smoothed profile
has two unstable waves, (Figure 33c¢c). One of the original unstable waves
has been eliminated by smoothing, The maximum growth rate for the non-
smoothed profile is 0.055/day, corresponding to an e-félding time of
18.11 days at the most preferred wavelength L = 4.8 (4572 km). The
disturbance stream function of the most unstable wave is shown in Figure

33b.

500 MB 0000Z April 3
This profile has been discussed previously.‘ The e~folding time
of the most unstable wave, and the most preferred wavelength are shown
in Table 8. This profile is quite similar to the sine~curve profile

(36) with r ~ 0.9, if we exclude the two critical points too close to
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each other. And the "true" stability characteristics are similar to
those for the sine-curve profile with r = 0.9, i.e., only one unstable

wave and one Rossby-Haurwitz wave.

500 MB 1200Z April 3

This profile has three critical points at Yy = 0.23, Y, = 0.39
and y, = 1,53, with corresponding Uu = 0.60, v, = 0.71 and U, = 0.40,
respectively, The former two critical points are too close to each
other and located at the region where the shear is smaller (Figure 34)
as compared to the third one, and therefofe they should contribute
smaller growth rate. There are three unstable waves (Figure 36a), but
only one is contiguous to Rossby~Haurwitz wave, It is expected that
for the smoothed profile only the unstable wave associated with the
Rossby-Haurwitz wave will remain, The maximum growth rate (Figure 35)
for the nonsmoothed profile is 0.145/day corresponding to an e-folding
time of 6.91 days at the most preferred wavelength L = 3.8v(3619 km) .

Disturbance -stream function of the most unstable wave is shown in

Figure 36b.

500 MB 0000Z April 4

This profile has two critical points located at v, = 0.34 and
Y, = 1.59 with corresponding g, = 0.72 and U, = 0.38 respectively.
There are five unstable waves (Figure 37a), one of which contributes
to large growth rate and has a large gradient of e with respect to L.
For this profile there is no Rossby-Haurwitz wave. This profile corre-
sponds to the sine-curve profile (36) with r equal to some value

between 0.5 and 1.0, However; its stability characteristics are quite
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different from the corresponding sine-curve profile, even the smoothed
profile, as shown in Figure 37c. For the smoothed profile there appears
a Rossby-Haurwitz wave at a large wavelength. The maximum growth rate
for the gonsmoothed profile is 0,.265/days corresponding to an e-folding
time of 3.77 days at the most preferred wavelength L = 5.0 (4762 km).
The maximum growth rate for the smoothed profile is 0.235/days, corre-

sponding to an e-folding time of 4.25 days at L = 5,2 (4953 km).

500 MB 1200Z April 4

This profile has two critical points at.yu = 0.59 and Y, = 1,68
with corresponding Un = 0,61 and Uu = 0.37, respectively., The ¢y of
the unstable wave, if any, due to the former critical point will be
smaller, since the critical point is located in the region where the
shear is small, There are three unstable waves (Figure 38a). One of
them should be "spurious'" and can be easily eliminated by smoothing.
The maximum growth rate is 0.234/days, corresponding to an.e-folding

time of 4.27 days at the most preferred wavelength L = 4.2 (4000 km),

300 MB 0000Z April 3

This profile has two critical points at Y, = 0.22 and Y, = 1,70
(Figure 39) with corresponding Uu = 0,85 and Uu = 0.20 respectively,
The latter critical poinf is too close to the upper boundary and the
former c¢ritical point is in the region where the shear is small, It is
expected that they contribute little to the growth rates, There are four
unstable waves (Figure 4la). Two of the unstable waves are actually the
same unstable wave which will be contiguous to a Rossby-Haurwitz wave.

Due to the boundary effect, the smoothed profile (Figure 41lc) has three
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critical points, two of which are very close to the upper boundary and
to each other, If the smoothed profile is to be smoothed once more
there might be no more critical point. The maximum growth rate (Figure
40) for the nonsmoothed'profile is 0.053/day, corresponding to an e~
folding time of 18.97 days at the most preferred wavelength L = 4.4

(4191 km)., The disturbance stream function is shown in Figure 41b.

300 MB 1200Z April 3

This profile has two critical points located at Yy = 0.42 and
¥, = 1.73 with corresponding Un = 0,73 and U, = 0.29. There are five
unstable waves (Figure 42a) . Two of the unstable waves are actually
the same unstable wave which will be contiguous to a Rossby-Haurwitz
wave, at wavelength L = 9.74., The maximum growth rate is 0.149/day,
corresponding to an e-folding time of 6.71 days at the most preferred
wavelength L = 2,0 (1905 km). The disturbance stream function is shown

ey

in Figure 42b.

300 MB 0000Z April 4

This profile has four critical points, two of which are very
close to each other. From the shape of the profile and the location
of the critical points, it is expected that the c; of unstable waves
for this profile is large. There are four unstable waves (Figure 43a),
one of which is contiguous to a Rossby-Haurwitz wave and has a larger
ey and growth rate. For the extended profile the (cr’°1>'L diagrams
are shown in Figures 43c and 43d. The maximum growth rate for non-

smoothed profile is 0.278/day, correéponding to an e-folding time of
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3,60 days at the most preferred wavelength L = 3.8 (3619 km). The

corresponding disturbance stream function is shown in Figure 43b.

300 MB 1200Z April 4

This profile has two critical points located at yn = 0.40 and
v, = 1,60 with corresponding U, = 0.38 .and Un = 0.53 respectively.
From the shape of the profile and the location of critical points,
it is expected that the cj of the unstable waves are quite large. In-
deed this is the case. There are two unstable waves (Figure 44a),
which should be the same unstable wave contiguous to a Rossby-Haurwitz
wave, This profile is similar to the sine-curve profile with r equal
to 0.9375. Their stability characteristics are also quite the same,
The maximum growth rate is 0,34l/day, corresponding to an e-folding

time of 2.93 days at the most preferred wavelength L = 4,0 {3810 km).



