INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

75-21,833
TU, Hugg-Yuan, 1936-
THE DESIGN OP PARALLEL CHANNEL QUEUEING SYSTEMS.
The University of Oklahoma, Ph.D., 1975
Operations Research

Xerox University Microfilms, Ann Arbor, Michigan 48106

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of
DOCTOR OF PHILOSOPHY

By

HUNG-YUAN TU

Norman, Oklahoma
1975

THE DESIGN OF PARALLEL CHANNEL QUEUEING SYSTEMS

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Dr. Hillel J. Kumin, for his help, guidance, and confidence in me. His patience and skillful assistance aided in the completion of this dissertation.

Thanks also go to Dr. Marilyn J. Breen for her help in resolving certain mathematical difficulties and to Dr. Michael D. Devine, Dr. Bobbie L. Foote, and Dr. Jerry L. Purswell for their comments and interest in the research.

Finally, I owe my deepest gratitude to my wife, Fu-Chiu, for her patience, understanding, and support during the entire research period.

ABSTRACT

An approach is proposed for designing a class of parallel channel Markovian queueing systems. The approach calls for estimating the expected number of customers of a particular system from its transition matrix. Two algorithms are presented to estimate the expected number of customers from transition matrices. The algorithms allow one to solve a design problem whose measures of effectiveness are the expected number of customers or the expected waiting time without needing closed formed expressions for these measures.

A two parameter design problem for a parallel channel system is then considered in which the design parameters are the service rate and the number of servers. An algorithm is developed to take advantage of the special structure of the problem. The convexity of the objective function is investigated and numerical results are presented.

TABLE OF CONTENTS

Page
CHAPTER I INTRODUCTION 1
CHAPTER II PREVIOUS DESIGNS OF QUEUEING SYSTEMS 4
CHAPTER III ESTIMATION OF THE EXPECTED NUMBER OF
CUSTOMERS 10
3.1 ANALYTIC ASPECTS 11
3.2 ALGORITHMS FOR ESTIMATING THE EXPECTED
NUMBER OF CUSTOMERS 13
CHAPTER IV CONVEXITY OF THE EXPECTED NUMBER OF CUSTOMERSAS A FUNCTION OF THE NUMBER OF SERVERS OR
THE MEAN SERVICE RATE 17
4.1 SOME PRELIMINARIES 18
4.2 QUEUEING MODELS WHOSE EXPECTED NUMBER OF CUSTOMERS IS A CONVEX FUNCTION OF THE NUMBER of servers or the mean service rate 20
4.3 EFFECT OF FINITE WAITING SPACE UPON THECONVEXITY OF THE EXPECTED NUMBER OF CUSTOMERS
WITH RESPECT TO μ and s 24
CHAPTER V OPTIMIZATION OF A STRING FUNCTION 28
5.1 PROPERTIES OF STRING FUNCTIONS 29
table of CONTENTS (CONTINUED) Page
5.2 ALGORITHM FOR MINIMIZING A DISCRETE CONVEX STRING FUNCTION 35
5.3 FINITENESS OF THE ALGORITHM 36
5.4 ILLUSTRATION OF THE ALGORITHM 37
CHAPTER VI OPTIMIZATION OF A PARALLEL CHANNEL QUEUEING SYSTEM 39
Chapter vil summary and further research 47
APPENDIX A COMPUTER PROGRAM FOR SOLVING DESIGN PROBLEMS 49
APPENDIX B NUMERICAL EXPERIMENTATION WITH THE DESIGN
ALGORITHM 61
REFERENCES 85

Chapter I

INTRODUCTION

In the first decade of this century, A. K. Erlang, an employee of the Copenhagen Telephone Company, devoted himself to the investigation of the effects of fluctuations in demand on the operation of telephone systems. His research resulted in the publication of "The Theory of Probabilities and Telephone Conversations," which became the first queueing model on record. Since then, studies in the field of queueing theory have been greatly accelerated. According to a study made by Morse [17], there were more than 700 papers and books published up to 1960 with applications extending from telephone traffic to areas such as machine servicing and maintenace, road traffic, railroads, air transport, inventories, production, hydro-storage, health, and physics. The development of queueing theory seems to have been dominated by studies aimed at understanding the behavior of specific systems. Unfortunately, few formal studies have been made on putting these ideas into practice. As a result, queueing theory has been attacked on two fronts. Some theoreticians say that queueing theory is closed. However, some practitioners feel that the current theory has little practical use [2]. These two conflicting views between
the practitioners and the theoreticians could be eliminated if the theoreticians shift part of their attention from behavioral problems to operational problems.

There are two major types of operational problems in queueing theory: design problems and control problems. A control problem differs from a design problem in that the former is dynamic in nature whereas the latter is static. While a control problem tries to seek an optimal operating policy for a given design, a design problem attempts to make a single choice of queueing system given a set of initial conditions [9],[14]. One of the recent aspects in the development of queueing theory has been the increased amount of research directed towards the optimal control of queueing systems. Such research should prove most effective in reducing the gap between the theoreticians and the practitioners. Regretfully, a large research effort has not yet extended into the design aspects of queueing theory. Design problems have been studied formally as optimization problems by Morse (1958), Bowman and Fetter (1961), De Cani (1962), Hillier (1963), Kumin (1968), Evans (1968), Balachandran (1970), Stidham (1970), and Rolfe (1971). Most of these studies, unfortunately, emphasized setting up models for a specific application while few tried to develop a general design methodology. In a field such as queueing theory that abounds with special cases, it is of interest to ask what is the chance that a practitioner will find an existing model which is realistic enough to be used for solving the problem at hand. Thus, it seems clear that what a practitioner will appreciate most is a set of tools that can be used to set up his own problem and solve it rather than
a long list of solved models.
One of the exceptions to the commonly adopted research approach of emphasizing modeling for special cases is the research done by Kumin [14] in 1968. In his work, Kumin developed an algorithm which determines the optimal mean service rate for a design problem of specified structure. His algorithm contains the following ideas:

1) Transition matrices are used to estimate the expected queue length instead of relying on closed form expressions for the steady state probabilities.
2) The design is for a class of queueing systems rather than a single one.

This thesis presents the research results pertaining to the design of parallel channel queueing systems utilizing the above two concepts of Kumin's work. It contains four major aspects: (a) the estimation of the expected number of customers directly from transition matrices without relying on any closed form expressions; (b) an investigation of the convexity of the expected number of customers as a function of mean service rate and the number of servers respectively; (c) the optimization of a two variable unconstrained nonlinear programming problem whose objective function is a convex function of a continuous variable and a discrete convex function of a discrete variable; (d) the numerical implementation of the algorithm described in (c). The research is motivated by the need for formal research in the area of applications of queueing theory - especially in regard to optimal design. It is hoped that the research will utlimately stimulate the development of a unified approach for solving design problems.

Chapter II

PREVIOUS DESIGNS OF QUEUEING SYSTEMS

The design of queueing systems has been studied formally as optimization problems by Morse [17], Bowman and Fetter [3], De Cani [6], Hillier [12], Kumin [14], Evans [8], Balachandran [1], and Rolfe [21]. Most of these studies emphasize models for specific applications. Their analyses are, in general, carried out on Poisson queueing models.

Morse considers three models. The first model is to balance service cost and customers lost. He assumes that the cost of service is directly proportional to the speed of the service and that the average sales corresponding to a single service operation yields a fixed amount of gross profit. He then sets up the net profit function for the $M / M / 1$ case and finds the optimal mean service rate using classical calculus techniques. The second model is to balance the cost of waiting and the cost of service. Here the cost of waiting is assumed to be proportional to the mean waiting time. Again, classical calculus techniques are used to find the optimal mean service rate which minimizes the cost function for the $M / M / 1$ case. The third model optimizes the number of servers. Here the intention is to
maximize the net profit for given values of arrival rate, service rate, and average gross profit per customer served. This is carried out for the $M / M / S$ model using a total enumeration technique.

Bowman and Fetter present a model for determining the optimal number of machines to assign to each operator based on a cost function which consists of the cost of machine waiting and the cost of operator. The machine waiting times are tabulated for the case of constant service time and the case of exponential service time respectively under the assumption that calls for service arrive at random. The optimal number of machines assigned is determined by comparing the total costs among all alternatives.

De Cani proposes a design model which is associated with a balking type queueing system. The model permits a solution in terms of expected profit maximization rather than cost minimization. The principal attribute of the model is that the arrival rate increases as the length of the waiting line decreases. Thus the expected arrival rate and, therefore, the total revenue will increase as the number of servers is increased. Hence there is a marginal revenue as well as a marginal cost associated with an increase in the number of servers. The optimal number of servers is found by marginal analysis.

Hillier presents three economic models for queueing systems with infinite calling sources and infinite waiting spaces. All of these models assume that the total cost of waiting is proportional to the total time that all arrivals spend in the system. They also assume that the cost of service at each service facility is a linear
function of the number of servers at the facility. The first model presented is for the simple case where the arrival rate and service rate are fixed and the number of servers must be determined. The second model is for the case where both the arrival rate and the number of servers must be determined, i.e., where both the number of service facilities to distribute among the entire population and the number of servers to assign to each facility must be determined. The third model is for the case where both the service rate and the number of servers must be determined. A few special cases of these models are solved for Poisson queueing systems using classical calculus techniques. For other cases he suggests that a trial and error approach be used to find the optimal solution.

Kumin proposes a procedure for solving a single variable design problem without relying on the closed form expression for the expected queue length. To illustrate how this is achieved, let
$A=a \operatorname{NxN}$ transition matrix whose element at ith row and jth column is defined as:

$$
P_{i j} \equiv P\left\{X_{n}=i \mid X_{n-1}=j\right\}
$$

where X_{n} is the outcome of nth transition.
$C_{1}, C_{2}=$ cost factors.
$\mathrm{F}=(0,1,2, \ldots, \mathrm{~N}-1)$.
$\mathrm{L}=$ expected number of customers in the system.
$P_{o}=$ the initial probability vector.
$\mu=$ mean service rate.
$\lambda=$ mean arrival rate.

Consider the design problem

$$
\begin{aligned}
& \min g(\mu)=C_{1} \mu+C_{2} L \\
& \text { s. t. } \mu>\lambda
\end{aligned}
$$

The above is equivalent to

$$
\begin{align*}
& \min g(\mu)=C_{1} \mu+C_{2}\left[\lim _{z \rightarrow \infty}\left(F^{z} P_{0}\right)\right] \tag{1}\\
& \text { s. t. } \mu>\lambda
\end{align*}
$$

Problem (1) does not require any closed form expression for the expected number of customers in the system. However, it is not an easy problem to solve since the transition matrix, A, has to be raised to an infinite power. Kumin's proposal for solving problem (1) consists of a sub-algorithm and a main algorithm. The subalgorithm solves problem (1) for a fixed finite z (i.e., finds μ_{z}^{*} that minimizes $g(\mu)=C_{1} \mu+C_{2} F^{2} P_{0}$) using an iterative approach which starts with an arbitrary initial probability vector. The main algorithm gradually increases the magnitude of z and repetatively uses the subalgorithm to generate a series of μ_{z}^{*} 's which approaches μ^{*}, the optimal solution of problem (1).

Evans develops two algorithms for the problem of picking a locally optimal irreducible aperiodic Markov chain from among a set of such systems. The first algorithm is for a class of continuous parameter Markov systems. It uses an iterative scheme for approximating the derivatives of the state probabilities. This leads to a stopping rule for a gradient type algorithm which permits stopping at a local
optimum. The second algorithm is for the problem of selecting the optimal value of a single discrete parameter. The algorithm is essentially the same as the first one except that the first differences are used in place of the derivatives.

Balachandran analyzes priority rules that are mixtures of preemptive and postponable rules characterized by certain parameters. His work assumes an M/G/1 queueing model and linear cost function of the expected waiting time and expected number of preemptions. Optimal rule for each priority class is obtained using classical calculus techniques or, in case of discrete parameter, using difference analysis method.

Rolfe considers the problem of allocating servers to a multiple facility service system where each facility consists of a number of parallel channels and the arrival processes are Poisson. The objective is to allocate servers to facilities to minimize the expected waiting time of customers in the system subject to the overall manpower restriction. Fox's marginal allocation procedure is suggested for obtaining the optimal allocation for the constant service time case.

From the above descriptions, it can be seen that the majority of the design problems developed in the past can be characterized as follows:

1) The emphasis is on setting up models for special cases rather than trying to develop a general methodology.
2) There is a reliance on closed-form expressions for measures of effectiveness.
3) Most cases are Poisson queueing models.
4) Most cases consider only a single design parameter.

ESTIMATION OF THE EXPECTED NUMBER OF CUSTOMERS

The objective function associated with a queueing design problem often is a function of various measures of effectiveness such as the expected number of customers in a system or the expected waiting time a customer spent in queue, etc. Unfortunately, of the myriad of queueing systems to be designed, only a few have known closed form expressions for these measures. Therefore, any design algorithm which relies on closed form expressions will clearly have a very limited area of application. This point was realized first by Kumin and reflected in his research in 1968. However, since his interest was primarily in solving design problems, the approach that he used to obtain the expected number of customers from transition matrices cannot be separated for independent use from his optimization algorithm. Since an independent algorithm that can be used to obtain the expected number of customers directly from transition matrices should have many useful applications, this chapter will be devoted to the development of such algorithm.

This section is concerned with the statement and proof of the only theorem that is required to develop an algorithm for obtaining the expected number of customers of a steady state system from the transition matrix of the system without relying on the closed form expression for the expected number of customers.

Consider the following notation:
$A=a \operatorname{NXN}$ transition matrix whose element at ith row and jth colum is defined as:

$$
P_{i j} \equiv \operatorname{Pr}\left(X_{n}=j \mid x_{n-1}=i\right)
$$

where X_{n} is the outcome of nth transition.
$F=(0,1,2, \ldots, N-1)^{t}$.
$\mathrm{L}=$ expected number of customers in the steady state system.
$\mathrm{V}=$ steady state probability matrix whose ith element will be denoted by v_{i-1}.
$A^{z} F=\left(w_{0}^{(z)}, \ldots, w_{N-1}^{(z)}\right)^{t}=W^{(z)}$.
$\bar{W}^{(z)}=\max _{i}\left\{w_{i}^{(z)}: i=0,1, \ldots, N-1\right\}$.
$\underline{w}^{(z)}=\min _{i}\left\{w_{i}^{(z)}: i=0,1, \ldots, N-1\right\}$.
$\hat{L}^{(z)}=\left(_{w}^{(z)}+\underline{w}^{(z)}\right) / 2$.

THEOREM 1 For any positive integer z,
(a) $\left.\left|\mathrm{L}-\hat{\mathrm{L}}^{(z)}\right| \leq \overline{\mathrm{w}}^{(z)}-\underline{\mathrm{w}}^{(z)}\right) / 2$,
(b) $\lim _{z \rightarrow \infty} \hat{L}^{(z)}=L$.

Proof. (a) $L=V F=V A^{z} F=\Sigma v_{1} w_{i}{ }^{\text {(}}$)
Since

$$
w_{i}^{(z)} \leq \bar{w}^{(z)} ;
$$

therefore,

$$
\Sigma v_{i} w_{i}^{(z)} \leq \Sigma v_{i} \bar{w}^{(z)}=\bar{w}^{(z)} \Sigma v_{i}=\bar{w}^{(z)} .
$$

Similarly, since

$$
\mathrm{w}_{\mathrm{i}}^{(\mathrm{z})} \geq \underline{w}^{(\mathrm{z})} ;
$$

therefore,

$$
\Sigma v_{i} w_{i}^{(z)} \geq \Sigma v_{i} \underline{w}^{(z)}=\underline{w}^{(z)} \Sigma v_{i}=\underline{w}^{(z)} .
$$

Thus

$$
L-\hat{L}^{(z)} \leq \bar{w}^{(z)}-{\left(\bar{w}^{(z)}+\underline{w}^{(z)}\right) / 2=\left(\bar{w}^{(z)}-\underline{w}^{(z)}\right) / 2, ~}_{\text {(z }}
$$

and

$$
L-\hat{L}^{(z)} \geq \underline{w}^{(z)}-{\left(\bar{w}^{(z)}+\underline{w}^{(z)}\right) / 2=-\left(\bar{w}^{(z)}-\underline{w}^{(z)}\right) / 2 . ~ . ~}_{\text {(z }}
$$

It follows that

$$
\left|L-\hat{L}^{(z)}\right| \leq{\left(\bar{w}^{(z)}-\underline{\underline{w}}^{(z)}\right) / 2 . ~ . ~}_{\text {. }}
$$

(b) Let $A^{z}=\left(p_{0}^{(z)}, \ldots, p_{N-1}^{(z)}\right)^{t}$, where $p_{i}^{(z)}$ is the (i+1)th row of A^{z}. Since we are concerned with systems whose steady state probabilities exist; therefore,

$$
\lim _{z \rightarrow \infty} p_{1}^{(z)}=v
$$

for all i. It follows

$$
\lim _{z \rightarrow \infty} w_{i}^{(z)}=\lim _{z \rightarrow \infty} p_{i}^{(z)} F=V F=L
$$

for all i. Let $\left(s_{n}\right)$ be the sequence formed by combining the N sequences ${ }_{\left(w_{0}^{(z)}\right.}^{(z)}, \ldots,\left(w_{N-1}^{(z)}\right)$ according to the ascendant order of z. Clearly, $\lim _{n \rightarrow \infty} s_{n}=L$.

Since $\left(\bar{w}^{(z)}\right.$) and $\left(\underline{w}^{(z)}\right)$ are both subsequence of $\left(s_{n}\right)$, it is clear that

$$
\lim _{z \rightarrow \infty} \bar{w}^{(z)}=\lim _{z \rightarrow \infty} \underline{w}^{(z)}=L
$$

It follows

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \hat{\mathrm{~L}}^{(z)} & =\lim _{z \rightarrow \infty}\left(\bar{w}^{(z)}+\underline{w}^{(z)}\right) / 2 \\
& \left.=\lim _{z \rightarrow \infty} \overline{\mathrm{w}}^{(z)}+\lim _{z \rightarrow \infty} \underline{w}^{(z)}\right) / 2 \\
& =(L+L) / 2 \\
& =L
\end{aligned}
$$

3.2 ALGORITHMS FOR ESTIMATING THE EXPECTED NUMBER OF CUSTOMERS

The relationship between $\hat{\mathrm{L}}$ and L as stated in Theorem 1 can be used to develop iterative algorithms for estimating the expected number of customers from the system's transition matrix. Since such algorithms must terminate after a finite number of iterations certain amount of error will be introduced. Depending upon how the allowable errors are specified, there are two slightly different approaches.

DEFINITION. The absolute error of an estimation is the absolute value of the difference between the estimation and the true value.

When the true value is unknown, the largest absolute error that may occur to the estimation is called the maximal absolute error.

