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ABSTRACT

An approach is proposed for designing a class of parallel
channel Markovian queueing systems. The approach calls for estimating
the expected number of customers of a particular system from its
transition matrix. Two algorithms are presented to estimate the ex-
pected number of customers from transition matrices. The algorithms
allow one to solve a design problem whose measures of effectiveness
are the expected number of customers or the expected waiting time
without needing closed formed expressions for these measures.

A two parameter design problem for a parallel :channel system
is then considered in which the design parameters are the service
rate and the number of servers. An algorithm is developed to take
advantage of the special structure of the problem. The convexity of
the objective function is investigated and numerical results are

presented.
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Chapter 1

INTRODUCTION

In the first decade of this century, A. K. Erlang, an em
ployee of the Copenhagen Telephone Company, devoted himself to the
investigation of the effects of fluctuations in demand on the opera-
tion of telephone systems. His research resulted in the publication
of "The Theory of Probabilities and Telephone Conversations,” which
became the first queueing model on record. Since then, studies in
the field of queueing theory have been greatly accelerated. According
to a study made by Morse [17], there were more than 700 papers and
books published up to 1960 with applications extending from telephone
traffic to areas such as machine servicing and maintenace, road traffic,
railroads, air transport, inventories, production, hydro-storage, health,
and physics. The development of queueing theory seems to have been
dominated by studies aimed at understanding the behavior of specific
systems. Unfortunately, few formal studies have been made on putting
these ideas into practice. As a result, queueing theory has been
attacked on two fronts. Some theoreticians say that queueing theory
is closed. However, some practitioners feel that the current theory
has little practical use [2]. These two conflicting views between

1
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the practitioners and the theoreticians could be eliminated if the
theoreticians shift part of their attention from behavioral problems
to operational problems.

There are two major types of operational problems in queueing
theory: design problems and control problems. A control problem
differs from a design problem in that the former is dynamic in nature
whereas the latter is static. While a control problem tries to seek
an optimal operating policy for a given design, a design problem
attempts to make a single choice of queueing system given a set of
initial conditions [9],[14]. One of the recent aspects in the develop-
ment of queueing theory has been the increased amount of research
directed towards the optimal control of queueing systems. Such research
should prove most effective in reducing the gap between the theoreticians
and the practitioners. Regretfully, a large research effort has not
yet extended into the design aspects of queueing theory. Design
problems have been studied formally as optimization problems by Morse
(1958), Bowman and Fetter (1961), De Cani (1962), Hillier (1963),

Kumin (1968), Evans (1968), Balachandran (1970), Stidham (1970), and
Rolfe (1971). Most of these studies, unfortunately, emphasized setting
up models for a specific application while few tried to develop a
general design methodology. In a field such as queueing theory that
abounds with special cases, it is of interest to ask what is the chance
that a practitioner will find an existing model which is realistic
enough to be used for solving the problem at hand. Thus, it seems
clear that what a practitioner will appreciate most is a set of tools

that can be used to set up his own problem and solve it rather than



a long list of solved models.

One of the exceptions to the commonly adopted research approach
of emphasizing modeling for special cases is the research done by
Kumin {14] in 1968. In his work, Kumin developed an algorithm which
determines the optimal mean service rate for a design problem of
specified structure. His algorithm contains the following ideas:

1) Transition matrices are used to estimate the expected

queue length instead of relying on closed form expres-
sions for the steady state probabilities.

2) The design is for a class of queueing systems rather

than a single one.

This thesis presents the research results pertaining to the
design of parallel channel queueing systems utilizing the above two
concepts of Kumin's work. It contains four major aspects: (a) the
estimation of the expected number of customers directly from transi-
tion matrices without relying on any closed form expressions; (b) an
investigation of the convexity of the expected number of customers
as a function of mean service rate and the number of servers respectively;
(c) the optimization of a two variable unconstrained nonlinear program-
ming problem whose objective function is a convex function of a con-
tinuous variable and a discrete convex function of a discrete variable;
(d) the numerical implementation of the algorithm described in (c).

The research is motivated by the need for formal research in the
area of applications of queueing theory - especially in regard to
optimal design. It is hoped that the research will utlimately stimulate

the development of a unified approach for solving design problems.



Chapter II

PREVIOUS DESIGNS OF QUEUEING SYSTEMS

The design of queueing systems has been studied formally as
optimization problems by Morse [17], Bowman and Fetter [3], De Cani
[6], Hillier [12], Kumin [14], Evans [8], Balachandran [1], and Rolfe
[21]. Most of these studies emphasize models for specific applica-
tions. Their analyses are, in general, carried out on Poisson queueing
models.

Morse considers three models. The first model is to balance
service cost and customers lost. He assumes that the cost of service
is directly proportional to the speed of the service and that the
average sales corresponding to a single service operation yilelds a
fixed amount of gross profit. He then sets up the net profit function
for the M/M/1 case and finds the optimal mean service rate using
classical calculus techniques. The second model is to balance the
cost of waiting and the cost of service. Here the cost of waiting
is assumed to be proportional to the mean waiting time. Again, classi-
cal calculus techniques are used to find the optimal mean service
rate which minimizes the cost function for the M/M/1 case. The third
model optimizes the number of servers. Here the intention is to

4
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maximize the net profit for given values of arrival rate, service
rate, and average gross profit per customer served. This is carried
out for the M/M/S model using a total enumeration technique.:

Bowman and Fetter present a model for determining the optimal
number of machines to assign to each operator based on a cost function
which consists of the cost of machine waiting and the cost of operator.
The machine waiting times are tabulated for the case of constant
service time and the case of exponential service time respectively
under the assumption that calls for service arrive at random. The
optimal number of machines assigned is determined by comparing the
total costs among all alternatives.

De Cani proposes a design model which is associated with
a balking type queueing system. The model permits a solution in
terms of expected profit maximization rather than cost minimization.
The principallattribute of the model is that the arrival rate in-
creases as the length of the waiting line decreases. Thus the ex-
pected arrival rate and, therefore, the total revenue will increase
as the number of servers is increased. Hence there is a marginal
revenue as well as a marginal cost associated with an increase in
the number of servers. The optimal number of servers is found by
marginal analysis.

Hillier presents three economic models for queueing systems
with infinite calling sources and infinite waiting spaces. All of
these models assume that the total cost of waiting is proportional
to the total time that all arrivals spend in the system. They also

assume that the cost of service at each service facility is a linear
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function of the number of servers at the facility. The first model
presented is for the simple case where the arrival rate and service
rate are fixed and the number of servers must be determined. The
second model is for the case where both the arrival rate and the
number of servers must be determined, i.e., where both the number
of service facilities to distribute among the entire population and
the number of servers to assign to each facility must be determined.
The third model is for the case where both the service rate and the
number of servers must be determined. A few special cases of these
models are solved for Poisson queueing systems using classical cal-
culus techniques. For other cases he suggests that a trial and error
approach be used to find the optimal solution.

Kumin proposes a procedure for solving a single variable
design problem without relying on the closed form expression for
the expected queue length. To illustrate how this is achieved, let

A = a NxN transition matrix whose element at ith row and

jth column is defined as:

By = P{Xn=i|xn_l=j}

where Xn is the outcome of nth transition.
Cl’ C2 = cost factors.

F = (0, 1, 2,..', N-l)o

L = expected number of customers in the system.
Po = the initial probability vector.

p = mean service rate.

A = mean arrival rate.



Consider the design problem

min g(u) = C,u + C,L

s. t. u>2A
The above is equivalent to

min g(u) = Cju + C, [1im(FA"P )] @

s. t. u > A

Problem (1) does not require any closed form expression for the ex-
pected number of customers in the system. However, it is not an
easy problem to solve since the transition matrix, A, has to be
raised to an infinite power. Kumin's proposal for solving problem
(1) consists of a sub-algorithm and a main algorithm. The subalgorithm
solves problem (1) for a fixed finite z (i.e., finds u: that minimizes
g(u) =Ciu + CZFAZPO) using an iterative approach which starts with
an arbitrary initial probability vector. The main algorithm gradually
increases the magnitude of z and repetatively uses the subalgorithm
to generate a series of u:'s which approaches u*, the optimal solution
of problem (1).

Evans develops two algorithms for the problem of picking
a locally optimal irreducible aperiodic Markov chain from among a
set of such systems. The first algorithm is for a class of continuous
parameter Markov systems. It uses an iterative scheme for approximating
the derivatives of the state probabilities. This leads to a stopping

rule for a gradient type algorithm which permits stopping at a local
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optimum. The second algorithm is for the problem of selecting the
optimal value of a single discrete parameter. The algorithm is
essentially the same as the first one except that the first differences
are used in place of the derivatives.

Balachandran analyzes priority rules that are mixtures of
preemptive and postponable rules characterized by certain parameters.
His work assumes an M/G/1l queueing model and linear cost function of
the expected waiting time and expected number of preemptions. Optimal
rule for each priority class is obtained using classical calculus
techniques or, in case of discrete parameter, using difference analysis
method.

Rolfe considers the problem of allocating servers to a
multiple facility service system where each facility consists of a
number of parallel channels and the arrival processes are Poisson.

The objective is to allocate servers to facilities to minimize the
expected waiting time of customers in the system subject to the
overall manpower restriction. Fox's marginal allocation procedure
is suggested for obtaining the optimal allocation for the constant
service time case.

From the above descriptions, it can be seen that the majority
of the design problems developed in the past can be characterized
as follows:

1) The emphasis is on setting up models for special cases rather
than trying to develop a general methodology.
2) There is a reliance on closed-form expressions for measures of

effectiveness.



9
3) Most cases are Poisson queueing models.

4) Most cases consider only a single design parameter.



Chapter III

ESTIMATION OF THE EXPECTED NUMBER OF CUSTOMERS

The objective function associated with a queueing design
problem often is a function of various measures of effectiveness
such as the expected number of customers in a system or the expected
waiting time a customer spent in queue, etc. Unfortunately, of the
myriad of queueing systems to be designed, only a few have known
closed form expressions for these measures. Therefore, any design
algorithm which relies on closed form expressions will clearly have
a very limited area of application. This point was realized first
by Kumin and reflected in his research in 1968. However, since his
interest was primarily in solving design problems, the approach that
he used to obtain the expected number of customers from transition
matrices cannot be separated for independent use from his optimiza-
tion algorithm. Since an independent algorithm that can be used
to obtain the expected number of customers directly from transition
matrices should have many useful applications, this chapter will be

devoted to the development of such algorithm.

10
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3.1 ANALYTIC ASPECTS

This section is concerned with the statement and proof of
the only theorem that 1s required to develop an algorithm for ob-
taining the expected number of customers of a steady state system
from the transition matrix of the system without relying on the
closed form expression for the expected number of customers.

Consider the following notation:

A = a NxN transition matrix whose element at ith row and jth column
is defined as:

Pij = Pr(Xh=J]Xn_1=i)

where Xn is the outcome of nth transition.

]
]

©, 1, 2,..., N~-1)5.

t
]

expected number of customers in the steady state system.

<
]

steady state probability matrix whose ith element will be denoted

by Vi1t
R R O N O]

a?) = mgx{w( ), i=0, 1,..., N-1}.

w? min{w(z)' 1=0, 1,..., N-1}.

L(2) _ = (z) + w(z))/2.

THEOREM 1 For any positive integer z,
(@ |L- L(2) | < (G(z) - v_g(z))/Z.

®) 1in L@ =

2>



Proof. (a) L =VF = VA'F = Iv,w (2)

Since

@ <3O

therefore,
Zviwiz) < Zvia(z) = G(Z)Zvi = G(z).
Similarly, since
"’§2) > !(Z);
therefore,
Zviwiz) > ZVig(z) = g<z)2vi = g(z).
Thus
L - £(Z) < ‘-’(Z) - (;(Z) + !(z))/z = (;(Z) - ‘1(2))/2’
and

v

L =13, 4@ _ (;,(2) + ‘_’(z))/z - _ (‘-,(2) _ !(2))/2.

It follows that

IL - £(2)| < (G(z) - Y_V(Z))/Z-

(b) Let A% = (péz),...,péfi)t, where piz) is the (i+1l)th
row of A%, Since we are concerned with systems whose steady state
probabilities exist; therefore,

1im piz) =V
2y

for all 1. 1It follows

1im wiz) = lim piz)F =VF=1

ZH>o 20
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for all i. Let (Sn) be the sequence formed by combining the N sequences

(w§2))""’(“§fi) according to the ascendant order of z. Clearly,

lims_= L.
n
n-o
Since (;(z)) and (g(z)) are both subsequence of (sn), it is clear
that

lim ;(z) = lim y(z) =L

2o ZHo
It follows

1in 1®) = 110 @ + w2

Z-»o 2z

[

im % + 1in w(®)/2

2> ZHx

= (L+1L)/2

L

3.2 ALGORITHMS FOR ESTIMATING THE EXPECTED NUMBER OF CUSTOMERS

The relationship between i and L as stated in Theorem 1
can be used to develop iterative algorithms for estimating the ex-
pected number of customers from the system's transition matrix.
Since such algorithms must terminate after a finite number of
iterations certain amount of error will be introduced. Depending
upon how the allowable errors are specified, there are two slightly

different approaches.

DEFINITION. The absolute error of an estimation is the absolute

value of the difference between the estimation and the true value.
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When the true value is unknown, the largest absolute error that may

occur to the estimation is called the maximal absolute error.

ALGORITHM 1 This algorithm should be used whenever the allowable
error of the estimation is specified in terms of maximal absolute
error and thus independent of the magnitude of the expected number
of customers itself.

Step 1. Determine the allowable maximal absolute error a.

step 2. Set z=0 and W? = (0,..., N-1)t.

(z41) _ pu(2)

Step 3. Compute W

Step 4. 1If (G(z+1) - g(z+1))/2 < a, go to step 5; otherwise,
increase z by 1 then go to step 3.

Step 5. The desired accuracy has been reached. Let

L= £(z+1) = (;(z+1) + g(z+1))/2. Terminate.

DEFINITION. The relative error of an estimation is the ratio of
the absolute error of the estimation to the true value. When the
true value is unknown, the largest relative error that may occur to
the estimation is called the maximal relative error.

THEOREM 2 Let £(n) be the estimation of the expected number of
customers obtained from Algorithm 1, using the allowable maximal
absolute error a, then

L)

(a) the maximal absolute error of is a,

(b) the maximal relative error of L(n) is a/(L(n) - a).
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Proof. (a) Step 4 of Algorithm 1 implies (6(“) - g(n))IZ < a. Thus,
by Theorem 1, |L - L(n)l < (;(n) - g(“))/z < a. Hence the maximal
= (n)

absolute error of L is a.

(b) The maximal relative error occurs when L = L(n) - a.
Thus maximal relative error = IL(n) - L{/L

- Ii(ﬁ) - (i(n) _ a)l/(i(n) - a)
= a/(L(n) - a).

ALGORITHM 2 This algorithm should be used whenever the allowable
error of the estimation is specified in terms of the maximal relative
error and thus associate the error of estimation to the magnitude

of the expected number of customers.

Step 1. Determine the allowable maximal relative error r.

Step 2. Set z=0 and W(O) = (O,...,N-l)t.

(z+1) (z)

Step 3. Compute W = AW 77,

=(z+l) _

Step 4. If (w g(z+1))/2 < rL(z+1)/(1+r), go to step 5;

otherwise, increase z by 1 then go to step 3.
Step 5. The desired accuracy has been reached. Let

L= £(2+1) = (§(z+l) + g(z+l))/2. Terminate.

