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ABSTRACT

This work is concerned with the analysis and control of thermoelastic vibrations in rectan-
gular plate structures using piezoelectric materials for the sensor(s) and actuator(s). Both isotropic
and symmetrically laminated. cross—ply composite plates subjected to mechanical and thermal loads
are studied. Chapter 2 develops an analytical solution for the case of a simply supported. rectangu-
lar symmetrically laminated. cross-ply composite plate subjected to a thermal shock. The analysis
includes the interaction between the strain and temperature fields and. in the case of the compasite
plates, investigates the effect of accounting for the orthotropic material properties in the governing
elastic and thermal equations. The resulting solution for the vibration of the composite plate is
compared to a previous analysis of a homogeneous. isotropic. rectangular plate. Comparison indi-
cates that. while the solutions have similar forms. the explicit summation in the isotropic solution
has been replaced by implied surnmations resulting from vector inner product multiplications in
the composite solution. Chapter 3 develops a new coupled thermoelastic finite element model of
a rectangular plate with embedded piezoelectric patches suitable for closed loop vibration control.
The open loop response of this model subjected to a thermal shock is validated against the response
of the Chapter 2 solution. and the closed loop response is validated against previous work. In both
cases. the new finite element model compared favorably. Chapter 4 describes an approach used to
design controllers suitable for closed-loop control of plate thermoelastic vibrations. and applies this
approach to two different design problems. Chapter 5 presents the conclusions and suggestions for

future work.



CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The past two decades has seen a flurry of research activity in the field of intelligent. or smart.
structures as witnessed by the number of reference articles contained in the survey papers of Rao
and Sunar {1} and Crawley [2|, a pioneer in this field. [ntelligent structures are defined by Wada et
al 3] as actively controlled structures with a highly distributed, as opposed to a localized. control
system. Much of this work has focused on the use of piezolectric materials to provide the sensing and
actuation capabilities of the control system. Piezoelectric materials can be used as sensors because
they possess a phenomenon called the direct piezoelectric effect. This means that. when the material
is subjected to a mechanical force. the induced strain produces an electrical charge in the material.
Conversely, when the material is subjected to an electric field. the material reacts by producing a
strain or mechanical force. This is the converse piezoelectric effect. and is the basis of the use of
piezoelectric materials as actuators. The most commonly studied piezoelectric materials are lead
zirconate titanate (PZT) and polyvinylidene flouride (PVDF or PVF,). Most studies of intelligent
structures are in the area of vibration control. with some work in the area of buckling enhancement
4]. Recently. research has focused on control of thermally induced vibrations of intelligent structures.
e.g.. the papers by Tauchert (3], Tzou and Howard {6]. Chandrashekhara and Kolli {7}, Tang and Xu
‘8i. and Zhou et al [9]. A thorough understanding of the coupling between the thermal. mechanical.
and electric fields is required to achieve the promise of intelligent structures as. by definition. these
structures will contain the heat generating power electronics as part of the distributed control system.
This work is concerned with the control of thermoelastic vibrations in rectangular plate structures
using piezoelectric materials for the sensor(s) and actuator(s). Both homogeneous. isotropic and
symmetrically laminated. cross-ply composite plates subjected to thermal and mechanical loads are

studied and compared.



1.2 Literature Review:

The following literature review lists all papers reviewed over the course of this work. The
papers are grouped according to the field of study, thermoelastic. piezoelectromechanical. and

piezothermoelastic. Within each group. the papers are listed in chronological order.

1.2.1 Thermoelastic Literature Review

The response of a homogeneous isotropic plate subject to a thermal shock was first treated by
Boley and Weiner (10}, and Kovalenko and Kharnaukhov [11]. These works ignored the interaction
of the strain and temperature fields which adds damping to the system. Kozlov {12! included the
interaction of the strain and temperature fields in his analysis of a rectangular. homogeneous isotropic
plate.

Chung {13] performed an early survey of dynamic problems of thermoelasticity. Both lin-
ear and nonlinear vibration problems in thermomechanics associated with elasticity. viscoelasticity.
plasticity. and magnetoelasticity were presented.

Ignaczak’s survey paper 14| presented a look at the historical development of linear dynamic
thermoelasticity over the period 1836 — 1981. A linear theory of non-steady heat conduction was
combined with elastodynamics to describe thermo-mechanical processes in a solid body. Due to
the complicated structure of the governing equations. only a few one-dimensional initial boundary
value problems had been solved in a form suitable for complete analysis. A relatively large number
of problems that had been solved successfully concerned periodic thermoelastic disturbances. The
reason is that the periodicity hypothesis allowed the reduction of the governing equations to a form
appropriate for the application of classical elastodynamics. The survey also included a description
of the fundamental results of a basic system of field equations for dynamic thermoelasticity with
relaxation times. Suggestions concerning areas of the theory that were critically in need of further
investigation were given. This survey paper contains 30 references. The second survey 15| covered
the significant and numerous developments in the field of thermoelasticity that had occurred during

the first half of the 1980’s. This included coupled thermoelasticity with or without relaxation times.

~



Included were new global balance laws. domain of influence theorems. convolutional variational
principles, closed-form aperiodic-in-time fundamental solutions. qualitative properties of particular
solutions, and resuits on thermoelastic waves propagating in beams. plates, and shells. This survey
paper contains 84 references.

Tauchert (16} presented a survey of investigations concerned with the response of flat plates
to thermal loadings. The three major topics were: (i) thermally induced bending, (ii) buckling,
postbuckling, and large deformation behaviors. and (iii) vibrational characteristics associated with
elevated temperatures and rapid heating.

Chandrashekhara {17} used a finite element formulation to analyze the buckling behavior of
laminated composite plates subjected to a uniform temperature field. Transverse shear flexibility

was accounted for in the analysis using the thermoelastic version of the first-order shear deformation

theory.

Mukherjee and Sinha {18! examined the coupled dynamic thermoelastic response of a fibrous
composite plate exposed to a thermal shock. An explicit and integrated finite element method was
employed to solve the associated coupled thermoelastic equations simultaneously. Classical linear
coupled thermoelastic theory was considered for a laminated composite plate. The structural model
included the effects of extension-bending-twisting coupling, shear deformation. and rotary coupling
inertias. An example was presented of a simply supported carbon-carbon composite plate subjected

to a central thermal shock.

Tamma and Namburu {19] presented an overview of non-classical and classical dynamic ther-
moelasticity models and equations governing thermal-structural interactions. Attention was focused
on the computational approaches for the modeling and analysis of various classes of problems encom-
passing thermal-structural interactions. These interactions were broadly classified as: (i) thermally-
induced stress wave propagation problems. (ii) thermally-induced dynamic (inertial type) problems.
and (iiz) the general field of thermal stresses. A variety of illustrative numerical examples encom-
passing non-classical and classical influences were presented to provide an improved understanding

of the behavior of thermal-structural problems via effective unified computational developments.



This review article contains 142 references.

Blandino and Thornton {20} described the first detailed study of thermally induced vibration
caused by internal heating. A mathematical model was developed to predict the thermal-structural
behavior of an internally heated beam. The results from the model were compared to the results
obatined from an experiment. The model accurately predicted the steady-state temperatures. ad-
equately predicted the steady-state displacements, and predicted the displacement histories with
some error. The analysis revealed that the natural frequency of the beam was more important
than the heating rate in determining if vibrations will occur. and the convection heat transfer gov-
erned the amplitude of vibrations and steady-state amplitude. This study showed that thermally
induced vibrations of internally heated beams belong to the class of vibrations called self-sustaining

oscillations.

1.2.2 Piezoelectromechanical Literature Review

Crawley and Anderson [21] developed techniques for modeling induced strain actuation of
beam-like components of intelligent structures. The models presented described the detailed me-
chanics of induced strain actuators bonded to and embedded in one-dimensional structures. The
specific characteristics of one type of induced strain actuator. piezoceramic materials. were discussed.
and implications for practical use of piezoceramic actuators were outlined.

Crawley and Lazarus {22! developed and experimentally verified the induced strain actuation
of plate components of an intelligent structure. Equations relating the actuation strains, created by
induced strain actuators. to the strains induced in the actuator/substrate svstem were derived for

isotropic and anisotropic plates. Plate strain energy relations were also developed.

Lee {23] presented theory and experimental validation of various aspects of vibration control
using piezoelectric sensors and actuators. Topics covered included Classical Laminated Plate Theory
with embedded piezoelectric sensors and actuators. twisting/bending sensors and actuators, vibra-
tion control of a cantilever beam using modal sensors and actuators. spatial filters to measure wave

propagation which can be used to develop non-causal vibration sensors. and piezoelectric strain rate



Sensors.

Chandrashekhara and Agarwal (24| used a finite element formulation for modeling the be-
havior of laminated compasites with integrated sensors and actuators. The formulation was based
on the first-order shear deformation theory, which is applicable for both thin and moderately thick

plates. The model was valid for both continuous and segmented piezoelectric elements that can be

either surface bonded or embedded in the laminated plate.

Tzou and Fu, Part I (25}, developed a plate model for segmented sensors and actuators using
a modal decomposition method. A model with single-piece symmetrically distributed sensors and
actuators was compared to a model with quarterly segmented-distributed sensors and actuators.
For svmmetric boundary conditions. it was analytically shown that the single piece sensor/actuator
was incapable of sensing/controlling the antisymmetric (even) modes. The quarterly segmented-
distributed sensor/actuator was capable of sensing/controlling all but the quadruple modes. In
Part II 26]. active vibration control of a plate with various sizes of sensors/actuators and control
algorithms. proportional feedback and Lvapunov. was investigated. Time-history responses of the
plate with and without feedback controls were analvzed and compared.

Barret [27] investigated the characteristics of directionally attached piezoelectric (DAP) ele-
ments and constructed a low aspect ratio DAP torque-plate wing. Closed-form expressions of DAP
strains based on laminated plate theory were presented. The models demonstrated that DAP ele-
ments can generate pure extension. bending, or twist deflections in beams and plates. Experimental
beam specimens were constructed to verify the models. Tests showed that 0.030-inch (0.0762-cm)
thick aluminum beams with antisymmetrically laminated DAP elements produced twist rates of 0.23
degree/inch (9 degree/meter) and bending rates in excess of 0.36 degree/inch (14 degree/meter) with
theory and experiment in close agreement. A DAP torque-plate was constructed of 8.0-mil-thick
piezoceramic elements bonded antisymmetrically on a 5-mil steel substrate. The torque plate was
then used to induce pitch deflections in a subsonic missile fin with a NACA 0012 profile and an
aspect ratio of 1.4. The wing demonstrated a break frequency in excess of 80 Hz and static pitch

deflections of 8.5 degree. showing excellent correlation with theory.



Rao and Sunar {1} presented a survey of the recent research trends addressing piezoelec-
tricity in the context of distributed sensing and control of flexible structures. A brief history of
piezoelectricity is also noted. This article contains 145 references.

Anderson and Hagood [28] developed a general formulation for coupled electromechanical
modelling specialized to the analysis of transducers used for simultaneous sensing and actuation.

rawley {2] presented an overview and assessment of the technology leading to the develop-
ment of intelligent structures, and listed the present and future needs required to fulfill the promise
of intelligent structures. This article contains 128 references.

Gu et al 29] performed an experimental investigation into the implementation of shaped
PVDF modal sensors to control specific modes of vibration of a simply supported rectangular plate.
The plate was excited by a steady-state harmonic point force while the control was achieved by two
independent piezoelectric actuators bonded to the surface of the plate.

Main and Garcia 30! presented data illustrating the need for inclusion of piezoelectric non-
linearities if accurate system models are desired. The analysis used describing functions to improve
the overall accuracy of the system model. but also noted that describing functions are extremely
sensitive to amplitude at low actuator displacements which compromises the accuracy of system
models that include voltage-controlled piezoelectric actuators. It was also demonstrated that using
charge-feedback control with piezoelectric actuators makes the use of nonlinear elements less press-
ing since the charge control describing functions are much nearer unity than their voltage-control
counterparts.

Chen and Chopra [31] developed a smart rotor with active control of blade twist using embed-
ded piezoceramic elements as sensors and actuators to minimize rotor vibrations. A 1/8 Froude-scale
{dvnamically scaled) bearingless helicopter rotor model was built with banks of torsional actuators
capable of manipulating blade twist at frequencies from 3 to 100 Hz. The effectiveness of the torsional
actuators and vibration suppression capabilities were assessed using wind tunnel tests. Accelerom-
eters embedded in the blade tip were used to measure the oscillatory blade twist response. The

changes in rotor vibratory loads due to piezoinduced twist were determined using a rotating hub



balance located at the rotor hub. Experimental test results showed that tip twist amplitudes on
the order of 0.5 degree were attainable in forward flight. Although these amplitudes were less than
the target value (1 to 2 degree for complete vibration suppression control). test results showed that
partial vibration reduction was possible. Open-loop phase shift control of blade twist at the first
four rotor harmonics was used. and changes in rotor thrust of up to 9 percent of the steady-state

values were measured.

Barret et al [32| presented two new designs for aerodynamic control surfaces that employ
piezoceramic actuation elements. These control surfaces consisted of a graphite/epoxy shell that is
free to rotate around a stiff graphite/epaxy spar. with the rotation controlled by piezoceramic (PZT)
element(s). The authors refer to this class of control surfaces as Flexspars. The tip-joint Flexspar
was designed for low-torque large deflection applications, and uses one PZT bender element. The
shell-joint Flexspar was designed for high-torque small deflection applications. and uses multiple
PZT bender elements. Classical laminated plate theory was used to predict the bending curvature
of the PZT bender elements and kinematics was used to determine the associated control surface
deflection. A tip-joint Flexspar was constructed to verify the theory and determine the dynamic
characteristics. Several bench and wind tunnel tests were performed to determine the actuation

range and frequency response of the test specimen.

1.2.3 Piezothermoelasticity Literature Review

Nowacki [33] presented a thorough treatment of the theory of dynamic thermoelasticity in-
cluding piezothermoelasticity and magnetothermoelasticity. The theoretical foundations of dynamic
thermoelasticity were presented in a context useful to practicing engineers and scientists. It de-
scribed. through examples and discussions. the magnitudes of the coupling effects which distinguish
this subject from previous works in thermoelasticity. This book. published in 1973. is an English
translation of the original monograph written in Polish and published in 1966.

Tauchert {5] examined the response of a thin composite plate constructed of piezothermoelas-

tic layers and subject to stationary thermal and electric fields. Solutions based on classical lamination



theory were extended to include piezoelectric effects for a “free” plate of arbitrary contour and for a
simply supported. rectangular plate. This analysis assumed a linear temperature gradient through
the thickness of the plate.

Tzou and Howard (6] developed a generic piezothermoelastic shel! theory for thin piezoelectric
shells using the linear piezoelectric theory and Kirchoff-Love assumptions. A simplification proce-
dure. based on the Lamé parameters and radii of curvatures. was proposed. and applications of the
theory to (1) a piezoelectric cylindrical shell, (2) a piezoelectric ring, and (3) a piezoelectric beam
were presented.