CHAPTER IX

THE EFFECT OF B, SHEAR AND THE DISTANCE BETWEEN CRITICAL POINTS
ON THE STABILITY CHARACTERISTICS

As has been noted in the introduction, the B-effect is, in
general, to reduce the instability of westerly jets‘and to increase
the instability of easterly jets. Well-known examples are the Bickley
jet (U(y)=sech2y, -0 <y < ®) and the symmetric sine-curve profile
U(y)=%(l-cosnty), 0 <y < 2) (Kuo, 1973). Yamasaki and Wada (1972a)
also noted that the stability characteristics of easterly currents
are different from those of westerly currents,

It is generally known that longer waves are much more influ-
enced by the B-term than shorter ones for a given velocity profile. It
can be concluded that the B-effect will reduce the instability of west-
erly jets énd increase the stability of easterly jets, especially at
larger wavelengths, while at shorter wavelengths the p-effect is not
so prominant. In Figure 45 is shown the growth rate as a function of
wavenumber ¢ and B for the symmetric sine-curve profile. It can be
easily seen that the easterly current (B < 0) is made more unstable
by the B-effect in a fan-shaped region at smaller ¢ (larger L), while
the westerly current (B > 0) is made more stable, especially at smaller
a. For larger o, i.e., smaller wavelength, the B-effect is not promi-
nant., There are some controversies over the existence of sz upper

critical wavelength Lo for the easterly current (B < 0). Nitta and
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Yanai (1969) showed that in the case of easterlies the upper critical
wavelength L, does not exist. . In other words, there are no long neutral
waves of Rossby and Haurwitz and all disturbances are‘unstable for wave-
lengths larger than L,. Yamasaki and Wada (1972a) contended that there
exists an upper critical wavelength for instability and the unstable
waves may travel faster than the minimum velocity of the basic current
(in dimensionless form ¢, may be larger than 1). Kuo (1973) did not
mention the upper critical wavelength. However, his figure did not

show an upper critical wavelength for the easterly current, The author
tested the problem by two different methods and found that there is in-
deed an upper critical wavelength. One method is to find the phase
speed ¢ as a function of B, setting o« = 0. It is found that for B
approximately smaller than -0,409 the ¢y vanishes. The result is shown
in Table 7. Another method is to find the @ as>a function P after
setting ¢y = 0 and varying c,. from 1 to about 1.2, It is found that
there is an upper critigal wavelength beyond:which the unstable wave
becomes Rossby-Haurwitz wave and the unstable wave may travel with a
phase speed c, larger than 1. The numerical Qalues of the calculated

B, @ and ¢, are shown in Table 6 and plotted in Figure 45, as line A,

- Kuo (1973) also'noted the destabilization of the easterly (B < 0)
sine-curve profile U(y) = sinmy, 0 <y < 2, by the influence of B. It
is easily seen that if an easterly current with a continuous and differ- |
entiable profile has no critical point in the field of flow when g = 0;
it may have critical points for B < 0. Thus, it is destablized by the

B-effect, since this kind of jet has its ~U" everywhere positive in

the field of flow and the B(< 0) will overbalance -U" to make B-U"
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change sign in the field of flow.

Positive B will make the critical points closer to the boundary
or the region where the shear is small, and away from each other, if
there are two critical points for a bounded profile. The effect of
negative B is just the inverse of positive B. Thus, the positive B will
reduce the instabilit& and negative B will increase the instability.
However, if the magnitude of negative B is too large, it will bring the
two critical points too close to each other such that the degree of
instability will be reduced. Thus, for larger degrees of instability,
the distance of critical points should not be too large or too small.
Hence, it is intuitively concluded that the resistance of the critical
points against being smoothed out plays an important role in estimating

the growth rate,

The shear affects the instabiligy throﬁgh the equation for the
time rate of change of kinetic energy (16) and the'inequality for the
upper bound on the growth rate « c; (33). If a critical point is located
in a region where shear is small, the ¢y of the unstable wave due to
this critical point is also small, since the critical point is easily
smoothed out by successive applications of the smoother of the form (40).

The above discussion is only a heuristic approach. However, if
we examine the distance between two critical points and the location of
the critical points, we may estimate the growth rate of an unstable wave

for a velocity profile.



CHAPTER X

BAROTROPIC INSTABILITY IN RELATION TO THE GENERATION
OF TORNADOES AND SEVERE ATMOSPHERIC VORTICES

On 0000Z April 3, 1974, a remarkable cyclone development took
place over western Kansas, This cyclone moved toward the northeast
through Iowa and Wisconsin and reached its maximum intensity on 00002
April 4 over eastern Wisconsin. During this period, a quasi-permanent
anticyclone was located over Cuba and its intensity did not change.

As the cyclone moved toward the northeast, the flow field between the
cyclone and anticyclone was intensified and a jet developed over the
region between the Mississippi and t*-- atlantic coast. Sh;rtly after
CU00Z April 4 a tornado outbreak took place over this area. In the
early stage of cyclone development and the intensification of the flow
field the underlying physical process was primarily the baroclinic in-
stability. However, baroclinic instability élone could not account

for the variations of the jet which'played a significant role in the
tornado outbreak in that area. Now let us consider the effect of baro-‘
tropic instability, which in general rarely occurs in the ﬁiddle lati-
tude;. After the cyclone has developed due to baroc¢linicity, the baro-
troéic process may account for the subsequent intensification of the
flow field.

Table 8 shows the e~folding time of the most unstable wave,

and the most preferred wavelength for each profile. Most of the most
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preferred wavelengths of the unstable waves are comparable to actual
wavelengths in the pressure system shown in Figures 46-49, except the
wind profiles at 850 MB 1200Z April 4, 700 MB 0000Z April 3 and 300
MB 1200Z April 3, which are significantly less than the dominant
wavelength of the pressure system, This means that the actual growth
rate for these profiles could be smaller.

In the linear theory assumed in this study, the growth rates
represent only the initial growth, After the disturbances have grown
to some extent the linear theory is no longer valid.

As already noted, the calculated growth rates may underesti-
mate the actual growth rates of the disturbances, The artificial
boundaries prevent the momentum transports necessary to maintain un- .
stable disturbances, Furthermore, with artificial boundaries, the
dimensional U, ;. may have been overestimated, which will reduce the
value of growth rate., Thus, the actual e-~folding times may be smaller
than those shown in Table 8.