THEOREM 3 Let L(n) be the estimation of the expected number of
customers obtained from Algorithm 2, using the allowable maximal

relative error r, then

~

(a) the maximal absolute error of L(n) is rL(n)/(1+r),
(n)

(b) the maximal relative error of L is r.
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Proof. (a) Step 4 of Algorithm 2 implies (;(n) - g(“))/z < ri(n)/(1+r).
Thus, by Theorem 1, |L - i(n)‘ < (;(n) - g‘“’)/z < rﬁ(n)/(1+r). Hence
the maximal absolute error of i(n) is ti(n)/(1+r).
(b) The maximal relative error occurs when L = £(n) - ri(n)/

(1+r). Thus the maximal relative error = |L(n) - L|/L

OO O A

I O v
A ~(n)
(n) rL
L -1

=T.

In both algorithms, we have chosen to calculate AZF by multiplying
at each iteration the transition matrix of the system by the column
matrix obtained from the previous iteration. This is represented in
Step 3 of both algorithms. We have not tried to raise the transition
matrix by successively multiplying the resulting matrix by itself
for the following reasons:

(a) Most transition matrices of queueing systems contain a large
portion of zero entries. Multiplying the original transition
matrix by a column matrix allows one to utilize the special
structure of the matrix.

(b) Multiplying a square matrix by a column matrix is easier than
multiplying a square matrix by itself.

The alternative of successively multiplying the resulting matrix by

itself should be considered if the transition matrix contains only a

small portion of zero entries and z is very large.




Chapter IV

CONVEXITY OF THE EXPECTED NUMBER OF CUSTOMERS

AS A FUNCTION OF THE NUMBER OF SERVERS OR THE MEAN SERVICE RATE

Just as in any mathematical programming problem, the convexity
of the objective function of a queueing design problem is a valuable
property in terms of optimization. While it seems unlikely that the
expected number of customers in a queueing system will be convex
with respect to p and s simultaneously, there do exist classes of
queueing models whose expected number of customers is a convex function
of u for fixed s and a discrete convex function of s for fixed u.

This chapter will be devoted to identifying such classes of queueing
systems. Up to now, convexity proofs have usually been conducted

for each individual system using closed form expressions for measures
of effectiveness. Since the majority of such closed form expressions
are extremely complex, or not known, few convexity results have been
obtained. Such an approach will be avoided. Instead of trying to
obtain results for specific systems, we will attempt to obtain results

for a group of similar systems based on the common assumptions of each.

17
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4.1 SOME PRELIMINARIES

The following definitions and theorems are essential for

our later discussion.

DEFINITION. Given a convex set C in RP, a function f: C »> R is
convex if Xps X, € C implies f(Bx1 + (1-9)x2) < Sf(xl) + (1—9)f(x2)
for every 0 < 6 < 1.

DEFINITION. Given a set of consecutive integers Z, a function
f: Z -+ R is discrete convex if f(n+2) - 2f(n+l) + f£(n) > O for

each set of n, ntl, n+2 e Z.

THEOREM 1 Let f£f be a twice continuously differentiable real-valued
function on an open convex set C in R". Then f is convex on C if

and only if its Hessian matrix is positive semidefinite for each

x € C.

See reference 20 or reference 27.

THEOREM 2 Let fi, i=1,...,k, be convex functions over a convex
k

set C. If a; > 0, i=1,...,k. Then the function f(x) = I aifi(x)
i=1

is convex on C.

See reference 27,

DEFINITION. Let f be a function whose values are real and whose

domain Df is a subset of Rn. Then the set



19
epi £ = {(x,¥): y > £(x), x € D, ¥y € R}

is called the epigraph of f.

THEOREM 3 A function £: R + R is convex if and only if its epigraph
is convex.

See reference 20.

DEFINITION. A set CC. E" is midpoint convex if xl, x2 ¢ C implies

1 2
= X L X
w = 2 + 2 e C.

THEOREM 4 A closed midpoint convex subset of a Euclidean space is a

convex set.

See reference 7.

THEOREM 5 A function f: R > R is convex if f(x+2Ax) - 2f(x+Ax) +

f(x) > 0 holds for each increment or decrement Ax of x.

Proof. Let (xl,yl), (xz,yz)e epi £f. Then f(xl) < Y1 and f(xz) < y2.
The midpoint is ((x1 + xz)/2, (y1 + y2)/2). Since the hypothesis
implies f((x1 + xz)/2) < (f(xl) + f(xz))lz < (yl + y2)/2, the midpoint
is in the epigraph of f. Thus epi f is midpoint convex. Clearly

it is closed, so by Theorem 4, epli f is convex. It follows, by

Theorem 3, that f is convex.
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4.2 QUEUEING MODELS WHOSE EXPECTED NUMBER OF CUSTOMERS IS A CONVEX

FUNCTION OF THE NUMBER OF SERVERS OR THE MEAN SERVICE RATE

For a great number of queueing systems, the expected number
of customers in the system is a convex function of the mean service
rate and a discrete convex function of the number of servers. The
following two theorems allow us to identify a large portion of such

queueing systems.

THEOREM 6 The expected number of customers in any parallel channel
queueing system is a discrete convex function of the number of servers
s over the domain Ds, the set of numbers of servers under which the
steady state behavior of the corresponding systems exist, if the
system has the property that all of the factors other than the waiting
time that can affect the expected number of customers will not be

affected by the number of customers in the system at any instant.

Proof. Let L(s) be the expected number of customers in the system
with s servers. Clearly, L(s) is a discrete convex function of s
over Ds if and only if {L(sl+2) - L(sl+1)} - {L(sl+1) - L(sl)} >0

holds for each 31’ s

convex function of s if and only if the decrement in the expected

1+1, sl+2 € DS. In other words, L(s) 1s a discrete

number of customers (or equivalently, the expected waiting time per

customer) resulted from adding one more server to the s.-system is

1
at least as much as the decrement resulting from adding the additional

server to the (sl+1)-system. Since the assumption of the theorem
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implies that the number of customers joining the system is the same

regardless of the number of servers employed in the system, we may

compare the decrements in total waiting time instead of the expected

waiting time or expected number of customers. We observe that a

decrement in the total waiting time occurs whenever the additional

server and the original servers are all in busy status. When a cus-
tomer's waiting time is cut short because of the service of the added
server, all of the customers in the queue following that customer

may also realize a shorter waiting time even though they may not be

served directly by the added server. Since none of the relevant

factors is allowed to be affected by the number of customers in system
at any instant, the net effect of the added server upon the total
waiting time is the decrement in total waiting time generated in the
two ways mentioned above. The magnitudes of such decrements are com—
parable in the following ways.

1) For the same expected queue length, the less the number of servers
in the system, the more we may expect that the added server and
the original servers will all be in a busy status, and thus the
larger the decrement will be if the other factors are fixed.

2) For the same number of servers, the longer the queue the more we
may expect that the added server and the original servers will
all be in a busy status, and thus the larger the decrement will
be if the other factors are fixed.

3) For each unit of waiting time saved on a customer directly served by
the added server, the longer the queue and the less the number of

servers, the greater we may expect that the total indirect saving
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of his followers will be, and thus the larger the decrement will
be if the other factors are fixed.
1+1, s
of the s,-system is always at least as long as that of (sl+1)-system,

Since for any 8y» 8 1+2 € Ds, the expected queue length
the three possible influences mentioned above suggest consistently

that the decrement in total waiting time resulted from adding one more
server to the 8, -system is at least as large as the decrement resulted
from adding the additional server to the s.+l system. We thus conclude

1
that L(s) is convex in s over Ds’

THEOREM 7 The expected number of customers in any parallel channel
queueing system is a convex function of the mean service rate u over
Du’ the set of mean service rates under which the steady state
behaviors of the corresponding systems exist, if the model has the
property that all of the factors other than the waiting time that
can affect the expected number of customers will not be influenced

by the number of customers in the system at any instant.

Proof. Let g(u) be the expected service time when the service rate

is u. Then g(p) = 1/u and g"(v) = Zu-3

> 0. Thus by Theorem 1,

the expected service time is a convex function of the mean service
rate. Let f(u) be the expected waiting time a customer spends in

the queue waiting for service when the service rate is u. If there

is a Hy € Du such that f(ul) = 0, then f(u) = 0 for all u > Myl there-

fore, f(u) is convex over {u: £(u) = 0}. Now consider f(u) over

D; = {u: y ¢ Du and f(u) # 0}. Clearly f(u) is a monotone decreasing
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function of p. Since all of the factors that can affect the expected
number of customers will not be influenced by the number of customers
in the system at any instant, the magnitude of the decrement (increment)
in the expected waiting time in queue resulted from increasing
(decreasing) service rate from p to u+Au is only dependent on the
magnitude of the decrement (increment) in the expected service time
resulted from such a change and the magnitude of the expected waiting
time in the queue when the service rate is u. The larger the change
in the expected service time and the larger the expected waiting time
in queue at the service rate u, the larger the change in the expected
waiting time will be when the service rate is changed by Au. Since
the expected waiting time in the queue is larger for smaller p and
since {g(u+2Ap) - g(u+ap)} - {g(u+Au) - g(u)} > O implies the change
in expected service time is also larger for smaller u (notice that
g(u) is a monotome decreasing convex function), we may conclude that
the change in the expected waiting time in the queue is larger for
smaller y. In other words, since f(u) is also a monotone decreasing
function, the inequality {f(u+2Au) - £(utAu)} - {E(u+ap) - £(u)} >
0 holds for all Ap such that w+2Au, p+Au, U € DL. Thus by Theorem 5,
f(u) is convex in u over DL and hence over Du. Now since the expected
waiting time in system is the sum of the expected waiting time in queue
and the expected service time, by Theorem 2, the expected waiting
time in the system is a convex function of u. It follows that the
expected number of customers in the system is a convex function of u

over D .
M
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In Theorem 6 and 7 a sufficient condition for the expected
number of customers to be convex in p and discrete convex in s was
presented. The sufficient condition is that the queueing model must
possess the property that all of the factors (excluding the waiting
time) that can affect the expected number of customers will not be
affected by the number of customers in the system at any instant.
Since the instantaneous service rate under a priority service
discipline is dependent on the queue length of the system at that
instant, priority queueing models are not covered by these two theorems.
Neither are the finite calling source or finite waiting space type
queueing models covered by these theorems since under such queueing
models the effective arrival rate will be affected by the number of
customers in the system. In spite of these weaknesses Theorem 6 and
7 still allow us to conclude that all of the parallel channel queueing

models of the form (GI/G/s):(GD/x/x) are convex in p and discrete convex

in s.

4.3 EFFECT OF FINITE WAITING SPACE UPON THE CONVEXITY OF THE

EXPECTED NUMBER OF CUSTOMERS WITH RESPECT TO u and s

The theorems stated in the last section do not apply to any
queueing model which is based on the assumption of finite waiting
space. One of the assumptions of Theorems 6 and 7 is that the system
does not have finite waiting space. The following analysis pertains
to all finite waiting space systems that satisf& all other assumptions

of Theorems 6 and 7.
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To investigate the effect of finite waiting space upon the
discrete convexity of the expected number of customers, observe that
in such a system when a server is added, the size of the decrement
in the resulting expected number of customers is dependent on two
factors: the expected queue length and the expected number of cus-
tomers lost. Ignoring the effect of customers lost, the longer the
expected queue length, the more the opportunities for the additional
server to make a contfibution to reducing the expected number of
customers and also the larger each contribution will be. Since the
expected queue length is longer for smaller number of servers, it
is clear that the expected number of customers is convex in s if the
effect of the customers lost is ignored. Now consider the effect of
the customers lost. Whenever the number of customers in the system
is reduced by one because of the contribution of the added server,
the effect of such a reduction can not last beyond the arrival of a
lost customer. Thus the more customers lost, the shorter the effect
of a reduction will last; hence, the smaller the decrement in the
expected number of customers will be when a server is added to the
system and other factors remain the same. Since the number of customers
lost is larger for a smaller number of servers, the effect of customers
lost has a tendency to force the expected number of customers to be-
come a discrete concave function of s. When the number of servers
is very small, the number of customers lost may be very high and the
difference between the number of customers lost under an sl-system
and that of under (sl+l)-system may be substantial. Therefore, it

is possible that the effect of customers lost overrides the effect
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of queue length and thus results in a smaller decrement in the ex-
pected number of customers when a server is added to the sl-system than
in the (sl+1)-system. Such a situation, if it occurs, must start
with s=1 until s is sufficiently large, say s'. For sl>s' the decrement
in the expected number of customers resulting from adding a server to
the sl-system is never smaller than the decrement resulting from adding
the server to the (sl+l)-system. This is so since the expected number
of customers lost decreases as the number of server increases and
the difference between the expected number of customers lost under
an sl-system and that of the (sl+1)-system vanishes at a faster rate
than the difference between the expected queue lengths of the two
systems. Thus the effect of customers lost upon the expected number
of customers decreases relative to the effect of queue length as the
number of servers increases. Hence once the number of servers is
increased to the extent that the expected number of customers is
convex in s it will never become concave again. It is thus clear
that the expected number of customers for a finite waiting space
queueing system will have at most one discrete concave region and
that such concave region will always start with s=1.

The effect of finite waiting space upon the convexity of the
expected number of customers as a function of service rate can be
investigated in the same fashion. Observe that when the service rate
is increased from u to u+Au, the size of decrement in the expected
number of customers that results is dependent on the expected number

of customers lost, the expected service time, and the expected queue

length when the system is operated at u rate. Ignoring the effect
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of the customers lost, the same reasoning used in proving Theorem 7
can be used to claim that the expected number of customers is convex
in p. The effect of customers lost, however, has a tendency to force
the expected number of customers to become a concave function of u,
especially when u is small. For the same reason as was described
in the last section, such effect decreases relative to the combined
effect of service time and queue length as the service rate increases.
Hence the expected number of customers for a finite waiting space
queueing system has only one concave segment which is located at the

left end of the entire curve.




Chapter V

OPTIMIZATION OF A STRING FUNCTION

It was mentioned in Chapter IV that there exist ﬁarallel
channel queuing models whose expected number of customers is convex
in u for fixed s and discrete convex in s for fixed u. This fact
prompts our special interest in the type of two variable unconstrained
nonlinear programming problem whose objective function is a convex
function of a continuous variable and a discrete convex function of a
discrete variable. 1In general, this type of function does not guarantee
that a local minimum will always be a global minimum. An obvious way
of finding the global minimum for this type of function when the
domain of the discrete variable is finite is to find the minimum of
the function for each fixed value of the discrete variable using a
one dimensional search algorithm such as Fibonacci Search and then from
these minima select the global minimum. Such an approach, of course,
fails to utilize the discrete convexity property of the function
and therefore can be improved. This chapter will be devoted to ex-
ploiting properties of such two variable functions and to develop

an algorithm for minimizing such functions based on these properties.

28
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5.1 PROPERTIES OF STRING FUNCTIONS

This section is concerned with the properties of string

functions which are defined below.

DEFINITION. A two variable function is called a string function if

one of its variables is continuous and the other is discrete.

DEFINITION. A continuously convex string function is a string function
such that for each fixed value of the discrete variable the function

is convex with respect to the continuous variable.

