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ABSTRACT

Coordinate metrology employs a discrete sampling of data points to verify the 

size, form, orientation, and location of features contained in parts. Usually data 

points are collected intuitively with simple schemes that attempt to cover the surface 

of the features as best as possible. Data fitting methods are used to determine the 

zones of deviations about the ideal feature. A multitude of linear and nonlinear 

optimization procedures and the least squares method have been used to estimate the 

tolerance zone for straighmess, flamess, circularity, and cylindricity. More complex 

forms such as conicity have been largely ignored in the literature, in spite of the 

sufficient need to inspect them in parts such as nozzles and tapered rollers in 

bearings.

This dissertation attempts to develop suitable guidelines for inspection of 

cones and conical frustums using probe-type coordinate measuring machines. The 

sampling problem, the path determination, and fitting of form zones are each 

addressed in great detail. Moreover, an integrative approach is taken for form 

verification and detailed experimental analysis is conducted as a pilot study for 

demonstrating the need for the same. Three separate sampling methods are derived: 

Hammersley, Halton-Zaremba, and Aligned Systematic; at various sample sizes using 

sampling theory and prior work in two dimensional sampling. A path plan is 

developed to illustrate the complexity of employing these sampling strategies for data 

sampling in cones. Linear and nonlinear deviations are formulated using optimization 

and least-squared methods and solved to yield competitive solutions. Comprehensive 

experimental analysis investigated issues of model adequacy, nesting, interactions, 

and individual effects, while studying conicity as a response variable in the light of 

sampling strategies, sizes, cone surface areas, and fitting methods.

In summary, an orderly procedure for sampling and fitting cones is developed 

which can lead to the development of comprehensive standards and solutions for 

industry.
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DIMENSIONAL MEASUREMENT OF CONICAL FEATURES USING 

COORDINATE METROLOGY

CHAPTER 1 

INTRODUCTION

In any discrete mechanical manufacturing process, manufactured features 

always vary from their nominal values in some random and/or systematic manner that 

manifests as errors. In order to maintain part quality, interchangeability, and 

functionality, geometric tolerances or constraints are usually assigned to those 

features. Measurement of products is considered as a basic function to assure that the 

products meet the design standards and to achieve customer satisfaction.

Inspection using Coordinate Measuring Machines (CMMs) is predominantly 

employed in mechanical manufacturing industries (Groover, 2001). In coordinate 

metrology, inspection of discrete manufactured parts is affected by a variety of data 

collection and data fitting methods. Usually data or sample points are collected 

intuitively with simple schemes for measurement locations. The commonly practiced 

methods are the unifonn sampling and the random sampling methods (Liang et al., 

1998b). Since probe-type CMMs are coordinate sampling machines, the sample 

deviations are only part of the deviation space that ought to be examined. 

Theoretically, if all points on a workpiece can be measured, then their real deviations



from ideal shape could be identified. This is difficult in practice. Hence, a good 

sampling strategy consisting of a selected sample size and locations is needed for 

efficiently collecting data.

Once the sample points have been obtained, data fitting methods are applied 

to describe the part feature. The errors introduced by the fitting procedure must 

conform to the specified design tolerance, given that the manufacturing operations are 

able to make the products according to the design standards. The least squares 

method (LSQ) is widely used in industry to fit the measured points in spite of the fact 

that it might overestimate form tolerances. LSQ often leads to the unnecessary 

reworks and higher production costs. As a result, inspection procedures of 

manufactured parts with three-dimensional (3D) complex features such as cone or 

torus have been inconsistent, somewhat unreliable, and/or unavailable. Data 

collection and data fitting procedures for such features should be studied more 

extensively to improve inspection procedures and assure better quality of parts.

To help circumvent the adequacy of the data collection problems, Menq et al. 

(1990) suggested a statistical sampling plan to determine a suitable sample size which 

can represent the entire population of the part surface with sufficient confidence and 

accuracy. A trade-off between the measurement time, data processing time, cost and 

the number of measurement points was taken into consideration along with 

manufacturing process capability, tolerance specification, and an assumption that the 

deviation is normally distributed around the nominal value. However, the sample 

locations were not taken into account. This might lead to some confusion in



measuring data. Moreover, the normality assumption is not true when systematic 

errors exist or when local geometric attributes or process deflections have a direct 

effect on the formation of the deviations.

Historically, dimensional surface measurements have involved the use of 

deterministic sequences of numbers for determination of sample coordinates (Woo 

and Liang, 1993; Woo et al., 1995). According to their studies, two sampling 

methods called the Hammersley sequence and Halton-Zaremba sequence 

outperformed the uniform sampling method, both theoretically and experimentally. 

The lower bounds of discrepancy (from accuracy) were determined for these methods 

and compared to that of uniform sampling. The clear advantage of the mathematical 

sequences is that their Root-Mean-Square (RMS) error is lower than that of the 

uniform sampling while preserving the repeatability of sampled points. The 

mathematical foundations of those suggested sequences are based on the theorems 

proposed by Roth (1954), Hammersley (1960), and Halton and Zaremba (1969).

In addition, a sampling strategy which could be used to specify a set of 

measuring points that led to adequately accurate sampling while minimizing the 

sampling time and cost was proposed by Lee et al. (1997). The characteristics such 

as geometric features, manufacturing processes, and surface finish were taken into 

consideration in determining such sampling strategy. A comparison between 

promising sampling strategies was shown while maintaining the same level of 

accuracy. The results obtained exhibited that the sampling strategy based on the 

Hammersley sequence outperformed those of the uniform sampling method and the



random sampling method. This implies that the commonly practiced procedures, the 

uniform sampling and the random sampling, for measurement locations are far firom 

optimal. Liang et al. (1998b) also presented similar results with the Zaremba 

sequence method for surface roughness measurement. Similarly, Kim and Raman 

(2000) investigated different sampling strategies and different sample sizes for 

flatness measurement. Their results suggested similar findings to others’ studies 

mentioned before.

In spite of the need for having a sampling strategy to resolve data collection 

problems, the advantages of such plans have not yet been fully recognized and 

applied for complex features. Hence, the sampling strategies should be developed 

and analyzed for complex feature surfaces.

In data fitting, geometrical tolerances are used as defined by the ANSI 

Standard Y14.5M-1994 (ASME, 1995), to ensure the high quality and reliability of 

precision manufacturing products. The Standard “establishes uniform practices for 

stating and interpreting principles and methods of dimensioning, tolerancing, and 

related requirements for use on engineering drawings and related documents”. 

Geometrical tolerances state the maximum allowable variations of individual and 

related features from the perfect geometry specified on the design drawing. The so- 

called minimum tolerance zone is also covered in the ANSI Standard (ASME, 1995). 

However, it gives very little direction concerning the evaluation of these zones. The 

most commonly used method for zone estimation in practice is the least squares 

method (LSQ) due to its uniqueness, efBciency, robusmess, and simplicity for linear



systems. Also, it could be applied to every form tolerance. Nevertheless, a 

theoretical problem of LSQ is that it does not guarantee a minimum zone as defined 

by the ANSI Standard. In other words, it might overestimate the tolerance zone since 

it attempts to minimize the sum of the squares of the errors and does not attempt to 

minimize the zone of the errors directly. This results in rejecting some good parts. In 

addition, if the LSQ is applied perpendicularly to the imaginary mean features, the 

resulting normal equations are very complex. In case of three-dimensional features, 

the solutions of the normal equations become even more complicated (Murthy and 

Abdin, 1980; Traband et al., 1989). Hence, many researchers have suggested 

improved techniques that are simpler and better than the LSQ method to determine 

such zone solutions. These techniques can be roughly categorized into two groups: 

computational geometry based approaches and numerical based approaches.

The former approaches utilize the properties of convex hull, EigenPolyGon 

(EPG), Voronoi diagrams, and control line/plane rotation scheme (CLRS/CPRS) in 

developing minimum zones. Such approaches (Traband et al., 1989; Hong et al., 

1991; Roy and Zhang, 1992; Roy, 1995; Huang et al., 1993a and 1993b) are 

computationally efficient because they exploit the problem structure but are limited to 

particular features. The computational efGciency becomes minor in the modem day 

due to the aggressive advancement of computer technologies. This approach is very 

difficult to be extended to cover other features if at all possible. The extensions may 

not deal with the complex shapes properly. For example, Roy (1995) modified the 

Voronoi diagram technique for circularity to estimate cylindricity tolerance using



profile tolerance definition. A profile as defined by the ANSI Standard is “the outline 

of an object in a given plane (two-dimensional figure) by projecting a three- 

dimensional figure onto it”. The elements of a profile are straight lines, arcs, and 

other curved lines. Hence, only the tolerance estimations of those elements are 

verified individually. Such a procedure may be impractical in cases where accuracy 

of the whole profile is a requirement. Therefore, the use of profile tolerancing should 

be limited to only the necessary cases where the equations of the inspected features 

are unable to be determined.

The numerical or optimization based approaches use linear or nonlinear 

models for errors and perform an optimization to determine the minimum zone. They 

are flexible since they can be extended to cover many form tolerances but are often 

not computationally efficient, especially for nonlinear equations. Nevertheless, the 

advancement of computer technologies, both hardware and software, helps ease this 

cause.

There are quite a number of articles dealing with basic features such as 

straightness, circularity, flamess, and cylindricity. The corresponding equations for 

those features have been investigated and optimization models have been suggested 

to fine-tune the minimum zone solutions. Prior to the recent computational 

advancements, if the equations of the surface features obtained were too complicated, 

a limaçon approximation (Chetwynd, 1979; Chetwynd, 1985) and the well-alignment 

of the objects (Shunmugam, 1986; Shunmugam, 1987a and 1987b) were used to find 

the easier forms. Many optimization algorithms such as simplex search, Monte Carlo



search, sequential quadratic programming, neural network interval regression method, 

and genetic algorithm have been employed to verify the minimum zone solutions.

Interestingly, the form tolerances for cones, spheres and other such complex 

shapes are left to be dealt-with by the use of profile tolerance definition, except in few 

cases. The corresponding equations for cones are very complex that has partially led 

to a relative absence of research works dealing with the conicity tolerance in the 

literature.

Sufficient number of industrial parts such as nozzles, tapered cylinders, 

frustum holes and tapered rollers in bearings possess conical features that must be 

efficiently inspected for form. Considering these many applications of conical shape 

objects, cone tolerances and its sampling strategies should be studied more 

exclusively and extensively. The need to develop effective guidelines for conicity 

measurement is the subject of this dissertation. The objective of this dissertation is to 

address sampling, path determination, and zone estimation for conicity, within an 

integrated framework.

Chapter 2 presents a summary of the literature regarding data collection and 

data fitting methods, machined part inspection, sampling strategies, minimum 

tolerance zone verification, and techniques for sampling and minimum zone 

estimations for conical features. Chapter 3 defines the specific problems addressed 

by this dissertation. Chapter 4 describes the development of sampling strategies for 

cone inspection. The steps in the development of the corresponding equations are 

discussed with particular attention given to their validity. Chapter 5 addresses a



simple method for generalized CMM probe path planning in cone verification. The 

limitation of CMM motion planning is discussed. The experimental methodology is 

presented in Chapter 6. This explains the experimental model and its procedure. 

Chapter 7 presents the derivation of the related equations for minimum zone cone 

verification in detail. This includes discussions of the limaçon approximation, the 

least square based method, and the linear and nonlinear optimization models. Chapter 

8 discusses the results of data analysis. The final chapter. Chapter 9, presents the 

contributions and conclusions of this dissertation along with recommendations for 

future research.



CHAPTER 2 

LITERATURE REVIEW

This chapter presents a review of the pertinent literature in dimensional 

inspection and discrete measurement. The first section provides a tutorial on 

tolerancing as depicted in the ANSI Standard. A brief introduction of CMMs is 

presented in the second section and is followed by a review of literature addressing 

the sampling methods used in data collection for measurement inspection. A review 

of literature addressing the CMM inspection path planning algorithms used for 

automatic inspection process is discussed in a fourth section. Last but not the least, 

potential minimum zone procedures for conical feature inspection are presented. This 

final section is separated into two sub-categories, computational geometry-based 

procedures and numerical based approaches.

2.1 Tolerance Terminology

This section introduces terminology and a brief overview of tolerances as 

defined in ANSI Y14.5M-1994 (ASME, 1995). The definition of conicity is 

presented in Subsection 2.1.2. The terminology used in engineering drawings and 

inspection are reproduced here fiom ANSI standards:

Nominal Dimension is the designation used for the purpose of general identification 

of the dimension on the engineering drawing.



Basic Dimension is the dimension that a part can vary &om the specified dimension 

within tolerances.

Limit Dimension is the maximum and minimum sizes assigned by the designer for a 

tolerance dimension; and are also called limits.

Maximum Material Condition fMMCi is a feature of a finished part containing the 

most material permitted by tolerance dimension. That is, the internal features like 

holes, slots, etc. are at their minimum size or the external features such as shafts, 

keys, etc. are at their maximum size.

Least Material Condition (LMO is a feature of a finished part containing the least 

material permitted by tolerance dimension. That is, the internal features are at their 

maximum size or the external features are at their minimum size.

Allowance is the minimum clearance space intended between the MMC of mating 

parts. Therefore, allowance represents the tightest permissible fit and is simply the 

smallest hole minus the largest shaft

A nominal dimension is the theoretical or true size. This can be obtained only 

if the perfect manufactured parts are achieved. However, such perfection is very 

likely impossible due to variations in machining such as operators’ skills, tools 

characteristics, machines characteristics, and cost. Tolerances are the total amount by 

which a specified dimension is permitted to vary. For example, a dimension given on 

the engineering drawing as 12” ± 0.4” means that it may be 11.6” or 12.4” or 

somewhere in between. In addition to size, there are five types of geometric 

tolerances identified as follows:
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(1) tolerances of location,

(2) tolerances of form,

(3) tolerances of profile,

(4) tolerances of orientation,

(5) tolerances of runout.

2.1.1 Tolerances of Location

According to the ANSI Y14.5M-1994 (ASME, 1995), location includes 

position, concentricity, and symmetry used to control the following relationships:

(1) center distance between such features as holes, slots, bosses, and tabs,

(2) location of features as a group, from datum features, such as plane and 

cylindrical surfaces,

(3) coaxiality of features,

(4) concentricity or symmetry of features.

Therefore, the tolerances of location define a zone within which the above 

relationships are permitted to vary from a true or ideal location. Datum reference is 

usually required.

2.1.2 Tolerances of Form

“Form tolerances are applicable to single (individual) features or elements of 

single features” (ASME, 1995). Some common types of form tolerances such as 

straighmess, flamess, circularity or roundness, and cylindricity are illustrated 

according to the ANSI Y14.5M-1994 (ASME, 1995) as follows:
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Straightness is a condition where an element of a surface, or an axis, is a straight line 

as shown in Figure 1.
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Figure 1. Specifying Straightness of Surface Elements 

(Source: ANSI Y14.5M-1994).

Flatness is the condition of a surface having all elements in one plane as depicted in 

Figure 2.

Circularity (RoundnessI is a condition of a surface where:

(a) for a feature other than a sphere, all points of the surface intersected by any 

plane perpendicular to an axis are equidistant firom that axis,

(b) for a sphere, all points of the surface intersected by any plane passing 

through a common center are equidistant from that center.

The circularity is illustrated in Figure 3.
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Figure 2. Specifying Flatness (Source: ANSI Y14.5M-1994).

Cvlindricitv is a condition of a surface of revolution in which all points of the surface 

are equidistant from a common axis as shown in Figure 4.

Conicitv is a condition of a surface generated by rotating the hypotenuse of a right 

triangle about one of its leg (axis) with its vertex above the center of its base. A 

conicity is depicted in Figure 5. The conical frustum created by slicing the top off a 

cone with the cut made parallel to the base is considered a type of a circular cone. 

Hence, the definition of conicity is extended to cover the conical frustum as well. It 

may be stated that many practical applications featuring cone features are frustums 

rather than true cones. Therefore, a form tolerance specifies a zone within which the
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considered feature must be contained. Further, it must be noted that the conicity has 

not yet been clearly defined by the ANSI Y14.5M-1994 (ASME, 1995). “A profile 

tolerance may be specified to control the conicity of a surface in either of two ways; 

as an independent control of form, or as a combined control of form and orientation” 

(ASME, 1995).

2.1J Tolerances of Profile

“A profile is the outline of an object in a given plane (two-dimensional 

figure). Profiles are formed by projecting a three-dimensional figure onto a plane or 

by taking cross sections through the figure. The elements of a profile are straight 

lines, arcs, and other curved lines” (ASME, 1995). For example. Figure 6 shows a 

profile of a plane surface.

2.1.4 Tolerances of Orientation

“Angularity, parallelism, perpendicularity, and in some instances, profile are 

orientation tolerances applicable to related features” (ASME, 1995). The following 

terminologies are reproduced from the ANSI Y14.5M-1994 (ASME, 1995): 

Aneularitv is the condition of a surface, center plane, or axis at a specified angle 

(other than 90°) from a datum plane or axis. Figure 6 also shows an angularity. 

Parallelism is the condition of a surface or center plane, equidistant at all points from 

a datum plane; or an axis, equidistant along its length firom one or more datum planes 

or a datum axis. Figure 7 depicts such condition.
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Figure 3. Specifying Circularity for a Sphere (Source: ANSI Y14.5M-1994).
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Figure 4. Specifying Cyiindricity (Source: ANSI Y14.5M-1994).
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Figure 5. Specifying Conicity (Source: ANSI Y14.5M-1994).

Perpendicularity is the condition of a surface, center plane, or axis at a right angle to a 

datum plane or axis. Figure 6 also shows a perpendicularity of a shoulder feature to 

datum axis A.

Therefore, the orientation tolerance specifies a zone defined by two parallel planes at 

the specified basic angle from one or more datum planes or a datum axis within 

which the surface or center plane or the axis or the line element of the considered 

feature must lie.

2.1.5 Tolerances of Runout

"Rtmout is a composite tolerance used to control the functional relationship of 

one or more features of a part to a datum axis” (ASME, 1995). There are two types
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of runout control, circular runout and total runout. The type selected is dependent 

upon design requirements and manufacturing considerations.

The ANSI Y14.5M-1994 (ASME, 1995) defines dimensioning and 

tolerancing to standardize and harmonize the United States practices and 

methodology with the universal standards. This should improve coordinating and 

integrating these techniques into electronic data systems. However, it gives very little 

direction regarding the evaluation of these zones and the definition of the conicity.
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Figure 6. Specifying Profile of a Plane Surface (Source: ANSI Y14.5M-1994).
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Figure 7. Specifying Parallelism for an Axis (Source: ANSI Y14.5M-1994).

The International Organization for Standardization (ISO), a worldwide 

federation of national standards, discusses conicity tolerances in ISO 7388- 

1:1983/Add 1:1984. Tolerancing of cones is also presented in Henzold( 1995).

2.2 Coordinate Measuring Machines (CMMs)

Inspection is the means to determine the quality of product/process. It is 

traditionally done using labor-intensive methods that are time consuming and costly 

(Groover, 2001). Automated inspection is an alternative to the manual inspection and
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almost always reduces inspection time implying better cost effectiveness. A 

coordinate measuring machine is an electromechanical system designed to 

measure/verify the actual shape and dimensions of an object and compare these with 

the desired shape and dimensions as specified on an engineering drawing for 

inspection of the manufactured parts. In general, a basic CMM is composed of the 

following components: (1) probe head and probe to contact the measured part surface, 

(2) mechanical structure that provides motion of the probe in the Cartesian 

coordinates and displacement transducers to measure the coordinate values of each 

axis, (3) drive system and control unit to move each of the three axes, and (4) digital 

computer system with application software (Groover, 2001).

When a part is to be measured, it is placed on a worktable that provides a 

stable and precision surface to locate and clamp the workpiece (Brown & Sharpe 

Mfg. Co., 1996). The contact probe, a key component of a CMM, is used to detect 

the workpiece features by indicating when contact has been made with the part 

surface during measurement. Its tip is normally a ruby ball (aluminum oxide) 

providing high hardness for wear resistance and low density for minimum inertia. 

Immediately after the contact has been made between the tip and the object surface, 

the coordinates of the probe are measured by displacement transducer associated with 

each of the three axes (X, Y, Z) and recorded by the CMM controller (a computer 

system with application software). Probe compensation is automatically corrected for 

the probe tip radius by measurement software (in the present case, the TUTOR™ 

software). All probes must be qualified before accurate measurements can be made.
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The main purposes are to (1) calculate the probe tip diameter and (2) learn the 

location of the center of the probe tip in the measuring volume (Brown & Sharpe 

Mfg. Co., 1996). The most widely used probes are touch-trigger probes that are 

designed to give the optimum results when the probe hits are taken perpendicular to 

the probe body. If hits are not taken perpendicular to the object surface, skidding 

may occur causing inconsistent and non-repeatable results. Probe hits taken parallel 

to the probe body are not as repeatable as those taken perpendicular to the body. The 

hits neither perpendicular nor parallel to the body give results that are less repeatable 

than those taken parallel. Probe hits taken at an angle to the probe body are not 

repeatable and should be avoided if possible. If probe points are taken within 80 

degrees of perpendicular, skidding is much less than one micron or 0.000040 inch 

(Brown & Sharpe Mfg. Co., 1996). Also, the slow measurement velocity of the probe 

should be used to avoid damages that might occur to the probing system and 

overtravel due to momentum. This can be accomplished by using the machine 

parameters settings module in the CMMs (TUTOR™ software in this case) to 

configure the suitable speed.

Positioning the probe and measuring the object can be accomplished by using 

manual operation and/or direct computer control (DCC). In direct computer control 

mode, a CMM operates like a computer numerical control (CNC) machine. It is 

motorized and the movements are controlled by a digital computer system running the 

measurement software (TUTOR™). Similar to a CNC machine, the DCC CMM 

requires part programming that can be prepared by using manual leadthrough or off
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line programming. In the manual leadthrough method, the operator leads the probe 

through the various motions (positioning and measuring) required in the inspection 

sequences. These motions are recorded into the control memory of the CMM 

controller. Then the controller plays back the program to execute the inspection 

sequences. Off-line programming as its name suggests is prepared off-line based on 

the drawing of the inspected object and then downloaded to the CMM controller for 

execution.

The advantages of using CMMs over manual inspection methods are 

(Groover, 2001) (1) reduced inspection cycle time, (2) flexibility, (3) reduced 

operator errors, (4) greater inherent accuracy and precision, and (5) avoidance of 

multiple setups.

A flexible inspection system (FIS) takes the capability of the CMMs one step 

further. A FIS is a highly automated inspection workcell consisting of one or more 

CMMs and other types of inspection equipment plus the parts handling systems. 

With all the mentioned advantages, CMMs are one of the most widely used 

technologies in contact inspection. In addition, another category of inspection 

techniques is noncontact inspection. Noncontact inspection technologies utilize 

sensors set up at a certain distance &om the object to measure the desired features. 

They can be classified into two groups: (I) optical and (2) nonoptical. Optical 

inspection techniques use light to accomplish the measurement Examples are 

machine vision systems, scanning laser systems, linear array devices, and optical 

triangulation techniques. The main difference between machine vision, the most
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popular technique, and other optical techniques is that machine vision tends to imitate 

the capabilities of human optical sensory system, both the eyes and the interpretation 

powers of the brain. The others are operative in much simpler modes. Nonoptical 

inspection technologies utilize energy forms other than light to perform the 

inspection. Examples of these energies are electrical field, radiation, and ultrasonics 

(Groover, 2001).

2.3 Sampling Strategies for Dimensionai Surface Measurement

Inspection of discrete manufactured parts using CMM is affected by a variety 

of data collection methods. Usually data or sampled points are collected intuitively 

with a simple scheme for measurement locations. The commonly practiced methods 

are the uniform sampling and the random sampling methods. Once the sample points 

have been obtained, the data fitting method is applied to describe the part feature. 

Problems may arise when all the sampled points or deviations fall within tolerances 

while some non-sampled points are in fact out of bound. This implies that the 

sampling strategy used must be very reliable so that the sample points are regarded as 

a good representative of the entire surface. Different sample size with the same 

sampling method may give different results. Clearly, sampling accuracy depends on 

both sample size and sample locations. Theoretically, if all points on a workpiece can 

be measured, its real deviations should also be identified and analyzed. However, it 

is practically impossible. Hence, a good sampling strategy consisting of sample size 

and locations is definitely needed for efficiently collecting data at the m in im u m  cost

22



To help circumvent the adequacy of the data collecting problems, Menq et al. 

(1990) suggested a statistical sampling plan to determine a suitable sample size which 

can represent the entire population of the part surface with sufficient confidence and 

accuracy. A trade-off between the measurement time, data processing time, and cost 

and the number of measurement points were taken into consideration along with 

manufacturing process capability, tolerance specification, and an assumption that the 

deviation is normally distributed around the nominal value. However, the sample 

locations were not taken into account This might lead to some confusion in 

measuring data. Moreover, the normality assumption is not true when systematic 

errors exist or when local geometric attributes have direct effect to the formation of 

the deviations.

Caskey et al. (1992) examined the interaction between the various procedures 

involved in mechanical parts measurement using CMMs. The experimentation was 

done on computer models of features and on actual measurement process on a CMM 

including measuring machine and process characterization, random measurement 

errors, probing performance, and measurement methodology. The fitting algorithms 

used were the least squares method and the mini-max technique. The efficiency of a 

sampling strategy, stratified sampling, was tested on a basic geometric feature, plane, 

using those fitting algorithms. In addition, a set of sample sizes was taken into 

consideration to find the better fitting results. The results obtained showed that there 

were rooms for improvement for the fitting algorithms and the sampling strategies 

with higher but acceptable sample sizes.
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Woo and Liang (1993) and Woo et ai. (1993) investigated the number and 

location of the discrete samples for the dimensional measurement of 2D machined 

surfaces. Accuracy and time were considered as the criteria for assessing sampling 

errors. Accuracy was expressed by a mathematical notion called the discrepancy of a 

finite set of N points for which a lower bound exists. Time could be quantified in 

terms of The deterministic sequences of numbers were used as sample 

coordinates. The Hammersley sequence was compared against the uniform sampling. 

The surface measurements results of the Hammersley points showed a remarkable 

improvement over those of the uniform points in reducing the number of samples and 

units of time, while maintaining the same level of accuracy.

Hocken et al. (1993) discussed sampling issues in coordinate metrology. 

There were various factors that may affect mechanical parts measurement such as 

systematic and pseudo-random machine errors, surface and forms errors, fitting 

algorithms, and sampling strategies. There were also several issues discussed in each 

factor. Systematic and pseudo-random machine errors consisted of parametric and 

machine errors, probe errors, thermal errors, and so on. Surface and form errors dealt 

with surface roughness, waviness, and form errors due to different manufacturing 

processes. Fitting algorithms employed two types of algorithms, the least squares 

method and the mini-max method. Sampling strategies dealt with metrology 

sampling strategies and production sampling strategies. Both strategies should be 

considered with the minimum number of points possible. Computer experiments 

were conducted with line, plane, circle, sphere, and cylinder. The results obtained
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showed that “current inspection techniques, used daily in manufacturing, drastically 

under-sample geometric features in the presence of unknown part form and 

measuring machine errors.” This led to two following corollaries. First, much higher 

sampling densities than those in current use must be incorporated. If inspection times 

were not to be increased, a new type of measuring machine capable of high-speed 

surface scanning would be needed. Second, the intelligent decision systems were 

required to control the inspection and analysis process regarding how to measure a 

part and the choice of algorithms.

Woo et al. (1995) attempted to answer two basic questions regarding the 

relationship between the sample size and the error in measurement. The first question 

raised the issue of increasing the accuracy of sampling for the same sample size. The 

second question dealt with the reduction of the sample size while maintaining the 

same level of accuracy. The answers to both questions were relevant to the sample 

point distribution. A couple of mathematical sequences, the Hammersley sequence 

and the Halton-Zaremba sequence, were selected since their discrepancy lower 

bounds were nearly optimal comparing to a lower bound prescribed by Roth (1954). 

Compared against the uniform sampling, both sequences outperformed the uniform 

sampling theoretically and experimeuially. The clear advantages of the mathematical 

sequences are that their discrepancy (or deficiency) is lower than that of the uniform 

sampling and their sample coordinates are equivalently repeatable. Also, there was 

no discernable difference in the performance between the Hammersley and the
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Halton-Zaremba in 2D space. The choice is just a matter of convenience whether the 

sample size is a power of two or not (a requisite for the Halton-Zaremba).

A feature-based sampling strategy integrating the Hammersley sequence and 

the stratified sample method was proposed by Lee et al. (1997). The characteristics 

such as geometric features, manufacturing processes, and surface finish were taken 

into consideration in determining such sampling strategy. The geometric features 

included fiat, circular, conical, and hemispherical features. There were two ways to 

select the specified measuring points by starting firom the central point or the edge 

point. The central point approach could be applied for a workpiece with a non- 

uniform surface finish, especially with the rough edges. Otherwise, the edge point 

approach should be used. A comparison between the Hammersley sequence based 

sampling, the uniform based sampling, and the random based sampling was shown 

while maintaining the same level of accuracy. The results obtained exhibited that the 

sampling strategy based on the Hammersley sequence outperformed those of the 

uniform sampling and the random sampling. Clearly, the commonly practiced 

procedures, the uniform sampling and the random sampling, for measurement 

locations are far firom optimal.

Liang et al. (1998a and 1998b) theoretically and experimentally presented the 

results of surface roughness measurement with a 2D optimal sampling strategy, the 

Zaremba sequence based sampling. Liang et al. (1998a) discussed the theoretical 

advantage of such an optimal sampling strategy which can be obtained by utilizing 

the point sequence developed in Number Theory. A machined surface was modeled
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as a Weiner process and its root-mean-square (RMS) error was equivalent to the Li 

discrepancy of the complement of the sampling points. The relationship was also 

shown to hold for more general surfaces. Liang et al. (1998b) addressed an 

application of the Zaremba sequence as an optimal sampling sequence for the surface 

roughness measurement. The experiment was done on a computer simulation to 

demonstrate the effectiveness of the Zaremba sequence based sampling method over 

the uniform and the random sequence based sampling methods. The Zaremba 

sequence required almost quadratically fewer points than did the uniform or the 

random sequence while maintaining the same order of accuracy in measurement.

Namboothiri and Shimmugam (1999) introduced a determination of sample 

size in form error evaluation. A new parameter based on the asymptotic distribution 

of the form errors was proposed with the assumption that the errors followed a normal 

distribution. The new parameter, which was a function of sample size and the 

corresponding values of errors, calculated the probability that the form error was less 

than a predicted value. Simulation studies and their results were also discussed to 

verify its capability. Moreover, sampling patterns played important roles in 

measurements. If the maximum error point could be identified at the initial stages 

following a sampling pattern, then further prolonging of measurement process was 

not necessary. As a result, the measurement time (cost) could be saved.

Kim and Raman (2000) investigated accuracy and path length (time) of four 

different sampling strategies and five different sample sizes for fiamess measurement 

in actual experiments with a CMM. The sampling methods used were the
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Hammersley sequence sampling, the Halton-Zaremba sequence sampling, the aligned 

systematic sampling, and the systematic random sampling. Sample sizes of 4, 8, 16, 

32, and 64 were studied. A two-factor factorial design with 30 replicates was used 

for experiment and analysis. The main effects of sample size and sampling method 

were significant to the accuracy of the flatness measurement. A significant 

interaction between sample size and sampling method was also evident. The length 

of the probe path was taken into consideration with respect to the two factors using a 

computer simulation. The shortest length of the CMM probe path was computed 

based on the traveling salesman problem (TSP) algorithm. A trade-off priority 

coefficient between the accuracy of fiamess and the shortest CMM probe path was 

then developed to determine the effects of accuracy and path length while selecting 

sampling strategies and sample size. The most efficient sampling method was varied 

according to the priority coefficient and the sample size.

An adaptive search-based selection of sample points for form error estimation 

was proposed by Badar et al. (2000 and 2001). This method used the search-based 

optimization methods for reducing the sample size while maintaining the same level 

of accuracy. Examples shown were straighmess and fiamess. For straighmess 

estimation, region-elimination search was introduced. For fiamess verification. Tabu 

search and a hybrid search were used. The hybrid search consisted of Coordinate 

search, Hooke-Jeeves search, and Tabu search. A number of initial points were 

chosen randomly to verify an inspected feature first Points were then added based on 

the mentioned search methods, finding improvements in the zone fit in both
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maximum and minimum directions. After the maximum and minimum deviations 

were reached, their corresponding points were added to the set of initial points. The 

form error was then computed. The analysis presented identifies some potential for 

sample reduction in coordinate methodology.

2.4 CMM Probe Path Planning for Dimensional Inspection

The CMM probe path planning allows the determination of the inspection 

path joining the CMM measurement points based on the geometry of the inspected 

part model and the inspection specification. Few works have been done in the 

development of the CMM probe path planning. The majority of the studies has 

concentrated on generating the collision-free inspection path for parts having multiple 

surfaces.

Lu et al. (1994) developed an algorithm for generating an optimum CMM 

inspection path. A modified 3D ray tracing technique was used in conjunction with 

an octree database of a CMM configuration space to detect obstacles between any 

two target points. This ray tracing technique utilized the special geometry of the 

cubic octant to simplify the search for obstacles in the octree data structure. The 

algorithm also used the global information on obstacle vertices to reduce the zigzag 

nature of the path by imitating a line of one’s vision in avoiding the obstacles and 

finding all new vertices that were on the tangent contour of the object. These 

silhouette vertices were again checked for a free path. The iterative steps between the 

collision detection process and the silhouette vertex selection process were continued
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until a vertex was found to be on the potential collision-free path. The silhouette 

vertices were then advanced to the target again using the ray tracing and the above 

iterative steps. The total distance from a start node to the target node was used to 

select the minimum cost path afrer all collision-free paths had been compared. Since 

the optimum collision-free path in a 3D space lied on the edge of a polyhedron, the 

vertex path must be processed to an edge path. A selection strategy was employed to 

ensure a correct edge path sequence by solving an optimization problem from edges 

and points. A simulation test and an experimental test were conducted. In addition, a 

comparison was made between a graphic interactive path planning method and the 

proposed algorithm. The total time taken by the algorithm was much less than that of 

the interactive graphic method.

Lim and Menq (1994) studied the accessibility of CMMs and its path 

generation in dimensional inspection. Probe orientation had not been paid much 

attention in inspection planning research because it does not affect the tip trajectory 

significantly. However, for a complex surface, probe orientation might be needed to 

be addressed to avoid a collision with an inspected part Feature accessibility analysis 

and optimal angle search were used to automatically determine the probe orientation. 

The analysis of half-space and ray-tracing techniques were applied to find a collision- 

fiee probe orientation while inspecting a part. All the feasible probe orientations 

were determined first and the best angle was then selected. A m in im u m  set of 

required angles for the entire path was chosen by the simple search algorithm through 

all possible combinations. This search algorithm was fast but not a complete search.
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Hence, better heuristic search should be used for a more thorough search. The path 

generation included the probe orientation information by grouping the inspection 

points with the same probe angle. Also, the probe approached the inspection point at 

a direction similar to the angle. These improved the path by reducing the number of 

necessary rotations and the chances of collision. Computer simulations in a computer 

aided design (CAD) system were used to demonstrate the proposed techniques.

