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INVESTIGATION OF A GAUGE THEORY IN GENERAL RELATIVITY

CHAPTER I 

INTRODUCTION

In a recent paper, henceforth to be referred to as I, Cohn^^^
has presented a gauge theory of relativity. In his paper, Cohn re-

(2)emphasizes the view put forth by Reichenbach , that a physical 
theory which prescribes a metric via a set of field equations is 
incomplete unless accompanying these equations there is some pre
scription as to how lengths and times measured by rods and clocks 
in inertial reference frames are to be compared at different points 
in space-time. This prescription is called a congruence definition 
or simply a gauge. It should be emphasized that this prescription 
is a definition or convention, since there is no way to compare the 
lengths and times measured by rods and clocks at different space
time points. However, once a theory containing both field equa
tions and a congruence definition has been set forth, it is possible 
via the predictions of the theory to check the compatibility of the 
gauge with the field equations. For a complete discussion of these 
points, the reader is referred to reference 2.

In the Einstein theory, the prescription is simply that the



field equations are to be valid in a gauge where, by definition, 
the length of a rod as measured from a local inertial rest frame 
shall remain unchanged vdien it is transferred from one space-time 
event to any other. The same statement being true for the time 
intervals between the ticks of a clock. In what follows, this 
gauge will be referred to as the customary gauge.

Cohn proposes a different prescription. Namely, that 
Einstein's field equations are to be valid in some gauge other 
than the customary one. That is, by definition the length or 
time measured by a rod or clock in a local inertial rest frame 
will be different at different space-time points. Henceforth, 
this gauge will be called the non-customary gauge.

The problem to be dealt with in this work is two-fold. 
First, to construct an equation determining this non-customary 
gauge. Second, to compare the predictions in this non-customary 
gauge theory with the predictions made by the customary gauge 
theory of ordinary Einstein relativity and to observed phenomena.
To this end, we will now briefly outline Cohn's theory. For a 
more detailed discussion, the reader is referred to I.

1. Cohn's Gauge Theory
We shall assume, along with Cohn, that the length, &, and 

the period, t, of a rod and clock change via a conformai trans
formation to I  and T when transported from a local inertial rest 
frame at an event {xq} to another local inertial rest frame at {x̂ }< 
That is.



a - A-l(xl,...,x4)Â (I.1.1a)
and

T - (I.1.1b)
where

%-l(x&,...X%) " 1 , (I.1.1c)
and {xq} is arbitrary.

In these equations, will be taken to be a real, positive, 
and as yet unspecified function of the coordinates {x^}.

For the sake of completeness, besides the above transforma
tions on length and time, we shall allow, again by definition, 
the proper-mass, m, of a particle to change under this transporta
tion to m according to

m = X"^ m (1.1.2)
8 being a constant. Later we shall confine our theory to consider 
only the case 8=0.

At this point, it should be noted that in the world we live 
in observations of physical phenomena are, by convention, carried 
out using the customary congruence definition. So if we are to 
compare the predictions of our non-customary gauge theory to observed 
phenomena or to ordinary Einstein theory, we shall need relationships 
between the basic physical quantities in the two gauges. Realizing 
this, we further assume that at any single event of our choosing 
we may assign to the non-customary lengths, masses, and times their 
values as determined by an observer using the customary gauge.
So in (1.1.1), if {x q} is the selected event, Â, t , and m are the
length of a small rod, the period of a clock, and the mass of a par-
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tide respectively as determined by an observer using the customary 
congruence definition. In what follows, unless otherwise stated, 
barred quantities will refer to the customary gauge and unbarred 
quantities the non-customary gauge.

Letting g^g and g^g denote the metric tensors in the two 
gauges, and setting A = e~^, from the statements above we have 
that the relationship between the four-intervals in the customary 
and non-customary gauges is

ds = e^ ds , (1.1.3)
where

ds^ g o dx“ dx®
and

ds^ = g^g dx“ dx^
Furthermore, letting space-time coordinates be dimension-

less, i.e. gauge invariant, we can now write down several well
(3)known properties of conformai transformations.

For the metric tensors and for the Christoffel symbols 
and Fg^ constructed from the customary and non-customary metric 
tensors respectively, we have:

and

where commas donate ordinary differentiation.
Letting the Ricci tensor, R^^, be defined by



-» i.v  -  C . ï  -  C a  + ’■“ e ' • L  -  4  C ' l  w

we have for the relationship between the customary and non-customary
Einstein tensors:

— -<x3— ZD O —
] iv yv6 " 0 - ».v - V  ».c '.6 -

* * ”.ai6 • (I-1-7)
In this last expression, semicolons denote covariant differentia
tion employing the customary Christoffel symbols.

Following Cohn, we now assume that the Einstein field equa
tions hold In the non-customary gauge. That Is,

V  "  ^  V  V *  ’ ( 1 1-8)

where K Is a constant defined by

K “ , (1.1.9)

and Is the stress-energy-momentum tensor In a non-customary 
gauge. A In (I.1.8) Is a cosmological constant which shall be as
sumed to be small.

Once again, since our physical observations are carried out 
using the customary congruence definition, we shall need a relation
ship between and the customary stress-energy-momentum tensor 

In order to make comparisons between our theory, observed 
phenomena, and Einstein's theory. To this end, we notice that since 
our space-tlme coordinates are dlmenslonless then so Is 6^^, and 
hence so are KT and g. A. If we now assume that K transforms In

JJV *%iv

accord with Its dimensions under the transformations (1.1.1) and (1.1.2) 
to a quantity K, we have:

K - K _ (1.1.10)



We shall now be Interested In constructing a reasonable rela
tionship between and KT^^. In order to accomplish this we con
sider the customary stress-energy-momentum tensor of a globule of 
incoherent matter of mass density p in the customary gauge:

Applying the transformations (1.1.1), (1.1.2), (1.1.3) and (1.1.4) to
(1.1.11) and invoking (1.1.10), we have

where

I op g gyv  ̂®yo ®yg ds ds
and *

p o p  e'O-8) : (1.1.13)

We will assume in all that follows that (1.1.12) holds in
general.

Furthermore, we take

where by (1.1.4):
8yv A " Syv % (1.1.14)

% " e”^^ A (1.1.15)
Using (1.1.12) and (1.1.14) equation (1.1.18) becomes

% V  - ̂  ipv + V  ^  (1 1 1*)
Inserting this last result into (1.1.7) yields

^ ipv + êpp i - 2»,p - ipv i“® e.g

- 2°.p;v +  2ipv ipg ®,aîB ( 1 1 1 2 )

This equation points out that o appears in the non-customary field



equations expressed in the customary gauge much like the scalar
(4)field of Brans and Dicke appears in their field equation. The 

relationships between our theory and that of Brans and Dicke will be 
taken up again in section 2 of this chapter. Before proceeding 
with this, however, we now note that it is Eq. (1.1.16), or equiva
lently (1.1.17), together with an equation on a which is to be com
pared to observations and to Einstein's theory. In our notation, 
Einstein's field equations in the customary gauge are

®MV ■ ^ A (I.1.18)

In what follows, the reader is cautioned not to confuse the quanti
ties K and Â defined by (1.1.10) and (1.1.15) with the constants K 
and A. Also, the reader should note that in the ordinary Einstein 
theory, = whereas in our theory from (1.1.16) or (1.1.17),

From (1.1.8), we have that in our non-customary gauge 
theory the statement « 0 is to be replaced by the statement

- 0 (1.1.19)

where slash means covariant differentiation using the non-customary 
metric tensor g^^, and the non-customary Christoffel symbols,

2. Relationship to the Brans-Dicke Theory 
We now mention, as can be seen from (1.1.17), that our theo

ry is incomplete without an equation governing a.
Since in Chapter II we will invoke analogies existing be

tween our theory and the Brans-Dicke theory to develop equations on o; 
at this point we will briefly discuss the Brans-Dicke formulation 
of relativity with a cosmological constant included and point out
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the similarities and differences existing between this formulation 
and ours. For a detailed description of the Brans-Dicke theory 
without a cosmological constant, the reader Is referred to their ori
ginal p a p e r . A l s o  for a more thorough description of the ana
logies existing between the Brans-Dicke scalar field theory and our 
non-customary gauge theory without a cosmological constant, the read
er Is referred to I.

Since the Brans-Dicke theory Is formulated via a variational 
principle the easiest way to proceed then Is to develop both theories 
from variational principles. Since the Brans-Dicke theory Is formu
lated using the customary congruence definition, we shall use barred 
quantities, where appropriate. In formulas dealing with their theory.

First of all. It Is apparent that Cohn's field equations,
(1.1.8), can be derived from the following variational principle:

6 I [r + 2KL + 2^ d*̂ x => 0 (1.2.la)

where the variations are taken with respect to the non-customary 
metric tensor g^^, with 5 g^^ vanishing on the boundary and 
L = L(g ) Is so constructed that

» V  -
If In (1.2.1), Instead of carrying out the variations with 

respect to g^^ we carry them out with respect to the customary me
tric tensor, g^^, holding a fixed the result Is Eq. (1.1.17). To 
demonstrate this we note that from (1.1.4) and (1.1.7)

'..,6 - U ]  ■



and
-̂g ■ e ■ /-g

Inserting these last two statements into (1.2.1), we find that

5 + «e"' [g" ' J  + 2»'^” CkL + A]}

X /Zg d**x = 0 (1.2.1b)
By carrying out the variations in (I.2.lb) with respect to the g^^ 
holding 0 fixed and requiring that 6g^^ vanish on the boundary, the 
reader may verify that (I.2.lb) yields (1.1.17).*

Furthermore, if the variations in (I.2.lb) are carried out 
with respect to a holding the g^^ fixed and &o is required to vanish 
on the boundary, it can be easily shown that the resulting equation 
is the trace of (1.1.17), namely;

R = - 4Â + 6i“® o „ o . - 6i“® o (1.2.2)
, a  , p  , 0 ' , P

This merely serves to point out that the variations on (I.2.la) with 
respect to the g^^ brings out all the information possible. That 
is, no new equation on o insues from taking variations on (I.2.lb) 
with respect to o.

Next, we briefly consider the Brans-Dicke theory without a 
cosmological t e r m . I t  is formulated by first considering the

*This calculation may be facilitated by making use of the fact 
that for any scalar *(4)

A/4R d-x. -[!>■'' r ®  r ®

X 5 d^x
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variational principle from which the ordinary Einstein theory Is 
(5)developed.

s/|g +  ̂  l| .Cf d-x . 0 (1.2.3)

where by definition L “ end ^  .
yv

The Idea Is then set forth that 6, the gravitational constant In 
(1.2.3) should possibly be replaced by a scalar function and 
that a more correct description of physical phenomena might be obtained 
by dividing the Lagranglan In (1.2.3) by <j)”  ̂and adding on a conve
nient Lagrangian density for the scalar field, ij>. The result of this 
being:

-ag . .
dfj* + ̂ i  . w ?.. . . 0 . (1.2.4)

The variations In (1.2.4) being taken with respect to both ip and the 
Ü) being a constant.

To obtain a Brans-Dicke formulation of relativity complete 
with a cosmological constant, we therefore consider the Lagranglan 
density from which the ordinary Einstein theory with a cosmological 
constant (1.1.18), can be derived.

5/|r + L + 2aJ d'̂ x « 0 (1.2.5)

We next Identify G with ÿ divide this density by * % and add on 
the density for the scalar field, (|>. The result being:

L + 2<pA - b) g**̂  P.j, d"*x = 0 (1.2.6)

The results of the variations In (1.2.6) may be expressed In
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the following two equations:

\ v  + ipv ^ ♦■v -  ** ipv *;]

+ ■ V  ♦.aje] (I.2.7a)

S  S + "  O . (I-2-7b)

where semicolons again denote covariant derivatives relative to the 
g^^. Combining the trace of the first of these equations with the 
second equation yields

“o3 .
  îiSLîl » - M I L - X  +* ĉ  (2(0+3) A . (1.2.8)2(0+3

That Is, the variations taken on (1.2.6) not only produce a set of 
field equations akin In form to our non-customary field equation 
(1.1.17), but also an equation on the scalar field, *.

At this point, the Idea suggests Itself that there might 
possibly be a Lagranglan density other than the one used In (1.2.1) 
which would produce both our non-customary field equations and an 
equation on a . The author admits this possibility, but has been 
unable to construct a density satisfying these conditions.