ALGORITHM 1 This algorithm should be used whenever the allowable error of the estimation is specified in terms of maximal absolute error and thus independent of the magnitude of the expected number of customers itself.

Step 1. Determine the allowable maximal absolute error a.
Step 2. Set $z=0$ and $W^{(0)}=(0, \ldots, N-1)^{t}$.
Step 3. Compute $W^{(z+1)}=A W^{(z)}$.
Step 4. If $\left(\bar{w}^{(z+1)}-\underline{w}^{(z+1)}\right) / 2 \leq a$, go to step 5 ; otherwise,
increase z by 1 then go to step 3.
Step 5. The desired accuracy has been reached. Let

$$
L=\hat{L}^{(z+1)}=\left(\bar{w}^{(z+1)}+\underline{w}^{(z+1)}\right) / 2 \text {. Terminate. }
$$

DEFINITION. The relative error of an estimation is the ratio of the absolute error of the estimation to the true value. When the true value is unknown, the largest relative error that may occur to the estimation is called the maximal relative error.

THEOREM 2 Let $\hat{\mathrm{L}}^{(\mathrm{n})}$ be the estimation of the expected number of customers obtained from Algorithm 1, using the allowable maximal absolute error a, then
(a) the maximal absolute error of $\hat{\mathrm{L}}^{(\mathrm{n})}$ is a,
(b) the maximal relative error of $\hat{\mathrm{L}}^{(\mathrm{n})}$ is $a /\left(\hat{\mathrm{L}}^{(n)}-a\right)$.

Proof. (a) Step 4 of Algorithm 1 implies $\left(\bar{w}^{(n)}-\underline{w}^{(n)}\right) / 2 \leq$ a. Thus, by Theorem 1, $\left.\left|\mathrm{L}-\mathrm{L}^{(\mathrm{n})}\right| \leq \overline{\mathrm{w}}^{(\mathrm{n})}-\underline{\mathrm{w}}^{(\mathrm{n})}\right) / 2 \leq$ a. Hence the maximal absolute error of $\hat{L}^{(n)}$ is a.
(b) The maximal relative error occurs when $L=\hat{L}^{(n)}$ - a. Thus maximal relative error $=\left|\hat{L}^{(n)}-L\right| / L$

$$
\begin{aligned}
& \left.=\left|\hat{L}^{(n)}-\left(\hat{L}^{(n)}-a\right)\right| / \hat{L}^{(n)}-a\right) \\
& =a /\left(\hat{L}^{(n)}-a\right) .
\end{aligned}
$$

ALGORITHM 2 This algorithm should be used whenever the allowable error of the estimation is specified in terms of the maximal relative error and thus associate the error of estimation to the magnitude of the expected number of customers.

Step 1. Determine the allowable maximal relative error r.
Step 2. Set $z=0$ and $W^{(0)}=(0, \ldots, N-1)^{t}$.
Step 3. Compute $W^{(z+1)}=A W^{(z)}$.
Step 4. If $\left(\bar{w}^{(z+1)}-\underline{w}^{(z+1)}\right) / 2 \leq \operatorname{raL}^{(z+1)} /(1+r)$, go to step 5 ;
otherwise, increase z by 1 then go to step 3.
Step 5. The desired accuracy has been reached. Let

THEOREM 3 Let $\hat{\mathrm{L}}^{(\mathrm{n})}$ be the estimation of the expected number of customers obtained from Algorithm 2, using the allowable maximal relative error r, then
(a) the maximal absolute error of $\hat{L}^{(n)}$ is $r \hat{L}^{(n)} /(1+r)$,
(b) the maximal relative error of $\hat{L}^{(n)}$ is r.
 Thus, by Theorem 1, $\left.\left|\mathrm{L}-\hat{\mathrm{L}}^{(\mathrm{n})}\right| \leq \overline{\mathrm{w}}^{(\mathrm{n})}-\underline{\mathrm{w}}^{(\mathrm{n})}\right) / 2 \leq \mathrm{rL}^{(\mathrm{n})} /(1+\mathrm{r})$. Hence the maximal absolute error of $\hat{\mathrm{L}}^{(\mathrm{n})}$ is $\mathrm{r} \hat{\mathrm{L}}^{(\mathrm{n})} /(1+r)$.
(b) The maximal relative error occurs when $L=\hat{L}^{(n)}-r^{(n)}$, $(1+r)$. Thus the maximal relative error $=\left|\hat{L}^{(n)}-L\right| / L$

$$
\begin{aligned}
& =\frac{\hat{L}^{(n)}-\left(\hat{L}^{(n)}-\frac{\hat{r}^{(n)}}{1+r}\right)}{\hat{\mathrm{L}}^{(n)}-\frac{r \hat{L}^{(n)}}{1+r}} \\
& =r .
\end{aligned}
$$

In both algorithms, we have chosen to calculate $A^{2} F$ by multiplying at each iteration the transition matrix of the system by the column matrix obtained from the previous iteration. This is represented in Step 3 of both algorithms. We have not tried to raise the transition matrix by successively multiplying the resulting matrix by itself for the following reasons:
(a) Most transition matrices of queueing systems contain a large portion of zero entries. Multiplying the original transition matrix by a column matrix allows one to utilize the special structure of the matrix.
(b) Multiplying a square matrix by a column matrix is easier than multiplying a square matrix by itself.

The alternative of successively multiplying the resulting matrix by itself should be considered if the transition matrix contains only a small portion of zero entries and 2 is very large.

CONVEXITY OF THE EXPECTED NUMBER OF CUSTOMERS

AS A FUNCTION OF THE NUMBER OF SERVERS OR THE MEAN SERVICE RATE

Just as in any mathematical programming problem, the convexity of the objective function of a queueing design problem is a valuable property in terms of optimization. While it seems unlikely that the expected number of customers in a queueing system will be convex with respect to μ and simultaneously, there do exist classes of queueing models whose expected number of customers is a convex function of μ for fixed s and a discrete convex function of s for fixed μ. This chapter will be devoted to identifying such classes of queueing systems. Up to now, convexity proofs have usually been conducted for each individual system using closed form expressions for measures of effectiveness. Since the majority of such closed form expressions are extremely complex, or not known, few convexity results have been obtained. Such an approach will be avoided. Instead of trying to obtain results for specific systems, we will attempt to obtain results for a group of similar systems based on the common assumptions of each.

4.1 SOME PRELIMINARIES

The following definitions and theorems are essential for our later discussion.

DEFINITION. Given a convex set C in R^{n}, a function $f: C \rightarrow R$ is convex if $x_{1}, x_{2} \in C$ implies $f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$ for every $0 \leq \theta \leq 1$.

DEFINITION. Given a set of consecutive integers Z, a function $f: \quad Z \rightarrow R$ is discrete convex if $f(n+2)-2 f(n+1)+f(n) \geq 0$ for each set of $n, n+1, n+2 \varepsilon Z$.

THEOREM 1 Let f be a twice continuously differentiable real-valued function on an open convex set C in \mathbb{R}^{n}. Then f is convex on C if and only if its Hessian matrix is positive semidefinite for each $x \in C$.

See reference 20 or reference 27.

THEOREM 2 Let $f_{i}, i=1, \ldots, k$, be convex functions over a convex set C. If $a_{i} \geq 0, i=1, \ldots, k$. Then the function $f(x)=\sum_{i=1}^{k} a_{i} f_{i}(x)$ is convex on C.

See reference 27.

DEFINITION. Let f be a function whose values are real and whose domain D_{f} is a subset of R^{n}. Then the set

```
epi f}={(x,y):y\geqf(x),x\in\mp@subsup{D}{f}{\prime},y\inR
```

is called the epigraph of f.

THEOREM 3 A function $f: R^{n} \rightarrow R$ is convex if and only if its epigraph is convex.

See reference 20.

DEFINITION. A set $C C . E^{n}$ is midpoint convex if $x^{1}, x^{2} \varepsilon C$ implies $\mathrm{w}=\frac{\mathrm{x}^{1}}{2}+\frac{\mathrm{x}^{2}}{2} \varepsilon \mathrm{C}$.

THEOREM 4 A closed midpoint convex subset of a Euclidean space is a convex set.

See reference 7.

THEOREM 5 A function $f: R+R$ is convex if $f(x+2 \Delta x)-2 f(x+\Delta x)+$ $f(x) \geq 0$ holds for each increment or decrement Δx of x.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \varepsilon$ epi f. Then $f\left(x_{1}\right) \leq y_{1}$ and $f\left(x_{2}\right) \leq y_{2}$. The midpoint is $\left(\left(x_{1}+x_{2}\right) / 2,\left(y_{1}+y_{2}\right) / 2\right)$. Since the hypothesis implies $f\left(\left(x_{1}+x_{2}\right) / 2\right) \leq\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) / 2 \leq\left(y_{1}+y_{2}\right) / 2$, the midpoint is in the epigraph of f. Thus epi f is midpoint convex. Clearly it is closed, so by Theorem 4, epi f is convex. It follows, by Theorem 3, that f is convex.

4.2 QUEUEING MODELS WHOSE EXPECTED NUMBER OF CUSTOMERS IS A CONVEX FUNCTION OF THE NUMBER OF SERVERS OR THE MEAN SERVICE RATE

For a great number of queueing systems, the expected number of customers in the system is a convex function of the mean service rate and a discrete convex function of the number of servers. The following two theorems allow us to identify a large portion of such queueing systems.

THEOREM 6 The expected number of customers in any parallel channel queueing system is a discrete convex function of the number of servers s over the domain D_{s}, the set of numbers of servers under which the steady state behavior of the corresponding systems exist, if the system has the property that all of the factors other than the waiting time that can affect the expected number of customers will not be affected by the number of customers in the system at any instant.

Proof. Let $\mathrm{L}(\mathrm{s})$ be the expected number of customers in the system with s servers. Clearly, $L(s)$ is a discrete convex function of s over D_{s} if and only if $\left\{L\left(s_{1}+2\right)-L\left(s_{1}+1\right)\right\}-\left\{L\left(s_{1}+1\right)-L\left(s_{1}\right)\right\} \geq 0$ holds for each $s_{1}, s_{1}+1, s_{1}+2 \varepsilon D_{s}$. In other words, $L(s)$ is a discrete convex function of s if and only if the decrement in the expected number of customers (or equivalently, the expected waiting time per customer) resulted from adding one more server to the s_{1}-system is at least as much as the decrement resulting from adding the additional server to the $\left(s_{1}+1\right)$-system. Since the assumption of the theorem
implies that the number of customers joining the system is the same regardless of the number of servers employed in the system, we may compare the decrements in total waiting time instead of the expected waiting time or expected number of customers. We observe that a decrement in the total waiting time occurs whenever the additional server and the original servers are all in busy status. When a customer's waiting time is cut short because of the service of the added server, all of the customers in the queue following that customer may also realize a shorter waiting time even though they may not be served directly by the added server. Since none of the relevant factors is allowed to be affected by the number of customers in system at any instant, the net effect of the added server upon the total waiting time is the decrement in total waiting time generated in the two ways mentioned above. The magnitudes of such decrements are comparable in the following ways.

1) For the same expected queue length, the less the number of servers in the system, the more we may expect that the added server and the original servers will all be in a busy status, and thus the larger the decrement will be if the other factors are fixed.
2) For the same number of servers, the longer the queue the more we may expect that the added server and the original servers will all be in a busy status, and thus the larger the decrement will be if the other factors are fixed.
3) For each unit of waiting time saved on a customer directly served by the added server, the longer the queue and the less the number of servers, the greater we may expect that the total indirect saving
of his followers will be, and thus the larger the decrement will be if the other factors are fixed.

Since for any $s_{1}, s_{1}+1, s_{1}+2 \varepsilon D_{s}$, the expected queue length of the s_{1}-system is always at least as long as that of ($\left.s_{1}+1\right)$-system, the three possible influences mentioned above suggest consistently that the decrement in total waiting time resulted from adding one more server to the s_{1}-system is at least as large as the decrement resulted from adding the additional server to the $s_{1}+1$ system. We thus conclude that $L(s)$ is convex in s over D_{s}.

THEOREM 7 The expected number of customers in any parallel channel queueing system is a convex function of the mean service rate μ over D_{μ}, the set of mean service rates under which the steady state behaviors of the corresponding systems exist, if the model has the property that all of the factors other than the waiting time that can affect the expected number of customers will not be influenced by the number of customers in the system at any instant.

Proof. Let $g(\mu)$ be the expected service time when the service rate is μ. Then $g(\mu)=1 / \mu$ and $g^{\prime \prime}(\mu)=2 \mu^{-3}>0$. Thus by Theorem 1 , the expected service time is a convex function of the mean service rate. Let $f(\mu)$ be the expected waiting time a customer spends in the queue waiting for service when the service rate is μ. If there is a $\mu_{1} \varepsilon D_{\mu}$ such that $f\left(\mu_{1}\right)=0$, then $f(\mu)=0$ for all $\mu \geq \mu_{1}$; therefore, $f(\mu)$ is convex over $\{\mu: f(\mu)=0\}$. Now consider $f(\mu)$ over $D_{\mu}^{\prime}=\left\{\mu: \mu \varepsilon D_{\mu}\right.$ and $\left.f(\mu) \neq 0\right\}$. Clearly $f(\mu)$ is a monotone decreasing
function of μ. Since all of the factors that can affect the expected number of customers will not be influenced by the number of customers in the system at any instant, the magnitude of the decrement (increment) in the expected waiting time in queue resulted from increasing (decreasing) service rate from μ to $\mu+\Delta \mu$ is only dependent on the magnitude of the decrement (increment) in the expected service time resulted from such a change and the magnitude of the expected waiting time in the queue when the service rate is μ. The larger the change in the expected service time and the larger the expected waiting time in queue at the service rate μ, the larger the change in the expected waiting time will be when the service rate is changed by $\Delta \mu$. Since the expected waiting time in the queue is larger for smaller μ and since $\{g(\mu+2 \Delta \mu)-g(\mu+\Delta \mu)\}-\{g(\mu+\Delta \mu)-g(\mu)\}>0$ implies the change in expected service time is also larger for smaller μ (notice that $g(\mu)$ is a monotome decreasing convex function), we may conclude that the change in the expected waiting time in the queue is larger for smaller μ. In other words, since $f(\mu)$ is also a monotone decreasing function, the inequality $\{f(\mu+2 \Delta \mu)-f(\mu+\Delta \mu)\}-\{f(\mu+\Delta \mu)-f(\mu)\}>$ 0 holds for all $\Delta \mu$ such that $\mu+2 \Delta \mu, \mu+\Delta \mu, \mu \varepsilon D_{\mu}^{\prime}$. Thus by Theorem 5, $f(\mu)$ is convex in μ over D_{μ}^{\prime} and hence over D_{μ}. Now since the expected waiting time in system is the sum of the expected waiting time in queue and the expected service time, by Theorem 2 , the expected waiting time in the system is a convex function of μ. It follows that the expected number of customers in the system is a convex function of μ over D_{μ}.

In Theorem 6 and 7 a sufficient condition for the expected number of customers to be convex in μ and discrete convex in s was presented. The sufficient condition is that the queueing model must possess the property that all of the factors (excluding the waiting time) that can affect the expected number of customers will not be affected by the number of customers in the system at any instant. Since the instantaneous service rate under a priority service discipline is dependent on the queue length of the system at that instant, priority queueing models are not covered by these two theorems. Neither are the finite calling source or finite waiting space type queueing models covered by these theorems since under such queueing models the effective arrival rate will be affected by the number of customers in the system. In spite of these weaknesses Theorem 6 and 7 still allow us to conclude that all of the parallel channel queueing models of the form ($\mathrm{GI} / \mathrm{G} / \mathrm{s}$): ($\mathrm{GD} / \infty / \infty$) are convex in μ and discrete convex in s.

4.3 EFFECT OF FINITE WAITING SPACE UPON THE CONVEXITY OF THE EXPECTED NUMBER OF CUSTOMERS WITH RESPECT TO μ and s

The theorems stated in the last section do not apply to any queueing model which is based on the assumption of finite waiting space. One of the assumptions of Theorems 6 and 7 is that the system does not have finite waiting space. The following analysis pertains to all finite waiting space systems that satisfy all other assumptions of Theorems 6 and 7.

To investigate the effect of finite waiting space upon the discrete convexity of the expected number of customers, observe that in such a system when a server is added, the size of the decrement in the resulting expected number of customers is dependent on two factors: the expected queue length and the expected number of customers lost. Ignoring the effect of customers lost, the longer the expected queue length, the more the opportunities for the additional server to make a contribution to reducing the expected number of customers and also the larger each contribution will be. Since the expected queue length is longer for smaller number of servers, it is clear that the expected number of customers is convex in s if the effect of the customers lost is ignored. Now consider the effect of the customers lost. Whenever the number of customers in the system is reduced by one because of the contribution of the added server, the effect of such a reduction can not last beyond the arrival of a lost customer. Thus the more customers lost, the shorter the effect of a reduction will last; hence, the smaller the decrement in the expected number of customers will be when a server is added to the system and other factors remain the same. Since the number of customers lost is larger for a smaller number of servers, the effect of customers lost has a tendency to force the expected number of customers to become a discrete concave function of s. When the number of servers is very small, the number of customers lost may be very high and the difference between the number of customers lost under an s_{1}-system and that of under $\left(s_{1}+1\right)$-system may be substantial. Therefore, it is possible that the effect of customers lost overrides the effect
of queue length and thus results in a smaller decrement in the expected number of customers when a server is added to the s_{1}-system than in the ($s_{1}+1$-system. Such a situation, if it occurs, must start with $s=1$ until s is sufficiently large, say s^{\prime}. For $s_{1}>s^{\prime}$ the decrement in the expected number of customers resulting from adding a server to the s_{1}-system is never smaller than the decrement resulting from adding the server to the $\left(s_{1}+1\right)$-system. This is so since the expected number of customers lost decreases as the number of server increases and the difference between the expected number of customers lost under an s_{1}-system and that of the $\left(s_{1}+1\right)$-system vanishes at a faster rate than the difference between the expected queue lengths of the two systems. Thus the effect of customers lost upon the expected number of customers decreases relative to the effect of queue length as the number of servers increases. Hence once the number of servers is increased to the extent that the expected number of customers is convex in s it will never become concave again. It is thus clear that the expected number of customers for a finite waiting space queueing system will have at most one discrete concave region and that such concave region will always start with $s=1$.

The effect of finite waiting space upon the convexity of the expected number of customers as a function of service rate can be investigated in the same fashion. Observe that when the service rate is increased from μ to $\mu+\Delta \mu$, the size of decrement in the expected number of customers that results is dependent on the expected number of customers lost, the expected service time, and the expected queue length when the system is operated at μ rate. Ignoring the effect
of the customers lost, the same reasoning used in proving Theorem 7 can be used to claim that the expected number of customers is convex in μ. The effect of customers lost, however, has a tendency to force the expected number of customers to become a concave function of μ, especially when μ is small. For the same reason as was described in the last section, such effect decreases relative to the combined effect of service time and queue length as the service rate increases. Hence the expected number of customers for a finite waiting space queueing system has only one concave segment which is located at the left end of the entire curve.