Yau and Menq (1995) presented a hierarchical planning system using 

heuristics for path planning in dimensional inspection using CMMs. Instead of 

solving general cases, the objective was to automate the planning of a collision-free 

inspection path for dies and molds. Also, the issue of minimizing the path distance 

was not taken into account. The hierarchical structure consisted of three different 

levels of trajectory planning for the probe tip, the stylus, and the CMM column, 

respectively. First, an initial inspection plan was constructed by (1) selecting an 

available probe, (2) determining probe orientations based on the local accessibility 

analysis of the surfaces, (3) obtaining measurement points, and (4) connecting all the 

points together without considering collision. Second, a hierarchical procedure was 

initiated to find collisions for each path segment. If any, the path would be modified 

heuristically. This modification referred to the changes of the trajectory of the probe 

tip at the first level, the changes of the probe orientations at the second level, and the 

changes of the probe styluses at the third level. The resulting inspection was then 

replayed in a CAD environment before it was carried out by a real CMM. The 

computational time was proportional to the number of measurement points and
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number of surfaces for collision detection and was quite efticient. Two experimental 

examples were tested to show the effectiveness of the path planning. The probe 

successfully traveled through the entire inspection path for each example without 

interference.

Kim and Raman (2000) studied the length of probe path with reference to the 

sampling strategy and sample size for flatness measurement on plates in addition to 

the issue of accuracy of measurement. The collision between the probe while 

positioning and an inspected object (plate) was highly unlikely due to the nature of 

the inspected part (Harness measurement). Instead, the focus of this work was to find 

the most suitable sampling strategies and sizes considering the accuracy and time 

(path length) factors. Therefore, the CMM probe path problem was formulated as a 

traveling salesman problem. TSP solution methods were then employed to minimize 

the total distance of the probe path while visiting every point generated, for a given 

sampling strategy and size.

2.5 Minimum Toierance Zone Aigorithms

Tolerance verification usually undertaken during measurement and inspection 

affects tolerance specification as well as process selection to achieve it. Form 

tolerance (for individual features) verification using CMMs has been studied 

extensively in the last fifteen years. The method of least squares (LSQ) is the most 

commonly used in CMM inspection for data fitting and many commercial machines 

use this method for tolerance zone estimation due to its uniqueness, efficiency,
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robustness, and simplicity. Also, it can be applied to most geometries, quite easily. 

However, its major drawback in determining the tolerance zone is that it does not 

guarantee a minimum zone. In other words, it might overestimate the tolerance zone 

resulting in the rejection of some good parts. Hence, the minimum zone estimation 

methods have been pursued. The majority of the works in literature have dealt with 

straighmess, Harness, roundness, and cyiindricity.

The minimum zone evaluation methods can be largely divided into two 

categories, computational geometry approach and numerical approach. The 

computational geometry approach deals with algorithms and data structures. The 

information of the problem is organized in such a way that would permit the 

algorithms to run in the most effective manner. Some computational geometry 

methods such as convex hull, eigenpolygon, and Voronoi diagram are used in 

obtaining the minimum tolerance zones of basic features. This approach is 

computationally efficient since it exploits the problem structure but is limited to 

particular form tolerances. The numerical approach consists of using linear and 

nonlinear optimization methods with various numerical search techniques including 

intelligent ones such as genetic algorithms and neural networks. Its main advantage 

is flexible extension to cover various form tolerances; but it is not computationally 

efficient Before the optimization model can be formulated, the relationship function 

of relevant parameters must be determined. There are generally two types of 

inspection error models: linear and nonlinear models. The linear error model can be 

obtained by using an approximation technique such as the limaçon approximation.
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The nonlinear deviations model can be extracted directly from the problem. Both 

models are then formulated into mathematical programming forms (decision 

variables, constraints, and objective function). Since the mathematical programming 

techniques may trap in local optima, different starting points coupled with the 

experimental verifications should assist them in getting a global optimal solution. 

The results from the LSQ method may not be optimal, yet are close enough. Thus, 

they are often used as the initial solutions.

2.5.1 Computational Geometry Based Algorithms

Traband et al. (1989) presented a computational geometry based method, a 

convex hull concept, in evaluating the straightness and flatness tolerances. According 

to Traband et al. (1989), the following two observations can be made about the 

minimum zone for straightness without violating the property of convex hull: (1) the 

minimum zone of a set of points is the minimum zone of the convex hull of set S, and

(2) the minimum zone is parallel to one of the edges of the convex hull and one of the 

parallel supporting lines coincides with this edge. The computational complexity of 

the first algorithm suggested was 0(n‘). The improved algorithm was then developed 

using the observation that only a few pairs of points, antipodal pairs, on the convex 

hull admitted parallel lines satisfying the definition of a minimum zone. The 

antipodal pairs could be enumerated in 0(n) time (Preparata and Shamos, 1985). 

Using the antipodal pairs in determining the minimum zone reduced the complexity 

of the final algorithm to 0(n log n). The authors proved these observations.
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A similar procedure was employed for evaluating the fiamess tolerance. 

However, determining the antipodal pairs for the 3D convex hull was more difficult 

than that for the 2D case. The generation of the antipodal pairs would take 0(n~) time 

(Preparata and Shamos, 1985). Hence, the authors suggested that it would be easier 

to brute force the minimum zone from the convex hull by determining all possible 

combinations of zones. As a result, the computational complexity for this algorithm 

was 0 {n \

The above procedures for straighmess and fiamess were suitable for on-line 

inspection process. Upon the addition of a new point to the hull, the minimum zone 

could be easily found by checking its location in the zone and computing the 

previously discussed algorithms if needed. Thus, this dynamic convex hull algorithm 

would take only 0(log n) time between the successive inputs to update the hull. In 

addition, the obtained results were shown to be superior to those of the least squares 

method.

Le and Lee (1991) introduced another standard, called the minimum area 

difference center for evaluating the roundness. Even though this center was different 

from the most common standard, the minimum radial separation center, 

recommended by the American National Standards Institute (ANSI) in characteristics, 

the approach to finding both centers shared many commonalities. The authors 

presented an algorithm to compute the m in im u m  radial separation center of a simple 

polygon G from the medial axis of the polygon and the farthest neighbor Voronoi 

diagram of the vertex set of the polygon. The computational complexity of this
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algorithm was 0(n log n + k) where n was the number of vertices of G and k was the 

number of intersection points of the medial axis and the farthest neighbor Voronoi 

diagram. Next, the relationship between both centers was disclosed and the minimum 

area difference center was derived. The center of a simple polygon G could be 

established from the nearest neighbor Voronoi diagram of the skeleton region 

elements, the farthest neighbor Voronoi diagram of the vertex set of the polygon, and 

the boundary edges of G that are not on the convex hull. Its computational 

complexity was also 0{n log n + k) time, where n was the number of vertices G and k 

was the maximum of the number of intersection of the nearest neighbor Voronoi 

diagram of G with the farthest neighbor Voronoi diagram of the vertex set S of G, and 

the number of intersection of the farthest neighbor Voronoi diagram of the vertex set 

S of G with the internal boundary of G. Even though the minimum radial separation 

could be used to find the circularity, the application of the minimum area difference 

center remains to be explored.

Another computational geometry approach to minimum zone straightness was 

proposed by Hong et al. (1991). The relationship between a geometrical 

eigenpolygon and straightness was described. Then, the straightness algorithm was 

developed. The main idea of this work is very similar to the straightness convex hull 

based approach proposed by Traband et al. (1989). In addition, an analysis 

comparison between this method, the least squares method, and the minimax 

algorithm was tabularized. This method was superior to the method of least squares
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and as good as the minimax method without difBculties caused by optimization 

approximations such as convergent and local optimum problems.

Roy and Zhang (1992) proposed a computational geometry based method in 

determining roundness error. The properties of convex hull and Voronoi diagrams 

were used to develop an algorithm for establishing the concentric circles which would 

contain all the measured points while minimizing the radial separation between the 

circles. It was evident from plane geometry that at least four points were required to 

determine a pair of concentric circles. Such circles created by these four points were 

not unique. Three possible cases of concentric circles might arise: (1) both outer and 

inner circles passed through two points, 2-2 model, (2) the inner circle passed through 

three points and the outer circle passed through only one point, 3-1 model, and (3) the 

inner circle passed through only one point and the outer circle passed through three 

points, 1-3 model. Initially, an exhaustive ad hoc algorithm using the mentioned 

necessary conditions for the establishment of a pair of concentric circles was 

introduced. However, the computational complexity was 0{n*) which was too high.

To overcome this drawback, an improved algorithm was suggested. The more 

efficient procedure was as follows: (1) construct the convex hull from the simple 

polygon by using the Graham scan method in 0{n) time, (2) generate the Voronoi 

diagrams; the farthest Voronoi diagram from the convex hull and the nearest Voronoi 

diagram from the point set in 0(n log n), (3) establish the pair of concentric circles 

with minimum radial separation for each of the following three cases, 2-2 model, 3-1 

model, and 1-3 model, and (4) compare the results from the above three cases and
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select the roundness error Srom the m in im u m  among all cases. The computational 

complexity for the last two steps was 0{r?). Hence, the overall complexity was

A comparison between this method and the method of least squares was also 

illustrated to show its superior performance to the least squares method.

Huang et al. (1993a) proposed a new minimum zone method for straighmess 

analysis of any planar line or spatial line. This method rotated the enclosing lines in 

“half-filed” only during the data exchange process. The advantage of the half-filed 

data exchange process was that it screened out unwanted data points, which would 

make the mathematical model simpler and the computational time shorter. Using the 

least squares result as the initial condition, the data exchange scheme started with a 1- 

1 model where one control point was on one control line and another control point 

was on the other control line with both lines being parallel to the least squares line. 

Next the strict control line rotation scheme (CLRS) was executed to establish a 2-1 

model. Two conditions for the minimum zone solution were; (1) at least three points 

must be in contact with the two enclosing parallel lines in the form of a 1-2 (or 2-1) 

model and (2) these three points must lie on the lines in an upper-lower-upper 

sequence or a lower-upper-lower sequence. Each control line would rotate according 

to its control point in the direction that would most likely yield one of the two 

sequences. Hence, only the points within a specified quarter-field for each of the two 

directions, equivalent to half-field search, would be considered. During the rotation 

of each control line, any point within the corresponding quarter-fields might become 

the first contact point depending on its position. Since each point would correspond
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to a rotation angle, the very first contact point would be the one having the smallest 

angle with respect to the control line. However, there were four possible conditions 

of the 2-1 model that did not meet the required sequences. As a result, one of the 

control points must be discarded by being pushed inside the enclosing field. Clearly, 

the discarded point was the outside one on the two-point side. The remaining two 

points formed a 1-1 model again and the CLRS would start over. The whole 

procedure would be repeated until the minimum zone criteria were met. The results 

obtained &om considered examples showed that this method was more efficient than 

the LSQ.

Huang et al. (1993b) extended Huang et al. (1993a)’s work to cover flamess 

analysis by using the similar scheme called the control plane rotation scheme (CPRS). 

The criteria for the minimum zone solution were: (1) at least four points must be in 

contact with the two parallel planes in the form of a 3-1 model or a 2-2 model, (2) in 

case of a 3-1 model, when projected onto the upper or lower plane, the single contact 

point must be inside of the triangle formed by the other three points, and (3) in case of 

a 2-2 model, when projected onto the upper or lower plane, the line linking two 

contact points on the same plane must intersect with the other line connecting the 

other two contact points. The procedure was similar to Huang et al. (1993a) as 

follows: (1) construct the fitted plane by using the method of least squares, (2) 

establish a 1-1 model with two control points and generate the planes parallel to the 

least squares plane from these two points, (3) establish a 2-1 (or 1-2) model by using 

the CPRS to obtain an alternate sequence when projected onto 2D space, (4)
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determine a 3-1 or 2-2 model by turning to the side view of the 2-1 model until the 

three-point view became the two-point view and using the CPRS to obtain an 

alternate sequence again, (5) check the optimality conditions, then stop the procedure 

if the minimum zone solution was reached or discard the outside projected point on 

the two-point projected plane if the criteria were not met and repeat step 4. 

According to the attached results, this method clearly outperformed the least squares 

method. An application of this method was performed by Huang et al. (1993c) for 

on-line measurement of gage blocks using phase-shifting interferometry. The 

experimental results were quite consistent with the specified grade of the inspected 

gage blocks with only an uncertainty of up to 0.005 pm.

Roy and Zhang (1994) discussed a robust, computational geometry based 

technique similar to the one presented by Roy and Zhang (1992) to establish the 

roundness error of a measured workpiece in an industrial environment. The 

procedures consisted of the following steps: (1) establishment of a sorted set by using 

the quicksort method, (2) development of an outer convex hull and an inner convex 

hull, (3) development of a nearest Voronoi diagram and a farthest Voronoi diagram, 

and (4) calculation of the minimum radial separation for all three possible cases of 

establishment of a pair of concentric circles and selection of roundness error from the 

minimum among those three minimum separations. This algorithm yielded better 

results for a given set of measured points in comparison to other methods such as 

minimum inscribed circle, minimum circumscribed circle, and the least squares 

circle.
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Roy (1995) discussed the criteria for assessing geometric characteristics of 

manufactured parts and the development of systematic procedures and algorithms for 

comparing measured geometric data from the parts with the specified drawing 

tolerances. The author recommended the methods proposed by Traband et al. (1989) 

for straighmess tolerance and flamess tolerance and the method proposed by Roy and 

Zhang (1992) for roundness tolerance. A cylindricity tolerance was computed as 

follows: (1) divide the cylindrical surface into several cross sections and collect data 

points for each cross section, (2) calculate a pair of concentric circles with minimum 

radial separation and determine the center point of the circles for each cross section,

(3) fit the least squares axis from the evaluated center points, (4) project all the cross- 

sectional data sets on a plane perpendicular to the least squares axis, (5) repeat step 2 

to step 4 with the mapped data sets until the least squares axis remains the same 

between two consecutive iterations, (6) construct the outer and inner circles by using 

their center on the least squares axis for each section, (7) for external cylindrical 

features, pick the circle with the largest diameter from the set of outer circles, then 

establish the second cylinder making it smaller by the cylindricity tolerance value. 

The external feature was acceptable if the diameter of the second cylinder were 

smaller than the diameter of any of the inner circles. The internal cylindrical feature 

could be evaluated by the similar steps but opposite logic. Location tolerance and its 

verification were discussed by Roy (1995). Since a profile is used in this work, this 

method may be impractical in certain cases, particularly where accuracy of the entire 

profile is critical (ASME, 1995).
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Roy and Xu (1995) also presented the development of computational 

algorithms for tolerance analysis for cylindrical surfaces in a computer-aided 

automatic inspection environment 2D convex hulls and Voronoi diagrams were used 

to generate pairs of concentric circles and their center points. These pairs were then 

used to simulate the inspected surface and to determine the cylindricity. There were 

six steps involved as follows: (1) divide the cylindrical surface into several cross- 

sections and collect a set of measured points for each of its cross-sections, (2) 

calculate pairs of concentric circles with minimum radial separation from the 

collected points using 2D convex hulls and Voronoi diagrams and determine their 

center points, (3) select a pair with minimum radial separation as the profile on each 

cross-section, (4) find the axis for the cylindrical feature with a least squares method 

or geometric analysis method, (5) establish the inner and outer circles and collect all 

inner circles in a set (IC) and all outer circles in another set (OC), and (6) calculate a 

pair of concentric cylinders for the tolerance zone by identifying the inner cylinder 

with the smallest diameter in the set IC and the outer cylinder with the largest 

diameter in the set OC. An example data set for a cylindrical surface was tabulated 

along with the cylindricity outcome.

A transformation strategy for m in im u m  zone evaluation of circles and 

cylinders was proposed by Lai and Chen (1996). This strategy employed a nonlinear 

transformation of coordinate systems to convert a circle into a line and a cylinder into 

a plane by using polar coordinates and cylindrical coordinates relationships, 

respectively. This nonlinear mapping could hold the distance relationship between
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each measurement point. As a result, finding two concentric circles enclosing all the 

measurement points was equivalent to finding two parallel lines enclosing the same 

measurement points in converted coordinates. Then, the straighmess algorithm 

described by Huang et al. (1993a) was applied. Similarly, this procedure could be 

extended to cylinders by obtaining two parallel planes enclosing the transformed 

measurement points and applying the flamess algorithm described by Huang et al. 

(1993b). Care must be taken in selecting the starting position of the mapping if the 

control points that were adjacent on the original surface were separated on each side 

of the line (for circles) or plane (for cylinders). A simple adjustment must be done by 

rotating all the points so that the control points would be on the same side. A series 

of inverse transformation procedures was then carried out to attain desired feature 

parameters. The simulated data were used to test the proposed methods. The results 

obtained indicated that the proposed techniques were more precise than the LSQ 

method while maintaining the same level of sensitivity in terms of number of data 

points used and the abrupt peak or valley in the measurement data.

Another convex hull based approach was proposed by Lee (1997) to evaluate 

flamess tolerance. This method, called the convex hull edge method, was a refined 

version of the convex hull method suggested by Traband et al. (1989). The author 

claimed that the original convex hull method could not successfully find all 2-2 

models. The reason was that the m in im u m  of m a x im u m  distances between pair of 

edges was not necessarily the minimum zone value. All the data points should be 

checked if they are contained within the two planes made by the pair. Then, the
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m in im u m , instead of the maximum, of distances between feasible pair of edges is 

selected as the tolerance zone. With such potential problems, a new search technique 

was introduced. The minimum zone problem was decomposed into sub-problems 

each of which was associated with an edge of 3D convex hull. For each edge, the 

transformation of coordinate system and projection of the transformed points were 

applied to help tackle the problem easier. The corresponding tolerance in the form of 

either a 2-2 or a 3-1 model was computed from a 2-1 model of the 20 convex hull 

and the minimum of these tolerances for all edges became the minimum tolerance 

zone. The comparisons attached depicted that the method was comparable to other 

minimum zone methods. It always generated the minimum zone solution and was 

also computationally efficient.

Samuel and Shunmugam (1999) developed new algorithms based on 

computational geometric techniques for minimum zone and function-oriented 

evaluation of straightness and flatness. Even though the function-oriented form 

evaluation of surfaces had been paid very little attention to by researchers, it had 

practical significance as the contact between the parts in assembly occurred at their 

functional boundaries. The enveloping features actually determined the virtual sizes 

and the resulting assembly conditions. The deviations decide the functional 

properties such as contact and lubrication. The convex hull concept was the main 

principle in the development of these algorithms. The techmques used in 

constructing two- and three-dimensional convex hulls were based on the divide and 

conquer and merge techniques. The presented algorithms for minimum zone
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evaluation were very similar to the ones reported by Traband et al. (1989). In 

addition, the algorithms for function-oriented evaluation were based on the 

aforementioned techniques and the minimum and maximum enveloping features. 

The results obtained from the simulated data and the data used in the literature 

demonstrated the success of these algorithms.

2.5.2 Numerical Based Algorithms

Chetwynd (1979) examined some of the implications of the limaçon method 

by making comparisons with circular references such as least squares circle, 

minimum radial zone circle, minimum radial circumscribing circle, and maximum 

radius inscribing circle. A limaçon figure was used as an approximation to a circle. 

The mathematical model obtained of a reference figure was advantageous due to its 

linear parameters. These linear functions could be utilized very well with 

optimization methods in finding those circular references. The graphical comparisons 

demonstrated the distribution of out-of-roundness values and center separations 

obtained with the least squares, minimum circumscribing, and maximum inscribing 

limaçons relative to the minimum zone limaçons. The least squares and minimum 

zone limaçons tended to have separate identities but were rarely much different 

However, there was a quite high probability of the minimum circumscribing limaçon 

being very close to minimum zone even though more widely different values 

occurred than with the least squares. The maximum inscribing seemed less tied to 

minimum zone. It was concluded that the limaçon provided various advantages over
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the circle, especially its linearity, but maintained compatibility in roundness 

measurement.

Murthy and Abdin (1980) proposed various methods such as Monte Carlo 

technique, normal least squares fit, simplex search techniques, and spiral search 

techniques to determine the minimum zone solutions for straightness, flatness, 

circularity, and sphericity. The straightness de'/iation was originally derived by using 

the least squares method. Then it was adjusted to be normal to the mean line. This 

method was called the normal least squares. The flatness deviation was also obtained 

in a similar fashion. However, the equations obtained were complex and could not be 

solved easily. They were then simplified by shifting the coordinate system to the 

center of the plate. Murthy and Abdin (1980) suggested the use of the normal least 

squares where the deviations were of a larger degree. When the deviations were 

small, the difference in results obtained fi-om the least squares and the normal least 

squares methods was not appreciable. Moreover, the deviations very often obtained 

by adopting either method might not be the minimum zone solutions.

The normal least squares fit was also used to find the circularity and 

sphericity. In order to solve the derived equations, the very tedious mathematical 

calculations and trial and error procedure were required. Monte Carlo search, 

simplex search, and spiral search were introduced to find the minimum zone solutions 

for straighmess, flamess, circularity, and sphericity since the methods of least squares 

and normal least squares might not always produce the minimum zone deviations. In
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addition, the starting solutions for these search techniques were the results &om either 

the least squares or the normal least squares methods.

According to Murthy and Abdin (1980), the Monte Carlo search could be used 

when the variables were few. The simplex search was more suitable for any surface 

studied involving a number of variables. The spiral search could be easily applied 

when the number of variables was only 2 or 3. This search actually gave a better 

value since all possible solutions were searched. The authors suggested that the 

individual techniques or a combination of these techniques could be applied to 

evaluate the minimum zone solutions depending on the requirement and the problem.

Chetwynd (1985) presented applications of linear programming to engineering 

forms such as circularity, straightness, and flatness. The so-called exchange 

algorithms were used to compute the best-fit geometries. The reference figure to a set 

of data points was found by first fitting a trial figure to a subset of the data. Then a 

series of iterations were performed by exchanging one datum point which violated the 

criteria of fit with one of the defining set to create a new trial solution. The concept 

of minimum zone was suggested in profiling the reference fitting. The straightness 

and flamess reference were assumed linearly fit and the limaçon approximation was 

used to linearize the circle parameters about the origin. The primal-dual technique 

was used in determining such a zone. The main purpose of this work was to show 

that the mathematical theory such as mathematical programming could have a 

dramatic effect on form metrology.
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Shunmugam (1986) introduced a new simple approach called median 

technique for assessing the errors on the dimensions of geometric features. The 

considered features included straighmess, circularity, flamess, cylindricity, and 

sphericity. The principles of the assessment process were as follows: (1) deriving the 

linear deviations from the assessment features, (2) establishing the trial features 

passing through the end points by substituting the values corresponding to the end 

points equations and equating those deviations to zero, (3) computing the crest and 

valley points by selecting the points corresponding to the maximum positive 

deviations and the maximum negative deviations, respectively, (4) determining the 

median features by selecting points from the crest and valley points so that the errors 

were minimum. The trial was repeated for all possible combinations of the points. 

The approximation processes from the nonlinear to linear forms of errors were 

accomplished by assuming that the features were well-aligned with the X axis for 

straighmess, well-centered trace for circularity, aligned parallel to the XY plane for 

flamess, well-aligned with the Z axis for cylindricity, and well-centered for 

sphericity. Note that these assumptions can be mathematically written by using linear 

deviations for straighmess and flamess, and limaçon approximation for circularity, 

cylindricity, and sphericity. Shunmugam (1986) demonstrated and concluded that the 

median approach was more efflcient (faster and more accurate) than the least squares 

method.

Shunmugam (1987a) compared the linear and normal deviations of forms 

tolerances using the least squares and minimum deviation methods. A simplex search
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method was used in a search procedure for both approaches. The obtained results 

showed that the minimum deviation technique was more accurate than the least 

squares method and the difference was quite appreciable. In both techniques, the 

normal deviation resulted differently from the linear deviation but the difference was 

quite insignificant for practical measurement. In addition, the computational time 

required of the normal deviation approach was longer that of the linear deviation 

approach, which was not justifiable in view of the marginal difference in the values.

The so-called minimum average deviation technique was proposed by 

Shunmugam (1987b). The major drawback of the minimum deviation technique 

above was that a few points on the features control the position of the assessment 

features. Hence, a different criterion for minimizing the sum of absolute deviation 

values was used instead. Then a simplex search was applied with a reasonable 

number of trials to find form errors based on the minimum deviation principles. This 

method attempted to find the assessment features in such a way that the areas above 

and below them were equal and the sums of the areas were minimum. Its advantage 

over the minimum deviation was that it was statistically more consistent since the 

deviations above and below the ideal features were equal. The results showed that 

this technique was superior to the least squares method.

Elmaraghy et al. (1990) presented a procedure for determining the geometric 

tolerances from the measured 3D coordinates on the surface of a cylindrical feature. 

The data analyzed were the 3D measured coordinates of uniformly spaced points on 

the circumference of many cross sections along the cylinder length. Unconstrained
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nonlinear optimization and the Hooke-Jeeve direct search were used to fit the data to 

the minimum tolerance zone. The goal was to adjust the position and orientation of 

the center of a circle or axis of a cylinder to obtain the minimum deviation zone. 

Since no constraint was formulated and the number of variables was not big, the 

convergence should be reliable and fast. The starting point (0,0) was used for the 

nominal position of the center of a circle. Six cross sections and eight longitudinal 

sections of a cylinder and its circles were used. A set of coordinates of the surface 

points was created by simulation using random number generation. The following 

steps were the proposed procedure: (1) determining the size deviation among all cross 

sections of the cylinder, (2) finding the roundness deviation of each cross section and 

selecting the maximum roundness deviations among all cross sections as the cylinder 

roundness deviation, (3) evaluating the runout deviation based on the nominal center 

position of the cross sections, (4) identifying the cylindricity deviation. (5) examining 

the straightness deviation of the longitudinal surface element within each longitudinal 

section and choosing the maximum straighmess among all longitudinal sections as the 

longitudinal straighmess deviation of the cylinder, (6) finding the profile deviation in 

longimdinal sections, (7) determining the straighmess deviation of the cylinder axis as 

defined by a cylindrical deviation zone, (8) calculating the perpendicularity deviation 

of the cylinder axis, and (9) evaluating the position deviation. Note that this work 

samples data uniformly, which is not quite efficient compared to other sampling 

strategies like the Hammersley sampling and the Halton-Zaremba sampling methods.
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Shunmugam (1991) presented a generalized algorithm to establish the 

reference figures on form errors such as straighmess, flamess, circularity, and 

cylindricity. The algorithm was based on the theory of discrete and linear Chebyshev 

approximation. It was guaranteed to give optimal results. In so doing, the algorithm 

attempted to minimize the maximum value of the absolute error by calculating error 

for the specific feature and optimizing the enveloping figure using the Stiefel 

exchange algorithm. To establish the enveloping surfaces, a certain geometrical 

condition known as the 180° rule was used as recommended by Chetwynd (1985). 

Some modifications were required for different geometrical features to avoid the 

cyclical exchanges which might occur leading to the selection of the same reference 

set again and again. The author also expressed a concern about the sampling strategy 

used in collecting data. Otherwise, relevant information might be missed and result 

in a certain degree of disagreement among the measurement results. Another similar 

work on the basis of the theory of discrete and linear Chebyshev approximation was 

discussed by Dhanish and Shunmugam (1991) as well. The linear deviations were 

again used. In addition to Shunmugam (1991), the sphericity computation was taken 

into consideration. An advantage of algorithms from both papers was the reduction 

of their mathematical complexity, hence the fast convergence.

Wang (1992) presented a nonlinear optimization method for determining the 

form tolerances by using sample measurement points obtained with a CMM. An 

ideal feature must be established 6om the actual measurements such that all of the 

deviations of the feature from the ideal were within the tolerance zone. The ideal
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form feature lied in the middle between the boundaries of the minimum zone. The 

form error was determined by minimizing the maximum value of the deviations of the 

sample points with respect to the position and orientation of the ideal form. This 

minimax problem was reformulated into a nonlinearly constrained optimization 

problem by introducing an additional variable. The introduced variable specified the 

half width of the zone and was minimized resulting in the minimum zone. The error 

models used were the same as the normal deviation models suggested by Shunmugam 

(1987a). The obtained results showed that this algorithm was superior to the most 

widely used method in industry, the method of least squares. Refinements were also 

recommended by using a simple mechanism of tilting and bending to improve the 

effectiveness and efficiency of the algorithm.

(Canada and Suzuki (1993a) studied an application of some nonlinear 

optimization techniques for minimum zone Harness. A noncontact sensor was used to 

collect 3D data uniformly. The convergence criteria such as the downhill simplex 

method and the repetitive bracketing method were considered. In the downhill 

simplex method, a condition for approximation was used in formulation of the 

objective function. In the repetitive bracketing method, the optimization parameters 

were alternately searched since this method was a ID search. The reduction process 

of data volume was also applied. The results from those two criteria were compared 

with one another and also with those of the LSQ. Clearly, the downhill simplex 

method was advantageous over the repetitive bracketing method and the two 

optimization techniques were superior to the LSQ. Note that the uniform sampling

52



used in this work is not as efficient as other sampling methods, as mentioned 

elsewhere.

Kanada and Suzuki (1993b) also applied several algorithms to calculate the 

minimum zone straightness. The algorithms used were the Nelder-Mead simplex 

method, the linear search method with quadratic interpolation, the linear search 

method with golden section, the linearized objective function method which was 

newly developed by considering the characteristics of the measured profile, and the 

mixed method between the linearized objective function method and the linear search 

method with quadratic interpolation. The comparisons of the five methods were then 

studied from the viewpoints of the minimum zone straightness value, computing time, 

number of iterations, and computing accuracy. The results implied illustrated that the 

linearized objective function method overestimated the zone straighmess by about 5 

% as compared with the other methods. However, it was the best in terms of 

computing time while the Nelder-Mead simplex method was the worst.

Kanada (1995) proposed a sphericity algorithm based on the downhill simplex 

method as opposed to the least squares method. The data used were simulated by 

applying surface harmonics (Laplace’s spherical function) with a computer. Even 

though the initial simplex could start at an arbitrary size and position, the computation 

efficiency may decrease due to this setting. Hence the origin (0, 0, 0) was used. 

The comparison between this method and the LSQ method demonstrated that the 

difference was markedly small. In addition, the comparison between the sphericity 

and the roundness values showed that the roundness values on longitudinal lines were
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almost one third of the sphericity values, and the roundness values on the equatorial 

plane was very similar to the sphericity values. Interestingly, two or three 

measurements on equatorial planes at 90° to each other might not represent the 

sphericity. As a result, using circular profiles to represent a sphere may not produce 

the accurate sphericity through profile circularity.

Carr and Ferreira (1995a) developed algorithms to verify minimum zone 

straightness and flamess. Even though computing the minimum zone was inherently 

a nonlinear optimization problem, the proposed algorithms solved a sequence of 

linear programs that converge to the solution of the nonlinear problem. Initially, the 

nonlinear minimax problem (a nonlinear objective fimction and a nonlinear 

constraint) was formulated. Since a direct implementation of this formulation was 

very difficult, a transformed model was investigated. Instead of searching for a 

reference plane (or straight line), a transformed model searched for two parallel 

supporting planes so that all measured points were below one plane and above the 

other while both planes were as close together as possible. In other words, this model 

placed a reference plane through the origin and searched for a direction vector so that 

the difference between the distance of the farthest point and the distance of the 

nearest point from the reference plane is less than the specified tolerance. The new 

model was still a constrained nonlinear programming problem but the objective 

function and all but one constraint were linear. This main idea was applied to obtain 

both flatness and straighmess solutions. Whenever a nominal zone direction vector 

was not known, the LSQ solution direction vector was used as the initial solution.
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The results tabulated demonstrated that the proposed algorithms were as efficient as 

other minimum zone methods while they were relatively easy to implement.

Carr and Ferreira (1995b) also discussed another approach for verifying 

cylindricity and straighmess of a median line. The main idea was similar to the above 

approach of Carr and Ferreira (1995a). In addition, this model could be applied to 

minimum circumscribed and maximum inscribed cylinders. The formulation 

outcome was a constrained nonlinear programming problem with a continuous linear 

objective function. The final formulation solved a sequence of linear programs that 

converged to a local optimal solution. The straighmess of a median line was 

computed by modifying the cylindricity formulation to find only one cylinder, the one 

that enclosed all of the measured points. Again the LSQ solution was used as the 

initial condition for this algorithm. The obtained outcomes showed that this 

algorithm was robust and efficient. Since most o f the works in determining minimum 

zone algorithms in literature were conducted under the assumption that the sampled 

points accurately represented the part surface, the authors recommended future 

research in sampling techniques to accurately sample (represent) the part surface.

A comparative analysis of CMM form fitting algorithms was conducted by 

Lin et al. (1995). This work described three minimum tolerance zone algorithms: the 

minimum max-deviation method (minimax) (Wang, 1992), minimize average 

deviation method (minavg) (Shunmugam, 1987b), and the convex hull method 

(Traband et al., 1989). The LSQ technique was also used to compare with those 

algorithms in terms of tolerance zone, solution uniqueness, and computational
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efficiency. The mathematical formulations of straightness, flatness, circularity, and 

cylindricity were illustrated for the LSQ method, the minimax method, and the 

minavg method. Only the formulations of straighmess and flamess were discussed 

for the convex hull method because this computational geometry based approach 

could not lend itself to other geometrical forms. These algorithms were implemented 

first and then validated with the data taken from the published literature. Moreover, 

the mentioned algorithms were tested by using the same measurement data with 

various sizes generated by a template-based simulator. The tabulated outcomes for 

straighmess and flamess generally showed that the LSQ method produced the widest 

zone among all four algorithms. The LSQ and the convex hull methods produced 

unique solutions whereas the other two methods could not guarantee unique solutions. 

In computational efficiency, the LSQ algorithm was the fastest and the convex hull 

method utilizing the geometrical structure of the part surfaces came in second. The 

minimax and minavg methods required the most computational time for high sample 

sizes, especially for the evaluation of cylindricity. In most cases, the minavg 

algorithm produced smaller zone sizes (by a small amotmt) than the minimax 

algorithm due to the limaçon approximation used in its formulation. This might lead 

to a smaller tolerance zone than the actual one.

Dowling et al. (1995) conducted a comparison of the orthogonal least squares 

and minimum zone methods for straightness and flatness. The major drawback of the 

least squares method in most literature was that it tended to overestimate the true 

deviation range. It was also possible that the estimated deviation range by any
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method might underestimate the true deviation range. The authors statistically 

pointed out that the minimum zone method might underestimate the deviation range. 

This implied that some unmeasured points of a feature could lie outside of the 

estimated deviation range. Clearly, the estimation accuracy depended on sample size 

and estimation method. It was assumed that the sample points measured were a good 

representative of the entire feature surface, including all extreme points. This 

assumption might hold true if the sample size is dense enough. However, this was 

not the case in practice, especially for relatively few measurements. Thus the 

estimation methods were always applied to the sample. The LSQ method treated the 

data as a sample rather than as the entire population of measurements. This was a 

superior property of the LSQ method over the minimum zone method.