To continue this discussion, we find that by using (1.1.9) 
and (1.1.10), and (1.1.15) we can bring (1.1.17) Into the form

V  ■ ^  V  +  î„v  ^

_ •“ “Ct 6
-  ° ’v ■ *uv « °>6

-  ^ % i v  +  2 i „ ,  i “ ®
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We now notice that by setting w- -3/2 in (I.2.7a) and by setting 
3 “ -1 in (1.2.9) and identifying with Ge^®, that in the case
A"0, (1.2.7a) and (1.2.9) become identical. We might hope then that 
since the procedure just outlined makes our field equations the 
same as those of Brans and Dicke in the case w = -3/2 and A=0, that 
we could, by analogy, generate an equation on a by replacing (|) in 
(1.2.7b) by Unfortunately, this choice of w makes the source
term in (I.2.7b) diverge. Furthermore, in the case A^O it seems that 
the presence of the factor in the term involving A in (1.2.9) 
prohibits (1.2.9) from becoming identical to the Brans-Dicke field 
equations irregardless of how we select w and 3 and of any corres
pondence we select between ({> and ê . However, the fact that in the 
case A = 0 our field equations can, in one special case, be made 
identical to those of Brans and Dicke lends credence to the idea of 
constructing an equation on a which is analogous to the scalar wave 
equation of Brans and Dicke. In Chapter II, we shall construct equa
tions on a using this idea.

3. Equations of Motion 
In this section we will demonstrate that Eq. (1.1.19), i.e.

= 0, implies the equations of motion for particles in our theory
to the same extent that = 0 implies the equations of motion in,v
the ordinary Einstein theory. Furthermore, from the results of our 
study of = 0, we will present what the author considers to be
a good argument for only considering the case 3 = 0 in Eq. (1.1.2).

To develop the equations of motion for a particle of mass
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density p in the non-customary gauge, we shall make use of the results 
of a calculation contained In Adler, Bazin and Schiffer's book.^^^
In this calculation. It Is assumed that for a small globule of Inco
herent matter with, proper-mass density p that the following equations 
are true:

» 0 (1.1.19)
and

where
= pvV (1.3.1)

(1.3.2)

By applying a world-tube technique to the globule described 
by Eqs. (1.1.19),° (1.3.1), and (1.3.2), It Is then shown that

+ m r“ v'' = 0 (1.3.3)ds yv
where

m “ / p dV (1.3.4)
and dV Is the proper-volume element of the globule.

In order to utilize (1.3.3) we must first determine —  .
To accomplish this we note that for massive particles

» 1 (1.3.5)
where

\
If we now differentiate (1.3.5) with respect to the curve 

parameter, s, we find

\  + C v  V'’] - 0 • 3



14

Finally, contracting (1.3.3) with and combining the result with
(1.3.6) yields the desired results:*

and

f  - 0 (1.3.7)

^  + r“ V* = 0 (1.3.8)ds viv
At this point, it should be noted that (1.3.7) and (1.3.8) 

are to hold only where (1.1.19) is true. In our theory, (1.1.19) is 
true only in the non-customary gauge. We therefore have that in our 
theory particles move along geodesics, (1.3.8), according to an obser
ver using the non-customary congruence definitions. And, in our theo
ry, the proper-maps of a particle (1.3.4), as determined by obser
vers using the non-customary congruence definition does not change 
along its trajectory.

To interpret the result (1.3.8) in terms of measurements 
that would be made by an observer using the customary congruence 
definition, we note that according to (1.1.3) and (1.3.2) that

where
v“ » v“ e° ' (1.3.9)

Now, applying (1.3.9), (1.1.3), and (1.1.5) to (1.3.8) we find

8pv a,g . (1.3.10)

*The results, (1.3.7) and (1.3.8), are also derived from a more 
general standpoint in a paper by Papapetrou.(7)
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In this last equation, we shall assume that Is 1 for mater
ial particles and 0 for photons.* We see then that particles In our 
theory do not follow geodesics In the customary gauge. That Is, In 
the customary gauge, the gradients of a add a force term to the equa
tions of motion which Is not present In the ordinary Einstein theory.

We now turn to a discussion of the congruence definition for 
masses In our theory. According to the discussion presented In (I.l), 
m In (1.1.2) can be Identified as the mass of a particle as determined 
by observers using the customary congruence definitions. So from
(1.1.2) we have

m » e^® m (1.3.11)
From (1.3.7), the proper-mass, m, of a particle as determined 

by an observer using the non-customary congruence definitions does 
not change along the particle's trajectory. Consequently, by (1.3.11), 
an observer using the customary congruence definitions must, for gfO 
and a non-trivial, see the proper-mass of the particle change as he 
moves with the particle along its trajectory. That is, for and a 

non-trlvlal, our theory only admits particles whose proper-masses 
as determined by "customary observers" change along their trajec
tories.

It may Indeed be true that In the gauge we make measurements 
In, the customary gauge, the proper-masses of particles change by

*At this point, we mention that we are assuming that the speed 
of light Is the same In both gauges. That Is, assuming that c trans
forms In accord with Its dimensions we have from (1.1.1) that
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minute amounts along their trajectories. However, since for non
radiating particles this is not observed in nature and since our 
theory allows us the freedom to select our mass gauge, we will re
quire that 6 be zero thereby requiring the proper-masses of particles 
in either gauge to be constant along their trajectories regardless 
of the congruence definition between lengths and times. It should 
be noted that the basis of the above argument for 3 being zero lies 
in our assumption that in the non-customary gauge = 0. There
fore, if we were to relax this condition, i.e. change our non-cus
tomary field equations, then it is conceivable that a theory could 
be developed in which m, the customary mass, is constant along the 
particle trajectory for a non-zero value of 3.

So, setting 3=0 in (1.1.2), (1.1.10), (1.1.13), and (1.2.9) 
respectively, we have

m = m (1.3.12)

K = K e° (1.3.13)

P p (1.3.14)
and

"■ “•otB A

®pv ® ^*a ^*3

In what follows, we will compare, after coupling with an 
equation on o, the predictions made by our non-customary field equa
tions, (1.3.15) or equivantly (1.1.8), and our equations of motion.
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(1.3.8) or (1.3.10), to the predictions made by the ordinary Ein
stein theory. Before turning to the construction of an equation on 
o, we will now. In order to gain some feeling as to how o will mani
fest Itself physically, present a qualitative discussion of the 
"Newtonian limit" of our theory,

4. The Newtonian Limit 
In order to discuss qualitatively the roles to be played by 

g^^ and a In our non-customary gauge theory, we will now discuss 
the Newtonian limit of our theory In relation to that of the ordi
nary Einstein theory. To this end, we point out that by Inspection 
of Eqs. (1.1.1), (1.3.10), and (1.3.15) our theory Is Identical to 
the ordinary Einstein theory If o Is Identically zero. Now, since 
the ordinary Einstein theory Includes the Newtonian gravitational 
theory as a limiting case and since, especially at large distances 
from gravitating objects, the ordinary Einstein theory is In close 
agreement with observation. If our theory Is to be sensible a should 
become small at large distances from gravitating bodies. Further 
weight will be lent to the Idea of o becoming small at large dis
tances from a gravitating body In Chapter II where we will see that the 
source term for a In the equations presented for Investigation Is the 
stress-energy-momentum tensor for matter. Furthermore, from Section 
1 of this chapter, o can, by assumption be set to zero at some ar
bitrary event In space-tlme. With these points In mind, we now 
assert that o should become small at large distances from a gravita
ting body and should approach zero as these distances approach Infl-
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nlty. That is, at large distances from a gravitating body, our theory 
and the ordinary Einstein theory are to be asymptotically the same.

Employing the preceding assertion, we will now demonstrate 
that the Newtonian gravitational theory is a first approximation of 
our theory in the event that we identify the Newtonian potential, ij>.

with the quantity ĉ * To accomplish this, we must first

show that the Newtonian equations of motion are a first approxima
tion of our equations of motion, (1.3.10). Secondly, we must demon
strate that Poisson*s equation on # is a first approximation to our 
field equation, (1.3.15). In doing this, we will restrict ourselves 
to be at a large distance from a quasi-static gravitating object of 
mass density p in the customary gauge, and to consider test particles 
which have velocities small compared to the speed of light.

From the preceding discussion of the relationship between 
our theory and the ordinary Einstein theory at large distances from 
gravitating bodies, we can evidently write for the problem at hand

o « 0 (1.4.1)

ds^ ss - (dx^)^ - (dxf)^ - (dx^)^ + (dx**) (1.4.2)
; l,j = 1,2,3 (1.4.3)

and
gifi( 1 . (1.4.4)

Also, from our restrictions that the gravitating object be quasi-

*In this development, we will closely follow a discussion
on the Newtonian limit for the ordinary Einstein theory as presented 
by Tolman.(8)
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static and the velocities of our test particles be small compared 
to the speed of light, we shall assume that

1 ^ - 0  (1.4.5)

= 0 (1.4.6)

and

Employing the constraints (1.4.1) through (1.4.7), we will 
now show that the Newtonian equations of motion are a first approxi
mation to our equations of motion. From (1.3.9) and (1.3.10), we 
have that for massive particles our equations of motion In the cus
tomary gauge are

In view of the restrictions (1.4.1) through (1.4.7), this last 
statement can be simplified to

Ë44 - , 1 = 1,2,3 . (1.4.8)
ax I J

Setting tj) equal to c ^ \ h  g4i+ - a + constant] In (1.4.8) we arrive at 
the Newtonian equations of motion for a free particle In a gravita
tional field.

Furthermore, from (1.4.1), (1.4.4), and the fact that <1/ must be zero 
at Infinity, we have
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- o] • (1.4.9)

To complete our task of showing that the Newtonian gravita
tional theory Is a first approximation of our theory, we must now show 
that Poisson*s equation on # Is a first approximation to our field 
eqüatlon, (1.3.15). To accomplish this, we will assume that the com
ponents of the stress-energy-momentum tensor In the customary gauge 
all vanish with the exception of the 4-4 component for which we 
assume

= p c2
Hence, provided that (1.4.3) and (1.4.4) hold, we have

T**** = T**ij = Ti*î = T = p c% . (1.4.10)
Now, Inserting (1.4.10) Into our field equations (1.3.15) and

Its trace, we find
— — , — — 8itG — o , — —20 .
Gl t̂^ * - % g44 R = ~ p ~ pe + g44 e A

n —  — cx3- 2 0,40,4 - g44 g 0 ,gO,g

- 20^4,4 + 2g44 g“  ̂ (1.4.11)

and

- R  = P ef + 4e A - 6g“® o,^o,g + 6g*® ^ * a ; B (1*4.12)

By applying the restrictions (1.4.1) through (1.4.5) to
(1.4.11) and (1.4.12), and by assuming that A, the cosmological con
stant, Is small enough to be neglected, we find that

R 4 4  - ÎS R  - p(l+o) + 0 ,̂ 0,1 - 2 0,4.4 + 2i“® o,^.g (1.4.13)

and
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-R " ̂  P(1+<J) + 6 0 , +  6g“  ̂°,a;e

where 1 » 1,2,3.
Combining (1.4.13) and (1.4.14) yields

«44 “ ^  P(l+0) - 20,^0,1 - 20^4,4- i“ ^ 0,^.

(1.4.14)

6 (1.4.15)

At this point, we will assume that since a and g^^ are es
sentially constants In the region under consideration that 0 ,̂  and

3g,
a are small. With this In mind, we now consider that the terms In

3x'
(1.4.15) which are quadratic In the derivatives of o and g^^ may be 
neglected In comparison to the terms that are of first order In these 
derivatives. From this consideration we have

',4.4

g»*o*a;e
32g
3x^3x^

= -V^a

(1.4.16)

and from (1 .1 .6)

3xT3xi ^
(1.4.17)

Utilizing (1.4.16) and (1.4.17) In (1.4.15) yields

_ o) . ̂  p(l4o) = ^ p

Finally, by using the Identification (1.4.9), we arrive at 
Poisson's equation for the Newtonian gravitational potential

«S 4irGp
The above calculations demonstrate that In our theory It Is

the quantity - a which Is closely associated with the Newtonian
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potential. In the ordinary Einstein theory, it is the quantity
/o\

which is associated with this potential. Therefore, at this point 
we note that whereas in the ordinary Einstein theory, the effects of a 
gravitational field on a test particle can be transformed away at a 
point by using a local inertial fram, i.e. a frame in which the quan-

titles — ^.vanish at a point, this is not the case in our theory.

That is, in our case the vanishing o f  at a point in no way in-
. 3x“

sures the vanishing of . We will discuss this point further in
3x“

Chapter III where we will show that the principle equivalence between 
an accelerating fpame and a gravitational field does not hold in our 
theory. We now turn to the construction of equations on a.