Chapter V

OPTIMIZATION OF A STRING FUNCTION

It was mentioned in Chapter IV that there exist parallel channel queuing models whose expected number of customers is convex in μ for fixed s and discrete convex in s for fixed μ. This fact prompts our special interest in the type of two variable unconstrained nonlinear programming problem whose objective function is a convex function of a continuous variable and a discrete convex function of a discrete variable. In general, this type of function does not guarantee that a local minimum will always be a global minimum. An obvious way of finding the global minimum for this type of function when the domain of the discrete variable is finite is to find the minimum of the function for each fixed value of the discrete variable using a one dimensional search algorithm such as Fibonacci Search and then from these minima select the global minimum. Such an approach, of course, fails to utilize the discrete convexity property of the function and therefore can be improved. This chapter will be devoted to exploiting properties of such two variable functions and to develop an algorithm for minimizing such functions based on these properties.
5.1 PROPERTIES OF STRING FUNCTIONS

This section is concerned with the properties of string functions which are defined below.

DEFINITION. A two variable function is called a string function if one of its variables is continuous and the other is discrete.

DEFINITION. A continuously convex string function is a string function such that for each fixed value of the discrete variable the function is convex with respect to the continuous variable.

DEFINITION. A discrete convex string function is a string function such that for each fixed value of the continuous variable the function is discrete convex with respect to the discrete variable.

DEFINITION. A function that is both a continuous convex string function and a discrete convex string function is called a frame convex string function.

Throughout this chapter the following notation will be used with the specified meanings.
f: a string function.
x : the continuous variable of a string function.
y : the discrete variable of a string function.

```
D
    of a string function may take.
D}\mp@subsup{y}{}{\prime}\mathrm{ : the set of consecutive integers that the discrete
    variable of a string function may take.
D
```

THEOREM 1 A sufficient condition for a function, g, of a discrete variable to be nonconvex is the existence of any three points $i<j<k$ in the domain of g such that one of the following conditions is satisfied:
(a) $g(i)<g(j)$ and $g(j) \geq g(k)$,
(b) $g(i) \leq g(j)$ and $g(j)>g(k)$.

Proof. (a) Assume g is convex under the given condition, then $\Delta{ }^{2} g(n) \geq 0$ for all $n \in D_{g}$. Consider the values of g at $j, j+1$, and k :

Case 1: If $j+1=k$ then it is obvious that $g(j) \geq g(j+1)=g(k)$. Case 2: If $j+1 \neq k$ then $j+1<k$. Since $\Delta^{2} g(j) \geq 0$ implies $g(j+2) \geq$ $2 g(j+1)-g(j)$, if $g(j)<g(j+1)$ then $g(j)<g(j+1)<g(j+2)$. Applying the same argument on $j+1$ and $j+2$, we obtain the result that $g(j+1)<g(j+2)<g(j+3)$. Thus by repeating this process continuously it can be shown that $g(j)<g(j+1)<\ldots<g(k)$. This is a contradiction to the assumption that $g(j) \geq g(k)$. Hence $g(j) \geq$ $g(j+1)$.

A similar approach can be used to show that $g(j-1)<g(j)$. Thus we have $g(j-1)<g(j) \geq g(j+1)$. This is a contradiction to
the assumption that g is discrete convex since $\Delta^{2} g(j-1)<0$. We thus conclude that g is not a discrete convex function.
(b) The second part of the theorem can be proven in the same fashion.

THEOREM 2 Let f be any discrete convex string function. For any i< $<k<m<n \varepsilon D_{y}$, if $f\left(x_{1}, j\right)=f\left(x_{1}, m\right)$ for some $x_{1} \varepsilon D_{x}$, then
(a) $f\left(x_{1}, i\right) \geq f\left(x_{1}, j\right)=f\left(x_{1}, m\right)$,
(b) $f\left(x_{1}, k\right) \leq f\left(x_{1}, j\right)=f\left(x_{1}, m\right)$,
(c) $f\left(x_{1}, n\right) \geq f\left(x_{1}, j\right)=f\left(x_{1}, m\right)$.

Proof. (a) If $f\left(x_{1}, i\right) \notin f\left(x_{1}, j\right)$ then $f\left(x_{1}, i\right)<f\left(x_{1}, j\right)$. Since $f\left(x_{1}, j\right)=f\left(x_{1}, m\right)$ and $i<j<m$, by theorem 1 , f is not a discrete convex function of y. This is a contradiction to our assumption. Thus $f\left(x_{1}, i\right) \geq f\left(x_{1}, j\right)$.
(b) and (c) can be proved in the same way.

THEOREM 3 For any discrete convex string function f and $i<j \varepsilon D_{y}$,
(a) If $f\left(x_{1}, i\right)<f\left(x_{1}, j\right)$, then $f\left(x_{1}, k\right)<f\left(x_{1}, k+1\right)$ for any $x_{1} \varepsilon D_{x}$, $k, k+1 \varepsilon D_{y}$, and $k>j$.
(b) If $f\left(x_{1}, i\right)>f\left(x_{1}, j\right)$, then $f\left(x_{1}, k-1\right)>f\left(x_{1}, k\right)$ for any $x_{1} \in D_{x}$, $k-1, k \in D_{y}$, and $k<1$.

Proof. (a) Since $i<j<k$ and $f\left(x_{1}, i\right)<f\left(x_{1}, j\right)$, by Theorem 1 , $f\left(x_{1}, j\right)<f\left(x_{1}, k\right)$. Now since $j<k<k+1$ and $f\left(x_{1}, j\right)<f\left(x_{1}, k\right)$, by Theorem $1, f\left(x_{1}, k\right)<f\left(x_{1}, k+1\right)$.
(b) Since $k<i<j$ and $f\left(x_{1}, i\right)>f\left(x_{1}, j\right)$, by Theorem 1 , $f\left(x_{1}, k\right)>f\left(x_{1}, i\right)$. Now since $k-1<k<i$ and $f\left(x_{1}, k\right)>f\left(x_{1}, i\right)$, by Theorem 1, $f\left(x_{1}, k-1\right)>f\left(x_{1}, k\right)$.

DEFINITION. Let f be a discrete convex string function and $k>j \varepsilon$ D_{y}. The positive region of string k with respect to string j, denoted by P_{k-j}, is the set of $x \varepsilon D_{x}$ such that $f(x, k)>f(x, j)$, i.e.,

$$
P_{k-j}=\left\{x: f(x, k)>f(x, j) \text { and } x \in D_{x}\right\}
$$

The negative region of string k with respect to string j, denoted by N_{k-j}, is the set of $x \varepsilon D_{x}$ such that $f(x, k)<f(x, j)$, i.e.,

$$
N_{k-j}=\left\{x: f(x, k)<f(x, j) \text { and } x \in D_{x}\right\}
$$

DEFINITION. Given any i and j strings of a discrete convex string function, where $i<j$, the ignorable region of the k string of the function, denoted by I_{k}, is defined as:

$$
\begin{aligned}
I_{k}= & P_{j-i} \text { if } k=j ; \text { or } \\
& N_{j-i} \text { if } k=i \text {; or } \\
& \left\{x: f(x, k) \geq f(x, k-1) \text { and } x \in D_{x}\right\} \text { if } k>j ; \text { or } \\
& \left\{x: f(x, k) \geq f(x, k+1) \text { and } x \in D_{x}\right\} \text { if } k<i .
\end{aligned}
$$

If $i=j-1$, then the search region of the k string, denoted by $S_{(k ; i, j)}$ is defined as:

$$
\begin{aligned}
S_{(k ; i, j)}= & \left\{(x, k): x \in D_{x}-I_{k} \text { and, if } k+1 \varepsilon D_{y}, f(x, k+1) \geq f(x, k)\right\} \\
& \text { if } k \geq j ; \text { or } \\
& \left\{(x, k): x \varepsilon D_{x}-I_{k} \text { and, if } k-1 \varepsilon D_{y}, f(x, k-1) \geq f(x, k)\right\} \\
& \text { if } k \leq i .
\end{aligned}
$$

THEOREM 4 For any discrete convex string function and $i<j \varepsilon D_{y}$,
(a) $P_{j-1}=I_{j} \subseteq I_{j+1} \subseteq I_{j+2} \subseteq \ldots \subseteq I_{j+n} \ldots$,
(b) $N_{j-i}=I_{i} \subseteq I_{i-1} \subseteq I_{i-2} \subseteq \ldots \subseteq I_{i-n} \ldots$

Proof. (a) $P_{j-i}=I_{j}$ follows directly from definition. Next, for any $x_{1} \& I_{j}, f\left(x_{1}, i\right)<f\left(x_{1}, j\right)$. Thus by Theorem $1, f\left(x_{1}, j\right)<f\left(x_{1}, j+1\right)$. Hence $x_{1} \in I_{j+1}$ and $I_{j} \subseteq I_{j+1}$. Now assume $I_{j} \subseteq I_{j+1} \subseteq \ldots \subseteq I_{j+n-1}$ holds. For any $x_{2} \varepsilon I_{j+n-1}, f\left(x_{2}, j+n-2\right) \leq f\left(x_{2}, j+n-1\right)$. Thus by Theorem 1, $f\left(x_{2}, j+n-1\right) \leq f\left(x_{2}, j+n\right)$. Hence $x_{2} \varepsilon I_{j+n}$ and $I_{j+n-1} \subseteq I_{j+n}$. It follows $P_{j-i}=I_{j} \subseteq I_{j+1} \subseteq I_{j+2} \subseteq \ldots \subseteq I_{j+n} \ldots$ (b) can be proved in the same way.

THEOREM 5 Let $f\left(x^{*}, y^{*}\right)$ be the minimum of $f(x, y)$ and $i=j-1$. If $\left(x^{*}, y^{*}\right) \notin \bigcup_{\mathrm{n}} S_{(n ; i, j)}$, then there exists at least a point $\left(x^{\prime \prime}, y^{\prime \prime}\right) \varepsilon$ $\bigcup_{n} S_{(n ; i, j)}$ such that $f\left(x^{\prime \prime}, y^{\prime \prime}\right)=f\left(x^{*}, y^{*}\right)$.

Proof. If ($\left.x^{*}, y^{*}\right) \notin \bigcup_{k} S_{(k ; i, j)}$, then $x^{*} \varepsilon I_{y *}$. Under such a situation, $y^{*} \neq j$. For if $y^{*}=j$ then $I_{y^{*}}=I_{j}=P_{j-i}$ and thus $f\left(x^{*}, y^{*}\right)=$ $f\left(x^{*}, j\right)>f\left(x^{*}, i\right)$, a contradiction to the fact that $f\left(x^{*}, y^{*}\right)$ is the minimum. Similarly, $y^{*} \neq 1$. Now assume $y^{*}>j$. Since $x^{*} \varepsilon I_{y *}$ and $x^{*} \notin I_{j}$, there exists a $k, j \leq k<y^{*}$, such that $x^{*} \not I_{k}$ and $x^{*} \varepsilon I_{k+1}$. Now since $x^{*} \varepsilon I_{k+1}$ and $I_{k+1} \subseteq I_{k+2} \subseteq \ldots \subseteq I_{y^{*}}, f\left(x^{*}, k\right) \leq f\left(x^{*}, y^{*}\right)$. Thus $f\left(x^{*}, k\right)=f\left(x^{*}, y^{*}\right)$ for $f\left(x^{*}, y^{*}\right)$ is a minimum. Let $\left(x^{\prime \prime}, y^{\prime \prime}\right)=$ $\left(x^{*}, k\right)$, then $\left(x^{\prime \prime}, y^{\prime \prime}\right) \varepsilon s\left(y^{\prime \prime} ; i, j\right)$ and $f\left(x^{\prime \prime}, y^{\prime \prime}\right)=f\left(x^{*}, y^{*}\right)$. Thus the theorem holds for $y^{*}>\mathrm{j}$. Similarly, we may prove the theorem holds for $y^{*}<1$. Hence the theorem holds.

Theorem 4 describes the relationship among the ignorable regions of a convex string function and thus facilitates the determination of the search regions. Theorem 5 implies that in searching the global minimum for a convex string function, one needs only search the search regions.

THEOREM 6 Let f be a frame convex string function with domain $D_{f}=$ $D_{x} \times D_{y}$. If for each pair of i, $j \varepsilon D_{y}$, the value of $f(x, i)-f(x, j)$ as x is varied does not change sign within the entire region of D_{x}, then any local minimum of $f(x, y)$ is equal to the global minimum of $f(x, y)$.

Proof. Let (x^{*}, y^{*}) be a global minimizing point and (x_{1}, y_{1}) be any local minimizing point. We want to prove $f\left(x^{*}, y^{*}\right)=f\left(x_{1}, y_{1}\right)$. Case 1: If $y^{*}=y_{1}$ then $f(x, y *)$ and $f\left(x, y_{1}\right)$ represent the same function which is a single variable convex function of x. Thus $f\left(x^{*}, y^{*}\right)=f\left(x_{1}, y_{1}\right)$.
Case 2: If $y^{*} \neq y_{1}$ and $f\left(x_{1}, y_{1}\right) \neq f\left(x^{*}, y^{*}\right)$, then $f\left(x^{*}, y^{*}\right)<f\left(x^{*}, y_{1}\right)$ since $f\left(x^{*}, y_{1}\right) \geq f\left(x_{1}, y_{1}\right)$. Thus by the condition of the theorem it follows $f\left(x_{1}, y^{*}\right)<f\left(x_{1}, y_{1}\right)$. This contradicts our assumption that (x_{1}, y_{1}) is a local minimizing point since f is discrete convex in y for all fixed x. Thus we conclude that $f\left(x^{*}, y^{*}\right)=f\left(x_{1}, y_{1}\right)$.

Since the above 2 cases exhaust all of the possibilities, we conclude that $f\left(x_{1}, y_{1}\right)=f\left(x^{*}, y^{*}\right)$.

The above theorem suggests that the global minimizing point (x^{*}, y^{*}) of a frame convex string function that satisfies the assumption stated in the theorem can be obtained as follows: For any $x_{1} \varepsilon D_{x}$ find y^{*} that minimizes $f\left(x_{1}, y\right)$, then find x^{*} that minimizes $f\left(x, y^{*}\right)$. This process is relatively simple. The strict requirements on the function, however, limit this process to very few actual applications. In the next section an algorithm which has a wider application will be developed based on Theorem 4 and 5.

5.2 ALGORITHM FOR MINIMIZING A DISCRETE CONVEX STRING FUNCTION

For those discrete convex string functions whose ignorable regions are easy to determine, the following algorithm based on Theorem 4 and 5 may be used to obtain their global minima $f\left(x^{*}, y^{*}\right)$.

Step 0. Set GM (the global minimum) equal to ∞.
Step 1. Choose a number $y^{\prime} \varepsilon D_{y}$ which is believed to be close to y^{*}. $y^{\prime}-1$ must be in D_{y}.
Step 2. Determine the ignorable regions $I_{y^{\prime}}$ and $I_{y^{\prime}-1}$, where $I_{y^{\prime}}=\left\{x: f\left(x, y^{\prime}\right)-f\left(x, y^{\prime}-1\right)>0\right\}$, $I_{y^{\prime}-1}=\left\{x: f\left(x, y^{\prime}\right)-f\left(x, y^{\prime}-1\right)<0\right\}$.
Step 3. Starting with $1=y^{\prime}$, carry out the following iterative process:
a. If $I_{i}=D_{x}, g o$ to step 4.
b. If i+1 εD_{y}, let $A=\left\{x: x \varepsilon D_{x}-I_{i}\right.$ and $\left.f(x, i+1)-f(x, i) \geq 0\right\}$; otherwise, let $A=\left\{x: x \in D_{x}-I_{i}\right\}$. Find $f\left(x^{*}, i\right)=\operatorname{Min}_{x \in A} f(x, i)$.
c. If $f\left(x^{*}, i\right)<G M$, let $G M=f\left(x^{*}, i\right)$.
d. If $i+1 \varepsilon D_{y}$, let $I_{i+1}=I_{i} \cup A$, increase i by 1 , then go to step 3a; otherwise, go to step 4.

Step 4. Starting with $i=y^{\prime}-1$ carry out the following iterative process:
a. If $I_{i}=D_{x}$, go to step 5.
b. If $i-1 \varepsilon D_{y}$, let $A=\left\{x: x \in D_{x}-I_{i}\right.$ and $\left.f(x, i-1)-f(x, i) \geq 0\right\}$; otherwise, let $A=\left\{x: x \in D_{x}-I_{i}\right\}$. Find $f\left(x^{*}, i\right)=\operatorname{Min}_{x \in A} f(x, i)$.
c. If $f\left(x^{*}, i\right)<G M$, let $G M=f\left(x^{*}, i\right)$.
d. If $i-1 \varepsilon D_{y}$, let $I_{i-1}=I_{i} \cup A$, decrease i by 1 , then go to step 4a; otherwise, go to step 5.

Step 5. Terminate the process. The global minimum equal to GM.

5.3 FINITENESS OF THE ALGORITHM

A discrete convex string function must also satisfy the following two conditions in order to assure that its global minimum can be located in a finite number of iterations using the algorithm described in the last section:
(a) Either the discrete variable is bounded above or there is
a $y_{1} \in D_{y}$ such that $f\left(x, y_{1}+1\right)>f\left(x, y_{1}\right)$ holds for all $x \in D_{x}$.
(b) Either the discrete variable is bounded below or there is a
$y_{2} \varepsilon D_{y}$ such that $f\left(x, y_{2}-1\right)>f\left(x, y_{2}\right)$ holds for all $x \varepsilon D_{x}$. Condition (a) guarantees that the algorithm will advance from step 3 to step 4 in a finite number of iterations. This is obvious if y is
bounded above. If y is not bounded above, then there exist a $y_{1} \in D_{y}$ such that $f\left(x, y_{1}+1\right)>f\left(x, y_{1}\right)$ for all $x \in D_{x}$. By Theorem $3, f(x, y+1)>$ $f(x, y)$ holds for all $x \in D_{x}$ and $y \geq y_{1}$. Hence there exists a $y_{0}>y_{1}$ such that $y_{0} \geq y^{\prime}$ and $f\left(x, y_{0}+1\right)>f\left(x, y_{0}\right)$ for all $x \in D_{x}$. If the algorithm has already advanced from step 3 to step 4 when i is still less than or equal to y_{0}, then clearly such advancing has been achieved in finite iterations. If such advancing has not yet achieved at the time when i has been increased to y_{0}, then $I_{i} \subset D_{x}$ and $A=D_{x}-I_{i}$. Thus $I_{i+1}=I_{i} \cup A=D_{x}$, implying that the algorithm will advance from step 3 a to step 4 at next iteration, i.e., in finite iterations. A similar argument can be used to show that condition (b) guarantees the algorithm to advance from step 4 to step 5 in finite iterations. It is clear, therefore, that conditions (a) and (b) are sufficient for the algorithm to converge in a finite number of iterations.