Tang and Xu i8] presented a theory for dynamic analysis of piezothermoelastic laminated
plates. The general dynamic equations. which include mechanical. thermal. and electric effects.
were derived based on the anisotropic composite laminated plate theory. Analytical dynamic solu-
tions were obtained for the case of general forces acting on a simply supported piezothermoelastic
laminated plate. As a special application of the solutions. they examined the harmonic response to
temperature variations and an electric fields. Their analysis assumed a linear temperature gradient

through the thickness of the plate.

Chandrashekhara and Kolli [7] developed a mathematical model for the active control of ther-
mally induced vibration of laminated doubly curved shells with piezoelectric sensors and actuators.
assuming a linear temperature gradient. Their model took into account the mass. stiffness. and
thermal expansion of the piezoelectric patches. A C? continuous nine noded shear flexible element
was implemented to model the shell. A constant gain positive position feedback algorithm was used
to actively control the dyvnamic response of the shell in a closed loop.

Lee and Saravanos [34] used discrete-layer mechanics to develop a model of the completely
coupled mechanical. electrical. and thermal response of piezoelectric composite beams. Finite ele-
ment equations were developed and implemented for a beam element with linear shape functions.
Comparisons with conventional thermoelastic finite element analysis and classical beam theory were
presented. Numerical studies were used to demonstrate the capabilities of the model to predict

the thermal deformation of composite beams. as well as the active compensation of these thermal



deformations using piezoelectric structures.

Smittakorn and Heyliger 35| studied the steady-state and transient behavior of laminated
hygrothermopiezoelectric plates under the coupled effects of mechanical. electrical. thermal. and
moisture fields. A three-dimensional discrete-layer model was developed for analyvzing rectangu-
lar mulitilayered laminated plates with various types of boundary condition. The discrete-layer
model emploved one-dimensional finite-element approximations in the through-thickness direction.
and two-dimensional in-plane analytical functions (e.g., trigonometric and polynomial functions).
The laminates were excited by surface tractions. electric potentiais. temperature. and/or moisture
concentration on top. interlaminar. and bottom surfaces.

Zhou et al [9] recently developed a completely coupled thermo-piezoelectric-mechanical the-
ory to model the response of composite plates with surface bonded piezoelectric actuators. They
used a higher-order laminate theory to describe the displacement fields to accurately model the
transverse shear deformation. They used a higher-order temperature theory to model the temper-
ature distribution through the thickness of the composite plates. A two-dimensional finite element
model was used to implement the coupled theory. Studies were performed to analyze the response
of a plate under thermal and piezoelectric loads. Numerical results indicated that the the thermo-

piezoelectric-mechanical coupling has significant effect on the dynamic response of composite plates.

1.3 Significance of This Research

In the current work. two models that can be used to solve the coupled thermoelastic differen-
tial equations governing the response of a laminated composite to mechanical and thermal loading
were developed. These models accurately predict the temperature field in a laminated composite
subjected to thermal loads.

The first model is an analytical solution of the dynamic response of a rectangular. simply
supported. symmetrically laminated. compaosite plate subjected to an external thermal shock. This
is an extension of the work on rectangular. homogeneous. isotropic plates performed by Kozlov [12].

Comparison of the two solutions using a rectangular aluminum plate indicates very good agreement.



The second model is a finite element model of a symmetrically laminated composite plate
containing surface mounted and embedded piezoelectric elements in a form suitable for feedback
control design. This model includes two-way coupling between che thermal and mechanical fields.
and one-way coupling between these fields and the piezoelectric field. The piezoelectric sensors
account for the one-way coupling of the thermal and mechanical fields with the piezoelectric field.
and the piezoelectric actuators account for the one-way coupling of the piezoelectric field with the
mechanical and thermal fields. A new technique to couple displacement plate finite elements with
three-dimensional thermal finite elements was developed. Although this work is very closely related

to the recent work by Zhou et al [9]. the major differences are:

1. A three-dimensional finite element model with linear shape functions in the plate thickness
direction was used to describe the temperature distribution through the thickness of the plate
instead of an assumed functional distribution. This approach allows for more general boundary
conditions in the plate thickness direction at the plate edges. and the incoporation of internal

heat sources.

[
H

The piezolectric actuators and sensors can be embedded in the plate and are not restricted to

only surface bonded actuators and sensors.

3. The current work uses a 1** order shear deformation theory to describe the displacement fields.

while Zhou et al used a third-order theory.

4. The current work formulates the coupled thermopiezoelectric model in state-space form and

applies recent advances in control theory to reduce the order of the model.

This model was used to design feedback controllers for two different smart plate applications using
classical control performance and stability metrics in conjunction with a constrained optimization
routine. The first application is concerned with designing a set of constant feedback gains to min-
imize the mechanical impulse response of a clamped graphite/epoxy/PZT smart plate. This study

compares a linear controller with two controllers that limit the applied negative electric field to within

10



the recommended limits for PZT. The second application requires the design of a set of constant
feedback gains to minimize the thermal impulse response of a simply supported graphite/epoxy/PZT

smart plate.
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CHAPTER 2

THERMAL IMPACT THEORETICAL SOLUTION

2.1 Introduction

This chapter develops a theoretical solution for the response of an orthotropic simply-supported
plate subjected to a thermal shock. Specifically, the solution is developed for a simply—supported.
N-layer, symmetrically laminated. rectangular plate (0 < r < a: 0 < y < b) that is subjected to a
step heat flux of intensity g applied to the upper surface. z = h/2, at time t =0. The lower surface.
z = —h/2, is assumed to be thermally insulated and the temperature of the periphery of the plate
is maintained at the initial temperature T. Additionally, the simple supports at r =0 and y =0
are fixed while the simple supports at z = a and y = b are free to move laterally. This assumption
decouples the differential equations governing the in-plane effects from the differential equations
governing the plate displacement. These initial and boundary conditions were chosen so that the

solution could be compared to the solution for an isotropic rectangular plate derived by Kozlov 12].

2.2 Analvsis

The governing differential equations for the system described in the Introduction are:

Plate displacement (ignoming mechanical damping)

Fuw Fu Fw  Pw &Pmr: Pmr, o
Dugs = Wiz = Dugr = Mg ~ g~ g = =1
Plate thermal
T 321' 8 aT
b b i (W5) -
~Toz (Qa Qa)82 +(Qua: +~Q ) =0 (2.2}
o< 11z 12¢y) 573 120z 220y &y2 s
where
D, = Dia+2Dgg (2.3)

m = / oiz =3 hop (2.4

=1
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mry = (Quaz—Qmay)(T To) 2dz (2.3)

[ P

mr, = s (Qi2az + Quay) (T —Tp) 2dz

and h; is the thickness of the i** layer. These coupled differential equations are subject to the

following initial conditions at time ¢ = C:

w=40 éu—'=0: T=Tp (t=0): (2.6)
at
and the following boundary conditions
FPw
w = 0 F:O (zr=0.r=a)
Fuw -
w = 0 3;1;-0 (y=0. y=b) (2.7)
oT h aT h
k:-a; =4q¢ (z=3) 3—2—0 (2—-‘5)
T = T (ir=0.r=a.y=0.y=b).

To facilitate the solution. the following dimensioniess quantities are introduced

E=- n= %; S = i:
- t .= w - T-Tp
=k W=k =k, :
= o S
_A . (2.8)
_ Dn thCu 2 L _ 1 N - 1 N )
= m (':2',: k:— hZ__,lhtL:: ar = h‘;hlan
1N _ 1N
p=< 3% hip, Co=7 ¥ hCa
hz:l h't=l

Substitution of Equations (2.8) into Equations (2.1)and (2.2) vields the following dimensionless

coupled partial differential equations.

Fw . W W 1FW FMre M,

+ -~ - =0 2.9

T rorw i wll o v 7o BN (29)
aze ’e 4 30\ 9 _ 2w ;W

C +Com3 Fro aC (C,‘EE) —% ; (Cs % +Co— p ) 0 (2.10)
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where

Mre = [2, C3(¢)0¢dC; My = [*, Cu()0GdG;
_ Dya* _ 92204,
a‘mﬁ Q‘mw'
A3 h3a?
C3(S) 3 (Quaz +Quay): Ci() = Dia 1(Ql’ax“'Q220y):
G (¢) = TokerCe Cs (<) hzk”"’c" -
sWKI ==~ 6\8) = 57 ~ -+
a%k.pC. b?k-pC.
k.5C. z
Cr ) = P Co(0) = 2= (Quos + Quoy):
Tods ke
Ca(Q) = ;’g" (Ques=Qmay):  Cul)=7

Note that while the parameters Cj through Cjg are functions of (. they are constant in each layer of
a laminated composite. For a complete derivation of these non-dimensional equations see Appendix
A. Substitution of Equations (2.8) into Equations (2.6) and (2.7) vields the following initial condi-
tions and boundary conditions for the non-dimensional. coupled. differential equations expressed in

Equations (2.9) and (2.10):

W =0 %}-o 0=0 (r=0)
W=0: i? =0  (£=0£=1)
W =0 irf_o (n=0.p=1) (2.12)
©=0 (£=0.£=lp=0n=1)
oot () P (=}

With the given boundary conditions the following double finite Fourier sine series in £ and 77 can be

used to obtain the solution of Equations (2.9) and {2.10) subject to Equations (2.12):

1,1
W™ (m.n.7) =/ / W (£.n.7) sin (m=§) sin (nmn) dSdn (2.13)
0 Jo

0" (m.n.C.7 / [ O (€.7.C. 7) sin (m€) sin (nn) dédn (2.14)

The inverse transformations of Equations (2.13) and (2.14) are obtained from the theory of Fourier
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series and have the form:

W n 1) =4 Z Z W* (m. n.7)sin (mm€) sin (n7n) (2.15)
m=1 n=1

8(6.n.¢.7)=4)_ Y O (m.n.(.7)sin(mr€)sin (nmn). (2.16)
m=1n=1

Applying the transformations (2.13) and (2.14) to Equations (2.9) and (2.10) yields

2w
dr?

- iB'W* = g / wAO°d¢ (2.17)

aic <C7a_:;) - d% -.30" = ..-3;%: (2.18)
where
o} =74 (m =20, m®n? - Con?) (2.19)
2() = 72 (Cym? + Cyn®) (2.20)
() = = (Csm? + Cgn®) (2.21)
<3 ($) = 7 (Csm? = Con?) (2.22)

The parameters wo. w3. and wy are functions of . but are constant in each layer of a laminated
composite. The differential equations (2.17) and (2.18) are subject to the following initial and

boundary conditions. which are obtained by applving Equations (2.13) and (2.14) to Equations

(2.12)
. ow- . o
W" =0 3 =0 0" =0 (r=0)
g0 1 . .1
Cm-a? = o (m.n=1.3.5....) (g =§) (2.23)

For a lavered composite. it is possible to use the finite element method to solve Equation (2.18).
Properly formulated. this method constrains the temperature and heat flux at the boundaries of each

layer within the plate to be equal. Using the weak form of the Galerkin finite element formulation.
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the weighted average of the residual can be written as

ae.
s

[(-

dwdor
AT
)3

(ot

Lk oww
26|’

~Cr W

agr

[ (5%

e
4 pC.

T 5 () G ()

il

k

2

=1

-_wW

-—w

8 . . daw=\ ]
y—diiwe u._hg“ 7 )dg}

(2.24)
30 5 A, oL dWT\ .
F—ug‘we —.‘:gigw—d‘:-) dg]

where ©" is the trial function and w is the test function. In the second form. the domain has

been discretized into k segments. with segment 1 being associated with the bottom of the plate

({ = —1/2). Let ©° be approximated using piecewise linear shape functions. such that over the i*"

segment the trial function is

O] = Hi16;-H2({)O;;
8 = 87 (2.25)
t..l = o (Ct?l)
and in Galerkin's method the test functions are
w = H({)
wo = Hp(Q). (2.26)
The linear shape functions are defined as
. C:o— -9
H() = -(—,‘l—‘)
Hy() = &= (2.27)
- hs
hl = §¢+I _S-x'

where i and i + 1 are the nodes of the i*?

segment. Substituting Equations (

2.25) and (2.26) into
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Equation (2.24) and performing the integration on the i** segment yields

e: e: .
L =-M, -k + fz,‘iW (2.28)
. dr
e:‘!‘[ el.'?l
where
o | Hy
Me = f [ Hl H'Z }dc
<, H»
21
= % (2.29)
1 2
-1 Hl , , H[
Ke = -f Cri ’ [ H, H, ] w3 [ H, Hy ] dg
|1 =t 2p 21
- _% _ ’g"‘ (2.30)
S T 1 2
.l‘l " H[
Fae = -/\ “s d¢
<, Ha
2 .:c- —2<z
_Zuh ) e (2.31)

6
2(!9[ =6

As shown in Equation (2.24). the element integrals are summed to form the expression for /. Since
each element has different nodes associated with it. we expand K, and M, into (k~1) x (k=1)
matrices by adding rows and columns of zeros for all nodes not associated with the current finite
element. Similarly. 75, is expanded into a column vector of size k + 1 by adding rows of zeros for
all nodes not associated with the current finite element. A detailed explanation of this process can
be found in {36]. This procedure allows one to sum the resulting element matrices and vectors and
is represented by:

M= ZM, (2.32)
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x:i}; (2.33)
ﬁ:iﬁ@. (2.34)

To obtain the firite element form of Equation (2.24) apply the boundary conditions to node 1 and
node k + 1. This is accomplished by adding the specified boundary conditions to nodes 1 and k- 1.

and adding zeros to all other nodes. The boundary conditions are applied in the following equation

through the vector F,.

I=—.‘Vl{

éiﬂ L e:'—l )

F ﬁ ' ) (2.36)

x:"...
L #3)C(3) )

Equation (2.35) can be solved by setting I = 0: if the number of elements used to discretize Equation

{2.24) is iarge enough. the finite element solution will be a good approximation of the actual solution.
Since this problem is properly constrained. the matrices M and K are invertible. which allows the

problem to be written in a form well known in linear systems theory.

'4 3 4 3
o1 S
o o 2
3 a2 =2
SR AW L =B{ ™* (2.37)
: : dawe
. é;-.—l ) . e:‘-.bl )
with
A=M"K (2.38)
B:M*[ﬁ ﬁ]. (2.39)
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The solution to Equation (2.37) is obtained using the variation of parameters method [37]. and is

given by
¢ 3\
o1 (7)
o3 (7) [ _ AV iexp(AT) — 1B _/’ Al -7 &ﬁd:- (2.40)
< . ~ mnw? lexp (Ar :A oexp( 7o) Y B
L e:'?l (T) )

where [ is the identity matrix of dimension (k + 1) x (k + 1), and the set of initial conditions is.