CHAPTER II 

EQUATIONS FOR 0

In this chapter, we will concern ourselves with the construc
tion of equations on a. Before doing this, we point out that there 
is no guiding physical concept which will allow us to determine the 
validity of an equation on o independent of our field equations (1 .1 .8) 
or (1.3.15). It is only an equation on a coupled with our field equa
tions which has physical significance. So the testing of the validity 
of an equation on o must be carried out by means of a trial and error 
technique. Namely, postulate a o-equation, couple this equation with 
our field equations (1.1.8) or (1.3.15), and compare the results of 
this coupling to observation.

In sections 1 through 3 of this chapter, we will postulate 
three equations on a to be tested in later chapters by the procedure 
just outlined. The first of these equations will be constructed by 
requiring that the variations on o holding the g^^ fixed in /r/^ d**x 
vanish. That is, the integral of the product of the customary Ricci 
curvature scalar, R, with over an arbitrary 4-space volume shall 
be extremal with respect to a . The other two equations will come from 
requiring that our theory be analogous to the Brans-Dicke formulation

23
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with a cosmological term. The first of these last two equations will 
be constructed by identifying Ge^ (G being the gravational constant) 
with in the Brans-Dicke scalar wave equation, (1.2.8). The 
second will come from requiring that the equation relating * to R 
in the Brans-Dicke formulation, (I.2.7b), hold in our theory if Ge^ 
is identified with <()“ .̂ After making this identification, we will 
couple the resulting equation to the trace of our field equations,
(1.3.15), and arrive at a third equation for a.

We wish to again stress that there is no physical justifi
cation for any of the three procedures just outlined. Nor do the 
equations produced by these procedures exhaust the possibilities for 
equations on a . However, we shall see that the three equations on a 

produced by these procedures are of a fairly general nature. There
fore, we feel that these equations will suffice to at least test the 
feasibility of our non-customary gauge theory. We now proceed with 
the development of our o-equations.

1. An Equation on a From a Variational Technique 
For our first example of an equation on a we postulate that

6/ii/=f d*»x = 0 , (II.1.1)
where the variations are to be carried out on o holding the g^^ 
fixed with the variations of o, 5a, vanishing on the boundary of the 
4-volume and R is found by taking the trace of (1.3.15),

R ■ -Ke^T - 4e~2®A + 6g“^o,^o,g - 6g“^a^^.g , (II.1.2)

where from (1.1.9)
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Inserting (II.1.2) into (II.1.1) yields

- I  Kê T̂ - |  d^x = 0 , (II.1.3)

Carrying out the variations in (II.1.3) term by term, we have

^  d"*x = "2/j-^ [g“  ̂o,̂  /^jsod'+x

« -2/|i“  ̂ 6ad‘*x , (II.1.4)

d/g** o\a;g a,^ /̂ |.|d*»x = 0 , (II.1.5)

and
S/^~ Ke^T + Y  e~̂ *̂ A|v'̂  ̂d^x = Ke^T - ^  Sod^x (II.1.6)

Inserting^ (II.1.4) through (II.1.6) into (II.1.3), we find

^ n  K T - Y  dod^x = 0 . (II.1.7)

Since this last statement must be true for arbitrary varia
tions in a we have the first of the three equations on which we will 
consider. '

g°^ °,ctj g = - ̂  K T + Y  A . (II.1.8)

For this equation, we see that the source of the o field is the
trace, T, of the customary stress-energy-momentum tensor. We will 
see that f is also the source of o in our other two equations to be 
considered. We will now present the last two of our three equations 
to be investigated, after which we will consider all three in some 
detail.
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2. First Equation on o From An Analogy to Brans-Dicke Theory 
If in the Brans-Dicke field equations, (1.2.7a), is 

identified with Ge^, then, as was discussed in (1 .2), their field 
equations become similar in form to our field equation, (1.3.15).
Using this as a guide, we now propose another o-equation to be tested 
against observation by making the same identification, Ge^,
in the Brans-Dicke scalar wave equation, (1.2.8). Carrying out this 
identification yields

8 ),a;B “ 2̂Î;j+3̂ ® ^ * . (II.2.1)

Eq. (II.2.1) can be rewritten in the form

® ® “ “ 2̂513+3̂ ® ^ * (II.2.2)

This is the second of the three equations on o which we will test 
against observation.

3. Second Equation on o From An Analogy to Brans-Dicke Theory
In this third and last equation on o, we shall again require 

that our theory be analogous to the Brans-Dicke theory by making the 
same identification on ()>, (|)"̂ *»■ Ge^, used to arrive at (II.2.2).
However, we will make this identification in the equation relating 
* to R in the Brans-Dicke formulation rather than in the Brans-Dicke 
scalar wave equation. Thus, setting (|>“  ̂= Ge^ in (1.2.7b) we find

- *5 • (II.3.U

If we now combine (II.3.1) with our expression (II.1.2) for 
R we arrive at the last of the three equations on o which we will 
consider.



27

e -  +  ( 2̂ ) *

- • (II-3 2)

4. Comparison of the a-Equatlons 
We now wish to discuss and compare our equations on o, (II.1.8),

(II.2.2), and (II.3.2). For the sake of this comparison and for 
future use, we will re-express these equations In terms of the non- 
customary Christoffel symbols, and the non-customary metric
tensor, Using (1.1.4) and (1.1.5), It Is easily shown that

= e-2og"Go,^o,g (II.4.1)

and

+ 2g“8a,^o,J (II.4.2)

where

Inserting (II.4.1) and (II.4.2) Into (II.1.8), (II.2.2), and
(II.3.2), we find

- - IF + i  A '

°’“|a + > (“ .4.4)

and

- ( ^ ) A  . (II.4.6)

where we have adopted the notation

0 »“ 5 g*Go,g . (II.4.7)
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Comparing Eqs. (II.4.4) through (II.4.6), we notice that they 
are all second order, non-llnear equations In o each containing T 
as a source term. They differ from each other firstly In the coef
ficients of the terms Involving and Ke^^T and secondly In the
manner In which the cosmological constant. A, enters the equations.
In the first equation, (II.4.4), the coefficient of Is a constant 
while In the second equation, (II.4.5), A Is multiplied by a factor 
Involving e^o. The third equation, (II.4.6), Involves a mixture of 
the terms Involving A and e^^A.

In Chapters III and IV, we will solve these equations and 
Investigate problems In relativity under the assumption that the 
terms Involving A are negligible In comparison to the terms Invol
ving f. In this case, all of our equations can be cast Into the 
form

a*“ |̂  + Pia*“o,^ = - KPgeSoT (II.4.8)

where Pj and P2 are constants. It Is only In Chapter V where we 
discuss applications to cosmology that the terms Involving A will 
make themselves felt. We now turn to the solutions of our a-equatlons 
and our field equations for the case of a static, finite, spherically 
symmetric distribution of matter.



CHAPTER III

SOLUTIONS TO THE FIELD EQUATIONS AND THE o-EQUATIONS

In this chapter, we will, by solving our field and gauge 
equations, lay the foundations which will be necessary in Chapter IV 
to solve several standard problems in relativity. We will solve 
these equations in the case of a static, finite, spherically symme
tric distribution of matter as determined by an observer using the 
customary congruence definition. Solutions will be obtained for 
both the interior and exterior regions of this distribution of mat
ter. For ease of calculation, we will solve for the non-customary 
metric tensor, g^^, and o from Eqs. (1.1.8) and (II.4.4) through
(II.4.6) respectively. Then, since we wish to compare the predic
tions made by our theory with observations made by observers employ
ing the customary congruence definition and with the predictions 
of the ordinary Einstein theory, we will perform the gauge trans
formation, (1.1.4), to arrive at the customary metric tensor.

1. Assumptions to be Used in the Calculations
In carrying out the procedures just outlined, we will assume 

that the terms involving A, the cosmological constant, in our field 
equations and in our o-equations are negligible compared to the

29
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terms involving the stress-energy-momentum tensor, or its trace,
T. With this assumption, our field equations, (1.1.8)

(III.1.1)

For A = 0, our o-equations, (II.4.4) through (II.4.6), all have the 
form (II.4.8),

a*“| + Pi 0 *“ o, = -K ?2 T ea  ̂ *a ^
3 0 (II.4.8)

Since from Eqs. (1.1.12) and (1.3.13), we have that T = e^^f, then
(II.4.8) can also be written as

+ Pi o* o, = -K P2 T . (III.1.2)|a " 'o
In (II.4.8) and (III.1.2), Pi and Pa are constants specifying which 
of the Eqs. (II.4.4) through (II.4.6) we are using. Their values 
are *

and

Pi = 2, P2 = ̂  

3w+6
2w+6

(III.1.3)

’ ^2 " 2S «
for Eqs. (II.4.4) through (II.4.6) respectively. The determina
tion of which set Pi, P2 is correct must come from comparing the 
predictions of our theory with observation.

Also, since we are considering a static, finite, spherically 
symmetric distribution of matter as determined by an observer using 
the customary congruence definition, we can, by using well estab-
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llshed results,* assume that our line element, both inside nnd out
side the distribution of matter, in the customary gauge may be written 
in the standard form

ds^ = d?2 - r2(dn)2 + e^^^^ (dx**)̂  (III.1.4}

(dO)2 = d0  ̂+ sin^0 d(j)̂
In keeping with our custom of using bars on quantities associated 
with the customary gauge, we have denoted the radial coordinate 
appearing in the standard form line element, (III.1.4), by r.
Shortly, we will see that in order to express the non-customary 
line element associated with (III.4.1) in standard form, it will 
be necessary to transform r into a new radial coordinate, r.

In (III .*1.4), X(r) and v(r) are the terms usually solved 
for in the ordinary Einstein theory, and they are the quantities 
which allow for comparisons between theory and observations made 
by observers using the customary congruence definition. There
fore, it will be our task to determine these quantities from our 
non-customary gauge theory and compare our results to the values 
for these quantities predicted from the ordinary Einstein theory 
and to observations.

To carry out the solution for the g^^ from (III.1.1), 
we shall need to know the form of the line element in the non- 
customary gauge. To accomplish this, we shall assume that since 
we are dealing with a static, spherically symmetric distribution

*For a simple discussion of this, the reader is referred to
Addler, Bazin, and Schiffer(9) or Tolman(10).
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of natter that a = a(r). Now, applying the transformation 

ds ■ eT^ds to (III.1.4), we find

d.2 dpz . (dO):

+ gV(f)-2 0(r) (dx"*)̂  (III.1.5)

The line element in the non-customary gauge, (III.1.5), 
can be brought into standard form by applying the coordinate trans- 
foirmation

r = r (III.1.6)
The results of this transformation are

ds^ = - dr^ - r2(dO)2 + (III.1.7a)
where

gX(r) , gX(r) (III.1.7b)

and

."(r) . «v(r)-2 0 (r) _ (1 11.1 .7c)

So, we see that if we can solve our field equations (III.1.1)

for e^(^) and and solve for o(r) from (III.1.2), then, from
(III.1.6), (III.1.7b), and (III.1.7c), we will be able to determine

e and e^^^^ in our theory and compare our theory to Einstein's 
and to observation.

To continue, by employing (1.1.6), it can be shown that 
for the non-customary line element, (III.1.7a), that our field 
equations, (III.1.1) become

-X rv'
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y l l .  _ A'v' . (v*)^ . v'-A') _ „„2

Kt | (III.1.8)
and

T - ; ? , _ï_ » trip**r2+ :& = KT;

all other components being zero, and primes denoting differentia
tion with respect to r. Likewise, for this line element, our 
o-equation, (III.1.2), is

e-^ |o'’ + 1  o’ + + Pi(o’)̂ j = K ?2 T (III.1.9)

To solve either (III.1.8) or (III.1.9), we will need to 
assume a form for the stress-energy-momentum tensor. To this end, 
we assume that in the customary gauge the stress-energy-momentum

tensor, T̂j , is that of a perfect fluid confined to the spherical 
region r 6 â .

K  “ ^ ' (III.1.10)

By applying (1.1.12) and (1.3.13) to (III.1.10), we find 
that the stress-energy-momentum tensor in the non-customary gauge 
is

in the region r - a , where from (III.1.6)

a » 5 (III.1.12)

In Eqs. (III.1.10) and (III.1.11), p, P and p, P are the 
proper macroscopic mass densities and pressures in the customary
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and non-customary gauges respectively. They are related by the 
equations

p - p , (1.3.14)
and

P = P e** . (III.1.13)

In (III.1.11), we will take P = 0 at r = a, and for ease 
of calculation we assume that p is constant in the region r ^ a.
We will see that this model leads to a radially decreasing custom
ary mass density, p.