The orthogonal or normal deviations of both form tolerances were used for 

both methods. The minimum zone algorithm tested was the convex hull algorithm 

proposed by Traband et al. (1989). The data used in this work was a set of actual data 

collected with a CMM as well as simulated data. The actual data provided by the 

National Institute of Standards and Technology was only used to illustrate the 

differences between both methods. Then the simulated data that included several 

variations from process, surface, measurement, and fixturing were generated and 

analyzed. The sampling was done using the stratified sampling method. It was 

chosen over the uniform sampling to avoid the periodic variation. The empirical 

results showed that the orthogonal LSQ method had less mean squared error than the 

minimum zone method, particularly for small sample sizes. This implied that the
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LSQ method for straightness and flatness had better statistical properties than the 

minimum zone method.

Orady et al. (1996) developed a nonlinear optimization method with data 

filtering and rebuilding for the evaluation of straighmess error. The improvements 

were incorporated to improve accuracy, efficiency and robusmess of nonlinear 

optimization especially when the number of data points was quite large. When the 

measured data points were contaminated with the outlier points, both the LSQ method 

and the nonlinear optimization method were often misguided by the outlier points to 

produce the wrong results. Hence, the outlier points should be identified and deleted 

before applying the nonlinear optimization method. A data filter using an outlier 

identification method based on Grubbs concept was introduced in the proposed 

procedure. A simple method called control zone method was applied to rebuild a new 

data set Only the data points outside the control zone were reserved while the data 

points inside the control zone were deleted. The straighmess verification steps were 

as follows: (1) apply the LSQ to the measured data set, (2) identify and delete the 

outlier points in the measured data set using the data filter, (3) define the control zone 

and delete the data points inside it, and (4) use the LSQ results as initial condition for 

the nonlinear optimization method. The developed algorithm was verified using the 

same examples as those in Traband (1989). The results obtained were as good as 

those reported in Traband (1989). It is important to note that when the presence of 

one or more outliers is located, careful investigation is called for. Immediately 

deleting outliers using the proposed algorithm is not a good solution. The
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experimental circumstances surrounding data measurement must be carefully studied 

first. The outlying response may be more informative about some factors or errors. 

Care must be taken not to reject or discard an outlying observation unless reasonable 

nonstatistical grounds are known before doing so. The worst case is that two analyses 

must be conducted, one with the outlier and one without (Montgomery, 1997).

Another optimization approach for straighmess and Harness tolerance 

evaluation was presented by Cheraghi et al. (1996). Initially, the straighmess and 

flamess evaluation problems were formulated as nonlinear optimization problems 

with linear objective function and nonlinear constraints. They were then transformed 

into linear programming problems as functions, of an angle for straighmess and 

angles for flamess. A search procedure was developed for straighmess evaluation to 

find an optimal value. The flamess search procedure was similar to that of the 

straighmess procedure. In addition, it consisted of two loops. The outer loop 

searched for optimal value of the first angle while the inner loop found optimal value 

of the other angle for a given value of the first one. Both search procedures continued 

until no improvement in the objective function values could be achieved. Note that 

the constraints involved sine and cosine functions and had nonconvex sinusoidal 

forms. As a result, the feasible region might be nonconvex as well. To ensure that 

the solution obtained was optimal, several runs with different starting solutions and 

fixed step size were executed. The comparisons between the proposed methods and 

other existing techniques demonstrated that they were superior to the LSQ method 

and comparable to other minimum zone methods with fast computational time.
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Suea and Chang (1997) developed a neural network interval regression 

method for minimum zone roundness. An interval bias adaptive linear neural 

network structure with a least mean squares learning algorithm and a cost function 

were used to carry out the interval regression analysis. The mathematical model of 

the minimum zone roundness was first transformed into a linear interval form which 

could be solved by the interval regression method. Next, the regression method was 

implemented by using a two-layer neural network with a specified output function to 

adjust the coefficients of the linear function of the interval model. The training pair 

should be transformed into a specific range through the normalization process before 

input into the network; otherwise the network might not be able to converge. Also, 

the penalty coefficient must decay appropriately. Its equation was given with 

specified constants. Then the supervised least mean squares learning algorithm was 

used to train the connection weights. The error between the actual output of neural 

network and the given target output was then used to iteratively adjust the network 

until the energy converged. The provided results clearly illustrated that this algorithm 

was more efficient than the LSQ method.

The LSQ (Ii-norm) method is normally selected to determine the best-fit 

feature under the assumption that the errors are normally distributed. However, this 

may or may not hold in practice. Namboothiri and Shunmugam (1998a) proposed a 

form error evaluation using L|-approximation and singular value decomposition 

(SVD) technique to tackle this issue. Two possible cases, non-degenerate dead point 

case and degeneracy case, were discussed with some examples. The comparisons
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between the presented algorithm and the LSQ method were also tabulated. In 

addition, the “wild points” could be identified. This suggested the location where the 

part should be compensated or reworked by further machine operations. This 

algorithm was also extended to obtain the function-oriented form evaluation 

(Namboothiri and Shunmugam, 1998b).

Sharma et al. (2000) solved nonlinear optimization problems for form 

tolerance evaluation by applying genetic algorithm based minimum zone approach. 

The basic form tolerances such as straightness, flatness, circularity, and cylindricity 

were tackled. Genetic algorithms are search algorithms based on the mechanics of 

natural selection and genetics. The reasons reported as to why they were more 

attractive than the gradient-based methods were the existence of several local minima 

and the existence of discontinuous functional relationships in the evaluation of the 

objective function in some cases. The genetic algorithm adopts a probabilistic 

approach to overcome those obstacles. The form tolerance problems were modeled 

similarly to the ones proposed by Carr and Ferreira (1995a; 1995b). The important 

parameters such as the initial population, crossover ratio, mutation rate, and 

maximum number of generations were suggested based on the trial runs for this 

application. In addition, a comparison between this method and other methods 

reported in the literature such as the LSQ, convex hull, Voronoi diagram, minimum 

circumscribing, and maximum inscribing methods were tabulated. Clearly, the 

results obtained were comparable to those of other minimum zone methods and better 

than those of the LSQ method.
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Another genetic algorithm based approach for cylindricity evaluation was 

proposed by Lai et al. (2000). Similar to the findings o f Sharma et al. (2000), this 

method performed better than the LSQ method for a numerical example provided. A 

set of initial values used was estimated by (1) finding the directional cosines of the 

initial cylindrical axis and (2) finding the initial values of the intersecting parameters. 

Various sets of genetic parameters like population size and mutation probability were 

investigated before they were carefully chosen. This approach shows that the genetic 

algorithm is a good alternative for solving complicated form evaluation problems.

Very few researches have concentrated on the conicity tolerance. Tsukada et 

al. (1988) used the least squares method to nonlinearly model the differences between 

the measured surface profile and the least squares surface. A nonlinear programming 

technique, the modified Newton-Raphson method, was then applied to find an ideal 

conical surface. To improve the computation efficiency, the initial conditions for this 

optimization model were obtained by fitting a least squares cone to the measured data 

first. A set of simulation data was processed to examine the effectiveness of the 

proposed algorithm. The form errors of the conical surface were then visualized by a 

perspective projection and a contour map for clear understanding.

As tLc least squares method may result in some overestimations of the 

conicity, Kim and Lee (1997) suggested the minimum zone based conicity algorithm. 

The algorithm consisted of two phases. The first phase was to find initial values for a 

cone using a least squares embedded approach. Regardless of the angular 

components of the measured data points, the 3D points were mapped into 2D points
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and a least squares line was fitted to them. The tolerance zone of the fitted line was 

then calculated and the cone axis with the smallest zone was selected. The second 

phase was to search for the minimum conical tolerance zone with the initial values 

from the first phase. This was done by formulating the problem as a nonlinear 

constrained optimization problem. The sequential quadratic programming (SQP) was 

used to solve the formulated problem.

Chattel]ee and Roth (1998) addressed the conicity evaluation for the right 

circular cone by using the Chebychev approximation method. This approach was 

based on the geometrical characteristics of the data points’ locations with respect to 

the substitute cone. The determination of the conicity for a finite set of data points 

when the vertex of the cone was specified was studied. Also, the problem of 

determining the substitute cone when the axis was specified was explained. The 

substitute cones for both cases were estimated by minimizing the maximum normal 

deviation of the data points from the substitute surface. In addition, the discussed 

algorithm was combined with a simplex search algorithm to determine the general 

Chebychev cone for a set of data points without a specified vertex point. The simplex 

in this case was a tetrahedron as there were three unknowns for the vertex position. 

At each step of the simplex search, the envelope width corresponding to the 

Chebychev cone for a chosen vertex location was minimized. An experiment was 

conducted by measuring sixty points of the outside taper of a lathe collet holder. The 

results included showed the superiority of this method in comparison to the least 

squares method.
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Choi and Kurfess (1999a) proposed a general zone fitting method that can be 

applied to characterize various geometric features. This work addressed the tolerance 

zone representation that is widely practiced with computer-aided design (CAD) 

models but not completely compatible with the current ANSI Standard (ASME, 

1995). While other verification methods focused on the data fitting of the measured 

points to a substitute surface, the presented algorithm directly placed a set of points 

into the specified tolerance zone in the same reference 6ame as the design model by 

using rigid body transformation and optimization algorithms. If the proposed 

procedure is successful, a measured part conforms to the given specification. 

Otherwise, it fails. The advant^e of the proposed approach is the potential 

applicability to non-uniform tolerance zones. A few examples for cube, cylinder, and 

taper models were demonstrated. The shortcoming is that this approach does not 

provide information towards the quality of the inspected part. Hence, the zone fitting 

was extended to a minimum zone evaluation algorithm (Choi and Kurfess, 1999b). 

This method was applied to evaluate the Harness and conicity. There were some 

differences in Harness results compared to other published literature. These were 

conjectured to be due to the differences on the numerical tolerances.
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CHAPTERS 

OVERVIEW OF RESEARCH

The design, manufacturing, inspection and service of components are all 

significantly impacted by tolerances. Hence, tolerance verification usually 

undertaken during measurement and inspection affects tolerance specification as well 

as process selection to achieve it. Form tolerance (for individual features) 

verification using CMMs has been studied extensively in the last two decades. Two 

problems have been studied in the literature: sampling point selection and data fitting 

(minimum tolerance zone estimation). The form tolerances for complex shapes like 

cones is typically left to be dealt-with by the use of profile tolerance definition. Such 

a procedure may be impractical in cases where accuracy of the whole profile is a 

requirement. Sufficient number of industrial parts such as nozzles, tapered cylinders, 

fi-ustum holes and tapered rollers in bearings possess conical features that must be 

efficiently inspected for form. Considering these many applications of cone-shaped 

objects, it is logical that cone tolerances be studied more exclusively and extensively.

Hence, the primary objective of this research was to develop comprehensive 

guidelines for cone and/or conical fimstum verification using CMMs. Specifically, 

four major research issues were addressed: sampling point selection, path 

determination, zone estimation, and experimental analysis.
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This research derived the sampling strategies for cone verification based on 

Hammersley sequence, Halton-Zaremba sequence, and Aligned Systematic sampling. 

Methodology and a set of MATLAB programs were developed to implement and 

simulate these strategies. Methodology for simple probe path planning for cone 

inspection was also developed and implemented using MATLAB. It must be noted 

that the probe path was nonlinear and must be developed so as to avoid collisions of 

the probe with the part while sampling points. The trajectory path was simulated and 

visually examined before being transformed into a CMM part program to collect data 

automatically. The linear and nonlinear minimum zone formulations of the conicity 

were undertaken next. The conical tolerance zone determination techniques using the 

method of least squares and the optimization approaches, for both linear and 

nonlinear cases were modeled. This preliminary methodology was implemented 

through a set of MATLAB programs and LINGO, a software package for linear and 

nonlinear optimization, for zone estimation.

The effect and appropriateness of the sampling strategy, sample size, the 

description and fitting of the conicity tolerance were experimentally studied for 

minimum conical zone evaluations. A factorial experiment with nested blocking 

factor was designed for data collection. The data collection was specifically designed 

to empirically determine the role of individual and interactive variables in sampling 

and zone estimation. A program in SAS, a statistical analysis tool, was implemented 

for the design to analyze the results of those factors.
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The guideline development of the effectiveness of the data collection and data 

fitting techniques in terms of the accuracy of the minimum conical zone evaluation 

while minimizing the sample size (or cost) was an important goal of this dissertation. 

It was estimated that the results of this experimental analysis would provide a 

knowledge base for the inspection of conical features in manufactured parts. This 

would result in better solutions and standards for part verification in industry using 

coordinate metrology. The integrative study conducted is outlined in Figure 8.

Contribution 3:

Structured mathematical 
formulations and solutions 
for the cone minimum zone 
problem.

Contribution 1:

Developed 
orderly sampling 
sequences for 
cone
measurement.

The integrative study for
conicity

Contribution 2:

Developed a 
path planning 
procedure for 
travel to next 
point in 
measurement.

Contribution 4:

Established need for an 
integrative experimental study in 
coordinate metrology.

Figure 8. Integrative Investigation of Cone Tolerances Using Coordinate
Metrology.
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CHAPTER 4

SAMPLING STRATEGIES FOR CONICAL OBJECT

Inspection research using coordinate measuring machine (CMM) can be 

largely categorized into two main areas: sampling point selection or data collection 

and data fitting. The former is discussed in this chapter and the latter is addressed in 

Chapter 7. The advantages of the sampling methods compared to the complete (non- 

parametric) enumeration are reduced cost, faster speed, greater scope, and greater 

accuracy (Cochran, 1977). The purpose of sampling theory is to make sampling more 

efficient or to maximize the amount of information collected. Attempts have been 

made in the literature to develop sampling methods that provide, at the lowest 

possible cost, estimates that are precise enough to achieve the quantity of information 

pertinent to a population parameter. Sampling strategies and their designs are the 

keys to permitting valid inference about the dimensions and forms of a workpiece 

(Lee et al., 1997). The sampling strategy deals with the selection of points for 

inspection such that representative data to verify flatness, straightness, cylindricity or 

roundness is obtained. The selection of the location of the measurement points is 

achieved intuitively using uniform or random sampling. Sample size (the number of 

points measured) is typically proportional to time and cost and for a given sampling 

strategy, savings in time may be achieved through a reduction of the sample size. It 

has been suggested that an alternate strategy may be selected at a lower sample size
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while maintaining the same level of accuracy. Different sampling strategies used 

with the same sample size may impact the level of sampling accuracy. In other 

words, with the same sample size, some strategies may provide better information 

than do others. With the same level of accuracy, some strategies may require less 

number of sample points than do others. Menq et al. (1990) introduced an approach 

to determine a suitable sample size for inspection based on manufacturing accuracy, 

tolerance specification, and the uniform sampling scheme. In dimensional surface 

measurements, it is generally accepted that the larger the sample size, the smaller the 

error associated with the measurement. Dowling et al. (1995) emphasized the 

importance of the sample size in the selection of the estimation algorithms. Even 

though the sample location was not taken into much consideration, the graphical 

results clearly showed the improving zone evaluation with denser sample sizes. The 

methods of sampling can simply be categorized into two groups, random sampling 

and systematic sampling. In random sampling, the probability of each available unit 

to be randomly selected is equal. However, in systematic sampling, only the first 

point is drawn at random, and the coordinates of the subsequent sample points are 

taken from a sequence defined mathematically. The advantages of using a 

mathematical sequence for samples selection are the ease of execution and the 

determinism. In other words, the experiment is repeatable and the sampling error can 

be controlled. Taking an arbitrary sequence of sample coordinates can yield in 

arbitrarily large error. According to Woo and Liang (1993), a two dimensional (2D) 

sampling strategy based on the Hammersley sequence shows a remarkable
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improvement of nearly quadratic reduction in the number of samples to the uniform 

sampling while maintaining the same level of accuracy. The Halton-Zaremba based 

strategy in 2D space was also suggested by Woo et al. (1995) without discernible 

difference in the performance to the Hammersley strategy. The only differences are 

that the total number of sample points in the Halton-Zaremba sequence must be a 

power of two and the binary representations of the odd bits are inverted. Also, Liang 

et al. (1998a and 1998b) compared the 2D Halton-Zaremba sampling scheme to the 

uniform and the random sampling theoretically and experimentally for roughness 

surface measurement with the similar results. Lee et al. (1997) demonstrated a 

methodology in extending the Hammersley sequence for advance geometries such as 

circle, cone, and sphere. The sampling strategies proposed in this dissertation for 

conical feature inspection are along the lines of Lee et al.’s (1997) work on 

Hammersley sequence. In addition, the Halton-Zaremba and the aligned systematic 

sampling sequences are derived for cone inspection in this work.

The development processes of all sampling schemes derived for the conical 

feature are explained in detail in the following sections. Section 4.1 discusses the 

Hammersley sequence and the Hammersley based sampling strategy. Section 4.2 

presents the Halton-Zaremba sequence and its sampling scheme. To avoid capturing 

the systematic errors of the measurements, randomizing the initial point of the 

foregoing sequences was also introduced. The aligned systematic sampling strate^ 

is demonstrated in Section 4.3. Since a pseudo random number generator was used in 

this study, an argument can be made that the numbers generated might not be truly
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random. Therefore, the final section. Section 4.4, describes the properties of random 

numbers and tests for a random number generator to check whether that generator is 

providing numbers that possess the desired properties, uniformity and independence. 

A Windows-based MATLAB program was written to implement and simulate the 

sampling strategies derived.

4.1 The Hammersley Sampling Strategy

Van der Corput’s work in 1935 has led to the conjecture which expresses the 

fact that no sequence can be too evenly distributed (Roth, 1954). Roth (1954) 

extended the one dimensional Van der Corput sequence to two dimensions. Such 

sequence is later on generalized to d dimensions by Hammersley (1960). It has been 

proved that the Hammersley sequence yields nearly the lowest discrepancy among the 

available sampling strategies (Woo et al., 1995). Since discrepancy is related to the 

root mean square errors (RMS errors), it is reasonable to apply the Hammersley 

sequence to the sampling point selection. In two dimensions, the coordinates 

of the Hammersley sequence can be determined as

x', = im  (4.1)

t-i

where N is the total number of sample points, 

/e[0 ,iV -l],

bi denotes the binary representation of the index i,
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bij denotes the /th bit in hi, 

i  = riog2iVl, and

y = 0,

For example, N = 10, so / e  [0, 9] and t  = 4. Hence, b, = (ba, ba, b,u b )̂ = 

(0, 0 ,0 ,0), (0, 0, 0. 1),..., (1 ,0 ,0 ,1 ). The coordinates of these points are presented 

in Table 1. All 10 Hammersley points are shown in Figure 9.

Considering the fact that in the Hammersley sampling method no points are 

drawn randomly, it is prone to periodic variation. To decrease the probability of 

capturing the systematic errors of the measurements, Lee et al. (1997) suggested to 

randomize the sampling point of the Hammersley sequence as

x,= X',-̂ Xrani ; if (%; -  < 1

=  (x'l -r Xrand) '  1 : O therw ise (4.3)

y , =y'i +yrand ; i f ( y 1 +  ynmd) < 1

= (y ' + yrarud ~ 1 : otherwise (4.4)

where (Xrand, ynmd) ÎS the coordinate of the initial point drawn at random. For 

example, if Xrand = 0.2 and ynnd = 0.4, Figure 9 can be redrawn as Figure 10. A built- 

in function, RAND, in MATLAB is used to generate Xrand and ynnd- It produces 

uniformly distributed pseudo random numbers on the interval (0.0,1.0). Since it is a 

pseudo random number generator, the set of random numbers can be replicated. 

However, the goal of a generation scheme is to produce a sequence of numbers

between zero and one that simulates the ideal properties of uniform distribution and
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independence as closely as possible. The properties of random numbers and tests for 

a random number generator are discussed in Section 4.5.

Table 1. Coordinates of 10 Hammersley Sampling Points.

i bi baV^^ An2-‘-‘ Xi y i

0 (0, 0. 0, 0) 0 0 0 0 0 0
I (0, 0,0, I) 0 0 0 0.5 O.l 0.5
2 (0, 0,1,0) 0 0 0.25 0 0.2 0.25
3 (0,0,1,1) 0 0 0.25 0.5 0.3 0.75
4 (0, I, 0, 0) 0 0.125 0 0 0.4 0.125
5 (0, 1,0,1) 0 0.125 0 0.5 0.5 0.625
6 (0, I, 1,0) 0 0.125 0.25 0 0.6 0.375
7 (0, I, I, I) 0 0.125 0.25 0.5 0.7 0.875
8 (1,0, 0.0) 0.0625 0 0 0 0.8 0.0625
9 (1,0, 0,1) 0.0625 0 0 0.5 0.9 0.5625

According to Lee et al. (1997), the Hammersley sequence can be embedded 

into a 3D sampling scheme for a specific feature like cone or sphere. There are two 

ways to select specified measuring points, central point specified sampling and edge 

point specified sampling, as suggested by Lee et al. (1997). In the central point 

specified sampling, all sampled points are drawn based on a given central point. On 

the other hand, the edge point specified sampling conducts the sampled points from a 

given edge point. Therefore, the central point specified sampling is suitable for a 

non-uniform surface form, especially for a rough edge (burrs) and the edge point 

specified sampling is preferred for a uniform surface form. If the surface errors of a 

workpiece are uniform, which is the case in this study, either way can be applied. For
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convenience in controlling the CMM and its path planning, merely the central point 

specified sampling was implemented and used in this dissertation. If the edge point 

specified sampling is desired, some simple adjustment needs to be made by replacing 

y, with (!->'/) in Equation (4.5).

To cover a conical feature, the 2D Hammersley sampling strategy must be 

extended to 3D space. Since cone’s profile (2D) has a circular feature when looked 

from its top view, it is simpler to work with the 2D Polar coordinates (n, Oi) than the 

2D Cartesian coordinates (x„ y,). The rationale behind the following equations are 

that the area (/I) of a circular surface is proportioned to the square of its radius (/?), A 

= implies that A x R̂ , and a circle can be easily divided into M sections equally 

(Lee et al., 1997). Thus, the Polar coordinates of a Hammersley point on a circular 

surface are determined as follows:

r, =y,̂ '̂ R (4.5)

9i = 260°x, (4.6)

where R is the radius of the circle. Equation (4.5) generates the concentric circles 

whose radii are varied according to y/s.

For example, the 100 uniform samples, mxm = 10x10 and Xj = i/m, y, = i/m, 

are to be illustrated. Hence, there are 10 points in each direction along the X and Y 

axes. Next, 10 concentric circles with radii as -Jl/l0R,yj2/\0R,...,^\0/\0RsK 

generated by Equation (4.5) and Q for each section can be computed as 360®xl/10, 

360°x2/10, ..., 360°xl0/10. The 10x10 grid is the locations of the 100 uniform 

samples. Therefore, the N Hammersley points for a circnlar surface can be similarly
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obtained. Table 2 depicts the Polar Coordinates obtained with R = 1 and Figure II 

plots the 10 Hammersley points on a circular surface.

Table 2. Polar Coordinates of 10 Hammersley Sampling Points.

Xi yi n et
0 0 0 0

0.1 0.5 0.707107 36
0.2 0.25 0.5 72
0.3 0.75 0.866025 108
0.4 0.125 0.353553 144
0.5 0.625 0.790569 180
0.6 0.375 0.612372 216
0.7 0.875 0.935414 252
0.8 0.0625 0.25 288
0.9 0.5625 0.75 324

\ v v  V

Figure II. Distribution of 10 Hammersley Points on a Circular Surface.

The method of calculating the polar coordinates of a Hammersley point on a 

conical surface is very similar to that on a circular surface with an additional axis (Z 

axis). The area of a conical surface is proportional to the square of its radius of base.
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A = tA 4 r}  + h‘ , w h e re  R i s  th e  r a d iu s  o f  th e  c o n e ’s  b a s e  a n d  h is  th e  h e ig h t  o f  th e

cone. Let h = cR and c is a constant, then A = V l+ V  (Lee et al., 1997). This 

implies that A «  R̂ . The projection of a cone from its apex to its base is the circle 

with the apex in its center point. Therefore, the actual coordinates of the Hammerley 

points are Just the projection of those points on the circular surface to the real cone 

surface. Since a cone is a 3D feature, thus the sampling points are defined as (radius,

degree, height) or (r„ 6i, h,), where 0 <r,<  R,0 < dj< 360°, and -h<h,<  0. The

origin (0, 0, 0) is set at the apex of a cone. The following relationship, rJR = hj{-h), 

between height and radius of a cone is extracted as depicted in Figure 12. Thus, the 

Polar coordinates of a Hammersley point on a conical surface are determined as 

follows:

r.^y '̂^R (4.7)

61 = 360°%, (4.8)

h, = r,i-hyR (4.9).

Since most the conical manufactured parts are cone-shaped objects without apex in 

general, this issue should be taken into consideration as well. A conical frustum is a 

cone with the top sliced off and the cut is parallel to the base. Figure 13 shows the 

top view of a conical frustum that looks like two concentric circles. Obviously, the 

range of r, for a conical frustum is from {Rq - R\) to Rq, starting from Ri. The range of 

di remains unchanged. Figure 14 illustrates the side view section of a conical 

frustum. The similar relationship to Equation (4.9), hjh = (r, -  Ri)/(Rq -  Ri), can be
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extracted. Hence, the Polar coordinates of a Hammersley point on a conical frustum 

surface are determined as follows:

(0, 0, 0)

(0,0,-M

(R,

Figure 12. The Projection between a Cone and Its Base Circle.

Figure 13. Top View of a Conical Frustum.
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r, (Ro * ^i) + ^1

ûi = 360®x,

hi = (-A)(r,— Ri)/{Rq — Ri) 

where h is the height of a conical frustum and

Rq and are the bottom and top radii of a conical frustum.

(4.10)

(4.11)

(4.12)

(0.0.0

Figure 14. Side View Section of a Conical Frustum.

As the CMM uses the Cartesian coordinates, (r„ di, z,) must be transformed to (x„ y„

z,) and the origin (0, 0, 0) is relocated to the center point of the cone’s base. A

conical frustum can be described by the parametric equations as:

X, =X, cos(^i) (4.13)

yi = /4iSin(^) (4.14)

Zi = h  + hi (4.15)
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where Ai is a distance on XY plane between a Hammersley point and the origin. Such 

relationships are shown in Figure 15 (top view) and Figure 16 (auxiliary view). The

/ A l l
(0,0) Vx,

Direction of 
Auxiliary View 
in Figure 16

Figure 15. Top View of a Frustum Used to Find The Parametric Equations.

D

Figure 16. Auxiliary View Normal to the Plane Passing the Origin and Point P.



view direction of Figure 16 is depicted in Figure 15. As a result, the following 

relationship could be obtained, (A -  r,)/A = {Ai -  R\)!{R̂  -  R\). Hence,

A ,= { ^ ) { R , - R , ) ^ R ,  (4.16).
n

Consequently, x, = [(^—^)(/?o ~ ] cos(^, ) (4.17)
h

y, = [ ( ^ ) ( / ? o -Ri) + R M m )  (4.18)n

Zi = h + h, (4.19).

The simulation results of this strategy are shown in Figures 19 and 20.

4.2 The Halton-Zaremba Sampling Strategy

The Halton-Zaremba is another mathematical sequence proven to provide low 

discrepancy (high accuracy). It is concluded by Woo et al. (1995) that no 

distinguishable difference exists in the performance between the Hammersley and the 

Halton-Zaremba sequences in 2D space. The obvious limitation of the Halton- 

Zaremba sequence is that the number of points must be a power of two. On the 

contrary, its advantage is the ease of implementation in digital hardware (Woo et al., 

1995). In two dimensions, the coordinates {x'„ y  ̂  of the Halton-Zaremba sequence 

can be determined as

x', = m  (4.20)
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t-1
X = E 6,;2 -^-' (4.21)

jmQ

where N is the total number of sample points,

/e[0,A^-l],

b, denotes the binary representation of the index /, 

bij denotes the /th bit in b„ 

b',j = \ -  bij for j  odd 

= b,j otherwise,

* = riog2A/l,and 

/  = 0, ...,^-1.

For example, N = 16 = 2'* and t  = 4 bits. The coordinates of these points are 

presented in Table 3. All 16 Halton-Zaremba points are shown in Figure 17.

Similar to the Hammersley sampling method, the Halton-Zaremba strategy is 

a systematic sampling and very sensitive to periodic variation. To decrease the 

probability of capturing the systematic errors of the measurements, the similar idea in 

randomizing the initial point was applied as follows:

X,=X',+Xrand : if(x1+XnW)< 1

= (x  '  + Xrand) ' 1 : O therw ise (4.22)

y, =y'i +yrand ; if (y', + yrand) < 1

= (y1 + yrand) ~ 1 : otherwise (4.23)

where (Xrand, yrand) is the coordinate of the initial point drawn at random.
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The only differences between the Hammersley sequence and the Halton- 

Zaremba sequence are the limitation of the total number of sample points and the 

inverted odd bit of the binary representation. These differences do not at all affect the 

development process derived in extending the 2D sampling strategy to 30 space in 

Section 4.1. Hence, Equations (4.5) to (4.19) are also valid for the Halton-Zaremba 

sampling strategy. The simulation results of this strategy are shown in Figures 21 and

9?

Table 3. Coordinates of 16 Halton-Zaremba Sampling Points.

/ Bi Xi yi
0 (0.0 .0 .0) 0.0625 0 0.25 0 0 0.3125
1 (0,0 ,0 ,1) 0.0625 0 0.25 0.5 0.0625 0.8125
2 (0, 0,1,0) 0.0625 0 0 0 0.125 0.0625
3 (0, 0,1,1) 0.0625 0 0 0.5 0.1875 0.5625
4 (0, 1,0,0) 0.0625 0.125 0.25 0 0.25 0.4375
5 (0, 1,0, 1) 0.0625 0.125 0.25 0.5 0.3125 0.9375
6 (0, 1, 1,0) 0.0625 0.125 0 0 0.375 0.1875
7 (0, 1, 1, 1) 0.0625 0.125 0 0.5 0.4375 0.6875
8 (1,0 ,0 ,0) 0 0 0.25 0 0.5 0.25
9 (1,0, 0, 1) 0 0 0.25 0.5 0.5625 0.75
10 (1,0, 1,0) 0 0 0 0 0.625 0
11 (1,0 ,1 ,1) 0 0 0 0.5 0.6875 0.5
12 (1 ,1,0,0) 0 0.125 0.25 0 0.75 0.375
13 (1,1 ,0 ,1) 0 0.125 0.25 0.5 0.8125 0.875
14 (1,1 ,1 ,0) 0 0.125 0 0 0.875 0.125
IS (1,1 ,1 ,1) 0 0.125 0 0.5 0.9375 0.625
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Figure 17. Distribution of 16 Haltoa>Zareniba Sampling Points.

4.3 The Aligned Systematic Sampling Strategy

As mentioned before, in systematic sampling, only the first point is drawn at 

random and the subsequent points are taken according to a predetermined 

mathematical pattern. There exist two versions of systematic sampling; one is 

aligned and the other is unaligned sampling. The aligned sampling is commonly 

adapted as systematic sampling.

Suppose that a population is arranged in the form of am columns and each 

column consists o f bn units (P. Sukhatme and B. Sukhatme, 1970). When a 

systematic sample o f ab units is to be selected, the location o f the first unit is 

determined as a pair of random numbers {p, q) such that p is less than or equal to m
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and q is less than or equal to n. Then the coordinates (x„ y,) of the subsequent 

sampling points are expressed as (/? + im, q + jn) where / and j  are integer numbers 

varying from 0 to a-1 and from 0 to 6-1. respectively. Hence, the total number of 

sample points is equal to ab. Figure 18 shows an example set of aligned systematic 

sampling in 2D where /V = 9, a = 3, m = 3, 6 = 3. n = 4, and a pair of random numbers 

{p. </) = (l,2).

12
11
10

Y 6

Figure 18. An Example of 9 Aligned Systematic Sampling Points.

Using the similar approach in extending the 2D sampling strategy to 3D space 

to that in Section 4.1. the 3D equations in the Polar coordinates can be obtained as 

to Hows:

9i =  360°xJ{am)

(4.24)

(4.25)
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hi = ri-h)/R (4.26).

Equations (4.24), (4.25), and (4.26) can be generalized for a conical frustum as:

r, = (y/ibn)Ÿ'^{Ro-Ri)-^Ri (4.27)

9, = 360V(am) (4.28)

h. = {-hXr,-Ri)/{Ro-Ri) (4.29).

Clearly, the transformation process from the Polar coordinates to the Cartesian 

coordinates is not dependent on the sampling strategies. Thus, Equations (4.13) to 

(4.19) are still valid for the aligned systematic sampling strategy. The simulation 

results of this strategy are shown in Figures 23 and 24.

4.4 The Random Numbers Generation

The random numbers used in this dissertation must have two important 

properties, uniformity and independence. Each random number is an independent 

sample drawn from a continuous uniform distribution between zero and one (Banks 

and Carson II, 1984). Any method for generating such numbers on a computer is a 

recursive algorithm or a pseudo-random number generator that can replicate the same 

sequence of random numbers. An argument can be made that the generated numbers 

are not truly random. However, modem and careAilly constructed random number 

generators generally succeed at producing a sequence of numbers that are truly 

random (Kelton et al., 1998). To be sure, some tests were conducted. If there are any 

departures detected in the results, the generation scheme must be modified.
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Figure 19. A Top View of 16 Randomized Hammersiey Points on a Cone.
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Figure 20. A 3-D View of 16 Randomized Hammersiey Points on a Cone.
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Figure 21. A Top View of 16 Randomized Haiton-Zaremba Points on a Cone.
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Figure 22. A 3-D View of 16 Randomized Haiton-Zaremba Points on a Cone.
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Figure 23. A Top View of 16 Aligned Systematic Sampling Points on a Cone.
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Figure 24. A 3-D View of 16 Aligned Systematic Sampling Points on a Cone.
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MATLAB has a built-in function, RAND, that produces uniformly distributed 

pseudo-random numbers on the interval (0.0,1.0). Even though MATLAB is widely 

accepted, certain tests should be performed to confirm the properties of random 

numbers generated by MATLAB’s RAND. Three tests, frequency test, runs test, and 

autocorrelation test, were used to determine if RAND possesses the desired 

properties. The first test regards testing for uniformity. The second and third tests 

concern testing for independence. Subsection 4.4.1 briefly describes the frequency 

test. The runs test is presented in Subsection 4.4.2. The final subsection, 4.4.3, 

discusses the autocorrelation test.

4.4.1 Frequency Test

The frequency test uses the Kolmogorov-Smimov test to validate the 

uniformity. This test compares the theoretical uniform distribution to the distribution 

of a sample of generated random numbers based on the largest absolute deviation 

between the continuous cumulative distribution function (cdf) and the empirical cdf 

over the range of the random variable (Banks and Carson, 1984). The test procedure 

follows these steps (Banks and Carson, 1984):

1. Rank the data from the smallest to the largest. Let denotes the fth 

smallest observation and

2. Compute
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3. Compute the statistic D = max(D*, D~).

4. Determine the critical value. Da, from Kolmogorov-Smimov critical 

values table.

5. If D is greater than Da, the null hypothesis that the data are a sample from 

a uniform distribution is rejected. Otherwise, there are no differences 

between the empirical distribution and ± e  uniform distribution.

A MATLAB program for Kolmogorov-Smimov test was implemented to test 

its RAND function. Using N = 2048, a = 0.05, and 1000 replications, the test results 

show that RAND generates a sample of a uniform distribution 955 times. In other 

words. RAND was acceptable with 95% confidence level. Thus, the uniformity of 

the generated random numbers was verified.