5.4 ILLUSTRATION OF THE ALGORITHM

As a demonstration, we now solve the discrete convex string function shown in Figure 1 of page 38, using the algorithm developed in this chapter. In this example D_{x} is assumed to be the set of real numbers between 10 and 50 inclusively and D_{y} the set of positive integers.

Step 0. $\quad \mathrm{GM}=\infty$
Step 1. Choose $y^{\prime}=3$.
Step 2. $I_{3}=\{x: 30<x \leq 50\}$;
$I_{2}=\{x: 10 \leq x<30\}$.

Step 3. $\quad 1=3$.
a. $\quad I_{3} \neq D_{x}$, continue.
b. $\quad 4 \in D_{y}$, so $A=\{x: 15 \leq x \leq 30\} ; f(x *, 3)=15$.
c. $\quad G M=15$.
d. $\quad 4 \varepsilon D_{y}$, so $I_{4}=\{x: 15 \leq x \leq 50\} ; i=4$.
a. $\quad I_{4} \neq D_{x}$, continue.
b. $\quad 5 \varepsilon D_{y}$, so $A=\{x: 10 \leq x<15\} ; f\left(x^{*}, 4\right)=20$.
c. $\quad \mathrm{GM}=15$.
d. $\quad 5 \varepsilon D_{y}$, so $I_{5}=\{x: 10 \leq x \leq 50\} ; i=5$.
a. $\quad I_{5}=D_{x}, g o$ to step 4.

Step 4. $\quad i=2$.
a. $\quad I_{2} \neq D_{x}$, continue.
b. $\quad 1 \varepsilon D_{y}$, so $A=\{x: 30 \leq x \leq 50\} ; f\left(x^{*}, 1\right)=10$.
c. $\quad \mathrm{GM}=10$.
d. $\quad 1 \varepsilon D_{y}$, so $I_{1}=\{x: 10 \leq x \leq 50\} ; i=0$.

Step 5. $G M=10$.

Chapter VI

OPTIMIZATION OF A PARALLEL CHANNEL QUEUING SYSTEM

A design problem is concerned with a single choice of queuing system given a set of initial conditions. Formally, the problem is to

$$
\begin{aligned}
& \operatorname{minimize} X_{0}=f(X)+g[P(X)] \\
& \text { subject to } X \varepsilon \psi
\end{aligned}
$$

where ψ is the set of allowable vectors of values of the design parameters such that if $X \varepsilon \psi$ then $P(X)$, the steady state probability vector of the corresponding system, exists.

Consider the design problem pertaining to a Markovian type parallel channel queuing system. The design parameters can be any combination of the following three components: the arrival rate λ, the service rate μ, and the number of servers s. Here X has six possibilities, i.e., (λ), (μ), (s), (λ, μ), ($\lambda, s),(\mu, s)$, (λ, μ, s). Regardless which of these six possible vectors X represents, if $g[P(X)]$ is a function of the expected number of customers or the expected waiting time, then the algorithms presented in Chapter 3 can be used to estimate the value of $g[P(X)]$ and hence the value of X_{0} even though the closed form expression of $g[P(X)]$
is not available. For this type of design problem the solution is obtainable, at least theoretically, by total enumeration as long as the transition matrix is available. It should be noted, however, that solving design problems with total enumeration techniques of ten requires a considerable amount of computer time if the problem is large or if it contains a continuous variable. Part of the computer time may be saved by taking advantage of any desirable characteristic of the objective function such that methods other than total enumeration can be used for solving the problem. As an illustration of how this can be done, the remainder of this chapter will be devoted to the solution of a two parameter design problem using the knowledge acquired in previous chapters.

Consider the following design problem associated with a ($\mathrm{M} / \mathrm{M} / \mathrm{s}$): ($\mathrm{FCFS} / \mathrm{N} / \infty$) queuing model:

$$
\begin{array}{ll}
\text { Minimize } & f(\mu, s)=C_{1} s+C_{2} \mu+C_{3} L(\mu, s) \\
\text { s.t. } & s_{1} \leq s \leq s_{n} \tag{1}\\
& \mu_{1} \leq \mu \leq \mu_{n}
\end{array}
$$

where C_{1}, C_{2}, C_{3} are cost factors and $s, \mu, L(\mu, s)$ are a number of servers, service rate, and the expected number of customers respectively. The service rate is allowed to take any value from the real interval $\left[\mu_{1}, \mu_{n}\right]$ and the number of servers from the set of consecutive integers $\left\{s_{1}, \ldots, s_{n}\right\}$. The transition matrix for this queuing model is:

Since the transition matrix is known, the value of f can be calculated for each combination of μ and s.

To solve problem (1), let $\Delta \mu$ be the tolerance allowed for the service rate. Since the expected number of customers may not be a unimodal function of the service rate, μ should be sufficiently small so that $L(\mu, s)$ can be used to represent $L\left(\mu^{\prime}, s\right)$ for every $\mu^{\prime} \varepsilon(\mu-\Delta \mu, \mu+\Delta \mu)$ in the ordinal sense. As mentioned in Section 4.3, $\mathrm{L}(\mathrm{s})$ and $\mathrm{L}(\mu)$ both have only one point of inflection and the concave portion is always at the left side of the inflection point. Therefore, the set $\left\{s_{1}, \ldots, s_{n}\right\}$ can be separated into two subsets $s_{1}=\left\{s_{1}, \ldots, s_{i}\right\}$ and $s_{2}=\left\{s_{1}, \ldots, s_{n}\right\}$ such that $L(s)$ is discrete convex over S_{2} and $L(\mu)$ is convex over $\left[\mu_{1}+\Delta \mu, \mu_{n}\right]$ for every s εS_{2}. Problem (1) is then equivalent to:

$$
\operatorname{Minimize}\left\{f\left(\mu_{1}^{*}, s_{1}^{*}\right) ; f\left(\mu_{2}^{*}, s_{2}^{*}\right)\right\}
$$

where

$$
\begin{equation*}
f\left(\mu_{1}^{*}, s_{1}^{*}\right)=\min _{\min _{\mu_{1} \leq s_{\mu}}} f(\mu, s)=C_{1} s+C_{2} \mu+C_{3} L(\mu, s) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\mu_{2}^{*}, s_{2}^{*}\right)=\min _{\min _{\mu_{1} \in_{s \in S_{2}}}} f(\mu, s)=C_{1} s+C_{2} \mu+C_{3} L(\mu, s) \tag{3}
\end{equation*}
$$

Problem (2) can be solved by finding the minimum for each $s \varepsilon S_{1}$ and then the global minimum $f\left(\mu_{1}^{*}, s_{1}^{*}\right)$ from these minima. To find the minimum for any $s \varepsilon S_{1}$, one may start with $\mu=\mu_{1}$ and enumerate $f(\mu, s)$ at an increment of $\Delta \mu$ until μ reaches the region on which $f(\mu, s)$ is convex. Any existing one dimensional search algorithm can now be used to search the remaining region for the minimum after slight modification. The modification is necessary since the estimation of the expected number of customers involves a certain amount of error. Thus there is no way to claim that any two alternatives have the same total costs. In fact, one may know for certain that some alternative has a lower or higher total cost than another alternative has if and only if the absolute value of the difference of the two calculated total costs is at least twice as much as the cost factor C_{3} times the maximal absolute error used in obtaining the expected number of customers. Hence additional alternatives (points) have to be evaluated each time the one dimensional search algorithm encounters the situation where it is not possible to determine which of the two alternatives under comparison has a lower or higher cost.

Problem (3) is concerned with a frame convex string function. Hence it can be solved with the algorithm stated in Section 5.2. No further explanation regarding the application of the algorithm is needed except that of concerning the determination of the positive and negative regions of any two strings. The following theorems are needed for this purpose.

THEOREM 1 Let $f_{1}, f_{2}, g_{1}, g_{2}$ be functions of x. If $f_{1}(x)$ and $f_{2}(x)$ are parallel to each other and $g_{1}\left(x_{1}\right)-g_{2}\left(x_{1}\right) \neq g_{1}\left(x_{2}\right)-g_{2}\left(x_{2}\right)$ for every $x_{1} \neq x_{2}$, then the two curves defined by $f_{1}(x)+g_{1}(x)$ and $f_{2}(x)+g_{2}(x)$ intersect at no more than one point.

Proof. Let x^{\prime} be an intersection point of the two curves. Then $f_{1}\left(x^{\prime}\right)+g_{1}\left(x^{\prime}\right)=f_{2}\left(x^{\prime}\right)+g_{2}\left(x^{\prime}\right)$, or equivalently, $f_{1}\left(x^{\prime}\right)-f_{2}\left(x^{\prime}\right)=$ $g_{2}\left(x^{\prime}\right)-g_{1}\left(x^{\prime}\right)$. Similarly, suppose $x^{\prime \prime} \neq x^{\prime}$ is another intersection point of the two curves, then $f_{1}\left(x^{\prime \prime}\right)-f_{2}\left(x^{\prime \prime}\right)=g_{2}\left(x^{\prime \prime}\right)-g_{1}\left(x^{\prime \prime}\right)$. But since $f_{1}(x)$ is parallel to $f_{2}(x), f_{1}\left(x^{\prime}\right)-f_{2}\left(x^{\prime}\right)=f_{1}\left(x^{\prime \prime}\right)-$ $f_{2}\left(x^{\prime \prime}\right)$. Thus $g_{1}\left(x^{\prime}\right)-g_{2}\left(x^{\prime}\right)=g_{1}\left(x^{\prime \prime}\right)-g_{2}\left(x^{\prime \prime}\right)$. This contradicts the assumption of the theorem. Therefore, the two curves can have at most one intersection point.

THEOREM 2 Let $f(\mu, s)=C_{1} s+C_{2} \mu+C_{3} L(\mu, s)$. If for every $j \neq k$ $L(\mu, j) \neq L(\mu, k)$ holds for all $\mu \varepsilon D_{u}$, then $f(\mu, j)$ and $f(\mu, k)$ intersect at no more than one point.

Proof. Assume $\mathbf{j}<k$. Since $L(\mu, j)$ is a strictly decreasing function of μ and $L(\mu, j)-L(\mu, k)$ represent the amount of decrement in the expected number of customers when the number of servers is increased from j to k , an argument similar to that of Section 4.2 allows us to conclude that $L\left(\mu_{1}, j\right)-L\left(\mu_{1}, k\right) \neq L\left(\mu_{2}, j\right)-L\left(\mu_{2}, k\right)$ for every $\mu_{1} \neq \mu_{2}$. Let $g_{1}(\mu)=C_{3} L(\mu, j)$ and $g_{2}(\mu)=C_{3} L(\mu, k)$. It is clear that $g_{2}\left(\mu_{1}\right)-g_{1}\left(\mu_{1}\right) \neq g_{2}\left(\mu_{2}\right)-g_{1}\left(\mu_{2}\right)$ for every $\mu_{1} \neq \mu_{2}$. Now let $f_{1}(\mu)=$ $C_{1} j+C_{2} \mu$ and $f_{2}(\mu)=C_{1} k+C_{2} \mu$. Then $f_{1}(\mu)-f_{2}(\mu)=C_{1}(j-k)=$ a constant. Hence $f_{1}(\mu)$ is parallel to $f_{2}(\mu)$. But $f_{1}(\mu)+g_{1}(\mu)=$ $C_{1} j+C_{2} \mu+C_{3} L(\mu, j)=f(\mu, j)$ and $f_{2}(\mu)+g_{2}(\mu)=C_{1} k+C_{2} \mu+C_{3} L(\mu, k)$ $=f(\mu, k)$. Thus, by Theorem $1, f(\mu, j)$ and $f(\mu, k)$ intersect at no more than one point.

The positive and negative regions of any two strings can now be determined as follows:

Case 1: If $\left[f\left(\mu_{1}, k\right)-f\left(\mu_{1}, j\right)\right]\left[f\left(\mu_{n}, k\right)-f\left(\mu_{n}, j\right)\right]>0$, then $f(\mu, k)$ and $f(\mu, j)$ have no intersection on $\left[\mu_{1}, \mu_{n}\right]$. Thus if $f\left(\mu_{1}, k\right)>$ $f\left(\mu_{1}, j\right)$, then $P_{k-j}=\left[\mu_{1}, \mu_{n}\right]$. Otherwise, $N_{k-j}=\left[\mu_{1}, \mu_{n}\right]$. Case 2: If $\left[f\left(\mu_{1}, k\right)-f\left(\mu_{1}, j\right)\right]\left[f\left(\mu_{n}, k\right)-f\left(\mu_{n}, j\right)\right] \leq 0$, then there is an intersection in the interval $\left[\mu_{1}, \mu_{n}\right]$. Let $\mu_{3} \varepsilon\left(\mu_{1}, \mu_{n}\right)$, then a positive region or negative region can be determined by repeating the same procedure on the subinterval $\left[\mu_{1}, \mu_{3}\right]$ or $\left[\mu_{3}, \mu_{n}\right]$. Appendix A contains a Fortran program wirtten for the purpose of solving problem (1). This program uses the approach described above to locate the optimal solution for the design problem. At each enumeration the arrival rate and the service rate are normalized first before they are used for estimating the
expected number of customers. In other words, the program finds a factor c that satisfies the inequality $1.0>c \lambda+c s \mu>0.1$ and uses $c \lambda$ and $c \mu$ in place of λ and μ for building the transition matrix of the system. Several examples have been solved on an IBM 370/158 computer using this program. Results are included in Appendix B and summarized in Table 1. Among the ten examples listed in Table 1, the first three differ from each other only in the orders of their transition matrices. Example 3, 4, and 5 are different from each other only in the starting points used for the optimization algorithm. So are Example 7, 8, and 9. Example 5 and 6 are different in their cost factors. The last example is deliberately constructed so that the expected number of the customers is a concave function of the number of servers over the entire allowable region, i.e., S_{2} is empty. Results of these examples are consistent with our intuition that the computer time required for solving a design problem varies substantially from one problem to another depending on the number of points enumerated and the time required for each enumeration. Factors that will affect the number of points enumerated are the arrival rate, the service rates, the numbers of servers, the maximum absolute error, the tolerance, the cost factors, and the starting string used for optimization. Whereas the amount of time required for each enumeration is dependent upon the order of the transition matrix, the maximum absolute error and also interestingly upon the arrival rate and the service rate.

Table 1

Ex-ample	Arri- val Rate	Order Tran. Matrx	Allowable Region				Max Abs. Error	Toler- ance	y^{\prime}	Cost Factor			s*	u*	No. of pts		Time in Sec.		
			Servers		Service Rate								Tot-		Enu-				
			From	To	From	To				C1	C2	C3			al	mertd			
1	0.030	24	1	7	0.03	0.12	0.002	0.003	4	1	120	10		2	0.056	217	47	21.6	
2	0.030	16	1	7	0.03	0.12	0.002	0.003	4	1	120	10	2	0.056	217	47	10.0		
3	0.030	8	1	7	0.03	0.12	0.002	0.003	4	1	120	10	2	0.056	217	47	3.0		
4	0.030	8	1	7	0.03	0.12	0.002	0.003	2	1	120	10	2	0.056	217	47	3.3		
5	0.030	8	1	7	0.03	0.12	0.002	0.003	7	1	120	10	2	0.056	217	53	3.3		
6	0.030	8	1	7	0.03	0.12	0.002	0.003	4	15	120	300	2	0.120	217	32	1.6	a	
7	0.020	15	1	14	0.01	0.06	0.002	0.002	3	3	100	150	2	0.060	364	80	15.0		
8	0.020	15	1	14	0.01	0.06	0.002	0.002	13	3	100	150	2	0.060	364	96	20.1		
9	0.020	15	1	14	0.01	0.06	0.002	0.002	7	3	100	150	2	0.060	364	84	16.5		
10	0.200	15	3	10	0.01	0.05	0.004	0.002	-	3	4	6	6	0.050	168	160	31.8		

Chapter VII

SUMMARY AND FURTHER RESEARCH

One of the promising approaches for designing Markovian type parallel channel queueing systems is the approach that estimates the effectiveness of the system directly from its transition matrix. For those design problems whose measures of effectiveness can be estimated from their transition matrices, the optimal system is determinable, at least theoretically, by total enumeration. One must, however, try to take advantage of every desirable characteristic of the objective function such that a more efficient method can be used to locate the optimal solution. Following this idea, three algorithms have been developed. Two of these algorithms are for the estimation of the expected number of customers of a system from its transition matrix. The third algorithm is for the optimization of a discrete convex string function. The first two algorithms allow one to set up and solve for optimal solutions in those design problems which contain only the expected number of customers or the expected waiting time as measures of effectiveness. The third algorithm and the results of the investigation on the characteristics of the expected number of customers provide us with a more realistic approach for optimizing
queueing situations in terms of service rate and number of servers regardless of the inavailability of closed form expressions for appropriate measures of effectiveness.

This dissertation, however, has not exhausted every aspect of the subject. Much more work must be done. Such work includes the development of an algorithm for estimating the expected number of lost customers of a system from its transition matrix; the investigation of the character of the expected number of customers in terms of the arrival rate; the investigation of the effect of a finite calling source or priority discipline upon the convexity of the expected number of customers; and the extension of the discrete convex string function minimization algorithm to problems of more than two variables.

Appendix A

COMPUTER PROGRAM FOR SOLVING DESIGN PROBLEMS

This appendix contains a Fortran program for solving Problem (1) of Chapter VI. The method used in the program is that described in Chapter VI.