With the above assumptions, we will find that our field 
equations, (III.1.8), are exactly solvable for the g^^. We will 
also find that our o-equation, (III.1.9), is exactly solvable in the 
exterior region r > a. However, in solving our o-equation in the 
interior region, r < a, we will only find an approximate solution 
by invoking several more assumptions: Namely, that the g^^ are
only slightly perturbed from their Minkowskian values, that o is
only slightly different from zero, and that the pressure term en
tering T in (III.1.9) is negligible compared to the term involving 
pc^. That is, in the interior region we shall assume that quadratic 
terms in X, v, and o are negligible compared to first order terms 
in these quantities and that T may be approximated by pc^. So in the
interior region, we will solve for a from the equation

o* + p o' = K P2 p cf (III.1.14)

We now turn to the solution of these various equations.
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2. Interior and Exterior Solutions 
For the applications to be made in Chapter IV, we shall 

only need the solutions to our field equations in the exterior 
region. Hence, we shall begin this discussion by solving Eqs.
(III.1.8) in the region r > a where is zero. In the process 
of solving these equations, we shall find that in order to specify 
the constants appearing in these solutions we will need to also 
consider the solution to (III.1.8) in the interior region.

a. Exterior Solution
In the region r > a, Eqs. (III.1.8) become

and

e"^(^ + ̂ )  - ̂  = 0

“X fv I X'v' . (v 
4 4 (III.2.1)

The solution to this set of equations for the coefficients 
of the non-customary metric tensor are the well known Schwarzschild 
exterior solutions,

•  ̂ 2niG (III.2.2)

and

(III.2.3)

where m is a constant to be determined by matching the exterior 
solution to the interior solution at the boundary r = a.
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b. Interior Solution
(10)Following the procedure presented In Tolman, for a sta

tic perfect fluid In the region r < a we have

and

(III.2.4)

(III.2.5)

dP
dr (pc^+P) v' (III.2.6)

For p a constant, the solution to this set of equations for the 
components e^ and e^ of the non-customary metric tensor are

-X - /pr^dr = 1 - r% (III.2.7)

and

^  = A - B A  - r^ ,

SB A - - A

A - B A -

(III.2.8)

(III.2.9)

In these equations, A and B are constant to which. In order to 
make P zero at r = a, we assign the values

A " Y  A l  - , B = .

Matching (III.2.2), to (III.2.7) at the boundary r = a 
yields. In the case p = constant, for m.
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® 4m « 4tt / pr^dr = ■=■ mpa^ . (III.2.10)
0 ^

Thus» we see from (III.1.7b), (III.1.7c), (III.2.2), and
(III.2.3) that in.the region r > a

( 1 - #  ( m . 2.11)

and

. (l - (III.2.12)

where m is given by (III.2.10).
These solutions are to be compared with the exterior solu

tions from the ordinary Einstein theory for e^^^^ and e^^^^ which 
are<“ >

g-i(r) , 2 . ̂  (III.2.13)rc<
and

e"(f) = 1 - 1 ^  (III.2.14)rc<
where

and

a
m = 4ir / p dr , (III.2.15)

0

r = r (III.1.6)

a » 5 (III.1.12)

p a p  (1.3.14)

So, we see that if we are to compare the results of our
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theory to the results of the ordinary Einstein theory that we must 
now determine the relationships between r and r and m and m. We 
will now discuss the solutions of our equations on a,

3. Solutions for o 
As was the case in the solution of our field equations, we 

shall, for the application to be made in Chapter IV, only need 
solutions for a in the exterior region. However, to specify the 
constants appearing in this exterior solution and to determine the 
relationship between m and m, we shall also need the interior solu
tion for a.

As was mentioned earlier, Eq. (III.1.9) can be solved 
exactly for a in the exterior region. We shall see that this 
exact solution for a can be expressed as a power series in 
which shall be assumed small compared to 1. It will then be 
shown that if we consider the quadratic terms in A, v, and a ap
pearing in (III.1.9) to be negligible compared to the first order 
terms In these quantities that the resulting solution for a is the

ââme as the power series solution to first order in • Further

more, the fact that the exact solution for a can be expressed as a

power series in will mean that the solutions for e and e^^^^ rc^

can be expressed as power series in . In all the practical ap

plications to be made in Chapter IV, we shall only need to know e^^^^ 

and e^^^^ to first order in and the relationship between m and m 

to first order in . This will mean that we only need the solution
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for o to first order in — j . Therefore, for our needs, it will suf

fice to solve for a in the interior region from Eq. (III.1.14) and 
match this "first order" solution at r « a to the exterior power

series solution to first order in to determine the constant ne-rc^
cessary to complete this exterior solution. Also, this first order 
interior solution will be sufficient to determine the relationship 
between m and m.

a. Exterior Solution for o
In the region r > a, Eq. (III.1.9) becomes

o' + Pi(o')2 = 0 (III.3.1). It
2

which, assuming o' f 0 , may be rewritten as

+ l Ü p Ü  + + p ^  = 0 (III.3.2)dr dr dr  ̂dr

Integrating (III.3.2) twice yields

(— )= B + A Pi / r"2 e ^ dr , (III.3.3)e

where A and B are constants of integration. By utilizing the ex

pression (III.2.2) and (III.2.3) for e^ and e^ in the integral ap
pearing in (III.3.3) we find

- 8 + • (1II.3.4)

In (1.4), we set forth that at infinite distances from a 
gravitating body o should become zero. Invoking this assumption
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in (III.3I4) Implies that B = 1. So, Inserting this value of B 
Into (III.3.4) yields the exact exterior solution for a to within 
the constant factor A.

1
e° • (III 3-5)

As previously mentioned, this exact solution can be ex

pressed as a power series In ,

If It Is now assumed that the terms of order and higher on

the right-hand side of (III.3.6) are negligible compared to 

Itself, and that a is small enough so that e^ can be approximated
by (1+a), we find

o = - Y  (III.3.7)

We will now demonstrate that (III,3.7) could have been ob
tained by neglecting the quadratic terms In A, v, and a appearing 
In (III.3.1) In comparison to the first order terms in these quan
tities. That is, the solution to the equation

,11,+ ̂  o* = 0 (III.3.8)

is

o *= b ' - ̂  (III.3.9)

where in (III.3.9) B* and A are constants and b' can be set to zero
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from the assumption that o + 0 as r + ».
With the above calculation In mind, we will now solve for 

a In the Interior region from the first order equation, (III.1.14), 
and match this solution to the first order exterior solution,
(III.3.7), to determine the constant A.

b. Interior Solution for o
Using the aforementioned approximation. In the region r < a

we have,

a" + f  a’ = K pc2 (III.14)

where p Is taken to be a constant.
The solution to (III.1.14) Is elementary and Is found to

be .

where we have set m = y  mpa^ , K = , and b^ and b2 are con

stants of Integration.
To evaluate b^ In this solution, we shall require that a be 

finite at the origin r = 0, thereby making bj = 0. So our Interior 
solution becomes, approximately.

o “ ^§^2 + b2 (III.3.11)a^cZ

where b2 Is to be determined by matching this solution to the ex
terior solution at r = a.
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c. Matching the Solutions at the Boundary
In matching our interior and exterior solutions at the boun

dary r = a, we must first set o(a) for the exterior solution equal 
to a(a) for the interior solution. Secondly, since in arriving at 
both our interior and exterior solutions, we assumed that a "  existed, 
then we must have that o' is continuous at the boundairy r = a. In
voking these requirements in (III.3.7) and (III.3.11), we find that

_ A  = Z 2 ^ + b 2  (III.3.12)a ac"̂  ^

and

(in.3.13)

Solving (III.3.12) and (III.3.13) for A and b2 and insert
ing the results into (III.3.7) and (III.3.11) we find that

A = (III.3.14a)*

b2 = - (III.3.14b)

and

a = - , r > a (III.3.15a)

o = r2 - r < a (III.3.15b)a^c^ ac^

The reader can easily verify that these solutions for o and the in

terior and exterior solutions for e^ and e^, (III.2.7), (III.2.8), 
(III.2.2), and (III.2.3), imply that the quadratic terms in A, v, and 
a appearing in (III.1.9) are negligible compared to first order terms
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in these quantities if it is assumed that «  1 for r & a.

It should be noted that our first order solutions, (III.3.15), 
are not sensitive to the parameter F^, but only to ?£• As previously 
mentioned, ?2 must be determined by comparing the predictions made 
by our theory to physical observation. In order to place ourselves 
in a position to make these comparisons, we must now determine the

quantities e and e^^^^ in the exterior region. To accomplish 
this, we will have to express o in terms of r and m in terms of m.

d. Determination of e^ and r —  to First Order in for r > a  dr__________________rc^__________

To first order in in the exterior region, we find by

combining (III.3.6) with (III.3.14a) that

e* = 1 - (III.3.16)rc^

also, the relationship between r and r is

r = r e (III.1.6)

Inserting (III.1.6) into (III.3.16) and solving for 

we find, to first order in the region r > 5, that

e » ®  . 1 . 2 0 2 .

or (III.3.17)

From (III.1.7b), we see that in the determination of e^^^^
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we shall need the quantity r ̂  expressed in terms of r. To accom

plish this, we note that from (III.3.15a) and (III.1.6) that

I ̂  ^  . (in.3.18)dr rc^

Inserting the expression for e^^^^ from (III.3.17) into

(III.3.18), we find that to first order in

r f  ^  . (III.3.19)

e. Relationship Between m and m and Consequences of This Relation 
For m and m, we have

m = ■!• ir p a^ . (III.2.10)

and
â

m = 4w / p r% dr , (III.2.15)
0

where

p e p  ' (1.3.14)

and p is assumed constant.
We now note that m is to be identified with the mass of the 

gravitating object as determined by observers using the radial co
ordinate r, whereas m is assumed to be the mass as determined by 
observers using the radial coordinate r. We, therefore, expect these 

two quantities to differ.
From (III.1.6) we find that
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da \ adr - (l + r 22) e* dr (III.3.20)

Now, by applying (1.3.14), (III.1.6), and (III.3.20) to
(III.2.15), we find

a
5 ■ m + 4tt / pr^ ^  dr . (III.3.21)

. 0 dr

The integral appearing in this last expression for m may be evaluated 
by noting that from our interior solution for a, (III.3.15b), that

dr a^c

Applying this result to (III.3.21) yields

6 Pam^G

§  = r . (III.3.22)

m ® m + ■=•---5—  (III.3.23)

or

m »  ----  pSS---- . (III.3.24)

In all our later applications, the term shall be assumed

to be small compared to 1 so that (III.3.24) can be approximated by 
the expression

m = m 1̂ - Y  * (III.3.25)

For our later applications, we shall need the relationship 
between m and m in terms of â rather than a. From (III.16) and
(III.3.16), we have that

â « a e*(*) = a - (III.3.26)
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By Inserting (III.3.26) Into (III.3.25) and again requiring 

that be quite small compared to 1, we can, by a series of 

straightforward approximations, arrive at the result

S  = 1 “ Y  ?£ (III.3.27)m 5 ac'̂

Inserting the result (III.3.27) into (III.3.17) and

(III.3.19), we find to first order in the terms

that in the exterior region

e*(f) = 1 - (III.3.28)

and .