DEFINITION. A discrete convex string function is a string functiom
such that for each fixed value of the continuous variable the

function is discrete convex with respect to the discrete variable.

DEFINITION. A function that is both a continuous convex string
function and a discrete convex string function is called a frame

convex string function.

Throughout this chapter the following notation will be used
with the specified meanings.

f: a string function.

x: the continuous variable of a string function.

y: the discrete variable of a string function.
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D_: the set of real numbers that the continuous variable
of a string function may take.
D_: the set of consecutive integers that the discrete
variable of a string function may take.

Df: the domain of the string function f.

THEOREM 1 A sufficient condition for a function, g, of a discrete

variable to be nonconvex is the existence of any three points

i < j < k in the domain of g such that one of the following con-
ditions is satisfied:

(a) g(1) < g(j) and g(j) > g(k),

(b) g(1) < g(j) and g(j) > g(k).

Proof. (a) Assume g is convex under the given condition, then
Azg(n) >0 for all n € Dg. Consider the values of g at j, j+1,
and k:
Case 1: If j+l=k then it is obvious that g(j) > g(j+l) = g(k).
Case 2: If j+l#k then j+l<k. Since Azg(j) > 0 implies g(j+2) >
2g(j+1) - g(3), if g(j) < g(j+l) then g(j) < g(i+l) < g(3+2).
Applying the same argument on j+1 and j+2, we obtain the result
that g(j+1) < g(j+2) < g(j+3). Thus by repeating this process con-
tinuously it can be shown that g(j) < g(j+1) < ... < g(k). This
is a contradiction to the assumption that g(j) > g(k). Hence g(j) >
g(j+1).

A similar approach can be used to show that g(j-1) < g(j).

Thus we have g(j-1) < g(j) > g(j+1). This is a contradiction to



31
the assumption that g is discrete convex since Azg(j-l) < 0. We
thus conclude that g is not a discrete convex function.

(b) The second part of the theorem can be proven in the

same fashion.

THEOREM 2 Let f be any discrete convex string function. For any

i<j<k<m<ne Dy, if f(xl,j) = f(xl,m) for some x, ¢ Dx’ then

1
(@) £(x),1)

(b) £(x,,k)

(c) f(xl.n)

v

f(xl,j) = f(xl,m),

1A

£ (x1 »m),

v

f(xl.j) = £(x;,m).

Proof. (a) If f(x;,1) # £(x;,3) then f(x;,1) < £(x;,3)-

Since f(xl,j) = f(xl,m) and 1 < j < m, by theorem 1, £ is not a dis-
crete convex function of y. This is a contradiction to our assumption.
Thus f(x,,1) > £(x;,3).

(b) and (c) can be proved in the same way.

THEOREM 3 For any discrete convex string function f and 1 < j ¢ Dy’

(a) 1If f(xl,i) < f(xl,j), then f(xl,k) < f(xl,k+1) for any X, € Dx’
k, k+l1 ¢ Dy’ and k > j.
(b) If f(xl,i) > f(xl,j), then f(xl,k-l) > f(xl,k) for any X, € Dx’

k-1, k € Dy’ and k < 1.

Proof. (a) Since i < j < k and f(xl,i) < f(xl,j), by Theorem 1,
f(xl,j) < f(xl,k). Now since j < k < k+l and f(xl,j) < f(xl,k),

by Theorem 1, f(xl,k) < f(xl,k+1).
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(b) Since k< i< j and f(xl,i) > f(xl,j), by Theorem 1,
f(xl,k) > f(xl,i). Now since k-1 < k < i and f(xl,k) > f(xl,i), by

Theorem 1, f(xl,k-l) > f(xl,k).

DEFINITION. Let f be a discrete convex string function and k > J ¢
Dy. The positive region of string k with respect to string j, de-

noted by P is the set of x € Dx such that f(x,k) > f(x,3j), i.e.,

k-3’
Pk-j = {x: f(x,k) > £(x,j) and x € Dx}'
The negative region of string k with respect to string j, denoted

by Nk—j’ is the set of x ¢ Dx such that f(x,k) < £(x,j), i.e.,

Nk-j = {x: f(x,k) < £(x,j) and x € Dx}'
DEFINITION. Given any i1 and j strings of a discrete convex string
function, where i < j, the ignorable region of the k string of the
function, denoted by Ik’ is defined as:
Ik = Pj—i if k = j; or
Nj-i if k= 1; or
{x: £(x,k)

tv

f(x,k-1) and x € Dx} if k > j; or

{x: £(x,k)

1v

f(x,k+l) and x € Dx} if k < 1.

If i=j-1, then the search region of the k string, denoted by

s(k;i,j) is defined as:

S(k;i,j) {(x,k): x ¢ Dx - Ik and, if k+l € Dy’ £(x,k+1) > £(x,k)}
if k > j; or
{(x,k): x ¢ Dx - Ik and, if k-1 ¢ Dy’ f(x,k~1) > £(x,k)}

if k < i.
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THEOREM 4 For any discrete convex string function and 1 < j ¢ Dy,

= C C C C
(a) Pj—i Ij — Ij+1— Ij+2__n--_ Ij+noao’
= C C C C
® N =LEn CL ,S.C1 ...,
Proof. (a) P = I, follows directly from definition. Next, for

j-1 h|
any x, € Ij’ f(xl,i) < f(xl,j). Thus by Theorem 1, f(xl,j) < f(xl,j+1).

C: - C C..OC
Hence Xy € Ij+1 and Ij "‘Ij+1 Now assume Ij'—'Ij+1-— -Ij+n-1

holds. For any X, € Ij+n—1’ f(xz,j+n-2) < f(x2,j+n-1). Thus by

2 € Ij+n and

C =1 C C c...C
Ij+n-1 < Ij-m' It follows Pj-i Ij —Ij+l —Ij+2— &I

Theorem 1, f(xz,j+n-1) < f(xz,j+n). Hence x

jh LA I BN ]
(b) can be proved in the same way.

THEOREM 5 Let f(x*,y*) be the minimum of f£(x,y) and 1 = j-1. 1If

(x*,y%) £US

(n3i,5)’ then there exists at least a point (x",y") ¢
n sty

g S(n;i,j) such that f(x",y") = £(x*,y%).

Proof. If (x*,y*) ¢ % S(k;i,j)’ then x* ¢ Iy*' Under such a situation,

y* # j. For if y* = j then Iy* =1 and thus f(x*,y*) =

=P
h| -
f(x*,j) > f£(x*,i), a contradiction to the fact that f(x*,y*) is the

minimum. Similarly, y* # i. Now assume y* > j. Since x* ¢ Iy* and

x* ¢ Ij’ there exists a k, j < k < y*, such that x* ¢ I

% C (o
Now since x* ¢ Ik+1 and Ikﬁl __Ik+2 .

Thus f(x*,k) = £(x*,y*) for £(x*,y*) is a minimum. Let (x",y") =

%*
x and x* ¢ Ik*l'

LI g_Iy*’ f(x*,k) ﬁ f(x*,y*)o

(x*,k), then (x",y") € s and f(x",y") = £(x*,y*). Thus the

"3i,3)
theorem holds for y* > j. Similarly, we may prove the theorem holds

for y* < i. Hence the theorem holds.
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Theorem 4 describes. the relationship among the ignorable regions
of a convex string function and thus facilitates the determination
of the search regions. Theorem 5 implies that in searching the global
minimum for a convex string function, one needs only search the

search regions,

THEOREM 6 Let f be a frame convex string function with domain Df =
Dx X Dy' If for each pair of 1, j ¢ Dy’ the value of f(x,1) - £(x,j)
as x i1s varied does not change sign within the entire region of Dx’
then any local minimum of f(x,y) is equal to the global minimum of

f(x,y).

Proof. Let (x*,y*) be a global minimizing point and (xl,yl) be any
local minimizing point. We want to prove f(x*,y*) = f(xl,yl).
Case 1: If y* = Yy then f(x,y*) and f(x,yl) represent the same
function which is a single variable convex function of x. Thus
£(x*,y*) = £(x;,y,).
Case 2: If y* # ¥, and f(xl,yl) # f(x*,y*), then f(x*,y*) < f(x*,yl)
since f(x*,yl) > f(xl,yl). Thus by the condition of the theorem it
follows f(xl,y*) < f(xl,yl). This contradicts our assumption that
(xl,yl) is a local minimizing point since f is discrete convex in y
for all fixed x. Thus we conclude that f£(x*,y*) = f(xl,yl).

Since the above 2 cases exhaust all of the possibilities,

we conclude that f(xl,yl) = f(xk y*),
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The above theorem suggests that the global minimizing point
(x*,y*) of a frame convex string function that satisfies the assumption

stated in the theorem can be obtained as follows: For any x, € Dx

1
find y* that minimizes f(xl,y), then find x* that minimizes f£(x,y*).
This process is relatively simple. The strict requirements on the
function, however, limit this process to very few actual applications.

In the next section an algorithm which has a wider application will

be developed based on Theorem 4 and 5.
5.2 ALGORITHM FOR MINIMIZING A DISCRETE CONVEX STRING FUNCTION

For those discrete convex string functions whose ignorable
regions are easy to determine, the following algorithm based on

Theorem 4 and 5 may be used to obtain their global minima f(x*,y*).

Step O. Set GM (the global minimum) equal to =.
Step 1. Choose a number y' € Dy which is believed to be close to y*.
y' - 1 must be in Dy.
Step 2. Determine the ignorable regions Iy' and Iy'-l’ where
Iy' = {x: f(x,y') - £(x,y'-1) > 0},
Iy'-l = {x: £(x,y') - f(x,y'-1) < 0}.
Step 3. Starting with i=y', carry out the following iterative'process:
a. If Ii = Dx’ go to step 4.
b. If i+l e D, let A = {x: x € D_-I, and £(x,1+1) - £(x,1) > O};

otherwise, let A = {x: x ¢ Dx-Ii}'

Find f(x*,1) = Min f(x,1).
XeA



36
c. If f(x*,i) < GM, let GM = f(x*,i).

d. 1If i+l ¢ Dy, let I = IilJ A, increase i by 1, then go

i+l

to step 3a; otherwise, go to step 4.
Step 4. Starting with i = y'-1 carry out the following iterative
process:

a. If Ii = Dx’ go to step 5.

b. If i-1 ¢ Dy’ let A = {x: x ¢ Dx—I and f(x,i-1) - £(x,i) > 0};

i
otherwise, let A = {x: x € Dx-Ii}.

Find f(x*,i) = Min £(x,1).
XEA
c. If £(x*,i) < GM, let GM = f(x*,1i).

-1 = Ii U A, decrease i by 1, then go to

step 4a; otherwise, go to step 5.

d. If i-1 ¢ Dy, let I
Step 5. Terminate the process. The global minimum equal to GM.
5.3 FINITENESS OF THE ALGORITHM

A discrete convex string function must also satisfy the
following two conditions in order to assure that its global minimum
can be located in a finite number of iterations using the algorithm
described in the last section:

(a) Either the discrete variable is bounded above or there is
ay,e Dy such that f(x,yl+1) > f(x,yl) holds for all x € Dx'
(b) Either the discrete variable is bounded below or there is a
Yy € Dy such that f(x,yz—l) > f(x,yz) holds for all x € Dx'
Condition (a) guarantees that the algorithm will advance from step 3

to step 4 in a finite number of iterations. This is obvious if y is
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bounded above. If y is not bounded above, then there exist a yl € Dy such
that f(x,y1+1) > f(x,yl) for all x ¢ Dx' By Theorem 3, f(x,y+l) >
f(x,y) holds for all x ¢ Dx and y > e Hence there exists a Y, > Y,
such that Yy 2 y' and f(x,y°+1) > f(x,yo) for all x ¢ Dx' If the
algorithm has already advanced from step 3 to step 4 when 1 is
still less than or equal to Yo» then clearly such advancing has
been achieved in finite iterations. If such advancing has not yet

achieved at the time when i has been increased to Yor then I, C Dx

i
and A = Dx-Ii. Thus Ii+1 = Ii UA = Dx’ implying that the algorithm
will advance from step 3a to step 4 at next iteration, i.e., in
finite iterations. A similar argument can be used to show that
condition (b) guarantees the algorithm to advance from step 4 to
step 5 in finite iterations. It is clear, therefore, that conditions

(a) and (b) are sufficient for the algorithm to converge in a

finite number of iteratioms.

5.4 ILLUSTRATION OF THE ALGORITHM

As a demonstration, we now solve the discrete convex string
function shown in Figure 1 of page 38, using the algorithm developed
in this chapter. In this example Dx is assumed to be the set of real
numbers between 10 and 50 inclusively and Dy the set of positive integers.

Step O. CM = =

Step 1. Choose y' = 3.

Step 2. I, = {x: 30 < x < 50};

3

L

{x: 10 < x < 30}.



Step 3.

Step 4.

Step 5.

Ay
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i=3.

I3 # Dx’ continue.

4 ¢ Dy’ so A= {x: 15 < x < 30}; £(x*,3) = 15.
GM = 15.

4 ¢ Dy, so I4 = {x: 15 < x < 50}; 1 = 4,

14 # Dx’ continue.

5 ¢ Dy, so A = {x: 10 < x < 15}; f(x*,4) = 20.

GM = 15.
5¢ Dy, s0 I5 = {x: 10 < x < 50}; i = 5.
I5 = Dx’ go to step 4.
i=2,
I, # D, continue.
2 X
le Dy’ so A = {x: 30 < x < 50}; f(x*,1) = 10.
GM = 10.

= {x: 10 < x < 50}; 1 = 0.

l¢e Dy, so I1

Figure 1



Chapter VI

OPTIMIZATION OF A PARALLEL CHANNEL QUEUING SYSTEM

A design problem is concerned with a single choice of queuing
system given a set of initial conditions. Formally, the problem is
to

minimize Xo = £(X) + g[P(X)]

subject to Xey
where y is the set of allowable vectors of values of the design
parameters such that if Xey then P(X), the steady state probability
vector of the corresponding system, exists.

Consider the design problem pertaining to a Markovian
type parallel channel queuing system. The design parameters can
be any combination of the following three components: the arrival
rate A, the service rate u, and the number of servers s. Here X
has six possibilities, i.e., (A), (w), (8), (Au), (A,8), (u,s),
(2, u,8). Regardless which of these six possible vectors X repre-
sents, if g{P(X)] is.a function of the expected number of customers
or the expected waiting time, then the algorithms presented in
Chapter 3 can be used to estimate the value of g[P(X)] and hence
the value of Xo even though the closed form expression of g[P(X)]

39
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is not available. For this type of design problem the solution is
obtainable, at least theoretically, by total enumeration as long
as the transition matrix is available. It should be noted, however,
that solving design problems with total enumeration techniques often
requires a considerable amount of computer time if the problem is
large or if it contains a continuous variable. Part of the computer
time may be saved by taking advantage of any desirable character-
istic of the objective function such that methods other than total
enumeration can be used for solving the problem. As an illustra-
tion of how this can be done, the remainder of this chapter will
be devoted to the solution of a two parameter design problem using
the knowledge acquired in previous chapters.

Consider the following design problem associated with a
(M/M/s) : (FCFS/N/=) queuing model:

Minimize f£(u,s)

C,s + 02u + C3L(u,s)

1
s.t. 8, <8 <8 (1)
My S WSy
where Cl’ C2’ C3 are cost factors and s, p, L(u,s) are a number of

servers, service rate, and the expected number of customers respective-
ly. The service rate is allowed to take any value from the real
interval [ul,un] and the number of servers from the set of con-
secutive integers {sl,...,sn}. The transition matrix for this

queuing model is:
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| 2u 1-A-2yu A

ru 1-A-rp A

Since the transition matrix is known, the value of f can be calcula-
ted for each combination of u and s.