O (r)=0fori=1...k+ 1. At steady-state this reduces to

( 3
o1 (%)
05 (7) i, ‘
) = =A™ lexp(Ar) - I1 B (241)
mnve
L 6;_1 ()

Substituting Equation (2.40) into Equation (2.17). and performing the integration yields

LW . T awe
FOJ{B.‘“,.: —34/0(7—7) Fd‘l’"‘b(") (2.42)
0
with the conditions
W*=0 ﬁ— =0 (r=0) (2.43)
dr
where
G(r)=F-exp(A(7)) B2 (2.44)
<3, hs i o 4=
F = _z T '\:;.;.[ - 2Cx 2gx—l - gl (.".k))
3(r) = 2B F. AT - exp(An) By (2.46)
mn=

For a complete derivation of Equation (2.42) see Appendix A. Equation (2.42) has a form similar to
that of the integro-differential equation governing the non-dimensional plate deflection found in {12].

Since |G (7 — )| < w}. the Method of Averaging {38] may be applied to Equation (2.42). subject
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to conditions (2.43). This vields the following approximation

w:*: = F- {{exp(—al-r) [4132 (( 132 + Q'Z) T) I

mnﬁ2 5

—cos ((wiB? + @2) 7) A] + Aexp(Ar)} (A® -

+A™H(I - exp(A7))) By (2.47)
where
a1=-§r-(A ~ABN (2.48)
\lu':Bs 4 ‘ 9
ay=—-—F- (A + B ) B (2.49)

For a complete derivation of Equation (2.47) see Appendix A. Applying the inversion formulas (2.13)
and (2.16) to Equation (2.47) yields the solution for the deflection. W', of a symmetrically laminarted.
cross-ply. compasite plate subject to a thermal shock applied at the upper surface. The solution

may be separated into a quasistatic deflection. ¥, and a dynamic deflection. ¥’y where

W =1, -, (2.30)
Here

W _1_6 i i sin {m=¢€) Sm(n.n)F-A“(I- (A7) B (2.51)

st = P —~ — mm.‘ exp 7 1 -

m odd n odd

16 — =. sin(m=¢)sin(n=n) _ -

Wy -3 Y Z — F {exp(~au7) (2.52)
T 15k

x

—

[cos ((wiB? + aa) 7) A - wiB?sin (w3} B® - a2) 7) [}

1

—-Aexp(An)}H (A2 -wiB') B

At steady state the temperature solution is

( \
©1(7)
CHE x % o (ma
< =_§ZZ miim(nm)A_‘lerp(4') 1B, (2.53)
Ok+1(7)
\ 7
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For comparison. the solution technique found in [12} was applied to the isotropic equivalents of Equa-
tions (2.1). (2.2). (2.6), and (2.7) to yield the steady-state, isotropic. nondimensional, temperature.

quasistatic and dynamic deflections:

0 =

S I

o <] X - DY — _b; -
z Z Sm(nﬂl) {:_;1 &P(za.uf' ) (2.54)

m=1l n=1l

+9 :l (1" (1 —;tp (=57)) cos (k‘lr (C + é))}

5 (2.55)
T ot mnu? Pt k26
m odd n odd k odd
W _768(1-—1/) i i sin (m=€) sin (nwn) Z {exp (=211 7) (2.56)
‘T = m=1 n=l mnw? k=1 spiTnar
m odd n odd k oc
5 [6% cos (w2 B? = £109) 7) —«?B?sin ((?B? = 5100) 7)] - 8% exp(—677)
k2 (64 ~ A BY)
where
1848 &
s ; k(&% - B3
k odd
48,985 1
o = 2.38)
2= ) EEooE ‘
=
L
p=h /ACe|__pE _ (2.59)
oV [12(1-09)
ToEa2
s=(1 (2.60
1=( )(l-u)pC,_. )
2
&= ("—2,.-2 - 3-?) (2.61)
o= (ml - %nz) =2 (2.62)

In Equations (2.53) and (2.56) the summation over k comes from the solution of the isotropic version
of the nondimensional thermal differential equation. Equation (2.18). using an infinite cosine series.
Comparing Equations (2.51) and (2.52) to Equations (2.33) and (2.36) reveals that the solutions
have the same general form. However, in Equations (2.51) and (2.52) the innermost summation

on k has been replaced by implied summations resuiting from vector inner product multiplications.
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Additionally the parameter z; in Equation (2.56) is now embedded in the parameters a; and a2 in
Equation (2.52).

An alternate solution method that does not depend on the assumption that |G (7 — 7)i < «}
used by the method of averaging is derived in Appendix A. Figures comparing the two solutions are

also presented in Appendix A.

2.3 Numerical Results

To test the validity of this solution technique. Equations (2.51) through (2.33) were applied
to a plate 6 inches (in) square. 0.125 inch thick. consisting of four-equal thickness layers of aluminum
alloy (i.e.. an isotropic plate). The mechanical and thermal properties used can be found in Table
2.1. The response using Equations (2.51) through (2.53) was compared to that obtained using the
homogeneous isotropic solution. Equations (2.53) through (2.34). Figures 2.1. 2.2, and 2.3 show

a comparison of the displacement per unit neat flux (*“ B‘“) at the center of the plate using the

hft=

two differenr solution methods. In the layered solution 24 finite elements were used to approv:mate
the solution of (2.18) whereas. in the homogeneous isotropic solution. the summations on & in
Equations (2.53) through (2.54) were truncated at 99. In both cases. the summations or m and n
were truncated at 21. Figure 2.1 shows good agreement between the two solution techniques for the
quasistatic deflection. W;. Notice that this deflection converges to a steady-state condition very
rapidly. Figures 2.2 and 2.3 show a comparison of the dynamic deflection. W}, for time ¢t = 0 and
time ¢t = 10 seconds. respectively. In both cases. the solutions show very good agreement. This
indicates that the frequency and decay rate of the vibrations predicted by the layered solution are
the same as those predicted by the homogeneous isotropic solution. and that the solutions do not
diverge with time. This result is significant since the parameter a; in Equation (2.52) is composed
of a product of a row vector. F. a matrix. (A® +wiB*I )—l A. and a column vector Ba, while the
equivalent parameter. <;¢;. in the homogeneous isotropic solution. Equation (2.56). is given by an
explicit summation. Figures 2.2 and 2.3 also illustrate that the dynamic response is dominated by

the first mode response. A comparison of the normalized decay of the dynamic deflection. ;. for the
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two solution is shown in Figure 2.4. Again, the two responses are in agreement. The overall decay
rate of Wy. which is a summation of the decay of all the plate vibration modes. corresponds to a
logarithmic decay of exp (—0.076+t). Figure 2.5 shows a comparison of the steady-state temperature
profiles. T —Tj. given by Equations (2.33) and (2.5). at the center of the plate for the case where the
plate was subjected to a unit heat flux. These results. presented in Figures 2.1 through 2.5. indicate
that the solution technique is valid and that it reduces to the homogeneous isotropic solution when

all layers of the plate are composed of the same isotropic material.

Table 2.1: Mechanical and Thermal Properties of Aluminum Alloy

Mechanical [39] Thermal [40]
Young's Modulus | 10.3 x 10°% Conductivity 13058t
Poisson’s Ratio 0.334 Expansion Coefficient | 14 x 10~6 -2
Density 3.046 x 107328 Specific Heat 6.885 ;s

Equations (2.51) through (2.53) were then applied to a graphite-epoxy laminate. four-layer.
0/90/90/0 composite plate with the same dimensions as the aluminum plate above. The graphite-
epoxy lamina consisted of AS graphite fibers. 70% by weight. embedded in IMLS epoxy resin. with
0% void content. The material and thermal properties of the lamina were calculated using the
equations found in '41]. and are listed in Table 2.2. The solution for the composite plate used the
same number of finite elements and summation limits on m and n as those for the aluminum alloy
plate described above. Figures 2.6 and 2.7 show the displacement per unit heat flux (ﬁg‘ﬁ—) at the
center of the composite plate. Figure 2.6 illustrates the quasistatic response. while Figure 2.7 shows
the dvnamic response. Figure 2.8 shows the normalized decay in the amplitude of the dynamic
deflection. The overall decay rate of W corresponds to a logarithmic decay of exp (—8.468 - 1075t).
Comparison of Figures 2.1 and 2.6 indicates that the two materials have nearly the same overall

response, but very different time constants and steady-state deflection. The difference in time

constant can be attributed primarily to the difference in thermal conductivity in the z direction.

For aluminum k. = 130h2“:’F, while for the graphite-epaxy composite k. = 0.392;—3&%.. Thus. k.
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for the graphite-epoxy composite is more than a factor of 3—:16 times smaller. which corresponds
to the difference in the time taken to reach steady-state quasistatic deflection. The difference in
the steady-state deflection cannot be attributed solely to a difference in stiffness between the two
plates as the effective stiffness of the first mode is very similar in both plates. This can be seen by
comparing the frequencies of the dynamic responses in Figures 2.2 and 2.7. The difference in the
magnitude of the quasistatic deflection is mainly due to differences in the applied thermal moments
which depend on the steady-state temperature distribution and the thermal expansion coefficients
(see Equation (2.5)). Figures 2.5 and 2.9 are the steady-state temperature profiles. T — T;. at the
center of the plate for the aluminum and composite plate subject to a unit heat flux. respectively.
The thermal moments based on these temperature profiles are shown in Table 2.3. As can be
seen. the thermal moments in the composite plate are at least an order of magnitude larger. thus
supporting the previous statement. The increased temperature at steady state in the composite case
is mainly due to the reduced conductivity. At steady state the plate can dissipate heat only at the
periphery. Therefore. the lower conductivities in the r and y directions limit the rate at which heat

can be dissipated: this leads to an overall higher steady-state temperature.

Table 2.2: Mechanical and Thermal Properties of a Graphite-Epoxy Lamina
Mechanical Thermal
Elastic Moduli Conductivities
Ey 19.72 x 100 k1y 30.5: 8%
Ex.Ex | 1236 x10°2% | ky. ks 0.392- B

G2 0.641 x 1051

-

Poisson’s Ratios Expansion Coefficients
via 0.278 ap | ~1028x 10742
va1 0.017 ap.a | 2097 x 107572

Density Specific Heat
p | LT63x1073E || C, 6.917 2=




Table 2.3: Comparison of the Steady-State Thermal Moments at the Center of the Plate

Thermal Moment Aluminum Composite
mr: 1.188 x 10712 | 1658 x 107iek
mr, 1.188 x 10732 | 4172 x 10-4inle

Comparison of Figures 2.2 through 2.7 indicates that the two materials have similar dynamic
responses. The main differences are that the composite response appears to consist of a summation of
multiple frequency sinusoids whereas the isotropic response appears to be a single frequency sinusoid.
Additionally. the magnitude of the oscillation in the composite response is smaller than that in the
aluminum alloy response. In the composite plate Doy < Dy, so that the second mode is much
closer in frequency to the first mode when compared to the aluminum plate. Therefore. the thermal
shock excites the second mode in the composite plate more than it excites the second mode in the
aluminum plate as is indicated by the slightly different responses. The difference in the magnitude of
the dynamic responses is due to the reduced thermal conductivity. &.. of the composite plate. Since
the plate vibration is excited by % (%f& - %‘) the reduced conductivity decreases the effect
of the thermal shock. resulting in a lower amplitude vibration. The different normalized decay rates
in the dynamic deflections. as seen in Figures 2.4 and 2.8. are also due to the reduced conductivities.
(k. ky. and k) of the composite plate. The smaller value for k. in the composite plate reduces
the coupling between the strain and temperature fields. As mentioned above. the smaller values
for k; and k, limit the ability of the plate to dissipate heat. including the heat generated by the
vibration. These two effects lead to a drastically smaller value for the thermomechanical damping

in the composite plate when compared to the aluminum plate.

2.4 Summary

A solution was presented for the dynamic response of a symmetric. cross-ply. laminated
composite plate subject to a thermal shock. The solution was validated by using it to determine

the response of a homogeneous isotropic plate and comparing it to the response obtained from a
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solution derived for homogeneous isotropic plates. Comparison of the solutions indicates that they
have a very similar form. The main difference is that an explicit summation in the isotropic solution
has been replaced by implied summations resulting from vector inner product multiplications in the

composite solution.
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CHAPTER 3

MODELING

3.1 Introduction

In Chapter 2. an analytical solution based on modal expansion and Classical Laminated Plate
Theory (CLPT) was derived for the response of a simply supported thin composite plate subjected
to a thermal impact. From a “Smart Structure™ perspective, this solution represents the open loop
response of the system. In this chapter. a model of an orthotropic composite plate with piezoelectric
sensors and actuators that can be excited by mechanical or thermal loading is developed. This model
does not include the differential equation governing the electric displacement associated with the
piezoelectric elements. but includes the pyroelectric effect in the piezoelectric sensor equations. and
the inverse pvroelectric effect in the piezoelectric actuator equations. This model is derived using
finite elements to discretize both the displacement and the thermal governing equations. One major
advantage of a finite element model over a modal expansion model is that it is suitable for any set
of boundary conditions. The model is based on a first-order shear deformable theory and can be
used to determine the in-plane responses. u(¢) and v (t). the out-of-plane response. w (¢). as well as
the non-dimensional thermal response. ©. The stresses due to thermal and mechanical loads can be

calculated using the displacement and thermal fields.

3.2 Finite Element Smart Plate Model

This section develops a finite element model of an orthotropic composite smart plate that is
suitable for closed-loop control system design. It starts with the lamina constitutive relations for a
piezothermoelastic material. presents the strain-displacement relations of a first-order shear theory.
and then derives the laminate coupled thermo-elastic partial differential equations. These equations
are subsequentiy converted to a set of coupled first-order ordinary differential equations using finite

element methods.