Thus, it is found that the atmosphere at all levels over the
domain chosen is barotropically most unstable during 0000Z April 4,
i.e., shortly before and at the time of the tornmado outbreak, except
at 850 MB, where itg deg:ee of instability was decreasing from 00002
April 3. 1It is also found that the atmosphere at the upper level is
barotropically more unstable than the lower level, which is generally
accepted to be true,

In Figures 46-49 the dotted line in the domain chosen is the

2 2
line where g - g—% = 0, At the center part of the domain B - é—% is
oy oy

positive, while near the northwestern and southeastern boundaries it
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is negative., It is interesting to note that the hardest hit area
(Indiana, Ohio, Kentucky, Tennesee and Alabama, which may be identified
in the figurés) was located just at the region in which thg distance
between the critical points is shortest, If we take the local u(x,y)

as mean flow instead of the averaged U(y), it is found that this region
is most unstable. Hence, the five states were confined to this most un-
stable area and were hardest hit by tornad;es.

The equation for the time rate of change of mean-flow kinetic

energy

-g% = f u'v! -gg dy (1‘6a)

still holds approximately. The momentum transport is proportional to
the tilting of troughs and ridges, as already noted, It is found from
Figures 46-49 that the tilting of troughs and ridges was in a direction
such that the mean-flow kinetic energy would decrease with respect to
time, This means that the tiiting of troughs and'ridges, in relation to
the position of the mean jet, was favorable'for instability to occur,
From the above results it is concluded that barotropic insta-

bility may be synoptically associated with the generation of tornadoes

and severe atmospheric vortices.



CHAPTER XI
CONCLUDING REMARKS

In middle latitudes, where baroclinicity predominates, the
importance of barotropic instability, despite its simpler physical
mechanism, is always overshadowed by the importance of baroclinic
instability. Most studies have not associated barotropic instability
with geophysical phenomena, possibly due to the fact that the geophysi-
cal applications of barotropic instability are now in their exploratory
stage. The present work performed a barotropic instability analysis
of wind profiles over the area hardest hit by the April 3-4 tornado
outbreak, It was founa that the atmosphere over this area was baro-
tropically most unstable dufing this tornado outbreak. This result
indicates the possibility that barotropic instability may have been
synoptically associated with Ehat outbreak. Additional case studies
should be déne to confirm the above results. Also, the relat?ve impor~
tance of baroclinic and barotropic instabilfty should be evaluated.-
Another promising area for future research would be to'inﬁestigate
whether the atmosphere qur areas where tornadoes occur most often

is barotropically unstable.
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APPENDIX

FINITE DIFFERENCE SCHEME

A. Real Part and Imaginary Part of Phase Speed

We divide the channel 0 < y < 2 into N subdivisions of width

2/N by N-1 equally spaced points within the channel. After we write

¢" and U” in difference representations

the equation

becomes

where

N2
O G @Pga T 95 - 29
2 N2
U“ ~ 4 (Uj+1 + Uj"l - 2Uj) = "!':' U:'i' ’
(U-¢) @@" - o’9) + (B - U @ =0 1)

2 2 2
a Uj cpj_l + (Z.'l -1 Uj)(pj + a Uj Pyl
(Al)
2 2 2
- c(a '(Pj-l -1 (pj + a q’j-!-l) =0. 3§ =2,3,...,N

2 _ ¥
a 4
12 = 0'2 + 282
2
Z = - a U" .
3 P 3
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If we use the boundary condtions

P =Py =0

we get from (Al) a linear homogeneous system in Pps Pys eoo Pye

This linear homogeneous system takes the form

1)
(8-cD)P=0 , P = |73
wN
where B is a square matrix of the form
2 2 .
22-1 Uz a U2 ) 0 0 e & o o
2 2 .
_ a U3 23"‘1 U3 a U3 0 e o o o
s 0 a%u z,-1%0 a2y, 0
4 4 4 4 *
0 . ¢ L ] .. * L]
and D is é squarefmatrix of the form
-12 az o ) O ] . . ® .
32 "12 82 0 . [ . o
D =
0 az "12 az 0 ] .
0 a2 -12 a2 0

I1f D is nonsingular, we can write

oltB-c1)P=0 ,
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where D-1 is the inverse of D and I the unit matrix, The condition

for a nontrivial solution of P is

Det (D"1 B-¢cI) = 0

Thus, the phase speeds ¢ are Ehe eigenvalues of the matrix D-IB and
the amplitude functions 9 in P are similarly its eigenvectors. When
we divide the inéerval into N subdivisions, we get N-1 series of the
phase speeds c. When unstable waves exist, phase speeds ¢y # 0 are

obtained as comples conjugates,

B. Lower and Upper Critical Wavelength Ln s Lo

The equations (34) and (35) may be written in

"o LU:Z"(P - afz = 0 co (Bl)

P

The finite difference form of the above equation is

2 z 2 2 2
a’9;.1 + (ﬁ;!-c--za)cpj+a¢j+1 - QP =0, §=2,3,..,0

(82)

where again,
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With the boundary conditions
1 T P

(B2) can be written in matrix form

(A-F1)P=0
where
Z
2 "232 32 0 o . . 3 .
U2-c
Z
a2 T 3 - 2a2 a2 0
A = 3¢ ,
0 a2 - 227 a? 0
4
and
» (pz‘
P53
P = .
PN

Hence, czt'2 are eigenvalues of A and ¢ in P are the corresponding eigen-
functions., If we set ¢ = Uu’ the lower critical wavelength can be
found. Un are interpolated linearly by

- e i
u, Uy + T Wyeg = Up

are'of opposite sign,

where Z, = B --a2 U . Z, and 2

J ] 3 j+l
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If we set ¢ = 0, we obtain the upper critical wavelength L,
for a westerly basic current (B < 0). For an easterly current (B > 0)
there arise some problems in determining L, by setting ¢ = 1. For an

easterly basic current with symmetric sine-curve profile

U(y) =% (L -cosmy), 0<y<2,

we can find L, as the minimum value of L = L(c) by varying c from 1
to, say, 1.2 with a specified B. The results are shown in Table 6 and
Figure 45.