Input to this program are the parameter cards. Each of these input cards contains the following information:

Card Column	Format	Contents
$1-5$	F5.5	arrival rate
$6-10$	F5.5	the smallest service rate allowed
$11-15$	F5.5	the largest service rate allowed
$16-20$	F5.5	tolerance allowed for the service rate
$21-25$	F5.5	maximal absolute error in obtaining $L(\mu, s)$
$26-30$	F5.0	cost per unit of server
$31-35$	F5.0	cost per unit of service rate
$36-40$	F5.0	cost per unit of L($\mu, s)$
$41-43$	I3	order of the transition matrix
$44-46$	I3	the smallest number of servers allowed
$47-49$	I3	the largest number of servers allowed
$50-52$	I3	the guessed optimal number of servers

```
C THIS JROGRAM SOLVES PROBLEM (1) OF CHAPTER VI USING THE
C ALGORITHMS DEVVELOPED IN CHAPTER III E V. INPUT TU THE
C PFUGKAM CONSISTS DF ARKIVAL RATE. THE LUWER AND UOPER
C . HOUNDS OF THF SFRVIC= RATS: TOLERANCE, MAXIMAL AHSOLUTE
C LHRIJR, COST FACTORS FOR SFRVERS, SERVICE RATE, AND THE
C EXPECTED NO. IIF CUSTOMERS. THF URDER OF THE TRANSITION
C MATRIX. THE LOWER ANO UPNER BUUNDS UF THE NU. OF
C SERVFR%. AND THF: STARTING POINT FOR THE OPTMIZATIUN.
C OUTPUT OF THE PRUGRAM CONTENTS THE OPTIMAL SOLUTION
C ANO ALL UF THE POINTS WHICH ARE ENUMERATED IN DRDER TO
C DEIERMINE THE SOLUTIUN.
    HHAL LAM
        INTVG::R SL,SH,Y,YM1,SUB.SLP1,SLP2,SHM1
    1 12FAD(5,5010,ENO=100) LAM,UL,UR,DEL,ACC,C1,C2,C3.NOKD,SL.
        1SH.Y
5O10 FURMAT(bF`.5.3F5.0.413)
        CALL SiTINE
        PRINI E.OOI
    6001 FORMAT('1'///////)
        LN=11
        PRINT 6OOU.LAM,UL,UR.DEL.SL,SH.NORD.ACC.C1,C2.C3
    6000 FURMAT(* AHRIVAL RATE=*.FB.5%
        1. SFHVICE RATES FROM'.FO.3." TO'.F6.3.' WITH TOLERAN*.
        2'CF='.F6.4/ NUMBER OF SERVERS FROM..I3.' TO'.I3/
        3' URDER OF TRANSITION MATRIX = . .I.3/
        4. MAX ABSOLUTF ERRUR OF THE ESTIMATION OF L =*.F%.4/
        5' CIJST FACTORS C1=0.F8.2.' C2=0.F8.2.' C3=0.F8.2%
        6//!NO. OF S!'RVICE TQTAL COST EXPECTED Z'
        7/'SERVERS RATE*.21X.'CUSTOMERS*/)
        IF(S.H.LT.NORD.AND.Y.LE.SH) GO TO 2
        PRINT 6OO2
    0002 FURMAT(' INPUT FRROR')
        \XiTUP
        2 &NNDRY=2.0*ACC*C3
            VALUB=9999999.0
            SLPI=SL+1
C IF S HAS I OR 2 ALTERNATIVES ONLY. DO NOT USE ALGORITHM
        IF(SH-SL-1)104.108.110
    104 CALL EXPQUE(LAM,UL,SH,NORD,ACC,F2,F2,C1,C2.C3.LN)
        GO TO 160
    IOH CALL E゙XPQUE(LAM,UL,SH,NORD,ACC,F2,EZ2.C1,C2.C3.LN)
        CALL EXPOUF(LAM,UL,SL,NORD.ACC,F1,E1,C1,C2,C3,LN)
        GO TU 150
C CHCZCK THE CONVEXITY OF L(S)
    110 CALL EXPQUE(LAM,UL,SL,NORU, ACC,F1.E1,C1,C2.C3.LN)
    CALL EXPQUEE(LAM,UL,SLP1,NURD,ACC,F2,F2,C1,C2,C3,LN)
        ISL=SL+2
        DU 140 I=ISL,SH
        SLF2=SL+2
        CALL EXPQUE(LAM,UL,SLP2,NORD, ACC,F3,E3,C1,C2,C3,LN)
        IF(EI+E3-2.0*E2.GT.4.0*ACC) GO TO 170
C L(S) IS NOT CONVEX ON SL,SL+1.SL+2
```

```
        C.ALL ENUMER(LAM,UL,UR,SL,NORD,ACC,C1,C2.C3.SUH.UUE,
        IVALUR.DEL.BNDRY,LN,F1,E1)
            E1=だに
            E2-F:%
            F1=F2
            +2=F3
            SL=SI.+1
    140 CUNTINUE
C ENUMFRATE LAST TWO STRINGS
    1う0 SHM1=SH-1
        CALL EINUMER\LAM,UL,UR,SHML,NORO,ACC,C1,CZ.C3.SUB,UUB.
        |VALUR.DEL,HNDKY,LN,F1.E゙1)
    100 CALL ENUMER (LAM.UL,UR,SH.NUPD.ACC.C1,C2.C3.SUB,UUB.
        IVALUY,JEL,ENDRY,LN,F2,F2)
            (0) TU &O
            L(s.) IS CONVEX - CHECK THE COINVEXITY UF L(U)
    17C HDEL =OFL/2.0
        J2=UL +HDEL
        U:3=112+HOEL
        ISL=SL
        BH 20O I=ISL.SH
        CALL - XPOUE(LAM,U2.SL,NORD,ACC,F,ER,C1,C2.C3.LN)
        CALL H.XPOUE(LAM.U3.SL.NORD,ACC,F3.E3.C1,C2,C3.LN)
        IF(r1+:3-2.O*F2.GT.4.0*ACC) GO rU 210
C L(U) IS NOT C(JNVFX
    1&O CALL E゙NUMER(LAM,U3,UR,SL,NORD,ACC,C1,C2.C3.SUB,UUB.
    1 VALUE,DEL, BNDRY,LN,F3.E3)
            SL=SL+1
C PRUCESS NCXT STRING IF THERE IS ONE
            IF(SL.GT.SH) GO TO 80
            CALL FXPQUE(LAM.UL.SL,NORO.ACC,F.F.1.C1.C2.C3.LN)
    2OO CUNTINUE:
    210 1F(SH-ISL.LE.1) GO TO 18V
C INCREASE THE STARTING POINT IF NECESSARY
        10 IF(Y.NL.SL)GOTO 30
            Y=Y+1
            GO TJ 10
C DFTERMINE IF THE TWO STARTING STRINGS HAVE INTERSECTIDNS
        30 YMI=Y-1
            CALI I.XPOUE(LAM,UL,Y,NORD,ACC,FYUL,E,C1,C2,C3,LN)
            CALL = XPOUE(LAM,UL,YM1,NORO,ACC,FYM1UL,EE,C1,C2,C3,LN)
            UIFFL=F YUL-FYMIUL
            CALL EXPOUE (LAM,UR,Y,NURD,ACC,FYUR,E,C1,C2,C3,LN)
            CALL EXPQUE (LAM,UR,YMI,NOHD,ACC,FYMIUR,E,CI,C2,C3,LN)
            OIFFK=FYUK-FYMIUR
            |AYM| = 1
                    C IF CAN NUT TELL THAT THERE IS NO INTERSECTION, SEARCH
                    C GOTH SIDES OF THE S DOMAIN
    IF(AES(DIFFL),LT.ANDRY.OR.ABS(DIFFR).LT.BNDRY) GU TO 50
    IF\DIFFL*OIFFR.LT.O.O) GO TO 5O
` NO INTERSECTIDNS - SEARCH ONLY ONE SIDE
    IF(DIFFL.GT.O.O) GO TO 60
```

```
            IAYMI=C:
C FIND NINIMUM FROM STRINGS WITH S VALUF HIGHER THAN
C THF STARTING POINT
        SO UO=UL
            UI=UR
            CALI. SEARCH(LAM,UO,U1,UEL,ACC,Y,SH,NORD,FYUL,FYUR,
            IC1,C2,C3.SUR,UUR,VALUB,BNDRY,1,LN)
C FIND NINIMUM FROM STRINGS WITH S VALUE LUWER THAN
C THE STARTING POINT
            IF(IAYMI.EO.O)GOTO \triangleO
        O! CALL SEAKCH(LAM,UL,UR,DEL, ACC.YMI,SL,NORD,FYMIUL,FYMIUR,
            IC1,C2.C3.SUR,UUQ,VALUB,HNDRY,-1,LN)
        }O [F(LN.LE.43) TO TO 90
            IRINT 6OOI
C SOLUIIUN UHTAINFD
            &C DRINT GOIO.SUF,UUA.VALUI
    fOIO FIHMAT(///' ** OPTIMAL SOLUTION **•/// NQ. OF SLRVER'.
            1'S=..16/' SEKVICE RATE=0.FH.6/' TOTAL COST=0.E10.3)
                CALL G:TIME (KMIN,KSECOKSECC)
                PRINT 602O. KMIN,KSFC,KSEC.C
6OこO FORMAT('ICOMPUTFK TIME ".I3.' MIN".I.3.*.".I3." SEC')
            gu TO 1
        100 STUP
            <ND
```

```
C THIS SUBRUUTINE DETERMINES THE MINIMAL SOLUTION FOR A
C SPLCIFIEV STRING. IT STARTS THE SEARCH PHOCESS WITH
C THE L.FFT MOST UF THE STHING USING THE TOTAL ENUMERATION
C METHCSO UNTIL IT REACHES THF CONVEX PURTION OF THE
C STRING. THF RENAINING OF THE STRING IS IHEN SEARCHED
C. WITH A MODIFIE゙D GOLDEN SEARCH METHOD.
        SUHRLIUTINF ENL'MFRILAM,UL.UR,S,N,ACC,C1,C2.C3.SUB,UUB.
        IVALUB,JF.L.BNDIZY,LN,F1,EEI)
            IITrCER S.SUB
            NEAL LAM
C IUTAL ENLMERATION
    NU=(UR-UL)/DEL
    1F(F1.GF:.VALUA) GU TO 10
    VALUP=r-1
    SUB=S.
        UU[3=UL
        10 UP=UL +DEL
        CALL : XPOUI (LAM.UZ.S.N.ACC.F2.E2.CI,CR.C3.LN)
        IF(F2.GE.VALUEi) GO TO 2O
        VALUH=F2
        SUH=S,
        UNE=1/2
    20 1) 100 I=2.NU
        U3=UZ+DEL
        CALL EXPOUF (LAM,U1,S,N,ACC,F3,E3,C1,C2.C3,LN)
        IF(F3.GE.VALUE) GO TO }3
        VALUH=F3
        SUB=S
        UUE=U S
        CHECK FOR CONVFXITY
        30 IF(E1+E゙3-2.0*F2.LE.4.0*ACC) GOTO40
    IF(NU-I.Gビ.4) GO TO 110
        40 {.1=r:?
        1-2= F-3
        v2=0.3
    100 CONTINUF
        RE TURN
    MODIFIHD GOLDEN SHARCH FUH THE CONVEX PORTION OF
C MODIFIFD G
110 CALL FXPOUE(LAM,UK,S,N,ACC,F2,F2.C1,C2,C1,LN)
    CALL GOLUEN(LAM,S,N,ACC,C1,C2,C3,SUE,UUB,VALUH,DE゙L,
    IBNDRY.U3.F.S.UR.F2.LN)
    RETUISN
    END
```

C
C

C
C DETERMINE WHICH OF THR TWO STERS IS TU BE DONL IF (INC.GT.D)GU 10 20 IF(SPl.GE.SSTP) GO TU 30
1 ' CALL GOLDEN(LAM.S.NORU, ACC.C1.C2.C3.SUB.UUB,VALUH.DEL. I BNDRY, SUL,FSUL, SUR,FSUR.LN)
RE TURN
C. ANY MORE STRING

20 IF (SPI.GT.SSTR) GO TU 15
C
30 CALL EXPQUE (LAM, SPIUL,SP1, NORD, ACC,FSPIUL.E.C1.C2.C3.LN)
CALL EXPQUE (LAM, SPIUR,SPI,NORD,ACC,FSPIUR,E,CI,C2.C3.LN)
UFFUL =FSPIUL-FSUL
UFFUK $=F$ SPIUH-F SUR
IF (UTH.LT.DEL) GO TO 300
IF (AESS(DFFUL).LT.BNDKY) GU TO 270
IF (ARS (DFFUR).GE•日NDRY) GO TO 230
U=SUR-UTH
$1 F G=1$
C TO LOCATE THE INTERSECTIUN - IST ATTEMPT
40 CALL EXPOUE (LAM,U,S,NORD,ACC,FSU,E,C1.C2,C3,LN)
CALL EXPOUE (LAM,U,SPI, NORD,ACC,FSPIU,E,C1,C2,C3,LN)
DFFU=FSPIU-FSU
IF (ABS (DFFU) LT•BNDRY) GU TO 70
IF (UFFU*UFFUL.LF. O.O) GO TO 170
IF(DFFU.GT.O.O) GO TO SO
SUL=U
FSUL =FSU
GU TU 70
SO SPIUL=U
FSPIUL FFSPIU
70 IF(IF(G.NE.O) GO TO 150
U=U+UTH
(10 LOCATK THF INTFRSECTIUN - 2ND ATTEMDT
BO CALI. EXPQUE (LAM,U,S,NORD, ACC,FSU,E,C1,C2,C3,LN)
CALL FXPQUF(LAM,U,SP1,NORD,ACC,FSPIU,E,CI,C2.C3,LN)
DFFU=FSPIU-FSU
It (AHS (DFFU)-L.EBNDRY) GO TO 150
IF (DFFU*DFFUQ.GT.O.O) GO TO 100
IF (DFFU.UT•O.O) GO TO 90
Sill =U

```
        FSUL=FSU
        GO TG 150
        90 SOIUL=U
        FSPIUL=FSPIU
        GO TD 150
    100 IF(DFFU.GT.O.O) GU TO 110
        SHR=U
        +SUR=F SU
        cor T1: }15
    110 こ以1UN=|
        FSH1UM-FSP1U
C NEILFGRM STEF SR OR 4B
    1'SO CALL GOLUEN(LAM.S.NORD.ACG.,C1.C2.C3.SUR.UUH.VALUE.DFL.
        1HFJORY,SUL,FSUL.SUR,FSUR,LN)
            SUL =SMIUL
            GUR = S円1 UR
C AUVARNCI TO NEXT STRIIGG
    160 S=STJ
        +SUL=FSOIUL
        FSUR=FSPIUR
        GO 1% 10
    170 1F(DFFU.OT.0.0) GO TO 180
        \triangleUR=U
        FSUR =F SU
        (.1) TU 150
    100 SHIUR=U
        ISP1UR=FSPIU
        G0 111 150
    230 It(DFFUR#DFFUL.GT.O.O) GO IO 240
C IHF IWO STHINGS DO INTERSECT
        U= SULINTH
        CO T| AO
C HAVE NUI INTENSHCTICN POINTS
    240 IF(DFFUR.GT.O.0) GO TO 15
            G(I TU 160
    27S IF(AГSS(DFFUR).LT.O.O) GO TO 150
            U=SUL.+UTH
            ,O TO MO
C WHFV THF RGGIUN OF U IS SMALL
    S(C: IF((ABS(DFFUL).I 1.HNORY),OR.(ABS(DFFUR).LT.&RNDRY)) GO
        1TO 1=0
            IF(DFFUR*DFFUL.LF.O.O) GO TO }15
            IF(UFFUR.GT.O.O) 50 TO 15
            GO TII 150
            FN()
```

C THIS SUBPRUGRAM USES A MODIFIED GOLDEN SEARCH ALGORITHM
C TU DETERMINE THF MINIMAL SOLUTION FOR A SECTION UF A
C STRING．THE MODIFICATION IS CONCERNED WITH THE DEALING
\therefore UF ERKORS INTRODUCED IN THE ESTIMATION OF THE OBJECTIVE
C FUNCTIUN．
JUBKOUTINF GULDCN（LAM，S．N．ACC．C1．C2．C3．SUB．UUB，VALUE，DEL．
IHNIJRY，ELIN，ELVAL，ERIN．TRVAL，LN）
18EAL LAM
INTEGER S．SUB
！L＝FLIN
ER＝L RIN
C GOLDEN SHARCH STLPS
$1 \cup A=F L+(=R-E L) * U .382$
（ALL－XPOUE（LAM，A，S．N．ACC．AVAL，E，C1，C2．C3．LN）
$H=E R-(i=R-E L) * O \cdot 382$
CALL EXPOUF（LAM，H．S．N．ACC，RVAL，E，C1，C2，C3，LN）
¿゙）IF（AllS（AVAL－EVVAL）©LT•BNDRY）GO TD 100
IF（AVAL•（JT．BVAL）GU TO bO
c
UKOP THE RIGHI END
トに゙二 H
F：RVAL＝HVAL
$A O B=E R-A+E L$
CALL RXPQUL（L
If（AUF－A） 30.
ju $\because=A$
I3VAL＝AVAL
$A=A O P$
AVAL＝AUHVAL
טU TU 80
$40 \mathrm{H}=\mathrm{AOH}$
HVAL＝AUBVAL
GO TO HO

دU e．L＝A
ELVAI $=A V A L$
$A C I E I=E R-B+A$
CALL EXPOUE（L．AM，AOB，S，N，ACC，AOBVAL，E，C1，C2，C3．LN）
IF（AMA－B）60．10．70
OO $A=A O B$
$A V A L=A l .113 V A L$
いU Tll so
$70 \quad A=B$
$A \vee A L=13 V A L$
$H=A(I)$
HVAL＝AORVAL
\＆O IF（（ERーEL）．GT．DEL）GO TO 20
THE REGION OF UNCERTAINTY IS SMALL ENOUGH
8＇j IF（VALUB．LE•RVAL）GO TU b8
SUE＝S
UUB＝H
VAL UH＝BVAL
B8 IF（VALUB．LF．AVAL）GO TO YO

C THIS SUBPROGRAM USES A MODIFIED GOLDEN SEARCH ALGORITHM
C TO DETERMINE THF MINIMAL SQLUTION FOR A SECTION UF A
C STRING．THE MODIFICATION IS CONCERNED WITH THE DEALING
C UF ERRORS INTRODUCED IN THE ESTIMATION OF TME OBJECTIVE
C FUNCTION．
JUBKOUTINF GULDCNILAM，S，N，ACC，CI，C2，C3，SUB，UUB，VALUE，DEL•
IFANDRY，ELIN，ELVAL，ERIN，FRVAL•LN）
12EAL LAM
INTEGER S．SUH
$t L=E L I N$
$t+R=t R I N$
C GOLDEN SHARCH STEPS
$10 \quad A=F L+(E R-E L) * 0.382$
CALL－XPQUE（LAM，A，S，N，ACC，AVAL，E，C1，C2．C3．LN）
$F=F M-(: R-E L) * O$ • 382
CALL EXPQUE（LAM，H，S．N．ACC．RVAL，E，C1．C2，C3．LN）