To solve problem (1), let Au be the tolerance allowed for
the service rate. Since the expected number of customers may not
be a unimodal function of the service rate, u should be sufficiently
small so that L(pu,s) can be used to represent L(u',s) for every
p'e(u-Ap,p+Ap) in the ordinal sense. As mentioned in Section 4.3,
L(s) and L(u) both have only one point of inflection and the con-
cave portion is always at the left side of the inflection point.
Therefore, the set {sl,...,sn} can be separated into two subsets
31={81""’91} and 82={Bi""’sn} such that L(s) is discrete convex
over 32 and L(p) 1is convex over [u1+Au,un] for every s ¢ SZ’ Problem
(1) is then equivalent to:

Minimize {f(ui,si); f(ug,sg)}
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where
f(ui,s{) = min f(u,8) = Cls + Czu + C3L(u,s)

£,4
uluun
seS1

and

il
B
)

£(u%,s%) £(u,8) = C;8 + Cyu + C3L(u,s)

1

Problem (2) can be solved by finding the minimum for each

s € S1 and then the global minimum f(ui,si) from these minima. To
find the minimum for any s ¢ Sl’ one may start with p = ¥y and
enumerate f£(u,s) at an increment of Au until u reaches the region
on which f(p,8) is convex. Any existing one dimensional search
algorithm can now be used to search the remaining region for the
minimum after slight modification. The modification is necessary

since the estimation of the expected number of customers involves
a certain amount of error. Thus there is no way to claim that any
two alternatives have the same total costs. In fact, one may know
for certain that some alternative has a lower or higher total cost
than another alternative has if and only if the absolute value of
the difference of the two calculated total costs is at least twice
as much as the cost factor C3 times the maximal absolute error
used in obtaining the expected number of customers. Hence addi-
tional alternatives (points) have to be evaluated each time the
one dimensional search algorithm encounters the situation where it
is not possible to determine which of the two alternatives under

comparison has a lower or higher cost.

(2)

3)
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Problem (3) is concerned with a frame convex string function.
Hence it can be solved with the algorithm stated in Section 5.2.
No further explanation regarding the application of the algorithm
is needed except that of concerning the determination of the positive
and negative regions of any two strings. The following theorems
are needed for this purpose.

THEOREM 1 Let f., f

1° 20 815 8 be functions of x. If fl(x) and fz(x)
are parallel to each other and gl(xl) - gz(xl) $ gl(xz) - g2(x2) for
every x, # Xos then the two curves defined by fl(x) + gl(x) and

f2(x) + gz(x) intersect at no more than one point.

Proof. Let x' be an intersection point of the two curves. Then
fl(x') + gl(x') = fz(x') + gz(x'), or equivalently, fl(x') - fz(x') =
gz(x') - gl(x'). Similarly, suppose x" # x' is another intersection
point of the two curves, then fl(x") - fz(x") = gz(x") - gl(x").

But since fl(x) is parallel to f2(x), fl(x') - fz(x') = fl(x") -
fz(x"). Thus gl(x’) - gz(x') = gl(x") - gz(x"). This contradicts
the assumption of the theorem. Therefore, the two curves can have

at most one intersection point.

THEOREM 2 Let f(u,s) = C;s + C,u + C3L(u,s). If for every j # k

1
L(u,3) # L(u,k) holds for all u € Du’ then £(y,j) and f£(u,k) inter-

sect at no more than one point.
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Proof. Assume j < k. Since L(u,j) is a strictly decreasing function
of y and L(p,j) - L(n,k) represent the amount of decrement in the
expected number of customers when the number of servers is increased
from j to k, an argument similar to that of Section 4.2 allows us

to conclude that L(ul,j) - L(ul,k) $ L(uz,j) - L(uz,k) for every

My # My Let gl(u) = C3L(u,j) and gz(u) = C3L(u,k). It is clear

that g, (k) - 8, (1)) # gy (uy) - g, (u)) for every u, # Hye Now let £, (w) =
Clj + Czu and fZ(“) = Clk + Czu. Then fl(u) - fz(u) = Cl(j - k) =

a constant. Hence fl(u) is parallel to fz(u). But fl(u) + gl(u) =
Clj +Cyu + C3L(u,j) = f(u,j) and fz(u) + gz(u) = Clk +Con + C3L(u,k)
= f(u,k). Thus, by Theorem 1, £f(u,j) and £(u,k) intersect at no

more than one point.

The positive and negative regions of any two strings can
now be determined as follows:

Case 1: If [£(u),k) = £(uy,3)]1IEC k) - £(u_,3)] > 0, then £(u,k)
and f(u,j) have no intersection on [ul,un]. Thus if f(ul,k) >
f(ul,j), then Pk—j = [ul,un]. Otherwise, Nk-j = [ul,un].

Case 2: If [f(ul,k) - f(ul,j)][f(un,k) - f(un,j)] < 0, then there
is an intersection in the interval [ul,un]. Let u3e(u1,un), then

a positive region or negative region can be determined by repeating
the same procedure on the subinterval [ul,u3] or [u3,un].

Appendix A contains a Fortran program wirtten for the
purpose of solving problem (1). This program uses the approach
described above to locate the optimal solution for the design
problem. At each enumeration the arrival rate and the service

rate are normalized first before they are used for estimating the
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expected number of customers. In other words, the program finds a
factor ¢ that satisfies the inequality 1.0 > cA+csuy > 0.1 and uses
chk and cu in place of X and u for building the transition matrix

of the system. Several examples have been solved on an IBM 370/158
computer using this program. Results are included in Appendix B
and summarized in Table 1. Among the ten examples listed in Table
1, the first three differ from each other only in the orders of
their transition matrices. Example 3, 4, and 5 are different from
each other only in the starting points used for the optimization
algorithm. So are Example 7, 8, and 9. Example 5 and 6 are dif-
ferent in their cost factors. The last example is deliberately
constructed so that the expected number of the customers is a con-
cave function of the number of servers over the entire allowable
region, i.e., 52 is empty. Results of these examples are consistent
with our intuition that the computer time required for solving a
design problem varies substantially from one problem to another
depending on the number of points enumerated and the time required
for each enumeration. Factors that will affect the number of points
enumerated are the arrival rate, the service rates, the numbers

of servers, the maximum absolute error, the tolerance, the cost
factors, and the starting string used for optimization. Whereas
the amount of time required for each enumeration is dependent upon
the order of the transition matrix, the maximum absolute error and

also interestingly upon the arrival rate and the service rate.



Table 1

Ex- | Arri-| Ordey Allowable Region Max Toler- Cost Factor No. of pts| Time
amplg val Tran] Servers | Service Raté Abs. ance |y' sk u¥ Tot4 Enu- | in

Rate | Matry Frog To| From To | Error Cl| C2 C3 al | mertd] Sec.

1 | 0.030 24 i{ 7| 0.03|0.12{0.002|0.003| 4| 1]120f 10 2} 0.056 | 2174 47 | 21.6

2 | 0.030 16 1} 7] 0.03]0.12}0.0020.003 ) 4| 1|120} 10f 2/ 0.056| 2174 47 | 10.0

3 | 0.030 8 1} 7| 0.03{0.12{0.002{0.003( 4| 1120 10 2{ 0.056 | 217 47 3.0

4 | 0.030 8 1| 7] o0.03|0.12{0.002|0.003| 2| 1|1200 100 2/ 0.056| 217 47 3.3

5 | 0.030 8 1{ 7| 0.03{0.12{0.00210.003{ 7] 1]120, 10 2/ 0.056| 217 53 3.3

6 | 0.030 8 11 7| 0.03}0.12|0.002|0.003 | 4 {15120 3004 2| 0.120| 2174 32 1.6

7 | 0.020 15 1}14) 0.01}0.060.002 |0.002}| 3] 3]1004 150 2| 0.060| 36 80 | 15.0

8 | 0.020 15 1114} 0.01}0.06(0.002|0.002 |13 3 {100{ 150 2{ 0.060 363 96 | 20.1

9 |0.020 15 1114| 0.01]0.06]0.002|0.002| 7| 3|100f 150{ 2| 0.060 3ﬁj 84 | 16.5

10 1 0.200 15 3/10) 0.01) 0.0510.00410.002}1 -1 3 4 6 6'0.0501! 168 160 ' 31.8

9%



Chapter VII

SUMMARY AND FURTHER RESEARCH

One of the promising approaches for designing Markovian type
parallel channel queueing systems is the approach that estimates the
effectiveness of the system directly from its transition matrix. For
those design problems whose measures of effectiveness can be estimated
from their transition matrices, the optimal system is determinable,
at least theoretically, by total enumeration. One must, however, try
to take advantage of every desirable characteristic of the objective
function such that a more efficient method can be used to locate the
optimal solution. Following this idea, three algorithms have been
developed. Two of these algorithms are for the estimation of the
expected number of customers of a system from its transition matrix.
The third algorithm is for the optimization of a discrete convex
string function. The first two algorithms allow one to set up and
solve for optimal solutions in those design problems which contain
only the expected number of customers or the expected waiting time
as measures of effectiveness. The third algorithm and the results
of the investigation on the characteristics of the expected number

of customers provide us with a more realistic approach for optimizing

47
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queueing situations in terms of service rate and number of servers
regardless of the inavailability of closed form expressions for
appropriate measures of effectiveness.

This dissertation, however, has not exhausted every aspect
of the subject. Much more work must be done. Such work includes the
development of an algorithm for estimating the expected number of
lost customers of a system from its transition matrix; the investigation
of the character of the expected number of customers in terms of the
arrival rate; the investigation of the effect of a finite calling
source or priority discipline upon the convexity of the expected number
of customers; and the extension of the discrete convex string function

minimization algorithm to problems of more than two variables.



(1) of Chapter VI.

in Chapter VI.

Appendix A

COMPUTER PROGRAM FOR SOLVING DESIGN PROBLEMS

This appendix contains a Fortran program for solving Problem

The method used in the program is that described

Input to this program are the parameter cards. Each of these

input cards contains the following information:

Card
1
6

11
16
21
26
31
36
41
44
47

50

Column
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 43
- 46
- 49

- 52

Format
F5.5
F5.5
F5.5
F5.5
F5.5
F5.0
F5.0
F5.0
13
I3
13

I3

Contents
arrival rate
the smallest service rate allowed
the largest service rate allowed
tolerance allowed for the service rate
maximal absolute error in obtaining L(u,s)
cost per unit of server
cost per unit of service rate
cost per unit of L(u,s)
order of the transition matrix
the smallest number of servers allowed
the largest number of servers allowed
the guessed optimal number of servers

49
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THIS 2IROGRAM SOLVES PRUBLEM (1) OF CHAPTER VI USING THE
ALGORTTHMS DUVELOPED IN CHAPTER III & Ve INPUT TO THE
PRUGRAM CONSISTS OF ARRIVAL RATE. THE LOWER AND UPPER

- HOUNDS OF THE SFRVICS RATY o TOLERANCEs MAXIMAL AHSOLUTE

1

5010

6001

6000

6002

~

104

108

110

LtRROUR, COST FACTORS FOR SFRVERSs SERVICE RATEe. AND THE
CXPECTED NQOe DF CUSTOMERSs THE URDER OF THE TRANSITION
MATRIXes THE LOWER AND UPPER BOUNDS OF THZE NuUe OF
SERVFRSe AND THrY STARTING POINT FOR THE OPTMIZATION.
OQUTPUT OF THE PRUGRAM CONTENTS THE OPTIMAL SOLUTION
AND ALL OF THE POINTS WHICH ARE ENUMERATED IN ORDER TO
DETERMINE THE SOLUTION.

RFrAL LAM

INTFGR SLeSHeYsYMLsSUBSSLP] sSLP2,SHML
READ(S+5010+END=100) LAMJUL sURJDEL +sACCsCl9C2sCIsNURDySL,
JSH, Y

FURMAT(HF 254 3F5¢0+413)

CALL 4¢ TIME

PRINT &001

FORMAT(*1%Y//77/777)

LN=11

PRINT 6000 LAMyUL yURJDEL +SL+sSHINORDsACCsC14C2,C3
FORMAT(* ARRIVAL RATE=®*F83.5/
1' SERVICE RATES FROM* 4 F6He3s?' TO!' sFHe3s® WITH TOLERAN?,
2'CE=%,F6e4/ ' NUMBIR OF SERVERS FROM®* o I3, TO'»I13/
3* ORDER OF TRANSITION MATRIX =%,13/
4¢ MAX ABSOLUTE ERRUR OF THE ESTIMATION OF L =®.Fred/
5% COST FACTURS ClI='sFBe2s"* C2='¢FBe24? C3='4sF8.2/
6//7* NQOe OF SIRVICE TOTAL COST EXPECTED 2
7/ SERVERS RATE?' 421 X *CUSTOMERS /)
IF(SHoLTeNORDeANDeYelLEeSH) GO TO 2

PRINT 6002

FURMAT(* INPUT FRROR?Y)

5T0P

BNDRY =2, 0%ACC*¥C3

VALUB=9999999,0

SLP1=SL+1

{F S HAS 1| OR 2 ALTERNATIVES ONLY., DO NOT USE ALGORITHM
IF(SH~-SL~1)104+108,110

CALL EXPQUE(LAM UL +SHeNORDIJACCsF2sF24sC14sC2eC3sLN)

GO TO 160

CALL EXPQUE (LAMIUL ¢ SHeNORDsACC+sFR24E24C1+sC24C34LN)

CALL EXPQUF(LAM UL +sSLosNORDsACCsF14EL1,,C13C24C3sLN)

w0 TO 150

CHECK THE CONVEXITY QF L(S)

CALL EXPQUE(LAM UL +SLeNORDe ACCeF1leE14C1+C2¢C3,LN)

CALL EXPQUE(LAMUL +SLP1 ¢NURDSACCsF2sF2+C14C2,C3,LN)
[SL=SL+2

DU 140 I=ISL,SH

SLP2=SL +2

CALL EXPQUE(LAM UL ¢ SLP2 NORDs ACCosF34:23,C1,43C24C35LN)
IF(EL14C3-2.0%£2eGTe4¢0%ACC) GO TO 170

L(S) IS NOT CONVEX ON SL.SL+1,SL+2



140

160

17¢

180

200
210

10

30

51

CALL ENUMER(LAMJUL sURsSLeNORD+ACC+C1leC24C3:SUBUUBY
IVALURBDEL ¢+ BNDRY LNoF1leE1L)

Cl=c2

E2=rF 3

Fl=F2

r2=F3

SL=SL+1

CONTINUE

ENUMFRATE LAST TWO STRINGHS

SHM1=SH-1

CALL ENUMER(LAMIZULJURISHM] «NORDJACCsCl +C2,C3+¢SUBUUB
LVALUBGDEL « BNDRYLNsF1l,E1)

CALL ENUMER (LAMJULIURSHeNORD+ACCsC1+C2+C3+45UBsUUBS
IVALUE s DEL +BNDRYJLNsF2,E2)

6O T 80

L(S) 1S CONVEX - CHECK THE CONVEXITY OF L(U)