It should be noted that the @atrix Alis real symmetric. There
are some theorems on the real symmetric matrix:

a. Two eigenvectors of a real symmetric matrix, corresponding
to different éigenvalues, are orthogonal.

b. The eigenvalues of such a matrix are always real,

C. Numerical Solutions of Eigenvalue Problems

The numerical method of solving eigenvalue problems was coded in

FORTRAN as EISPAC and run on the IBM 370 at the Education and Research

Computing Center, University of Oklahoma,

D. Accuracy of Finite Difference Methods

It is found that the best method to test the accuracy of the
finite difference scheme is to compare the numerical values of %% cal-

culated by

20’01!:

B = kale, 9] - o 9 e (27a)
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and those calculated by

ou _ . acy (8-u") "Plz eza’cit (271,)
Jt 2 IU-c|2

The maximum root mean square of difference is 0,7935 x 10'3. The

maximum percentage error is less than 0.017%. Therefore, the accuracy

is satisfactory.

E. Finite Element Method

The equation

(U-c) (" - ) + (B -UD 9=0 1)

together with the boundary conditions
p = 0' at y=0, y=2

can be transformed into a variational problem §I = 0 where

2
1= [ re?+adley D)
o .

with Q = o:z

- %fg" . It follows that the problem of determining

the solution of (21), subject to the boundary conditions, is equivalent
to the problem of determining the functions satisfying the boundary éon;
ditions, which render (El) stationary. This variational principle can
be used to formulate finite-element method to find the solution numer-

ically. A simple treatment of finite element formulation is found in

Myers, 1971, The result is
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(p)
(3a” - G 9, ; -(6a” + ¢ D) g,

(@
r @ -y e, =0 y=2 LN @)

where

2. K
4

and Q(p) is the value of Q in the element p between grid points j-1
and j and Q(q) is the value of Q in the element q between grid points

j and j+l. .We may take Q(P) =Q and Q(q) = Qj_*_%. Thus, (E2) is

i-%
equivalent to the
AP =0
where
o
Y
P = 3
)

and A is an (N~1) X (N-1) matrix whose elements are

L e i
A1,y T (6a +%%+Qﬁ9 §22,...,N
= 2.2 . _
Ajaz,y1 =38 - E 0y 3= 3,6,..0,N
A = 3a% - &
3-1,3 = "%~ Qj+35 §=2,3,...,N-1
all other A,, = 0

1y
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Determining the eigenvalue o or ¢ of (El) amounts to finding
the complex roots of the function F(c,x) = det[A(c,)] with ¢ or &

specified,

The finite-element method is proposed but not used for f£inding

the stability characteristics in this study,
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(a) (b) .
Figure 1., An atmospheric wind profile. The critical points are

denoted by black dots. (a) dimensional profile, (b)
dimensionless and normalized profile.

4———'——-Cr

c=Ux c=0
C,> Uk 1 0 <Cp<Ug 1 ¢<0
Damped L, Amplified Lo Neutral

L —

Figure 2. Distribution of damped, ahplified, and neutral waves as
;‘elated tp basic current and wavelength for a westerly
et,

Figure 3, Howard's semicircle theorem for westerlies (g >0). The
complex phase speed must lie in the semicircle in the
complex velocity plane., The shaded region is not a pos~
sible region for ¢. The radius of the semicircle 1is
given by R = % (L + 8 / o?).
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¥ (95.2km) U(y) (m/sec) u(y) B-y" (lo'ul sece-m)

0 18,205 0.048 -
0.1 18.759 0.079 -1,267
0.2 19,596 0.125 -3.229
0.3 20.89% 0.198 -3,141
0.4 22,645 0.296 -3.604
0.5 24,891 © 0.421 -4,354
0.6 27.700 0.578 2,777
0.7 30.929 0.758 8.166
0.8 33.585 0.907 15.200
0.9 35.030 0.987 15,266
1.0 35,258 " 1,000 16.258

- 1,1 34.179 0.940 14,924
1.2 - 31.914 0.813 7.132
1.3 29.170 0.660 -0.849
1.4 26.671 0.520 -1.289
1.5 24,457 0.397 -2,392
1.6 22,628 0.295 -0.716
1.7 . 21,032 0.205 0.805
1.8 19.531 0.122 -0.055
1.9 18.203 0.047 3,417
2,0 17.353 0 -
y, = 0.63 U = 0.624 Lu'- 1.570
y'x - 1.29 U = 0.676 1, = 1.308
y, = 1.29 U, = 0.676 L, = 3.501
y, = 1.64 v, = 0.253 1, = 3.877
y, = 1.79 u = 0.127 L = 4.452
L = 5.497

Table 1, Dimensional and dimensionless U(y) amd B-U" at each grid
point, and low critical wavelength L, and upper critical
wavelength L_ calculated from (34) and (35), for the 500
MB 00002 Aprgl 3 wind profile, Dimcnsional U(y) {s plotted
in Figure 34a and dimensionless U(y), in Figure 34b, The
corresponding (ey,cq)-L diagram is shown in Figure 5,
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Figure 4. A (cy,ci)-L diagram for symmetric sine-curve velocity
profile U(y) = %(l-cos T y) when B = 0,375 and N = 20.
The thick solid line and the dotted line correspond to
c.. and c; of the unstable wave respectively. Black dot
on the ordinate represents Uu'

SOUW5 00U Z xprﬂ 3

0.8l

0.7 ¢ 3
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Figure 5. A (c,,c,)-L diagram for 500 MB 0000Z April 3 wind profile.
The thick solid lines and the dotted lines correspond to
cy and c; of unstable waves respectively., Black dots on
the ordinate represent Uu's.



73

y 2

0

0 A A " . 0

solid line
chain line

Figure 6.

Figure 7.

1 o 1000 -20
I=1.8 ¢ =0.587  ¢,~0.0440

1=2.6 cr-O 434 c£-0.0740

Unstable solutions for 500 MB 0000Z April 3 wind profile;
(a) Absolute value of eigenfunction ¢. (b) Phase of ¢ in
degrees., (c) Derivatives of ¢ in phase with ¢, (d) Deriva-
tives of ¢ out of phase with ¢, Note the singular behavior
at the points, denoted by black dots, where c, is equal to
the velocity of the basic current.