31



3.2.1 Lamina Constitutive Relations

The k*? layer orthotropic lamina constitutive relations relative to the principal material axes

(1.2.3) of the lamina are
N (O S COREY @1
{DY* =ie]* {2}* ~ e {E} - {p} OF (3.2)

where {#}* is the stress vector. £CI'° is the elastic stiffness matrix. {¢}* is the strain vector. {d}k
is the thermal expansion coefficient vector. 6% is the temperature measured from the strain-free
temperature. [d}k is the piezoelectric strain matrix. {E}* is the electric field vector. {D}* is the
electric displacement vector. je;* = [d}* /C'* is the piezoelectric stress matrix. j¢i* is the permittivity
matrix. and { ;S}k is the pyroelectric coefficient vector. The superscript T represents the transpose

operation. These parameters take the following forms:

(ot =m @y oy T orm il (3.3)
(¥ =iar 22 oz vy v i (3.4)
{a="a; a2 a3 0 0 07 (3.3)
(E} ='E, E» Es (3.6)
{D}Y*=Dy Dy Dsi¥ (3.7)

B =m p m’ (3.8)

= ' (3.9)
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d=1 0 0 0 dy 0 0 (3.10)

r ]
€11 0 0

€= 0 e 0 (3.11)
0 0 eg3

For the case where the electric field is applied only along the 37¢ axis. the last term in Equation

(3.1). known as the piezoelectric strain. can be written as

T .
ety = (@) (B}
0 0 dy
0 0 dyp
0
. 0 0 dg
bz, = 0 (3.12)
0 dy O
E§
d; 0 0
0 0 o0
= Ef{a}*
{d}* =idy din dy 0 0 07 (3.13)
Substituting Equation (3.12) into Equation (3.1) vields
(o} = CF ({21 — (o) T - Ef (a)) (3.14)

Equation (3.14) is referenced with respect to the principal material axes. In order to incorporate
the k** layer into the laminate. it is necessary to transform Equation (3.14) into the laminate r. y.

and z axes. This can be accomplished using the following formulas (42|

{a}* T {at* (3.15)

¥ = RITF R (3.16)

{

I
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where

{o’}k = @ @y O Ty: Tz r,y}T (3.17)
g} = [5, Sy fr Yy Y -,,y]T (3.18)
o} = ‘ez ay, @: 0 0 ay” (3.19)
[ () (s6)° 0 0 0O 2chsh 1
(9 (cf)* 0 0 0 ~2c8
o 0 0 10 0 0
I = (3.20)
0 0 0 cf —-sf 0
0 0 0 s b 0
—Bsf cbs® 0 0 0 (ch)° - (s)°

cd = cos(8) (3.21)
s§ = sin(6y) (3.22)

R = (3.23)

where {rr}" and {s}k are defined with reference to the laminate axes. and 8 is the angle measured
from the r axis of the laminate to the 1 axis of the lamina. Using these transformations. one can

write Equation (3.14) as

k

(ot = €1 (et — ol %) - €] (S (@r¥) (3.24)
= (10) " et R TR (3.25)
el = () et (3.26)
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For a generally anisotropic material. the equations relating the heat flow to the temperature gradient
in Cartesian tensor notation are i43|

a0

—-q, = klj% i.j = 12.3 (3»27)

where g, is the heat flow in the r, direction. © is the temperature change from the nominal stress
free temperature. and k,, is the ij** entry of the thermal conductivity tensor. For an orthotropic

material. such as a uniaxial fiber reinforced composite lamina. Equations (3.27) become

00
- = ky 3z,
b/
-~ = kon 3.2
g ko e (3.28)
f5/S)
-3 = k:x:xa—r3

where r is aligned with the fiber. r is in the plane of the lamina and normal to the fibers. and r3
is normal to the lamina. Equation (3.28) is referenced with respect to the principal material axes.
In order to incorporate the lamina into a complete laminate. it is necessary to transform Equation
{3.28) into the laminate r. y. and z axes. This is accomplished using the following second order

tensor transformation formula 42!

’

by = @ik ik LjkI=1.23 (3.29)

2
-
]

cos (I}.1,)

where «,, is the direction cosine between the i** direction in the r}. rj. rj system and the j*!

direction in the ry. z12. r3 system. For a rotation 6 about the rj axis. the direction cosine matrix is

M b
cos(8) sin(d) O

@y =] —sin(f) cos(d) 0 (3.30)




Letting the primed system represent the laminate axes and the unprimed system represent the

lamina principal axes, the thermal conductivity tensor for the laminate r. y. and 2 axes is

kz ke O
kyl=\ky Kk, O (3.31)

0 0 k.

where

k; = kycos®(8) ~ kyasin®(8) (3.32)
kzy = —ky;cos(8)sin(8) ~ kagcos(8)sin (6) (3.33)
k, = kysin®(8) ~ koo cos® (6) (3.34)
ke = kg (3.35)

The equations that define the thermo-mechanical constants of a generally anisotropic material in

Cartesian tensor notation are |33
J,J = QHC”H l._].k.l =1.2.3 (336)

where J, , are the thermo-mechanical coupling coefficients. ay; are the thermal expansion coefficients.
and C, i are the elastic stiffness coefficients. For an orthotropic lamina in the principal axes using

full and reduced notation. as well as svmmetry of the stiffness coefficients. Equation (3.36) yields

In a1 Ciin = a22Cri22 ~ @33Chuas

= a;Cq -~ asCia ~ a3Cia (3.37)

Jia = ayCan ~ arnlix ~aaCiaas
= a,Cw - angs —03C;;5 (3.38)

=0

Jiz = auCun ~anCis2 ~a33Ciass

= 01C15 - a'_:Czs - 03C35 (3.39)
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In tensor matrix notation. this is

where

3y =312 =0

= a;Cony; + a0 — a33Ca33

= 01012~ @2Cp — a3Ca3

= a11Ca311 — a22Ca322 — a33Coaa3
= a;Cy ~ axCyy ~a3Cy

=0

3y =Jd;3=0

Jy =33 =0

= a1Cun ~ anCi2 — a33Caa;

= a1Ci3 ~ a2C3 ~ a3Cx

3 Fa 0

{3’]: 3 Im O

0 0 3y

3y, cos? (8) < Jag sin® (6)
—3,; cos (8) sin (6) = 34, cos (#) sin (6)
3qy sin? (8) — 3pp cos® (6)

Ix

37

(3.40)

(3.41)

(3.42)

(3.43)

(3.4)

(3.45)

(3.46)

(3.47)

(3.43)
(3.49)
(3.50)

{3.31)



For the case where the primed coordinate system is aligned with the laminate z. y. and z axes. these
equations indicate that an orthotropic lamina can generate heat only from the terms 3.%;, 3,2

y=y

3,2z and 3,2..

3.2.2 Strain-Displacement Relations

The derivations in this section follow the derivations found in {24|. The first-order shear

deformable theory outlined in |44} uses the following displacement field equations

u(r.y.z.t) = u(z.y.t) +zv (r.y.t)
vir.y.z.t) = o9 (z.y.t) = 2w, (z.y.1) (3.32)
w(r.y.z.t) = uvl(z.y.t)

where u. v. and w are the displacements in the r. y. and z directions. respectively. u®. ¢°. and u®
are the displacements in the r. y. and : directions of a point (zr.y) on the midplane. respectively, ¢
is time. and v, and v, are the rotations in the rz and yz planes. respectively. as a result of bending
only. To simplify the derivations. define the displacement vector and the generalized displacement

vector corresponding to the midplane as

[
]
&
&
ﬂ
w
o
e

¢ «T q =
{a} = g_u“ e v, v (3.54)

{u} =G {a} (3.33)
where _ ;
100 =20

G=10100 = (3.36)
00100

Substituting Equation (3.532) into the infinitesimal strain equations vields
{e} ={"} = 2 {x} (3.57)
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where

feb =l 2 0 e Tar Tmll (3.38)
() = [ o0 =0 - A%
{2} = e 2 00 0 T
= [-8;7’ % 00O a;y’—%]r (3.60)

In the first-order shear deformable theory. <. is usually assumed to be zero and will be ignored in

subsequent derivations. To simplify derivations define the generalized strain vector corresponding

to the midplane as
yr Yzz Yry Kr Ay z,y]T (3.61)

\With this notation. the relationship between Equation (3.34) and Equation (3.61) can be written as

{z! = L{a} (3.62)

£ 0 0 0 0
0 £ 0 0 O
00 £ 0 1
‘- 00 £ 1 0 363
£ £ 0 00
00 0 £ 0
o0 0 o0 2
00 0 £ £

3.2.3 Governing Equations

For a symmetric laminate consisting of N layers. with the plane of symmetry at z = 0. the

laminate constitutive relations. including piezoelectric and thermal effects. but ignoring the normal
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stress in the z direction. can be written as
{N}=Dl{z} - {Np} - {7} (3.64)

where { V'} is the stress and moment resultant vector. {D} is the generalized stiffness matrix. { Vp}
is the piezoelectric stress and moment resultant vector. and {_V7} is the thermal stress and moment

resultant vector. The definitions of these terms are

(¥}=N: N, Q Q: Ny Mo M, M,T (3.65)
(N2 V. Q. Q2. Ny) =/h (O 0y TysTzs Txy) d2 (3.66)
(M. M. May) = / T (g ) 2dz (367)

A A 0 0 A By Bz Bis

A A 0 0 A Bw Bn By

!

D= (3.68)

di6 A 0 0 Aes Big Bas Bes

By B 0 0 B Du Dia Dy

Bia B 0 0 By Di2 Dy Do

B B 0 0 Bss Die D Des
Y n

(A,.By.Dyy) = Z/ Ct (L2 dz  (i.j=1.2.6)

k=17
N a

Ay = Y s / Cidz  (i.j=4.3) (3.69)
k=1 -

.‘1_
=

(<21 R

The values for the shear correction coefficients. 2. depend on the the material properties. see Bert
43]. However. for comparison to previous works. 57 = 3 will be used {46]. Laminates with a plane

of symmetry at = = 0 have the same symmetry as a monoclinic homogeneous material. Therefore.
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they have the same elastic configuration as monoclinic homogeneous materials. which are defined by

thirteen independent elastic constants.

The piezoelectric actuator stress and moment resultant vector. {Np}. is given by

{Sp}=Npz Npy, Qpy Qp: Npzy Mp: Mpy, Mpzy| (3.70)

Assuming that there are N4 piezolelectric actuator patches distributed throughout the plate. the

expression for Vp; is

5

H

]
l\’l"

(C - Chadhy) / " Eude
.

(Cnd.n - Chdsy ) Vi (3.71)

,.
-
=i

8'
—

Here. the C¥ are the transformed elastic stiffnesses given by Equation (3.14) for the k** piezoelectric
actuator. the d{"J are the piezoelectric strain coefficients for the kth piezoelectric actuator. Vi = Ehy
is the electric voltage applied across the k*! piezoelectric actuator. i = (i — 2x—1) is the thickness
of the k** piezoelectric actuator. and :{ is the : distance from the midplane of the laminate to the

midplane of the k** piezoelectric actuator defined by

1
:2=;( 2% = 2k-1) (3.72)

The expressions for the remaining elements of {.\.:'p} are

Ny -
Np, = (c c“gd’gg) / E.d:
k=1 s
Na
=Y (C"Id - Chyd ) (3.73)
=1
Qpy =0 (3.74)
Qp: =0 (3.73)
Na ) -
Nory = Y (Clodhy - Clidla) / Eid:
k=1 S~
Na , i
= Y (Cladh, - Chsdla) Ve (3.76)
k=1

1l



MP =

MP

ME =

N.

2 (Chidh, + Chdty) / Eyzds
S (Chids, ~ Chadly) (22 - - Ee
k=1

N

Z‘ (Clkxdgl - éfzdg-z) 25V

k=1

M(,

(Ck df =~ Chydly ) f " Eesds

- »
il
- —

) -

(C{:'Idgl - Cézdéz) (zi = 2i-1) Ee

f:’I

(C‘",d;“ C'.f,'ld:‘;z) Vi

ol
Il
s

[\/]4

(de;u - Chidsy) / Eizdz

20
Lol Load

9 10

D) r—

(Cksd Czksdgz) (2t = zt_1) Ex

(C - C§6d§2) 25Vie

»
1]
-

3.77)

(3.78)

(3.79)

These equations can be reformulated so that the voltages across the piezoelectric laminates are

avaiiable as inputs to the svstem.

{§p} = PI{V}

(3.80)



where

Pl =\ p P - Px_,‘]

L -

~k gk ~k gk
Clld:ll - Cl2d32

Chd§, - Chdf,

0
. 0
Pe; = (3.81)
C {‘sdgl + C'fsd:kiz
(Cfxd’:i'l - C‘fgd§2) Zt'f
(szdgl - é“’f.zd':s‘z) zé'
(C{"edgx - Cfsdgz) ~'§
r
{Vii= [ VioVa o Wy ] (3.82)

This formulation is required to provide control input to the system since the response will be con-
trolled by the voltages applied to the piezoelectric actuators.

The thermal stress and moment resultant vector. {.\-i-r}. is

{(§1}="Nr: Ny Qry Qrr Nroy Mr: Mr, Mo (3.83)

For a laminate consisting of .V layers. the equations defining the thermal stress and moment resui-

tants are
v -
N7z (I.y.t) Z (Chak = Chay - Clsat,) / OF (r.y.z2.t)dz (3.34)
k=1 L
N -
Nry(zoy.t) = Z (Chaak ~ Chal ~ Cisal, )/ O (r.y.z.t)dz (3.35)
k=1 Sa-
Qry(r.y.t)=0 (3.86)
Qr:(r.y.t) =0 (3.37)
N _ -
Nroy (T.y.t) = Z (Csat ~ Cfsa‘y‘ -+ Cé‘sa‘;y) /: O (zr.y.z2.t)dz (3.38)
k=1 ~h—i
N _ 2
My (z.y.t) = Z (CEek - CF, a" - C{‘saf.v) / O (r.y.z.t) zdz (3.89)
k=1 Sk
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Mry(z.y.t) = Z (Chak + Cat + C‘%‘saiv)/ OF (z.y.z.t) =d= {3.90)
N

.um(:.y.z)=z:(c af ~ Chsak + Cgal ) / O (r.y.z.t)z2d (3.91)
k=1

where the ij are the transformed elastic stiffnesses given by Equation (3.14) for the k** layer
of the laminate. the ¥ are the thermal expansion coefficients for the k** layer of the laminate.
and ©* (r.y. z) is the temperature change from the stress free temperature in the k** layer of the

laminate.

Hamilton's variational principle can be used to derive the laminate equations of motion. In

the absence of damping. this can be expressed as
Ly
/ (6K — U -0l dt =0 (3.92)
t

where R is the kinetic energy. [ is the strain energy. and W’ is the work performed by the surface

tractions. The kinetic energy term can be expressed as
6R’=6(;)l-/p{zl}r{&}dv’) (3.93)
- "

where {4} = d{u} /3t is the velocity vector of any point in the laminate. p is the mass density of the
material. and " represents the volume occupied by the laminate. Moving the variational operator

under the integral yvields
61\’:%/p;é{ﬁ}r{&}—-{d}ré{ﬁ}] v (3.94)
- Jv L

Since ¢A’ is a scalar. the terms contained in the brackets are also scalars. Therefore.

{ﬁ}%{&}:({a}ra{a})r (3.95)
which vields
(@37 6 {a} =& {a}” {a} (3.96)
and Equation (3.94) becomes
6K=/p6{zl}r{z‘z}db’ (3.97)
v

+



Substituting Equation {3.33) into Equation (3.97) yields
- 2T AT,z , .
§K =/ p(68YT GTG (it} av (3.98)
v

Integrating through the thickness yields the following expression for the kinetic energy

éK = / {&a}" [1] {é}dA (3.99)
K
where _ -
L 0 0 L 0
0L 0 0 &
(M =/ pGTGd:=1{ 9 0 I, 0 0 (3.100)
L 0 0 I3 0
0L 0 0 I
and

([.Is. I3) = Z/ n2)d: !3.101)

k=17 -

The strain energy term is given by
& -/ {¢}T (o} (3.102)
Defining the generalized stress vector
|y =iy @y, Ty: Tz Try 200 20, ITg, (3.103)
[t is possible to rewrite Equation (3.102) as

¢t

/ {647 {m}dA (3.104)

/; &} (ArdA {3.103)
Integrating through the thickness and substituting Equation (3.64) yields

5(—/{0} (iDi{z} - P {V} {\1-} (3.106)
The potential energy due to the transverse loading is given by

éW:/p&wdA (3.107)
A
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Substituting Equations (3.97). (3.106). and (3.107) into Equation (3.92) vields

/ / {&a)" (1] (&) - {2} (Dl {2} - [P {V} - { V7)) p&w] dAdt =0 (3.108)
Integrating the first term by parts yields the following form of Hamilton's variational principle

[ A [{ —éa)T V1] i} - (82)T (D} {2} - P (VY - { V7)) -.-p6w} dAdt=0  (3.109)
Rearranging vields

/ / |{au} M (i} - {827 (DI {2} - ‘P {V} -{§N7}) p&w] dAdt =0 (3.110)

This equation will be used to develop the finite element equations for the plate displacement portion
of the problem: it will be supplemented with a finite element formulation of the heat conduction
equation.