IF（AVAL•GT．BVAL）GU TO 50
C URIJP TIAE RIGHI END
r ド＝
FRVAL $=H V A L$
$A O B=K R-A+\div L$
CALL F XPOUL 《LAM，AOU，S．N．ACC．AOBVAL，E，C1，C2，C3，LN）
1．（AliFi－A） 30.10 .40
ju $13=A$
$B \vee A L=A \vee A L$
$A=A O F$
$A V A L=A O H V A L$
BU TU BO
$40 H=A O F$
HVAL＝AIBVAL
GC TO BO
C DKUP THE LEFT END
コU $\mathrm{CL}=\mathrm{A}$
LLVAI＝AVAL
$A O E=E R-B+A$
CALL EXPQUE（LAM，AUH．S．N．ACC．AOBVAL．E，C1，C2，C3．LN）
IF（ATIR－B）60．10．70
$60 \quad A=A O\}$
$A V A L=A 1 B H V A L$
जU TO \＆O
$70 \quad A=F 3$
$A \vee A L=G \vee A L$
$F=A(n t)$
tivAL＝AOAVAL
セO 1F（EFR－EL）．GT．DEL）GO TU 20
C THE REGION OF UNCERTAINTY IS SMALL ENOUGH
日＇IF（VALUB•LF•RVAL）GO TO b8
SUE＝S
UUE＝H
VAL UFI＝BVAL
甘3 It（VALUB•LF•AVAL）GO TO 40

```
        SUR=S
        UUB =A
        VALUH=AVAL
        90 IF(VALUH.LE.ELVAL) GO TO 95
        SUls=S
        UUH=ELL
        VAL'UH=E.LVAL
        }s IF(VALUB.LEE&ERVAL) RETURN
        `,UH=S
        UUH=5ん
        VALUH=ERVAL
            Rt: TURN
C NOT ABLE TO TELL WHICH OF THE TWO POINTS IS LARGER -
C INTRIUUCE THE FIRST AUXILARY POINT
    100 C=(A+G)/2.0
            IF(AVAL.GL.EVAL) GO TU 110
            F|N=OVAL
            GU T| 120
    110 FIN=AVAL
    120 CALL EXPQUE(LAM,C,S,N,ACC,CVAL,E,C1,C2,C3.LN)
        IF(ADS(CVAL-AVAL).LT•BNDRY) GO TO 130
        IF(CVAL.LT.AVAL) GO TO 125
    122 PRINT 6000
    6000 FORMAT(' CONCAVE')
        STOP
    125 EL=A
            ELVAL =AVAL
    1.30 IF(ABS(CVAL-GVAL).LT.BNDRY) GO TO 150
        IF(CVAL.GE.OVAL) GO TO 122
        EA=B
        ERVAL =HVAL
    140 IF((rR-EEL).LE.DEL) GO TO 85
            GO TO) 10
    150 IF (AHS(CVAL-AVAL).GE.BNDRY) GO TO 140
        IF(CVAL.GE.VALUB) GO TO 155
        SUH=S
        UUB=C
        VALUIB =CVAL
C FIRST AUXILIARY POINT FAILS TO HELP
    155 IF ((A-EL).GT.(4.O*DEL)) GO TO 180
    100 IF(CVAL.GE.VALUR) GO TO 165
        SUA=S
        UUR =C
        VALUB=CVAL
C. TITAL ENUMERATION
    165 NCUT=(ER-EL)/DEL
        C=EL
        UU 170 I=1,NCUT
        C=C+OEL
        CALL EXPOUE(LAM,C,S,N.ACC,CVAL,E,C1,C2,C3,LN)
        IF(VALUB.LE.CVAL) GO TO 170
        SUEI=S
```

```
    UUE=C
    VALUB=CVAL
    170 CONTINUE
    GO TO R5
    INTRUDUCE THE SECOND AUXILIARY POINT
    1४OC=(A+EL)/2.0
    CALL EXPOUL(LAM,C,S,N,ACC,CVAL,E,C1,C2,C3,LN)
    IF(ARS(CVAL-AVAL).LT.ENDRY) GO TO 160
    IF(CVAL.GT.AVAL) GO TO 190
    F.R=A
    ERVAL =AVAL
    A=C
    AVAL. =CVAL
    GO TU 140
    190 tL=C
    ELVAL=C.VAL
    GO TO 140
    t.ND
```

C THIS SUBROUTINE ESTIMATES THE EXPECTED NUMBER OF
C CUSTOMEHS OF A M/M/S OUEUING MODEL USING ALGORITHM 1
C OF CHAPTER III. THE TOTAL COST OF THE CORRESPONDING
C GYSTEM IS ALSO CALCULATED AND PRINTED. SUAROUTINE EXPOUE (LA,MU,S,N,ACC,FO,EO,C1,C2,C3.LN)
RHAL LAM.LA,MU
INTEGERS
DIMENSION WZ(100),WZPI(100)
$t S=S$
rCTNR $=1.0$
2 PMAX=(FS*MU+LA) *FCTNR
IF(PMAX.GE.O.1) GO TO 4
-CTNR=FCTNR*10.0
GU TO 2
4 PMAX = (FS*MU+LA) *FCTNR
IF(PMAX.LT.1.O) GO TO 6
FCTNR=FCTNR*0.1
GU 104
6 LAM=LA*FCTNR
U=MU*FCTNR
MIN=1
MAX $=N$
8 NCNT = 1
C
TO BUILO W\{O\}
OOLOI=1:N
W7(I)=I-1
10 CUNTINUE.
C TO BUILD $W(Z+1)$ FROM $W(Z)$
NMI $1=\mathrm{N}-1$
20 WZPI(1)=(1.0-LAM)*WZ(1)+LAM*WZ(2)
OU40I=2.NMI
IF((I-1).GT.S) GO TD 30
FIMI =I-1
US $=F 1$ Mi $\# \mathrm{U}$
30 WZP1(I)=US*WZ(I-1)+(1•0-LAM-US)*WZ(I)+LAM*WZ(1+1)
40 CONTINUE
IF(NMI.EQ.S) GO TO 60
42 WZPI (N) =US*WZ(NM1) +(1.0-US)*WZ(N)
C CHECK FOR MAX ABSOLUTE ERROR
VALMIN=WZPI(MIN)
VALMAX = WZPI (MAX)
45 EO = (VALMAX + VALMIN)/2.0
TOL = (VALMAX-VALMIN)/2.0
IF(TOL.LT.ACC) GO TO 90
C RESET FOR ANOTHFR ITERATION
$0050 \mathrm{I}=1$. N
WZ(I)=WZPI(I)
50 CONTINUE
NCNT = NCNT +1
IF(NCNT•LE.20000) GO TO 20
PRINT 6000
6OOO FURMAT(" TOO MANY ITERATIONS')

```
            STOP
        co US=US+U
            G[) TO 42
        90 IN|X=0
C MAKE SURE MIN- AND MAX- COMPONENT REMAIN THE SAME
    001001=1.N
            IF(WZPI(I).LT.VALMIN) GO TO 95
            IF(WZPI(I).LE.VALMAX) GO TO 100
            MAX=1
            VALMAX=wZPI(I)
            IMIX=1
            GO TO 100
            95 MIN=I
            VALMIN=WZHI(I)
            IMIX=1
    100 CONTINUE
            IF(IMIX.NE.O) GO TO 45
C EVALUATF THE UBJECTIVE FUNCTION
    FO=C1*S+C2*MU+C3*EO
    IF(LN.GT.48) GO TO 120
    110 PRINT 6020.S.MU,FO,EO.NCNT
GOZO FORMAT(1X,15,F11.4.E16.4.F11.4.19)
            LN=LN+1
            RETURN
    120 LN=0
            FRINT 6030
6030 FURMAT('1.//////1)
    GO TO 110
    END
```


Appendix B

NUMERICAL EXPERIMENTATION WITH THE DESIGN ALGORITHM

This appendix contains ten numerical problems of problem (1) of Chapter VI solved using the program listing in Appendix A. Each of these ten computer outputs contains the descriptions of the design problem, the list of points that are enumerated, and the optimal solution of the problem. These results are summarized in Table 1 on page 45. The IBM $370 / 158$ computer times required for solving these problems are also included in the table.

Example 1

ARRIVAL RATE $=0.03000$
SEHVICE RATES FROM 0.030 TO 0.120 WITH TOLERANCE $=0.0030$ NUMFER OF SERVERS FFOM 1 TO 7
ORUER OF TRANSITION MATRIX $=24$
MAX ARSOLUTE ERROR OF THE ESTIMATION OF L $=0.0020$ CUST FACTORS CI $=1.00 \quad C 2=120.00 \quad C 3=10.00$

NU. OF
SERVICE
HATE
EXPECTED Z
SEIVFRG HATE

1	0.0300	$0.1196 E$	03	11.4975	1650
\therefore	0.0300	$0.1895 E$	02	1.3352	184
3	0.0300	0.1707 E	02	1.0467	814
1	0.0315	0.9690E	02	9.2123	1558
1	0.0330	0.7783E	02	7.2871	1397
4	0.0100	0.1769 E	02	1.0085	526
3	0.0300	0.1707 E	02	1.0467	814
4	0.1200	0.2092E	02	0.2520	101
;	0.1200	O.1992E	02	0.2520	127
${ }^{\prime}$	0.0300	0.1895E	02	1.3352	184
$?$	0.1200	0.1896 E	02	0.2559	197
1	0.0600	$0.1525 E$	02	0.5049	294
2.	0.0600	0.1455 L	02	0.5353	509
1	0.0415	0.1536 E	02	0.7383	487
3	0.0485	$0.1509 E$	02	0.6269	389
3	0.0529	0.15095	02	0.5738	346
5	0.0507	0.1508E	02	0.5991	367
1	0.0445	O.1520E	02	0.6865	440
. 3	0.0475	$0.1511 E$	02	0.6416	402
;	0.0505	0.1508E	02	0.6024	367
. 3	0.0530	$0.1509 E$	02	0.5678	342
3	0.0565	$0.1515 E$	02	0.5371	318
3	0.05915	$0.1523 E$	02	0.5096	297
1	0.0300	$0.1196 E$	03	11.4975	1650
1	0.1200	$0.1875 E$	02	0.3353	510
$?$	0.0600	$0.1455 E$	02	0.5353	509
1	0.0600	0.1822E	02	1.0019	186
2	0.0900	0.162 SE	02	0.3448	286
1	0.0900	0.1682E	02	0.5019	819
2	0.0644	$0.1467 E$	02	0.4947	458
2.	0.0856	0.1591 E	02	0.3634	306
$?$	$0.051:$	0.1457E	02	0.6423	654
$?$	0.0431	0.1511E	02	0.7930	879
\because	0.0563	0.1451E	02	0.5758	562
3	0.0593	0.1454E	02	0.5420	518
2	0.0578	0.1452E	02	0.5584	539
2	0.0542	0.1452E	02	0.6008	596
2	0.0572	0.1452E	02	0.5647	548

2	0.0602	$0.1456 E$	02	0.5329	506
2	0.0032	$0.1464 E$	02	0.5046	470
1	0.1015	$0.1739 E$	02	0.4218	667
1	0.1085	$0.1786 E$	02	0.3839	597
1	0.0971	$0.1714 E$	02	0.4492	718
1	0.0944	$0.1700 E$	02	0.4679	754
1	0.0927	$0.1693 E$	02	0.4804	778
1	0.0917	$0.1688 E$	02	0.4883	793
1	0.0910	$0.1686 E$	02	0.4936	803

[^0]ARIRIVAL RATE $=0.03000$
SL゙QVIEF゙ RATES FROM 0.030 TO 0.120 WITH TOLERANCE=0.0030
NUMBER UF SERVERS FROM 1 TO 7
OKDFW OF TRANSITIUN MATRIX $=16$
MAX ABSOLUTE ERKOR OF THE ESTIMATION OF L = 0.0020 CUST FACTORS C1= $1.00 \quad C 2=120.00 \quad 10.00$

NH. OI	SHRVICE
SEHVFRS	RATF

TOTAL COST
SEHVFRS RATF

1	0.0500	0.7939E	02	7.4991	697
2	0.0300	$0.1895 E$	02	1.3349	132
3	0.0300	0.1707 E	02	1.0469	600
1	0.0315	0.6951E	02	6.4731	670
1	0.0330	$0.6045 E$	02	5.5492	629
4	0.0300	0.1769E	02	1.0085	400
. 3	0.0300	0.1707E	02	1.0469	600
4	0.1200	0.2092E	02	0.2520	81
3	0.1200	0.1992E	02	0.2520	97
2	0.0300	0.1895E	02	1.3349	132
$?$	0.1200	O.1896E	02	0.2558	145
3	0.0600	0.1525E	02	0.5050	220
2	0.0600	0.1455E	02	0.5353	375
3	0.0415	0.1536 E	02	0.7383	362
3	0.0485	$0.1509 E$	02	0.6269	291
3	0.0529	$0.1509 E$	02	0.5738	259
3	0.0507	O. 1508 E	02	0.5991	274
3	0.0445	0.152 OE	02	0.6864	328
3	0.0475	0.1511E	02	0.6416	300
. 3	0.0505	0.1508E	02	0.6024	276
3	0.0535	O. 1509 E	02	0.5678	256
1	0.0565	0.1515 L	02	0.5371	238
1	0.0595	0.1523E	02	0.5096	223
1	0.0300	0.7959E	02	7.4991	697
1	0.1200	0.1875E	02	0.3353	375
?	0.0000	$0.1455 F$	02	0.5353	375
1	0.0600	0.1822E	02	1.0017	134
2	0.0900	0.1625E	02	0.3448	210
1	0.0900	U.1682E	02	0.5020	604
2	0.0644	0.1467F	02	0.4947	337
2	0.0850	0.1591E	02	0.3634	225
2	0.0512	$0 \cdot 1457 E$	02	0.6423	481
2	0.0431	O.1511E	02	0.7930	647
2	0.0563	0.1451E	02	0.5757	414
$?$	0.0593	0.1454E	02	0.5420	381
2	0.0578	0.1452E	02	0.5583	397
2	0.0542	0.1452 E	02	0.6008	439
2	0.0572	$0.1452 E$	02	0.5647	403

2	0.0602	$0.1456 E$	02	0.5328	373
$;$	0.0632	$0.1463 E$	02	0.5046	346
1	0.1015	$0.1739 E$	02	0.4218	491
1	0.1085	$0.1786 E$	02	0.3839	440
1	0.0971	$0.1714 E$	02	0.4492	530
1	0.0944	$0.1700 E$	02	0.4679	556
1	0.0927	$0.1693 E$	02	0.4804	574
1	0.0917	$0.1688 E$	02	0.4883	585
1	0.0910	$0.1686 E$	02	0.4936	592

** IIOTIMAL SULUTION **

NG. UF SERVEHS = 2 STRVICE RATE $=0.056280$ TOIAL C.OST $=0.145 E 02$

Airnival RATE $=0.03000$
SEPVIC:- RATES FROM 0.030 TO 0.120 WITH TOLERANCE $=0.0030$
NUMBER UF SERVERS FROM 1 TO 7
URIER JF TRANSITIUN MATRIX $=8$
MAX AHEOLUTIE EKROR OF THE ESTIMATION OF L $=0.0020$ CUST FACTURS $C 1=1.00 \quad C 2=120.00 \quad C 3=10.00$

NU. UF THRVICE TUTAL COST EXPECTED		
SERVIERS RATE		CUSTOMERS

1	0.0300	0.3960 E	02	3.4998	158
$?$	0.0300	$0.1855 E$	02	1.2947	60
3	0.0300	0.1704 E	02	1.0442	342
1	0.0315	$0.3722 E$	02	3.2445	154
1	0.0330	$0.3501 E$	02	3.0047	148
4	0.0300	0.1768 E	02	1.0077	268
3	0.0300	$0.1704 E$	02	1.0442	342
4	0.1200	0.2092 E	02	0.2517	62
. 3	0.1200	0.1992E	02	0.2519	67
$?$	0.0300	0.1855E	02	1.2947	60
,	0.1200	$0.1896 E$	02	0.2558	88
;	0.0600	$0.1525 E$	02	0.5048	144
،	0.0600	$0.1455 E$	02	0.5351	218
1	0.0415	$0.1535 E$	02	0.7379	224
3	0.0485	$0.1509 E$	02	0.6267	184
3	0.0529	$0.1509 E$	02	0.5737	166
3	0.0507	$0.1508 E$	02	0.5990	175
3	0.0445	$0.1520 E$	02	0.6862	205
. 3	0.0475	$0.1511 E$	02	0.6414	189
3	0.0505	$0.1508 E$	02	0.6023	176
3	0.0535	$0.1509 E$	02	0.5678	164
3	0.056'	$0.1515 F$	02	0.5370	154
3	0.0595	$0.1523 E$	02	0.5095	145
1	0.0300	0.3960E	02	3.4998	158
1	0.1200	$0.1875 E$	02	0.3352	216
2.	0.0600	0.1455 E	02	0.5351	218
1	0.0600	0.1790E	02	0.9703	63
2	0.0400	$0.1625 E$	02	0.3448	126
1	0.0900	$0.1681 E$	02	0.5007	337
2	0.0644	$0.1467 E$	02	0.4946	197
?	0.0856	0.1591 L	02	0.3633	135
$?$	0.0512	$0.1456 E$	02	0.6416	274
2	0.0431	0.1508E	02	0.7904	355
2	0.0563	0.1451E	02	0.5754	239
2	0.0593	0.1454 E	02	0.5418	221
2	0.0578	0.1452 E	02	0.5580	230
?	0.0542	0.1451E	02	0.6004	252
?	0.0572	0.1451 E	02	0.5644	233

\therefore	$0.00 ن 2$	$0.1456 E$	02
2	0.0632	$0.1463 E$	02
1	0.1015	$0.1739 E$	02
1	0.1085	$0.1786 E$	02
1	0.0971	$0.1713 E$	02
1	0.0944	$0.1700 E$	02
1	0.0927	$0.1692 E$	02
1	0.0917	$0.1687 E$	02
1	0.0910	$0.1685 E$	02

0.5326	217
0.5045	202
0.4213	279
0.3836	252
0.4485	299
0.4671	313
0.4794	322
0.4872	328
0.4925	331

* \# IIPTIMAL SULUTIUN **

NU. UF SERVEFS= 2
SHVICT KATF $=0.050280$
TLIAL COST = $0.14 \mathrm{~S}: 02$

Example 4

ARLSIVAI. FATE $=0.0 .3000$
S. KVIC RAT:S FROM 0.030 TO 0.120 WITH TOLFRANCE $=0.0030$

NUNFIR IIF SFRVLRS FROM 1 TO 7
LIKISER IF TRANSITION MATRIX $=8$
NAA AIBCIULUTFE LRRUR UF THE ESTIMATION OF L $=0.0020$
CU:TFACTURS C1= $1.00 \quad C 2=120.00 \quad C 3=10.00$