1IN
1} 11 1 -

{(cp,) .

i arg o

W 4
()il t (c) 1
N o

240 =20 0 20
c,=0.0084

(a)
0 M PO P p 3
0 1 0
1=1.6 cr-0.7329

Unstable solution for 700 MB 0000Z April 3 wind profile.
() Absolute value of eigenfunction ¢. (b) Phase of @
in degrees. (c) Derivative of ¢ in phase with 9. Note
the singular behavior at the points, denoted by black
dots, where c, is equal to the velocity of the basic
current,
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(c)

T and v'{' for 500 MB 0000Z April 3 wind

Figure 9. Rossby-Haurwitz wave solutions

for 700 MB 0000Z April 3 wind profile.

v

>

26 0.438

;7

0,406 0..30! 0.297 0,210 0,203 0,136 0.122 0,0818 0.0568

- ¥

Figure 10,

Eigenfunction ¢ of
singular waves at
L=1.0 for 500 MB
0000Z April 3 wind
profile, Nondimen-
sionalized phase
velocities are shown
below. The singular
waves possess phase
velocities equal to
the basic current
velocity at the points
indicated by black
dots.
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Figure 11. (Caption on next page.)
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Figure 11, (cr, ci) -L diagrams for sine~curve velocity profile
Uy) =3 @@ ~cosmrry), 0 <y <2, with various values

of r. °
007'
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0.6 [ | vave s
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wave and \ and and |
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Figure 12, Number of unstable waves and R-H waves for sine-curve
profile as a function of r and B.
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g = 0,375
N = 20

[ 1 2 3 4 s 6 7 8 9 10

L 952kn
Figure 13a, A (cps ¢;)-L diagram for symmetric sine-curve profile

€L 0.9}
0.3

0.7

0.6f

0.5T

0.4}

U(y) = %(1 -~ cos my) when B8 = 0,375 and N = 20 and all
the figures past hundredth in the numerical value of u(y)
are truncated., Compare this figure with Figure 4,

B = 0.375 .
N = 20 1
S, = 0,25

Figure 13b,

8 9 10
L  952km

-~
w
o
v
(-]
-

A (cp, ¢3)-L diagram for a smoothed truncated symmetric
sine~-curve profile U(y) = %(1 - cos w y). Note that the
unstable wave due to truncation has been eliminated by
smoothing of the profile.
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smoothed truncated

L nonsmoothed once truncated smoothed once
1.0 0 0 0 0 () )
1.5 ] 0 ] ] 0
2.0 0 0 0 0 0
2.5 — 0.024 0.025 0,041 0.028
3.0 © 0,078 0,075 0.081 0.021 0.077
3.5 — 0.092 0.099 0.019 0.095
4.0 0.110 0.106 0.113 0,017 0.108
4.5 — 0.109 0.116 0.016 0.111
5.0 0,111 0.106 . 0.113 0.015 0.107
5.5 — 0.0% 0.105 0.014 0.099
6,0 0.095 0.088 0.096 0.013 0.090
6.5 —_ 0.078 .~ 0.086 0.012 0.080
7.0 0.071 0.064 0,073 0.011 0.066
7.5 — 0.046 0,057 0.010 0.048
8.0 0.040 0,032 0.041 0.0096 0,033
8,5 — 0.013 0.024 * 0.0088 0,014
9.0 0 0 0 0,0080 0
9.5 0 0 0 0.0072 0
10.0 0 0 0 0.0065 0
10.5 0 (1} 0 0.0057 0
11,0 (1} 0 0 0.0049 0
11,5 0 . 0 0 0,0039 0
12,0 0 [} 0 0,0029 [}
12,5 [} 0 0 0,0012 ]
13.0 (] [ [} 0 4]
13,5 0 0 0 0 [}
corresponding
gjgé‘;g;";s Fig. 4 —_— Fig. 13a Fig. 13b
| shown in:

Table 2. The c, of unstable waves calculated in various cases for the symmetric sine-
curve profile U(y) = %(l-cosmy), 0 <y <2 vwhen B = 0.375 and N = 29,
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. smoothed truncated
. nonsmoothed once truncated smoothed nonsacothed
8 N=20 Ne20 N=20 Ne20 N=40
1.5 4.40 4.36 4.39 4.35 4,40
0.75 6.25 6,20 6,24 6.19 6,25
0.5 7.67 7.61 7.66 7.60 -
0.375 8.87 8.80 8.85 8.78 8.86
0.3 9,92 9,84 9.90 9.82 9.92
0.25 10.87 10,78 10.84 10,76 -
0.2143 11,74 11,65 11,72 11,62 11,74
0.1875 12,55 12,45 12,53 T 12,43 -
0.1666 13,32 13,21 13,29 13.18 -
0.15 14,04 13,93 14,01 13.90 14,04

Values of L, as a function of B, calculated from (35)

smoothed

nonsmoothed once truncated, smoothed

B N=20 N=20 truncated, N=20 once, S = 0,25
1.5 2,35 2,36 2,55 2.23 14.7% 2,41 2,3 -

0.75 2,35 2,36 2,35 2,05 5.62 2,39 2,27 -
0.5 2.35 2,36 2,41 2,07 5.97 2,42 2,19 8,22
0.3)5 2.35 2.36 2,44 2,08 6.19 2,44 2.06 4.87
0.3 2.35 2,36 2,46 2,09 6.3 2,45 1,78 3.52
0.25 2.35 2.36 2,48 2,09 6,46 2,46 1,17 2.8
0.2143 2,35 2,36 2,49 2,10 6.54 2,47 0.57 2.69

0.1875 2.35 ° 2,36 2,49 2,10 6.61 2,48 2,26 -

0.1666 2,35 2,36 2.50 2,10 6.67 "2.48 2,26 -—

0.15 - 2.35 2.36 2.51 2,10 "6.72 2,49 2,21 -

Theoretical value = 2,3094106

Values of L, calculated from (34)

Table 3. The upper and lower ei-iticnl wavelen
gth calculated in various cases for
the profile U(y) = %¥(l-cosny), 0 <y < 2,
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¢ 0.9 \ 500MB_0000Z April 3
0.8} swoothed once
% §, = 0.25
0.7} '

0.6

0.5}

0.4}

0.3¢

0.2}

o.1r

0 1 2 3 [ 5 6 7 8 9 10
L 952km

Figure l4a. A (¢, ©j)-L diagram for 500 MB 0000Z April 3 wind profile
smoothed once, Compare this figure with Figure 5.