The generalized heat conduction equation for a generally anisotropic material. including the

inverse pyroelectric effect. in rectangular coordinates. is

dq: Jdq, Jq. _ a0 \
ar dy P = PC,_ It Todt ( U"J pra) (3.111)
where
_ g a9 g o 69) ”
qr = (kx Jz L:y ay ke. 9z ) (3.112)
== <Lry'5; - "y?y' "y=a_z> (3.113)
g: = - (knq - ky=§y- - k:a—z> (3.114)
0=T-T1p (3.113)
3,50 = Jzfe = 2Wpyfry = 23550s + 35y T 23ya5y: ~ ks (3.116)

and p, and E, are the pyroelectric constant and electric field in the i** direction. respectively. For
the problem of a rectangular laminated composite plate composed of orthotropic layers in which the

thermal properties and electric field vary only in the z direction. this equation becomes

ST, T SR MR [ S
kz or? "“’”azay &y 2 9z \ 0Oz

a9 a -
—pCvE-Togt- (31;‘, ?‘23ry52y*3y£y TP:E;) =0 (3.11()

o) >0 #P0 9 (k 69)
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Expressing the strains in terms of the displacements vields

820 Fo _, #0_10( 00 o[ (2 _ o
. L 9 , hudndNSddF 4
kg T gy, ~hvae ( 32) "C‘ Toz [3* ( oz )

T or
ol dv,  ° dl ot  ou .
2 ( oy oy o0r oz ) v ( i 7;;)] - Top:E: =0 (3.118)

Only piezoelectric layers have non-zero p.. and in this work only those piezoelectric elements used
as actuators are considered to have significant E.. For the k** piezoelectric actuator. ignoring the
change in the electric field generated by the strain rate and assuming the electric potential is linear

across the piezoelectric element and increasing with increasing 2.

do
= 9 119
E. dz (3 )
. (3.120)
= - .12
and
. V.
E.=-%

where V. represents the external voltage applied to the piezoelectric actuator. Subsequent equations
will also drop the = subscript unless needed for claritv. Equation (3.118) can be reformulated so

that the voltage rate across the piezoelectric elements are inputs to the system.

30 Fe &Fe o ae g u®  Gu,
¢ e e M e s - — — — e —
ke or® hzy dzdy by a9z ( ) pC‘ T°at [J‘ ( dr " or )

o B, &P Ov 0 A L
-2 — z . ¥) . Skt N I RS £ o G 12
J’”(c'iy oy " or 61‘) jy(i)y ) )l Top.{ } 0 (3121)

=l P P2 AR (3.122)
t — — .. — \Urbaw
2 [ hy hy Na ]
. T
{v} = [ N ] (3.123)

where the pi and Ay are the k*® piezoelectric actuator pyroelectric constant and thickness. respec-

tively. and .V4 is the number of actuators.

3.2.4 Finite Element Model

The first-order shear deformation theory allows the use of linear interpolation functions to

develop the finite element model. This follows from the derivative operator L. defined in Eq (3.63).
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which contains first-order derivatives and constants. Thus. it is sufficient for the interpolation func-

tions to be C? continuous {24]. Formulating the problem with classical laminated plate theory

(CLPT) results in second-order derivatives in the differential operator £. This requires cubic inter-

polation functions on the variables which is computationally more difficult. In the first-order shear

deformation theory finite element model. this difficulty is overcome by adding two more variables

for interpolation. v, and v',. In the present work. nine-node quadrilateral finite elements with

five degrees of freedom at each node are used. To reduce the number of finite elements required

for convergence of the solution. quadratic interpolation is used for all variables over each element.

Therefore. the interpolation equations can be written as

N

(8% (z.p.t)} = ) INTHEs ()

=1

NDo= Nk
where
ND = filzoriory) filyoye Yus
NS = fulz oo zy) fi(y.uryu)
N3 = fulz. o ry) fuly. v yu)
Ny = filzonr) fu(y- - yu)
N5 = fom (2.2 2w fi (Y. 91 Yu)
Ng = fulz.zi 24) frm (Y- 91 Yu)
N2 = fmzozi2u) fu Y- Y- Yu)
NS = filz.zizu) fm (Y- 1 Yu)
Ng = fm (2.2 Zu) fin (Y- 91 Yu)
and

252 — (3, ~11) T~ (Ly ~ T1) Tu

filz.zizy) = .
' (Tw — 1)

2 — (2, — )T - 1.3

fm(z.xr.24) = —4 3
(-ru - Il)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)

(3.135)



972 _ - -
fulz.zr.zy) = pe il k) GV (3.136)

(T - 11)2

Here N, is the number of nodes per element. V¢ are the element shape functions. r; and r,, y; and
Yy are the lower and upper bounds on the r and y dimensions of the current finite element. [; is the
5 x 3 identity matrix. and the superscript e denotes the parameter at the element level. The local

numbering of the nodes and nodal coordinates is shown in Figure 3.1. The interpolation Equations

y
A

(z,,) (Z,,Y.) (z,9.)
- -9

4 7 3

(Z,4,) 48 (zjym) 6 & (Zu¥n)

L
(z,9) (Zp W) (z,y)

4’2

Figure 3.1: Nine-node quadrilateral mechanical finite element showing local node numbering and
nodal coordinates.

(3.134) through (3.136) were derived assuming

(Tu — I1) (3.137)

Im =

| —

The interpolated variables are the displacements and rotations at each node
- T
(@ =[? ¥ ) v, v,] (3.138)
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0

o0, ud 0 .0

Here u w? v,,. v, are the i*h nodal values of u®. 0. u®. v,. v,. respectively. Equation

(3.124) can be written in compact notation as

(@} = N {@°} (3.139)

where
Vel o= [INELUNSLLL (Ve 1] (3.140)
(i} = ({al}f.{ag}f ..... {ag."}r)r (3.141)

Substituting Equation (3.139) into Equation (3.62) vields

—
e
n
—~
Il

B {af} (3.142)

L)
o8
[

£'N® (3.143)

To derive a finite element model. we divide the plate area. A. of Equartion (3.110) into a finite number

of element areas. A.. Applyving this process to Equation (3.110) yields

e Vo .
/ Z/ HeasyT INT) (i} - (6=} T (D
t o=y JA- T

1

—P{VEy - {Vg)) - {ere)T {Fe}idAdt =0 (3.144)

where .V,,,, is the total number of mechanical finite elements. the superscript e denotes that the

parameter is associated with the current mechanical finite element, and
{F*} = (0.0.p°.0.0)7 (3.145)

is the element mechanical load vector. Substituting Equations (3.139) and (3.142) into Equation

(3.144) yields
ts [Nme .
/ [Z {8as}T (Mg {80} = K (2%} — (Fipi {Ve} = {F5r} - {F5}) | dt =0 (3.146)
t e=1
where

Mig

/ el [37] [N*1dA
A

; » Lo _
/ / il [37] (V) dady (3.147)
w Iy
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Kyl = / BT (DI (B dA
A,

Yu Tu
= [ [ BT DB sy (3.14)
1 B

Fip = / BT 'PldA
A

e )
( / / B dxdy) P (3.149)
14 Iy

{Fir} BT (N5}dA

l
P

Yo [Eu _
= / / BT { 5%} drdy (3.150)
'] I

(F4 = /'.vfjr{f'*}d.-t
A

= // "NeT {F<) drdy (3.151)
v I

In these equations. r; and r, (y and y,) are the lower and upper values of the r (y) dimension
for the current mechanical finite element. respectively. and {.V5} represents the thermal stress and
moment resuitant associated with the current mechanical finite element. Special care is needed to
insure that A, and {F§,r} are properly calculated. To avoid shear locking. the shear portion
‘K%, should be under-integrated 36;. To facilitate this method. the element stiffness equation is

separated into a bending stiffness portion and a shear stiffness portion

K = [ (BT i - BT D B) da

A,

Yu T T
[ [ (s o 51 - i85 2 857 (3152
w I

a3l



where

Dy =

Bis

‘Rel —
Bsi=

A

.'126

By

Bas

o g}l

o

o

o &

o

o {

o

0

0 .4.')5

0 A6

0 B
0 Bgg

0 Bss

¥

o

32

Dys

o o o

e
.

ot

: \,’21

B

Bag

(3.133)

(3.154)

{3.133)



o b
00 0 00
00 0 00
a3
00 £ 01
00 2 10
B = %= Ive (3.136)
000 00
00 0 00
00 0 00
00 0 00

In this case. exact integration is used to integrate the bending stiffness terms (terms with the subscript b)
and numerical integration is used for integration of the shear stiffness terms (terms with the subscript s).
For quadratic shape functions. exact numerical integration of the shear stiffness terms requires a
three-point Gauss quadrature. Therefore. to under-integrate the shear stiffness terms by one. a two-
point Gauss quadrature is used. Gauss quadrature formulas for general limits of integration can be

found in 47'. Applving the two-point Gauss quadrature formula to the shear stiffness term vields

v T
e - e T i c et
Ry, = / / B D, BS drdy
n P4

Y 4%
/ / f(z.y)drdy (3.137)
03 =1
1

I (Yo =y (T — 1) f (xr 1) = fx2. ) ~ f(z1oy2) = (2. y2)]

13

where
AR
Io= % i(l - 7%) I~ (1 ~ ;—%) Iu: (3.159)
et (-
o) (-3)n

Further expansion of the expression for { F§;1} is deferred until the development of the finite element

equations relating to the thermal portion of the problem. For a general mechanical load. Equation
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(3.131) can be reformulated so that {F¢} is interpolated using the same quadratic interpolation

functions as for the displacements and rotations.

Na
{Fe(z.y} =Y Ive {p (:)} (3.162)

=1

where
{F; (t)} =(0.0.p5.0.0)T (3.163)

and pf is the pressure at the i** node. Substituting Equation (3.162) into Equation (3.151) yields

Fyt= (/y,,/ Nl \“dxdy) {F} (3.164)

For the case of a uniform pressure load. p. Equation (3.151) can be simplified to

([ wram){fo o0 o])
p

{Firh

= (3.163)
Summing over all mechanical finite elements. Equation (3.146) can be written as
‘/!': (6" My {8} = 'Kar {@} = Fupi{V} = {Fur} - {Far}) dt = (3.166)
Since the variation {éi} is arbitrary. we get
My {2} ~ Ky {a} = Fypi {V} = {Far} = {Fu} (3.167)

Equation (3.167) is the finite element differential equation governing the mechanical motion of the

plate.

Applving the weak form of the Galerkin finite element formulation to Equation (3.121). the

weighted average of the residual is

- LA [ gy~ (e ) -4

a ai® 31.7' a0 61.7' o 31:
—_— — — _—‘r . _-.'-,_:..__.7_y. .
Ib'i (3’('3 -2 ) -3’”(5 2— 2 3 ) (3.168)

-3, (%o - z%-)) +Tolpi {V }] } drdydz

a4



where 8. #°. i%. v, and v, are the trial functions. and w is the weighting function. Integration by

parts is then used to reduce the order of the derivatives on 8 which yields

/ff JOwoe | [owde 0wde\ | w00 | awde
_ 818 l\oroy oyor Yoy oy T o: 0z

6 d a0 v o  dwv, 9 dv
-— ? me— — " c— — P z —-‘)‘ — P T — — Y y
pC.w pm Tow 5 [32 ( Fra ) . -3:y( 2 — - z— )

LLAD) 1)

If the domeain is discretized into .V,. cubic elements. the weighted average residual can be written as

o= /// AL (006 owob) | dwdd | owdd
r = =t Jy *ar or (drdy dy or Yoy dy 0= 9z

) ] 1 .o [ew 9, 9 ov,
“"C"“a‘“’“&[’ (ar az)'-J (dy‘w‘x‘-m‘)
g0 _ ov,\| :
-3, (E-z o )J - Towipi {V'} t drdydz
& 0 00
- kew— = kpyw— dydz
g_l HoJ ([ oz i 0"! _o)
Nevzm 2n Y dé Bé l
- kr V — ‘kx e dyd:z (3.1-0)
Z /. w ([ Y or v“dylna) y ‘
\.,.,., dé|
/ / [L ——k,ywa—; drd
k=1 ay z ly=0
e ) 28|
- k W - kf?“'-_ drdz
gL [ {5 -e
Nee x, Yu ae' tu,
oy - R o - I
w 0z [ k=t ¥ -—'T:

where Nrez,. NTez,.. VTey+ VNTey,: -VTes,. and NT.., represent the number of elements that are
adjacent to the boundary at r =0. r=a. y=0. y=b. z = —%. and z = % respectively. The

variables ;. r,. y1. yu. 2. and =, are the lower and upper bounds on the z. y. and z dimensions of



the k** cubic element. respectively. Let © be appraximated using a combination of quadratic and

linear shape functions such that. over the k** element. the trial function is

e (r.y.z.t)

18
S S (2218 1)
=1

of () W
o5 (t) L N
= [ HY (r.y.2) Hfs(r.y.2) - Hfg(z.y.2) ] . (3.171)
{ O (t) ‘
= [H%(J:.y.z)] {ek(t)}
where
(3u—2
Hr(z.y.2) = fi(z.n ) fily. ue Yul T .‘)., (3.172)
-2 -

Htalz.y.2) = fu(z.20.20) fi g 4. Yu) 7 ( - (3.173)
Hry(£.y.2) = fulZ. 224} fu (y.y:.yu) — l)) (3.174)
2, = 2) S
Hfy(z.y.2) = filz .z z) fu (9.0 yu)(( P (3.173)
H-'f-s(l'.y.z) = fm (.l'.fl.l'u)fl (y-yl-yu) ((:u:fl)) (3.176)
H%s(r.y.z) fulr.xi.zy) frn (Y. U1 Yu) (- ::l)) (3.177)
Hf-(1.y.2) = fm (£. 2. 24) fu (9.0 yu) 2 —;)) (3.178)

(z - z)
Hfg(z.y.3) = fi(z.21.24) fm (Y- 90 Yu) T (3.179)
HE(£.4.2) = fm {T. 1. Z0) fu (Y- Y1-Yu) ((, —~ ”) (3.180)
HE o (2.y.2) = fi(2. 20 2u) fi (4. 0. U ((f - "l)) (3.181)
Hiw 2.0.3) = fu (2o iy o) {ak (3.182)

g . . - z)
HE o (T.y.2) = fu (220 Lu) fu Y. 01 Va) L 3.183
Ti\Z-¥-2) = fulZ-20.2u) fu ¥4 4u) T3 (3.133)
H-f-w (z.y.2) = filz.zi.24) fulY-W1-Yu) ((z.u:.;)) (3.134)
k (Z - Zl) -
Hyyy{z.y.2) = fm (T.21.Tu) fi (Y. Y1 Yu) (za = 21) (3-183)