4.4 J  Runs Tests

The run test examines the hypothesis of independence of the generated 

random numbers. In other words, if there is a pattem in the random numbers, run test 

should be able to detect i t  The run tests contain runs up and runs down test, runs 

above and below the mean test, the length of runs test for runs up and down and for 

runs above and below the mean.

4.4.2.1 Runs Up and Runs Down

An up run is a sequence of numbers in which each number is succeeded by a 

larger number. Similarly, a down run is a sequence of numbers in which each 

number is succeeded by a smaller number. The numbers are given a “+” or a
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depending on what they are followed by, a larger number or a smaller number, 

respectively. Each succession of +’s and -’s form a run. Let a denote the total 

number of runs in a sequence, the mean and variance of a are given by

A, = (2iV-l)/3 

<r/ = (16iV-29)/90.

For N > 20, the distribution of a is reasonably approximated by a normal distribution, 

N(/4:, <Ta‘). Therefore, this distribution could be used to test the independence of 

generated random numbers. The test statistic is Zo = (a - where Zo ~ M(0,1). If 

-Zoa ^  Zo < Jc/2, failure to reject the hypothesis of independence occurs (Banks and 

Carson, 1984).

4Â.2.2 Runs Above and Below The Mean

The test for runs up and runs down is not completely adequate in some 

situations for the independence test of a group of numbers. For example, there could 

be 20 consecutive numbers above the mean and the next 20 consecutive numbers 

below the mean. Even though this incidence is highly unlikely, there is a possibility. 

A similar test, runs above and below the mean, is more appropriate to test this 

example (Banks and Carson, 1984). The definition of Runs is changed to describe 

where each number is located comparing to the mean. A “+” or implies that a 

number is above the mean or below the mean, respectively. Let n\ and m be the 

number of observations above and below the mean and let b denote the total number 

of runs, the mean and variance of 6 are described by

/ii = (2ni/i2/iV) + (l/2)
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Oh = {Inimilnim- I)).

For either n, or Mn greater than 20, the distribution of b is reasonably approximated by 

a normal distribution, <%"). The test statistic is Zo = (è - //&)/(% where Zo -  

iV(0,l ). If -Zo/2 ^  Zo ^ Zo/2, failure to reject the hypothesis of independence occurs.

Two MATLAB programs for runs up and runs down test and for runs above 

and below the mean test were implemented to test its RAND function. Using N = 

2048, a = 0.05, and 1000 replications, the test results show that RAND generates a 

sample of an independent distribution 957 and 954 times, respectively for each test. 

In other words, RAND was acceptable with 95% confidence level for both tests.

4.4.2.3 Length of Runs

If a sequence of numbers continues in a like fashion: three numbers above the 

mean followed by three numbers below the mean, the foregoing runs tests couldn’t 

detect this pattem. This is where the length of runs comes in (Banks and Carson, 

1984). Let Ï, be the number of runs of length / in random numbers M. If the random 

numbers N are independent, the expected value of Y, for runs up and down is given by

E { Y , ) = - ^ [ N i f  + 3 /+ l) - ( / ' +3/- - / - 4 ) ] , i< N -2

Nl

The expected value of Y, for runs above and below the mean is given by

Nw
,> 2 0

where y>i is the approximate probability that a run has length / and is given by
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», = ( ^ ) ' ( ^ )  + ( ^ X ^ ) ' ,  Af>20,and

E{I) is the approximate expected length of a run and is given by

E(/) = ^ + & ,  AT >20.
« 2  « I

The approximate expected total number of runs of all lengths is given by

N>20.

Let 0, be the observed number of runs of length /. The test statistic is

r  e(y,)

where L = iV -  1 for runs up and down and L = N for runs above and below the mean. 

Let the minimum value of expected frequencies be equal to five. If an expected 

frequency is too small, it can be combined with the expected fiequency in an adjacent 

class interval. If the random numbers are independent, then is chi-square 

distributed with L -1  degrees of freedom.

Two MATLAB programs for length of runs for runs up and down test and for 

runs above and below the mean test were implemented to test its RAND function. 

Using N = 2048 and a = 0.05, %,= 7.5306, v= 3 for run length for runs up and

down, and = 12.7755, v= 7 for run length for runs above and below the mean, the 

test statistic for each test was less than its corresponding critical values, 7.81 and 

14.07, respectively. Hence, failure to reject the hypothesis of independence occurred 

and RAND was adequate.

94



4.4 J  Tests for Autocorrelation

These tests deal with the dependence between numbers in a sequence. The 

numbers in the sequence might be related, for example, every number at 8*, 16*, 24*, 

and so on position might be a very large or very low number. This implies the 

correlation between these numbers. Therefore, autocorrelation (or serial correlation) 

tests attempt to determine correlations of a series with l^ged values of itself. Since 

this test was done by using autocorrelation function implemented in the Statistical 

Product and Service Solutions (SPSS) program, the detailed test procedures that can 

be found in Banks and Carson (1984) are omitted. A MATLAB program was 

implemented to generate 2048 random numbers and they were imported to SPSS. 

Autocorrelations are calculated for lags of 1, 2 ,... ,  and 32. The desired property of 

independence implies zero autocorrelation. As illustrated in Figure 25, the 

subsequent test results show very small autocorrelations meaning that there are no 

distinguishable relationship between successive random numbers at lags of 1 ,..., 32. 

Hence, RAND was validated.

After all these tests, the desired properties, uniformity and independence, of 

generated random numbers were confirmed. Hence, RAND function was found to be 

adequate for generating uniformly distributed random numbers in this work.

In summary, this chapter outlines formal procedures for using different 

sampling strategies at different samples sizes for the inspection of conical features.
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Extension to other forms is possible, thus providing a structured environment for data 

sampling in coordinate metrology.

V1

Confidence Limits

Coefficient
1 5 9 13 17 21 25 29

3 7 11 15 19 23 27 31

Lag Number

Figure 25. An Example Result of Autocorrelation Tests.
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CHAPTERS

CMM PATH PLANNING FOR EXTERNAL CONICAL SURFACE

INSPECTION

A Coordinate Measuring Machine (CMM) is an electromechanical system 

designed to perform coordinate metrology (Groover, 2001). Positioning CMM’s 

probe relative to the inspected part can be accomplished in several ways, ranging 

from manual control to direct computer control (DCC). Since the coordinates of the 

sample points obtained from sampling strategies were very critical in this study, it 

was very difficult or nearly impossible to use the manual drive in precisely 

positioning the probe to the desired coordinates. The DCC via part programming was 

the only way to accomplish this task. The programming statements consist of motion 

commands, measurement commands, and report formatting commands. The motion 

commands are used to direct the probe to a desired location. The measurement 

commands call the various corresponding data processing and calculation routines for 

particular features of the inspected part As its name suggests, the report formatting 

commands permit the specification of the output reports. A set of specific CMM 

commands which consists of two fries, a source frle and a path frle, was used to write 

a part program. Consequently, the automatic design of a geometric route must be 

determined before the actual operation. To generate collision-free trajectories of 

probe motions, a geometrical model o f the inspected part whose dimensions were
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given according to the engineering drawing and the obtained coordinates were both 

taken into consideration together. The problem of moving in space while avoiding 

collisions with the environment is known as obstacle avoidance or path planning 

(Jacak, 1999). The path planning module should be able to determine the collision- 

free route from the initial to the final points. It is important to note that the probe can 

move along a straight line only. The sampling points, however, are located on the 

curves of cone or frustum. Thus, a simple path planning is developed for conical 

object inspection. The main objective of this simple path planning procedure is to 

generate a collision-free path for all necessary positioning and measuring points so 

that the probe could automatically visit them without interference. The issue of 

minimizing the path distance is not taken into consideration. The implemented 

procedure is an example of off-line programming meaning that it is prepared off-line 

based on the part drawing and then downloaded to the CMM controller for execution 

(Groover, 2001).

The development processes of such procedure derived for external conical 

feature are explained in detail in the following sections. Section 3.1 presents the 

overview of the procedure and its flow chart. Section 5.2 describes the installation of 

the procedure for actual inspection.

5.1 The Path Planning Procedure for Conical Feature

A limitation of the CMM probe is that it can travel only along straight lines. 

The sampling points, however, are located on the curves of cone or frustum. As a

98



result, the generated paths for each curve would be a group of several straight lines. 

The probe movements can be functionally divided into two groups, measuring and 

positioning. When the probe moves from a position to touch the actual surface of the 

object and moves back out to the same spot, this movement is called measuring and 

the obtained coordinates are kept for fitting calculation. When the probe travels with 

some allowance around the inspected object to adjust its positions closer to the 

measuring coordinates, this movement is called positioning. No coordinate is 

collected for fitting calculation while positioning. Since the probe movement must 

avoid the actual surface by using allowance while positioning, the positioning 

surface, actual surface coupled with allowance, is named the imaginary surface in the 

following procedure. For convenience, only the positioning in vertical, in horizontal 

(XY plane), and the hypotenuse directions of the imaginary conical object (triangular 

side when projected from side view) were adopted in this procedure. The procedure 

follows these steps:

1. All coordinates of the sampling points, the number of sampling points, and cone 

parameters (radii and height) are given by the selected sampling strategy.

2. The probe is automatically moved from a safe position to an initial point slightly 

above the cone. This allowance value can be set to any number. The default is 

set at 0.2 inch.

3. The inspected object is scanned or measured from top to bottom. Therefore, the 

coordinates of the sampling points are sorted in descending order of Z’s values
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Hammersiey Sequence for Conical Sur^ce of Size 8 (Cartesian System)

2.5 ^

N

0.5

Y

-2

Hammersiey Sequence for Conical Surface of Size 8 (Cartesian System)

2.5

N

0.5

Figure 26. Vertical Positioniog Movements.
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and the sorted coordinates are visited according to their order. Ties are broken 

arbitrarily.

4. A vertical path positioning which is just a simple movement along Z axis is 

required to move from the initial point to the first sorted sampling point. The x's 

and y’s are kept constant. Figure 26 shows all vertical movements used in this 

procedure. The probe is then moved down and up to take a measurement if the 

first sorted sampling point is at the apex of cone. If the sampling point is on the 

hypotenuse side, a horizontal positioning is done first and followed by the vertical 

positioning. Finally, the probe is moved in and out to take a measurement.

5. If there are several points located at the same level (same z’s), a set of horizontal 

path positioning is required from travelling from one point to the next. If none at 

the same level. Step S is stopped and Step 6 is executed. A horizontal positioning 

is a movement on the plane parallel to the XY plane by fixing the z’s and 

travelling with the following obstacle avoidance procedure around the inspected 

conical object. In such procedure, the property of the tangent line was utilized. 

Mathematically, a circle (x -  xo)̂  + (y -yoŸ = r  and a line Ax+By + C = Oare 

tangent if and only if delta = r^(A  ̂+ B )̂ -  (Axo + Byo + C)  ̂= 0. In other words, 

there is only one point on the line that touches the circle. The line and circle do 

not intersect if delta < 0, and they intersect in two points if delta > 0. Note that 

care must be taken for the line equation when the tangent line is parallel to Y axis. 

In addition, if a negative delta is very close to zero, a small allowance threshold 

must be used to avoid accidentally hitting the inspected object due to the size of
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the ruby and the deviation of the inspected part A small example utilizing the 

tangent line property is used to explain the horizontal positioning. Let {x\, yO and 

(JC2, yi) be the first and second sampling point (the starting and destination point 

respectively) with the same height (z) on the actual surface (circle I). After taking 

a measurement at (xi, yO, the trajectory from (X[, yO to (xz, yz) is to be 

determined. The horizontal movements used in this procedure are depicted in 

Figure 27. The horizontal positioning follows these steps:

1. Both points are perpendicularly mapped onto the imaginary surface (circle 

n), the mapped points are (m,, rti) and {mi, ni), respectively. Therefore, 

the consideration of the travelling path is shifted to a pair of mapped 

points on the imaginary surface. Note that circle II is circle I with some 

given allowance.

2. If an imaginary line segment between {mu wi) (or a mapped point {Pu Ph 

Ps, ...) on the imaginary surface) and {mi, m) does not intersect with the 

circle I, the probe is simply moved to {mi, ni). This can be accomplished 

by checking the delta values, as mentioned above. In this case, the 

horizontal positioning is stopped right then. Finally, the probe is moved in 

and out to take a measurement at (xz, yz). Otherwise, the positioning is 

proceeded to the next step.

3. An imaginary line which is tangent to the circle I at (xi, yi) (or a mapped 

point {Pi, Pe, •■) on the actual surface) is created and two intersection 

points between the imaginary line and the circle II are determined. The
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intersection point P\ (or ? 3, P5, ? ? ,...)  contributing to the shorter distance 

between itself and the destination point (W2, «2) is selected.

4. The probe is moved to Pi (or P 3, P 5, P 7, . . .)  without collisions with the 

inspected object.

5. Pi (or P3, P5, P7, •••) is perpendicularly mapped onto the actual surface 

(circle I) and the mapped point Pi (or P̂ , P&, Pg ,...) is obtained.

6. Step 2 to Step 5 are repeated using the mapped point obtained in Step 5 

and (m2, ni). Note that the intersection points obtained in Step 2 are Pi, 

P 3, P 5, and so on. The mapped points obtained in Step 4 are Pi, P4, Pô, 

and so on.

Figure 27. Horizontal Positioning Movements.

6. An hypotenuse positioning is the movement from the higher z to a lower one 

along the triangular side of the imaginary cone or conical frustum according to the 

sorted sampling points afrer all of the measurements at the higher z’s are 

accomplished. Since the radius of cone or conical frustum is not constant, this
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factor is taken into consideration in determining the next location on the 

imaginary cone. Such positioning is illustrated in rectangle boxes in Figure 28. 

The computed location may or may not precisely reside at the same location as 

the mapped point of the next sorted sampling point. If it is, then a measurement is 

taken. Otherwise, a set of horizontal positioning is required.

7. Step 5 and Step 6 are repeated until every sampling point is measured. Then the 

probe is moved to a sate position, far and away from the object.

Hammersiey Sequence for Conical Surface of Size 8 (Cartesian System)

Figure 28. Hypotenuse Positioning Movements.
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Stan

Is every sampling 
point measured?

Are there any more 
points at the same 
height (Z’s)?

Yes

Is the next 
computed location 
the same as the 
manned n n in f

Yes

Sort the generated 
coordinates in descending 
order o f  Z's.

Run Hypotenuse Path 
Positioning module.

Run Horizontal Path 
Positioning Module.

Position the probe to the 
first ready position and 
take a measurement

Move the probe fiom

position.

Take a measurement

Figure 29. Flow Chart of Path Planning Procedure.

105



Doe* m  imaginary 
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circle P

•Vo

End

Move the probe to the 
mapped destination point

Initialize circle I and IL

Move the probe to Pi.

Find 2 intersection points 
and select the point giving 
shorter distance (P|).

Create a line segment 
being tangent to circle I at 
the source point

Map P, onto circle L P%is 
obtained.

Map the points both 
source and destination 
from circle I onto circle D.

Figure 30. Flow Chart of Horizontal Path Positioning.
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5.1.1 Equations for Conical Horizontal Positioning

As mentioned earlier, the horizontal positioning utilizes the property of the 

tangent line to guide the probe movement. The implicit equation of the tangent to the 

circle (of the actual cone) at the point P (xi,yi) is given by (Faux and Pratt, 1979)

2xi(x-xi) + 2yi(y-yi) = 0

(5.1).
2x,

Given that the circle, a section parallel to XY plane, of the imaginary cone isx^ + y  = 

and the tangent intersects the circle at two points, substitute Equation (5.1) in the 

circle:

2x,

(-2y,y)' +2(-2y,y)(2x,- +2y,^) + (2x,’ +2yf)^ +4xfy’ =4x,’r*

(4yf + 4x,’ )y  ̂-  4y, (2x,̂  + ly ])y  + (2x,  ̂+ Iy1 f  ~ 4x,-r’ = 0 (5.2).

Equation (5.2) is a quadratic equation and can be easily solved to obtain y’s values, 

y’s are then substituted in Equation (5.1) to calculate x’s. As there are two 

intersection points, the one producing the shorter distance to the destination point (m2, 

rtz) is selected. Note that if P lies on Y axis. Equation (5.1) is undefined. The 

following are used instead of Equations (5.1) and (5.2),

y=yi

and x = (r^-yi^)‘̂  (5.3).
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5 .U  Equations for Conical Hypotenuse Positioning

A point P\ on the imaginary surface is located at (mi, n\, z\). The probe is to 

be moved to P2 (m2, nz, zz) also on the imaginary surface, zz is known by extracting 

the next point from the sorted sampling points. However, m% and nz are still 

unknown. Figure 31 shows the side view snap shot of the inspected conical frustum. 

Clearly,

AA = 2i -Z2 (5.4)

P.

Pi

Figure 31. Side View Snap Shot of the Inspected Conical Frustum.

(0, 0)

Figure 32. Top View for the Projected Hypotenuse Movement
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and (Rq -  Ri)/h -  Ap/AA, hence Ap = ^i)AA (5J).
h

Note that allowances are already included in Equation (5.5). Since zi’s and zz's are 

known, Z axis is not needed in determining coordinates in 2D XY space. Z axis is

disregarded in Figure 32 and X and Y axes are sufficient. An equation of a straight

line \sy = mx^c. Obviously firom Figure 32, c = 0 and m = n\lm\. Hence,

ni = {n\lm\)mi (5.6)

The distance Ap = ((mi - mi^ + (n\ -  nifŸ^

(Ap)  ̂= m,‘ -  2m,m, + mj + /z,* -  2n,n, + rq (5.7)

Substitute Equation (5.6) in Equation (5.7),

(Ap)’ =m,* -2m,m, +m; +nf + ( ^ ^ ) ~
m, m,

[m,‘ +n,‘ -(A/?)^] + (-2m ,-----—)m; + (1 + —Y)mi = 0  (5.8).

The above quation is a quadratic equation and can be solved to obtain mi's values

easily. Then mi's are substituted in Equation (5.6) to determine ni's. As two 

coordinates are resulted, the quadrant of P\ implies which coordinate should be 

selected. The selected one is always farther &om the origin than Pi. Note that if Pi 

lies on Y axis. Equation (5.6) is undefined. The following equations are used instead 

of Equations (5.6) to (5.8),

mi = mi and

Ap = M2 -  Ml where Pi is on +Y or

= Ml -  M2 where Pi is on -Y  (5.9).
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5 .U  Mapping Equations between Actual Surface and Imaginary Surface

The mapping points between the actual surface and the imaginary surface can 

be simply calculated by using the following relationship shown in Figure 33. Clearly,

tan(^) = — = —or B = tan ' (—) = tan'' (—). One of these two points is known and 
m X m X

used to find its counterpart. Hence, the allowances along X (Ox) and Y {ay) axes can

be described by

(0,0)

Figure 33. Top View of the Mapped Points.

Ox = (given allowance)cos(^

Qy = (given allowance)sin(^.

The allowance is set to a default at 0.4. The quadrant of (x, y) and (m, n) implies if ûz 

and fly should be added or subtracted by the known point. If (x, y) is known but (m, n) 

is not,

(m, n) = (x, y) + (Ox, Qy), when (x, y) is in quadrant 1 or 4;

(m, n) = (x, y) - (ox, Oy), when (x,y) is in quadrant 2 or 3.
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If (m, n) is known but (x ,j) is not,

(x, y) = (m, n) - (Ot, ay), when (m, n) is in quadrant I or 4;

(x, y) = (m, n) + (üx, Oy), when {m. n) is in quadrant 2 or 3.

A trajectory set of vertical, horizontal, and hypotenuse movements for given 

sampling strategy, size, and conical object dimensions was determined by the path

planning procedure with the above equations. A set of MATLAB programs for path

planning was implemented to generate and simulate such path so that all the sampling 

points were definitely visited and visually checked without a collision between the 

inspected conical object and the CMM probe.

16 P c m  of H tirnwM y SMU«nc« cn Concti SutK * (Canasin Sy«effl)

Z -2

Figure 34. An Example of Path Planning for Hammersiey Sequence.
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16 Ponts of M lon-Zanm ba SaqiMnc* on Concal S u tac ( (C u tn ia i  Syoaml
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2.5 s

2s

1 1-5 s

1 s

0.5 s

Ovs
2

•2 -2

Figure 35. An Example of Path Planning for Halton-Zaremba Sequence.

IB Ports otAlgned SystanWic Saguinca on Concal Sufica iCartesian Systam)

-2 -2

Figure 36. An Example of Path Planning for Aligned Systematic Sampling.
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5.2 The Installation of The Off-line Path Planning Procedure

For simplicity, the CMM probe is realigned so that its zero point is located at 

the center point of the cone base. Instead of aligning the part to the CMM axes, the 

CMM measurement axes are mathematically aligned relative, to the inspected part. 

This step simply eases the computational effort required and the time consumed in 

calculating and controlling the coordinates of the CMM probe. After alignment, the 

probe is moved to a safe (home) position.

As mentioned earlier, a set of part programs consisting of two files, a source 

file and a path file, was prepared off-line. The source file or program file is generally 

the same for almost every feature. The only difference is the calculation routine 

which is called corresponding to the inspected feature. Hence, the source file for 

different sizes of conical feature is virtually the same. However, the path file which 

is used to control the movements, measuring and positioning, of the probe is 

dependent upon the sampling strate^ and the sample size. Therefore, this path file 

achieves only one-way communication between a set of MATLAB programs, 

generating an obstacle avoidance path, and the CMM controller. After the 

preparation of the part program set, both files then were loaded and executed on the 

CMM controller. The obtained results were stored on a temporary space before they 

were analyzed by fitting algorithms.
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5.3 Limitations of the Conical Feature Path Planning Procedure

This section presents some limitations relevant to the CMM and the derived 

path planning procedure. The limitations that should be pointed out are probe 

compensation, overtravel of the measuring probe, the measurement angles, and 

shanking of the probe stylus.

As mentioned in Section 2.2, the probe compensation was automatically taken 

into account by the CMM measurement software during the qualification process. 

Next, an overtravel of the probe might occur if the measuring speed is too fast. Not 

only that but damages might also occur if the probe cannot stop before it hits the 

inspected object or worktable with too much momentum. Hence, a relatively slow 

speed should be employed for the probe while measuring. The measurement velocity 

can be configured from the machine parameters settings module in the CMM 

measurement software (TUTOR™). In this research, the maximum value of 

measuring speed used was 15 % of the default value and the maximum value of 

positioning speed used was 80 % of the default value.

Moreover, there was a concern about the angle of the probe hits. Since the 

probe hits were taken neither perpendicular nor parallel to the probe body for the 

conical surfaces, this gave results that were less repeatable than those taken either 

perpendicular or parallel. According to Brown & Sharpe Mfg. Co. (1996), if the 

probe hits are taken within 80 degrees of perpendicular, skidding errors will be much 

less than one micron (0.000040 inch). All surfaces of the conical objects used in this 

work were about 30 degrees to the probe body. Assuming that the skidding errors
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have the linear relationship to the deviated angles of the inspected surfaces, the 

skidding errors for the conical objects were much less than three micron (0.00012 

inch). To avoid such problems or to access a complex surface without a collision, 

probe orientation can be adjusted to better suit the part surfaces (Lim and Menq, 

1994; Yau and Menq, 1995). However, this can only be done manually with the 

CMM used in this research. The angular position available for adjustment is from 15 

to 90 degrees vertically and horizontally with 15-degree step. Moreover, several sets 

of high numbers of data points are to be collected, which is extremely inconvenient to 

adjust the probe angle manually to suit various sizes of conical part surfaces. 

Therefore, the probe orientation is not taken into account for path planning. The 

default orientation is used throughout

Lastly, another possible cause of error is shanking, when the probe contacts 

the part with the shank of the stylus, not the tip. The measuring system will assume 

that the hit was taken and record that point Increasing the diameter of the ruby ball 

increases the ball/stem clearance and lessens the chance of shanking. Also increasing 

the depth of the stylus (effective working length or EWL) should ease the problem 

and cover many sizes of conical part surfaces inspection. However, using the larger 

ruby ball reduces the effect of surface finish on the inspected part. The probe is 

already designed to avoid the shanking and/or accessing the complex surfaces by 

using probe orientations (15 degree-step on both the vertical and horizontal planes). 

Nevertheless, the probe orientations of MicroVal PFx model can merely be adjusted 

manually, which would create a lot of inconveniences as mentioned above. To avoid
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the shanking problem in this study, the angle to be used between the inspected conical 

surfaces and the probe stylus of MicroVal PFx model must be greater than or equal to 

25 degrees.

The limitations of the proposed path planning procedure and the CMM used 

should be taken into consideration. Probe compensation, overtravel of the measuring 

probe, the measurement angles, and shanking of the probe stylus can affect the 

accuracy of the measiuement. Their corrections must be realized before the CMM 

MicroVal PFx and the path planning procedure can be used together successfully.

In summary, a formal procedure for path planning was developed for traveling 

between points selected through a given sampling strategy, while avoiding obstacles 

and reducing travel path. This structure could be extended to the inspection of other 

forms to formalize inspection procedures in coordinate metrology.
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CHAPTER 6 

EXPERIMENTAL DESIGN

This chapter describes the experimental design that was followed to develop 

some understanding of the sampling and zone fitting procedures. A factorial design 

with nested blocking factor was developed to investigate overall mean performance 

patterns of the relevant factors.

6,1 Experimental Samples

Five pieces of aluminum cones and five pieces of aluminum conical frustums 

were tested in this study. Each piece had a small pin at the center of its base. Two 

different sizes of square plates were used to position the conical objects at a small 

height from the CMM worktable, such that the probe could access the sampling 

points near the bottom of the conical objects. The pins on the parts were designed to 

mate with the small holes at the center of the plates to guide the zero point alignment 

of the CMM and to stably fix the objects by inserting the pins into these holes. The 

dimensional drawings of these objects are shown in Figures 37 to 40. The specified 

size tolerances of the sample objects were maintained within 0.005 inch.
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Figure 37. A Dimensional Drawing of the Conical Frustum Specimen.
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Figure 38. A Dimensional Drawing of the Big Square Plate.
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Figure 39. A Dimensional Drawing of the Conical Specimen.
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Figure 40. A Dimensional Drawing of the Small Square Plate.
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6.2 Equipment and Tools

The Brown & Sharpe MicroVal PFx™ 454 Coordinate Measuring Machine 

(CMM) was used to take measurements on the sample conical objects. The 

repeatability of the machine is within 0.00015 inch or 0.003 mm and the linear 

displacement accuracy is 0.0002 inch or 0.005 mm for each of the X, Y, and Z axes. 

A personal computer (PC) was used as the CMM controller (furnished and retrofitted 

to the CMM by Brown & Sharpe). The measurement software, TUTOR™, for 

Windows 3.1 was used for data acquisition. The square plates were tightly fixed on 

the worktable by the clamping tools and the inspected objects were fixed on the plates 

by the aforementioned pins during the measurement. The tip of the probe was a 

single ruby ball tip (PH9/PH10). Before accurate measurements could be made, the 

probe was qualified with the reference sphere with diameter of 0.70004 inch. In 

addition, the reference offset for the probe was verified as well.

6.3 Designing of die Experiment

A series of experiments was planned in this research to test the suggested 

guidelines for data collection, data fitting, and path planning. Since this study 

involved data that were subject to experimental errors, statistical methodology was a 

very objective approach to the design of the experiment and the analysis of the data 

(Montgomery, 1997). The results of the study should provide a coherent science base 

for the effective selection of sample size, sampling strate^, and fitting algorithm. 

The following factors and their levels were selected:
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- 3 sampling strategies; HM, HZ, AS,

- 4 inspection sample sizes; 8,16,64,256,

- 2 areas of conical surface; 13.738857 inch^ 22.710816 inch',

- 4 specimens for each surface area,

- 4 conicity algorithms; the linear LSQ, the linear optimization, the

normalized linear LSQ, and the nonlinear optimization.

Sampling strategies, inspection sample sizes, and conicity algorithms were the main 

factors of interest.

For each surface area, five specimens were made but only four were randomly 

selected for the experiment. Using multiple specimens was to account for process 

variability. Moreover, different operators and/or different machines used may cause 

some variability. Even the same machinist who operates the operation repeatedly 

may not be perfectly consistent in setting up the same machine for every 

manufactured part. Consequently, the specimen factor would be treated as a random 

factor in this experiment. The levels of the other factors were specifically selected. 

Hence, they would be treated as fixed factors. The major advantage of using the 

random factor is that inferences can be made about the entire population of factor 

levels (other specimens not considered in the analysis).

The conicity was selected as the response variable. The effects of sample 

sizes, sampling methods, and conicity algorithms were investigated on this response. 

In real machining shops, the environmental conditions such as temperature, lights, 

relative humidity, and floor vibration often affect machine geometry (Hocken et al..
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1993). In this research, the experiment was performed in the Precision Measurement 

Laboratory with controlled conditions, to minimize the effects of these noise sources.

Choice of experimental design basically involves the consideration of number 

of factors, sample size (number of replicates), run order for the experimental trials, 

randomization restrictions, and treatment arrangement. If there are two or more 

factors of interest, the most efficient type of experiment is factorial design. In each 

complete trial of such a design, all possible combinations of the treatments of the 

factors are investigated. There were four factors in this experiment, surface areas, 

sampling strategies, inspection sample sizes, and conicity algorithms. Hence, the 

factorial design was appropriately selected.

On the contrary, each surface area consisted of four specimens that were 

unique for that particular surface. That is, specimen 1 from surface area 1 had no 

connection with specimen 1 fi’om the other surface area, specimen 2 firom surface area 

1 had no connection with specimen 2 from the other area, and so forth. Therefore, the 

specimens were nested within the levels of surface areas.

In any experiment, variability arising from a noise factor can impact the 

results. There are three techniques used to increase the precision of an experiment, 

randomization, analysis of covariance, and blocking. Usually, a randomization of the 

order of the individual trials of the experiment is the technique used to guard against 

an unknown and uncontrolled noise factor. Also, the analysis of covariance is 

normally used to compensate for a known but uncontrollable nuisance source of 

variability. In addition, the blocking principle is generally used to systematically
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eliminate the effect of known and controllable nuisance factors. If the specimens 

differ slightly in their tolerances, as might happen if they are produced in different 

machines, then they will contribute to the variability observed in the tolerance data. 

A design that would accomplish this requires each foregoing factors to be tested once 

on each of four specimens, which is a randomized complete block design. Therefore, 

the blocks or the specimens form a more homogeneous unit. Within a block, the 

order in which the three sampling strategies were tested was randomly determined.

As a result, from the foregoing discussions, the factorial design with nested 

blocking factor was chosen for this experiment. It is important to note that interaction 

between blocks and treatments is assumingly negligible. If these interactions exist, 

they cannot be separated from the error component. Also, there is no interaction 

between nested factors since every level of the lower hierarchical factor does not 

appear with every level of the higher hierarchical factor. Thus, the linear statistical 

model for this design is

y,,Um + A +^y(,) + Q  + A  +(.CD)u + ÇÇE)
HDE)^ +{ACD)„ +{ACE)^ HADE),^ HCDE)^ ^(ACDE)^

(6 .1)

where / = 1, a = 2,

J=  1,2, ...,6  = 4, 

k= 1 ,2 ,..., c = 3,

/=  1,2, . . . ,d  = 4, 

m = 1,2, ...,e  = 4.
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Ai i s  th e  e f f e c t  o f  th e  r th  s u r fa c e  a re a ,

Bjfij is the effect of the yth specimen within the itb level of surface area,

Ct is the effect of the Ath sampling method,

Di is the effect of the Ah sample size,

Em is the effect of the /nth conicity algorithm,

{AQik is the surface area x sampling method interaction,

{AD)u is the surface area x sample size interaction,

(AE)m is the surface area x conicity algorithm interaction,

(CD)ki is the sampling method x sample size interaction,

(C£)tei is the sampling method x conicity algorithm interaction,

(DE)im is the sample size x conicity algorithm interaction,

{ACD)iU is the surface area x sampling method x sample size interaction, 

(ACE)ijm is the surface area x sampling method x conicity algorithm 

interaction,

(ADE)itm is the surface area x sample size x conicity algorithm interaction, 

{CDE)um is the sampling method x  sample size x  conicity algorithm 

interaction,

{ACDE)iUm is the surface area x  sampling method x  sample size x  conicity 

algorithm interaction,

£gUm is the error term.

124



Table 4. Overview of Data Sheet Table.

Area of Surface (A) 1 2
Specimen (B) 1 2 3 4 1 2 3 4

Sampling Method (C) HM HZ AS HM HZ AS HM HZ AS HM HZ AS HM HZ AS HM HZ AS HM HZ AS HM HZ AS
NLLSQ
LLSQ

Ê F LOPT
E NLOPT

NLLSQ
tf> LLSQ

S.
Û> LOPTi NLOPT

I NLLSQ

2 ^ z LLSQ
to S f LOPT

c NLOPT
cr NLLSQ

* ^ z LLSQ
Ê F LOPT

E NLOPT

D a ta  m ttin q  « la o M th m #  u a e d  f o r  c a l c u la t in g  t h e  fo r m  e r r o r SamoHna atiatealea uaed for data collection

NLLSQ; The normalized linear LSQ.
LLSQ; The linear LSQ.
LOPT; The linear model with minimum zone method. 
NLOPT: The nonlinear model with minimum zone method.

HM: Hammersley Sampling.
HZ: Halton-Zaremba Sampling. 
AS: Aligned Systematic Sampling.



Table 4 shows the overview data sheet developed for this design. As 

mentioned earlier, if all levels of every factor were specifically chosen in the 

experiment, inferences are applied only to the factor levels considered in the analysis. 

The conclusions cannot be extended to similar treatments that were not explicitly 

considered. Since the mixed model was used, the determinations of the hypotheses, 

the expected mean squares, and the appropriate test statistics of all factors were not 

straightforward. The hypotheses tested are as follows:

Hq'. a I —À2~0 

H\: at least one A,^0 

Ho'. CTBfA) ~  0 

H\: BfA) > 0 

Ho'. C\ — Ci~ ' ' ' ~ Cic~ 0 

H\: at least one C* ^  0 

Ho:D\=Dz = - -. = Di = 0 

at least one 

Ho'. Ei=E2 = ' " = E„ = 0 

H\: at least one ^  0 

Ho'. (AQik = 0 for all i, k

Hi: at least one (AQut * 0 

Ho'. {AD)a = 0 for all /, /

: at least one {AD)u #  0
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Hq: {AE)im = 0 for all /, m 

H\: at least one (AE)™ ̂  0

Hq: {CD)iu = 0 for all / (6.2)

Hi : at least one (CZ))« # 0

Hq: {CE)km = 0 for all ^  w

Hi : at least one (CE)w * 0

Hq: (D£)/„ = 0 for all /, m

Hi : at least one (DE)i„ # 0

Hq: (ACD)iki = 0 for all /, k, I

Hi: at least one {ACD)m # 0

Hq: {ACE)uan = 0 for all /, k, m

Hi: at least one {ACE)um 0

Hq: {ADE)iim = 0 for all /, /, m

Hi : at least one [ADE)nm *■ 0

Hq: {CDE)u„ = 0 for all ^  m

Hi: at least one {CDE)u„ # 0

Hq: {ACDE)iUm = 0 for all i, k, / , m

Hi: at least one {ACDE)uu„ # 0.