™ ~r

P | \
L 0.9 \ 500MB 0000Z April 3

0.8 \ smoothed tuice 1

\ 5, =025 5, =0.25 ]
0.7y
0.6

3

0,5}) —
0.4}

0.3} __=_______:____X- J
0.2} X p

s
0.1} )g(
0 e /..— "’".m"”'-o""""""‘"'\
5 . A \ 4
) 1 2 3 s s 6 ’ ° .
L 952m

Figure 14b. A (¢,, ¢)-L diagram for 500 MB 0000Z April 3 wind profile
smoothed twice. Compare this figure with Figure 1l4a and
Figure 5.
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1l os.::::::::; ::;
\ 500 M8 0000z April 3
0.8 \.\ smoothed twice 4
o.7:-~‘"“\\ 8 = 0,25 5, = -0.25 1
- -y
}
’z:

0.1 —
0 = -
«0,1 2 L . L
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Figure l4c. A (¢, ¢;)-L diagram for 500 MB 0000Z April 3 wind profile
smoothed twice. $S1 = 0.25 8, = =0.25.

(a) (b) ' (c) (d)

Figure 15. Symmetric and antisymmetric sine-curve profiles within
rigid walls and extending to infinity.
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¢ 1= - v v -
& o9 .
S— S00MB 0000z April 3
0.8} S~ semi~infinite N30
\__ smoothed once 8y = 0,25
0.7t
——
0.6} -
0.5}
0.4}
— 3
7 8 9 %
L 952km

Figure l6a. A (¢, ¢,)-L diagram for 500 MB 0000Z April 3 wind profile

Figure 16b,

when the lower boundary is extended to infinity and the
resulting profile is smoothed once with S1 = 0.25, Some
of the singular waves are not shown.

1 v v r v -

0.9 500MB 00002 April 3

o~ — senieinfinite N=30
0.8} \ s smoothed twice
mrt:::::__ 5, =5, = 0.25

e———
0.6 —r’
0.5
8 9 ®

L 952k

A (cp, ¢4)-L diagram for 500 MB 0000Z April 3 wind profile
when the lower boundary is extended to infinity and the
resulting profile is smoothed twice with §; = Sp = 0.25.
Some of the singular waves are not shown,
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Eem“nﬁnltu semiinfinite | seniinfinite
bounded, smoothed smoothed smoothed
smoothed twice, once, tuice,

L | bounded nonsmoothed once, 81-0.25 51-82-0.25 81-0.25 51-52-0.25
1.0 0 0 0 0 0 [ 0 0 0
1.2 0 0 0 0 0 0 0 0 0
1.4 0.061 0 0 0 0 .0 0 '] 0
1.6 0.208 0 0 0 0 0 0 0 0
1.8 0.249 0 0 0.076- 0 0.043 0.0737 0 0,054
2,0 0.201 0 0 0.143 0 0.043 0.155 0 0.132
2.2 - 0,238 0 0 0,241 0 0.216 0.275 0 0.246
2.4 0.289 0 0 0.270 0 0.235 0.303 ] 0,266
2.6 0.290 0 0 0.260 0 0,218 0.297 (] 10,259
2.8 0.268 0.034 0 0,230 0 0.195 0,283 [ 0.265
3.0 0.232  0.047 0 0.211 0 0.204 0,280 0 0.269
3.2 0.213 0.054 0 0.205 0 0.193 0.269 0 0,25%
3.4 0.195 0,057 0 0.181 0 0.162 0.246 0 0,231
3.6 0.161 0,059 0 0.140 0 0,123 0.218 0 0.208
3.8 0.113 0.060 0 0.116 0 0.117 0.193 ] 0.187
4.0 0.100 0.060 0 0,098 0 0.093 0.164 0 0.157
4.2 0.063 0.060 0 0.030 0.032 0.047 0.126 0.0209 0.128
4.4 0.033 0.059 0.053 0.014 0,061 0,057 0.107 ©.0169 0,103
4.6 0,033 0.059 0.022 0 . 0.049 0.038 0.083 0 0.075
4,8 . 0,033 0.058 0,015 0 0.016 0.013 0.057 0 0.043 .
5.0 0.009 0.057 0.043 0 0,024 0,012 0.034 0 0.0164
5.2 0 0,056 0.027 0 0 0 ('] 0 0
5.4 0 0.055 + 0 0 0 0 0 0 0.0089
5.6 0.0 0.053 0 0 0 0 0 (1] 0.0143
5.8 0 0.052 0 0 0 0 0.0129 0 0.0177
6.0 0 0.051 0 0 0 0 0.0183 0 0.0201

correaponding

(cpicy)-L .

disgram 13|

shown_in: Pig. 5 Pig. lia Fig. 14b Pig. 168 Pig. 16b |

Tsble 4. The growth rate in 1/day calculated in various cases for the 500 MB 00002

April 3 wind profile.



84

y2

> r v ‘ y z ' Y ! 12
j
- I ‘\\5
4 L \
1r 1 [ ’ }
] L
’.‘/ L 3 "’- g
y 1 i f '
Ve - + §
OF : 0ot I
i | ! o
5 J x 1 el
lol arg ¢ _ el ‘
L 3
-} PR N N -1 M . " -1 1 : 2
0 pLme26 ! 0 30 6 5 120 0 Lm6o0 1
‘solid line Cr=0.434 C£'0.074 8o0lid line C,~0.666 01=0.0301
dotted line C.=0.432 C4=0.077 dotted line Cr-0.621 -Ci=0.0109
(a) i (b)

Figure 17. A comparison of the amplitude function of unstable waves
for the 500 MB 0000Z April 3 (solid line) with that for
corresponding extended profile (dotted line).

pes

solid line L=2.0 C,=0.527 C4=0.0310
chain line L=3,0 C,=0.363 C;=0.0837
dashed 1line L=4.0 C.=0,217 C4=0.0654
dotted line L=5.0 C.=0.0602 °1’°'°157