1	0.0300	$0.3960 E$	02	3.4998	158
\because	0.0300	$0.1855 E$	02	1.2947	60
3	0.0300	0.1704 E	02	1.0442	342
1	0.0315	$0.3722 E$	02	3.2445	154
1	0.0330	0.3501E	02	3.0047	148
2	0.0300	$0.1855 E$	02	1.2947	60
1	0.0300	0.3960 E	02	3.4998	158
2	0.1200	0.1896t	02	0.2558	88
1	0.1200	0.1875 E	02	0.3352	216
1	0.0300	$0.1704 E$	02	1.0442	342
1	U. 1200	0.1992E	02	0.2519	67
\square	0.0600	$0.145 \ 2 E$	02	0.5351	218
1	0.0000	0.1525E	02	0.5048	144
\because	0.0644	0.1467 E	02	0.4946	197
\cdots	0.0856	$0.1591 E$	02	0.3633	135
4	0.051́	0.1456 E	02	0.6416	274
2	0.0431	0.1508E	02	0.7904	355
2	0.0563	O.1451E	02	0.5754	239
2	0.0593	$0.1454 E$	02	0.5418	221
2	0.0578	0.1452 E	02	0.5580	230
i	0.0542	$0.1451 E$	02	0.6004	252
2	0.0572	0.1451E	02	0.5644	233
2	0.0602	$0.1456 E$	02	0.5326	217
i	0.0632	$0.1463 E$	02	0.5045	202
4	0.0300	0.1768 E	02	1.0077	268
4	0.0600	$0.1622 E$	02	0.5020	128
3	0.0415	0.153bE	02	0.7379	224
3	0.0485	$0.1509 E$	02	0.6267	184
1	0.0529	0.1509 E	02	0.5737	166
3	0.0507	$0.1508 E$	02	0.5990	175
3	0.044!	$0.1520 E$	02	0.6862	205
3	0.0475	0.1511E	02	0.6414	189
1	0.0505	0.1508 EE	02	0.6023	176
\}	0.05 .35	$0.1509 E$	02	0.5678	164
1	- 0 -0.0.0	$0.1515 E$	02	0.5370	154
3	0.0595	$0.1523 E$	02	0.5095	145
1	0.0644	$0.1729 E$	02	0.8566	55
1	0.0856	0.1667E	02	0.5395	365

1	$0.098 才$	$0.1723 E$	02	0.4377	291
1	0.0775	$0.1659 E$	02	0.6291	430
1	0.0725	$0.1671 E$	02	0.7011	481
1	0.0806	$0.1659 E$	02	0.5921	403
1	0.0790	$0.1659 E$	02	0.6101	416
1	0.0755	$0.1662 E$	02	0.6565	449
1	0.0785	$0.1659 E$	02	0.6170	421
1	0.0815	$0.1660 E$	02	0.5819	396
1	0.0845	$0.1664 E$	02	0.5505	374

ATRKIVAL NATE $=0.0 .3000$
SEFVICH RATES FROM 0.030 TO 0.120 WITH TOLERANCE $=0.0030$ NUNHFIR UF SF:RVFRS $H R O M 1$ TO 7
UKDER JF TRANSITION MATRIX $=8$
MAX ARSILUTE YRROIR OF THE ESTIMATION OF L $=0.0020$ CUST FACTURS C1 $=1.00 \quad C 2=120.00 \quad C 3=10.00$

N(1. b)
SERVICE
TOTAL COST isate
SERVERS
0.0300
$0.3960 E 02$
0.1855 E 02
0.1704 E 02
0.3722 OL
$0.3501 E 02$
$0.2061 E 02$
0.1961 E 02
$0.2392 t .02$
02
$\begin{array}{ll}0.2292 E & 02 \\ 0.18 \text { K2E } & 02\end{array}$
02
0.1200
0.2192 E 02

02
EXPECTED
z
CUSTOMERS

3.4998	158
1.2947	60
1.0442	342
3.2445	154
3.0047	148
1.0013	244
1.0014	245
0.2517	59
0.2518	59
1.0021	250
0.2517	60
1.0077	268
0.2517	62
1.0442	342
0.2519	67
1.2947	60
0.2558	88
0.5048	144
0.5351	218
0.7379	224
0.6267	184
0.5737	166
0.5990	175
0.6862	205
0.6414	189
0.6023	176
0.5678	164
0.5370	154
0.5095	145
3.4998	158
0.3352	216
0.5351	218
0.9703	63
0.3448	126
0.5007	337
0.4946	197
0.3633	135
0.6416	274

2	0.0431	$0.1508 E$	02	0.7904	355
2	0.0503	$0.1451 E$	02	0.5754	239
2	0.0593	$0.1454 E$	02	0.5418	221
2	0.0578	$0.1452 E$	02	0.5580	230
2	0.0542	$0.1451 E$	02	0.6004	252
\therefore	0.0572	$0.1451 E$	02	0.5644	233
\therefore	0.0002	$0.1456 E$	02	0.5326	217
\therefore	0.0632	$0.1463 E$	02	0.5045	202
1	0.1015	$0.1739 E$	02	0.4213	279
1	0.1085	$0.1786 E$	02	0.3836	252
1	0.0 .71	$0.1713 E$	02	0.4485	299
1	0.0944	$0.1700 E$	02	0.4671	313
1	0.0927	$0.1692 E$	02	0.4794	322
1	0.0417	$0.1687 E$	02	0.4872	328
1	0.0910	$0.1685 E$	02	0.4925	331

** UPTIMAL SOLUTION **

N(I. OF SERVERS $=2$
SLRVICF RATE $=0.056280$ TOTAL COST $=0.145 \mathrm{E} \quad 02$

ARMIVAL RATE $=0.03000$
SEKVICt RATES FROM 0.030 TO 0.120 WITH TOLFRANCE=0.0030 NUMHFR OF SERVERS FRUM 1 TO 7 ORDER IIF TRANSITION MATRIX $=8$ MAX AESSOLUTE ERROR OF THE ESTIMATION OF L $=0.0020$ COST FACTURS C1 $=15.00 \quad C 2=120.00 \quad C 3=300.00$

NU. Of SERVFRS,	SERVICE RATE	TOTAL COST		EXPECTED CUSTOMERS	2
1	0.0300	$0.1069 E$	04	3.4998	158
2	0.0300	$0.4220 E$	03	1.2947	60
3	0.0300	0.3618 EE	03	1.0442	342
1	0.0315	$0.7921 E$	03	3.2445	154
1	0.0330	$0.9204 E$	0.3	3.0047	148
4	0.0300	0.3659E	03	1.0077	268
4	0.0300	0.3618 EE	03	1.0442	342
4	0.1200	$0.1499 E$	03	0.2517	62
3	0.1200	0.1350E	03	0.2519	67
2	0.0300	$0.4220 E$	03	1.2947	60
?	0.1200	0.1211 E	03	0.2558	88
3	0.0600	$0.2036 E$	03	0.5048	144
$?$	0.0600	0.1977 E	03	0.5351	218
3	0.0415	0.2713 E	03	0.7379	224
3	0.0445	$0.2388 E$	03	0.6267	184
1	0.0529	0.2234E	03	0.5737	166
3	0.0556	0.2152 E	03	0.5452	157
3	0.0573	$0.2106 E$	03	0.5290	152
3	0.0583	0.2079E	03	0.5196	149
3	0.0590	0.2062E	03	0.5137	147
1	0.0300	$0.1069 E$	04	3.4998	158
1	0.1200	0.1300 E	03	0.3352	216
2	0.0644	0.1861E	03	0.4946	197
?	0.0856	$0.1493 E$	03	0.3633	135
2	0.0988	$0.1357 E$	03	0.3128	112
$<$	0.1069	0.1293 E	03	0.2884	101
2	0.1119	0.1259E	03	0.2749	96
2	0.1150	O.1240E	03	0.2673	93
2	0.1169	$0.1228 E$	03	0.2627	91
2	0.1159	$0.1234 E$	03	0.2650	92
?	0.1149	0.1240E	0.3	0.2675	93
2	0.1179	$0.1223 E$	03	0.2605	90

** GOTIMAL SULUTION **

NU. UF SERVFRS= 2
S: RVICF RATE $=0.120000$
TOTAL CUST $=0.121 E 03$

Example 7

AHPIVAL HATE= 0.02000
SFIVIC: RATH FROM 0.010 TO 0.060 WITH TOLERANCE $=0.0020$ NUMB:R OF SERVERS FROM 1 TO 14 ORIDE'? IIF TRANSITIUN MATRIX = 15 MAX ABSULUTE FRROR OF THE ESTIMATION OF L $=0.0020$ COST FACTORS CL1= $3.00 \quad C 2=100.00 \quad C 3=150.00$

NU. UF	SERVICE	TOTAL COST		EXPECTED	2
SERVERS	RAIL			CUSTOMERS	
1	0.0100	0.1954E	04	12.9980	389
?	0.0100	0.1093 E	04	7.2402	853
3	0.0100	0.4362 E	03	2.8416	371
1	0.0110	0.1921F	04	12.7772	445
1	0.0120	0.1880E	04	12.5045	508
1	0.0140	0.1765E	04	11.7357	656
1	0.0160	$0.1586 E$	04	10.5446	807
1	0.0180	0.133 BE	04	8.8871	908
1	0.0250	$0.1055 E$	04	6.9988	912
1	0.0220	0.7970 E	03	5.2785	830
1	0.0000	$0.8429 E$	02	0.5019	82
1	0.0365	0.1883E	03	1.2109	240
1	0.0455	$0.1255 E$	03	0.7866	144
1	0.0510	$0.1051 E$	03	0.6464	113
1	0.0545	0.9581E	02	0.5824	99
1	0.0560	0.9095 E	02	0.5486	92
1	0.0579	$0.8828 E$	02	0.5300	88
1	0.0587	$0.8664 E$	02	0.5185	86
1	0.0592	0.8581 E	02	0.5126	84
1	0.059	0.8511 E	02	0.5077	83
$?$	0.0100	O.1093E	04	7.2402	853
$?$	0.0110	$0.8492 t$	03	5.6140	778
2	0.0120	O.6592E	0.3	4.3464	668
3	0.0100	0.4362E	03	2.8416	371
\cdots	0.0100	$0.1093 E$	04	7.2402	853
1	0.0600	0.6538E	02	0.3359	197
?	$0.00: 00$	0.6372 E	02	0.3448	304
4	0.0100	0.3392E	03	2.1743	182
4	0.0000	0.6829E	02	0.3353	164
3	0.0207	$0.1267 E$	03	0.7666	549
4	0.0267	0.1277t	03	0.7537	403
3	0.0201	0.1169F	03	0.6997	485
3	0.0409	0.8714 E	02	0.4937	311
3	0.04s2	0.7658 E	02	0.4184	254
1	0.0 - 27	0.7164 E	02	0.3825	229
3	0.0555	$0.6901 E$	02	0.3631	216
3	0.0572	0.6757E	02	0.3523	208
3	0.0563	0.6667E	02	0.3456	204

3	0.0589	0.6622 E	02	0.3422	201
3	0.0586	0.6645E	02	0.3440	202
3	0.0502	0.6598E	02	0.3404	200
5	0.0100	0.3222E	03	2.0415	117
5	0.0267	$0.1305 E$	03	0.7521	353
4	0.0156	$0.2100 E$	03	1.3095	78
')	0.0156	$0.2102 E$	03	1.2911	61
4	0.0211	$0.1573 E$	03	0.9545	538
S	0.0211	0.1596E	03	0.9499	455
4	0.0164	$0.1998 E$	03	1.2411	72
4	0.0203	$0.1630 E$	03	0.9934	566
4	$0.02 ? 7$	$0.1471 E$	03	0.8854	489
4	0.0242	0.1389 E	03	0.8300	452
4	0.0252	$0.1344 E$	03	0.7989	432
4	0.0257	0.1318 E	03	0.7812	420
1	0.0261	$0.1301 E$	03	0.7702	413
6	0.0100	0.3206E.	0.3	2.0106	94
G	0.0211	0.1625E	03	0.9492	422
5	0.0137	0.2367 E	03	1.4687	72
6	0.0137	0.2386 E	03	1.4618	670
5	0.0142	$0.2282 E$	03	1.4119	68
3	0.0169	0.1951 E	03	1.1894	588
\because	0.0185	$0.1795 E$	03	1.0845	529
5	0.0145	0.1713 E	03	1.0288	498
3	0.0201	0.1666E	03	0.9972	480
3	0.0205	$0.1639 E$	03	0.9788	470
7	0.0100	0.3225E	03	2.0035	85
7	0.0137	$0.2415 E$	03	1.4606	633
6	0.0114	$0.2828 E$	03	1.7578	79
6	0.0123	$0.2640 E$	03	1.6317	72
6	0.0128	0.2537E	03	1.5626	68
6	0.0132	0.2477 E	03	1.5229	66
2	0.0291	0.1261 E	03	0.7813	86
2	0.0409	0.884 OE	02	0.5220	520
2	0.0482	0.76155	02	0.4355	410
2	0.0527	$0.7061 E$	02	0.3956	362
7	0.0555	$0.6771 E$	02	0.3744	337
\because	0.0572	0.6611F	02	0.3626	324
$?$	0.0583	$0.6514 E$	02	0.3554	315
2	0.05 ¢9	0.6463 E	02	0.3516	311
a	0.0546	0.6488 E	02	0.3535	313
2	0.0592	0.6438 E	02	0.3497	309

VU. UF SERVERS= 2
SI RVIC' RATE $=0.000000$
TUIAL COST $=0.637 E 02$

ARMIVAI．RAT：$\because=0.02000$
Si：RVIC：KAIES FRUM 0.010 TO 0．060 WITH TOLERANCE $=0.0020$ NUMRt：iP OF SERVERS FROM 1 TO 14 UPI MAX AISDILUTE LRFOR UF IHE ESTIMATION OF L $=0.0020$ CUST F ACTOKS $C 1=3.00 \quad C 2=100.00 \quad C 3=150.00$

Nu．Ot：	SERVICE	TOTAL COST		FXPECTED	Z
¢ ¢ 小Vers．	はA1：			CUSTOMERS	
1	0.0100	$0.1754 E$	04	12.9980	389
，	0.0100	$0.1093 E$	04	7．2402	853
1	0.0100	0.4362 E	03	2.8416	371
1	0.0110	0.1921 E	04	12.7772	445
1	0.0120	0.1880 E	04	12.5045	508
1	0.0140	$0.1765 E$	04	11.7357	656
1	0.0160	0.1586 E	04	10.5446	807
1	0.0180	0.1338 E	04	8.8871	908
1	0.0200	$0.1055 E$	04	6.9988	912
1	0.0220	$0.7970 E$	03	5.2785	830
1	0.0000	$0.8429 E$	02	0.5019	82
1	0.0365	$0.1883 E$	03	1.2109	240
1	0.0455	$0.1255 E$	03	0.7866	144
1	0.0510	$0.1051 E$	03	0.6464	113
1	0.0545	$0.9581 E$	02	0.5824	99
1	0.0506	$0.9095 E$	02	0.5486	92
1	c．0579	0．88？ 8 BE	0.2	0.5300	88
1	0.0587	$0.8664 E$	02	0.5185	86
1	0.0542	0．8581E	02	0.5126	84
1	0.0595	0．8511E	02	0.5077	83
C	0.0100	0.1093 E	04	7.2402	853
2	0.0110	0.8492 E	03	5．－140	778
2	0.0120	0．6592E	03	4．3464	668
13	0.0100	0．3400E	03	2.0003	811
12	0.0100	$0.3370 E$	03	2.0003	813
13	0.0600	$0.9528 E$	02	0.3352	132
12	0.0000	$0.9227 E$	02	0.3351	133
11	0.0100	0．3340E	03	2．0003	816
11	0.0600	$0.8928 E$	02	0.3352	133
10	0.0100	$0.3311 E$	03	2.0004	822
10	0.0600	$0.8627 E$	02	0.3352	134
9	0.0100	0．3281E	03	2．0005	831
\bigcirc	0.0600	0．832．7E	02	0.3352	135
8	0.0100	0．3251E	03	2．0008	850
8	0.0600	0．8029E	02	0.3352	136
7	0.0100	0．322らE	03	2.0035	85
7	0.0600	0.7728 E	02	0.3352	139
6	0.0100	0．3206E	03	2.0106	94

6.	0.0600	$0.7429 E$	02	0.3352	143
\%	0.0100	0.3222F	03	2.0415	117
5	0.0600	$0.7129 E$	02	0.3353	150
6	0.0267	0.1334 E	03	0.7519	331
';	0.0267	0.1305E	03	0.7521	353
0	0.0164	$0.2032 E$	03	1.2236	552
6	0.0203	$0.1681 E$	03	0.9871	440
b	0.0227	$0.1525 E$	03	0.8816	391
6	0.0242	$0.1445 E$	03	0.8272	365
6	0.0252	0.1400 E	03	0.7966	351
0	0.0257	0.1374 E	03	0.7791	343
6	0.0261	0.1358 E	03	0.7682	338
4	0.0100	$0.3392 E$	03	2.1743	182
4	0.0000	$0.6829 E$	02	0.3353	164
S	0.0267	$0.1305 E$	03	0.7521	353
4	0.026 .7	0.1277E	03	0.7537	403
5	0.0164	$0.2005 E$	03	1.2260	609
5	0.0203	0.1652E	03	0.9879	475
5	0.0227	$0.1496 E$	03	0.8821	419
5	0.0242	0.1416 E	03	0.8275	391
5	0.0252	$0.1370 E$	03	0.7969	375
5	0.0257	0.1345 E	03	0.7793	366
3	0.0261	$0.1329 E$	03	0.7684	361
3	0.0100	$0.4362 E$	03	2.8416	371
3	0.0600	0.6538 E	02	0.3359	197
4	0.0267	0.1277 E	03	0.7537	403
3	0.0267	$0.1267 E$	03	0.7666	549
4	0.0164	$0.1998 E$	03	1.2411	72
4	0.0203	0.1630 E	03	0.9934	566
4	0.0227	$0.1471 E$	03	0.8854	489
4	0.0242	$0.1389 E$	03	0.8300	452
4	0.0252	0.1344 E	03	0.7989	432
4	0.0257	0.1318 E	03	0.7812	420
4	0.0261	$0.1301 E$	03	0.7702	413
2	0.0100	$0.1093 E$	04	7.2402	853
$?$	0.0600	$0.6372 E$	02	0.3448	304
3	0.0367	$0.1267 E$	03	0.7666	549
2	0.0267	$0.1399 E$	03	0.8746	102
1	0.0433	$0.8319 E$	02	0.4657	289
$?$	0.0433	0.8375E	02	0.4895	477
3	0.0291	0.1169E	03	0.6997	485
3	0.040%	$0.8714 E$	02	0.4937	311
3	0.0436	0.7658 E	02	0.4184	254
3	0.0527	$0.7164 E$	02	0.3825	229
3	0.0.0	0.6901E	02	0.3631	216
3	0.0572.	0.6757E	02	0.3523	208
3	0.0583	0.6667E	02	0.3456	204
3	0.0589	$0.6622 E$	02	0.3422	201
3	0.0586	$0.6645 E$	02	0.3440	202

1	0.0 .772	$0.6598 E$	02	0.3404	200
2	0.0394	$0.9161 E$	02	0.5445	50
2	0.0473	$0.7746 E$	02	0.4449	421
2	0.0521	$0.7125 E$	02	0.4002	367
2	0.0 .551	$0.6807 E$	02	0.3770	340
2	0.0570	$0.6630 E$	02	0.3640	325
$?$	0.0581	$0.6528 E$	02	0.3564	317
2	0.0589	$0.6466 E$	02	0.3518	311
2	0.0593	$0.6432 E$	02	0.3493	309

NO. UF SERVERS= 2 SEPVICE RATE $=0.060000$ TOTAL COST $=0.637 \mathrm{~F} 0$?