(z—2z)

Hi5 (2.9 2) = fu (2.20.20) fn (3 00 Va) =) (3.186)
(z-2) -
HY o (r.y.2) = fm (T 21. 20) fu (3 W1, Yu) ———— (3.18
716 (2-9-2) = fm (7.2 2u) fu (4 00 90) T —— 5 7)
& _ (z~2) .
HF o (z.y.2) = fillz. 21 20) fn (Y- 1Y) o= (3.138)
H 15 (2.9.2) = fn (22020 f (30 1. ) o) (3.139)
\Zu—.’.'l)

and fi. fi,. and f, are defined by Equations (3.134) through (3.136). respectively. The geometry
and local node numbering of the cubic element is shown in Figure 3.2. In the Galerkin's method.

the test functions are

H-}il (r.y.2)

Hr,ir.y.2) 3
w= b = LH—'{- (r.y. z)]T (3.190)

HE g (2.y.2)
Substituting Equations (3.171) and (3.190) into Equation (3.170) and performing the integration

over the k** non-boundary element vields

o= -l {8hn} - [KE {6F ) - {Feph V¢

- “Tg- .?_uj-’ai.z 1
w7 (- 100

0 R =0 0-. a0 ai
ey (d_u_ G 0 __> -3, («L . __)} dedyd:

dy oy Oz dz oy dy
Here
S Yn L
[ = / oC, / / (851" (#3]) dedyd= (3.102)
b r I
. w P Aokl . & p 3T . &7
IRE = / /y/ krdl-HT]- M*‘kn MM (3.193)
S 2 Ju Jz dr dar dz dy
aiHE" a[HF]\ _ aHH o [H%] Ld{HT] a9 [Hf! dzdyds
Ay or Ky dy dy g2 0z
{F&p} = To / / H" |" drdyd: (3.194)
n <

and the explicit dependence of Hf on z. y. and z has been dropped for clarity. The remaining

integral in Equation (3.191) contains the terms that couple the mechanical motion into the thermal

=1

[4]]
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Figure 3.2: Cubic thermal finite element showing local node numbers and coordinates.
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differential equation. The trial functions . #. .. and v, associated with the mechanical mo-
tion are approximated using the same quadratic functions defined in Equation (3.124). To easily
incorporate the mechanical motion finite element terms in Equation (3.191). the displacement finite
element nodes are aligned with the thermal finite element nodes at the plate centerline as shown in
Figure 3.3. This figure shows two thermal finite elements that are adjacent to the plate centerline
which is shown as the shaded plane. The thermal finite element nodes are numbered ! through 27.
with nodes 10 through I8 lving in the centerline plane. Also shown is a mechanical finite element
that has nodes numbered 1 through 9. These nodes are aligned with nodes 10 through I§ of the

thermal finite elements. This alignment allows the substitution of Eq (3.139) into Equation (3.191)



because the current thermal element would share the same r and y nodal coordinates as the me-
chanical element at the plate centerline. In this case we say the thermal and mechanical elements

are geometrically aligned. Performing this substitution yields

It = - [t} {6 (0] - [K5] {0* (1)} - {Fge} V" - [Chu] (i) (3.193)

where

~

- . - u Yu Lu o - .
‘Ctyui =To / / / H 17 B%. drdyd: (3.196)
M I’ &

a3
5 9

&>

2
Ty

By, = [ 3.2 -23 v

s

(3.197)

BoF -3 0 (g -2,5) (23

In Equation (3.195). {ui*} represents the time rate of change of the nodal displacements and rotations
assaciated with the mechanical finite element that shares the same r and y nodal coordinates as the
k*® thermal finite element. For a boundary thermal finite element. Equation (3.195) is modified to
include the effects of the appropriate boundary condition. The two types of boundary conditions are
specified temperature (essential) and specified heat flux (natural). The effect of different boundary
conditions will be illustrated using the k** element that has a boundary located at r = 0. In this

case. Equation (3.193) is modified to include the boundary condition term at r =0.
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Figure 3.3: Alignmenr of the mechanical finite element nodes and the thermal finite element nodes
at the plate centerline. Also shown is the global nodal numbering convention.



no= -] {8k o} - [KH] {8k, ()} - {Fbp} V* — [Chyl] (i}

2u Yu - ael
_/ /y, ([L,“ = xy“"yi )dyd‘. (3.198)

In Equation (3.198). the subscript ro indicates that these nodal temperature and displacement
vectors are associated with finite elements that include the boundary r = 0. For the case of a

specified temperature at the boundary. Equation {3.198) can be written as

o= -y {92 (t)}— [K7] {65, ()} — {F&p} V* - [CFa] {u5,}
" kl
/ / (HT 0.y. )[ —%Hll k ‘)E,ZT] )dyd:{eg,(t)} (3.199)
w r=0

- gl {ez.. } - [KF.. {€% 0} - {F5p} V- (Ctar; {us, }

KE_ G = TRE] k1T d[Hﬂ —k ‘”H%’i s 1.9
Ry.,1 = / / ( Hrj 10.y. )[L P oy e L, dyd: {3.200)

Similar expressions can be found for specified temperature boundary conditions at r = a. y = 0.

i
. — - 9
ks EP =Qz, (y.2.1) (3.201)
=0
AR
b 1 =0ny20) (3.202)
dyl.::ﬂ
Equation (3.198) can be written as
o= - {OFin) - [KE {8 0} - {Fhe} 7 - [Chy] () -
e Y T . .
/ / (LH#-] (0.9.2) (Qx, - Quy.. ) dydz (3.203)
< I

= -{Mfl {ek(t)} Kt] {6* (t)} - {F§p} V* - [CEu] {2*} - F5u.
where for uniform heat fluxes

k
k ‘4“21 )

T
FQ;..-‘F[I 001000401001000 4 0] (Qz, ~ Qxzy.)

(3.204)
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and. for a more general heat flux distribution.

Su Yu
F§ =- / / (8517 et (] 0.y o))y Q% - Q%) (3.:20)
3 L

0
{@.}= (3.206)

Weld
17%z,




@, |

$Q%,,

{@,.} = (3.207)

0Ok
Ty

0

In Equation (3.206). .Qﬁu represents the heat flux in the z direction at r = 0 at node i. In Equation
(3.207). .ng represents the heat flux in the y direction at z = 0 at node i. Note again that the
displacement boundary conditions at r = 0 may require constraints on {u*}. Similar expressions
can be found for specified heat flux boundary conditions at r =a. y=0.y =b. z = -J.and z = 4.

Assembling the residuals from all .V,. thermal finite elements vields
Ir = = Mz} {8} - K718} - (Crusi {i} - | Fol ~ [Fari {V} (3.208)

where the explicit dependence of {©} on time has been omitted for clarity. Equation (3.208) can be

solved by setting [T = 0. If the number of elements is large enough the finite element solution will
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be a good approximation of the actual solution. Setting It = 0 and rearranging vields

M {é} + K71 {8} + [Cryi {&} = {Fq} - [Fopi {v} (3.209)

which is the finite element version of Equation (3.118).

Now if the plate thermal differential equation has been discretized using finite elements. the

thermal terms in Equations (3.84) through (3.91) need to be modified to include the finite element

approximation of the temperature field. Performing this substitution yields

Ntz (r.y.t)

Nry(z.oyt) =

Nrzy(Loy.t)

Mr(r.y.t) =

Mrp, (r.y.t) =

Mrzy(z.y.t)

'

k=1
Nee

k=1

Z (Cl’a
Z(C’l,a

N

k=1
-vlr

k=1
N

k=1
Nee

k=1
Neo

k=l
Ne.

k=1
Neo

k=1
Nee

k=1

Z(Cua *Cl,a - wa / O (z.y.2.t)dz (3.210)

Sh-1

Z(Cna - Choay Clsﬁ )(/:h [Hf (z.y. z)|d ){6" (1}

af, / 6" (z.y.z2.t)dz (3.211)

-

- Chas ~ Chat )(/-~ (Hr(r.y.2)]d ){9‘(')}

Z(C,sa -Cqsa Cssa,v)f 6" (r.y.z.t)dz (3.212)

Z (Clsak — Cal — Csak,) (/. (Hf(z.y.2)] d:) {8*t)}

Z(C ok —-Cl,a -C'wa / O (1.y.2.t) 2dz {3.213)

S (Chak - Chiak - Chak, )( / " (B (ry.2)] zdz) {6* (1)}

3" (Gl - Chiak - Chak,) / & (z.y. 2.t) 2dz (3.214)

z (Chat —-C-'afzcx: —.-C_-'fsaf,y) (/- ]HT (x.y.z ) {ek (t)}

Y (Chak ~Chal = C / 6% (z.y.2.t) 2dz (3.215)

Sk-1

) (Chok ~ Chsak ~ Césat,) (/ - [HF (z.y.2)] zdz) {e*t)}
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This can be written in compact form

Nee

(Sri=3 [cf] [ e]as (e}

k _ (fk k_ Ak _k_ Ak k
Cr, = (Cyjez - Crz% ClGer)
k _ Pk kAR Kk Ak k
Cra = (Cipaz = Caaay ~ Cogaryy)

k _ Pk _k _ Ak k Ak &
Cm—(cxsﬂz“ces% Cﬁsazy)

ck 0 0
0 C% 0
0 0 0
ck ] _ 0 0 O
0 0 0
0 0 0
0 0 0
0 0 0
where )
and

)=

e -

0 0 O
0 0 o
0 0 o
0 0 G
0 Ck 0
0 0 C%
0 0 0
00 0

H(r.y.

N
et

[H;‘-(.r.y.

H
—~—
—

0

0
[H—‘r'(:. y. z)]
(Hf(r.y.2)] 2
[H-}i(.t.y.z)] z

(Hf(r.y.2)] =

Cra

(3.216)

(3.217)

13.218)

(3.219,

(3.220)

(3.221)

In order to substitute Equation (3.216) into Equation (3.130). it must be modified to account for

the thermal stress and moment resultant associated with the geometrically aligned mechanical finite

element. This can be accomplished by limiting the summation in Equation (3.216) to those thermal
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finite elements that share the same r and y nodal coordinates with the current mechanical finite
element. This restriction vields
{(31=Y (e / [H*ldz {8* (1)} (3.222)
k=1 S
where N, represents the number of thermal finite elements that are geometrically aligned with
the current mechanical finite element. and the superscript e denotes that the parameter’s value is
associated with the current mechanical finite element. Substituting Equation (3.222) into Equation

(3.130) yields

Yu pTu Nmee N
(Firt = [ [TET Y cn [ (s (et o) say
k=1

w i Se-
= Ry7:{6°(t)} (3.223)
-vmlr 1 y“ I
ISTEDY / / / BT 5 [H*e] drdydz (3.224)
k=t Y- YU kY]

and {©" (t)} represents the assembly of all {©* (t)} into one vector. Using this notation. Equation

{3.167) becomes
My {i} = Ky {a} = iFupi AV} = Kuri {0} = {Fur} (3.225)
To include the effects of damping. Equation (3.225) is modified as follows:
My {!:1} +Cr: {ﬁ} ~ Ky {a} = Fyp: {V} = [RKy1 {O} = {Frr) (3.226)

where :Cy, is the damping matrix. Note that damping in a composite is anisotropic analogous to
stiffness. but not proportional to it. To avoid numerical issues. a small amount of isotropic damping

is added to the model. Isotropic damping has the form
Cari =26 My VOVt (3.227)

where £ is the damping coefficient that is applied to all modes. and the matrices V and Q are found

from the eigenvalue decomposition of [Myi ™" [Kyyi
My~ Ky = VOVt (3.228)
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This formulation assumes that all modes have the same damping.

Equations (3.209) and (3.226) are the finite element coupled piezothermoelastic equations
governing the plate motion and temperature. These equations can be combined into one set of first
order differential equations as follows. Define a new generalized state variable

{u}
9=1 (i} (3.229)
{&}
Assuming that {i} has n,, elements and {6} has n, elements. then q has 2n,, + n, elements. Using

this formulation. Equations (3.209) and (3.225) can be combined to yield

Mg} =’C{q}‘f\1?{"}—fof’{f"}"f.u—fq (3.230)
where .
Iﬂn. 0"". X Mgy, On.., My
M= Onwne Mar, Onpen, (3.231)

[ On, % My, On; X N, -‘[Tl

-

On... A My, [n.,. On... ang

K=| -'Ky' -Cyi Kuyr (3.232)

Om KTy, - tCT.\I; - ‘:KT:

| ]

On... xNa

Fap=1| Fyp: (3.233)

On. x Ny

Onm xNy

Fap = | On,xx, (3-234)

Farp!

~ -

On...xl

Far=| (Fy} (3.235)

On.xl
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On.,. al
Fo =1 Onnx1 (3.236)

{Fa}
In these equations. [,,,, represents the n,, by n,, identity matrix. and 0,,x m represents a zero matrix
of size n by m. Since this problem is properly constrained. the matrix .M is invertible. which allows

the problem to be written in state-space form

{dh = Al - By (V=B {V} - {u} (3.237)
where
A=M"'K (3.238)
Bv =M™ Fyp (3.239)
B, =M™ Fop (3.240)
fw}) = MY (Fy = Fo) (3.241)

[n this formulation. the variable {w} is considered a disturbance input to the system.

3.2.5 Imposing Essential Boundarv Conditions

At this point. essential temperature and displacement boundary conditions should be imposed
on the system given by Equation (3.237). The temperature essential boundarv conditions at the
edge of the plate are:

e Zero temperature edge: © =0

e Fixed temperature edge: © = 6

Assume that q,, 2n,, < i < 2n, — n,. is associated with a thermal finite element node
located on the boundary. To apply the boundary condition for the case where g, = 0. the differential
equation associated with ¢; is eliminated from the system. since ¢, = 0. and the column of the A

matrix associated with g; is deleted from the matrix as shown below

{4 = A{a} - Bv (V} =By {V} - (&} (3.242)



where

b
N

Ao

A(l*l)l

A(‘Zn... -nt)l

T
Q2n,,, ~n: }

Gy

Bl'(l-—l)l

B\"(xom

Bif(z

Mo +0e )1

Bvian,en, )N

6\"1_\',\

Bv"(.-nx,\

B Vit=1) Ny

B('\".’