(111.3.29)dr rc^

Likewise, to first order in our interior solution, (III.3.15b),

becomes in terms of barred quantities

°(Z) “ 1 0  (IH.3.30)

Approximating p in expression (1.3.14) by p = 

applying (III.3.30) yields

? » p{l - ̂  + S #  . (III-3.31)

Since for the problem being considered, the non-customary mass den
sity, p, is constant, this last equation shows the customary mass 
density, p, is radially decreasing.
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Gm 'We wish to now mention that to first order In =-?-It canac^
be easily shown that the equation relating P to p, (III.2.9), 
becomes

2 Ia3c2

which, assuming that Is very small, justifies our assumption that 

P «  pc^.
By utilizing the results (III.3.28) and (III.3.29), we will

now determine the exterior solutions for e^^^^ and
Gmto first order In •

4. Exterior Solutions for e^^^^ and e^^^^

For the relationships between e^^^^ and e^^^^ and e^^^^ and

we have

where r ̂  Is to be expressed In terms of r and

v(?) , ^v(?)-2 0 (r) (1 1 1.1 .7c)e

We wish to solve these equations for e^^^^ and e^^^^ to

first order In . To this end, we notice that from (III. 1.6),

(III.2.2), (III.2.3), (III.3.28), and (III.3.29), that to first
. . Gm , Gmorder In ■=—o and •=—rrc^ ac^
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[l - M  ' 1 + iz? . (111.4.1a)

[l + r = 1 - > (III.4.1b)

- 1 - #-# a"(') = 1 - #  ■ (111.4.1c)

and

e*(f) = 1 - -^^2. . (III.3.28)

Applying these approximations to (III.1.7b) and (III.1.7c), 
we arrive at

. 1 + &5G _ ^  (1II.4.2)

and

eV(i) - 1 - 0  - ̂  . (1II.4.3)

So our solutions, to first order In -=^ and , (III.4.2) 

and (III.4.3), differ from the first order solutions obtained from 

the ordinary Einstein theory by the term •

In Chapter IV, we shall use the results (III.4.2) and (III.4.3) 
to compare the predictions of our theory to observation and to the 
predictions of the ordinary Einstein theory. Before proceeding with 
these calculations, we wish to now discuss the principle of equivalence 
In our theory.

5. Principle of Equivalence
In the ordinary Einstein theory where test particles move
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along geodesics, as determined by observers using the customary 
congruence definition, the following statement from Weinberg 
is taken to be true:

At every space-time point in an arbitrary gravita
tional field it is possible to choose a "locally inertial 
coordinate system" such that, within a sufficiently small 
region of the point in question, the laws of nature take 
the same form as in unaccelerated Cartesian coordinate 
systems in the absence of gravitation.

In this statement, usually known as the strong principle of 
equivalence, a locally inertial coordinate system is taken to be 
one in which the gradients of the metric tensor, and thereby the 
Christoffel symbols constructed from this metric tensor vanish at 
the point in question.

It will now be demonstrated that in our theory, from the
standpoint of an observer employing the customary congruence defi
nition, that this principle of equivalence does not hold due to the 
fact that in our theory test particles do not move along geodesics 
as determined by customary observers.

■ From the discussion of the equations of motion in our theo
ry, (1.3), we have that according to customary observers, test parti
cles in our theory moving according to the equations

In a "local inertial frame" as determined by customary ob

servers, i.e. a frame in which the vanish at a point, (III.5.1) 
becomes
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We now point out that since o Is a scalar, then Is a
ax*

four-vector. Therefore, the right-hand side of (III.5.1) is also a 
four-vector, and if it vanished at a point in one frame, it would 
vanish at this point in every frame. As can be seen from (III.3.28),

or indeed the right-hand side of (III.5.1) does not in general
3x*
vanish at an arbitrary point in space-time. We, therefore, conclude 
that in a local inertial frame as determined by customary observers 
the right-hand side of (III.5.2) does not in general vanish. Hence, 
in this local inertial frame our equations of motion for a free test 
particle do not become the same as the Newtonian equations of motion 
for a free test particle in an unaccelerated Cartesian coordinate sys
tem in the absence of a gravitational field. Therefore, the principle 
of equivalence, as stated above, does not hold in our theory.

We see, however, that if we had considered a frame in which

=a dx* dx^ 3a dx^ dx° -ag 3a
d T d f ' ^ d T d r  ■ « ^

at a point, then in this frame our equations of motion for a free 
test particle as determined by a customary observer would have been 
the same as the Newtonian equations of motion in an unaccelerated 
Cartesian coordinate system in the absence of a gravitational field,

d2 «
2 =$— = 0 . From (1.4.8), we see that in the Newtonian limit of our
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theory the above frame would be one in which -^2^ = 2 . Since
3x^ 3x

So— can not in general be set to zero at a point in space-time, we 
3x
conclude that this frame is not the local inertial frame referred to 
in the above statement of the principle of equivalence.

In Chapter IV, we will discuss the consequences of the fact 
that the principle of equivalence does not hold in our theory when 
we apply our theory to the problem of the "Gravitational shift in 
spectral lines" to which we now turn.



CHAPTER IV 

APPLICATIONS TO RELATIVITY

In the framework of our non-customary gauge theory, we will 
now, by applying the calculations made in Chapter III, solve the 
following standard problems in relativity:

1. The gravitational shift in spectral lines.
2. The precession of the perihelia of planets.
3. The defection of light by the sun.
4. The time delay of radar echos passing the sun.

We will then compare our solutions to these problems to those ob
tained from the ordinary Einstein theory and to observation.*

With the exception of the first and last of these problems 
we will find that there is no "sensible" difference between the 
solutions obtained from our theory and those obtained from the 
ordinary Einstein theory.

1. The Gravitational Shift in Spectral Lines
We shall now investigate, from the standpoint of an observer

*In obtaining our solution to (1 .), we will follow closely 
the method set forth by Adler, Bazin, and Schiffer.(12) For our 
solutions to (2.), (S.), and (4.), we will follow the procedures 
presented by Weinberg.(13)

52
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using the customary congruence definition, the shift in spectral 
lines of light emitted from a stationary source at a point (r̂ , t̂ ) 
in space-time and received by a stationary observer at another 
point (rg, tg) in space-time. We will assume that both the source 
and the observer are in the exterior gravitational field of a sta
tic spherically symmetric distribution of matter having mass m as 
determined by customary observers and being confined to the region 
r S â. Furthermore, we confine ourselves to considering the case 
in which the light beams emitted from the source travel radially 
outward toward the observer.

For photons moving along the radial direction, r, our 
Schwarzschild line-element in the customary gauge, (III.1.4), is

ds

where to first order in rc

sf = 0 = dr^ + e^(^) (dx**)̂  (IV. 1.1)

- 1 + 2(1 - 2P2)#z = 1 - 2(1 - 2?2)4- (IV.1.2)rcr . c<
and

e*(f) = 1 - 2(1 + 2?2)|^ = 1 + 2(1 + 2?2)^ (IV.1.3)

(See Eqs. (III.4.2) and (III.4.3).) In (IV.1.2) and (IV.1.3), we
Qdhave denoted the Newtonian gravitational potential, — =" » by t|<.

In what follows, we will denote the coordinate time inter
vals between the successive wavefronts emitted by the source and 
those received by the observer by 6t^ and 6tg respectively. The
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proper-time Intervals and proper-frequencles for these "beats" as 
determined by customary inertial observers will be denoted by 
6Tg and 6tq and and fg respectively.

In the ordinary Einstein theory, the shift in the spectral
lines may be determined by invoking the field equations, (1.1.18). 

(1 2 )The results being

(IV.1.4)

our expanding (IV.1.2) to first order in = ^ 2

Af *s ■ '*'0
s

where

Af E fo - fg . (IV.1.6)

We note that these results could have also been obtained by invoking
(12)the principle of equivalence. * Since the principle of equivalence 

does not hold in our theory, we therefore expect that our solution 
to this problem will yield results which differ from (IV.1.4) or 
(IV.1.5).

According to (IV.1.1), we have that for a light beam moving 
radially outward from the source to the observer

dt - i  dr . (IÏ.X.7)
‘s ' 's
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Since both the source and the observer are assumed stationary, it is 
readily deduced from (IV.1.7) that the coordinate time intervals 
between wavefronts emitted by the source and received by the ob
server are the same.

6to " (IV.1.8)

From (IV.1.1), the relationships between the proper-time in
tervals between these beats and the coordinate time intervals is

6x = — e^®^^ St (IV.1.9)s c  *»
and

6?o = e^o/2 gtg (IV.1.10)

Combining (IV.1.8) with (IV.1.9) and (IV.1.10) and apply

ing (IV.1.3), we find that to first order in and that “ * s rgc^

f i  is. A * +

Gni GmExpanding (IV.1.11) to first order in g -g arrive at

Af ('('a ■ *o)|i- = (1 + 2Pz) — ^ ---- (IV. 1.12)
"s

We see by comparing our result for the fractional shift in 
frequency, (IV.1.12), to that obtained from the ordinary Einstein 
theory (or the principle of equivalence), (IV.1.5), that the ratio 
of the difference of the two results to the result from the ordi-
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nary Einstein theory is 2?2 .
In order to obtain an approximate value for P2 » we note that 

in the Mossbauer experiment performed by Pound and Rebka^^^\ their

result for the frequency shift, ^  , was to within about one percent

of the value predicted by the ordinary Einstein theory. Accepting
this result, we conclude then that IP2 I - .005. This result for
P2 seemingly rules out our equation on a, (III.1.8), derived from

1the variational principle (III.1.1), for in this equation ̂ 2 “ ~
.083. It should be noted, however, that in other admittedly less
accurate experiments, notably the determination of the red shift

(15)of light from 40 Eridani B, that the observed red shifts do not
1rule out the value ^2 “ "JJ * Furthermore, in Chapter V where we 

apply our theory to cosmology, we will show that our equation (II.1.8) 
for 0 yields results which are compatible with the observed mass 
density of the universe. So, for the sake of giving a complete view 
of our theory, we shall not discard Eq. (II.1.8) at this time.

We now continue with the applications of our theory to 
problems in relativity by considering the precession of the peri
helia of planets.

2. The Precession of the Perihelia of Planets
For the ordinary Einstein theory, it is shown in the dis-

(13)cussion presented by Weinberg,  ̂that by employing a line element 
in the standard form

ds^ B dr^ - r^dO^ + e^^^^ (dx**)̂  (III.1.4)
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where

e „ gV(r) (III.2.13)

» 1 - 1 ^  , (III.2.14)

that the geodesic equations of motion imply that the precision of 
the perihelion, Aq, of a planet in orbit about a uniform spherically 
symmetric distribution of matter of mass m confined to the region

r Z â is, to first order in , given by

+ ̂  (IV.2.1)

In this expression r^ and r_ are taken to be the maximum and mini
mum coordinate distances of the planet from the center of the mass 
m, where

m = / p r% dr .
0

The error in taking r, and r to be measured distances being of the

j Gm order .

We point out, that if we had applied the geodesic equations 
of motion to a line element in the isotropic form

ds2 » -ef(r')[(dr')2 + (r’)2dn2] + (dx**)̂  (IV.2.2)
then the resulting expression for the precession of the perihelion 
would have been

+ (IV.2.3)
■• + -J
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The relationship between r and r* In (III.1.4) and (IV.2.2) is(16)

implying that

and

r' ;

,M(r’)

v(r*)

1 + 2^ 1“

Gm
^ " 2P ^

(IV.2.4)

(IV.2.5a)

(IV.2.5b)

In the discussion of the precession of perihelia from the 
standpoint of our non-customary gauge theory, we shall find it con
venient to employ a line element in the non-customary gauge which is 
in isotropic form. To this end, we note that by applying the gauge

transformation ds^ = e ^^ds? to the line element (IV.2.2) our non- 
customary line element can be written in the isotropic form

ds2 = -e*(^')[(dr')2 + (r')2d02] (dx**)̂  (IV. 2.6)

where

and

gW(r') ^ ^y(r')-2o(r’)

gV(r') ^ gV(r')-2o(r')

(IV.2.7a)

(IV.2.7b)

*The result (IV.2.3) is implied by (IV.2.4) since the error 
introduced into (IV.2.1) by substituting r' for r is of second
order in . rc^
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The reader Is cautioned not to confuse the values (IV.2.5) for

e^' and e ' ' obtained from the ordinary Einstein theory with

the quantities e^^^  ̂and e*^^  ̂appearing in (IV.2,7) which could 
be determined within the framework of our non-customary gauge theory.

The solution to our field equations, = 0, for e'̂ ^̂   ̂and

e^^^  ̂must be of the same form as (IV.2.5), since the solutions

(IV.2.5) came from solving = 0. Therefore,

.p(r

and

v(r*) _ 1 - Gm
2r'c2

1 + Gm
2r'c2

(IV.2.8a)

(IV.2.8b)

where m in (IV.2.8) is related to m in (IV.2.5) by

(III.3.27)

or from (IV.2.4), to first order in ̂ ^ 2

mG (IV.2.9)

Now since in our theory particles follow geodesics in the 
non-customary gauge we must have then that to first order in

that the precession of the perihelion of a planet is A, where

SirGmA "
+  -

(IV.2.10)

or applying (IV.2.9)
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^  = 3 ^  ji . I  p, ^  (iv.2 .1 1)

It can be seen from (IV.2.11) and (IV.2.3) that there Is a 
slight difference between our value of the precession. A, and the 
ordinary Einstein value, Aq .