The expected mean squares (EMS) can be derived by identifying all sources of 

variability and their degrees o f freedom as shown in Table 5 and by using the rules

for expected mean squares. Table 6 depicts the EMS table. Then the proper test
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statistics for ail effects are determined such that the expected value of the numerator 

mean square differs from the expected value of the denominator mean square only by 

the variance component of the treatment.

Table S. Degree of Freedom.

Sources of Variability Degrees of Freedom

A Û-1 =2-1 = 1

B(A) û(ô-l) = 2(4-l) = 6

C c-1 = 3-1 = 2

D d-\ =4-1=3

E e-1 =4-1=3

AC (a-l)(c-l)=lx2 = 2

AD (a-l)(</-l) = 1x3=3

AE (a-l)(e-l)=  1x3 = 3

CD (c-l)(</-l) = 2x3=6

CE (c-l)(e-l) = 2x3 = 6

DE (d-l)(e-l) = 3x3=9

ACD (a-l)(c-l)(d-l) = 1x2x3 = 6

ACE (a-lXc-l)(e-l) = 1x2x3 = 6

ADE (a-l)(rf-lXe-l) = 1x3x3 =9

CDE (c-lX</-IXe-l) = 2x3x3 = 18

ACDE (a-lXc-lX<f-lX^-l) = Ix2x3x3 = 18

Error 383- 101 =282

Total {abcde-\) = 2x4x3x4x4 -1 = 383

Thus, the expected mean squares for ail effects are;
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Table 6. Expected Mean Square Derivation.

d* bcde<^4 cde<P»^, abde<?v ahcetfii a bcdd t b d e ^ A i ' b c e ^ A t t b c d < ^ A t dbe<iat abdt^ct a b c < ^ t i t : bec^A i v b d a ^ A t i b c € ^ A l l t ab</ i'tm b<^AC ité.

À X X X

X X

r X X

o X X

H X X

AC X X

AO X X

AS X X

CO X X

CS X X

O S X X

ACO X X

ACS X X

AOS X X

COS X X

ACOS X X

ve



and

E(MS  ̂ = <3̂ + bcdeĉ A cde<̂ B(A)

E (M S b(A)) =  + c d e o ^  b(A)

E(MSc) = + abdet^c

E(MSd) = <r + abceĉ D 

E(MSe) = + abcd(TE

E(MSac) = (T + bdecTAc 

E(MSad) = cr + bced̂ AD 

E(MSae) = + bcdcTAE

E(MScd) = <r + dbecTcD (6.3)

E(MSçe) = (T abdtf ce

E (M S de)  =  ( f  + abcc^DE

E(MSacd) = beĉ ACD

E (M S ace)  -  b d ( d ace

E (M S ade)  =  ( f  + bccTADE

E (M S cde)  -  ^  a b e d cde

E (M S acde)  -  (d  + b ( d acde

E(MSEmr) = cr.

Consequently, the appropriate test statistics for this model are easily determined as 

follows:
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^  0-- ^bcdec] _ MŜ
(T-+cde<rl̂ ^̂

(T +C<fe(Tgj^j M Sg(^^
B{A)

■4C

XO

AE

CD

CE

DE

ACD

■  (T:

(T* +abdecrl A/5c
(T- ^Emr

<T* +o6cg(To MS,
O': MSg r̂

a~ + abcd(j\ MSg
a- MSg ,̂

cr’ _  MŜ c
0-'

<T* +6cg(T^
_  ^AD

cr: MSg r̂

<j' -¥bcda\g _  MŜ g
MSg f̂

<7̂  -i-abeacD _  ^CD
(T̂ MSg^

(T̂  ^abdalg _  MSf-g
a- MSg ,̂

(7 -̂i-abcfflg _ MSDg
CT̂ MSg r̂

_  "̂ ^̂ ÂCD _ ^̂ ACD
MSg^

(6.4)
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_ (T _ ^4CB
^  ACE ~

ADE

CDE

F̂
 ACDE

c r - ^ E r r o r

_  ^ ^ A D E

( T - ^ ^ E r w r

a - + a b ( T ^ o E _  ^ C D E

r r '

_ ^ ^ A C D E

-  ( T : Error

As mentioned previously, the order in which the three sampling strategies 

were tested was randomly determined. This was accomplished by using a random 

permutation function, RANDPERM, in MATLAB from I to 12. The randomized 

sequence is (8 ,7 ,1 ,1 0 ,4 ,3 ,11 ,12,6 ,5 ,9 ,2} . This sequence was then expanded to 

cover all combinations witfiin a block by blowing up each number with 4. For 

example, index number 1 would be converted to a new set of indices 1,2,3, and 4 for 

its corresponding fitting algorithms. Index number 2 would be converted to a new set 

of indices 5, 6 , 7, and 8 . Therefore, every index in the permuted sequence was 

converted to a new index set from 1 to 48. This new sequence was then used to apply 

randomization to each blocking factor in the experiment.

It is important to note that the following assumption was made and must be 

checked before the data analysis can be relied on. This assumption is that the errors 

are normally and independently distributed with mean zero and constant but unknown 

variance Also, the installation of the conical objects was done arbitrarily to avoid
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the repetition of a same pattern of machined surface. In addition, the coordinates of 

sampling points generated by each sampling method for each surface area remained 

the same throughout the entire set of specimens for each sample size.

Note that all the sampling strategies and their simulations were implemented 

in MATLAB. The coordinates generated were then fed to a set of part programs that 

were executed on a CMM’s controller (PC) for data collection. The actual 

coordinates of the obtained sampling points for each and every considered factor were 

stored in text files. They were then formatted into Excel spreadsheets via Visual 

Basic for Applications programs. Visual Basic for Applications was also used to 

implement both of the LSQ based conicity algorithms (LLSQ and NLLSQ) and to 

formulate both of the optimization based conicity algorithms (LOPT and NLOPT) 

before calling the optimization engine in LING06. The underlying optimization 

technique performed by L1NG06 in this work is generalized reduced gradient 

algorithm (GRG). Every numerical computation was performed on a PC with 

Pentium HI 500 MHz running Microsoft Windows 98. All equations of these four 

conicity fitting algorithms are presented in Chapter 7. The statistical data analyses by 

SAS programs are discussed in detail in Chapter 8 .
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CHAPTER?

MINIMUM CONICAL TOLERANCE ZONE EVALUATION

Tolerance zone evaluation involves a fitting of the sampled discrete points. 

Conicity verification has received very little attention in the current literature. 

Although there are quite a number of conical industrial parts such as nozzles, tapered 

cylinders, frustum holes, and tapered rollers, requiring cone feature verification, often 

profile tolerancing is used to determine their conicity. Traditional inspection of cones 

is done through the measurement of diameter (or roundness) and the angularity 

separately rather than through an evaluation of the conicity. For example, tapered 

rollers used in bearings are inspected in this manner currently (Cogdel, 1999) using 

hard gauges. This really is the solution of two 2D problems rather than the 30 

solution of a cone. This procedure results in significant inconsistencies. In some 

sense, lack of universal standards or ambiguity created by some existing standards 

(Cogdel, 1999) is partially responsible for lack of 3D treatment.

As described in Section 2.1, the ANSI Y14.5M-1994 (ASME, 1995) defines 

dimensioning and tolerancing to standardize and harmonize the United States 

practices and methodology with the universal standards. This should improve 

coordinating and integrating these techniques into electronic data systems. However, 

it gives very little direction regarding the evaluation of these zones. The achievement 

of formal guidelines for conicity evaluation is the primary goal of this chapter.
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Conicity is a condition of a surface generated by rotating the hypotenuse of a right 

triangle about one of its leg (axis) with its vertex above the center of its base. Note 

that this definition is relaxed to cover conical frustum as well.

The analysis of typical form features by Shunmugam (1986; 1987a; 1987b) is 

the basis of the cone development discussed here. The proposed estimation algorithm 

always results in smaller zones than the LSQ method (Lin et al., 1995). Since it is 

modeled as an optimization problem, it cannot guarantee unique solutions. It is 

important to note that Shunmugam’s algorithm uses linear deviation and the limaçon 

approximation in linear problem formulation, which might lead to a slightly smaller 

tolerance zone than the actual one (Lin et al., 1995).

The most commonly used method to find such zone estimation in practice is 

the method of least squares (LSQ) due to its uniqueness, efficiency, robusmess, and 

simplicity for linear systems. Even though the LSQ zone evaluation is based on 

sound mathematical principles, it does not follow the intent of the ANSI Y14.5M- 

1994 (ASME, 1995) well. It might overestimate the tolerance zone since it attempts 

to minimize the sum of the squares of the errors. In other words, it does not attempt 

to minimize the zone of the errors directly. Not only does it reject bad parts, but it 

might also reject some good parts. In addition, if the LSQ is applied perpendicularly 

to the imaginary mean features, the resulting normal equations are very complex. In 

case of three-dimensional features, the solutions of the normal equations become even 

more complicated (Murthy and Abdin, 1980; Traband et al., 1989). On the other 

hand, the optimization based zone evaluation attempts to find the minimum zone of

135



the errors that are consistent with ANSI YI4.5M-1994 (ASME, 1995) definition. The 

essence of this method lies in the construction and use of models. The conical model 

formulation for both linear form and nonlinear form proposed in this dissertation is 

similar to the cylinder formulation suggested by Wang (1992).

For simplicity of the development process of the models of the errors, a 

coordinates conversion between the Cartesian coordinates to Polar coordinates is 

used. The conversion equations between the two coordinate systems are as follows:

Û, = ta n - '^ ,
X,

and

The development of conicity is shown sequentially through a discussion of 

zone estimation of other common features. Section 7.1 discusses the use of a linear 

deviation and the limaçon approximation to formulate the linear forms for standard 

features (straightness, flatness, circularity or roundness, and cylindricity). Then a 

linear form for conicity is developed using the insights gained. Section 7.2 presents 

details for nonlinear development procedures. The least square method and its model 

for conical zone evaluation are addressed in Section 7.3. The final section. Section 

7.4, demonstrates the linear and nonlinear optimization models for m in im u m  

tolerance zone evaluation of standard features leading to m in im u m  conical tolerance 

zone evaluation.
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7.1 Linear Formulation

7.1.1 Straightness

Let the measurement values be represented by (Xb yj) and y = mx + c be the 

ideal straight line; where c is the intercept on the y-axis. The assessment of 

straightness error is illustrated in Figure 41. Since,

y,' = mx, + c.

Hence, d,=y,-y,' =y,-mx,-c (7.1)

where d, is the linear distance or linear deviation between a measured point and a 

point on the ideal line.

Y i

yd

Figure 41. Assessment of Linear Straightness Error.
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l . \2  Flatness

Let (Xft z,) be the measurements of flatness as shown in Figure 42. The 

assessment plane isz  = mx + f9 / + c where c is the intercept on z-axis. P is a point 

(Xfc yi, z, ') on the ideal plane. Thus,

Assessment plane z = mx  ̂ny  ̂c

X

Figure 42. Assessment of Linear Flatness Error.

z,' = mx,  ̂ny, + c

and d ,= z ,-z ,’ = z,-mxi-rtyi-c (7.2)

where d, is the linear deviation between a measured point and a point on the ideal 

plane.

7 .U  The Limaçon Approximation

The limaçon approximation is used to linearize the parameters about the 

origin of a circle. Its illustration is shown in Figure 43. With this approximation, the

138



linear functions of circularity and cylindricity can be obtained as provided in the 

following subsections. Even though an attempt is made to place the

System origin

Center of circle

Figure 43. Definition of Circle.

center of the circle at the system origin, this is hardly accomplished. As a result, 

there is always a small margin of difference between these two points. Let (a, b) and 

{e, ^  be coordinates of the circle center in the Cartesian Coordinates and the Polar 

Coordinates, respectively. In other words, the distance between the center and the 

origin is equal to e and the angle between the ray of the two and x-system axis is (p. 

Hence, the angle between the ray and the line with length p  is equal \o 9- <p. Using 

Pythagorus theorem,

/? = e cos(0 - ^  + -e‘ sin\ê-

Assume that e is much less than R. Hence,

139



p Be cos(û- ^  + R (7.3).

Using Trigonometric Identities and the definition of the Polar Coordinates, 

cos(^- ^  = cos(^ cos(ÿQ + sin(^ sin(^ 

and a = e cos(^, b= e  sin(^.

Hence, cos(^- ^  = (a/e) cos(^ + (b/e) sin(0) (7.4).

Substitute Equation (7.4) in Equation (7.3), p s a  cos(0) + b sin(^ -  R (7.5). 

Equation (7.5) (Chetwynd, 1985) is extended to linearize the parameters in 

determining circularity, cylindricity, and conicity in subsections 7.1.4, 7.1.5, and 

7.1.6.

7.1.4 Circularity (Roundness)

Let (r  ̂ 6i) be the circularity measurements, where r, is the distance from the 

measured point to the system origin with an angle Q. The center of the circle is 

located at (xo, yo) and Ro is the radius of the circle. The assessment of circularity error 

is shown in Figure 44. As mentioned before, the Limaçon approximation can be 

applied to linearize the parameters about the origin of a circle. Therefore,

PBxq cos(Q) +yo sin(^) + Rq 

di= r ,-p  = rt-(Ro+ xq cos(^) 4- y  ̂sin(0i)) (7.6)

where di is the distance between a measured point and a corresponding point on the

ideal circle.
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Assessment
circle

Figure 44. Assessment of Linear Circularity Error.

7.1.5 Cylindricity

Let (ro ûi, z,) be the cylindricity measurements, where r, is the distance from 

the 2-axis with a height z, and angle Also, let 0, (Xo z,) be points on the axis of

(mo, no, o) I 
Axis of assessment

Assessment cylinder

X

Figure 45. Assessment of Linear Cylindricity Error.
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the ideal cylinder and [mo no o] be the normalized direction vector of the cylinder and 

its axis. The radius of the cylinder is denoted by Rq. All details are shown in Figure 

45. To have a clear picture, cylinder base is drawn higher than its real position, 

which is on the plane XY. Thus, the center axis passing a point (xq, yo, zq) is 

described by

(x - xoymo = (y - yoVm = (z - Zq)/o (7.7).

For simplicity, let zo be equal to 0. Hence, the center axis can be described 

simultaneously by

X = mz + Xq (7.8)

and y = nz^yo (7.9)

where mo = mo and no = no. Hence, [mo, no, o] can be rewritten as o[m, n, 1]. Similar 

to the use of the Limaçon approximation in circularity,

d, = r,-p  = r , - { R o ^  x, cos(Q) + y, sin(^)).

By Equations (7.8) and (7.9),

di=r,- (Ro -r (mz, + xo) cos(ft) + (nz, + yo) sin( di)) (7.10) 

where d, is the distance between a measured point and a corresponding point on the 

surface of the ideal cylinder.

7.1.6 Conicity

The characteristics of the cone is partially similar to the cylinder. The main 

idea here is to utilize the similarity between cylindricity and conicity by using the 

embedded circle structure, then derive the rest of cone’s characteristics by using 

analytical geometry. As a result. Equation (7.10) can be extended further since it
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already exploits the circle structure. The main difference between the two features is 

their radii. The radius of the cone is not constant while that of the cylinder is. The 

cone’s radius changes proportionally to its height. This relationship is depicted in 

Figure 46. The following equation is obtained:

Rad

Top of Cone

*•

Figure 46. The Relationship of Cone's Radius and Cone's Height

Radi^Ro + Sz, (7.11),

where Rad, is the radius of cone at the height z, , Ro is the radius of cone’s base, and 5 

= {ARad,y{âz,) is the rate of change of Rad’s according to z’s. S is also a constant. 

The dimensions of cone such as radii and height {h) are provided in Figures 37 and 

39, Rad^Ro + {{Ri-RQ){z,-zo)/h) (7.12),

where R\ is the radius of the cone’s top and zo is the starting point of the cone base 

(usually Zo = 0). The assessment of conicity error is shown in Figure 47. Note that 

cone base is actually located on plane XY but it is intentionally drawn higher for 

having a clear picture, for illustration purpose. Therefore, Ro in Equation (7.10) must 

be replaced by Radi in Equation (7.12) as follows:
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di = r,- {Radi + {mz, + xq) cos(^) + {nz, + yo) sin(Q)) 

d, = r,- {Ro + {{{R\ - Ro) z y h )  + {mz, + xo) cos(Q) + {nz, + yo) sin(Q)) (7.13) 

where d, is the distance between a measured point and a corresponding point on the 

surface of the ideal cone.

(mo, no, o) k 
Axis of assessment!

Assessment cone

X

Figure 47. Assessment of Linear Conicity Error.

7.2 Nonlinear Formulation

12.1 Straightness

The nonlinear formulation for straightness can be obtained by using a similar 

approach to the linear formulation. The major difference between both approaches is
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that instead of considering the linear deviation between the measured points and the 

assessment points, the normal deviation between them is applied. In other words, the 

normal deviation helps to generalize the straighmess formulation and

YA

Figure 48. Assessment of Nonlinear Straightness Error.

to probably find more reliable zone solutions. The key idea is depicted in Figure 48 

Thus,

di={y,-y,') cos(^ = (y* - mx, -  c) cos(^ and

Consequently,

and

tan(^) = m. 

cos(^) = ■
Vl + m"

^  _ jy, -rnx, -c)
Vl + m'

(7.14)

where di is the normal distance between a measured point and a corresponding point 

on the surface of the ideal line.
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12J. Flatness

Again, the main idea of nonlinear flatness formulation is the use of normal 

deviation to calculate the error as shown in Figure 49. The normal vector of the

as Its

normal vector. Let 0 be the angle between z-axis and the line segment from (x̂  z,)

to P (or be the angle between the assessment plane and plane XY). Given that a and 

b are vectors with the same size, the angle Û between any two vectors can be

m ' o '

assessment plane z = mx-rny-^cis n . Also, plane XY (z = c) has 0

- 1 - 1

measured by cos(^) = ab/j|a||b|| and |a|| = . Therefore,
V

ZA Assessment plane z = mx  ̂ + c

X

Figure 49. Assessment of Nonlinear Flatness Error.
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cos(ô) = ■

m
[o 0 -1 n

- 1 1

yjô  +0^ +(—1)̂  yjm' + + (—!)■ + /i' +1

z,’ = mx, + ny, + c, and

(7.15)
ylm̂  +n  ̂+1

where dj is the normal distance between a measured point and a corresponding point 

on the surface of the assessment plane.

7.2 J  Circularity (Roundness)

An ideal circle is described by =R  ̂ where (xo, yo) is its

center point and Ro is its radius as depicted in Figure SO. The normal deviation is also 

used in determining error Grom a measurement point to a corresponding point on an 

ideal surface. Hence, d, can be simply found as:

YA

Assessment
circle

Figure SO. Assessment of Nonlinear Circularity Error.
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~ ^ o ) ‘ +Cy, -yo)^ (7-16)

where dt is the normal distance between a measured point and a corresponding point 

on the surface of the assessment circle.

7.2.4 Cylindricity

The assessment of nonlinear cylindricity error is shown in Figure 51. By 

Equations (7.8) and (7.9), the direction vector of the assessment cylinder is [m /i 1] 

and Pi is (mz, + xq, nz, + yo, z,). The distance (D) between P  and P\ is equal to

■̂ (x, -XQ-mz,Ÿ + (y, -  yg -  nz, )̂  . The line segment PP\ is on the plane that is

(m, n, 1)

Figure 51. Assessment of Nonlinear Cylindricity Error.

parallel to plane XY. Hence, it can be described by
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(x,-Xo-OTZ,)

where c is the intercept on the 7 -axis. A vector parallel to the line segment is 

(x, -X , -m z,)
(7 , -  7 j -  «Z, ) . Since 0 is an angle between the two vectors, thus 

0

cos(^) =

■(x, -X, -m z,)
[m n 1 (J/, - y,-ME,)

• 0

4m- +n- + 1^(7 , - 7 o

m(x, -X, -m 2 ,) + n(7 , - 7 , -nz ,)
(7.17).

(Vmr +n* + l) i)

It is seen from Figure 51 that «/, = D sin(^ -  Rq. Hence,

■Jim' + n’- +l)[(x, -.r„ -m z ,) ' + (7 , - 7 , -nz ,)']-[m (x , - x . -mz,) + n(y, - 7 . -nz ,)]'
d. =•

V/n* +n^ +1

-/Î0 (7.18)

where </, is the normal distance between a measured point and a corresponding point 

on the surface of the assessment cylinder. Note that 0  (from Figure 45 to Figure 51) 

can be determined as follows;

■jml-t-nl+o^ = 1 ,

+ n ’o* + 0 * = 1 .

m and n are known after solving the minimax problem. Consequently,

(m* +n^ +l)o^ = 1 and
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0 =

7.2.5 Conicity

As mentioned in Section 7.1.6, the main difference between cylindricity and 

conicity is their radii variation over the Z axis. The cylinder’s radius remains 

constant while the cone’s does not. The assessment of nonlinear conicity error is 

illustrated in Figure 52. Notice that ? is not normal to the surface of the assessment 

cone but still is normal to the cone’s axis, which is how the cone is measured in 

practice. Hence, the procedure used with the linear conicity formulation can be 

extended here. By Equations (7.12), (7.17), and (7.18),

(m, n, 1)

Figure 52. Assessment of Nonlinear Conicity Error.
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, yjim' +n' +l)[(x. -x,-mz,)' +{y, -y ,-n zf]-[n (x ,  -x J -m Q ', - y j f
d' = - — Rod,

Vmr+n^+l

(7.19).

Notice that z's used in Equations (7.11) and (7.12) is for a right circular cone without 

tilting which is nearly impossible to achieve in practice. The actual manufactured 

cone is illustrated in Figure 53. The cone’s axis is slightly tilted with an angle of a 

between itself and z-axis.

Rad

height

Figure 53. A Sllghtfy Tilted Cone.
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Therefore, there must be a minor adjustment in Equations (7.11) and (7.12) to make 

the measured point normal to the cone’s axis as shown in Figure 53. Hence, Equation 

(7.12) becomes

Radi =RQ-^(iRi- Ro)height/h).

Clearly, height = h\ + hi, hi cos(a) = Zi, and h\ = Z)cos(0). Therefore,

Rad, = Ra^ {{Ri - Royh){z/cos(a) + Dcos(0)) (7.20) and

, V(w- +!)[(%, -X ,-mz,)- +{y. - / o -ra,)‘\ - [ n { x , - y j ] '
d' = -

Vm' +/I* +1

_ ( A _ A ) ( _ ^ + D c o s ( 0 ))
h cos(ûr)

(7.21).

From Figure 53, cos(a) = sin(^ and this relationship can be calculated by using 

Equations (7.17) and (7.18). rf'is normal to the cone’s axis but not to the cone 

surface. Let y be the angle between the hypotenuse of cone and the z-axis and y = 

R -R
tan ' (—------ ) .  To make the deviation normal to the cone surface,

h

d, = < cos(rt = < ( , * . ) (7:22).

7.3 The Least Squares Based Zone Evaluation

The least squares based zone evaluation (LSQ) is the most commonly used 

method for form tolerance evaluation due to the lack of better algorithms and due to 

its simplicity. The method of least squares is typically used to estimate the regression

152



coefficients in a multiple linear regression model. This is often called model fitting. 

To illustrate, suppose that there is a single dependent variable or response r that 

depends on k independent or regressor variables, xi, xz, .... x*. This relationship can 

be described as

Notice that it is called linear regression model because the above equation is a linear 

function of the unknown parameters ^,j = 0 ,\,  which are also called the partial 

regression coefficients. Let n be the number of observations. The above model can 

be rewritten as

y. + ,̂

= A  + +£,;/ = 1,2 ,...,/! .
/* *

The method of least squares chooses the P's in the above equation so that the sum of 

the squares of the errors, Si, is minimized. The least squares function is

« I

The function L is partially differentiated with respect to Po, p\, .... A  and the results 

are equated to zero. Hence, the least.sqaures estimators, Â ,Â  ̂ Â , must satisfy

dL
dPo

= Oand
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Simplifying the above conditions, the least squares normal equations are obtained as 

follows:

f=l i«l 1*1 r»I

Â  ̂  ̂ t\ À ̂  ̂ i\ ■*' A  S  ■* Â  ̂  ^  J'l
1=1

Px^ îk îl ■*■•••■*■ Â ̂  ̂ 1*
< « i  ( s i  ( " I  t « i  ( s i

It is simpler to solve the normal equations in matrix form. Thus, Equation (7.23) can 

be rewritten as:

(7.23)

t

t
( « I

/

Z <̂2
f . I

f

•  •  Z ^ - *
m l

' Â '
' t y ,  '

( ■ I

1=1
l ' À
( ■ I m l m l

Â

=
i « I

.'=1

t

J s t

t

Z  ^ t k ^ ‘2 
(«1

•  • Z ^ i
m l

. Â .
Z ^ < * > ' .

. - I

or

X-Xp = X y 

Thus, the least squares estimator of P is

p =(X'X)-'X'y

where

(7.24)
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A'  ̂ 1̂1 •̂12
A  ̂ 2̂1 2̂2

p = •
x=

. .

A . _1 X,i X,2

'y\
^2* yi

•
,andy =

■

y<.

Next, the linear form tolerance models are illustrated as multiple linear regression 

models. A program written in Visual Basic for Application in Microsoft Excel is 

developed to solve regression model fitting by computing 3 ’s.

7J.1 Straightness Tolerance Zone

£, = d, =y, - c- mx, (7.25)

where 3 = ,X =

'1
1 2̂

• • ,y = •

1

The residuals are the distances between the sample points and the least squares line 

and can be determined as follows:

resi = di (7.26).

Note that the residuals are computed perpendicularly to the least squares line. 

Whereas Equation (7.25) is derived linearly fixim the measured points to the ideal 

line. Therefore, it cannot be used to determine the normal residuals as shown in 

Equation (7.26). The straighmess tolerance zone is obtained as follows:
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Zjo- = max(reSi) -  mm(res,) (7.27).

1 3 2  Flatness Tolerance Zone

e , = d i = Z i - c - m x , - n y ,

1 y, ' -1

m - 1 yic
where P = m x = ,y =

n

.1 y , .

The normal residuals are determined as follows:

res, = d,

The Harness tolerance zone is then obtained as follows:

Zfla = max{res,) -  min(res,)

1 3 3  Circularity Tolerance Zone

s, = di = r , - R o -  Xo cos(gj) -yo  sin(^)

'1 cos(^), sin(g),

'Ro
1 COS(0)j sin(0)2

where P = Xo , x = ,y =
7 o .

1 COS(0), sin(g),

The normal residuals are determined as follows:

res, = di

The circularity tolerance zone is then obtained as follows:

(7.28)

(7.29).

(7.30).

(7.31)

(7.32).

156



Zcir =  max{res  ̂-  min(res,) (7 .33).

7J.4 Cylindricity Tolerance Zone

Si = di = r,-Ro- tnZi cos( 9̂  - xq cos(  9) - nz, sin( 9i) - yo sin( 9i) (7.34)

where P =

Ro
m

Xo , x =
n

yo

1 z, cos(^,) cos(^,) z, sin(^,) sin(^,)
1 Z; cos(^;) cos(0 ,) z, sin(0 j) sin(^2)

I z, cos(ô,) cos(0 ,) z, sin(5,) sin(^,)

The normal residuals are determined as follows:

res, = d,

The cylindricity tolerance zone is then obtained as follows:

Zcyi = max(res,) -  min{res,)

,y =
r-,

(7.35).

(7.36).

7J.5 Conicity Tolerance Zone

s,=d, = r,-Ro- {{Ri - Ro)/h)z, - m, cos(^) - xocos(0,) - nz, sin(Q)-yo sin(Q) (7.37) 

where

P =

Ro "i z, z, cos(g|) cos(^,) z, sin(ô,) sin(^,)‘ n '
( / ? i -Ro)

h
1 Zj ZjCO S(^j) cos(^J Zjsinfô,) sin(^j)

m , x = • • • •
,y =

■

Xo ■

n • * • ■

yo
1 z, z,cos(%) cos(0 ,) z,sin(a,) sin(^,) / r .

The residuals are determined as follows:
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res, = di (7.38).

Recall that the cone is inspected under the assumption that it is properly aligned with 

the system axes. Hence, the residuals are already normal to the cone axis but not to 

the cone surface. The normal conicity tolerance zone can then be obtained as 

follows:

Icon = mcodres,) cos(y) -  min{res,) cos(y) (7.39)

where y is the angle between the hypotenuse of cone and the z-axis and y = tan'' S .

During the process of the least squares method, the normal deviation 

measurements can also be used. The form tolerance models obtained are in nonlinear 

forms leading to more complicated procedure in determining the solutions of the least 

squares normal equations (Rawlings et al., 1998; Murthy and Abdin, 1980; Traband 

et al., 1989). Since explicit solutions cannot be easily obtained, iterative numerical 

methods are used instead. According to Murthy and Abdin (1980), when the 

deviations are small, the difference in results obtained 6 om the least squares and the 

normal least squares methods are not appreciable. Shunmugam (1987) also stated 

similar findings. In addition, the larger computation time for the normal least squares 

is not justifiable in view of the marginal difference in values. Moreover, the solutions 

found by using the least squares or the normal least squares methods may not actually 

be the minimum tolerance zones (Murthy and Abdin, 1980). The purpose of this 

research is not to compare the least squares and the normal least squares methods, but 

rather present integrative models for conicity evaluation. Therefore, only the 

traditional least squares method is presented here.
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7.4 The Optimization Based Minimum Zone Evaluation

Even though the optimization based zone evaluation attempts to determine the 

minimum zone are consistent with the ANSI Y14.5M-1994 (ASME, 1995), the lack 

of proper models for complex features has prevented extensive study. Once the 

optimization models are obtained, the optimization techniques can be simply applied 

to iteratively solve such models. This method is based on mathematical programming 

techniques, linear and nonlinear programming. Linear programming merely defines a 

specific class of programming problems that meet the following conditions 

(Ravindran et al., 1987):

1. The variables involved are nonnegative.

2. The objective function can be described by a linear function of the related 

variables.

3. The operating rules governing the process can be expressed as a constraint set of 

linear equations or linear inequalities.

As will be seen subsequently, the linear programming problems can be manipulated 

into the following form (Bazaraa et al., 1990):

Minimize c,x, + ...+c,x„

a,,x,+a,jXj+-+û„x„>6,
a,2X,+a22Xj+-+flj„x,

Subject to :

X„X2,...,X, > 0
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c,x, +CjX-, + ...+c,x, is the objective function to be minimized. The coefficients c/, 

C2, - ,  c„ are the known cost coefficients and x/, xa, .... x„ are the decision variables to

n
be determined. The inequalities ^  a,̂  x̂  >f>, denote the fth constraints and its

/•I

coefficients are called the technological coefficients, b, represents the minimal 

requirements to be satisfied. The last constraints on xi, x i ..., x„ are the nonnegativity 

constraints. By simple manipulations, the problem can be transformed from one form 

to another equivalent form as shown below.

An equality constraint can be transformed into an equation constraint by

subtracting the nonnegative surplus or slack variable x„., > 0 from >b, . This

leads to -x„ ,̂ =b, . Similarly, ^a,^x , < 6, is equivalent to
J-l /•!

+x„., =b, . Also an equation =b, is equivalent to two inequalities

3:6,!Uid > 6 , .
/ - I  y « l

If a decision variable is unrestricted in sign, it can be replaced by 

x'j -X *  where x' > 0 and x* > 0 . Hence, the suitable equivalent form can be obtained 

easily.

To convert a maximization problem into a m in im iz a tio n  problem and 

conversely, the following manipulation is used:
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Maximum ^  CjXj = - minimum .
y » l  j » l

Similarly, the nonlinear programming is characterized by groups of terms 

involving intrinsically nonlinear functions in either objective function or a constraint 

set.

To evaluate the form feature, an ideal feature must be established from the 

actual measurements such that the maximum deviation between the ideal feature and 

the sampled points is the least possible value. The form error, of the feature is then 

determined by minimizing the maximum deviation of the measured points with 

respect to the position and orientation of the ideal form. This implies that

s  = Min(Maxd j  (; = 1.2,...,/)
s t

where / is the number of the sampled points and r  is a vector which defines the rigid 

translation and the rotation of the ideal form. This problem is referred to as a min- 

max problem and it can be easily transformed to a constrained optimization problem 

by introducing an additional variable, h. The equivalent problem is obtained as 

follows:

Minimize: g =A
s j t

Subject to: \d,\< h;i = 1,2,...,/ and

A>0.
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• n
— ----- Ideal form

Figure 54. Sampled Points of An Ideal Form and Its Tolerance Zone

d, is the model of the errors discussed in Section 7.1 for linear form and Section 7.2 

for nonlinear form. As shown in Figure 54, the group of the constraints d, ensures 

that all of the deviations are contained within the minimum zone. The solution of the 

above problem minimizes h resulting in a minimum zone, Z = 2h. For most practical 

problems the variables represent physical quantities and must be nonnegative 

(Bazaraa et al., 1990). In addition, most mathematical programming techniques are 

designed to solve problems where the variables are nonnegative. Therefore, the 

unrestricted variables are transformed into nonnegative forms. The additional 

constraints for each specific feature are introduced for both linear and nonlinear forms 

as follows.

7.4.1 The Additional Constraints for Straightness

m and c are unrestricted in sign and hence the suitable equivalent constraints

are:

m = m'-m' 
c = c '- c '
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7.4.2 The Additional Constraints for Flatness

m, n and c are unrestricted in sign and hence the suitable equivalent 

constraints are;

m = m'-m* 
n = n' -n" 
c -c '-c *

7.4 J  The Additional Constraints for Circularity

xq and yo are unrestricted in sign and Rq is nonnegative. Hence the suitable 

equivalent constraints are:

Xg = x ; - . r j  

>o=>'0-yo'

7.4.4 The Additional Constraints for Cylindricity

m, n. xo, and yo are unrestricted in sign and Rq is nonnegative. Hence the

suitable equivalent constraints are:

m = m'-m" 
n = n'-n" 
x o = x 0 - x ;

yo ^y'o-yô
R^,m',m",n',n!'x[,xl,y[,yl > 0
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7.4.5 The Additional Constraints for Conicity

m, n, Xo, and yo are unrestricted in sign and h, Rq, R\ are nonnegative. Hence 

the suitable equivalent constraints are:

m = m' -m* 
n = n'-n"

y, = yo-yo 
h, R ,̂R„ m\ m\ n \ , xj, , y j > 0

m',m*,c',c*,n',n',x',x*,y', and y* are additional variables used in transforming the

unrestricted m,c,n,x^,and y, into nonnegative forms for the corresponding

optimization models of the mentioned features. The nonnegative forms may then be 

used in the deviation models.

In summary, this chapter provides a formal structure for fitting data points and 

thereby determining the enclosing form tolerance zone for the inspection of cones. 

This is a first step towards the inclusion of conical features in form metrology along 

with flatness, straightness, circularity, and cylindricity. Such methodologies could be 

extended for more complex forms such as sphere and torus.
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CHAPTERS 

RESULTS AND ANALYSES

Since the developed cylindricity model is the basis for the cone development 

in the proposed conicity model, and since there is little literature on conicity 

verification, the cylindricity model is verified by comparing its results to those 

obtained from the published cylindricity methods. This section begins with the 

comparisons of the cylindricity results against the published data from Shunmugam 

(1987), Carr and Ferreira (1995b), and Roy and Xu (1995). The cylindricity model 

tested is Equation 7.18 fixtm Chapter 7.