(2 en ) Vo

qi~1 Qi+t
T
={ w W] U} Wan,, ~n, }

Aoy Alii-p Av2n., ~nt)
-411—1)(1—1) —'((x—l)(x,vl) -441—1)(2nmvnt)
Ano[)u—l) A(x-l)(xvl) Ah—l)(‘ln-..-»nt)

-'((Qn...-nz)(r—ll -4l2n...—nt)ix-.—n A('zn...-nt)(‘.’nm~nn

™ b

By Bviy,
Bvii—iin Byvioyyxy
By e Byiay,y,

-

(3.243)

(3.24)

{3.246)

(3.247)

To apply the boundary condition for the case where g, = ©g # 0. the differential equation associated

with ¢, is eliminated from the system. since ¢; = 0. and the column of the A matrix associated with

g; is multiplied by ©q. and the resulting vector is added to the disturbance vector. In this case. the

A matrix is still modified as shown in Equation (3.243). Thus. Equation (3.237) becomes

{6 = At~ B (VB {7} =t

(3.248)



and

All

Au—l)x
{} ={z} - Y Oy (3.249)

A(x-.-l)x

A(lnm?m )2
\ P,

The displacement essential boundary conditions at the edge of the plate are:

o Clampededge: W =® =ul=v, =v, =0

e Simplv supported edge:

parallel to r-axis: u® = v, =0
parallel to y-axis: v® = v, =0
o Fixed simply supported edge:
parallel to r-axis: 0 =ul =v_ =0
parallel to yg-axis: v’ =uwl =v, =
e Symmetric edge:
parallel to r-axis: t? = v, =0

parallel to y-axis: v = v, =0

Free edge: none

To apply the boundary condition for the case where ¢, = 0. 1 < ¢ < n,,. is associated with a

displacement finite element. the following row and column operations are applied. The differential

equations associated with ¢; and ¢,.n,, = §, are eliminated from the system. since ¢; = ¢, =0. and

the columns of the A matrix associated with ¢, and ¢;.,,, are deleted from the matrix as shown

below

where

{(i} = { q
tit = {

{i} =4t -8 (v -8, {V} - i) (3.250)
T

Q-1 Qirl " Qi+nm-1 Benm-1 0 qzn....-n.} (3.:251)
T

Wi Wisr - Wien, -1 WCrenm-1 °°° ll"zn...a-n.} (3.252)
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—4(1—1)1

'41(1-—1)

Ah—l)h—l}

Al(:—n...—l)

A=

-'{h—l)l

.’iol = :

A‘r—nm—lll

A(t.ol)(!-l)

A :

H

A‘l‘ﬂm—ll(l—l)

-4‘l‘llhon".—l)

Ay =

-

"&i—nm*lil

Az = :

L A(?n... ~ne)l

-4‘.1-1)(1-—11...—1\
b

A(L-n.,.-l)(l-n...—l\

A

A2z

Ass

4

Ape-1)

A==

Al(x--nm—l)

A(t-l)h-nm-l)

-‘tl('ln...-n, }

Acvne,-n,,

Ap=110-1)

.4:.-,1,,, -hit=1)

-'l(l—l)(x-n...-l'l

A(l‘"nm‘”("’nm"”

A1) 20 =0 W

-A‘t—n". -11{2n,, -n,

1
A(:?ﬂ...?l)(x—li

A(2np=n,(i-1)

(3.233)

(3.254)

(3.257)

(3.2538)

(3.259)

(3.260)



Afirnm i1}

Alirnp + L ltena—1;

Az = : .. : (3.261)
Anm—nej(e+1) A2n,, =n,)(1=nm -1)
A‘.i~nmvl)(xonm-l) A(x—n...—l)(‘.’n-..vn«)
An = : : (3.262)
A"lnm'm HiwRem+1) A(g,,,,_-n, H2na, =Ny
By Bvin,
Byi—imn By-uw,
Bi(ie1n 5\'(;-1..\',|
By = : (3.263)
B‘-'{z—n...-l)l B\"v—n".-l).\'\
B‘(v—nw.-l)l Bt'l:—n,,.-'n.\"
BV(Zn.,.on,)l T B\'('Zn...—n. INa }
i 7
B\"n B\‘l.\',\
B\"n-m B(‘(;-—l).n
5\"(.-1)1 Bt"n—x;.\‘,.
B‘-- = : T : (3.264)
Bt'nc.n...—m Bi‘(.-n...—l).\',‘
Bc'u-.-n... -1 BC'(x—n...-nx,.
B\"lzn.,. -n,jl R INa
=N -

Using these three methods to apply the thermal and displacement plate essential boundary conditions

vields a state-space model that is suitable for open loop control. Note that. while these methods



are mathematically correct. numerically it is best to apply the essential boundary conditions to
Equations (3.225) and (3.209) using methods similar to those presented in this section. multiply the
resulting reduced-order differential equations by the inverse of the reduced-order mass matrices .f[_\‘,‘
and \I—;-' !, respectively. then form the state space system associated with the generalized coordinate
g. This is because the reduced order matrices used in the computations improve the numerical

results. For closed loop control analysis. a sensor model needs to be added.

3.2.6 Sensor Equation

This subsection develops the output equations for the k** piezoelectric sensor. Substitution

of ‘€* = d* 'C'* into Equation (3.2) vields
(D} = id*'C* (2}* = e“(E} - {ptr OF (3.265)

In the plate sensor configuration. charge is only collected in the :-direction. and the applied electric
field {E }k is zero. Introducing these constraints along with Equation (3.12). one can write Equation
(3.263) as

DA = {d}* C'* {}* ~ |p.}F OF (3.266)

Transforming {3}* into {<}*. the Equation (3.266) becomes

k

DE = {d}* IC] (e}* - {p} O (3.267)

[Sagh]

where

[C]k =ctr TR (3.268)

For the case where a temperature gradient exists in the 3-direction (z). Equation (3.267) is modified
to average the temperature over the thickness of the piezoelectric sensor

1

T ke (3.269)
hi

Skt

[RENy

where z;._, and z; are the z distance from the midplane to the bottom and top surfaces of the

sensor and hx = 2 — zx—; is the thickness of the sensor. Substituting Equation (3.37) into Equation

3



(3.260) gives
ANT -1k 1 £
k _ k 0V . L0700\ - kL k
D} = ({d}*) [C] ({£%}+ 2 o)) = e} 1 /z‘_le dz (3.270)
where 20 is the : distance from the midplane of the laminate to the midplane of the k** layer

piezoelectric sensor patch. The closed circuit charge measured through the electrodes of a sensor

patch in the k** layer is {23]

qk=:i-[ / Dtd4| _ - / D¥d4|__, ] (3.271)
2 R =N R S=ESk .

where R is the effective surface electrode. which defines the integration domain where all the points
are covered with surface electrode on both sides of the piezoelectric patch. The electric charge
generated by mechanical strain and temperature changes will be detected only if the charge is
collected through the effective surface electrode. In the present work. it is assumed that the effective
surface electrode is the entire area of the piezoelectric sensor patch. Use of Equation (3.269) in

Equation (3.271) vields
q =/ ({d}) Cl ({2 = 24}y - ) —/ O*d: ) dA (3.272)
R 4 h'\' N -
which can be written as
& AL L i
q =/({d}) |Gl M{atdd - /{ 4 / §*dzdA (3.273)
R LU

where H is an operator matrix defined by

- -

e

H= (3.274)
0 0 % 0 1
00 £ 1 0
2 3 g 08 02
dy oz “k3dy “koz |

. 1k s
Since {d}k. [Cj . and {p3}* are constants. they can be removed from under the integral sign. so

Equation (3.273) can be written as

¢ = {d} /‘H{u}dA {p:} —// ‘e"dsz
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In terms of the finite element model. Equation (3.275) becomes

@ = (1) [¢] Ri@ = ipi T et (3276

where
=\2/ HIN®dA (3.277)
J= '/ hL (3.278)

.-

and {&}k. { }k Nym. and .V, represent the nodal displacements. temperatures. number of me-
chanical finite elements. and number of thermal finite elements associated with the k** sensor patch

respectively. The current associated with the k** sensor patch is given by

k
da (3.279)

In terms of the finite element model. Equation (3.279) becomes

Y S ok
= ({d} ) gr | H{&}‘ - {pzi":/'{e} (3.280)

Solving Equation (3.209) for © and substituting into Equation (3.280) vields
(IR0} - Crar (i) - (Foh)}  3:281)

.1k _ Ty k . = (.
“= (1) 1 ALE} —pot* T { M
In terms of the generalized state variable defined in Equation (3.229). Equations (3.276) and

(3.281) for the k** piezoelectric sensor become

a = {¢"} (3.282)
=t lat) =l T () R (3.283)
where
=] (1) e Y (3.281)
T ({d}) € ® Ouen., {p:b T 2
and

ct = oven, (1) (€] o tpr"7 (30r8)
{3.285)



Using Equations (3.282) and (3.283). an output equation can be added to the linear model given by
Equation (3.237). For the case of N sensors. with both charge and current as measured outputs.

the output equation. {y}. is

{y} =C{q} - {r} (3.236)
where X .
G
c!
C= : (3.287)
C;,V"
C.\\
and
']T
h~}={o e 0 (3.288)
- -V _l e
o= it T (M) {Fol (3.289)

In this formulation. ¢ is treated as sensor noise. Additional outputs. such as the plate center
deflection. can be added to Equation (3.286) by including the appropriate row in the C matrix.

With this formulation the state-space model of the system is
{4h = Algh =B {V} =B {V} = {w) (3.290)

{y} =Clq} ~{v} (3.291)

Once the essential boundary conditions are applied to Equations (3.237) and (3.286). the resulting

state-space model is suitable for control system design and analysis.

3.2.7 Voltage Rate Qutput

To implement the heat generated in a piezoelectric actuator due to the rare of change of the
electric field. we need to determine an expression for the rate of change of the voltage input to the

actuator. since

vy 1.
(3) =2V (3.202)



where h is the actuator thickness and V is the time rate of change of the voltage applied to the
actuator which. in a closed-loop control system, is the voltage computed by the control law. In the
configurations considered in this work. the control voltage is a function of the sensor charge and
current outputs multiplied by their respective feedback gains and summed. Therefore. the time rate
of change of the voltage is a function of the current output multiplied by the charge feedback gain
summed with the time rate of change of the current multiplied by the current feedback gain. The
expression for the current output of the sensor is given by Equation (3.283). The expression for the
time rate of change of the current can be found by taking the derivative with respect to time of

Equation (3.281)

di*

dt ({d}k)r {é}kﬁ{‘:‘}k - {P:}kj{:.\[-r}'l (—11\'1"1 {9} ~Crar. {'2} - {%{})}‘
(3.293)

Using Equation (3.226) to solve for {&}x vields

(8} = (Ml (= Curi {8} - Kui {5 = Fupi (V) = Kuri (0} = (Fuh)} (3234

For a piezoelectric sensor layer. the applied voltage. V. is zero which yields

-k . . v k -
(&) = {[.\1_\,‘1“ (—iCui{u} - (Kai{a} = Kuri{O} + iF.u})} (3.295)



-k .y k
Substitution for {2} and {6} vields

B o () [e] R () (R @ - iCu (3

ot T () Craatt ()T (R (2 = Ot (3))
- (1) (6] A (i)™ Km0
el T (M) Cra® (M) Bur* o)
ot 7 (i) R () iCrl* (i) (3.296)
ot 7 (3) T ()T B (o)
- ({d}i‘)r [é]k 7-2 (;;.»\1_\,}").l {Fat*
et F (M) Cra® (M) Pl
- {pet* T (Mr¥) K (Rl
~tpef* F () {‘%}L
If the plate is exposed to an external thermal heat source. this model requires an estimate of {%ﬁ }

In terms of the generalized state variable defined in Equation (3.229). Equation (3.296) for the k*"

piezoelectric sensor becomes.

T = ey - (1) (e R (net) T R

~ipe T ()T e () R (3.297)

~ptt 7 (Mr) K (Fal®
)

(=

(,‘__ =[1CL Wk 5CE ] (3.298)

~{p:t* 7 (1er*

ar

iCo = (— ({d}")r {C”]kﬁ ([.\I.u}k)-l - {p:}"j({-‘frik)-l Crui® (L‘L\!Ik)-l) Kt
(3.299)
o () @ R ) = o7 () et (1i®) )

~{p:}*J (i-‘-’rik)-l Kri* ({JITE")-[ Cral®
(3.300)



(1) ] A ()™ = ot 7 (30e2) ™ Crart® (30a%) ™) R

Ap T (13ar) " ke ()
(3.301)

To incorporate the voltage rate output into Equation (A.77). Equations (3.287). (3.288). and (3.289)

become

c=| : (3.302)

i T
{v}zl.o S SR IR L_.\w]

I g

= 1pt* T (a¥) R - (1) 6] A (o) (Rt

.

S

-1

¢ 5 {- &\ L. ke f- 3
- {pd T (M%) Cra (Mu*) T (Ful® (3.303)
. = . ok —l, . C
~{pt*J (Mr*) KT (Folt
s e\t [dFo*
~{p:t* T () {—dtﬂ}

3.3 Numerical Results

In the present study. all computations are carried out in double precision on a Micron Mil-
lenium Max 733 MHz Pentium III with 768 MB of RAM using MATLAB V6.1 48]. To verify the

current finite element model two case studies were performed.

1. A model of a simply supported aluminum plate subjected to a thermal impact was analyzed.
The mechanical and steady state thermal responses are compared with the results gener-
ated using the analytical solution developed in Chapter 2. An aluminum plate was chosen

for this study because the mechanical response reaches steady-state much quicker than a
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eraphite/epoxy plate. which reduces the time required to simulate the response to steady-
state. See Figures 2.1 and 2.6 for a comparison of the quasistatic response of an aluminum

and graphite/epoxy plate.

2. A model of a clamped smart plate composed of graphite/epaxy and PZT layers subjected to
a mechanical impulse was analyzed. The open loop and closed loop responses are compared

with the results published in 24!.

3.3.1 Case Study l: Simply Supported Aluminum Plate Subject to a Thermal Shock

To validate the model for the study of coupled thermomechanical problems. a finite element
model of a simply supported aluminum plate was developed using the equations derived in this
chapter. The plate dimensions. mechanical properties. thermal properties (see Table 2.1 for material
properties). and all boundary conditions Equations (2.6) and (2.7)} were the same as those used in
Chaprer 2. Because of biaxial symmetry only a quarter of the plate was analyzed. The quarter plate
was modeled bv a 4 x 4 x 12 mesh (r. y. and : directions. respectively ) resulting in 403 x 405 global
mechanical mass and stiffness matrices. 1053 x 1053 global thermal mass and stiffness matrices. and
thermo-mechanical coupling matrices of consistent dimensional size. To insure that the fully coupled
model contained no spurious right half-plane poles due to lack of numerical precision. mechanical
damping was added to the model using Equation (3.227). For better comparison to the analytical
solution results of Chapter 2, which assumed no material damping, a verv small damping coefficient
« = 0.00001 (0.001%) on all mechanical vibraticn modes was assumed. Applying the mechanical and
thermal essential boundary conditions. and forming the coupled thermo-mechanical model vielded
a state-space sytem with 1504 states. The input to the model was the heat flux at the top of the
plate. and the outputs were the center plate deflection and the temperature at the thermal nodes
at the center of the plate. For better comparison. the analytical solution model used 12 finite
elements in the z direction instead of 24 finite elements as used in Chapter 2. Both models were
subjected to a unit heat flux of 1%. and the mechanical and thermal responses were compared.