Therefore, we see that the difference between our theory and the

ordinary Einstein theroy Is of the order , which Is

2larger than the (— error Introduced Into Aq, (IV.2.3), by r±c
Identifying r^ with measured distances. However, this difference, 
(IV.2.12), Is too small to be detected at the present.

From (IV.2.11), to first order In ^ ^ 2  and we have

= Aq (IV.2.12)

So we see that, since the error Introduced by using Iso
tropic coordinates In place of standard coordinates Is negligible 
In this calculation, our result for the precession of the peri

helia of planets Is, to first order In the terms — and , ta c

or and , the same as the result from the ordinary Eln- f+c^ ac“̂ ■'
stein theory. We shall see that this same statement Is true for
the deflection of light by the sun, to which we now turn.
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3. The Deflection of Light Rays by the Sun 
From the ordinary Einstein theory. It Is shown by Weln-

(13)berg that the deflection of a light beam passing by the sun Is,
gÔto first order In ̂'̂ ^2 » (A#)o where

(A*) . (IV.3.1)

In this expression, m Is taken to be the customary mass of the •
sun and rg Is the standard form Schwarzschild coordinate appearing 
In (III.1.4) and represents the point of closest approach of the 
light beam to the center of the sun. Since the difference between 
this Schwarzschild coordinate and the measured distance of closest

approach Is of the order , then T q. In (IV.3.1) can be Identi

fied with the measured distance of closest approach.
As In the discussion of the precession of the perihelia of 

planets, since the difference between the standard form radial co
ordinate, r, and the Isotropic form radial coordinate, r'. Is ne
gligible In this calculation, we can. In place of (IV.3.1), write 
for the solution of this problem In Isotropic coordinates

(A*)o = (IV.3.2)

By applying the discussion presented In (IV.2) for the 
solution In our theory to the problem of the precession of the 
perihelia of planets, we see that the result predicted by our 
theory for the deflection of light passing the sun expressed In

Isotropic coordinates Is, to first order In * A<t>, where
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A* - [i - i
In this expression, a* is to be identified with the radius of the 
sun in the customary gauge. From this result, (IV.3.3), we see 
that the difference between our theory's predicted value for the 
deflection angle and that predicted by the ordinary Einstein

theory, (IV.3.2), is of the order . As noted in thec & iQ
discussion of the precession of. the perihelia of planets, this

difference is less than the Gm 2
error introduced into by

identifying rj with the measured distance of closest approach, but 
is still too small to be detected.

Gm GmTo first order in t t t  '~v  ̂  , (IV.3.3) becomesa c rjjc

A* = = (A*)o (IV. 3.4)
TqC

So, once again we see that since the difference between 
standard and isotropic coordinates is negligible in this calcula
tion, that our result for the deflection of light passing the sun

. . G m  - Gm Gm . Gmis the same to first order in ■, v and ,--y or -s-y and ■=— j - asa c*’ rgC^ ac^ rgc^
the result from the ordinary Einstein theory.*

*The author wishes to mention that he has carried out the calcu
lations for the precession of perihelia and for light deflection by 
using the standard form coordinate, r, and that the results are the 
same as those mentioned above. It should be noted, however, that to 
carry out the calculation for the precession of perihelia from this
standpoint that expressions to second order in for the components
of the metric tensor must be used(13) which necessitates calculating
e^^^^ to second order in . This can be carried out in a straight-
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We shall now calculate, from the standpoint of our non-cus
tomary gauge theory, the time delay of radar echos passing the sun 
and compare our results to the result from the ordinary Einstein 
theory. Since, as pointed out by Weinberg, the difference be
tween standard and isotropic coordinates is not negligible in this
calculation, we will, in order to compare our results to those

(13)from the ordinary Einstein theory presented by Weinberg, 
carry out our calculations in terms of the standard form coordi
nate, r.

4. The Time Delay of Radar Echos Passing the Sun
In this section, we will be interested in determining

from the standpoint of our non-customary gauge theory the time
required for radar signals to travel to the inner planets and be
refelcted back to the earth. We will compare our result to the
result obtained from the ordinary Einstein theory. To this end,

(13)we note that from the discussion presented by Weinberg, where
in it is shown that since particles £n the ordinary Einstein theory 
follow geodesics (in the customary gauge) it follows that the 
time required for light to travel from ro to r or from r to rg is

r
to(r 5d) = 7  ?c

ro 1 - [f) 2 V̂-tVo
hi
dr (IV.4.1)

where
= e*(^) = 1 - ̂  (III.2.13),(III.2.14)

forward but tedious manner, so we chose to present the results 
by the method just employed.
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and r Is the Schwarzschild coordinate appearing in the customary 
standard form line element, (III.1.4). In this expression, (IV.4.1), 
rô will be identified with the distance of closest approach of 
the radar signal to the center of the sun according to an observer 
using the customary standard form line element, (III.1.4).

By expanding the integrand of (IV.4.1) to first order in

and ■ = ^ r , it can be shown that rc'̂  rgc^

to(î.îo) = i ^ 1,(1 + g  (IV.4.2)

Thé leading term in this expression, ^  /r^-r^ , is the time we

would expect for the trip if space-time were flat. Therefore, the 
"excess" time required for a trip from a general r% to a general ?2 
and back again due to the curvature of space-time is

At„ . ̂  {2 ln(£LjL5lHoi) + 2 l,(̂ 2„tg2.L-iQi]

We now wish to calculate this excess time delay from our 
non-customary gauge theory. To accomplish this, we note that for 
our non-customary line element in the standard form

ds2 - -e^(f)drZ - r^dn^ + (dx**)̂  (III.1.7)

we have

- e^(f) = 1 - . (III.2.2),(III.2.3)
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From this statement, we see that since particles In our theory 
follow geodesics In the non-customary gauge that our result for 
the time required for light to travel from r to rg or ro to r 
must be of the same form as (IV.4.1). So we have

■ c

where rg Is to be Identified with the distance of closest approach 
to the center of the sun as determined by non-customary observers 
(observers using the line element (III.1.7a).)

In order to compare our result, (IV.4.4), to the result 
from the ordinary Einstein theory, (IV.4.3), we must express the

Integrand of (IV.4.4) In terms of r to first order In rg- and

-Gm . This can be accomplished by noting that

and

r = r e , (III.1.6)

S  = 1 - I  P2 SG (III.3.27)m 5 ac^

e°(^) = 1 - 2P2 =0? (III.3.28)

Using these expressions, we find to first order In ,

^  , and that

e*<') . 1 + Mrc^ (IV.4.5)
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eV(r)

and

1 - (f)' e'” "» . (l - ̂ ) | l  - 2(1+2P2) (IV.4.5)

Applying (IV.4.5) to the Integrand of (IV.4.4), we find

to first order in and ■=^r thatrc^ rgc^

t(r,ïo) “ I ^  + (l+ZPz) c^r(rS^)"}^^* (IV.4.6)
ro

where in the limits on this we integral have neglected the term 

^  in comparison to r and rg.

Carrying out the integration in (IV.4.6) yields

ts.îo) = i  + 1 #

+ (1+2V2) ^  • (IÏ.4.7)

We see then that in our theory the excess time delay due 
to the curvature of space-time for a trip from r^ to r£ and back 
is

c 2 1 „ ( Ï L ± Æ H Z )  + 2 in(î2^L^SHflLj'■ ro ' ro '

,ri - ZnJk .ro - vn^hl

Therefore, the difference between our result for the excess
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time delay, (IV.4.8), and the result from the ordinary Einstein 
theory, (IV.4.3), is

M  - At, . ̂  { ( 1 ^ ) "  + (IV.4.9)

The maximum excess delay for a signal traveling from 
Earth to Mercury and back occurs when Mercury is at superior con
junction so that rg can be taken as about equal to the sun's radius, 
rg = â. For this Earth-Mercury trip, we have from the ordinary 
Einstein theory

(Atg)^g^ = 240 psec . (IV.4.10)

and for the difference between the results of our theory and the 
ordinary Einstein theory

(4t ) ^  - (Atg)^^ = 20 ?2 wsec . (IV.4.11)

If the value ?2 = 1/12 associated with the a-equation,
(II.1.8), is used in (VI.4.11), then the difference between our 
result and the ordinary Einstein result would be approximately 
1.7 psec. If the constraint on ?2 stemming from the Pound-Rebka 
Mossbauer experiment is used, ?2 ^ .005, then this difference 
would be less than .1 psec.

The experiments concerning radar echo delay carried out to 
date do not seem to be sufficiently accurate to enable us to 
assign a value to ?2 from these experiments with much confidence.
Some of the experimentsincorporate the ordinary theory of 
general relativity itself in the determination of delay times, and, 
therefore, the results of these experiments perhaps can not be
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used to distinguish our theory from Einstein's.
To conclude this chapter, we simply state that in the 

problems we have considered only the gravitational shift in spectral 
lines and the "time delay of radar echos passing the sun" have 
predicted values in our theory which are "sensibly" different 
than those predicted from the ordinary Einstein theory. We shall 
now apply our theory to problems in cosmology.



CHAPTER V 

AN APPLICATION TO COSMOLOGY

In this chapter, we devote our attention to the applica
tion of our non-customary gauge theory to the description of the 
universe in the large. From the outset, we assume that in the 
large the universe, from the standpoint of observers employing 
the customary congruence definition, is both homogeneous and 
isotropic. From this assumption, and from our field equations,
(1.1.8), we demonstrate in section 1 that the line elements in 
both the customary and non-customary gauges can be written in 
the Robertson-Walker form.

In section 2, by making use of the Robertson-Walker line 
element in the non-customary gauge and our field equations, (1.1.8), 
we present the equations which govern our universe for the case 
where the stress-energy-momentum tensor in the customary gauge 
is that of a perfect fluid.

Section 3 will be devoted to a discussion of the line 
element in the customary gauge. We demonstrate that since both 
our customary line element and the line element employed in the 
ordinary Einstein theory can be written in the Robertson-Walker

69
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form, then any calculations based solely on the form of these 
line elements must yield the same results, in form, in both 
theories.

In section 4, we return to the equations governing the 
universe presented in section 2, and discuss them for the case 
of a matter-dominated universe.

Section 5 will be devoted to solving the equations pre
sented in section 4 for the matter-dominated universe. In this 
section, we shall discuss a static universe as viewed from the 
standpoint of the non-customary gauge. In order to compare the 
results of these calculations to observations carried out by 
customary observers, we shall also need to consider an equation 
for a . We now mention that it will not be our purpose to give 
an exhaustive discussion of all alternatives available in our 
theory which stem from the three equations postulated on o in 
Chapter II. Rather, we shall make it our purpose to demonstrate 
as simply as possible the workings of our theory in its applica
tion to cosmology. Therefore, we will confine ourselves to the 
discussion of the results which stem from selecting one particular 
equation for a. For this equation, we choose what is in the 
author's opinion the simplist equation of the three in form—
(II.4.4). We shall see that the application of this equation to 
the static "non-customary universe" yields results which are 
compatible with observations carried out by customary observers.
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1. Line Elements
Assuming the universe to be homogeneous and isotropic from

the standpoint of observers using the customary congruence défini-
(18)tion, it can be shown that the line element in the customary 

gauge can be written in the form

ds^ = dÿ^ + (dx^)^ (V.1.1)
where

and

dÿ2 = dr^ + r^(d02 + sinfGd^Z) (V.1.2)

ÿ(r,t) = f(r) + g(t) (V.1.3)

The development of this form of the line element, (V.1.1), is
independent of the field equations. However, f(r) and g(t) are
to be determined by the field equations, (1 .1 .8).*

Now, as can be seen from our field equations expressed in
the form (1.3.15), a appears as a field in the customary gauge.
Therefore, in order for the universe to appear both homogeneous
and isotropic from the viewpoint of customary observers, a can

(19)be at most a function of time.

a = o(t) (V.1.4)

So, applying the gauge transformation ds^ -  e ds^ to (V.1.1), 
we conclude that our line element in the non-customary gauge is 
of the form

*Our reason for using bars on the coordinates r and t will 
become evident shortly.
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where

and
dx** «3 cdt = ce (V.1.6)

p(r,t) = f(r) + g(t) - 2o(t) . (V.1.7)

In order to determine f(r), we once again Invoke our
assumption of homogeneity and isotropy in the customary gauge,
this time in reference to the distribution of energy-momentum in

C18)the universe, and conclude that

t} = Tg = t | . (V.1.8)

Since from (1.1.12) and (1.3.13) we have = e^^T^ , 
it follows from (V.1.8) that for the distribution of energy-momen
tum in the non-customary gauge

T} = Tg = Tg . (V.1.9)

Now, from (1.1.8), our field equations in the non-customary 
gauge can be expressed as

gJJ = K tJI + A . (V.1.10)

where we have now included the cosmological constant A.
By following the procedure presented by Adler, Bazin, and 

S c h i f f e r , we deduce from the coupling of our line element, 
(V.1.5), with (V.1.10) and from the constraints (V.1.9) that

- (l + ' (V.l.U)

where rg is a constant and k = +1 , 0 , or -1.
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Inserting (V.l.U) into (V.1.5), and applying the coordi
nate transformation r' = r/rg we have, after suppressing the primes.

ds2 = d ?  + (d%4)2 (V.1.12)
T( 1 + ^ )

where

R2(t) = g,g(c)-2o(t)  ̂ (V.1.13)

(18)Again following Adler, Bazin, and Shiffer , we note 
that R(t) in (V.1.13) is to be interpreted as the radius in the 
non-customary gauge of a three-dimensional hypersphere imbedded in 
a four-dimensional Euclidean space.