-1

Figure 18, Absolute value of ¥ of an unstable wave at various wave-
lengths for extended 500 MB 0000Z April 3 wind profile.
Note that the |®|'s are confined in the shear-belt,
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Disturbance stream function of most unstable wave at 1=2.6
for 500 MB 0000Z April 3 wind profile. The primary centers
of cyclonic and anticyclonic vorticity are marked by C and
A. The dashed line shows where v' vanishes, i.e., trough
and ridge lines. (a) case for bounded profile, (b) case

for extended profile.
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Yy “—';T 'g% » ‘v'—Cr
bounded extended bounded extended
-1 -— 0 -— 0
-0.9 - 0.0 - -Q.000
-0.8 - 0.0 - ¢ =0.002
«0,7 - 0.0 -— =0.005
-0.6 -— 0.001 -~ -0.011
-0.5 -~ 0,003 -~ -0,021
-0.4 -— 0.006 - -0.038
-0.3 - 0,011 -— ~0.070
-0.2 ' - 0.021 - -0.125
=0.1 - 0.038 -— =0.223
(1] 0 0,004 0 0.912
0.1 ~0.002 ~0.067 0.042 0.502
0.2 -0.033 -0,221 0.581 2,583
0.3 =0,169 -0.648 2,143 5.961
0.4 -0.824 -2,075 10,954 22.576
0.5 -5.612 -9.299 84.805 121,890
0.6 -10.736 -16.734 17.678 26.810
0.7 «10,453 -16,312 -23.355 =35,233
0.8 -7.697 ~12,183 -31.760 =47.350
0.9 ~4,717 -7.754 -27.844 -41,212
1.0 -1.892 -3,.586 «28.641 =42.146
1.1 + 0,929 0.554 -27.785 -40.656
1.2 3.110 3.736 -15,846 -22,993
1.3 3.760 4.683 2.1355 4.057
1.4 3.069 3.770 10.972 14,208
1.5 1,305 1.592 24,301 29,357
1.6 0.034 0.046 1.115 1,546
1.7 -0.009 -0,012 -0.263 «0.375
1.8 0.004 0,006 0.004 0.006
1.9 0.002 0.003 0,042 0.061
2.0 ] o (1} o
Tabls 5. The numerical values of momentum transport W'v' und vorticity

transport v'(' of the most unstable wave (L=2.6) for the bounded
and extended 500 MB 0000Z April 3 wind profile. The unit is
erbitrary, These values for the case of the bounded profile ars
plotted in Pigure 8,
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0.943 0,922 0.853 0,789 0,490 0,478 0,358 9,513 0.428

0,966 9,922 0,062 0,796 0.720 0.444 0,398 0.343 0.4

0.363 0,310 0,244 0,209 2,160 0.131 0,108 0.403 -0,0208 ( b)

LI bLddd!

g D

©.066 0,048 0.0438 0,048 0,043 0,044 0.042 0.038 0.026

(a)

Figure 20. A comparison of the 9's of singular waves for bounded
500 MB 0000Z April 3 wind profile (a) and those for
corresponding extended profile (b). Nondimensional
normalized phase speeds are shown below,

;) (b)
W0 130 -
n

1=4.0 1.8 5.0 3.4 3.6 4.0
00,0038 ¢ #=0.031 ¢ »=0.03 ¢ »-0.0¢% ¢ #-0,071 ¢ =-0,090 ¢ =-0.11 & =-3.13 ¢ =0,

(@

g

15,4 1e5.6  1e3.8 X e
€=0,0061 £9-0,026 €=-0,038 50,048 co-0,088
1

Figure 2la. Amplitude function ¢ of a Rossby-Haurwitz wave for 500 MB
0000Z April 3 wind profile.

Figure 21b, Amplitude function ¢ of Rossby-Haurwitz wave at various
wavelengths due to the extension of lower boundary to
infinity for 500 MB 0000Z April 3 wind profile.
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Figure 22, Atmospheric wind profiles at 850 MB, (a) dimensional
profiles, (b) dimensionless and normalized profiles,
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Figure 23. Growth rate versus wavelength for 850 MB profiles.
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Figure 24b., Disturbance stream function of most unstable wave at L=3.8

(3619 km) for 850 MB 0000Z April 3 wind profile.



920

L 1.0 Y Y Y .3 T T ™ T T
¢ 0.9 -\_ : o . p
i 850 MB 0000Z April 3
0.81 smoothed twice 1
§g =8, = 0.25
0.7 1
0.6 b

A (.. c )-L diagram for 850 MB 00002 April 3 wind profile

Figure 24c.
& smoothed twice with S; = =Sy = 0.25.



91

84
0.5¢ 850MB 1200Z April 3 1

014 1

"""""

Figure 25b, Disturbance stream function of most unstable wave at L=3,0
(2857-km) for 850 MB 1200Z April 3 wind profile,
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Figure 26a. A (cr’ c4)-L diagram for 850 MB 0000Z April 4 wind profile,

Figure 26b, Disturbance stream function at most unstable wave at L=4,.8
(4572 km) for 850 MB 0000Z April 4 wind profile.
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Figure 27a. A (cp, c4)-L diagram for 850 MB 1200Z April 4 wind profile.
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Figure 27b, Disturbance stream function at most unstable wave at L=4,.8

(1524 km) for 850 MB 1200Z April 4 wind profile.
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Figure 28, Atmospheric wind profiles at 700 MB. (a) dimensional
profiles, (b) dimensionless and normalized profiles,
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Figure 29, Growth rate versus wavelength for 700 MB profiles.
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Figure 30a. A (¢, c¢4)-L diagram for 700 MB 0000Z April 3 wind profile.
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Figure 30b, Disturbance strszam function at most unstable wave at L=l.6
(1524 km) for 700 MB 0000Z April 3 profile.
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Figure 32a, A (°r’ ci)-L diagram for 700 MB 0000Z April 4 wind profile,

Figure 32b. Disturbance stream function at most unstable wave at L=3.0
(2857 km) for 700 MB 0000Z April 4 profile,
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Figure 32c¢, A ( ¢.» €)-L diagram for 700 MB 0000Z April 4 wind profile
smoothed twice with §p =89 = 0.25,
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Figure 33a, A ( Cr, ¢;)-L diagram for 700 MB 1200Z April 4 wind profile.