The main intent of this chapter is to provide details on the results of the 

integrative analysis conducted. A SAS program was developed to analyze the results, 

in order that these may be used for developing guidelines for inspection. It is 

expected that analysis presented in this chapter can be improved and extended, 

whereby comprehensive standards and solutions can be developed for problems faced 

by industry.

8.1 Cylindricity Comparisons

To check the validity and accuracy of the developed cylindricity evaluation 

model, several numerical examples were tested by using the published data from
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Shunmugam (1987b), Carr and Ferreira (1995b), and Roy and Xu (1995). To limit 

the search range and obtain the logical results, the range of the cylinder’s radius 

should be given or estimated before applying the optimization algorithms. The 

converted data, degree to radian, in Table 7 were calculated from Shunmugam 

(1987b). The linear deviation for cylindricity was applied with the linear LSQ 

method to evaluate form errors. Wang (1992) developed nonlinear minimax model to 

evaluate the cylindricity with the same data set. Their results and the results from this 

work are compared in Tables 8 and 9. Other feature parameters are also illustrated.

The results published in Wang (1992) are as follows: Zone = 1.774, Rq = 

2.461, m -  0.687, xo = 0.364, n = 0.006, yo = 0.763.

It is important to note that the differences between these and those of 

Shunmugam (1987b)’s were quite large. Furthermore, the direction vector, n 1] or 

[mo no o], should be closer to [0 0 1] due to the assumption of the Limaçon 

approximation. In addition, Wang (1992)’s results could not exactly be regenerated 

here and were close to those in Table 8. Probably, the transformed data were used in 

Wang (1992). The variations might have resulted by the different optimization 

algorithms used. If the transformed data is used, the results caimot be accepted when 

compared to those of Shunmugam (1987b) since the optimization algorithms are 

more numerically sensitive than the LSQ based approach. The LSQ method 

computes the cylindricity zone from the linear residuals (maximum residual -  

minimum residual). These residuals were equal to the differences between the 

measured points and the points on the substitute feature (cylinder). The linear
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differences could remain the same even though different data sets were used. Figure 

55 illustrates these examples. Hence, using the transformed or actual data would 

produce the same results for cylindricity zone and Rq but different results for other

Table 7. The Coordinates Data Set of Cylinder (Shunmugam, 1987h).

61 (radian) ft Actual Z( Transformed Zi

0 5 50 1

0 4 25 0

0 3 0

0.785398163 3 50 1

0.785398163 4 25

0.785398163 2 0

1.570796327 4 50 1

1.570796327 3 25

1.570796327 4 0

2.35619449 3 50 1

2.35619449 3 25

2J5619449 3 0

3.141592654 1 50 1

3.141592654 3 25

3.141592654 2 0

3.926990817 2 50 1

3.926990817 2 25

3.926990817 3 0

4.71238898 2 50 1

4.71238898 2 25

4.71238898 1 0 -1

5.497787144 3 50 1

5.497787144 3 25 0

5.497787144 2 0 -1
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Table 8. Comparison of Results for Cylindricity Using Transformed

Method Cylindricity
Zone Ro m Xo n yo

Linear + LLSQ 
method 2247906145 2.791666667 0.640165043 0.558925565 -0.036611652 0.676776695

NL + SQP 
method

1.738922724 2.433166223 0.713647125 0.354066488 0 0.813776464

NL + GRG 
method 1.738923089 2.433166346 0.713646751 0.354067366 0 0.813776318

Note: The linear deviation applied with the linear LSQ is presented by Shunmugam ( 1987b).
The nonlinear deviation applied with sequential quadratic programming (SQP) is presented by 
(Wang, 1992).
The nonlinear deviation applied with generalized reduced gradient algorithm (GRG) is 
presented in Chapter 7.

Table 9. Comparison of Results for Cylindricity Using Actual t,.

Method Cylindricity
Zone Ro m Xo n yo

Linear + LLSQ 
method 2247906145 2.791666667 0.025606602 -0.081239478 -0.001464466 0.713388348

NL + SQP 
method 2.111642355 2.67682546 0.026663811 0 0.001672177 0.621006558

NL^GRG
method 2.111642355 2.676825395 0.026663812 0 0.001672181 0.621006482

S ett

Set

Figure 55. The Corresponding Residuals of Each Set are Identical.
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parameters. The reason for using the transformed data z, was stated in Shunmugam 

(1987a). That was to facilitate the computation while using linear deviation with the 

LSQ method. Conversely, using different data sets for nonlinear optimization 

problem likely produces different results due to the nature of nonlinear functions such 

as power, division, etc., in objective function and constraints. Therefore, the reliable 

comparisons should be drawn only from the actual data set. As seen from Table 9, 

the results of the proposed model were almost identical to those of Wang (1992)’s 

and were superior to those of Shunmugam (1987b)’s.

Carr and Ferreira (1995b) also provided some example data sets as shown in 

Tables 10, 12, and 14. They were used to test the validity and accuracy of the 

proposed cylindricity model by comparing it against the published results from Carr 

and Ferreira (1995b) and the results from the model taken from Wang (1992). These 

results are illustrated in Table 11,13, and 15.

Table 10. The Coordinates Data Set 1 of Cylinder (Carr and Ferriera, 1995b).

Xi y i Zl

30 0.001475 7.892267
1.05636 -29.981396 27219008

-29J66428 -6.132937 13.137551
28.698913 8.739131 40.731883
-12.893256 -27.088078 56.081574
-22J 15616 20.050269 31.164982
14.611799 -26201056 2.074327
28J23328 9.888835 31.782012
-1426238 -2629288 0.461891

-22J04724 20.062385 4.010534
-26.057635 14.866056 41206363
-25.432673 -15.911603 55.82619
17.043966 -24.688119 31.615727
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X{ y i Zi

25.129457 16386287 39335138
-25.917641 15.108801 42.071436
25.36219 -16.03271 45.731882
-2.34494 29.908214 2.847871
-2.62016 -29.88536 19.694054

-20.170149 -22306503 45.384629
29.952444 -1.68852 21.92032

30.001 0.001475 7.892267
1.056395 -29.982395 27.519008

-29367407 -6.133141 13.137551
28.699869 8.739422 40.731883
-12.893685 -27.088981 56.081574
-22316359 20.050938 31.164982
14.612286 -26301929 2.074327
28.324273 9.889165 31.782012
-14362855 -26393767 0.461891
-22305468 20.063053 4.010534
-26.058504 14.866552 41306363
-25.433521 -15.912134 55.82619
17.044534 -24.688942 31.615727
25.130294 16386834 39335138
-25.918505 15.109304 42.071436
25.363036 -16.024245 45.731882
-2345018 29.909211 2.847871
-2.620248 -29.886356 19.694054

-20.171721 -22307243 45.384629
29.953442 -1.688577 21.92032

Table 11. Comparison of Results for Cylindricity Using Data in Table 10.

Method Cylindricity
Zone Ro m JCo n yo

Carr and Ferreira 
(1995b)

0.001 NA NA NA NA NA

NL + SQP 
method

0.004809865 30.00206564 8.71539E-06 0 0 0

NL + GRG 
method 0.004809871 30.00206564 8.71526E-06 0 0 0
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Note that the cylindricity zone from Carr and Ferreira (1995b) in Table 11 was not 

close to the rest. There were some conflicts that should be pointed out as follows:

1. As stated in Carr and Ferreira (1995b), data set 1 was generated as two 

cylinders with axes equal to the Z-axis and radii equal to 30.000 and 30.001, 

respectively. Hence, these two cylinders were not tilted in any direction. 

However, the radii of the 16* and 19* data points calculated from the given 

coordinates were equal to 30.00480747 and 29.99939476, respectively. They 

were the maximum and minimum among all data points and likely contributed 

to the cylindricity zone. As a result, the zone should be roughly estimated 

around 30.00480747 -  29.99939476 = 0.00541271. Using the appropriate 

model and fitting algorithm should produce cylindricity close to 0.00541271 

with a small orientation for the minimum zone evaluation.

2. The radius of data set 1 of Carr and Ferreira (1995b) was also included in its 

Appendix and equal to 30.005, not 30.001 as stated in its Implementation and 

results section.

The model presented by Carr and Ferreira (1995b) was similar to that of Wang (1992) 

and the proposed model. One of the main differences was the use of the additional 

linearization that was not used in Wang (1992) and the presented model. Another 

difference was the optimization algorithms used. The respective models used were 

successive linear programming (SLP), sequential quadratic programming (SQP), and 

generalized reduced gradient algorithm (GRG).
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Table 12. The Coordinates Data Set 2 of Cylinder (Carr and Ferriera, 1995b).

yi Zl
60.051121 0.002953 3.946134
-57.932024 15299312 15.983017
57.43213 17.488707 20.365942
55.022756 -23.936632 11205062
29.1801 -52.423113 1.037163

-58.861558 -11.113569 20.134482
-44.597179 40.113733 2.005267
-23247383 -55.406652 17.669299
34.041568 -49.309081 15.807863
-34.084135 -49.427745 12.479981
50.684216 -32.022045 22.865941
57.318676 17.619539 22.082457
-40.40813 -44.485701 22.692315
-39.83837 44.994386 7.411167
-10261352 -59.146784 22.600675
53.919844 26.493193 18.949042
-8.540012 59.442972 13.092342
-59269089 8261285 7.133233
-38.029817 46.404843 4.995216
47.946099 -35.92538 27276243

Table 13. Comparison of Results for Cylindricity Using Data in Table 12.

Method
Cylindricity

Zone Ro m Xo n yo

Carr and Ferreira 
(1995b)

0.18396 NA -0.00062 NA -0.00292 NA

NL + SQP 
method

0.194828343 60.00478139 0 0.005930704 0 0

NL + GRG 
method

0.194828184 60.00478136 0 0.00593079 0 0

LSQ (Carr and 
Ferreira, 1995b)

021197 NA -0.004900147 NA -0.005460164 NA
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[mo Mo o] is equal to [-0.00062 -0.00292 1] for data set 2 in Carr and Ferreira (1995b). 

Recall that mo = mo and mo = no. Hence, m and n could be calculated with the results 

shown in Table 13.

Table 14. The Coordinates Data Set 3 of Cylinder (Carr and Ferriera, 1995b).

Xi y i Zi

-11.820859 50.421254 -15.817382
42.403448 -6.693162 56.567707
I0J669O2 80249947 26.965969
18.527457 61.577469 -13.680418
23.930322 23.878386 -41.820643
66.363729 0.636729 49246025
-3.608026 -24.493246 39.678687
75.507564 20208045 6298139
48.919097 55.614254 -13266609
65.713317 2.841028 3.498858
46.632786 80217454 4.866333
13.598993 83.519129 30275
84.570573 18219363 28224203
2.322453 -10.802862 51268799
82.820384 38.516367 9.148307
3.553158 75.111087 30.738097
-5.898713 21.39033 60.097056
30.009532 -24.696147 35.870356
-3.793621 -14263808 46.897322
58.357492 87.161327 11.960644
33207329 64.844079 -10.665479
34.46129 41.806234 94.623903

-26.871029 3.103967 39.48246
-4.153639 67.427229 23.451422

22J71 47.845956 88.060867
67298986 16220701 79.062822
79257377 49.418921 4.727043
-37.543275 31.718373 8273268
49.576671 65.965076 -6.501629
96.781947 53.421231 22.908004
-18.623157 23.988046 47.691608
58.416292 -4257784 48.525368
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X i y i Zl

48.408528 15.833662 81.511728
31.694971 -2.169579 63.538387
-18.366214 2.837799 46.415679
81.087477 11.573666 46 J 19607
57.311572 -9.09605 38.123767
68.59397 33.580936 -6.118165
89.036231 21.72231 35.086999
3.141412 52.730721 67.919265

Table 15. Comparison of Results for Cylindricity Using Data in Table 14.

Method Cylindricity
Zone Ro m Xo m yo

Carr and Ferreira 
(1995b)

0.00941 NA 1.000052 NA 1.000052 NA

NL + SQP 
method

0.009410136 49.99953289 1.000058463 3.998826419 1.000046417 4.998637542

NL + GRG 
method

0.009410193 49.99953288 1.000058461 3.998826401 1.000046416 4.998637497

LSQ (Carr and 
Ferreira, 1995b) 0.01037 NA 1.0000866 NA 1.000052 NA

[mo riQ o] was equal to [0.57736 0.57736 0.57733] for data set 3 in Carr and Ferreira 

(1995b). Recall that mo = mo and no = no. Hence, m and n could be calculated as 

shown in Table 15.

Table 16. The Coordinates Data Set of Cylinder (Roy and Xu, 1995).

Xl y i Zl

-5.011 0.019 0
-4.701 1.715 0
-3.625 3.449 0
-2J76 4.401 0
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X, yi Zi
0.035 4.999 0
2.018 4J72 0
3.901 3.115 0
4.718 1.626 0
4.992 0.059 0
4.726 -1.589 0
3.815 -322 0
2.356 •4.405 0
-0.792 -4.928 0
-2.014 -4.569 0
-3.912 -3.117 0
-4.802 -1284 0
-5.001 0.019 5
-4.638 1.885 5
-3.984 3.019 5
-2226 4.472 5
-0.007 4.988 5
2219 4.472 5
3.802 3238 5
4.745 1.566 5
4.97 0.52 5
4.64 -1.875 5
3.768 -3288 5
2.321 -4.434 5
0.001 -5.015 5
-1.712 ■4.705 5
-3278 -3.788 5
-4.415 -2265 5
-4.99 0 10

-4.644 1.823 10
-3.531 3.527 10
-1.704 4.703 10
0.387 4.99 10
1.496 4.78 10
3.782 329 10
4.778 1202 10
4.999 0.085 10
4.803 -1.404 10
3.596 -3.484 10
1.913 ^.625 10
0.19 ■4.989 10

-1.868 -4.641 10
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X{ yi Zl
-3.493 -328 10
-4.641 -1.834 10
-4.989 0.001 15
-4.636 1.852 15
-3.51 3.56 15
-1.688 4.706 15
0.413 5 15
1.473 4.799 15
3.798 3291 15
4.796 1.487 15
5.022 0.066 15
4.816 -1.399 15

3.6 -3.472 15
1.923 -4.605 15
023 -4.987 15

-1.798 -4.643 15
-3.46 -3.588 15

-4.614 -1.878 15

Roy and Xu (1995) also provided an example data set as shown in Table 16. 

They were used to test the validity and accuracy of the proposed cylindricity model 

by comparing to the published results &om the Voronoi based method in Roy and Xu 

(1995), to the results from the model taken from Wang (1992), and to the results from 

the linear deviation model with the linear LSQ. These results are illustrated in Table 

17. In Roy and Xu (1995), o = 0.9999987 was also included and the maximum and 

minimum radius were 5.0159080 and 4.987094, respectively.

It can be seen from the foregoing comparisons that the results obtained by the 

proposed method were close to those of the published methods and smaller than those 

of the LSQ. Hence, Equation (7.18) should be acceptable.
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Table 17. Comparison of Results for Cylindricity Using Data in Table 16.

Method
Cylindricity

Zone m JCb n yo

Roy and Xu 
(1995)

0.02881336 NA 0.001567376 -0.00911603 0.00054574 -0.001820852

NL + SQP 
method 0.029548125 5.000751946 0.001017511 0 0.000104874 0

NL + GRG 
method 0.029548126 5.000751947 0.001017512 0 0.000104875 0

Linear + LLSQ 
method 0.047010885 5.000549929 0.000383747 -0.003347658 0.00050644 -0.00234218

8.2 Results from Experimental Analyses

This section presents the experimental analyses conducted in this research. 

The step-by-step procedure for data collection is given in Appendix A and the 

analysis procedure is discussed here.

The response measure or conicity was obtained by applying the mentioned 4 

fitting algorithms to the coordinates collected. A statistical method, the factorial 

design with nested blocking factor, implemented in SAS was used to analyze the 

resulting data.

8J.1 Model Adequacy Checking

The validity of the experimental design model was checked to detect any 

violations of normality, independence, and constant variance assumptions by 

constructing a plot of residuals in time sequence, a plot of residuals versus fitted 

values, 5 plots of residuals versus all 5 main effects, a box plot of residuals, and a 

normal probability plot of residuals. These plots are presented in Appendix B.
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Obviously, there were two residuals that were very much larger than any of the 

others. Moreover, there was a residual that was very much smaller than others. They 

were outliers that might seriously distort the results of statistical analysis. Hence, 

further investigation was called for.

Observations of the conicity were made at different levels of sample size, 

sampling strategy, fitting procedure, and specimen type. Even though the conicity 

values looked acceptable, the parameters obtained by applying the LSQ based fitting 

to the coordinates collected via the aligned systematic sampling with small sample 

sizes of 8 and 16 were invalid as shown in Appendix C. The conjecture for these 

invalidities might be the interaction between those three factors (sampling method, 

sample size, and fitting algorithm). It was highly likely that the aligned systematic 

sampling did not provide much information of the inspected parts with the same 

sample sizes as Hammersley and Halton-Zaremba sampling methods did. Similar 

results were also reported by Lee et al. (1997). The uniform sampling, a systematic 

sampling, was investigated by Lee et al. (1997). With a much smaller sample size, 

the RMSE of the Hammersley sampling was always several times lower than that of 

the uniform sampling on cone for both Wiener and isotropic surfaces. At the sample 

size of 16 for the Hammersley sampling, its RMSE was about 13 times lower than 

that of the uniform sampling with the sample size of 100. When the sample size 

increased, the RMSE of the uniform sampling decreased drastically.

Moreover, the way the LSQ approach was modeled should play a role in 

resulting invalid parameters since there were no constraints or boundaries for these
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parameters explicitly taken into formulation. Combined with high RMSE sampling 

like the aligned systematic sampling and small sample sizes of 8 and 16, the invalid 

results were consequently obtained.

The aligned systematic sampling and the uniform sampling methods with high 

sample sizes like 64 and 256 probably provided valid results as confirmed in this 

work and in Lee et al. (1997). Higher sample sizes probably provided a lot of 

information of the inspected part. This, in turn, induced the implicit constraints for 

the LSQ based fitting. Consequently, the parameters obtained by applying such 

fitting algorithm to the coordinates collected via the aligned systematic sampling with 

the sample sizes of 64 and 256 were valid and illustrated in Appendix D.

Due to the invalid parameters, their corresponding conicity values should not 

be included in the analysis. Therefore, they were treated as missing data in statistical 

analysis by replacing them with for all 32 of them. The statistical results are 

shown in Appendix E.

The model adequacy was then checked by constructing a plot of residuals in 

time sequence, 5 plots of residuals versus all 5 main effects, a plot of residuals versus 

fitted values, a box plot of residuals, and a normal probability plot of residuals to find 

any violations of normality, independence, and constant variance assumptions.

The normal probability plot of residuals resembled a straight line. This 

implied that the underlying error distribution was normal. There was, however, a 

presence of two outliers. These two were the results of both of the LSQ based fitting 

algorithms applied to the coordinates collected via the Halton-Zaremba method with
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the sample size of 8. The mspection of relevant parameters did not reveal any 

invalidation. As mentioned before, the normalized LSQ was calculated &om the 

LLSQ. Thus, the unusually low conicity of the normalized LSQ was the outcome of 

the unusually low conicity of the LLSQ. The calculations, experimental 

circumstances surrounding this run, and data coding and coping were examined. 

Nothing was found to be the cause of the outliers. The conjecture of the cause might 

be the low sample size and the location of the Halton-Zaremba scheme on the 

specimen number 1. After careful consideration, these two outliers were not 

discarded from the analysis and it was believed that the normality assumption was not 

violated.

The independence assumption was also validated by checking a plot of 

residuals in time order of data collection. They appeared to be structureless. There 

was no reason to suspect any violation of the independence or constant variance 

assumptions. In addition, they should be unrelated to any other variables including 

the predicted values and all 5 main effects. These plots of residuals versus predicted 

values and versus each of all 5 main effects did not reveal any obvious pattern. 

However, there might be some nonconstant variance in the residuals plot against 

sampling strategies. This plot looked like a small inward-opening megaphone but it 

was not extreme. This probably leaded to the slight drift of the residuals versus the 

predicted values plot Nevertheless, nonconstant variance appeared vaguely. Thus, 

the assumption of homogeneity of variances should hold.
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In conclusion, the usual diagnostics analyses o f residuals did not graphically 

indicate any major concerns. Hence, the experimental design model used was 

adequate.

8.2.2 Analysis of Variance for the Conicity Testing Experiment

Computer output for the conicity testing obtained from the GLM procedure in 

SAS is provided in Appendix E. Using a 0.05 level of significance (a), the surface 

area was not statistically significant. In other words, it did not affect the 

determination of conicity. The same could be said for the interaction between 

sampling strategy and fitting algorithm. Nor was the interaction between surface area, 

sampling strategy, sample size, and fitting algorithm. The other main effects and 

their interactions were statistically significant or affected the determination of 

conicity.

As expected, the analysis of variance showed that specimen was significant 

since conicity depended on each specimen and how it was machined. There were 

several uncontrollable factors such as skills of machinists, different machines used, 

etc. in manufacturing these specimens. Moreover, it was of no interest in determining 

which specimen would perform better in terms of conicity. In addition, the specimen 

was treated as a blocking factor. This meant that randomization had been applied 

only to treatment within this block (restriction on randomization). Thus, its normality 

assumption was quite questionable and F  test was then not reliable. Hence, this factor 

and its treatments were not taken into consideration for finding the influential factors 

on the response variable, conicity. However, to investigate the effect of the blocking
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factor, examining this F ratio was reasonable. The ratio was rather large meaning that 

decreasing experimental errors through blocking outweighed the assumingly 

negligible interactions between block and treatments that might exist in the error 

component. In other words, the blocking factor had a large effect and the noise 

reduction obtained by blocking was helpful in improving the precision of the 

experiment.

The analysis of variance also showed that the sampling scheme, sample size, 

and conicity algorithm appeared to be significant. The 2-variable interactions 

between surface area and sampling strategy, surface area and sample size, surface 

area and fitting algorithm, sampling method and sample size, and sample size and 

fitting algorithm were significant as well. The 3-variable interactions between 

surface area, sampling strate^, and sample size; surface area, sampling strategy, and 

fitting algorithm; surface area, sample size, and fitting algorithm; and sampling 

strategy, sample size, and fitting algorithm were also significant. The comparisons 

between the means of each main effect might be obscured by their interactions. 

Therefore, the levels of each factor must be examined with levels of the other factors 

fixed to draw valid conclusions about the main effects. To assist in the practical 

interpretation of this experiment, it was helpful to construct graphs of the average 

response for the relevant significant combinations. Figures 56 to 60 present plots of 

the relevant significant main effects, 2-way, and 3-way interactions. The main effects 

are just graphs of the averages of conicity at the levels of these main factors. The 

interaction is indicated by the lack of parallelism of the lines.
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In general, higher sample size intuitively leads to more accurate result since 

more information can be obtained by using higher sample size. This could be clearly 

seen in Figures 56 (b) and (d), 57 (b) and (d), 58 (a) and (b), 59, and 60. The higher 

conicity could be calculated by using higher sample size. This interpretation held for 

every level of sample size across the levels of other factors. Note that the sample size 

of 256 did not produce much better result than that of 64 for the small surface area 

tested. However, the gap was much appreciable for the larger surface area. The 

sample size evidently depended on the surface area inspected. Apparently, the 

sample sizes of 8 and 16 did not represent the inspected object very well. In addition, 

they might cause the invalid parameters as mentioned in Subsection 8.2.1. Hence, the 

samples size that was acceptable for discrete inspection of conical features in this 

experiment was either 64 or 256. Which size should be selected depends on cost 

permitted. Note that for interchangeability, sample size reduction can result in many 

benefits. However, process variation detection and other diagnostics will actually 

benefit &om large data sets. Since the present research is more concerned with 

interchangeability issues dealing with form features, the experimental analysis seeks 

to identify smaller sample sizes.

Obviously, the sampling method that gives the most information should be 

selected. However, examining only the sampling strategy plot may lead to the invalid 

conclusion due to the interactions involved and the missing data technique used. 

Therefore, the plots in Figures 56 (a), 57 (a) and (d), 58, and 60 were taken into 

consideration. All three levels of sampling method seemed to provide similar results.
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The AS seemed acceptable or even better than the other two. Recall that 32 data 

points were removed &om the analysis due to the invalidities of their parameters. 

These data points were corresponding to AS, sample sizes of 8 and 16, and the LSQ 

based fitting algorithms as illustrated in Figure 60 (c). The remaining data resulted in 

interaction between main effects as shown in Figures 57 (d), 58 (a) and (b). 

Nonetheless, the HM results appeared slightly better than the other two sampling 

methods’ results for sample size of 64. The analysis showed equivalent results, for 

sample size of 256, across all levels of sampling strategy. This Implied that the 

number of sample points was very high (256) or the information gained (conicity) 

was quite sufficient. Therefore, the advantage of sampling method was not fully 

utilized. Note that the number of sample size used in the HZ must be a power of 2, 

which might prove cumbersome in computations. Thus, the sampling method 

recommended for sample size of 64 was HM.

On the contrary, compared to the above two factors, a fitting algorithm is 

more suitable than others if its conicity is lower. Plots in Figures 56 (c) and (d), 57 

(c), 58 (c) and (d), 59, and 60 were taken into consideration. The NLOPT clearly 

produced the lowest conicity among others except the plot in Figure 59 (b) which was 

probably caused by the missing data. Therefore, the fitting algorithm selected should 

be the NLOPT.

Basically, the interpretation of the experiment was to select the factors 

contributing to the high and low response simultaneously. The factors, such as 

sample size and sampling strategy, were used to gain as much information as possible
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firom the inspected objects. Hence, the higher the response, the more attractive that 

level would be. On the other hand, the fitting algorithm was applied to calculate the 

minimum enclosing zone. This implied that the lower response was desired to avoid 

the overestimation of such zone or the rejection of some good parts. Simply put the 

maximum response of the levels of sampling strategy and sample size and the 

minimum response of the level of conicity algorithm should be chosen. Since the 

objective of this experiment was to find the effect and appropriateness of the 

sampling strategy, sample size, the description and fitting of the conicity tolerance 

and their interactions, the following levels of each controllable significant factor 

could be recommended based on analysis conducted at the levels tested: (1) the high 

level of sample size (64 or 256) which would represent the conical object 

experimented very well, (2) the Hammersley sampling method which would help 

reduce the sample size and cover the inspected conical object thoroughly, and (3) the 

NLOPT fitting algorithm which would produce the minimum enclosing zone. More 

experiments and analysis along these lines must be conducted to develop a 

comprehensive knowledge-base for cone inspection guidelines. This will serve as a 

first step towards the development of a comprehensive and integrative standard for 

the measurement of conical form features. Such a study will also help in the 

development of solutions for form inspection in industry.

In summary, this chapter suggests a formal procedure for conducting 

experiments and analysis to investigate the combined effect of multiple variables
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(sample size, sampling strategy, zone fitting, and part size) in making form 

measurements through coordinate metrology.
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CHAPTER 9

CONTRIBUTIONS, CONCLUSIONS AND RECOMMENDATIONS

Very little, if any, literature exists in cone feature verification using CMMs. 

No standards for measuring conical features exist in ANSI form feature descriptions. 

Further, sampling and path planning are seldom discussed with respect to complex 

forms. The primary objective of this research was to develop a comprehensive 

knowledge base for conical feature verification using CMMs. To accomplish this 

goal, three sampling models for conical feature inspection, a CMM probe path 

planning procedure, four minimum enclosing zone algorithms, and a factorial design 

with nested blocking factor were developed, implemented, and statistically 

experimented. The results of this study provided guidelines for establishing levels of 

the relevant factors during conical tolerance verification. Conclusions and 

recommendations for future research are made in this chapter, thus setting the stage 

for a comprehensive standard for cone measurement in industry.

9.1 Contributions

Conicity verification has received very little attention in the current literature, 

although there are quite a number of conical industrial parts, such as nozzles, tapered 

cylinders, fiustum holes, and tapered rollers, requiring cone feature verification. To
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investigate conical tolerance verification, four major research issues were studied: (1) 

sampling point selection, (2) path determination, (3) zone estimation, and (4) 

experimental analysis.

Based on the objectives of this dissertation, the contributions of this work are 

summarized below:

1. Three separate sampling methods were developed and implemented for 

sampling points in a repetitive and yet time-conserving manner. Note that no 

literature exists in the development and hence the comparison of alternate sampling 

methods for cones.

2. A simple path planning procedure for conical surface was developed to 

automatically guide the probe movement, consistent with each sampling strategy and 

sample size. Current literature shows no evidence of path planning in cone 

inspection. The goals for path planning were to avoid hitting the obstacles and to 

maintain the precision of sampling location without human intervention. Thus, a fast 

and accurate data collection could be achieved using the guidelines developed here.

3. Four separate minimum zone algorithms were mathematically formulated: 

linear LSQ, linear optimization, normalized linear LSQ, and nonlinear optimization. 

Note that the details with which these are developed and corresponding comparative 

analysis presented for cones are not matched in literature even for simpler shapes 

such as cylinders, circles or spheres.

4. To reliably study the performance of the sampling point selections and the 

zone estimations, and how they must be combined during measurement, and to

193



develop a comprehensive method for the inspection of cones, a factorial design with 

nested blocking factor was modeled and tested. Experimental results were then 

statistically analyzed. Consequently, valid and objective conclusions were obtained. 

It must be understood that previous reporting in coordinate metrology has not 

established the need for a comprehensive study of this kind. Moreover, how 

experimental design and analysis can be used in coordinate metrology to make 

comprehensive reports of testing and conclusions has been demonstrated.

9.2 Conclusions

I. There are two factors in sampling point selection: sampling location and 

size. The purpose of sampling theory is to maximize the amount of information 

collected. The sampling strategies are then developed to achieve the quantity of 

information pertinent to a population parameter at the lowest possible cost. Hence, 

sampling strategies are the keys to permitting valid inference about the dimensions 

and forms of a workpiece (Lee et al., 1997). The sampling strategies dealt with the 

location of points on the inspected conical form. The main advantages of using the 

mathematical sequence based methods are the ease of execution and the determinism. 

In other words, the experiment is repeatable and the sampling error can be controlled. 

To avoid capturing some systematic error of the measurement, randomizing the initial 

point was introduced. This hybrid avoidance might not be as good as randomizing 

every point (random sampling) but it was used to take advantage of both the 

randomization and the mathematical sequence. In dimensional discrete
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measurements, sample size (the number of points measured) was very critical since it 

contributed directly to the information collected firom the inspected parts. It is 

generally accepted that the larger the sample size, the smaller the error associated 

with the measurement. The graphical results published by Dowling et al. (1995) 

clearly showed the improving zone evaluation with denser sample sizes. Sample size 

is typically proportional to time and cost and for a given sampling strategy, savings in 

time may be achieved through a reduction of the sample size. It has been suggested 

that an alternate sampling strategy may be selected at a lower sample size while 

maintaining the same level of accuracy. Therefore, sample size was included as a 

factor of interest in statistical analysis. Three sampling models, Hammersley 

sequence based method, Halton-Zaremba sequence based method, and Uniform 

sampling method (Aligned Systematic), were derived based on the procedure 

presented by Lee et al. (1997). They were statistically compared to find the best 

method of various sample sizes. It is important to note that the aligned systematic 

sampling with small sample sizes like 8 or 16 coupled with the linear LSQ could 

result in invalid parameters for conical surface. Therefore, the sample size of 64 was 

recommended due to the high information provided and low cost compared to that at 

higher sample sizes. The sampling method recommended was Hammersley based 

scheme due to the high information collected and ease of computation over the other 

two.

2. Tolerance conical zone evaluation involves a fitting of the sampled discrete 

points. The linear error model using the Limaçon approximation was derived. In
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addition, the nonlinear form of the errors was also developed. Then, they were fitted 

to find the substitute (ideal) conical feature and its minimum enclosing zone. The 

most commonly used method to find such zone estimation in practice is the method of 

least squares (LSQ) due to its uniqueness, efficiency, robusmess, and simplicity for 

linear systems. Even though the LSQ zone evaluation is based on sound 

mathematical principles, it does not follow the intent of the ANSI Y14.5M-1994 

(ASME, 1995) well. It might overestimate the tolerance zone since it attempts to 

minimize the sum of the squares of the errors. In other words, it does not attempt to 

minimize the zone of the errors directly. Not only does it reject bad parts, but it 

might also reject some good parts. This, in turn, leads to higher production cost. 

With this disadvantage, another approach is called for. The optimization approach 

which is a better match for the definition of the minimum zone than the LSQ has 

shown its potential for basic features inspection in literature. The LSQ and 

optimization approaches (linear LSQ, normalized linear LSQ, linear and nonlinear 

optimizations) were formulated by using the error models derived to find such zones. 

As concluded firom experimental analysis, the differences of the linear and nonlinear 

deviations were quite appreciable. Coupled with the nonlinear deviation, the 

optimization algorithm (NLOPT) was the most effective and recommended for 

adoption in practice by the experimental analysis conducted in this research.

With the implementation of these guidelines, the conical feature inspection is 

more accurate, reliable, and efficient. The possibility of rejecting some good parts is 

also reduced, resulting in a cost savings.
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3. No explicit experimental analysis of path planning in relation with sample 

point determination and zone estimation was conducted in this research.

9.3 Recommendations fyr Future Research

1. The path planning procedure can be easily extended to cover internal 

conical features (nozzles, for example). The CMM probe path study shows that 

further work in optimizing the inspection path (time) must allow better utilization of 

sampling theories with a range of sampling points, not only for the conical features 

but also other features. Shortest path algorithm may be derived and employed. Refer 

to Kim and Raman (2000) for how TSP was employed for path minimization in 

flatness. Thus, further improvements to inspection results can result

2. Sampling strategies and sizes should be taken into consideration for other 

form features. Torus and other complex shapes should be studied comprehensively 

for both sampling and fitting issues, using an approach suggested for cones in this 

dissertation.

3. With regards to zone fitting, the gradient-based algorithms are most 

suitable if a smooth objective function (continuous first and second derivatives) can 

be formulated. Hence, using a gradient-based method with global strategy (making 

several runs from several initial solutions to avoid local optima traps) may be 

formulated. However, this kind of optimization model is not easily formulated. 

Many minimax fit models do not have smooth objective functions. They may suffer 

fix>m numerical instabilities with respect to convergence because the first or second

197



derivatives of the objective functions are not continuous. The comparisons between 

different optimization algorithms may suggest the use of more robust and efficient 

algorithms for specific features. Alternatively, heuristic search algorithms like 

genetic algorithm, simulated annealing, and tabu search may be able to avoid the 

local optima traps and find the best minimum conical zone. Literature using genetic 

algorithm on simpler forms show that good results could be obtained.

4. The support vector machine regression also shows some potential in 

finding minimum enclosing zone such as straightness and flamess. Other features 

may too benefit from this technique together with the use of kernel functions.

5. Adaptive sampling (Badar et al., 2000; 2001) utilizing search methods may 

again be used, combined with knowledge regarding the errors caused by 

manufacturing processes.