HDEL =DFL/2.0

Y2=UL +HDEL

U3=ti2+HDEL

ISL =SL

Ut 200 I=1ISL+SH

CALL “XPQUE(LAM U2 sSLyNORDsACC 4F 42224C1 4¢C24C39sLLN)
CALL EXPQUE(LAMGUI ¢SLeNORDsACCoF3+E3+C10C24C3sLN)
IF(F1453-2.,0%¥F2eGTe8,0%ACC) GO TOU 210

LIU) 1S NOT CONVEX

CALL INUMER(LAMJU3ZURISL+NORDJACC+C14C2.C34SUB,UUB,
IVALUL ¢ DEL + BNDRY ULNeF 34E3)

SL=SL +1

PRUCE SS NEXT STRING IF THERE IS ONE

IF{SLeGTeSH) GO TO 80

CALL FEXPQUE(LAMJUL ¢ SLoNORDsACCosFoF10C1+C2¢C3:LN)
CUNTINUE

IF(SH-1ISL.LEel) GO TO i8u

INCREASE THE STARTING POINTY IFf NECESSARY
IF(Y«NL«SL)GOTO 30

Y=Y+1

GO T 10

DETERMINE IF THF TWO STARTING STRINGS HAVE INTERSECTIONS
YMi=Y=-1

CALL. I . XPQUE(LAMoUL s YoNORDsACC4FYULEC1:C25C34LN)
CALL = XPQUECLAM UL + YMI ¢NORDJACC oFYMIUL +EE+C14C2sC34LN)
ODIFFL=F YUL-FYML1UL

CALL EXPOQUE(LAM:URsYINURD+ACC FYURWE9C1+4C24C3sLN)
CALL FXPQUE(LAMJURsYM]1 4NORD3ACCoFYMIURIECLlsC29C34LN)
DIFFR=FYUR=FYMIUR

[AYMI=]

IF CAN NUT TELL THAT THERE IS NO INTERSECTIONs SEARCH
sOTH SIDES OF THE S DOMAIN
IF(ARS(DIFFL) LT .BNDRYeOReABS(DIFFR) LT«BNDRY) GO TO 50
IF(DIFFL%*DIFFR«LT400) GO TO S50

NO INTERSECTIONS -~ SEARCH ONLY ONE SIDE
IF(DIFFLeGTe040) GO TO 60
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IAYMI=C
FIND MINIMUM FROM STRINGS WITH S VALUE HIGHER THAN
THE STARTING POINT

50 VOo=UL
Ul =UR
CALL. SEARCH(LAMsUO UL +DEL +ACCoYsSHeNORDFYUL s FYURS
1C14C2+4C3+5UBUURVALUBsBNDRYs1,4,LN)
FIND MINIMUM FROM STRINGS WITH S VALUC LOWER THAN
THE STARTING POINT
IF(IAYM1.,EQe0)GOTO 4O

66 CALL SZARCHILAMOUL sURSUDIL +ACCsYM] sSL sNORDsFYMIULIFYMIUR,
1C1+C24+C3+sSURJUUBSVALUBRNDRYs=1,3LN)

80 IF(LN.LE«43) S0 TO 90
PRINY 6001
SOLUTION UBTAINFED

4G PRINT 6010.SUR +UURA ¢ VALUI?

6010 FORMAT( /7770 %% OPTIMAL SOLUTION ¥*%ke// ¢ NOe OF SURVER?',

1¢S=*,167" SERVICE RATE=9 4FBe6/"* TOTAL COST=',£10e3)
CALL G=TIME(KMINJKSEC.KS=CC)
PRINT 6020, KMINJKSECKSEFCC

6020 FORMAT('ICOMPUTER TIME 940369 MIN'9I3e%e®¢13s*' StCY)

GO TO 1
100 STUP
t ND
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THIS SUBROUTINE DETERMINES THE MINIMAL SOLUTION FOR A
SPLCIFIED STRING, IT STARTS THE SEARCH PRQOCESS WITH
THE LEFT MOST UF THE STRING USING THE TOTAL ENUMERATION
METHOOD UNTIL [T REACHES THF CONVEX PURTION OF THE
STRING. THE REMAINING OF THE STRING IS THEN SEARCHED
wlTH A MODIF1ZD GOLDEN SEARCH METHOD.
SUBRUUTINE ENUMFRILAMJULJURsSeNsACCsCl1+C2¢C3+5UBUUB,
IVALUB JOFL+BNDRY JLiNeF1sE1L)
INTECER SeSUB
e AL LAM
C TOTAL TNUMERATION
NU=(UR=-UL) /DL
1F(F1.GF «VALUR) GU TO 10
VALUBR=H ]
suB=<
UU=UL
10 U2=UL+DEL
CALL I XPQUI (LAMJUR2 sSeNsACCsF24E2+Cl1eC2+C3+sLN)
IF(F2eGEsVALLE) GO TO 20
VALUB =F2
SUH=S
vue=ue
20 DY 100 1=2+NU
U3=UZ+DEL _
CALL EXPQUE (LAMeU33SeNeACCsF345E34C1+C2+C34LN)
IF(F3.GEeVALUB) GO TO 30
VALUH=F3
>UB=%
uuB=uU4
CHECK FOR CONVEXITY
30 IF(EL¢E3-2.0%F2.LEe&+0%ACC) GO TO 40
IF(NU=-1.GLed) GO TO 110
40 &1=£2
2=t 3
ue=u3
100 CONTIEINUE
RkE TURN
C MODIF 1D GOLDEN S=ARCH FUR THE CONVEX PORTION OF
C THE. STRING
110 CALL FXPQUE(LAMsUR IS NIACCoF24sE24sCLeC29CHIeLN)
CALL GOLDEN(LAM S NsACC,C1+C2,4,C3,SUBsUUBsVALUHB,DEL,
IBNDRY s U3 sF 3sURF2oLN)
RETURN
ND

noNncooo

C
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20

30

40

S0

70

80
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THIS SUBROUTINc PIRFORMS STEP 3 OR STEP & OF THE
ALGORITHM DEVELORPED IN CHAPTER Ve

SUBROUTINE SEARCH(LAMSUL sSURIDEL WACC+SBEGeSSTP¢NORDY
1IFSUL oFLUR3C1 4C29C39¢SUBWUUH o VALUBsBNDRY s INCoLN)
INTEGER SeSP1+SBEGeSSTPsSUB

REAL LAM

5=SUEG

SP UL =SUL

SPIUR =5UR

UTH=(SUR=-SUL)/3.C

SP1I=S+1INC

I¥G=0

DETIRMINT WHICH OF THr TWO STEPS 1S TUu BE DONL
IF(INCeGTN)GU TL 20

IF(SP1eGE«SSTP) GO TU 30

CALL GOLDEN{LAM;SsNORD ACCsC1+C2+C3,SUBsUUBsVALUBSDEL »
LBNDRY s SUL s FSUL +SURSFSURWLN)

RETURN

ANY MORE STRING

IF(SPleGTeSSTP) GO TULU 15

DEVTERMINE THt IGNORABLE R_GION

CALL EXPQUE(LAMSPIUL.SPI s NORDJACCFSPLIUL s esCleC2+C3sLN)
CALL EXPQUE(LAMsSPIURSPI +NORDsACCFSPIURIESCL1eC2:C34LN)
LFFUL =F SP1UL~-FSUL

DFFUR=FSPLUR=F SUR

IF(UTHSLTCDEL) GO YO 300

IF (ABS(DFFUL) «LTeBNDRY) GO TO 270

IF(ABS{DFFUR) «GE«BNDRY) GD TO 230

U=SUR=-UTH

1IFG=1

TO LOCATE THE INTERSECTION =~ 1ST ATTEMPT

CALL EXPQUE (LAMeUsSosNORDeACC4FSULE,C1,C2,C35LN)
CALL EXPQUE (LAM3UsSP1L ¢NUORDsACC+FSPLIUZ4C1,:C29C34LN)
DFFU=FSP1U~FSU

IF(ABS(DFFU) +LT«BNDRY) GO TO 70
IF(OFFUSDFFULLF<0e0) GO TO 170

IF(DFFUGT.0.0) GO TO 50

SUL=U

FSUL =FSU

GU YU 70

SPluL=U

FSP1UL=FSP1U

1IF{IFGeNELO) GO TO 150

U=sU+UTH

10 LOCATE THE INTERSUCTION - 2ND ATTEMPT

CALL. EXPQUE(LAMsUsSeNORDIACCFSUIEsC14C2+C34LN)
CALL FXPQUFILAMIU+SP1l ¢NORDJACCsFSPIU+E+C14C2eC3eLN)
DFFU=FSPLU~F SU

IF(ARS(DFFU) +LT.BNDRY) GO TO 150
IF(NDFFUXDFFURSGTe0,0) GO TO 100

IF(DFFUsLTe0.0) GO TO 90

suL =uU
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100

150

160

170

180

240

27¢

Jo
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FSUL=FSU

GO YO 1S5S0

SP1lUL =V

FSPLIUL=FSPLU

6O TO 150

IF(DFFU«GTe0e0) GU TO 110
sunr=u

tSUR=F SU

GO T 150

SR UR=L

FSPIUR=FSP1U

PERFORM STEPR B OR 48
CALL GOLDEN(LAMISoNORDsACCsCl sC29C3+sSUBUUHVALUBGDFL »

THHORY ¢ SUL o FSUL s SURFSURWLN)

SUL=SPIUL

LUR=SPIUR

ADVANCIL TO NEXT STRING

$=5P)

FSUL=FLPLUL

FSUR=SFLPIUR

GO T 10

IF(DFFUeGTe0e0) GO TO 180

SUR=U

FSUR=FSU

GO TU 150

SPIUR=U

t SPIUR=FSP1IU

GO Tu 150

IH(DFFUREDFFUL «GTe0e0) GO TO 240
THE TWO STRINGS DO INTERSECY
U=SuUL +UTH

GO T a0

HAVE NO INTERSEFCTION POINTS
IF(DFFURGGT«0esU) GO TN 15

GO Ty 160

LF(ANS(DFFUR)«LTe060) GO TO 150
U=SUL.+UTH

GO TU #0

wWHEN THE RSGION OF U [S SMALL
IFL(ABSIDFFUL) ol ToNDRY )2 ORe (ABS(DFFUR)JLT<BNDRY)) GO

1T0 170

IF(DFFURXDFFUL eLF e0e0) GO TO 150
IF(DFFURLGT«0e0) GO TO 15

GO T 150

END
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THIS SUBPRUGRAM USES A MODIFIED GOLDEN SEARCH ALGORITHM
TO DETZRMINE FHF MINIMAL SOLUTION FOR A SZCTION UF A
STRING THE MODIFICATION IS CONCERNED WITH THE DEALING
UF ERRORS INTRUDUCED IN THE ESTIMATION OF THE O0OBJECTIVE
FUNCTIONe.

SUBROUTINF GULDEN(LAM;SNeACC,+C1,C2:C3,SUBUUBsVALUBsDEL

1BNDRYJELINGELVAL ERINsr RVAL oL N)

REAL LAM

INTEOGE R SeSUB

tL=FLIN

=L RIN

GOLDEN SHEARCH STLPRPS

A=FL+(=“R-EL)*0,382

CALL -~ XPQUE (LAM,A3S¢NeACC+AVALIEC14C2,C3,LN)
H=tR=(FR=-tL) *0e 382

CALL EXPQUF (LAMsBe+SaNsACC+RVALWE2C14C24C34LN)
IF(AHS(AVAL-BVAL)«LTeBNDRY) GU TO 100
1F(AVAL«GT.BVAL) GU TO 50

LROP THE RIGHI END

Ek=H
FRVAL =B VAL

AQB =t R=A+=L
CALL £ XPQUL (L4
I CAUH=A) 30,
1=A
OVAL=AVAL
A=ADR

AVAL =AOBVAL
o0 TL 8O
H=A0BRB
HVAL=AUBVAL
GO YO BO
DRUP THE LEFT EiNY
el =A

ELVAY =AVAL
AOB=ER-B+A

CALL EXPQUE(LLAMJAUB+SsNsACCsAOBVAL+Z9C1+C2+C34LN)
IF(AOR-8B) 60,104,700

(EsCl1eC24C34LN)

A=AQNH

AVAL =AURVAL
vl TO 8O
Az=H

AVAL =1IVAL
H=A0B

VAL =AOBVAL

IF((ER=EL)«GTeDEL) GO TO 20

THE REGION OF UNCERTAINTY IS SMALL ENOUGH
IF(VALUB.LE+BVAL) GO TO b8

suB =%

uug=H

VAL UR=BVAL

IF(VALUBJ.LFeAVAL) GO TO 90
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1o

30

40
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60
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eo
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THIS SUBPROGRAM USES A MODIFIED GOLDEN SEARCH ALGORITHM
TO DETZRMINE THF MINIMAL SOLUTION FOR A SZ=CTION UF A
STRING, THE MODIFICATION IS CONCERNED WITH THE DEALING
UF ERRORS INTRUDUCED IN THE ESTIMATION OF THE OBJECTIVE
FUNCTION.

SUBROUTINF GUOLDEN(LAM;SeNsACCsCl1+C24C3,SUB«UUBsVALUBSDELS
1BNDRYJELINJELVAL ERIN,r RVALJLN)

REAL LAM

INTEOGER SeSUB

tL=CLIN

Rzt RIN

GOLDEN SEARCH STLPS

AzFL+(~-R-EL)*%0e382

CALL - XPQUE (LAMJA3SeNyACC s AVALsEsC1,C2+C3,LN)
H=tR-(R-EL)*0,382

CALL EXPQUF (LAMeHsSoaNsACCRVAL JE3C14C2+C34LN)
IF(ABS(AVAL-BVAL)LT«BNDRY) GU TO 100

1F(AVAL .GT<BVAL) GO TO %O

URQOP TidE RIGHI END

Ek=n

ERVAL =BVAL

AUB=t R—A+EL

CALL £ XPQUL (LAMJADL s SeNsACCsAOBVALEC14C2+4C3sLN)