Figure 33b. Disturbance stream function of most unstable wave at L=4.8
(4872 km) for 700 MB 1200Z April 4 profile.
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Figure 33c. A (¢, Ci)-L diagram for 700 MB 1200Z April 4 wind profile
smoothed twice with §; = Sy = 0.25.
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Figure 34, Atmospheric wind profiles at 500 MB. (a) dimensional
profiles, (b) dimensionless and normalized profiles.
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Figure 35. Growth rate versus wavelength for 500 MB profiles.
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Figure 36a, A (Cr, ¢;)-L diagram for 500 MB 12002 April 3 wind profile,
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Figure 36b, Disturbance stream function of most unstable wave at L=3.8
(3619 km) for 500 MB 1200Z April 3 wind profile.
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Figure 37a. A (cr, ci) -1, diagram for 500 MB 0000Z April 4 wind profile.

Figure 37b. Disturbance stream function of most unstable wave at L=5.0
(4762 km) for 500 MB 0000Z April 4 wind profile.
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Figure 37c., A (Cr, Ci) -1 diagram for 500 MB 0000Z April 4 wind profile
smoothed twice with 81 = 82 = 0,25,
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Figure 38a, A (Cr, ci) -L diagram for 500 MB 1200Z April 4 wind profile.
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Figure 38b, Disturbance stream function of most unstable wave .at L=4,2
(4000 km) for 500 MB 1200Z April 4 profile.
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Figure 40, Growth rate versus wavelength for 300 MB profiles.
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Figure 4la, A (Cr, Ci)-L diagram for 300 MB 0000Z April 3 wind profile,

Figure 41b, Disturbance stream function of most unstable wave at L=4.4
(4191 km) for 300 MB 0000Z April 3 profile,
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Figure 4lc, A €, ¢)-L diagram for 300 MB 0000Z April 3 wind profile
smoothed twice with 5y =8 = 0.25.
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Figure 42a, A IO ci) -L diagram for 300 MB 1200Z April 3 wind profile.

Figure 42b, Disturbance stream function of most unstable wave at L=2,
(1905 km) for 300 MB 1200Z April 3 profile.
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Figure 43a. A (¢, ¢,)-L diagram for 300 MB 0000Z April 4 wind profile.

Figure 43b, Disturbance stream function of most unstable wave at 1=3.8
(3619 km) for 300 MB 0000Z April 4 profile.
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Figure 43d. A (CI, ci) -L diagram for 300 MB 0000Z April 4 profile when
o

the lower boundary is extended to infinity and the resulting
profile is smoothed four times S, = S, = S3 = S4 = 0,25,



112

e' 1 v Y v
¢ o.9f  300MB 1200Z April 4
0.8
01t \
0.6}

1] : st \
-o N 1 A 2 - A A i A A
1] 1 2 3 4 S 6 7 8 9 10
L 952km

Figure 44a., A (., © i)-L diagram for 300 MB 1200Z April 4 wind profile.
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Disturbance stream function of most unstable wave at L=4.0
(3810 km) for 300 MB 1200Z April 4 profile,

Figure 44b..
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Figure 45. Growth rate versus ¢ and B for the symmetric sine-curve
profile U(y) =% (1 - cos my), 0 <y <2, The dashed
line is the boundary of unstable wave region proposed
by Nitta and Yanai (1969) and by Kuo (1973) and line A
proposed by Yamasaki and Wada (1972a).

8 Cy
-0.409 0
-0.40885 0.00165 -
' -0.40880 0.00682

-0.408 0.0273

8 a o -0.407 0.0402

-0.406 0.0498

-0.405 0.0578

-0.5 0.866 1.000 -0.404 0.0647

-0.485  0.649 1,012 -0.403 0.0710

-0.470  0.537 1,018 -0.402 0.0767

-0.455  0.442 1.042 | -0.401 0.0820

-0.440  0.3471° 1,06 | ? -0.400 C.0869
-0.430  0.2787 1,07 o -0.390 0.124
-0.420  0,1973  1.09 ~0.380 0.152
-0.410  0.0619 1,10 -0.370 0,174
-0.409  0.0221 1,103 -0.360 0.192

Table 6, The B, o and ¢ values on the upper critical
wavelength for the easterly current (p<0)
with the velocity profile U(y)=%(l-cosny),
0 <y <2, These valuer of B and « are plotted
in Figure 45, as line A,

Table 7. The ¢, values on o=0 as a function of B for
the easterly current (B<0) with the velocity
profile U(y)=%(l-cosny), 0 <y < 2,
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850 MB

700 MB

300 MB

300

0000Z April 3

(a)
(b)
(c)

(5.68, 3619)

(6.35, 3619)

(85.38, 1524)
stable

(3.44, 2476)
(3.70, 2286
(3.20, 2286)

(18.97, Zl9L)

1200Z April 3

(a)

(12.85, 2857)

(32,96, 3429)

(6.91, 3619)

(6.71, 1915)

00002 April &4

(a)
(b)
(e)

(15.20, 4572)

(7.98, 2857)
17, 4572)

(3.77, 4762)

(3.76, 4572)

(3.60, 36l9)

(2.74, 4QN0)

1200z April 4

(a)
(b)
(e)

(33.50, 1524)
stable
(29.49, 1524)

.

(18.11, 4572)

(4.27, 4000)

(2.93, 3810)

(a)
(b)
(c)
(d)

Table 8.

for a bounded nonsmoothed profile

for a bounded profile smoothed once Sl = 0,25
for a semiinfinite ptofile
for a semiinfinite profile smoothed once 81 = 0,25

The e-folding time of the most unstable wave, and the most prefermd
wavelength, for each wind profile considered in this gtudy.

The first

value in the parenthesis is the e-folding time {n days, the second
value is the most preferred wavelength in km,
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Figufe 46, Weather maps at 850 MB for four time steps and the domains
considered in this study.
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Weather map at 500 MB for four time steps and the domains

Figure 48.
considered in this study.



118

<3
-‘.
&

300 MB 0000Z April 4

Figure 49.

300 MB 12002 April 4

Weather map at 300 MB for four time steps and the domains
considered in this study.