6. Software developed based on the findings of this research could allow for 

the development of better standards and solutions for industry.
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APPENDIX A

PERFORMING GUIDES FOR THE EXPERIMENT
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To avoid any confusion in carrying out the entire experiment, this section 
presents an experiment procedure of this research starting from generating the 
sampling points according to the studied sampling strategies to executing the SAS 
program:

1. In MATLAB, change the working directory to where the program or "m” files 
are stored or include it in the searched path. Run “conesampling.m" and save 
the generated master path file as “...a.pat”. File naming should be consistent 
for ease of recognition as follows:

a. The first two letters are named after the sampling strategies such as 
"hm'\ “hz”, and “as”.

b. The third letter is a number. 8,1,6, and 2 represent 8, 16, 64, and 256 
collected points.

c. The fourth letter represents the size of the cone, "s” is for the smaller 
ones (right cones) and “1” is for the bigger ones (conical frustums).

d. The last letter represents the way the CMM execute the measuring or 
constructing the inspected parts: "a” or “o”. "a” is the suffix used in 
the master path file and “o” is used in the duplicated path files.

2. Run "editpathfile.m" in MATLAB and load the above master path file. This 
program generates the duplicate path files in the format suitable for the CMM.

3. Copy those duplicate files to the CMM controller (PC).

4. Prepare the CMM programs for both sizes of all specimens.

5. Execute the CMM programs for each selected specimen.

6. Backup the result files *.mea and delete them from the controller.

7. Merge and format *.mea files into a text file to be loaded in Excel for each 
specimen by running "FolderList.exe”. This program is written by using 
Visual Basic. If the directory structure causes some errors, edit the source 
code accordingly.

8. Execute “DataAnalysis6.xls” with Macros enabled in Excel. This macro 
program automatically loads and arranges the above text file into Excel cells. 
This macro is written by using Visual Basic for Application. The source code 
can be edited rather easily if needed. There are 384 combinations for every 
factor considered in this experiment. Hence, the macro should be executed 
384 times to obtain all the results.
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9. Run “SAS Conicity.xls” to format the files to be imported into SAS for all 
384 data.

10. Rim “Conicity Analysis.sas” in SAS.

11. If invalid parameters are encountered, the data removal process is called for 
by rerunning Steps 9 and 10 but with “SAS Conicity for Missing Data..xls" 
and “Conicity Analysis for Missing Data.sas'’.
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APPENDIX B

MODEL ADEQUACY CHECKING PLOTS FOR THE EXPERIMENTAL 
DESIGN USED BEFORE REMOVING THE INVALID DATA
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INVALID PARAMETERS OBTAINED BY USING ALIGNED SYSTEMATIC
SAMPLING
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Parameters Fitting
Normalized LLSQ LLSO LOPT NLOPT

RO 83.16086698 83.16086698 1.9705 2.0495
S -32.03736576 -32.03736576 -0.58273018 -0.594327757
m 39.23446713 39J3446713 0.008544415 0
XO -101.1983594 -101.1983594 0.04260321 0
n 20.94183939 20.94183939 0 0.004956086

YO -54.0536615 -54.0536615 0.059567483 0.011145313
R1 NA NA 0.2395 0.2395

CHeight NA NA 2.9705 3.045457625
(a) Sample Size of 8 for the Large Specimen #1

Parameters Fitting
Normalized LLSQ LLSO LOPT NLOPT

RO 5.234977933 5.234977933 2.013642771 2.0495
S 7.035893769 7.035893769 -0.577105738 -0.589677117
m -9.52817328 -9.52817328 0 0
XO -3.96495583 -3.96495583 0 0
n -5.031698669 -5.031698669 0 0.003796806

YO -2.170242151 -2.170242151 0 0.017108497
R1 NA NA 0.253758823 0.2605

CHeight NA NA 3.0495 3.033863701
(b) Sample Size of 8 for the Large Specimen #2

Parameters Fitting
Normalized LLSO LLSO LOPT NLOPT

RO 45.33640167 45.33640167 2.017755631 2.0495
S -9.912263893 -9.912263893 -0.583404739 -0.594560196
m 11.61189141 11.61189141 0 0
XO -53.99900583 -53.99900583 0 0
n 6.246442075 6.246442075 0 0.004908753

YO -28.88613059 -28.88613059 0 0.011051484
R1 NA NA 0.2605 0.2395

Cheight NA NA 3.012069517 | 3.044267024
(c) Sample Size of 8 for the Large Specimen #3
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Parameters Fitting
Normalized LLSO LLSO LOPT NLOPT

RO 4.712829232 4.712829232 2.012827894 2.0495
S 4.788900268 4.788900268 -0.580739877 -0.593798225
m -6.721031172 -6.721031172 0 0
XO -3.326265477 -3.326265477 0 0
n -3.5466361 -3.5466361 0 0.003238668

YO -1.815608399 -1.815608399 0 0.006808342
R1 NA NA 0.241861639 0.2395

CHeight NA NA 3.0495 3.048173479
(d) Sample Size of 8 for the Large Specimen #4

Parameters Fitting
Normaiized LLSO LLSO LOPT NLOPT

RO -31.46954881 -31.46954881 2.0495 2.0495
S 6.951054449 6.951054449 -0.603193656 -0.596209971
m -8.985711238 -8.985711238 0.004252101 0
XO 39.9777627 39.9777627 0.00675615 0
n 5.735548848 5.735548848 0 0

VO -25.41449945 -25.41449945 0 0
R1 NA NA 0.257713244 0.2605

CHeight NA NA 2.9705 3.000620733
(e) Sample Size of 16 for the Large Specimen #1

Parameters Fitting
Normalized LLSO LLSO LOPT NLOPT

RO -20.15993649 -20.15993649 2.027368228 2.0495
S 2.262743315 2.262743315 -0.581960462 -0.590931691
m -3.391453267 -3.391453267 0.0006328 0

XO 26.49744902 26.49744902 0.004619202 0
n 2.178647197 2.178647197 0 0

YO -16.84914927 -16.84914927 0 0.003976694
R1 NA NA 0.2526798 0.2605

CHeight NA NA 3.0495 3.027422673
(0 Sample Size of 16 for the Large Specimen #2
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Parameters Fitting
Normalized LLSQ LLSO LOPT NLOPT

RO 0.129589325 0.129589325 2.026100182 2.044553144
S -2.072642725 -2.072642725 -0.585211485 -0.593985443
m 1.772522918 1.772522918 0 0
XO 2.275744542 2.275744542 0 0
n -1.118022488 -1.118022488 0 1.72064E-06

YO -1.450949 -1.450949 0.001956996 0.006181431
R1 NA NA 0.2605 0.2395

CHeieht NA NA 3.017029276 3.038884479
(g) Sample Size of 16 for the Large Specimen #3

Parameters Fitting
Normalized LLSQ LLSQ LOPT NLOPT

RO -10.9666344 -10.9666344 2.049296958 2.049297837
S 2.125774101 2.125774101 -0.596722008 -0.59461495
m -3.236085199 -3.236085199 0.002160093 0
XO 15.51872447 15.51872447 0 0
n 2.068068078 2.068068078 0 0

YO -9.867749674 -9.867749674 0 0
R1 NA NA 0.2605 0.2605

CHeight NA NA 2.997705689 3.008329737
(h) Sample Size of 16 for the Large Specimen #4

Parameters Fitting
Normalized LLSQ LLSQ LOPT NLOPT

RO 35.4880281 35.4880281 1.532524931 1.5444925
S -2.145126348 -2.145126348 -0.583837873 -0.588596372
m 2.096032553 2.096032553 0.004424754 0
XO -45.77407666 -45.77407666 0 0
n -0.714818333 -0.714818333 0 0.001450883

YO 14.48751274 14.48751274 0 0.018325889
R1 NA NA 0.009 0.008550268

CHeight NA NA 2.6095 2.6095
(0 Sample Size of 8 for the Small Specimen #1
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Parameters R ttine
Normalized LLSQ LLSO LOPT NLOPT

RO 17.45151683 17.45151683 1.513102184 1.544793826
S -8.849468053 -8.849468053 -0.580433693 -0.599078673
m 11.13252415 11.13252415 0 0
XO -21.46276153 -21.46276153 0 0
n -3.518314851 -3.518314851 0 0.004666867

YO 6.778307253 6.778307253 0 0.013545825
Ri NA NA 0 0

CHeieht NA NA 2.606847605 2.578615958
(j) Sample Size of 8 for the Small Specimen #2

Parameters Fittine
Normalized LLSO LLSQ LOPT NLOPT

RO 22.46610082 22.46610082 1.517437042 1.547848876
S -3.468475364 -3.468475364 -0.580146008 -0.598202583
m 3.873516899 3.873516899 0 0
XO -28.21768192 -28.21768192 0 0
n -1.249063584 -1.249063584 0 0.002144287

VO 8.924073037 8.924073037 0 0.018867469
Rl NA NA 0.003546033 8.99987E-06

CHeieht NA NA 2.6095 2.587484443
(k) Sample Size of 8 for the Small Specimen #3

Parameters Fittine
Normalized LLSO LLSO LOPT NLOPT

RO 15.6703173 15.6703173 1.532068452 1.54701833
S 6.733503868 6.733503868 -0.587411654 -0.596364673
m -9.892398553 -9.892398553 0 0
XO -19.04332445 -19.04332445 0 0
n 3.08229038 3.08229038 0 0.000657264

VO 6.038005888 6.038005888 0 0.016175612
Rl NA NA 0 0.009

CHeieht NA NA 2.608168293 2.578989666
(1) Sample Size of 8 for the Smal1 Specimen #4
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Parameters Fittine
Normalized LLSQ LLSO LOPT NLOPT

RO 27.11297396 27.11297396 1.533863713 1.542099723
S -8.866348999 -8.866348999 -0.584350915 -0.587507079
m 10.38034986 10.38034986 0.009141599 0
XO -32.0740468 -32.0740468 0 0
n -5.428631464 -5.428631464 0 0.000753706

YO 16.71357725 16.71357725 0 0.018017838
Rl NA NA 0.009 0.009

CHeieht NA NA 2.6095 2.6095
(m) Sample Size of 16 for the Small Specimen #1

Parameters Fittine
Normalized LLSO LLSO LOPT NLOPT

RO -0.361500213 -0.361500213 1.517692779 1.542429285
S 0.521880815 0.521880815 -0.581622902 -0.598651881
m -1.397156593 -1.397156593 0 0
XO 2.37612964 2.37612964 0 0
n 0.728336927 0.728336927 0 0.0029746

YO -1.238123803 -1.238123803 0 0.01291377
Rl NA NA 0.009 0

CHeieht NA NA 2.593936336 2.576504532
(n) Sample Size of 16 for the Small Specimen #2

Parameters Fittine
Normalized LLSO LLSO LOPT NLOPT

RO 11.75134712 11.75134712 1.522199729 1.54414302
S -11.79404579 -11.79404579 -0.588666073 -0.596979188
m 14.05258178 14.05258178 0.022999867 0
XO -12.81366316 -12.81366316 0 0
n -7.313439118 -7.313439118 0 0.000297841

YO 6.673434599 6.673434599 0 0.01816585
Rl NA NA 0.009 0

CHeieht NA NA 2.570557059 2.586594391
(o) Sample Size of 16 for the Small Specimen #3
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Parameters Fittine
Normalized LLSQ LLSQ LOPT NLOPT

RO 15.24583458 15.24583458 1.533848037 1.540550938
S -5.02816995 -5.02816995 -0.587447416 -0.592160391
m 5.558945565 5.558945565 0 0
XO -17.18695523 -17.18695523 0 0
n -2.909983331 -2.909983331 0 0

YO 8.959272391 8.959272391 0 0.015674227
Rl NA NA 0.009 0

CHeieht NA NA 2.595718352 2.601577143
(p) Sample Size of 16 for the Small Specimen #4

223



APPENDIX D

EXAMPLES OF VALID PARAMETERS OBTAINED BY USING ALIGNED
SYSTEMATIC SAMPLING
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Parameters Rttine
Normalized LLSQ LLSO LOPT NLOPT

RO 1.539578361 1.539578361 1.535398586 1.543165855
S -0.585570454 -0.585570454 -0.584939102 -0.587915637
m -0.000209097 -0.000209097 0.005473048 0
XO 9.I0566E-05 9.10566E-05 0 0
n 2.7686 IE-05 2.7686 lE-05 0 0.001669468

YO -3.34042E-05 -3.34042E-05 0 0.018542943
R l NA NA 0.009 0.009

CHeieht NA NA 2.6095 2.6095
(a) Sample Size of 64 for the Small Specimen #1

Parameters Fittine
Normalized LLSQ LLSO LOPT NLOPT

RO 1.539668486 1.539668486 1.542546578 1.543257919
S -0.591562113 -0.591562113 -0.59460321 -0.594302499
m -0.000485332 -0.000485332 0.003263665 0
XO 0.000255125 0.000255125 0 0
n 5.62453 E-05 5.62453E-05 0 0.001680285

YO -8.12073E-05 -8.12073E-05 0 0.016955321
Rl NA NA 0.009 0.009

CHeieht NA NA 2.579109146 2.581611086
(b) Sample Size of 64 for the Smail Specimen U4

Parameters Fittine
Normalized LLSO LLSO LOPT NLOPT

RO 1.533193445 1.533193445 1.512131673 1.547746765
S -0.592254834 -0.592254834 -0.581439022 -0.599573205
m -0.000272284 -0.000272284 0 0
XO 0.000150143 0.000150143 0 0
n -0.00015454 -0.00015454 0 0.005664825

YO -2.94028E-05 -2.94028E-05 2.61056E-05 0.014954934
Rl NA NA 0.009 0

CHeieht NA NA 2.585192281 2.581414167
(c) Sample Size of 256 for the Small Specimen #2
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Parameters Fitting
Normalized LLSQ LLSO LOPT NLOPT

RO 1.534248938 1.534248938 1.518401608 1.5495
S -0.58993831 -0.58993831 -0.581714885 -0.597674631
m -0.000241566 -0.000241566 0 0
XO -0.00012315 -0.00012315 0 0
n -0.000287056 -0.000287056 0 0.00416287

YO 8.76916E-05 8.76916E-05 0 0.019490935
R l NA NA 0.009 0

CHeight NA NA 2.59474469 2.592547715
(d) Sample Size of 256 for the Small Specimen #3

Parameters Fitting
Normalized LLSO LLSO LOPT NLOPT

RO 2.045792044 2.045792044 2.033868924 2.0495
S -0.589641088 -0.589641088 -0.583922798 -0.591259013
m -3.44319E-05 -3.44319E-05 0 0
XO 0.000102692 0.000102692 0 0
n -2.17751 E-05 -2.17751 E-05 0 0.002009778

VO -5.S9836E-05 -5.89836E-05 0.000192318 0.00625921
Rl NA NA 0.2605 0.2605

CHeight NA NA 3.0369921 3.02574669
(e) Sample Size of 64 for the Large Specimen #2

Parameters Fitting
Normalized LLSO LLSO LOPT NLOPT

RO 2.038883454 2.038883454 2.030468722 2.043476978
S -0.591661667 -0.591661667 -0.587453553 -0.593436578
m 0.000148748 0.000148748 0 0
XO -2.03122E-05 -2.03122E-05 0 0
n -0.00016169 -0.00016169 0 0.002444509

YO 5.63763E-05 5.63763E-05 0 0.006050247
R l NA NA 0.2605 0.2395

CHeight NA NA 3.012950868 3.039881676
(f) Sample Size of 64 for the Large Specimen #3
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Parameters Fittine
Normalized LLSQ LLSO LOPT NLOPT

RO 2.031650286 2.031650286 2.003714574 2.0495
S -0.588893587 -0.588893587 -0.57787766 -0.595033014
m 0.000319584 0.000319584 0 0
XO -0.000171312 -0.000171312 0 0
n -7.93956E-05 -7.93956E-05 0 0

YO 3.79135E-05 3.79135E-05 0 0.005899964
Rl NA NA 0.2605 0.2395

CHeieht NA NA 3.016580662 3.041848028
(g) Sample Size of 256 for the Large Specimen #1
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The SAS S y e tee  

The GUI Proce d u re  

C lae s Level In fo rm atio n

15:56 F r id a y , S e p te e h e r  23, 2001

C lass L evels V alues

SArea 2 1 2

Specimen 4 1 2  3 4

S S tra te g y 3 1 2 3

SS ize 4 1 2  3 4

F i t t i n g 4 1 2  3 4

NOTE: Due to  e ie e in g  v a lu e s

Number o f  o b s e rv a t io n s  384 

o n ly  352 o b s e rv a tio n s  can  be  u se d  in t h i s  a n a ly s i s .

The SAS System 

The GUI P rocedure

15:56 F rid a y , September 23, 2001

Dependent V a r ia b le : C o n lc lty C on lc lty

Source DF
Sue o f  

Squares Mean Square F Value Pr > F

Model 33 0.08362052 0.00089315 54.03 (.0001

E rro r 258 0.00423387 0.00001664

C o rrec ted  Total 351 0.08731439

R-Square

0.351153

Coeff Ww 

12.32680

Root USE 

0.004080

Conic I ty  Mean 

0.033095

Source

SArea
SpecleenC SA rse) 
S S tra teg y  
SSize 
F i t t in g
S A rea 'S S tra teg y  
SArea«SSize 
S A re a 'F it t in g  
SStrategy’SSize 
S S tr a te g y 'F l t t in g  
S S lz e 'F l t t in g  
SA rea*SStrateg<SSIze 
S A re a 'S S tra t 'F i t t in g  
S A rea 'S S ize« F ittin g  
S S tra t 'S S iz e * F it tIn g  
S A r e 'S S tr 'S S Iz 'F i t t I

Source

SArea
Spec Isen(SA rea) 
S S tra te g y  
S S ize 
F i t t in g
S fS e a 'S S tra te g y  
SA rea 'SS lze 
S A rea*F Itting  
S S tra te g y 'S S Iz e  
S S tra te g y * F it t in g

DF Type 1 SS Mean Square F Value P r > F

1 0.00200283 0.00200283 120.34 (.0001
6 0.01765327 0.00294321 176.84 (.0001
2 0.00209783 0.00104891 63.02 (.0001
3 0.01328198 0.00642733 386.13 (.0001
3 0.02665436 0.00888479 533.85 (.0001
2 0.00039623 0.00013814 11.31 (.0001
3 0.00136358 0.00045453 27.31 (.0001
3 0.00634926 0.00211642 127.17 (.0001
6 0.00394041 0.00065673 39.46 (.0001
6 0.00017553 0.00002325 1.76 0.1082
3 0.00153676 0.00017075 10.26 (.0001
6 0.00050323 0.00008387 5.04 (.0001
E 0.00044335 0.00007393 4 .4 5 0.0003
3 0.00046352 0.00005150 3 .09 0.0015

14 0.00047067 0.00003362 2 .02 0.0168
14 0.00028105 0.00002008 1.21 0.2706

DF Type I I I  SS Mean Square F Value P r > F

1 0.00173352 0.00173352 104.16 (.0001
6 0.01765927 0.00294321 176.84 (.0001
2 O.OOII32I5 0.00056608 34.01 (.0001
3 0.01501400 0.00500467 300.71 (.0001
3 0.02687719 0.00895906 538.31 (.0001
2 0.00025886 0.00012343 7.78 0.0005
3 0.00133138 0.00044393 26.68 (.0001
3 0.00596522 0.00198841 119.47 (.0001
6 0.00186130 0.00031022 18.64 (.0001
6 0 .0 0 0 II6 I8 0.00001336 1.16 0.3263
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The SAS S ystea

The GUI Procadurs

I5;5G F rid a y , S ap taabar 23, 2001

Dapandant V arlofala: C o n lc lty  

Sourca

S S lz a 'F l t t ln g  
8A rea*S8trataa*88lza 
S A rea 'S S tra t’F I t t  ing 
S A raa 'S S Iz a 'F IttIn g  
S S tra t* S 8 lza* F IttIn g  
SA ra*SStr*SSlz»FIttI

Source

SArea

C on lc lty

DF Type I I I  SS Mean Square F Value Pr > F

3 0.00153676 0.00017075 10.26 < 0001
6 0.00051230 0.00008538 5.13 <.0001
6 0.00043715 0.00007286 4 .38 0.0003
3 0.00046352 0.00005150 3.03 0.0015

M 0.00047067 0.00003362 2.02 0.0168
M 0.00028105 0.00002008 1.21 0.2706

Ing th e  Type 111 MS fo r SpacIaan(SA rea) a s  an E rro r Tara

OF Type I I I  SS Mean Square F Value P r > F

1 0.00173352 0.00173352 0.53 0.4713
The SA8 Systea 

The GUI Procedure

I5:5G F rid a y , S ap taabar 23, 2001

Laval o f Laval o f “ " •" " C o n  I C I t y
Spaclaan SArea N Naan S td  Dev

1 1 44 0.03062838 0.01680647
2 1 44 0.03332473 0.01820322
3 1 44 0.04416436 0.01854335
4 1 44 0.02720322 0.01304866
1 2 44 0.04213174 0.01324785
2 2 44 0.03166733 0.01128537
3 2 44 0.02626363 0.01007631
4 2 44 0.02277051 0.00733415

The SAS Systea 

The GUI Procedure

15:56 F rid a y , S ap taabar 23, 2001

Laval o f  
S S tra teg y

" • —Con Ic I ty " " — —  
Mean S td  Dev

1 128 0.03271621 0.01604647
2 128 0.03067370 0.01543075
3 36 0.03682037 0.01543751

The SAS System 15:56 F rid a y ,

The GUI Procedure

Laval o f ___________ Con
SSize N Mean S td  Dev

1 80 0.02133632 0.01303501
2 80 0.02834353 0.01383175
3 36 0.03658882 0.01387817
4 36 0.04231016 0.01460613

The SAS System 15:56 F rid ay ,

The GUI Procedure

Laval o f
F i t t in g N Mean S td  Dev

1 80 0.03363534 0.01337544
2 36 0.04133675 0.01283010
3 36 0.01337876 0.01103539
4 80 0.03312408 0.0IS48I50

The SAS System 15:56 F rid ay

2001

2001 8

The GUI Procedure

Level o f Laval o f -""Con le i  ty ----------------
SArea S S tra teg y N Mean S td  Dev

1 1 64 0.03593904 0.01919333
I 2 64 0.03351087 0.01675583
1 3 48 0.03743523 0.01809350
2 1 64 0.02349339 0.01138326
2 2 64 0.02784854 0.01366348
2 3 48 0.03614671 0.01237672
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The sms S yetee
The GUT Procedure

15:56 F r id a y , Septem ber 23. 2001 9

Level of Level of
Smree SSize M Neen Std Dev

1 1 40 0.02158153 0.01343939
1 2 40 0.03290833 0.01653495
I 3 46 0.04094968 0.01617593
1 4 48 0.04373722 0.01728642
2 I 40 0.02241112 0.01289904
2 2 40 0.02497873 0.00923363
2 3 48 0.03222796 0.00942344
2 4 48 0.04088311 0.01132434

The sms Syetee 15:56 F riday . Septee

The GUT Procedure

Level of Level o f
smree F it t in g M Neen Std Dev

I I 40 0.03826196 0.01350139
1 2 48 0.04647912 0.01164448
1 3 48 0.01466424 0.00871981
1 4 40 0.04448015 0.01563914
2 1 40 0.02900993 0.01167078
2 2 48 0.03619438 0.01196319
2 3 48 0.02409328 0.01120718
2 4 40 0.03376801 0.01349335

Level of

The sms Syetee 

The GUI Procedure

15:56 F rtdey . September 23. 2001 II

n t e i t y ^
SStrategy SSlze N mean Std Dev

1 1 32 0.02127191 0.00864113
! 2 32 0.02976393 0.01495395
1 1 32 0.03736493 0.01539084
! 4 32 0.04246408 0.01597245
2 1 32 0.01625625 0.00929386
2 2 32 0.02805866 0.01244177
2 3 32 0.03658305 0.01307515
2 4 32 0.04182087 0.01360151
3 1 16 0.03492530 0.01790490
3 2 16 0.02907247 0.01520450
3 3 32 0.03581849 0.01345976
3 4 32 0.04264554 0.01460404

The sms Syetee 15:56 F riday . Sep tern

The GUT Pyocediee

Level of Level o f n i e i t y - .................
SSlze F it t in g  N Neen Std  Dev

1 ! 16 0.01618502 0.00625997
1 2 24 0.03526255 0.01281236
1 3 24 0.01449375 0.00946063
I 4 16 0.01916216 0.00766489
2 1 16 0.03094143 0.00980239
2 2 24 0.03732982 0.01056615
2 3 24 0.01460572 0.00892517
2 4 16 0.03587289 0.01140306
3 I 24 0.03765155 0.01009821
3 2 24 0.04303552 0.01174471
3 3 24 0.02192731 0.00976344
3 4 24 0.04374090 0.01175041
4 1 24 0.04305063 0.00990339
4 2 24 0.04971911 0.01160149
4 3 24 0 02648826 0.01165367
4 4 24 0.04998267 0.01149850

The sms Syetee 15:56 F riday . Sep tee

23. 2001 12

23. 2001 13

Level o f 
SAree

Le««t o f 
SStretegy

I
I
I1
2 
2 
2 
2 
3 
3 
3 
3 
I 
I I 
I

The CUT Proced tee

Level o f 
SSize N Neen Std Dev

16 0.01979671 0.00851224
16 0.03588981 0.01811294
16 0 04229287 0.01838598
16 0.04577677 0.01960578
16 0.01866592 0.01149919
16 0.03214563 0.01375553
16 0.04051368 0.01509086
16 0.04271827 0.01581841
8 0.03098240 0.02097526
8 0.02847076 0.01925137

16 0.04004248 0.01584573
16 0.04271663 0.01717671
16 0.02274712 0.00878723
16 0.02363804 0.00734947
16 0.03243699 0.00998483
16 0.03915140 0.01092926
16 0.01384658 0.00582166
16 0.02397168 0.00975022
16 0.03265241 0.00962405
16 0.04092347 0.01141909
a 0.03886820 0.01454208
8 0.02967418 0.01113267

16 0.03159449 0.00923351
16 0.04257445 0.01207164
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Level o f  
SArea

L evel o f

The sms S y e tee  

The CUT Proced u re  

Level o f

15:55 F r id a y , Septem ber 23, 2001 14

—-C o n ic ity -
S S tra te g y F i t t i n g N Mean S td  Dev

1 1 16 0.03326026 0.01411310
1 2 16 0.04576532 0.01505185
1 3 16 0.01287403 0.00850513
1 4 16 0.04583643 O.O I6I8I43
2 1 16 0.03427223 0.01424202
2 2 16 0.04442516 0.00330266
2 3 16 0.01566737 0.00374374
2 4 16 0.03367867 0.01653336
3 1 B 0.04424463 0.00861453
3 2 16 0.04322687 0.00333667
3 3 16 0.01545128 0.00810532
3 4 a 0.05137040 0.01001870
1 I 16 0.02756055 0.01040286
1 2 16 0.03334853 0.01064133
I 3 16 0.02428477 0.01081373
1 4 16 0.03217364 0.01200125
2 1 16 0.02708651 0.01283822
2 2 16 0.03337120 0.01211062
2 3 16 0.01345311 0.01120564
2 4 16 0.03148332 0.01433572
3 I a 0.03575553 0.01025734
3 2 16 0.04126334 0.01213377
3 3 16 0.02854135 0.01060387
3 4 a 0 .0 4 I5 I4 I5 0.01183332

Tha sms S y s te a  

The GUI P rocedure

15:56 F r id a y , Septem ber 23, 2001 15

Level o f L evel o f L evel o f
SArea S S ize F i t t i n g N Mean S td  Dev

1 1 1 8 0.01636077 0.00554463
I 1 2 12 0.03737776 0.01122752
I 1 3 12 0.00333315 0.00523672
1 1 4 8 0.01337151 0.00677487
1 2 1 8 0.03833116 0.00573733
1 2 2 12 0.04456340 0.00686647
I 2 3 12 0.00386882 0.00438741
1 2 4 8 0.04450214 0.00680672
1 3 I 12 0.04408538 0.00816373
1 3 2 12 0.05020874 0.01013761
1 3 3 12 0.01826864 0.00877325
I 3 4 12 0.05123536 0.00352034
I 4 I 12 0.04655260 0.00385585
1 4 2 12 0.05376658 0.01165766
I 4 3 12 0.02058035 0.00364752
1 4 4 12 0.05404337 0.01145807
2 1 1 8 0.01540326 0.00720038
2 I 2 12 0.03314734 0.01440133
2 1 3 12 0.01304835 0.01066302
2 1 4 8 0.01835281 0.00885331
2 2 1 8 0.02343171 0.00673133
2 2 2 12 0.03003623 0.00843265
2 2 3 12 0.01334263 0.00362358
2 2 4 8 0.02724364 0.00788033
2 3 1 12 0.03121712 0.00743323
2 3 2 12 0.03586231 0.00856620
2 3 3 12 0.02558537 0.00364546
2 3 4 12 0.03624645 0.00868321
2 4 1 12 0.03354866 0.00300374
2 4 2 12 0.04567164 0.01047765
2 4 3 12 0.03233616 0.01071144
2 4 4 12 0.04531537 0.01044415
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Lsv«l of 
SStratagy

The SAS Syatae 15:56 Friday , Saptaabar 23

The CLR Procedure

Level of Level of Conici ty—— -
SSixe F it t in g  N Mean Std Dev

1 1 8 0.02029617 0.00499413
1 2 8 0.02871200 0.00651454
1 3 a 0.01174475 0.00683436
1 4 8 0.02433473 0.00614682
2 1 8 0.03124578 0.01220271
2 2 8 0.03727076 0.01283335
2 3 8 0.01421808 0 00895462
2 4 8 0.03632110 0.01429282
3 1 8 0.03881974 0.01209154
3 2 8 0.04365059 0.01412399
3 3 8 0.02186016 0.01065147
3 4 8 0.04512925 0.01409523
4 1 8 0.04327993 0.01219793
4 2 8 0.04983449 0.01420735
4 3 8 0.02649472 0.01245055
4 4 8 0.05024719 0.01416448
1 1 8 0.01207386 0.00451652
1 2 8 0.02858806 0.00886342
1 3 8 0.01037349 0.00417081
1 4 8 0.01398958 0.00519183
2 1 8 0.03063709 0.00753541
2 2 8 0.03487727 0.00897923
2 3 8 0.01129558 0.00550869
2 4 8 0.03542469 0.00859602
3 1 8 0.03740029 0.00939267
3 2 8 0.04293134 0.01095497
3 3 8 0.02255891 0.01021415
3 4 8 0.04344166 0.01091736
4 1 8 0.04260637 0.00865630
4 2 8 0.04919607 0.01025286
4 3 8 0.02601298 0.01108974
4 4 8 0.04946806 0.01004814
1 2 8 0.04848759 0.01088723
1 3 8 0.02136301 0.01216605
2 2 8 0.03984143 0.01036435
2 3 8 0.01830351 0.01108530
3 1 8 0.03673463 0.00990136
3 2 8 0.04252464 0.01153188
3 3 8 0.02136286 0.00972637
3 4 8 0.04265181 0.01149525
4 1 8 0.04326559 0.00990930
4 2 8 0.05012676 0.01160824
4 3 8 0.02695707 0.01295062
4 4 8 0.05023275 0.01150524

The SAS Syatae 15:56 Friday . September 23.

23. 2001 t6

The GLU P ro ced m

OLncon'm M ultiple Rampe Teat fo r Conlclty

NOTE: This te s t  co n trô la  the Type I coapariaonuise e rro r  r a te ,  not the ex p erlaen te ise  e rro r
ra te .

Alpha 0.05
E r r v  Da or sea o f Fraadw  258
Error Wean Square 0.000017

of I
C r it ic a l  Range

2
.0008564

VI th  the I l a t t e r  < t not s ig n lfIc a n tly  d i f f e

(Xavran Grouping 

A 

3

N

176

SArea

t

0.0307098 176 2
The SAS Syatae 15:56 F riday . Saptaabar 23. 2001 18

The GLH Procad ira

Tukay'a S tudantizad Range (H8D) Test fo r Conlclty

NOTE: This te a t  c o n tro ls  the Type I axparieantv iaa  e r ro r  r a t e ,  bu t I t  generally  has a  higher 
T^w 11 e rro r  r a te  than RECUQ.

Alpha 0.05
& rror Degree s  o f Freedoe 258
& ro r  Mean Square 0.000017
C rit ic a l  Value o f Studantizad Range 2.78487 
Mlnlaue S ig n ific an t D ifference 0.0009

v ith  the : l e t t e r  a re  no t s ig n if  ican tly  d if f e r e n t .

Tukey Grouping 

A 

8
0.0354805

0.0307098

N
176

176

SArea

t

2
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The GLH Procedure

Level o f  Level o f  -■ -■C onlclty—
Specimen SArea N Mean S td  Dev

1 1 44 0.03062898 0.01680647
2 1 44 0.03992479 0.01820922
3 1 44 0.04416496 0.0I8S4395
4 1 44 0.02720322 0.01304866
1 2 44 0.04213174 0,01324785
2 2 44 0.03166733 0.01128597
3 2 44 0.02626963 0,01007631
4 2 44 0.02277051 0,00739415

The SAS S yetee  15:56 F rid a y , September 23, 2001 20

The GLH Procedure

Duncan'* M u ltip le  Range T est f o r  C o n lc lty

NOTE: T his t e s t  c o n tro ls  th e  Type I c o o p e rIso n e lse  e r r o r  r a t e ,  n o t th e  e x p e r le e n te ls e  e r r o r
r a t e .

Alpha 0.05
E rro r  Deg rees  o f  Freedom 258
E rro r  Mean Square 0.000017
Harmonic Mean o f  C e ll S iz e s  115.2

NOTE: C e ll s i z e s  a re  n o t e q u a l.

Number o f Means 2 3
C r i t i c a l  Range .001059 .001114

Means w ith  th e  same l e t t e r  a r e  n o t  s ig n i f i c a n t ly  d i f f e r e n t .

Duncan Grouping Mean N S S tra teg y

A 0.0368210 96 3

B 0.0327162 128 1

C 0.0306797 128 2

The SAS System 15:56 F rid a y , September 23, 2001 21

The GLH Procedure

T ukey's S tu d e n tlz e d  Range (HSO) T est fo r  C on lc lty

NOTE: This t e s t  c o n tro ls  th e  Type I experim en ts  I s e  e r r o r  r a t e ,  b u t I t  g e n e ra lly  has a  h ig h e r
Type 11 e r r o r  r a t e  than  REGNO,

Alpha 0.05
E rro r  D egrees o f  Freedom 258
E rro r  Mean Square 0.000017
C r i t i c a l  Value o f  S tu d e n tlz e d  Range 3.33385 
Minimum S ig n i f ic a n t  D iffe re n c e  0,0013
Harmonic Mean o f  C e ll S iz e s  115.2

NOTE: C e ll s i z e s  a re  n o t  e q u a l .

Means s i t h  th e  same l e t t e r  a r e  n o t s ig n i f i c a n t ly  d i f f e r e n t .

Tukey Grouping Mean N S S tra teg y

A 0.0368210 96 3

B 0.0327162 128 I

C 0.0306797 128 2
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The GLfI Procedure

Ouneen's M ultiple flange Teet fo r Conlclty

MOTE: This t e s t  co n tro ls  the Type t cooperisonsise  e rro r  r a te ,  n e t the experleentw ise e rro r
ra te

Alpha 0.05 
& ro r  Degrees o f Freedom 258 
6 rro r Mean Square 0.000017 
Harmonic Mean of Cell Sizes 87.27273

NOTE: Cell s iz e s  an■ not equal.