It CAUB=-A) 30,10440

B=A

OVAL=AVAL

A=AQOR

AVAL=AUBVAL

o0 TU 80

H=AO0HR

HVAL=AUBVAL

GO TO 8O

DRUP THE LEFT END
cl =A

LtLVAL =AVAL

AOB=ER-B+A

CALL EXPQUE (LLAMyAUBsSeNsACCsAOBVAL +2+C1sC2+C34LN)
IF(ADR=-B) 60+10+70

A=ADH
AVAL=AUNBVAL
Wl TO KO
A=f

AVAL =B3VAL
B=AQBH

VAL =AQRVAL

IF((ER=-EL)«GV«DEL) GO TOU 20

THE REGION OF UNCERTAINTY IS SMALL ENOUGH
IF (VALUBe.LESBVAL) GO TO b8

sSuUBE=S

uua=H

VAL UR=BVAL

IF(VALUBJLFeAVAL) GO TO 90O
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SUB=S
uvB=A
VALUH=AVAL
90 IF(VALUB.LESXLVAL) GO TO 95
SuUB=S
uun=L L
VALUH=ELVAL
Y5 [F{VALUB.LE ¢£RVAL) RETURN
SUHR=S
vug=tr
VAL U =CRVAL
Rt TURN
NOT ABLE TO TELL wHICH QF THE TWO POINTS IS LARGER -
INTRODUCE THE FIRST AUXILARY POINT
100 C=(A+6)/72.0
IF(AVAL.GE eBVAL) GO TO 110
FIN=DOVAL
GU T 120
110 FIN=AVAL
120 CALL T XPQUE(LAMJCySsNsACCsCVALIESCL1+sC2+4C3+sLN)
IF (ABS(CVAL-AVAL ) LT.BNDRY) GO TO 130
IF(CVALJ.LT.AVAL) GO TO 125
122 PRINT 6000
6000 FORMAT(®* CONCAVE?")
STOP
125 EL=A
ctL VAL =AVAL
130 IF(ABS(CVAL-HVAL)LT.BNDRY) GO TO 150
IF(CVAL.GE.BVAL) GO TO 122
ER=B
ERVAL sHVAL
140 IF((FR~EL).LEDEL) GO TO 85
GO TO 10
150 IF (ABS(CVAL-AVAL)GE.B8NDRY) GO TO 140
IF(CVAL+GE.VALUB) GO TO 158
[SUB=S
uuB=C
VALUB=CVAL
FIRST AUXILIARY POINT FAILS TO HELP
155 IF ((A-~EL)eGT. (4.0%DEL)) GO TO 180
160 IF(CVAL.GE.VALUR) GO TO 165
SuUB =%
UUR=C
VALUB=CVAL
TOVYAL ENUMERATION
165 NCUT=(ER-£L ) /70EL
C=tL
LU 170 I=1NCUT
C=C+0FL
CALL EXPQUE(LAMsCoSeNeACCICVALIE 1C1+C2+sC39LN)
IF(VALUB.LE.CVAL) GO TO 170
sub =S



170

180

160
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uuB=C

VALUB=CVAL

CONTINUE

GO TO AS

INTRODUCE THE SECOND AUXILIARY POINT

C=(A+EL) /2.0

CALL EXPQUE(LAMsCsSeNsACCsCVALEWC13C2,C3sLN)
IF(ABS(CVAL-AVAL).LT.BNDRY) GO TO 160
IF(CVAL«GT<AVAL) GO TO 190

ER=A
ERVAL =AVAL
A=C
AVAL =CVAL
GO VO 140
tL.=C

ELVAL=CVAL
L0 TO 140
END



conoe
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S0

6000
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THIS SUBROUTINE ESTIMATES THE EXPECTED NUMBER OF
CUSTOMERS OF A M/M/S QUEUING MODEL USING ALGORITHM )
OF CHAPTER 11lle THE TOTAL COST OF THE CORRESPONDING
SYSTEM IS ALSO CALCULATED AND PRINTED.
SUAROUTINE EXPQUE(LAsMUsSeNJACCoFOeEQ+C14C24,C3,LN)
REAL LAMILA MU

INTEGER S

DIMENSION WZ(100),.,wZP1(100)

F$=S

rCTINR=140

PMAX=(FS*MU+LA)*FCTNR

IF(PMAXeGE«Oel1) GO TO 4
FCINR=FCTNR*10.,0

GU TO ¢

PMAX=(FS*MU+LA)*FCTNR

IF(PMAX.LTS140) GO TO 6
FCTNR=FCTNR*0. 1

GO TO 4

LAM=LAXFCTNR

U=MUXFCTNR

MIN=1

MA X=N

NCNT =1}

TO BUILD w(0)

DOLOI=1sN

wZ(1j)=1-1

CONTINUE

TO BUILD W(Z+1) FROM wW(Z)

NM1i=N=-1
WZP1(1)=()e0=LAM)X*WZ (1 )+LAMRWZ(2)
DUQOI=2eNM1

IF((I-1)«GTeS) GO TO 30

FiIMi=I-1

US=F IMLl*U
WZPI(I)=USRWZ(I-1)¢(1.0=-LAM=US)XWZ(I)+LAMERWZ(TI+1)
CONT INUVE

IF(NM1.EQeS) GO TO 60
WZPL1(N)=USRWZ(NM1)+(10-US)XWZ(N)
CHECK FOR MAX ABSOLUTE ERROR
VALMIN=WZP1(MIN)

VALMAX=WZP1(MAX)

EQ=( VALMAX+VALMIN) /2.0
TOL=(VALMAX-VALMIN) /2.0

IF(TOL.LT.ACC) GO TO 90

RESET FOR ANOTHER [TERATION

DO 50 I =1.N

wZ(l1)=wZP1(1)

CONTINUE

NCNT=NCNT+1

IF(NCNTLE«20000) GO TO 20

PRINT 6000

FORMAT(' TOO MANY ITERATIONS?®)



¢0

90

95

100

110

6020

120

6030

60

STOP

US=US+U

GO TO a2

IMIX=0

MAKE SURE MIN-= AND MAX~ COMPONENT REMAIN THE SAME
001001 =1eN
IF(WZPL1 (1)L TeVALMIN) GO TO 95
IF(WZP1(1)eLEe VALMAX) GO TO 100
MAX=1]

VALMAX=wZP1(I)

IMIX=1

GO TO 10C

MIN=1

VALMIN=WZP1(1)

IMIX=1

CONTINUE

IF(IMIXeNE.O) GO TO 4S

EVALUATE THE OBJECTIVE FUNCTION
FO=C1*S+C2xMU+C3I%EQ
IF(LNeGTe48) GO TO 120

PRINT 6020eSsMUsFOLEQsNCNT
FORMAT(1Xe15sF1164¢E16e8eF11,4,19)
LN=LN+1

RE TURN

LN=0

PRINT 6030

FORMAT( 1 ///7777)

GO TO 110

END



Appendix B

NUMERICAL EXPERIMENTATION WITH THE DESIGN ALGORITHM

This appendix contains ten numerical problems of problem (1)
of Chapter VI solved using the program listing in Appendix A. Each of
these ten computer outputs contains the descriptions of the design
problem, the list of points that are enumerated, and the optimal
solution of the problem. These results are summarized in Table 1
on page 45. The IBM 370/158 computer times required for solving

these problems are also included in the table.
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Example 1

ARRIVAL RATE= 0.03000

SERVICE RATES FROM 0,030 TO 0.120 WITH TOLERANCE=0.0030
NUMBER OF SERVERS FFOM 1 YO 7

ORVDER OF TRANSITION MATRIX = 24

MAX ABSOLUTE ERROR OF THE ESTIMATION OF L = 040020

COST FACTORS Cli= 1.00 C2= 120,00 C3= 10,00

NUO. OF SCRVICE TOTAL COST EXPECTED Z

SEIVERS RATE CUSTOMERS
1 00300 Oe1196E 03 114975 1650
2 0.0300 0«1895E 02 163352 184
1 00300 0.1707E 02 10467 814
1 0.0315 09690E 02 9.2123 1558
1 0.0330 0.7783E 02 72871 1397
4 00400 O0«1769E 02 1.0085 326
3 0.0300 0.1707E 02 1.0467 814
4 0.1200 0+2092E 02 0.2520 101
] 0e1200 0.1992E 02 02520 127
J 00300 0.1895E 02 13352 184
2 01200 0«1896E 02 02559 197
] 0«0600 O«1525E 02 05049 294
& 0.0600 0«1455E 02 0.5353 509
s 00415 O0+.1536E 02 0.7383 487
3 0.0485 0«1509€E 02 0.6269 389
3 0.052Y 0«1509:c 02 0.5738 346
3 00507 0«1S08E 02 045991 367
3 0.0445 C«1520E 02 0.686%5 440
3 0e047% O«1S11E 02 0.6416 402
3 0.050% 0.1508E 02 06024 369
3 0.05 145 O0«1509E ¢©2 0.5678 342
4 0.0565 0.1515E 02 045371 318
3 00595 0.1%523E 02 05096 297
1 00300 O.1196E 03 11.497S 1650
1 N0e1200 0.1875E 02 03353 510
2 00600 0«1455E 02 05353 509
1 0.0600 0.1822€ 02 10019 186
2 00900 Ol 623E 02 0+ 3448 286
1 0.0900 O0.1682E 02 0.5019 819
2 NDe0644 O.1467E O2 0.4947 458
2 0.0856 O«15S91E 02 03634 306
2 0.051. O0.1457E 02 0.6423 634
2 0.0431 01511t 02 07930 879
2 00563 Oe1451E 02 05758 562
2 00593 0e1454E 02 05420 518
2 040578 0«1452E 02 0.5584 539
2 00542 0.14S2E 02 0.6008 596
2 040572 Oe1452E 02 05647 548
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N

00602
000632
Oel1015
01085
009371
00944
00927
00917
0.0910

-t g b g B e )

% 0OPFIMAL  SOLUTION =

NUe UF S RVERS= 2
SERVICE RATE=04056280
TOTAL COST= 0Oel145t 02

Oe«14S6E
O0e¢1464E
0e1739E
0.1786E
O0el714E
0«1700E
0«1693E
0.1688E
0+1686E

*
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02
02
02
02
02
02
oz
02
02

05329
05046
0e4218
03839
08492
0e 8679
0.4804
04883
04936

506
470
667
S97
718
754
778
793
803



Example 2

ARRIVAL RATE= 0,03000

SURVICHE RATES FROM 0030 TO 00120 WITH TOLERANCE=0.0030
NUMBIR OF SERVERS FROM 1 YO 7

UOKRDER OF TRANSITIUN MATRIX = 16

MAX ABSOLUTE CRROR OF THE ESTIMATION OF L = 00020

COST FACTORS Cl= 100 c2= 120,00 C3= 10.00

NUO. OF SERVICE TOTAL COST EXPECTED Zz

SERVFRS RATE CUSTOMERS
i 0.0300 Qe 7999 02 74991 697
2 00300 0.1895E 02 13349 132
3 00300 0.1707E 02 10469 600
1 0.0315 0.6951C 02 6.4731 670
1 0.0330 0.6045E 02 55492 629
4 0.04300 O«1769E 02 1.0085 400
3 0.0300 O0«1707E 02 140469 600
4 0.1200 02092E 02 02520 81
3 0.1200 01992 02 002520 97
2 0.0300 0.189S5E 02 13349 132
2 0.1200 0.1896E 02 042558 145
3 0.0600 0.1525E 02 05050 220
2 0.0600 0e14552 02 05353 375
3 O0.0415 O0«1536E 02 007383 362
3 0.0485 0.1509E 02 006269 291
3 0.0529 0.1509E 02 05738 259
3 0.0507 0.1508E 02 0+¢5991 274
3 0.0445 0.1520E 02 0.6864 328
3 0.0475 0.1511F 02 De6416 300
3 0.0505 0«1508E 02 0.6024 276
3 00535 0+1S09€E 02 0e5678 256
3 0.0565 O0«1515E 02 065371 238
s 0.0595 061523E 02 05096 223
1 0.0300 0+ 7959E 02 744991 697
1 0.1200 0.187%E 02 03353 375
2 0.0600 0.1455F 02 045353 375
1 0.0600 0.1822€ 02 10017 134
2 0«0900 0«1625E 02 O+ 3448 210
1 0.0900 0.1682E 02 05020 604
2 0.0644 O«1467F 02 0.4947 337
2 0.0856 041591E 02 043634 225
e 0.0512 O0e¢1457E 02 0s6423 481
2 0.0431 O«1511E 02 07930 647
2 00563 0«14S1E 02 05757 414
2 005933 O0el454E 02 05420 381
2 0.0978 0e1452E 02 0e¢ 5583 397
2 00542 001452 02 06008 439
2 0.0572 01452 02 05647 403
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*%x (10T}

NG OF

HSIRVIC

TOVTAL

040602
0.0632
0.1015
041085
0.0971
0.0944
00927
0.0917
00910

MAL SULUTION *

SERVERS= 2
. RATE=0.,056280
COsT= 0e145E 02

O«1456E
O0e1463E
Oel1739L
0e1786E
0.1714E
0.1700E
0e¢1693E
0.1688E
0.1686E

%
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o2
02
o2
02
02
02
02
02
02

0.5328
05046
0e4218
0« 3839
0e4492
0e4679
0«4804
0.4883
04936

373
346
491
440
530
556
574
5856
592



Example 3

AR 1VAL RATE= 0,03000
SERPVIC., RATEeS FROM 04030 TO 0.120 WITH TOLERANCE=0.0030

NUMBER OF SERVERS FROM 1 TO 7

ORPER UF TRANSITIUN MATRIX = 8

MAX AHSOLUTE bERROR OF THE ESTIMATION OF L = 0,0020

CUST FACTORS Cl= 1.00 C2= 120,00 C3= 1000

NU ay SERVICE TOTAL COST EXPECTED r4

SE.RViIIRS RATE CUSTOMERS
1 00300 Oe¢e3960E 02 3.4998 158
2 00300 0¢1855E 02 142947 60
3 00300 O0e1704E 02 10442 342
1 00315 03722 02 3.2445 154
1 040330 035S01E 02 30047 148
4 00300 Oe1768E 02 10077 . 268
3 00300 O0«1704E 02 10442 3452
4 041200 0.2092E 02 0.2517 62
3 01200 0¢1992E 02 002519 67
2 00300 01855 02 12947 60
Ve NDel200 0«1B96E 02 0.2558 88
3 040600 01525%E 02 05048 144
2 C« 0600 0e148%5E 02 045351 218
§ 0.0415 O0«1535E 02 0e7379 224
3 040485 0+1509E 02 066267 184
3 060529 0«1509E 02 05737 166
3 0e¢0H07 O«1508E 02 0¢5990 175
3 00445 0«¢1520E 02 0« 6862 205
3 0e0G7s O0+.1511€E 02 0.6414 189
3 0.050% 0+1508E 02 06023 176
) 00535 O0«1509E 02 05678 164
3 040965 O«1515F 02 05370 154
3 040595 0«1523E 02 05095 145
1 0.0300 0¢3960E 02 3.4998 158
1 061200 0.1875E 02 03352 216
2 0.0600 0«1455E 02 045351 218
1 00600 O«1790E 02 09703 63
2 00900 041625E 02 0. 3448 126
1 0.0900 Oe«1681E 02 065007 337
2 0.0644s8 0e1467E 02 004946 197
e 0.08%6 0+1591E 02 03633 135
2 0e0S512 O« 1456E 02 056416 274
2 G.0431 0«1508E 02 047904 355
2 00563 O0«1451E 02 0e5754 239
2 0.0593 0«1454E 02 05418 221
2 060573 0e1452E 02 0.5580 230
P 0.042 0«1451E 02 0¢ 6004 252
? 00572 0«14S51E 02 0+5644 233
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CeOOLUZ
0.,0632
Q0e10U15
041085
060971
0.0944
00927
9 e0917
00910

N

s et gme e e s N\

0e1456E
0e14613L
0e1739E
Oel1786FC
Oel1713E
0.1700E
0«1692E
Cel687E
0.1685F

& (IPTIMAL SOLUTION %%

NUe UF SERVERSG=

e

StRVIC- RATEF=0.0506280

TLIAL COST= Oelbby

02
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02
02
02
02
02
02
o2
02
02