For later purposes, we shall need to have our non-customary 
line element, (V.1.12), expressed in a different form. Setting

r = (l + in (V.1.12) yields

ds2 = dr2 - R2(t) d«2 + (dx*»)̂  (V.1.14)

where

dfl2 B r^(d02 + sin̂ 0d<j>̂ )

In section 3, we shall need the customary line element associated 
with (V.1.14). So, applying the inverse of the gauge transforma
tion used to arrive at (V.1.5), to (V.1.14), yields for the line 
element in the customary gauge

ds2 = dr^ - R2(t)dfi2 + (dx*»)̂  (V.1.15)

where
R(t) » R(t)e°(t) (V.1.16)
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and
dx

It should be noticed that we are using the same radial coordinate, 
r, in both gauges, while the time coordinates, x*̂ and x"*, appear
ing in the line elements (V.1.14) and (V.1.15) respectively are 
related by (V.1.17).

So, we have found that by assuming the universe to be 
homogeneous and isotropic from the standpoint of customary obser
vers, that both our customary and non-customary line elements are 
of the Robertson-Walker form.

We mention now that, from (V.1.16) and the identification 
made above for R(t), R(t) is to be identified as the radius in the 
customary gauge of a three-dimensional hypersphere imbedded in a 
four-dimensional Euclidean space. Therefore, R(t) is the quantity 
which determines the time development of the universe from the 
standpoint of observers using the customary congruence definition 
and thus will be of primary importance to us in comparing our 
theory to observation and to the ordinary Einstein theory. For 
ease of calculation, we shall in the succeeding sections for the 
most part carry out our computations in the non-customary gauge,
i.e. we will determine R(t) and then R(t). Accordingly, from 
(V.1.16) and (V.1.17), we see that in order to obtain R(t) we 
will need to determine a(t). In section 5, we will carry out 
a solution for o(t) in the case of a matter-dominated universe.

Before leaving this section and proceeding with an investi
gation of our field equations, we point out, again by following
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the discussion by Adler, Bazin and S c h i f f e r , that k in (V.1.13), 
(V.1.14), and (V.1.15) determines the sign for the curvature of 
the universe in either the customary or non-customary gauge: 
k " +1 , 0 , or -1 corresponding to positive, zero, or negative cur
vature respectively.

2. Field Equations for a Perfect Fluid 
In this section, we discuss consequences resulting from 

selecting the stress-energy-momentum tensor in the customary gauge 
to be that of a perfect fluid. We will see that in our theory 
in the non-customary gauge that the equations governing the time 
development of the universe are of the same form as those govern
ing this development in the ordinary Einstein theory.

For a perfect fluid, the stress-energy-momentum tensor in 
the customary gauge is

. (Zc: + P)i„„ (III.I.IO)

where p and P are the customary proper-mass density and proper- 
pressure of the fluid. As previously mentioned, we wish to carry 
out our calculations in the non-customary gauge. To this end, we 
note from our discussion in (III.l) that the stress-energy-momentum 
tensor in the non-customary gauge, T^, associated with (III.I.IO)
is

where
p e^^ (1.3.14)
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P " P (III.3.13)

In these expressions,p, P, p, and P are, from our assumptions of 
homogeneity and isotropy, only functions of time, t or t.

If we assume that in the coordinate system we are using, 
particles making up our perfect fluid have constant spacial coor
dinates, then for these particles, we have

dx^
ds

dx
ds = 0 ; i = 1, 2, 3

and
dx**
ds

dx**dT"“ ®
These statements are, as may be verified by the reader, consistent 
for the line element being employed, (V.1.14), with both our geo
desic equations in the non-customary gauge, (1.3.8), and our equa
tion of motion in the customary gauge, (1.3.10).

So in our "comoving coordinate system", we have

t J » t| = t| = -P

Ti* = pc^ .
(V.2.1)

Thus, for the problem being considered, our field equations 
in the non-customary gauge, (V.1.10), become

-KP + A

G{* = Kpc2 + A
(V.2.2)

These field equations coupled with our non-customary line element.
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(V.1.14) are of the same form as those used In the ordinary Ein
stein theory to arrive at expressions for p(t) and P(t) in terms 
of R(t). Therefore, our expressions for p(t) and P(t) in terms 
of R(t) must be of the same form as those obtained in the ordi
nary Einstein theory for the customary mass density and pressure 
in terms of the customary radius of the universe. So, from the 
line element (V.1.14) and the field equations (V.2.2), we have

-KÎ “ ̂  ^  [t  + (f)̂] - (T-2 3)

Kpc^ = || + ̂  (|) - A , (V.2.4)

and, by combining (V.2.3) and (V.2.4)

. -P f i  . (V.2.5)

where dots denote differentiation with respect to the "non-custom
ary time", t.

In section 4, we will discuss these equations for the case 
of a matter-dominated universe. Before doing this, we wish to now 
discuss some consequences stemming from the form of our line ele
ment in the customary gauge, (V.1.15).

3. Consequences Stemming from the Form of the 
Customary Line Element

Since our line element in the customary gauge, (V.1.15), 
is of the same form as that employed in the ordinary Einstein theory, 
then any calculation whose basis lies solely in the form of this
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line element (I.e. does not depend on the field equations) must 
yield the same results, in form, in our theory as in the ordi
nary Einstein theory. Therefore, rather than carrying out lengthy 
calculations, we refer the reader to Weinbergwherein the fol
lowing relationships are shown to be true:

R(t) = R(to) [l + Ho(t - to) - % ioHo^Ct - to)2 + ...] (V.3.2)

<*1 “ f ( t ^  = ̂  [z + *5(1 - io)ẑ  + ...] (V.3.3)

In these results, z is the red-shift parameter defined as the 
fractional increase in the wavelength, X, of light emitted from a 
stationary source at (rj, tj) traveling along the -r direction to 
an obseirver located at (0,to). The luminosity distance, d^, is 
expressed in terms of the Hubble constant, Hg, and the deceleration 
parameter, q , which are defined by

ir"Hq = g -  (V.3.4)

and

^0 " (V.3.5)

where Rg = R(tg) etc., and primes denote differentiation with 
respect to t; R' = dR/dt .

We point out that it is (V.3.1) and (V.3.3) (or equations 
based on (V.3.3)) from which determinations of Hg and qg are made 
from observational data. Therefore, the dependence of Hg and qg 
on z and d^ in our theory is the same as in the ordinary Einstein
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theory. However, we shall find that Hq and qo do not enter our 
field equations in the same manner as they do in the ordinary 
Einstein theory. In particular, whereas qg determines whether 
the universe has positive, zero, or negative curvature for a 
matter-dominated universe with the cosmological constant set to 
zero in the ordinary Einstein theory, we shall find that in our theo
ry it is a quantity qg defined by

RoRo
W

which determines this curvature.
We will now discuss Eqs. (V.2.3), (V.2.4), and (V.2.5) for 

the case of a matter-dominated universe.

4. The Matter-Dominated Universe 
In this section, we present a quantitative discussion of our 

field equations in the case P «  pc^. For this situation, we have 
from (V.2.5) that in the non-customary gauge

Pc2r 3 = constant = ̂  (V.4.1)

or, making use of (1.3.14) and (V.1.16), for the constant A, we 
find

A « I  K Po c2 r J » I  K Po c2 R§ (V.4.2)

where the naught subscripts indicate that the quantities are to be 
evaluated at the present time.

Utilizing (V.4.1) in (V.2.4) yields

1 _ a ... 1^ R 2 » | - k + - | A R 2  (V.4.3)
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We will discuss this last equation further at a later point.
To continue our discussion of the matter-dominated universe, 

we note that by neglecting F in (V.2.3)

^  [2qo - + A • (V.4.4)

where Hq and qg are defined by

“ Ro
and

Ho » I?- (V.4.5)

qo = - (V.4.6)
Ro

The relationships between Hq and qo and the Hubble constant, 
Hq, and the deceleration parameter, qo, may be found by noting that 
from (V.1.16) and (V.1.17)

R » R' - R o' (V.4.7)
and

R = e^jR” - R*a' - Ro"] . (V.4.8)

Inserting (V.1.16), (V.4.7), and (V.4.8) into (V.4.5) and (V.4.6) 
and making use of the definitions of Hq and qg,,(V.3.4) and (V.3.5), 
we find

Ho = (Ho - o*)e*0 (V.4.9)
and

(Ho - oj)2qo = HgZqo + HqOJ + o’J (V.4.10)

To continue, by inserting (V.4.4) into (V.2.4), we find 
that at the present time
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KpqC^ " 6qo + 2A

By using this last expression in (V.4.4), we find for the 
curvature constant, k.

k » Kc2 - 0 ^  + I  Ro' (V.4.12)

If we consider the case A = 0, and define a non-customary
critical mass density, p^, to be

3Hfl2
c Kc (V.4.13)

we see from (V.4.12) that the universe has positive, zero, or 
negative curvature depending upon whether

PO > P.

or

Pfl = P.

PQ < P,

(V.4.14)

respectively.
Using (V.4.13) in (V.4.11), we see for the case A = 0

implying that for

2qo
c

qo > % 

qo - % 

qo < %

(V.4.15)

(V.4.16)
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the universe has positive, zero, or negative curvature respectively.
The results obtained so far are the same form as those ob-

/2i)tained in the ordinary Einstein theory. * As we have shown, in 
the case A = 0 for our theory it is the "non-customary deceleration 
parameter", which determines the sign of the curvature of space
time in contrast to the ordinary Einstein theory in which the 
"customary deceleration parameter", qg, determines this sign.

We now return to (V.4.3) and investigate one possible solu
tion to this equation.

5. A Static Non-Customary Universe

a. Formulation of the Problem 
From (V.4.3),

^ r2 = | - 1 c + j AR2 , (V.4.3)

we see that one possible solution in our theory is
R = constant . (V.5.1)

That is, our theory allows for a static non-customary universe.
To investigate this solution, we now insert (V.5.1) into 

(V.2.3) and (V.2.4) for the negligible pressure case and find

A ■ ̂  = %Kpc^ (V.5.2)

and, by requiring that p > 0*
k » +1 . (V.5.3)

*It should be remembered that since e^ is taken to always be 
positive, that the requirement p > 0 implies from (1.3.14) that
p > 0 .
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We note that this solution corresponds to the static zero-
pressure "Einstein universe" encountered In the ordinary Einstein 

(22'itheory. However, In our theory, we have from (V.1.16) and
(1.3.14) that

and
S(t) .

This demonstrates that In our theory a static non-customary uni
verse will In general be viewed as non-static by customary observers.

As can be seen from (V.1.16), (V.1.17) and (1.3.14), In 
order to discuss the solutions (V.5.1) and (V.5.2) from the view
point of customary observers, we must be able to determine a. To 
satisfy our purpose stated at the beginning of this chapter of 
demonstrating the workings of our theory In a simple manner, we 
now select, for the Investigation of the problem at hand, Eq. (II.4.4),

0 »“,̂  + 2a*“a,^ =. - ̂  KT + I  A , (II.4.4)

as the governing equation for o.
For the line element, (V.1.14), Eq. (II.4.4) becomes. In 

the negligible pressure case,

•|a + 3 ~  o + 20%j ^  Kpc^ + A . (V.5.4)

For the R = constant case, we have, from (V.5.2) and (V.5.3), 
that (V.5.4) Is

a + 20^ = ^  (V.5.5)
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or, from (V.1.16) and (V.1.17), In terms of derivatives with respect 
to the customary time, t,

o'* + 3(o')2 = % ° ^ ̂  • (V.5.6)

We will discuss the solution to (V.5.5) a little later. At this 
point, we wish to demonstrate that (V.5.6) combined with (V.5.1) 
and (V.5.3) will allow us to relate that present "customary mass- 
density to the universe", po, to Ho, and qo.

b. The Relationship between Pn. Hn. and qn
Inserting our static solution, R = constant, into (V.4.9) 

and (V.4.10) yields the relations between Hq, qo, Oo*, and Oq";

Ho ~ Oq *

qo
(V.5.7)

By evaluating (V.5.6) at the present time, and using the relation
ships (V.5.7), we can now relate Ro to qo and Ho.