Number o f Means 
C r it ic a l  flange

2
.001216

3
.001280

4
.001323

Means with the same le t te r  a re  not s ig n if ic a n tly  d if fe re n t

Oiswan Grouping Mean N SSize

A 0.0423102 96 4

B 0.0365888 96 3

C 0.0283435 80 2

D 0.0219363 80 1

The SflS System 15:56 Friday. Septembe r  23. 2001 23

The GUI Procedure

Tukey' s  Studentlzed Range (H80) Test fo r Conicity

NOTE: This te s t  co n tro ls  the Type I expert men tv  ise  e rro r r a te ,  bu t i t  general ly has e higher 
Type 11 e rro r  r a te  then REGUQ.

Alpha 0.05
Error Degrees o f Freedom 25#
E rror Mean Square 0.00001f
C r it ic a l  Value o f Studentlzed flange 3.65699 
Minimum S ig n ific an t D ifference 0.0016
Harmonic Mean o f Cell Sizes 87.27273

NOTE: Cell s izes a re  not equal.

Means e i th  the same le t t e r  a re not s ig n if ic a n tly  d if f e r e n t .

Tukey Grouping Mean N SSize

A 0.0423102 96 4

a 0.0365888 96 3

C 0.0289435 80 2

0 0.0219963 80 1
The SAS System 15:56 Friday. September 23. 2001 24

The GUI Procedure

Duncan's M ultiple flange Test fo r Conlclty

NOTE: This te s t  co n tro ls  the Type I compar isonelse e rro r  r a te ,  not the expert men te  I se  e rro r
r a te .

Alpha 0.05
&-ror Degrees o f Freedom 258
E rror Mean Squere 0.000017
Harmonic Mean o f Cell Sizes 07.27273

NOTE; Cel I s iz e s  4M  not aq u el.

Mtadier o f Means 2 3 4
C rit ic a l  Range .001216 .001280 .001323

Means e l th  the sam1 l e t t e r  a re  no t s ig n if ic a n tly  d if fe re n t

Duncan Grouping Mean N F it tin g

A 0.0413367 96 2

8 0.0391241 80 4

C 0.0336359 80 !

D 0.0193788 96 3
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The GUI Proced u re

T ukey's S tu d en tlzed  Range (HSO) T est f o r  C o n lc lty

NOTE; T his t e s t  c o n t r o ls  the  Type I e s p e r la e n te ls e  e r r o r  r a t e ,  b u t I t  g e n e ra l ly  h as a  h ig h er
Type 11 e r r o r  r a t e  than  REGUQ.

Alpha 0 .05
E rro r Degrees o f  Freedoe 258
E rro r  Mean Square O.OOOOIf
C r i t ic a l  Value o f  S tu d en tlzed  Range 3.GSE98 
Mlnlaue S ig n if ic a n t  D iffe ren ce  O.OOIE
H araonic Mean o f  C a ll S iz e s  87.27273

NOTE: C all s iz e s  a re  n o t e q u a l.

Means e l t h  the l e t t e r  a re  n o t s ig n i f i c a n t ly  d i f f e r e n t .

Obs SArea

Tukey Grouping 

A 

8 

C 

D

Spec lean  S S tra tegy

Mean N F i t t in g  

0.0413357 95 2 

0.0391241 80 4 

0.033E3S9 80 1 

0.0193788 9E 3

The SAS S y stee  I5:5E F rid a y . S ep teeb er 23. 2001 

SSlze F i t t in g  C o n lc lty  Sequence p red  r e s id

1 1 1 1 1 1 0.023E23 9 0.015413 0.008209122
2 1 1 1 1 2 0.031415 10 0.022541 0.008874530
3 1 1 1 1 3 0.004009 II 0.002434 0.001575075
4 1 1 1 1 4 0.028127 12 0.019392 0.008734532
5 1 1 1 2 1 0.038185 17 0.035152 0.002033495
5 1 1 1 2 2 0.043955 18 0.042253 0.001701340
T 1 1 1 2 3 0.004257 19 0.002797 0.001450070
8 1 1 1 2 4 0.044435 20 0.042941 0.001494407
9 1 1 1 3 1 0.041221 5 0.041591 -.000470724

10 1 1 1 3 2 0.043007 6 0.047007 -.003999295
II 1 1 1 3 3 0.008528 7 0.011757 -.003138553
12 1 1 1 3 4 0.047850 8 0.049301 -.001441344
13 1 1 1 4 1 0.042143 13 0.044379 -.002235205
14 1 1 1 4 2 0.048554 14 0.051925 -.003270559
15 1 1 1 4 3 0.009788 15 0.015092 -.005304374
IE 1 1 1 4 4 0.048837 15 0.052305 -.003468989
17 1 1 2 1 1 0.008281 45 0.008805 -.000524075
IS 1 1 2 1 2 0.034711 46 0.030782 0.003928553
19 1 1 2 1 3 0.004335 47 0.004823 -.000485238
20 1 1 2 1 4 0.009408 48 0.010848 -.001439555
21 1 1 2 2 1 0.035875 37 0.030928 0.004948210
22 1 1 2 2 2 0.040952 38 0.035221 0.004731227
23 1 1 2 2 3 0.005155 39 0.005558 -.000512495
24 1 1 2 2 4 0.041231 40 0.035350 0.004870822
25 1 1 2 3 1 0.039119 1 0.037907 0.001211701
25 1 1 2 3 2 0.045099 2 0.044280 0.000818554
27 1 1 2 3 3 0.008585 3 0.015533 -.007045795
28 1 1 2 3 4 0.045359 4 0.044828 0.000530299
29 1 1 2 4 1 0.040598 25 0.040043 0.000554995
30 1 1 2 4 2 0.047054 25 0.047012 0.000052555
31 1 1 2 4 3 0.010482 27 0.017140 -.006557903
32 1 1 2 4 4 0.047047 28 0.047272 -.000225329
33 1 1 3 1 1 21
34 1 1 3 1 2 0.042549 22 o! 044255 -.001505780
35 1 1 3 1 3 0.005793 23 0.008005 -.002213235
3E 1 1 3 1 4 24
37 1 1 3 2 1 33
38 1 1 3 2 2 0.042155 34 0.040551 o !oOI5037I2
33 1 1 3 2 3 0.006212 35 0.005587 -.000375455
40 1 1 3 2 4 35
41 1 1 3 3 1 0.038923 41 0.038105 o !o008I8594
42 1 1 3 3 2 0.045103 42 0.044785 0.000318155
43 1 1 3 3 3 0.008954 43 0.012852 -.003887271
44 1 1 3 3 4 0.045105 44 0.045022 0.000083277
45 1 1 3 4 1 0.039535 29 0.040582 -.001145887
4E 1 1 3 4 2 0.045821 30 0.047809 -.001988488
47 1 1 3 4 3 0.010142 31 0.014954 -.004812311
48 1 1 3 4 4 0.045815 32 0.048015 -.002200373
49 1 2 1 1 1 0.015261 57 0.024709 -.008448725

236



Ihm 8 M  9y«tm# 15:56 Friday, Septeeber M . lOOt 27
Ob# SArea Spaciaan SStraUgy 88 Iz# Fl inQ Conleity Saquane# prad raa id

SO 1 2 1 1 0.023118 58 0.031837 -.008718385
51 1 2 1 1 0.008922 59 0.011730 -.002808579
52 I 2 1 1 0.019461 60 0.028688 009226525
S3 t 2 1 2 0.045059 65 0.045447 -.000388550
54 1 2 1 2 0.051498 66 0.051559 -.000060581
55 1 2 1 2 0.010199 67 0.012093 -.001894421
56 1 2 1 2 0.052563 68 0.052237 0.00032608257 1 2 1 3 0.052871 53 0.050987 0.001883471
58 1 2 1 3 0.060955 54 0.056302 0.004652256
59 1 2 1 3 0.022453 55 0.021063 0.001390242
60 t 2 1 3 0.061588 56 0.058597 0.002991395
61 1 2 1 4 0.057421 61 0.053675 0.003745997
62 t 2 1 4 0.066828 62 0.061220 0.005607728
63 I 2 1 4 0.026616 63 0.024388 0.002227751
64 t 2 1 4 0.066730 64 0.061601 0.005128555
65 t 2 2 1 0.015404 93 0.018101 -.002696905
66 1 2 2 1 0.034640 94 0.040078 -.005438110
67 1 2 2 I 0.012667 95 0.014118 -.001451568
68 t 2 2 1 0.017912 96 0.020144 -.002231412
69 t 2 2 2 0.035877 85 0.040224 -.004346935
70 1 2 2 2 0.041852 86 0.045517 -.003665237
7 \  1 2 2 2 0.014620 87 0.014963 -.000343841
72 1 2 2 2 0.041385 88 0.045656 -.004270554
73 1 2 2 3 0.047461 49 0.047203 0.000257900
74 1 2 2 3 0.054669 50 0.053576 0.001093113
7S 1 2 2 3 0.027148 51 0.024929 0.002218735
76 1 2 2 3 0.055200 52 0.054124 0.001075571
77 I 2 2 4 0.050358 73 0.049339 0.001018917
78 1 2 2 4 0.058554 74 0.056307 0.002246798
79 1 2 2 4 0 028946 75 0.026436 0.002509795
80 1 2 2 4 0.058527 76 0.056568 0.001958223
01 1 2 3 1 69
82 1 2 3 1 o!oS4973 70 o!053552 0.001421252
83 1 2 3 t 0.017599 71 o .o in o 2 0.000297398
84 1 2 3 1 72
85 1 2 3 2 81
86 1 2 3 2 o!o48105 82 o!049947 -001842236
87 1 2 3 2 0.015444 83 0.015883 -.000439263
88 I 2 3 2 84
89 I 2 3 3 o!047833 89 oio47400 o!o00432977
90 1 2 3 3 0.055576 90 0.054081 0.001495097
9! t 2 3 3 0.023581 91 0.022148 0.001433792
92 I 2 3 3 0.055593 92 0.054318 0.001274915
93 t 2 3 4 0 052259 77 0.049978 0.002281190
94 1 2 3 4 0.060725 78 0.057105 0.003620029
95 t 2 3 4 0.026508 79 0.024250 0.002257529
96 1 2 3 4 0.060736 80 0.057311 0.003425123
97 I 3 I 1 0.022339 105 0.028949 -  006610160
98 1 3 1 1 0 029569 106 0.036077 -.006507792

Tba sms Symtam 15:56 Friday, 23. 2001 28
Oba SAroa Spaeiaan SStratagy 88lxa F ittin g  Canietty Saquanea prad raa id

99 1 3 1 1 3 0.010386 107 0.015970 005583868too 1 3 1 1 4 0.026926 108 0.032928 -.006002071
101 1 3 1 2 t 0.047898 113 0.049688 -  001789627
102 1 3 1 2 2 0.055477 114 0.055799 -  000322637
103 1 3 1 2 3 0.011205 115 0.016333 -.005128451
104 1 3 1 2 4 0.055844 116 0.056477 -.000633373
105 1 3 1 3 1 0.056564 101 0.055227 0.001336440
106 1 3 1 3 2 0.065414 102 0.060543 0.004871909
107 1 3 1 3 3 0.025163 103 0.025303 -.000139554
108 ! 3 1 3 4 0.065831 104 0.062837 0.002993665
109 1 3 ! 4 1 0.061814 109 0.057915 0.003898975
110 1 3 1 4 2 0.071127 110 0.065461 0.005666484
111 1 3 t 4 3 0.030805 111 0.028628 0.002176522
112 1 3 I 4 4 0.071763 112 0.065842 0.005920892
113 1 3 2 1 I 0.020747 141 0.022341 -.001594040
114 1 3 2 1 2 0.042546 142 0.044318 -.001771625
115 1 3 2 1 3 0.015143 143 0.018359 -.003215686
116 1 3 2 1 4 0.023828 144 0.024384 -.000555576
117 t 3 2 2 1 0.040023 133 0.044464 -.004434955
118 1 3 2 2 2 0.046967 134 0.049757 -.002790474
119 1 3 2 2 3 0.016409 135 0.019204 -.002794716
120 1 3 2 2 4 0.046076 136 0.049896 -.003819887
121 1 3 2 3 1 0.051575 97 0.051443 0.000131993
122 1 3 2 3 2 0.059460 98 0.057816 0.001644050
123 1 3 2 3 3 0.032281 99 0.029169 0.003112069
124 T 3 2 3 4 0.059936 100 0.058364 0.001571961
125 1 3 2 4 1 0.054369 121 0.053579 0.000789777
126 1 3 2 4 2 0.062976 122 0.060547 0.002428074
127 1 3 2 4 3 0.033892 123 0.030676 0.003215924
128 1 3 2 4 4 0.063121 124 0.060808 0.002312478
129 1 3 3 1 117
130 1 3 3 1 2 0l060163 118 o!o57792 o!o02371441
131 1 3 3 1 3 0.019882 119 0.021542 -.001660522
132 1 3 3 1 120
133 1 3 3 2 129
134 1 3 3 2 2 0'0546I2 130 o!oS4187 o!000424280
135 1 3 3 2 3 0.017460 131 0.020123 -.002662871
136 1 3 3 2 132
137 1 3 3 3 1 0.051348 137 o!oSI641 - ! o00292738
138 1 3 3 3 2 0.059607 138 0.058321 0.001286091
139 1 3 3 3 3 0.026915 139 0.026388 0.000527406
140 1 3 3 3 4 0.059619 140 0.058558 0.001060145
141 1 3 3 4 I 0.055869 125 0.054218 0.001651006
142 1 3 3 4 2 0.084860 126 0.061345 0.003515227
143 1 3 3 4 3 0.030579 127 0.028490 0.002089098
144 1 3 3 4 4 0.064866 128 0.061551 0.003314711
145 1 4 1 1 1 0.018837 153 0.011988 0.006849763
146 1 4 1 1 2 0.025467 154 0.019115 0.006351647
147 1 4 1 1 3 0.005826 155 -0.000991 0.006817372

237
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Qbs SOrm# Spactaan SStrataoy 38lza F ittin g  C enielty Gaquanca prad raaid
148 1 4 1 1 0.022460 156 0.015966 0.006494064
149 1 4 1 2 0.032870 161 0.032726 0.000144682
ISO 1 4 1 2 0.037519 162 0.038837 -.001318122
151 1 4 1 2 0.004934 163 -0.000629 0.005562803
152 1 4 1 2 0.038328 164 0.039515 -.001187116
153 1 4 1 3 0.035516 149 0.038266 -.002749187
154 1 4 1 3 0.038056 150 0.043581 -.005524869
155 1 4 1 3 0.010229 151 0.008341 0.001887965
156 1 4 1 3 0.041331 152 0.045875 -.004543717
157 1 4 1 4 0.035544 157 0.040953 -.005408766
158 1 4 1 4 0.040495 158 0.048499 -.008003553
159 1 4 1 4 0.012566 159 0.011666 0.000900101
160 1 4 1 4 0.041299 160 0.048880 -.007580458
161 1 4 2 1 0.010194 189 0.005379 0.004815022
162 1 4 2 1 2 0.030637 190 0.027356 0.003281172
163 1 4 2 1 0.006550 191 0.001397 0.005153492
164 1 4 2 1 0.011649 192 0.007422 0.004226543
165 1 4 2 2 0.031336 181 0.027502 0.003833680
166 1 4 2 2 0.034520 182 0.032795 0.001724484
167 1 4 2 2 0.005893 183 0.002242 0.003651053
168 1 4 2 2 0.036154 184 0.032934 0.003219619
169 1 4 2 3 0.032880 145 0.034482 -.001601594
170 1 4 2 3 0.037299 146 0.040854 -.003555717
171 1 4 2 3 1 0.013923 147 0.012207 0.001715991
172 1 4 2 3 0.038225 148 0.041402 -.003177831
173 1 4 2 4 0.034253 169 0.036617 -.002363689
174 1 4 2 4 t 0.038858 170 0.043586 -.004727527
175 1 4 2 4 1 0.014647 171 0.013714 0.000932185
176 1 4 2 4 0.039801 172 0.043847 -.004045372
177 1 4 3 1 . 165
178 1 4 3 1 0.038644 166 o!04083O - ! o0218S9I2
179 1 4 3 1 1 0.008157 167 0.004580 0.003576359
180 1 4 3 1 . 168
181 1 4 3 2 . 177
182 1 4 3 2 t 0.037140 178 0.037226 -! 000085756
183 1 4 3 2 1 0.006639 179 0.003161 0.003477589
184 1 4 3 2 . 180
185 1 4 3 3 0.033720 185 o!034679 -!  000958933
166 1 4 3 3 t 0.038260 186 0.041359 -.003099344
187 1 4 3 3 1 0.011352 187 0.009426 0.001926073
188 1 4 3 3 1 0.039178 188 0.041597 -.002418337
189 1 4 3 4 0.034471 173 0.037256 -002785310
190 1 4 3 4 * 0.039237 174 0.044383 -.005146769
191 1 4 3 4 1 0.011994 175 0.011528 0.000465684
192 1 4 3 4 0.040050 176 0.044590 -.004539462
193 2 1 1 1 0.029494 201 0.031749 -.002255637
194 2 1 1 1 t 0.042457 202 0.041453 0.001003199
135 2 1 1 1 1 0.026172 203 0.027626 -.001453764
196 2 1 1 1 0.035915 204 0.035848 0.000067006

Tha sms SyatM 15:56 Friday. Saptaabar 23. 2001

Ob# S8r## Sp#ci##n S8tr«t#gy SSlxa F ittin g  Conicity Saquanea prad raaid

197 2 1 1 2 1 0.031098 209 0.032910 -0.001812
198 2 1 1 2 2 0.037877 210 0.038849 -0.000972
199 2 1 1 2 3 0.031814 211 0.032209 -0.000396
200 2 1 1 2 4 0.035907 212 0.036271 -0.000365
201 2 1 1 3 1 0.043651 197 0.042519 0.001133
202 2 1 1 3 2 0.049343 198 0.046865 0.002478
203 2 1 1 3 3 0.042993 199 0.038524 0.004469
204 2 1 1 3 4 0.050655 200 0.047528 0.003127
205 2 1 1 4 1 0.050737 205 0.048752 0.001985
206 2 1 1 4 2 0.058441 206 0.054315 0.004126
207 2 1 1 4 3 0.050125 207 0.044468 0.005657
208 2 1 1 4 4 0.058878 208 0.054759 0.004119
209 2 1 2 1 I 0.008895 237 0.021913 -0.013018
210 2 1 2 1 2 0.027437 238 0.032964 -0.005528
211 2 1 2 1 3 0.016430 239 0.022495 -0.006065
212 2 1 2 1 4 0.010501 240 0.023702 -0.013201
213 2 1 2 2 1 0.031654 229 0.036917 -0.005263
214 2 1 2 2 2 0.034414 230 0.040104 -0.005690
215 2 1 2 2 3 0.020819 231 0.023494 -0.002674
216 2 1 2 2 4 0.036776 232 0.041060 -0.004284
217 2 1 2 3 1 0.040950 193 0.043464 -0.002514
218 2 1 2 3 2 0.047185 194 0.048153 -0.000968
219 2 1 2 3 3 0.039852 195 0.036055 0.003796
220 2 1 2 3 4 0.047497 196 0.048626 -0.001129
221 2 1 2 4 1 0.048910 217 0.051740 -0.002830
222 2 1 2 4 2 0.056694 218 0.057951 -0.001257
223 2 1 2 4 3 0.045796 219 0.041456 0.004340
224 2 1 2 4 4 0.056760 220 0.058234 -0.001474
225 2 1 3 1 1 213
226 2 1 3 1 2 0.065975 214 o! 059290 o!006685
227 2 1 3 1 3 0.044613 215 0.041290 0.003323
228 2 1 3 1 4 216
229 2 1 3 2 1 225
230 2 1 3 2 2 0.048517 226 o!045602 o!o0291S
231 2 1 2 3 0.041678 227 0.036590 0.005088
232 2 1 3 2 4 228
233 2 1 3 3 1 0.040286 233 o!o41935 •o !0O1649
234 2 1 3 3 2 0.046694 234 0.046835 -0.000141
235 2 1 3 3 3 0.040035 235 0.036444 0.003591
236 2 1 3 3 4 0.046755 236 0.046852 -0.000096
237 2 1 3 4 1 0.054604 221 0.052420 0.002184
238 2 1 3 4 2 0.063382 222 0.059015 0.004348
239 2 1 3 4 3 0.051784 223 0.045530 0.006253
240 2 1 3 4 4 0.063389 224 0.059021 0.004349
241 2 2 1 1 1 0.021142 249 0.021285 -0.000143
242 2 2 1 1 2 0.030647 250 0.030989 -0.000342
243 2 2 1 1 3 0.014916 251 0.017161 -0.002245
244 2 2 1 1 4 0.025199 252 0.025383 -0.000184
245 2 2 I 2 1 0.021878 257 0.022446 -0.000568
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Tha sms Symt## tS:SS Fr*d#y, S#p

295
296 
29f
298
299
300
301
302
303
304
305
306 
30r
308
309
310 
3lt
312
313
314
315
316
317
318 
3(9
320321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Oba Smraa Spaciaan SStrataoy SSlaa F it tin g Conlcity
246 2 2 2 2 0.029164
247 2 2 2 3 0.020102
248 2 2 2 4 0 025292
249 2 2 3 1 0.031700
250 2 2 3 2 0.096458
251 2 2 3 3 0.025148
252 2 2 3 4 0.036805
253 2 2 4 1 0.037564
254 2 2 4 2 0.042750
255 2 2 4 3 0.031697
256 2 2 4 4 0.043599
257 2 2 2 1 1 0.012309
258 2 2 2 1 2 0.022025
259 2 2 2 1 3 0.0(0382
260 2 2 2 1 4 0.014388
261 2 2 2 2 1 0.027887
262 2 2 2 2 2 0.032305
263 2 2 2 2 3 0.010406
264 2 2 2 2 4 0.032422
265 2 2 2 3 1 0.034984
266 2 2 2 3 2 0.040000
267 2 2 2 3 3 0.022495
268 2 2 2 3 4 0.040625
269 2 2 2 4 1 0.045303
270 2 2 2 4 2 0.052301
271 2 2 2 4 3 0.028488
272 2 2 2 4 4 0 052589
273 2 2 3 1 1
274 2 2 3 1 2 o!049079
275 2 2 3 1 3 0.028701
276 2 2 3 1 4
277 2 2 3 2 1
278 2 2 3 2 2 0*033349
279 2 2 3 2 3 0.022145
280 2 2 3 2 4
281 2 2 a 3 1 o!o32428
282 2 2 3 3 2 0.037643
283 2 2 a 3 3 0.022990
284 2 2 a 3 4 0.037645
285 2 2 a 4 1 0.043332
286 2 2 a 4 2 0.050269
287 2 2 a 4 3 0.032491
288 2 2 a 4 4 0.050298
289 2 3 1 1 0.013543
290 2 3 1 2 0.023032
291 2 3 1 3 0.010440
292 2 3 1 4 0.016255
293 2 3 2 1 0.0(62(8
294 2 3 2 2 0.021368 

Tha sms Syatam

Oba smraa Spaciaan SStratagy SSlaa F ittin g Conlcity

258
259
260
245
246
247
248
253
254
255
256
285
286
287
288
277
278
279
280
241
242
243
244
265
266
267
268 
261 
262
263
264
273
274
275
276 
281 
282
283
284
269
270
271
272
297
298
299
300
305
306

prad

028384
021745
025807
032054
036401
028060
037064
038287
043850
034003
044295
011449
022500
012030
013237
026452
029640
013030
030595
032999
037689
025591
038161
041276
047487
030992
047770

048825
030826

23. 2001 31

r v s i d

.000780195
001643376

.000515055

.000353913

.000057595

.002911709
000258657

.000722689

.001100224

.002306512

.000695325

.000860223

.000475354
001648382

.001150603

.001434543

.002665714

.002623935

.001826766

.001984712

.002310960

.003096210

.002464376

.004027470

.004814234

.002503922

.004819582

[OQ02S3291
.002124771

035137 *. 
026125

15:56 Friday,

031471 0.
036370 0. 
025980 
036387 0. 
041356 0. 
048550 0. 
035066 
048556 0. 
015887 -, 
025591 
011764 -, 
019986 -, 
017048 
022987 •  
Sap taabar

prad

001787969
003980749

0009S7345 
001272955 
002990102 
001258197 
001376661 
001738577 
002574442 
001741923 
002344541 
002559296 
001323079 
003730186 
000830352 
001618540 
23. 2001 32

raaid
014496
018776
026900
030874
017991
031253
033858
038999
023681
039332
013747
021739
009326
016031
027046
030686
007650
031464
029193
033391
016362
033934
038031
043800
021653
044184

039417
021948

031113
016444

027252
031662
016918
031664
036042
04I86T
024414
041871
017131
023391
013287
020334
016760
021298
016739

307
308
293
294
295
296
301
302
303
304
333
334
335
336
325
326
327
328
289
290
291

%
314
315
316
309
310
311
312
321
322
323
324
329
330
331
332
317
318
319
320
345
346
347
348
353
354
355

0.016347
0.020409
0.026657
0.031003
0.022662
0.031666
0.032889
0.038453
0.028606
0.038897
0.006051
0.017102
0.006633
0.007840
0.021055
0.024242
0.007632
0.025198
0.027601
0.032291
0.020193
0.032763
0.035878
0.042089
0.025594
0.042372

0*043428
0.025428

0.029740
0.020728

0.026073
0.030972
0.020582
0.030990
0.036558
0.043153
0.029668
0.043158
0.012388
0.022092
0.008264
0.016487
0.013549
0.019487
0.012848

-.001851325
-.001633175
0.000243610
-.000128777
-.004671404
-.000413078
0.000968935
0.000546257
-.004925117
0.000434525
0.007695713
0.004636981
0.002693417
0.008191703
0.005991092
0.006444526
0.000018170
0.006266509
0.001591299
0.001099758
-.003831086
0.001170263
0.002152541
0.001710747
-.003940908
0.001811915

-.004011147
-.003480715

0.001372959
-.004284425

0J001(78635
0.000689473
-.003664516
0.000674632
-.000515401
-.001285423
-.005254148
-.001287021 T
0.004743192 -
0.001898461
0.005022206
0.003847099
0.003210532
0.001810160
0.003890357
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The 8A8 Svmtam IS:SS F rid a y . H aptrdA rr 13. 2001 13

Obs Smre# StMeiMn SStratagy SSkza F ittin g  Conlcity Saquanea prad raa id
344 2 4 1 2 4 0.019423 356 0.016910 0.002513101
345 2 4 1 3 1 0.022135 341 0.023157 -.001022401
345 2 4 1 3 2 0.025097 342 0.027504 -.002406706
347 2 4 1 3 3 0.022277 343 0.019163 0.003114469
348 2 4 1 3 4 0.025712 344 0.028167 -  002454845
343 2 4 1 4 1 0.027159 349 0.029390 -.002231626
350 2 4 1 4 2 0.031382 350 0.034954 -.003572053
351 2 4 1 4 3 0.026681 351 0.025107 0.001574504
352 2 4 1 4 4 0.031540 352 0.035398 -.003857734
353 2 4 2 1 I 0.007014 381 0 002552 0.004462309
354 2 4 2 1 2 0.014963 382 0.013603 0.001366204
355 2 4 2 1 3 0.008154 383 0.003134 0.005020285
356 2 4 2 1 4 0.008199 384 0.004340 0.003858197
357 2 4 2 2 1 0.015393 373 0.017556 -.002162974
358 2 4 2 2 2 0.017323 374 0.020743 -.003420180
359 2 4 2 2 3 0.009413 375 0.004133 0.005280242
360 2 4 2 2 4 0.017889 376 0.021699 -.003809206
361 2 4 2 3 1 0.023040 337 0.024102 -.001062087
362 2 4 2 3 2 0.026349 338 0.028792 -.002442790
363 2 4 2 3 3 0.019825 339 0.016694 0.003130986
364 2 4 2 3 4 0.026758 340 0.029264 -.002505961
365 2 4 2 4 1 0.029029 361 0.032379 -.003349798
366 2 4 2 4 2 0.033322 362 0.038590 -.005268250
367 2 4 2 4 3 0.024200 363 0.022095 0.002104781
368 2 4 2 4 4 0.033715 364 0.038873 -.005157659
369 2 4 3 1 357
370 2 4 3 1 2 0.037002 358 o! 039929 - ! o02927027
371 2 4 3 1 3 0.024212 359 0.021929 0 002282402
372 2 4 3 1 360
373 2 4 3 2 369
374 2 4 3 2 2 0.023741 370 0.026241 - ! o02500104
375 2 4 3 2 3 0.020406 371 0.017229 0.003177254
376 2 4 3 2 372
377 2 4 3 3 1 0.022087 377 o!022574 000466995
378 2 4 3 3 2 0 025652 378 0.027473 -.001821572
379 2 4 3 3 3 0.020147 379 0.017083 0.003064115
380 2 4 3 3 4 0.025654 380 0.027490 -.001836353
381 2 4 3 4 1 0.030013 365 0.033059 -.003045654
382 2 4 3 4 2 0.034853 366 0.039654 -.004800732
383 2 4 3 4 3 0.027744 367 0.026169 0.001575373
384 2 4 3 4 4 0.034856 368 0.039659 -  004803522

The SAS S y s tn IS:SG F rid a y , S ep teeb er 23. 2001 34

P lo t  o f  re e Id 'S e q u e n c e . Legend: A • I ob s. 8 - 2  oba. e t c .

r e s id

0 .010

0.005
AA

BA
BA

0 .000 AB B BD A 
DA

BA

0.005

0 .0 1 0

0.015

350250 300 400100 150 200

Sequence

NOTE: 32 oba had e i s s in g  v a lu e s .
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The SAS S y stee 15:56 F rid a y , S ep teeber 23, 2001 35

P lo t  o f  re e ld 'S A re a . Legend: A ■ I ob s, B « 2 obs, e t c .

0 .010

0.005

0 .0 0 0

.005

0 .010

0.015

NOTE: 32 obs had e ls s in q  v a lu e s .
The SAS S ystee 15:56 F rid a y , S ep teeber 23, 2001 36

P lo t  o f  r e a ld 'S p e c le e n . Legend: A •  I ob s, 8 * 2  ob s, e t c .

r e s  Id

0 .010

■0.005

■0 .0 1 0

■0.015

NOTE: 32 obs had m issing  v a lu e s .

241



The SAS Syetee 15:56 F rid a y , September 23, 2001 37

P lo t  o f  r e e id * 8 8 tra te g y . Legend: A •  I o b s , 8 - 2  o b s , e t c .

r e s id

0 .010

0.005

0.000

0.005

0.010

-0 .015

NOTE: 32 obs had m iss in g  v a lu e s .
I

S S tratagy

The SAS System 15:56 F rid a y , September 23, 2001 38

P lo t  o f r e s id 'S S iz e .  Legend: A - 1 ob s, 8 - 2  o b s , e t c .

0 . 0 1 0

0.005

0 .000

-0 .005

0 .0 1 0

SSize

NOTE: 32 obs had m iss in g  v a lu e s .
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Tha SAS S yatea 15:56 F rid a y , S ap taabar 23, 2001 33

P lo t  o f  r a s l d 'F l t t l n g .  Lagand: A •  I oba, B •  2 oba, a t e .

r a a id

0 .0 1 0

0.005

0 .0 0 0

0.005

0 .0 1 0

0.015

NOTE: 32 oba had a ia a in g  w aluaa.

Fi t t in o

Tha SAS S yataa 15:56 F rid a y , S ap taabar 23, 2001 40

P lo t  o f  ra a id "p ro d . Lagand: A • I oba. B •  2 oba, e t c .

r a a id

0 .0 1 0

0.005 BA
AB

BAA M 
AB A ADA DA AC

CAB I 
SCA CB

CAAA
0 .0 0 0 C E A AC

ACS A
AC A A A CA AAB

B CC BA
AB AC

0.005 BA AA

AA

-0.015

0 .01 0 .0 0 0.01 0 .0 2 0.03 0.04 0.06 O.Of

prad

NOTE: 32 oba had a ia a in g  v a lu e s .
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N
Mean
Std D eviation 
Skewnees 
Uncorroctad 88 
Coeff V ariation

The sms Syetee

The UMIVmRimTE Procedure 
V ariable: r e s id

IS:56 F riday . Septeeber 23. 2001 41

Noeents

3S2
0

0.00349761 
-0.2518082 
0.00429387

Sue Weights 
Sue Observation 
Variance 
K urtosis 
Corrected 88 
Std E rror Mean

352
0

0.00001223
0.49078006
0.00429387
0.00018642

Location

Basic S ta t i s t i c a l  Measures

V ariabI1ity

Mean 0 Std Deviation 0.00350
Median 0.000055 Variance 0.0000122
Mode Range 0.02208

In te rq u a r tI le Range 0.00462

Test

Tests fo r Location: Mu0"0

• S ta t i s t ic *  - - - - - p  Value***

S tu d en t's  t  t
Sign M
Signed Rank 3

0
2

327

Pr > i t l  
Pr >• IMI 
Pr >• IS!

1 .0000
0.8730
0.8644

Tests fo r N oreality

Test • -S ta t is t ic * -* Value******

Shaplro*Ul Ik 
Ko 1 mogorov*Sm 1 m cv 
Craeer-von Mises 
Anderson*OarlIng

U
0
U*Sq
A*8q

0.992428
0.02925
0.04004
0.27303

Pr
Pr
Pr
Pr

( W
> D
> U*8q
> A*Sq

0.0712
>0.1500
>0.2500
>0.2500

Quanti les (D efin itio n  S) 

Quanti le  Estim ate

100% Max 
99%
95%
90%
75% Q3

8.87453E-03 
8.19170E-03 
5.607736*03 
4.46864E-03 
2.23727E-03

The SAS Systee 15:56 F riday . Septeeber 23. 2001 42

The UNIVARIATE Procedure 
V ariable: r e s id

Quanti le s  (D efin itio n  5)

Quanti le  Estim ate

50% Medi«i 
25% Q1 
10%
5%
1%
0% Min

5.51249E-05
*2.385206*03
*4.346936*03
*5.438116*03
*8.718396*03
*1.320056*02

Extra Observations

*******Loees t** *— *•*M lghest*«-------

Value Obs Value Obs

*0.01320050 212 0.00769571 305
-0.01301824 209 0.00819170 308
*0.00922652 52 0.00820912 1
*0.00871839 50 0.00873453 4
*0.00844873 49 0.00887453 2

Missing Values

Missing
Value Count

32

*****Percent Of-*-** 
Missing 

All Obs Obs

8.33 100 .00
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The UNIVARIATE Procedure

43

-0 .0025

V ariab le :

Histogram

r e s id

# Boxplot
*"" 4 !
,* 1 1

a 1
12 !
IS 1
27 1
25

1 !
32
38 1 1
35 1 1

24 1
15 1
13 I

." " " 5 1
2 1
3 !

" 1 1

-0 .0135*" 2

'  may r e p re se n t  up to  2 coun ts

0.0085*

The SAS System 15:56 F rid a y , Septem ber 23, 2001 44

The UNIVARIATE Procedure 
V a ria b le : r e s id

Normal P ro b a b i l i ty  P lo t

««•

-0 .0025*

•  • •  
*■■■ 

« •••

###
* " «  

* * * • >I

-0 .0135*"

- I *1
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