065326
0.5045
0.4213
0. 3836
0e.4485
0.4671
04794
0O«4872
0.4925

217
202
279
252
299
313
322
328
331



Example 4

ARKIVAL RATE= 06C3000
. 1VIC RATSS FROM 0030 TO 0120 WITH TOLFERANCE=0,0030

NUMIMNCR DIF GERVLRS FROM 1 TO 7

URDER OF TRANSITION MATRIX = 8

MAA AHSOLUTR LRROR UF THE ESTIMATION OF L = 00020

CusT FACTURS Cil= 1.00 C2= 120,00 C3= 1000

NUs  LF SERVICE TOTAL CQST EXPECTED z

St RV RS QAT CUSTOMERS
1 0.0300 0« 3960E 02 3.4998 158
o Ne0300V 0.1855E 02 162947 60
3 004300 0.1704E 02 10442 342
1 0s031b 043722E 02 342445 154
3 0.03%0 0.,3501E 02 3.0047 148
2 00300 01855E 02 129487 60
1 0.0300 0e3960E 02 304998 158
2 0e1200 01896t 02 02558 88
1 0s+1200 0.187SE 02 03352 216
$ 00300 O« 1704E 02 10442 342
3 Ve1200 01992 02 0¢2519 67
< 00600 0el1a5HE 02 05351 218

00600 01825 02 05048 144
- DeN6ASG 001467E 02 04946 197
0.0856 0«1S91E 02 Oe¢ 3633 138

P 0.051¢ 0.1456E 02 06416 274
2 0e04 31 0.1508L 02 07904 35S
2 00563 0e¢1451F 02 05754 239
2 00593 01454 02 0+.5418 221
e 00578 014528 02 05580 230
Py 0.0542 0«1451E 02 06004 252
2 00572 O0e1451E 02 0.5644 233
2 0.0602 041456E 02 05326 217
b 0.0632 Oel8463C 02 05045 202
" 00300 0.1768E 02 10077 268
4 00600 0e1622E 02 0e¢5020 128
3 0.041% 0«1953%E 02 07379 224
3 00485 O0«1509E 02 06267 184
$ . 040529 01509k 02 05737 166
3 0e0037 0.1508E 02 Ge 5990 1?75
5 O«044anH 0.1%20E 02 0.6862 205
3 00475 O.1511E 02 Ce64148 189
$ 00505 0¢1508E 02 0.6023 176
4 00535 0+1509€ 02 065678 164
L] 0.0L65 01515 02 05370 154
3 Ce0DHIS 0.1523E 02 05095 145
1 Q0s0¢a4 01729E 02 08566 S5
1 0.08%6 0.1667E 02 05395 365
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009838
0.0775
0.0725
0.0806
00730
G075
0.0785
0.0819%
00845

- P e e e B e e

O0el1723E
0e¢1659E
0De1671E
0«16S9E
D¢ 1659E
0«1662E
0.1659E
0e¢1660E
Oe1664E

*% OPTIMAL SOLUTION *x%

NUe DOF SERVERS= 2
SERVICE RPATE=0.056280
TOTAL COST= 0e145c 02
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02
02
02
o2
02
02
02
02
02

0.4377
06291
0.7011
05921
06101
06565
0.6170
0.5819
0.5505

291
430
481
403
416
449
421
396
374



Example 5

ARRIVAL RATE= 0603000
SELVICH RATES FROM 00030 TO 04120 WITH YOLERANCE=040030

NUNH- R OF SERVERS FROM 1 TO 7

ORDER OF TRANSITION MATRIX = 8

MAX ARSOLUTE =RROR OF THE ESTIMATION OF L = 00020

CUST FACTURS Ci= 1.00 C2= 120.00 C3= 10.00

NUe OF SEQVICE TOTAL COST EXPECTED z

SERVERS RATE CUSTOMERS
3 Ce0300 0+3960E 02 3.,4998 158
o 00300 0.185S5E 02 12947 60
3 0.0300 0.1704E 02 1.0442 342
1 0.0315 0.3722¢ 02 3.2445 154
1 0.0330 0.3501E 02 3.0047 148
7 0.0300 042061E 02 1,0013 244
6 0.0300 0.1961& 02 1.0014 245
7 0e1200 0.2392t 02 0.2517 59
6 0e1200 0e2292E 02 0.2518 59
3 0.03006 0«1862E 02 1.0021 250
5 041200 0.2192c 02 0.2517 60
4 0.0300 0e1768E 02 1.0077 268
4 0.1200 0.2092€E 02 0.2517 62
3 0.0300 0.1704E 02 1.0442 342
3 0el20V 0.1992F 02 0.2519 67
2 0.0300 0.1855E 02 1.2947 60
2 V0el1200 0.1896E 02 0.2558 88
Kt 0.0600 0.1525%& 02 0.5048 144
2 040600 0+1455E 02 0e5351 218
3 0¢0415 0.1535E 02 0.7379 224
$ 0+048S 0.1509€E 02 0.6267 184
) 0.0529 0.1509E 02 0.5737 166
$ De0L07 0«1508E 02 05990 175
3 0.0445 0.1520€ 02 0.6862 205
3 0.0475 0.1511€ 02 0.6414 189
3 0.0505 0«1S0BE 02 0.6023 176
3 0.0535 0«1S09E 02 0.5678 164
3 0e056S 0.1515€ 02 065370 154
3 0.059% 0.1523E 02 0.5095 145
1 0.0300 0+3960E 02 3.4998 158
1 0.1200 0«1875€E 02 0e3352 216
2 00600 0e145SF 02 045351 218
1 0.00600 0«1790E 02 09703 63
R 0.0900 0.1625E 02 0.3448 126
1 0.0900 0.1681E 02 05007 337
2 0.0644 0e1467€ 02 0.4946 197
2 Ve 0856 0«1S91E 02 0.3633 135
2 Ce0512 0.1456€E 02 0.6416 274
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xk OPTIMAL

NQ o

fro e N

NN N

’

bt pus Pt b b s

OF

0.0431
0.0563
0.0%93
De0578
0.0542
00,0572
Oe00LG2
00632
0.1015
01045
Ce0071
0.0944
00927
0.0917
00910

SERVERS=

2

LURVICE RATE=0.,056280

TOYAL COST=

OelaS5t 02

0. 1508E
Oe1451E
0e1454E
0el452E
OelaS1E
Oela51cE
Oela&56E
Oel463E
0617391
Oel786E
Oel713E
0¢1700E
O0el1692:
0.1687E
O0«1685E

SOLUTION %%

71

o2
02
02
02
o2
02
02
02
02
02
02
oz
02
02
02

067904
0e5754
0.5418
05580
0.60048
05644
05326
0e 50485
Qea213
0¢3836
04485
08671
Q4794
0e4872
0e8925

355
239
221
230
252
233
217
202
273
252
299
313
322
328
331



Example 6

ARMIVAL RATE= 003000
SckVICE RATES FROM 04030 TO 06120 WITH TOLFERANCE=0.0030

NUMHBER OF SERVERS FROM 1 YO 7

ORDER (OF TRANSITION MATRIX = 8

MAX ABSOLUTE CRRUOR OF THE ESTIMATION OF L = 0.0020

COsST FACTORS Cl= 15,00 C2= 120.00 C3= 300.00

NU. OF SERVICE TOTAL COST EXPECTED F4

SERVERS RATE CUSTOMERS
1 0.0300 0.1069E 04 344998 158
2 0.0300 0.4220E 03 12947 60
3 0.,0300 0.3618E 03 10842 342
1 0.0319 0«9921E 03 3.2445 154
i 00330 0.9204E 03 3.0047 148
4 0.0300 03659t 03 10077 268
3 0.0300 O0e3618E 03 10442 342
4 0.1200 0¢1499E 03 0.2517 62
$ 0.1200 0«1350E 03 0.2519 67
2 0.0300 0e4220E 03 12947 60
2 0.1200 0.1211E 03 0.2558 a8
3 0.0600 0.2036E 03 0.5048 144
o 0.0600 061977E 03 05351 218
3 0.0415 042713E 03 067379 224
3 00445 0.2388E 03 006267 184
1 N.0529 0.2234E 03 045737 166
3 0.0556 0«2152E 03 05452 157
3 0.0573 0.2106E 03 0+5290 152
3 0.0583 02079 03 045196 149
3 00590 0.2062E 03 05137 147
1 0.0300 0.1069E 04 3.4998 158
1 0.1200 0.1300E 03 003352 216
2 0.0644 O0.1861E 03 0e4946 197
2 0.0856 041493 03 03633 135
2 0.0988 0.1357€ 03 0.3128 112
< 01069 01293E 03 0.2884 101
2 0elll9 0.1259E 03 02749 96
2 0.1150 0e1240E 03 0.2673 93
2 0.1169 O0e1228E 03 0e2627 91
2 01159 01234 03 02650 92
2 Cella9 041240 03 0e2675 93
2 Oell?79 0.1223E 03 042605 90

% (PTIMAL SOLUTION *x%x
NUe UF SERVERS= 2
5'RVICE RATE=0120000
TOTAL COST= Q.121E 03

72
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Example 7

Api?IvaL wATZ= 0,02000

SEVVICE RATES FROM 0010 TO 0,060 WITH TOLERANCE=0,0020
NUMB -R OF SezRVERS FROM 1 TO 14

ORNDER O1F TRANSITION MATRIX = 15

MAX AHSULUTE ~RROR OF THE ESTIMATION OF L = 0.0020

CaOST FACTORS Cl= 3.00 C2= 100,00 C3= 150600

NUe 0F SERVICE TOTAL COST EXPECTED Zz

SERVIRY RATU CUSTOMERS
i 0.0100 0.1954 04 129980 389
el 00100 0.1093E 04 762402 853
3 040100 0«4362E 03 248416 371
1 OeD110 041921E 04 127772 445
1 00120 0.1880F 04 125045 S08
1 0«0140 0.1765E Oa 117357 656
1 0.0160 Oel15H6E 04 1065446 807
1 0.0180 0.1338F 04 8+8871 908
1 002920 0+105S€E 04 609988 912
1 0.0220 0.7970E 03 S2785 830
1 040609 0e8429E 02 0e5019 82
1 00365 0e1883E 03 1.2109 240
1 0604855 0+1255€ 03 07866 144
1 0.0510 O0.1051E 03 O0.6464 113
1 0.054% 0.9581E 02 05824 99
1 0.05060 0.909SE 02 0.5486 92
1 040579 0.8828€E 02 05300 88
1 00587 0«8664E 02 0«5185 86
1 060592 0.8S81E 02 0e5126 84
1 00590 0.8511E 02 065077 83
? 040100 0«1093E 04 702402 853
2 0s0110 048492t 03 566140 778
e Qe0120 0+6592E 013 443464 668
3 0«0100 0+4362E 03 248416 371
2 0.0100 0.1093€ 04 762402 853
3 00600 0.6538E 02 03359 197
2 0e0¢.00 0«6372E 02 O« 3448 304
4 0.010C 0¢3392E 03 201743 182
4 G« 0600 066829 02 003353 164
3 00267 01267E 03 067666 549
4 00267 041277t 03 067537 403
3 Oe0291l O0e¢1169F 03 066997 485
3 004809 0+.8714E 02 04937 311
3 O0e04a2 0.7658FE 02 0.4184 254
! 00,27 O«7164E 02 0. 3825 229
3 060555 0+6901E (2 Oe 3631 216
3 Oe0572 0«6757E 02 03523 208
3 00583 066667E 02 0e¢ 3456 204
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*%x JPTIMAL

Nile ()F
SiRVICH
TutaL C

00589
Os0LH6
0054932
0.0100
Ve 0267
0.0156
00156
N0es0211
0.0211
0.0164
D.0203
060227
0.0242
0.0252
Ne 0257
0.0261
00100
0.0211
00137
0«01 37
00142
00169
00185
00195
0.0201
0.0205
0e«0100
00137
0es0C114
NDe0123
0.0128
00132
060G291
00409
0.0482
0.03527
060995
Qe 0H72
00383
005489
0.05H6
0e 0592

SERVENRS=

2

RATE=0.0060000
0ST= 0.637€ 02

0e6622E
06645E
06598E
0«3222E
O0.130SE
062100E
0.2102E
0.1573E
01596E
01998E
O0«1630E
Oel1471E
0+1389E
Oe¢1344F
0.1318€
Oe1301€
0e¢3206E
0+1625E
0e2367E
0.2386E
0.2282E
041951E
Oel179SE
O«1713E
0e1666E
Oe¢163GE
0e3225E
0«2415€E
0+2828E
02640
0«2537E
Q0e2477E
0+1261E
0+8840E
06 7617C
0«7061E
De6771E
Oeb6611F
0.6514E
0«6463E
0«6483E
0+6438E

SULUTION *»

74

02
o2
o2
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
o2
o2
02
02
02
02
02
02
02

Oe 3422
003440
0+34048
240415
07521
13095
12911
049545
069499
1e2411
09934
0.8854
08300
06 7989
0.7812
067702
200106
09492
14687
14618
14119
1.1894
10845
1. 0288
09972
0.9788
200035
184606
17578
16317
15626
15229
O0e7813
05220
0435S
Oe¢ 3956
063744
0e 3626
003554
03516
03535
03497

201
202
200
117
353
78
61
538
455
72
566
489
452
432
420
413
94
422
72
670
68
588
529
498
480
470
85
633
79
72
68
66
86
520
410
362
337
324
315
311
313
309



Example 8

ARRLIVAL. RATZI= 0402000
SERVIC: KATES FRUM 04010 TO 0060 WITH TOLERANCE=0.0020
NUMPE R OF SERVECRS FROM 1 TO 14

UG~ 1F TRANSITION MATRIX = 1S5
MAK ABSOLUTE LRRPOR OF THE ESTIMATION OF L = 0.0020

CULT FAaCTORS Cl= 3.00 C2= 100.00 C3= 15000
NO. OF SERVICE TOTAL COST EXPECTED z
LE IV R RATL CUSTOMERS
1 0e010V 0+1994E O4 12.9980 389
? 0.0100 01093E 04 72402 853
¢ 00100 0e4362E 03 28416 371
1 0.C110 0.1921E 04 127772 a4s
1 060120 0e188B0E 04 125045 $08
1 0.0140 0«1765E 04 11.7357 656
1 Ce0160 01586E 04 1054846 807
1 0.0180 0«1338E 04 88871 908
1 00200 0.1055E 04 609988 912
1 0.0220 07970E 03 S.2785 830
1 ND.0600 0«8429E 02 05019 82
1 00365 0.1883E 03 12109 240
1 0.045% 061255 03 Qe 7866 144
1 00510 0.1051E 03 0e 6464 113
i 0.0545 O«9981E 02 05824 99
1 00506 04909SE 02 0+5486 92
1 Ca0579 0.8828BE 02 05300 88
1 0.0587 0.8664E 02 05185 86
1 0.0592 0«8S5S81E 02 0.5126 8a
1 00595 0.8511E 02 05077 83
g 00100 0.1093E 04 T7¢2402 853
2 Ce0110 048492E 03 4e*140 778
2 0.0120 0.6592E 03 443464 668
13 0.0100 0.3400€ 03 2.0003 811
12 0.0100 0«3370E 03 2.0003 813
13 0.0600 09528E 02 03352 132
12 000600 0eQ227E 02 03351 133
11 0.0100 03340E 03 20003 816
11 0.0600 0.8928E 02 03352 133
10 00100 03311t 03 20004 822
10 00600 0+8627E 02 0e¢ 3352 134
9 0.0100 03281t 03 20005 831
Q 0.0600 0.8327E 02 00 3352 135S
8 00100 03251E 03 20008 850
8 00600 0.8029E 02 0e 3352 136
7 00100 063225E 03 20035 85
7 N« 0600 0.7728E 02 003352 139
A 00100 0¢3206E 023 240106 94