ARPIVAL RATE $=0.02000$
Stervict RATES FRUM 0.010 TO 0.060 WITH TOLERANCE $=0.0020$ NUMHFR IJF SITRV:.RS FROM 1 TO 14 URDEY IF TRANSITION MATRIX $=15$ MAX ARSQLUTE ERKOR OF THE ESTIMATION OF $L=0.0020$ CIST FACTURS CL= $3.00 \quad C 2=100.00 \quad C 3=150.00$

NU. UF SETVEERS	$\begin{aligned} & \text { SLRVICF } \\ & \text { RATE } \end{aligned}$	TOTAL C	$\cos T$	EXPECTED CUSTOMERS	2
1	0.0100	$0.1954 E$	04	12.9980	389
2	0.0100	$0.1093 E$	04	7.2402	853
1	0.0100	$0.4362 E$	03	2.8416	371
1	0.0110	$0.1921 E$	04	12.7772	445
1	0.0120	0.1880 E	04	12.5045	508
1	0.0140	0.1765E	04	11.7357	656
1	0.0160	$0.1586 E$	04	10.5446	807
1	0.0180	U.1338E	04	8.8871	908
1	0.0200	0.1055E	04	6.9988	912
1	0.0220	0.7970E	03	5.2785	830
1	0.0600	$0.8429 E$	02	0.5019	82
1	0.0365	0.1883 E	03	1.2109	240
1	0.0455	$0.1255 E$	03	0.7866	144
1	0.0510	0.1051 E	03	0.6464	113
1	0.0545	$0.9581 E$	02	0.5824	99
1	0.0566	$0.9095 E$	02	0.5486	92
1	0.0579	0.8828 E	02	0.5300	88
1	0.0587	$0.8664 E$	02	0.5185	86
1	0.0592	0.8581 L	02	0.5126	84
1	0.0595	0.8511 E	02	0.5077	83
2	0.0100	0.1093E	04	7.2402	853
2	0.0110	0.8492E	03	5.6140	778
2	0.0120	0.6592E	03	4.3464	668
7	0.0100	$0.3225 E$	03	2.0035	85
6	0.0100	0.3206E	03	2.0106	94
7	0.0600	0.7728 E	02	0.3352	139
0	0.0000	0.7429E	02	0.3352	143
5	0.0100	0.3222E	03	2.0415	117
5	0.0600	0.7129E	02	0.3353	150
6	0.0267	$0.1334 E$	03	0.7519	331
:	0.0267	0.1305E	03	0.7521	353
6	0.0164	0.2032 E	03	1.2236	552
6	0.0203	0.1681E	03	0.9871	440
6	0.0227	0.1525E	03	0.8816	391
6	0.0242	$0.1445 E$	03	0.8272	365
6	0.0252	O.1400E	03	0.7966	351
5	0.0257	$0.1374 E$	03	0.7791	343
o	0.0261	O.1358E	03	0.7682	338

4	0.0100	0.3392 E	03	2. 1743	182
4	C.0600	$0.6829 E$	02	0.3353	164
i	0.0267	$0.1305 E$	03	0.7521	353
4	0.0267	0.1277E	03	0.7537	403
,	J.0164	$0.2005 E$	03	1.2260	609
,	0.0203	0.1652E	03	0.9879	475
,	0.0227	O.14CUF	03	0.8821	419
,	0.0242	0.1416 E	03	0.82 .75	391
,	0.0232	0.1370 E	03	0.7969	375
,	0.0257	$0.1345 E$	03	0.7793	366
,	U.0.01	$0.1329 E$	03	0.7684	361
¢	0.0100	$0.4362 E$	03	2.8416	371
§	n.0t00	0.65.38E	02	0.3359	197
4	0.02er	0.1277 F	03	0.7537	403
!	- 0267	$0.1267 E$	03	0.7666	549
4	0.0164	0.1998 E	03	1.2411	72
4	0.0203	0.16.30E	03	0.9934	566
4	0.0227	0.1471 t.	03	0.8854	489
4	0.0242	$0.1389 E$	0.3	0.8300	452
4	0.0252	$0.1344 E$	03	0.7989	432
4	0.0257	0.1318 C	03	0.7812	420
4	0.0261	0.1301 F	03	0.7702	413
$?$	0.0100	0.1093E	04	7.2402	853
,	0.0600	0.6372E	02	0.3443	304
1	0.0267	$0.1267 E$	03	0.7666	549
?	0.0267	$0.1399 E$	03	0.8746	102
3	0.0433	0.8319 E	02	0.4657	289
'	0.0433	0.8375 E	02	0.4895	477
1	n.0291	$0.1169 E$	0.3	0.6997	485
1	0.0409	0.8714 t	ט2	0.4937	311
3	$\therefore .04 \mathrm{~Hz}$	0.7658E	02.	0.4184	254
3	0.0527	0.7164 E	02	0.3825	209
;	0.0-5	0.69016	02	0.3631	210
1	0.0」7?	0.67575	02	0.3523	208
3	0.0 ¢.33	0.6667 E	02	0.3456	204
3	0.0589	0.6622E	0%	0.3422	201
1	0.0:jrat,	$0.6645 E$	02	0.3440	202
3	0.00992	0.6598E	02	0.3404	200
i	0.0394	0.9161 E	02	0.5445	30
\cdots	0.0413	0.7746E	02	0.4449	421
?	0.0521	0.712 SE	02	0.4002	367
2	0.0531	0.6807 E	02	0.3770	340
2	0.0570	0.6630E	02	0.3640	325
$?$	0.0531	0.652]E	02	0.3564	317
$;$	0.0589	0.6466 E	02	0.3518	311
2	0.0503	0.6432 E	02	0.3493	309

 NO. JF SERVERS= 2
 S'UVICE KATE \(=0.00,0000\)
 TUTAL COST = U.637E 02
    ```
Au'ilval RAIL= D.i0000
```

SI.PVIG HAT.', FKOM O.O10 TO 0.050 WITH TOLERANCE $=0.0020$
NUMIFIR UF \because ISRVFRS FRUM 3 TO 10
UHOL'? IF TIRAIVSIFIUN MATRIX = 15
MAA aficillute trtrulk of the estimation of $L=0.0040$
COST FACIUN; C1= $3.00 \quad C 2=4.00 \quad C 3=6.00$

| N(1. | UF | ¢rikice |
| :---: | :---: | :---: |
| S: \times | R:; | «AT! |

rotal cost
EXPECTED
CUSTOMERS
30.010

| $0.9196 E$ | 02 | 13.8196 | 160 |
| :--- | :--- | :--- | :--- |
| $0.9452 E$ | 02 | 13.7459 | 173 |
| $0.9702 E$ | 02 | 13.6627 | 188 |
| $0.9171 E$ | 02 | 13.7765 | 169 |
| $0.9144 E$ | 02 | 13.7302 | 179 |
| $0.9115 E$ | 02 | 13.6802 | 190 |
| $0.9083 E$ | 02 | 13.6261 | 202 |
| $0.4048 E$ | 02 | 13.5673 | 2.15 |
| $0.9011 E$ | 02 | 13.5032 | 229 |

| $0 . C 240$ | $0.897 O E$ | 02 | 13.4333 | 245 |
| :--- | :--- | :--- | :--- | :--- |

0.0200
13.3564262
0.0310
0.0320
0.0 .340
0.0 .360
0.0 .380
0.0400
0.8924502
$13.3564 \quad 262$
$13.2717 \quad 281$
$13.1778 \quad 302$
13.0732324
12.9562349
$12.8247 \quad 375$
12.6761403
12.5079434
0.0420
0.0440
12.3166465
$\begin{array}{ll}12.0994 & 498 \\ 11.8526 & 532\end{array}$
0.0460
0.0480
0.0500
0.0100
0.0120
0.0140
0.010 C
0.8874 E 02
$\begin{array}{ll}13.2717 & 302 \\ 13.1778 & 324\end{array}$
$13.0732 \quad 324$
0.8687 E 02
0.8609 OL
C.8521F 02
$0.8421 E 02$
$11.5735 \quad 566$
$11.2595 \quad 599$
13.5674202
$13.6801 \quad 187$
0.0180
$13.6071 \quad 203$
0.0200
$\begin{array}{llll}0.9267 E & 02 & 13.4333 & 239 \\ 0.9265 & 13 & 13.3292 & 261\end{array}$
$\begin{array}{ll}4 & 0.0200 \\ 4 & 0.0220\end{array}$
0.0240
$0.0 i 0 u$
0.028 u
0.0300
$0.8177 E 02$
5.32
$0.80 .30 E 02$
0.7863 E 02
$0.7676 E 02$
0.9944E 02
0.7413 K 02
0.9370 E O2

220
$0.9206 E 02$
$\begin{array}{ll}13.3292 & 261 \\ 13.2104 & 286\end{array}$
$\begin{array}{ll}13.2104 & 286 \\ 13.0736 & 313\end{array}$
$\begin{array}{llll}0.9054 F & 02 & 13.0736 & 313 \\ 0.8959 \mathrm{E} & 02 & 12.9151 & 344\end{array}$
$\begin{array}{ll}12.9151 & 344 \\ 12.7299 & 377\end{array}$
$12.5124 \quad 413$
0.0 .120
12.2564 451
0.0 .340 O.8387E OR 11.9553 4.30
$0.0 .100 \quad 0.8176 E 02 \quad 11.6032 \quad 52 a$
$0.0 .380 \quad 0.7933 \mathrm{E} 02$ 11.1960 566

| 4 | 0.0400 |
| :---: | :---: |
| 4 | 0.0420 |
| 4 | 0.0440 |
| 4 | 0.0450 |
| 4 | 0.0480 |
| 4 | 0.0500 |
| 7 | 0.0100 |
| ， | 0.0190 |
| ， | 0.01411 |
| ＇， | 0.0100 |
| ， | （．）1 0 |
| ＇ | 0.0200 |
| ， | 0.0230 |
| ； | 0.0240 |
| ， | 0.02 Gu |
| 5 | 0.0280 |
| ＇2 | 0.0300 |
| 「 | 0.0320 |
| ＇； | 0.0 .340 |
| ＇； | 0.0160 |
| ， | 0.0380 |
| i | 0.0400 |
| ， | 0.0420 |
| ； | 0.0000 |
| ， | 0.0451 |
| ； | 0.0469 |
| ， | 0.0481 |
| 5 | 0.043 Bd |
| ＇， | 0.0493 |
| β | 0.0100 |
| 6 | 0.0120 |
| い | 0.0140 |
| ＂ | 0.0100 |
| e． | 0.0180 |
| f | 0.0200 |
| \cdots | $0.022^{\prime} 0$ |
| 0 | 0.0240 |
| 0 | 0.0260 |
| 1 | $0.00{ }^{\text {a }}$ |
| \cdots | 0.0300 |
| © | 0.0320 |
| t | n．0．340 |
| W | 0.0 .360 |
| 0 | 0.0500 |
| 6 | 0.0413 |
| 6 | 0.0447 |
| 5 | 0.0467 |
| 0 | 2．04く0 |
| 0 | 0.0487 |

| 0.76565 | 02 | 10．7327 | 598 |
| :---: | :---: | :---: | :---: |
| $0.7347 t$ | 02 | 10.2168 | 626 |
| 0.7012 L | 02 | 9.6567 | 645 |
| $0.6658 E$ | 02 | 9．0612 | 656 |
| 0.629 ¢5E | 02 | 8.4599 | 638 |
| 0.59 .34 F | 02 | 7.8570 | 650 |
| 0.1018 E | 03 | 13.4576 | 216 |
| 0．964＇jE | 02 | 13.5674 | 207 |
| $0.9580 E$ | 0 ？ | 13.4575 | 229 |
| $0.9504 E$ | 02 | 13.3293 | 254 |
| 0.9414 L | 02 | 13.1784 | 283 |
| 0.9307 E | 02 | 12.9984 | 315 |
| $0.9178 E$ | 02 | 12.7817 | 351 |
| 0．9021F | 02 | 12.5191 | 391 |
| 0.8830 E | 02 | 12.2001 | 432 |
| 0.8600 E | 02 | 11.8149 | 474 |
| 0.832 ot | 02 | 11.3561 | 513 |
| 0．8006F | 02 | 10.8222 | 547 |
| $0.7646 E$ | 02 | 10.2199 | 573 |
| 0.7253 E | 02 | 9．5651 | 589 |
| $0.6844 E$ | 02 | 8.8815 | 594 |
| 0.64 .34 E | 02 | 8.1961 | 587 |
| 0.6037 E | 02 | 7.534 .3 | 570 |
| $0.4765 E$ | 02 | 5.4091 | 451 |
| $0.5485 E$ | 02 | 6.6115 | 530 |
| 0．5184E | 02 | 6.1086 | 501 |
| 0.5014 E | 02 | 5.8248 | 482 |
| 0.4916 E | 02 | 5．6601 | 470 |
| 0．4857E | 02 | 5.5615 | 463 |
| 0．1040E | 03 | 13.3307 | 228 |
| 0.93657 | 02 | 13.4335 | 227 |
| $0.9769 E$ | 02 | 13.2723 | 2：56 |
| 0．7652E | 02 | 13.0754 | 284 |
| $0.9506 E$ | 02 | 12.8320 | 327 |
| $0.9325 E$ | 02 | 12.5284 | 367 |
| 0.7099 F | 02 | 12.1507 | 410 |
| 0.88215 | 02 | 11.6863 | 451 |
| 0.8488 ¢ | 02 | 11.1297 | 487 |
| 0．8104t | 02 | 10.4879 | 514 |
| 0．7680E | 02 | 9.7806 | 530 |
| 0．7237E | 02 | 9.0402 | 5.32 |
| 0．679UE | 02 | 8.3034 | 522 |
| $0.6376 E$ | 02 | 7.6026 | 502 |
| 0.4507 E | 02 | 4.4791 | 295 |
| 0.5442 E | 02 | 6.0432 | 42.1 |
| $0.5014 E$ | 02 | 5．32．65 | 369 |
| 0.4797 E | 02 | 4.9633 | 338 |
| $0.4678 t$ | 02 | 4.7651 | ． 121 |
| $0.4610 E$ | 02 | 4.6505 | 311 |

 N ón Mo r

 0000000000000000000000

** LiJIIMAL. SULUTION **
NO. OF GFRVEKS \quad O
SIRVIC! RATE $=0.050000$
YUIAL COST $=0.451 E 02$

REFERENCES

1. Balachandran, K. R., "Parametric Priority Rules: An Approach to Optimization in Priority Queues," Operations Research 18, 1970, 526-539.
2. Bhat, U. N., "Sixty Years of Queueing Theory," Management Science 15B, 1969, 280-294.
3. Bowman, E. H. and Fetter, R. B., Analysis for Production Management, Richard D. Irwin, Inc., Homewood, Illinois, 1961, 289-303.
4. Brigham, G., "On a Congestion Problem in an Aircraft Factory," Operations Research 3, 1955, 412-428.
5. Clarke, A. B. and Disney, R. L., Probability and Random Processes for Engineers and Scientists, John Wiley \& Sons, Inc., New York, 1970.
6. De Cani, J. S., "A Queueing Model for Business Students," Management Science 9, 1962, 278-286.
7. Durst, L. K., Proceedings CUPM Geometry Conference, Part 1, August 1967, Mathematical Association of America, page 57.
8. Evans, R. V., "Programming in Markov Processes," Technical Memorandum No. 123, October 1968, Operations Research Department, Case Western Reserve University.
9. \qquad , "Design of Discrete Parameter Markov Systems," Technica1 Memorandum No. 127, October 1968, Operations Research Department, Case Western Reserve University.
\qquad , "Programming Problems and Changes in the Stable Behavior of a Class of Markov Chains," Technical Memorandum No. 126, 1968, Operations Research Department, Case Western Reserve University.
10. Fox, Bennett, "Discrete Optimization Via Marginal Analysis," Management Science 13, 1966, 210-215.
11. Hillier, F. S., "Economic Models for Industrial Waiting Line Problems," Management Science 10, 1963, 119-130.
12. \qquad , "Cost Models for the Application of Priority Waiting Line Theory to Industrial Problems," Journal of Industrial Engineering 16, 1965, 178-185.
13. Kumin, H. J., "The Design of Markovian Congestion Systems," Technical Memorandum No. 115, Operations Research Department, Case Western Reserve University, 1968.
14. Little, J. D. C., "A Proof of the Queueing Formula $L=\lambda W$," Operations Research 9, 1961, 383-387.
15. Mangelsdorf, T. M., "Waiting Line Theory Applied to Manufacturing Problems," S. M. Thesis, MIT, 1955. Reprinted in Analyses of Industrial Operations, edited by Bowman, E. H. and Fetter, R. B., Richard D. Irwin, Inc., Homewood, Illinois, 1959.
16. Morse, P., Queues, Inventories and Maintenance, John Wiley \& Sons, Inc., New York, 1958.
17. \qquad , "The Application of Queueing Theory in Operations Research," printed in Queueing Theory, edited by R. Cruon, American Elsevier Publishing Company, Inc., New York, 1967. Peck, L. G. and Hazelwood, R. N., Finite Queueing Tables, John Wiley \& Sons, Inc., New York, 1958.
18. Riordan, J., Stochastic Service Systems, John Wiley \& Sons, Inc., New York, 1962.
19. Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970, 10-25.
20. Rolfe, A. J., 'A Note on Marginal Allocation in Multiple-Server Service Systems," Management Science 17, 1971, 656-658.
21. Saaty, T. L., Elements of Queueing Theory, McGraw Hill Book Company, New York, 1961.
22. Sasienf, M. W., private communication, 1967.
23. Stidham, S., "On the Optimality of Single-Server Queueing Systems," Operations Research 18, 1970, 708-731.
24. \qquad , "A Last Word on $L=\lambda W, "$ Operations Research 22, 1974, 417-421.
25. Taha, H. A., Operations Research, An Introduction, the Macmillan Company, New York, 1971.
26. Zangwill, W. I., Nonlinear Programming: A Unified Approach, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969.

[^0]: ** onrinal solution **
 NU. UF SiRVEKS= ?
 StRVICE RATE $=0.056280$
 TUTAL COSY $=0.145 \mathrm{E} 02$