^  = 2(2 - qo) (V.5.8)

Making use of (V.5.2) and (V.5.3), and remembering that 

R = Re”^ and p = pe^° , we find by inserting (V.5.8) into (V.5.1)
at the present time

Kpoc^ “ 4(2 - qo) ^2” e (V.5.9)

At this point, we invoke our assumption presented in (I.l) 
that at an event of our choosing we may set our gauge factor, e°.
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to one. We now select this event to be at the present Instant so 
that

e*0 . 1 . (V.5.10)
Using (V.5.10) in (V.5.9), then, yields for the relation

ship between pg, Hg and qg, the expression

KpgcZ = 4(2 - qg) ^  (V.5.11)

which should be compared to the relationship between these quanti
ties obtained from the ordinary Einstein theory for the negligible 

(21)pressure case,

KpgC^ = 6qg .

From this resultÿ (V.5.11), we see that since pg is assumed posi
tive that

qg < 2 (V.5.12)

Before examining (V.5.11) further, we will now present the 
solution for o from (V.5.5) and discuss several implications of 
this solution.

c. Solution to the a-equation
By making use of (V.1.16), (V.5.1), (V.5.8), and (V.5.10), 

we see that (V.5.5) may be expressed in the form

= ofefo (V.5.13)

where

a 5 [2(2 - qo)5g2]’̂ (V.5.14)
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Therefore, letting a and b be constants of integration, we have

“ a e“*̂ + b e"“  ̂ (V.5.15)

where in relating e^ to R(t), we have again made use of (V.1.16), 
(V.5.1), and (V.5.10). By requiring R(0) - 0 in this last expres
sion, we conclude that

j2o ^ = d sinh(at) (V.5.16)
Ro'

where d is a constant.
From (V.5.16), we see that as a function of the non-customary 

time, t, R increases without bound. But, from our assumption that 
e^ is positive, we see from (V.1.17) that t is an increasing 
function of t. Therefore, as function of the "customary time", 
t, R must also increase without bound.

To determine whether the rate of change of the expansion 
rate of our static non-customary universe is positive or negative 
according to observers using the customary congruence, we now 
make use of (V.1.17) and (V.5.10) and differentiate (V.5.16) with 
respect to t and find

= Î5 o / l  + (V.5.17)

From this we see that since R is an increasing function of t, then 
we must have that R* is decreasing with t,

R" < 0 . (V.5.18)

So, according to customary observers, the rate of change of the



87

expansion rate of the universe is negative. By following the dis- 
cession presented by Weinberg, we conclude, since R" < 0 for
0 < t < to, that the customary age of the universe, to, must be less
than the Hubble time, Ho”  ̂= Ro/Rq' •

to < (Ho)"^ (V.5.19)

Furthermore, we see from (1.3.14) and (V.5.16) that

P = (V.5.20)

which demonstrates that, since R is an increasing function of t and 
p is a constant, p must decrease in time. The present rate of change 
of p with respect to t may be determined by differentiating (1.3.14)
with respect to t, evaluating the result at to, and applying the
first’ of Eqs. (V.5.7). The result is

Po' = -3HoPo (V.5.21)

To obtain an order of magnitude estimate of Po', we will
(21)now take the "galactic" mass density

(V.5.22)

as a rough estimate of Pq and take Ho to be approximately
75 km/sec/mpc = 7.5x10"^^ years"!. With these assumptions we find

So' = -7x10-' cm^-year *
which demonstrates that for our theory, the customary mass density 
of the universe is decreasing at an extremely slow rate.

Returning to (V.5.17), and evaluating this expression at
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the present time, we find from (V.3.4) and (V.5.14), that d can be 
expressed in terms of qg by

d^ « . (V.5.23)
2-qo

This leads us to conclude that
0 < io < 2 (V.5.24)

which is in agreement with (V.5.12). With these limits on qg in 
mind, we now turn to a discussion of the correlation between our 
theory and observation by investigating (V.5.11).

d. Limits Placed on Pn from our Theory
To see the effects of the limits placed on qg, (V.5.24),

we now rewrite (V.5.11) in the form

So = |(2 - 5 o ) # ^  = 1.46x10-25(2 - S.) („ j L / m p c  ̂

By inserting the conditions (V.5.24) into (V.5.25), we find
that according to our theory the present mass density of the uni
verse as determined by customary observers is

0 < ?„ < 2.9x10-25{^)

This upper limit placed on pg from our theory is compatible with 
the presently accepted galactic mass density,

Pç = 3.1x10 (yg km/Lc/mpc^ *

Accordingly, if we take this value of the galactic mass 
density as a rough estimate of the present mass density of the
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universe, pq, then we find from (V.5.25) that the predicted value 
of qg from our theory is

io = 1.98 . (V.5.27)

There is at present a high degree of inaccuracy in the 
values of qg obtained "observationally" from (V.3.3) (or equations 
based on (V.3.3)). However, it seems that most of these values for 
qo fall within our limits (V.5.24).* We feel, therefore, that our 
value for qg, based upon equating the galactic mass density to 
the present mass density of the universe, qg = 1.98, if not correct 
is at least reasonable.

So, we have demonstrated thus far that our non-customary 
gauge theory with (II.4.4) selected as the defining equation for a 
leads to, in the case of a static non-customary universe, what seems 
to be reasonable constraints on the present mass density of the 
universe and the deceleration parameter. To further test the 
validity of the static non-customary universe with (II.4.4) as the 
governing equation for a, we will conclude this section by demon
strating that our solution for o, (V.5.16), taken together with 
(V.1.17) predicts a reasonable lower limit for customary age of 
the universe, tg.

e. The Age of the Universe
From (V.1.17) and (V.5.16), we have

*See P e a c h o r  Sandage.
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to “ / [8inh(at)]**dt
0

where we have assumed t to zero at t = 0. The integral appearing
In this expression involves elliptic integrals of both the first 

(25Îand second kind and is therefore rather complicated. So, ra
ther than trying to evaluate the integral directly, we feel that 
for our purposes it will be sufficient to determine a lower limit 
for to by making use of the Cauchy-Schwarz inequality for inte
grals,

b 2 b b
/ f(x)g(x)dx |f(x)| dx / |g(x)| dx (V.5.29)
a a a

where the equality sign holds only in the case of f(x)/g(x) = con
stant. In carrying out the calculation of this lower limit for to, 
we will take Po = Pg thereby making qo = 1.98.

By setting g(x) = (sinhat)^ and f(x) = coshot in (V.5.29),
we find

toI / [cosh (at)] [sinh(at)]^dtj
to > --- — ------------------—  . (V.5.30

/ [cosh(at)] ̂dt 
0

Carrying out the integrations in (V.5.30) yields

t„ > 32 d^  ________[sinh(atQ)]^,
0 25 a ato + [sinh(ato)] [cosh(ato)]

(V.5.31)

To obtain a lower limit for to in terms of Ho and qo, 
we notice from (V.5.16), (V.5.17), and (V.3.4) that
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slnh(ato) = j

o - 2Ho(l + d2) - h

(V.5.32)

Inserting these relations Into (V.5.31), we find 

to > li g- -11_______<1 +  1
I d̂ sinh-l (j) + (1 + d2)**J

(V.5.33)

where from (V.5.23), d% = _ .* “ 40

If we now assume that Pq = Pg which in our theory implies 
that 4o = 1.98, we find

d2 = 99
and

sinh-^(i) = .1

(V.5.34)

Using these values in (V.5.33) yields
8 iî -1

*̂0  ̂25
So, from (V.5.19) and (V.5.35) we conclude

(V.5.35)

^  HQ-1 < to < Ho-1 (V.5.36)

The best estimates of Ho“  ̂ to date^^^^ place it in the
limits

20x10* years i Ho"^ Z 7.5x10* years (V.5.37)

Using (V.5.37) in (V.5.36), we find that the largest value 
for our lower limit on to is (6.6x10* years).

Weinberg summarizes the results of radioactive dating ex-
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pertinents for the age of the galaxy and concludes that It Is safe 
to assume that the age of the universe is at least (7x10* years).

So, at the present, all we can say about the lower limit 
placed on the age of the universe from our theory is that the 
least value of the age of the universe obtained from radioactive 
dating, (7x10^ years), falls within the limits placed on the age 
of the universe by our theory.

We have demonstrated that in one instance, the static non- 
customary universe, our field equations coupled with an equation 
for o yield results which are compatible with present observations. 
In particular, it has been shown that by taking Pg as a rough 
estimate of the present mass density of the universe our theory 
predicts a value of qg which is in accord with the values for this 
parameter obtained by observational calculations. This is exactly 
the opposite of what is encountered in the ordinary Einstein theory 
wherein the "observed” values of qg predict a present mass density 
of the universe on the order of 100 times greater than Pg.

At this point, we mention that besides the static case we 
have considered, there are several other solutions to (V.4.3) which 
could be investigated by our theory. In fact, the static case we 
have considered could be re-examined in the light of o-equations 
other than (II.4.4). However, we will now conclude this discussion 
for we feel that the presentation just delivered is a fair demon
stration of the application of our theory to cosmology and that we 
have therefore accomplished the purpose stated at the beginning of 
this chapter.



CHAPTER VI

SUMMARY

Einstein's field equations have been assumed valid in a 
gauge in which the congruence definition between lengths and times 
is different from the customary one. With this assumption, it was 
shown tMt insofar as the field equations imply geodesic motion in 
the customary gauge for particles in the ordinary Einstein theory, 
they imply geodesic motion in the non-customary gauge for particles 
in our theory. From this it was shown that in our theory according 
to customary observers particles do not follow geodesics and hence 
the principle of equivalence between an accelerating frame and a 
gravitational field does not hold in our theory. That is, due to 
the fact that a appears as a field in the customary gauge, particles 
in our theory "know" where they are in a gravitational field.

In order to test our theory, several equations were postu
lated for the gauge field. These equations were then coupled with 
the Einstein field equations in the non-customary gauge and applied 
to four problems in relativity.

93
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For two of these problems, the precession of the perihelia 
of planets and the deflection of light by the sun, it was demon-. 
strated that there was no sensible difference between the predictions 
of our theory and those of the ordinary Einstein theory.

In the case of the time delay of radar echos passing the 
sun, it was shown that there is, in principle, a detectable differ
ence between our theory and Einstein's. However, it seems that to 
ascertain whether our theory or Einstein's is more correct for 
this problem, we will have to wait until more accurate experimental 
evidence has been obtained.

Also, for the case of the gravitational shift in spectral 
lines, our theory's result is, in principle, detectably different 
than the result obtained from the ordinary Einstein theory (or the 
principle of equivalence). The degree of accuracy of one experi
ment concerning this phenomenon (Found-Rebka Mossbauer experiment) 
seemingly rules out one of our equations for cr (II. 1.8).

After considering these problems in general relativity, we 
then applied our theory to cosmology. It was shown that for one 
model (a static non-customary matter-dominated universe which is 
red-shifted in the customary gauge) with a particular o equation,
(II.1.8), our theory yielded results which were compatible with 
observation. In particular, we found, by using the galactic mass 
density as a rough estimate of the present mass density of the 
universe, that our theory predicted a value for the decelerration 
parameter which is in accord with "observational" values for this 
quantity. The exact opposite of this being true for the ordinary 
Einstein theory. So, for this one example, our theory seems to
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yield results more In accord with observation than Einstein's. 
Unfortunately, the equation used for a in arriving at this result 
is the same equation which is seemingly ruled out by the Pound- 
Rebka Mossbauer experiment. To correct this incompatibility, 
possibly different equations could be used for o, and/or the 
field equation could be altered in such a manner as to allow the 
principle of equivalence to hold in our theory.

In conclusion, we feel that the investigations carried out 
herein give a fair demonstration of the possibilities entailed in 
a non-customary gauge theory of relativity and cosmology. It seems 
feasible that with some modifications the formulation presented 
could be used to develop a theory of relativity and of cosmology 
which are compatible both with each other and with observation.
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