75
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0.0600
00100
0.0600
00267
Ne0D267
De01l064
060203
00227
N0s0242
0e0<52
0.0257
00261
0.0100
040600
0.0267
0e026:7
Oe0164
0.0203
0.0227
00242
0.0252
00257
0.0261
0.0100
00600
Ve0267
00267
0.01064
00203
00227
00242
00252
00257
0.0261
0Ve0100
00600
0.0267
00267
0.0433
0.0433
00291
00409
0.048¢
00527
0e05HH
00572
0.0583
0.0589
005806

Oe«7429E
0e3222F
0e7129E
Oe¢1334E
0+1305E
0.2032c
0+1681E
0.152SE
0e1445E
Oe1400E
Oel1374E
01358E
0+ 3392E
0.6829E
0e1305E
Ce1277E
02005E
0«1652E
0.1496E£
O«1416E
0.1370E
Oe1345E
0s1329E
0e4362€C
0+65338E
Oel277E
0e1267E
0e¢1998EC
0.1630E
O0ela71t
O.1389E
Oel344E
0.1318E
O+1301E
0+1093E
0.6372€C
0.1267€E
0e1399E
0.8319E
0.8375&
O0e1169E
0.8714LE
0+7658E
Oe7164E
046901E
0«67S7E
O« 6667E
0.6622E
0+6645E

76

02
03
02
03
03
03
03
03
03
03
03
03
03
02
03
03
03
03
03
03
03
03
03
03
02
03
03
03
03
03
03
03
03
03
04
02
03
03
02
o2
03
02
02
02
02
02
02
02
02

0.3352
20415
0.3353
067519
0.7521
12236
0e9871
0.8816
08272
0¢ 7966
0e 7791
0.7682
241743
043353
0.7521
Qe?7537
1.2260
09879
0.8821
08275
07969
07793
O« 7684
2+8416
063359
Qe 7537
067666
12411
069934
0.8854
08300
07989
0e7812
Q0e7702
72402
0« 3448
07666
08746
04657
0«4895
06997
0.4937
0.4184
03825
0¢3631
003523
03456
Qe 3422
0e¢ 3440

143
117
150
331
353
552
440
391
36S
351
343
338
182
164
353
403
609
47s
419
391
375
366
361
371
197
403
549

72
566
489
452
432
420
413
853
304
549
102
283
arz
485
311
254
229
216
208
204
201
202



CeN LI
00494
0.0473
0.0521
00551
0e0570
00581
00589
0460563

DN NN NN -

NN

*x (PTIMAL SOLUTICN *

NQe OF SLRVERS= 2
SERVICE RATE=0.,060000
TOTAL COST= 0.637F 02

0.6598E
O0e9161E
Os7746E
0.7125E
0.6807
0.6630E
0+.6528E
0« 6466E
0 e 6432E

*

77

o2
02
02
02
02
02
02
02
02

0e 3404
065445
04449
04002
03770
0+ 3640
03564
03518
0¢3493

200

50
421
367
340
325
317
311
309



Example 9

ARRI2JVAL RATE= 0,02000

StV iCi. RATES FROM 04010 TO 04060 WITH TOLERANCE=0.0020
NUMBCR OF SLRVLRS FROM i1 YO 14

URDLLRY OF TRANSITION MATRIX = 15

MAX ARSOLUTE cRxkOR OF THE ESTIMATION OQF L = 0.0020

COSYT FACTURS Cl= 3«00 c2= 100,00 C3= 150,00

NUe OF SLRVICFE TOTAL COST EXPECTED y 4

SERVERS RATE CUSTOMERS
i 00100 Oe1954E 04 129980 389
2 00100 01093E 04 72402 853
3 Ne010D 064362E 03 28416 371
1 0.0110 0e1921E 04 127772 445
1 00120 0+1880E 04 12.5045 sS08
1 00140 O0«1765E 04 1147357 656
1 00160 0+1586E 04 105446 807
1 0.0180 Ue1338E 04 808871 908
1 0.0200 0«1055E 04 6.9988 912
1 00220 0.7970E 03 S¢278S 830
1 00600 0e8429E 02 05019 82
1 00365 0«1883E 03 12109 240
1 0.045% 0«12S5E 03 Oe¢7866 144
1 00510 0«10S1E 03 0¢ 56464 113
1 00545 0e9581E 02 05824 99
1 0.0566 0¢9095E 02 0«5486 92
1 00579 0.8828E 02 05300 88
1 0.0587 0«8664E 02 0+5185 86
1 00592 0«8581E 02 0e5126 84
1 00593 0+8511E 02 05077 83
2 00100 01093E 04 Te2402 853
2 00110 0«8492E 03 56140 778
2 00120 0«6592E 03 403464 668
7 00100 0+3225E 03 20035 85
6 0.0100 0«3206E 03 200106 94
4 0.0600 0e7728E 02 0e3352 139
[3) 000600 0«742%9E 02 003352 143
5 0.0100 043222E 03 20415 117
5 00600 0e7129E 02 03353 150
6 0.0267 O0¢1334E 03 07519 331
3 0.0267 0+1305€ 03 0.7521 353
6 0.0164 0.2032E 03 12236 552
6 0.0204 O«1681E 03 0.9871 440
6 00227 0.1525E 03 0.8816 391
6 0.02482 0«.1445E 03 0.8272 365
1) 00252 041400E 03 Oe 7966 351
6 0.0257 0e1374E 03 Oe7791 343
6 0.0261 0.1358E 03 0.7682 338

78
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Ne0L00
CeU6UU
0e0267
0.0267
JevV1lb4
06,0203
Vel227
e 0242
OeD202
Ne0257
Ve201
CeCiOv
NeOLULO
Ve0207
Ve0267
0.0164
0.02C3
00227
De0242
00252
00257
0e0261
0e0100
0.0600
00267
Ve0267
N0s0433
0eC4a33
00291
Ve 0409
"e04H2
060527
0e059%
De00L72
0,033
060589
0ty
VeDH92
CeQ3V4g
OQeNary
NDe0L21
Vel 391
0e¢0%70
060531
00589
009593

Oe¢3392E
06829E
01305E
0.1277E
0.2005€E
016522
Oel14906F
OelalbhE
0e1370E
Oel 345E
Oel 329E
Oed4362E
0+6538E
Oel277k
0e1267E
0e1996E
O0e1630E
Oel1471t
0e1389C
Oel344L
Oel1318E
0e1301F
01093E
06372E
0e1267E
Oel399L
08319E
08375E
Oell169E
08714t
Ce764H8FE
Oe71641
Ca6901¢t.
0e67H 7L
0.6667E
06622k
0e6645E
0« 659BE
VeIF161E
0.7746E
De7125E
0.6807F
0.6630E
0e6523E
06466
0«6432E

79

03
02
03
03
03
03
03
03
03
03
03
03
02
03
03
03
03
03
03
03
03
03
04
02
03
03
02
02
03
vz
oz
02
02
o2
02
oz
02
02
02
02
o2
02
02
02
02
02

201743
03353
07521
067537
1.2260
0.9879
0.8821
0.8275
007969
0.7793
0.7684
2.84156
043359
07537
07666
12411
049934
0O+.8854
C.8300
07989
0.7812
067702
726402
O¢ 3448
0e7666
0e8B746
04657
04895
066997
0e4937
04184
0. 3825
0« 3631
063523
043456
0.3422
0¢ 3440
0e¢ 3404
065445
0e.4449
0.4002
0.3770
003640
0e¢ 3564
0.3518
0.3493

182
164
353
403
609
475
419
391
375
366
361
371
197
403
549
72
566
489
452
432
420
413
853
304
549
102
289
477
485
311
254
2:9
210
208
204
201
202
200
30
421
367
340
325
317
311
309
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*% UPTIMAL SOLUTION *%

MOe OF SERVERS= 2
27V ICE RATE=0060000
TUTAL COST= 0e637¢ 02



Example 10

Aviival RATL= D620000

S VG eATOS FROM 04010 TO 04050 WITH TOLCRANCE=0.0020
NUMIER OF L RVERS FRUM 3 7T0 10

UKkDOL 2 afF TRANSITIUN MATRIX = 15

MAA AHRSOLUTE LtRROKR OF THE ESTIMATION OF L = 0.0040

COUTY FACTUR S Cl= 3.00 C2= 4,00 C3= 6.00

NuU e UF RNV ICF TOTAL COST EXPECTED 2z

S mMVERS QAT CUSTOMERS
i 00100 0+9196E 02 13.8196 160
4 00100 0.9452E 02 137459 173
“ Qed10UL 0e9702E 02 13.6627 188
3 00120 09171E 02 13,7765 169
3 O0e0140 Ce9144r Q32 13.7302 179
N 0e0160 09115 02 13.6802 190
3 00180 09083 (2 13.6261 202
$ 0.0200 0e9048E 02 13.5673 215
3 Ge0220 0+9011E 02 13.5032 229
$ 0sC2640 0.B970E 02 13.4333 2495
{ 0e0200 0e89324F 02 133564 262
1 00280 VeBBZ4E 02 13,2717 281
3 003900 0«B8819E 02 13.1778 302
$ Ve0 320 08B757E 02 13,0732 32a
3 0.0340 08687 02 129562 349
3 00360 08609E 02 12.8247 375
3 00380 Ce88521K 02 12.6761 403
3 0s0400 0e8421E 02 12,5079 434
3 00420 0e8307: 02 123166 465
3 00440 08177E 02 12.0993 498
4 0«0460 0«8030E 02 . 118526 532
3 00480 Qe78B63E 02 115735 566
$ NDe0LOU Qe7676LE 02 11,2595 599
6 0.0100 049944 02 13.5674 202
4 0.0120 0e2413 02 13.6801 187
4 0.0140 0e9370E 02 136071 203
n Ne016C 0e9322F Q2 139253 220
o 00180 O0eI267E 02 13.4333 239
4 D.0200C 09206€ 02 13.3292 261
4 060220 0eI135E 02 13.2104 286
4 00240 0e9054F 02 13.0736 313
4 Ve0Z2bU 048959E 02 129151 344
4 N0.0280 08849 02 127299 377
4 Oe0300 087173E 02 12.5124 ali3
4 00420 O0e89567¢ 0O 122564 451
4 00340 0e8387E 02 1169553 490
4 0e0s60 0eB176E 02 11.6042 s248
q 00380 0« 7933E 02 1119360 566

81
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TRV ]
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DeNBVV
0e 0420
Ve0440
DeNQ KD
CeQ4B0
0e0%00
NeN1VUL
0e0120
Oes014v
De0160
(eN1930
O0e0O2VO
e 0220
N.0240
0.026uU
00280
040300
00320
003490
00460
0.0380
20400
0e Q420
00500
OeNGSY
060469
C.048]
0e048Y
060493
00100
0.0120
Ue0140
Ne01GO
0s0180
00200
De0220
0e024C
40260
0.0280
Ne0300
0Oe0320
N.0340
00360
N«0500
0e0413
DaNGA7
Jelab?’
DaD4s0
Q0887

0e7656F
0e7347¢
0e7012E
0e 665BE
06295
0 e 5Y.34F
0.1018¢&
09644%E
0+9580E
0.9504E
0.9414¢L
0.93C7F
0e9178¢L
0.9021E
0.8830&
0D .8600E
0.8326¢k
Ce8B006F
0e.7646E
e 7253E
O.6844E
0e6434F
0.6037E
04765
0eS4BSE
Ns518B4E
0e65014E
0eQ316EE
CebBS7:
O« 1040E
0e¢9865F
0eI9769E
0e96%2E
0e 9S506E
Ce325E
OeV099E
O0e.8821E
0.8488E
0e3104¢
0e7680E
0e7237E
0e6790LE
0e63761
0«4507E
OeS5442F
CeS014E
0e4797F
Qe d678L
0e«4610E
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02
02
02
02
02
02
03
02
02
02
02
02
02
02
02
02
02
02
o2
02
o2
02
02
02
o2
c2
02
o2
02
03
02
02
o2
02
02
o2
02
02
02
o2
o2
02
02
02
02
o2
02
02
o2

107327
10.21068
96567
90656
8¢ 4599
78570
13,4576
13.5674
13,4575
1363293
13.1784
12,9984
12.7817
12,5191
122001
11.8149
11.3561
10,8222
10,2199
95651
8.8815
801961
75343
S¢409]
646115
61086
S.8248
Se 6601
Se56195H
13,3307
13.4335
13,2723
13.075%4
12,8320
12.5284
12,1507
11.6863
111299
10,4879
9.7806
99,0402
B.3034
76026
4,471
640432
S$¢3265
49633
4,7651
4,6505

598
626
645
656
658
650
2156
207
229
254
283
315
351
391
432
474
513
547
573
589
594
587
570
451
530
501
482
470
463
228
227
256
289
327
367
410
451
487
514
$30
532
522
502
295
a2}
369
338
321
311



-

NN N N N NN N NN NN NN NN NSNS
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4

De 0432
Ce0493YH
001010
NaO12V
T¢0140
fe0160
Ne 0140
0e 0200
NDe 0270
0e0240
Ve DZHY
DeC2HO
0.03G0
CeD 320
Ve GOV
Qe 0359
0e04 131
UeDa5uig
Nel& 74
QeG4
Ce0430
OeCh434
Ns0100
0e0120
N0e«016vV
De0l6U
740180
00200
NVa0c?0
VeZ240UL
Ve 0260
Ce 0280
ODeCOOUL
(e0364
J0e061606
0e0448
Ne Q468
Ve 04HO
VeOaits
Ns04933
e 0120
00140
V«0160
0eDTHO
D000
00220
d0.0240
0.0260
Ce0LOO

0«4570E
0 +4545E
0+1062E
0.1007E
0.9930E
097S54E
0.9529E
0e9246E
0 +8900E
0+ RQ9KE
0.8050E
075861
Oe7131E
06705
0.4618E
OeHBSBIE
065124
0¢4904E
Oed786E
0ed4718L
0e4680E
0¢4655E
0.1082E
Gel025L
0+1006E
0 «9809E
0¢9493E
Ge9111E
0867 3E
08206
Oe7738E
Oe7294F
0e88%54E
05918E
0e5402E
0.5161E
0eS034F
0¢4961€E
0e4919E
0+4893E
0.1042€
0«1017E
0+9841E
0e9450¢
09008E
04854 0E
0.8078E
Ce7645k
0.5131E
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02
02
03
03
02
02
o2
02
02
o2
o2
02
02
02
o2
02
02
02
02
02
02
02
03
03
03
02
02
02
02
0 )]
02
g2
02
02
o2
02
02
o2
02
02
03
03
02
o2
02
02
02
02
2

405840
Q.5421
13,1858
13,2729
13,0408
127456
1243696
11,8967
1163191
106446
9+ 8996
91249
843643
76534
401641
57761
S5.0108
4.6421
4,4449
4,3319
4,2666
Q62257
13.0277
13,0808
12.7568
1243384
11.8102
111711
10e644)12
9.6608
8.8788
8+.1383
44,0560
58388
4.9760
Q5722
443585
442366
4,1662
4.1222
12.8589
124324
11.8915
11.2387
1064996
Fe7192
869474
8e2244
4.,0188

305
301

237
246
281

320
361

401

436
462
ars
474
461

438
212
336
280
250
235
226
221

217
241
262
300
339
375
404
421

425
417
398
173
287
231

205
192
184
180
177
272
308
340
365
379
381

371

3513
157
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