Figures 3.4 and 3.5 show a comparison of the vertical displacement (inches) at the center of the
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plate using the two different solution methods. Figure 3.4 indicates that the quasistatic deflection
shows good agreement, and the dynamic response shows good agreement initially but diverges as
time progresses. Figure 3.5 details the response from 0.09 seconds to 0.1 seconds illustrating the
divergence of the responses. Figure 3.6 shows a comparison of the power spectral density of the
two responses compared in Figure 3.4. This plot illustrates that the responses share the same power
spectral density at low frequencies but diverge starting around 2500 Hz, with significant divergence
above 12500 Hz. This is mainly due to the differences between classical plate theory and the 1%
order shear theory used in the finite element model. Figure 3.7 shows a comparison of the change
in temperature (°F) as a function of z at the center of the plate using the two different solution
methods for ¢ = 0.1 seconds. Note that the difference between the two changes in temperature is
nearly constant as a function of z and averages 2.7%. This difference is attributable to the more

accurate modeling of the thermal heat flux in the z and y directions in the finite element model.
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Figure 3.4: Comparison of the analytical and the finite element solutions: plate vertical deflection
(in) per unit heat flux (if'k'&“l’) at the plate center.

81



163220 : . . ‘
\ \

A M\ {\\ {\\ /\\ {7\'

B I H Pt [ P
162f I\ L VL T P T I FEH

i ; i b by s

| . i oy by Co. o
1'51|7§_ : ook Loy iy [ [ p

Do : Lo P o S I
‘I N ‘; i L . )

Lo X i S oo i ! ] B
AR
R O R
€ O P S P £ S !
§189r oo 1
- ' ‘ 1 b \

8 S F T S B SR
- SRR S N -
] R | v Co .
G157 i v i : i
Q : ! i
2 ! Lo P : '
2156 | o : v 1
) ; ! ‘ -','
155'. .ok n.l', . Coge ‘,' . .1
1 i o . l o G ;|
S 4 d A ¥ 4 N)
1541 . — Chapter 2 Modei i i
N i — Finite Slement Model | '
1.53L P . i . I I z -
0.08 0.081 0092 0.093 0.094 0.095 0096 0.097 0.098 0098 0.1

Time (seconds)

Figure 3.5: Comparison of the analytical and the finite element solutions: plate vertical deflection
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Figure 3.6: Comparison of the analytical and the finite element solutions: power spectral density of
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t = 0.1 seconds.

The results presented in Figures 3.4 through 3.7 corroborate the finite element model and the
computer code for the coupled thermomechanical model. The validity of the model for the study of

dynamic vibration control is presented in the next section.

3.3.2 Case Study 2: Clamped Graphite/Epoxy/PZT Smart Plate Subjected to a Mechanical

Impulse

To validate the current model for the study of vibration control. a comparison is made with
the work published by Chandrashekhara and Agarwal [24]. Their work did not include thermoelastic
effects and for comparitive purposes it is ignored in this case study. They analyzed a clamped plate
with collocated sensors and actuators as shown in Figure 3.8. The insulating layer required between
the sensor and actuator was ignored in their analysis as it was in the current work. The plate
was a four layer 0/90/90/0 graphite-epoxy laminate with the lamina mechanical properties listed

in Table 3.1. The piezoceramic mechanical and piezoelectric properties are also listed in Table 3.1.
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The plate dimensions were: @ = b = 0.254 m. 2 = 2.54 x 10~2 m. and the piezoceramic sensor
and actuator dimensions were 0.127 m long, 0.127 m wide and 2.0 x 10™* m thick. The sensors
and actuators were centered on the plate. Due to biaxial symmetry only a quarter of the plate was
analyzed. The quarter plate was modeled by a 4 x 4 finite element mesh which resulted in 405 x 405
global mass and stiffness matrices. To obtain a good comparison with the work published in [24i. a
damping coefficient of = 0.005 (0.5%) on all mechanical vibration modes was assumed. Applying
the mechanical essential boundary conditions. and forming the state-space model. vielded a system
with 576 states. Due to the length of elapsed time since publication (1993), the data used to generate

the figures in {24! were not available for easy comparison.

Table 3.1: Smart Plate Graphite/Epoxy and Piezoceramic Mechanical and Piezoelectric Properties

AS/3501-6 Graphite/Epoxy PZT G1195
Ey 144.23 x 10° Pa I E 63.0 x 10° Pa
E- 9.65 x 10? Pa v 0.28
G12.G13 414 x 10° Pa p 7600 &
Gz 345 x 10° Pa dy.dz | -180-1071% 2
V12 0.3
p 1380.23 k&

The plate was subjected to a uniformly distributed load over the entire surface of the plate for
a duration of 1.6 x 10~ seconds. The magnitude of the load was 2.5 x 10* N/m®. This mechanical
impulse was designed to excite the first mode of the plate. The transient response of the plate
without the piezoceramic sensors and actuators. referred to as the original plate. is shown in Figure
3.9. The transient response of the plate with the piezoceramic sensors and actuators. referred to
as the smart plate. is shown in Figure 3.10. The two responses are different because the mass and
stiffness of the piezoceramic elements are included in the model of the smart plate. Both these
responses compare very favorably with the results shown in Figure 5 of [24|. which is expected as

the mechanical portion of the finite element model developed in this chapter was based on the work
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by Chandrashekhara and Agarwal. Figure 3.11 illustrates the closed-loop response using negative
rate feedback with a gain of 1000 Volts/Ampere (V /A). This response is damped considerably
compared to the response shown in Figure 3.10. but is different than the response for a negative rate
feedback gain of 1000 V / A shown in Figure 6 of 24]. The response compares much more favorably
with the response for a negative rate feedback gain of 300 V / A shown in Figure 6 of [24|. Figure
3.12 illustrates the closed-loop response using positive position feedback with a gain of 4.0 x 108
Volts/Coulomb (V / C). This response differs only slightly from the response shown in Figure 3.10.
and is considerably different from the response for a positive position feedback gain of 4.0 x 106
V' /C shown in Figure 8 of 24]. According to Chandrashekhara and Agarwal. positive pasition
feedback reduces the stiffness. which is expected. and increases damping, which is counter-intuitive.
To test this hypothesis. the closed-loop response with a positive position feedback gain of 4.0 x 107
\'/ C was generated and is illustrated in Figure 3.13. This response displays considerably less plate
stiffness than the response in Figure 3.10. but displays absolutely no damping characteristics. This
indicates that there were errors in the material presented in 24;. Since positive position feedback
reduces stiffness. negative position feedback increases stiffness. To insure that the current model
displays this behavior. the closed-loop response with a negative position feedback gain of 4.0 x 10°
V' / C was generated and is illustrated in Figure 3.14. As expected. this response shows considerably

more stiffness than the response shown in Figure 3.10.



L

1
]
]
|
i
|
[hatind sulndiadhad - cTr e
I i
[} ]
v v
A | A
|
1
1
!
|
T
S
Section

ol = 2
Graphite/Epoxy Plate Sensor Actuator

Figure 3.3: Graphite/Epoxy plate with collocated PZT sensors and actuators. PZT sensors and
actuators are centered on the graphite/epoxy plate and cover % of the plate.

—_——

te Center Displacemen
o

Figure 3.9: Original plate response.

86



i
l
i
i

-1
==
T
—ma2
R
e 2T

= T o i S e e e e
it 1 o — | ko e

160

120

N

- e - o
AEEv.coEooe_%_oBEoosaE

200

140 180

100
Time (msec)

80

Figure 3.10: Smart plate open-loop response.

3r

SANAALANA A

TR e \a o
(ww) ewesedsiq 181U8) 018|d

200

160

120

140 180

100
Time (msec)

80

Figure 3.11: Smart plate closed-loop response using a negative rate feedback gain of 1000 V/A.
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Although there are discrepancies between the closed-loop responses predicted by the finite
element model in this work and the work by Chandreshekhara and Agarwal, the model in this work
displays the correct behavior to negative rate and negative position feedback and is suitable for

closed-loop control studies.

3.4 Summary

A new finite element based method of solving coupled thermo-elastic plate problems has been
developed. This method combines the accuracy and flexibility of solving the thermal portion of the
plate problem using 3—dimensional finite elements with the computationally efficient method of
solving the mechanical portion of the plate problem using 2—dimensional finite elements. This finite
element model has several advantages compared to the model developed by [9] which assumed the

thermal distribution is a cubic function of z:
1. More general thermal boundary conditions can be applied.
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2. [Internal heat sources are easily incorporated.

The main disadvantage is the large number of states required by this modeling technique.
The model was extended to include piezoelectric elements suitable for closed loop vibration control

of plates subjected to mechanical and thermal loads.

90



CHAPTER 4

CONTROLLER DESIGNS

4.1 Introduction

In Chapter 3. a finite element model of a "Smart Plate” was developed that was suitable

for feedback control. Feedback is used in control systems to improve the dynamics of the system

compared to the open loop dynamics. and to reduce the sensitivity of the system to disturbances

and model uncertainty. This chapter presents an overview of some of the issues facing the control

system designers and presents one general method for designing an optimal controller using classical

control analysis techniques. Two design studies are presented to demonstrate this method.

4.2 Control Design Issues

Controls designers are usually faced with competing requirements. imposed on tracking

[ steady-state error and lag). disturbance rejection. and robustness to system uncertainty. Other

issues facing the control svstem designer are:

[TV
.

The impact of anti-aliasing filters required to attenuate higher frequency modes before down-
sampling in digital control systems. This issue has become more important over the last two
decades. As a result of the dramatic improvement and cost effectiveness of digital technology
combined with high order language software. more digital controllers are being used. This

approach also allows more sophisticated controllers to be implemented.

The order of the system (i.e.. number of states) and available outputs can dictate the appli-
cable control design methodologies. LQG is often not feasible because it requires full-state
feedback or a state-estimator must be employed. If there is a significant number of states
requiring estimation. the resulting controller will be of significant order which may not be
practical. Also. the estimator response must be faster than the plant response which may
require large gains to achieve. Systems with large gains are usually sensitive to uncertainty

which limits their use. The applicability of H, optimal design methodology is also impacted
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by the order of the system to be controlled. With this method. the order of the resulting
controller is the order of the plant plus the order of the frequency domain weighting functions
used to manipulate the design. Application of model reduction can reduce the order of the

controller at the expense of optimality.

A major issue with control design is nonlinearities in the plant. There are two major types
of nonlinearites: functional and hard. Functional nonlinearity refers to the fact that the
differential equations governing the dynamics of the plant are nonlinear but continuous and
differentiable. An example of functional nonlinearity is the six-degree-of-freedom equations
describing the motion of a rigid body. A typical approach to handle functional nonlinearities
is to design multiple linear controllers about a collection of trim conditions or operating points.
then interpolate the gains and filters as the system dynamics move between these operating
points. Recent advances in nonlinear control. such as feedback linearization and dymnamic
inversion. have focused on this tvpe of nonlinearity. Hard nonlinearity refers to effects that are
nor continuously differentiable. Examples of hard nonlinearity are: actuator saturation. signal
limiting. backlash. and stiction. Care must be exercised when designing a dynamic controller
(a control system uzth states or integrators) that controls a system with actuator saturation
and/or signal limiting. To avoid lags due to integrator wind-up in the controller when the plant
has saturated or limited a signal. the integrators in the plant should be reset to be consistent

with the saturated/limited signal.

In the current work. item number 2 is the most relevant due to the order of the plate model.

However. piezoelectric actuators are subject to damage if the negative applied electric field is too

large 49i. To avoid this problem. a voltage limiter is placed in the controller to prevent the applied

negative voltage from exceeding the following limit

Viin = Emin ¥ hp (4.1)

where E;y, is the negative applied electric field limit. and h,, is the piezoelectric actuator thickness.

Since only constant gain feedback controllers are designed in this work. this nonlinearity does not
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introduce integrator wind-up issues, but does limit performance.

4.3 Optimal Classical Controller

Classical control theory was developed for single-input single-output (SISO) sytems. Typical
time domain performance measures are rise time. settling time. steady-state error. overshoot with
respect to step inputs, and input signal tracking of arbitrary inputs. Tvpical frequency domain ro-
bustness measures include gain margins. phase margins. and structural mode peak gain attenuation.
Two common design methods are the Root Locus Method and open-loop frequency-domain loop
shaping using lead-lag controller designs. These design methods usually require manually iterating
the controller design and checking it against the performance and robustness requirements. The

proposed design method automates this process through the use of an optimization routine.

1.3.1 Optimal Classical Controller Design Methodology

This section describes a controller design mehodology for designing optimal controllers using
classical control performance and robustness metrics. This method is outlined in the following four

steps.

1. Determine the controller structure and the design parameters to optimize. Typical design

parameters are the control gains and the compensation filter parameters.

"
H

Choose the design metric to optimize. [deally this metric should relate directly to the per-
formance requirements imposed on the system. For example. a hard disk read/write head
is positioned using step responses. so the the systems step response should be optimized. A

metric to optimize the step response is
tr
tmn/ e (t)dt (4.2)
t.

where e (t) is the error between the command and the measured response. This metric penalizes

all errors evenly. A better metric to optimize step responses is

tr
mm/ tie(t)ldt (+.3)
t“
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This metric time weights the errors so inijtial errors have less penalty. and steadyv-state errors
have more penalty. This metric is also well suited to step response optimization of non-

minimum phase systems which exhibit wrong way effects.

Determine the design constraints. These design constraints should follow from the requirements
imposed on the system. Tvpical time domain constraints are rise time (sometimes referred to as
the time constant). settling time. percent overshoot. and steady-state error. For non-minimum
phase systems. the magnitude of the wrong way effect (undershoot) may also be constrained.
Typical frequency domain constraints are gain and phase margins. bandwidth, and peak gain
artenuation. Note that it is possible to include modern control robustness measures such as
the Sandberg-Zames Small Gain Theorem '30]. the sensitivity and complementary semsitivity
function peak gain 51i. the multivariable gain and phase margins developed by Bar-on and

Jonckheere 52! '53i. or Dovle's structured singular value .34]. u. as constraints on the design.

Use a constrained optimization algorithm to iterate the design parameters to get an optimal
control design. There are several classes of optimizers currently available. Two popular classes
of optimization algorithms are gradient based algorithms and genetic algorithms. Gradient
based optimization aigorithms require an initial guess of the solution. If the solution set is
tightly constrained. it may be hard to find an initial guess that satisfies the constraints. and
the gradient based algorithm may not be able to find a solution that satisfies the constraints.
let alone find an optimal solution. Also. gradient based optimizers are subject to getting stuck
in locally optimal solutions instead of finding the globally optimal solution. However. if the
locally optimal solution satisfies all of the design requirements it is still valid. although not
optimal. See Luenberger (33i for a general treatment of gradient based optimization algorithms.
Genetic algorithm based optimizers do not require an initial guess to start. but require the
range of the design parameters to be specified. Genetic algorithms are not prone to getting
stuck in locally optimal solutions as are gradient based algorithms. However. if the solution set

is tightly constrained. genetic algorithm based optimizers will test many solutions that do not
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satisfy the constraints. If each design can be evaluated quickly (i.e.. on the order of a design
per second). then a genetic algorithm will probably vield satisfactory results. See Goldberg
'56] for a general treatment of genetic algorithms applied to search. optimization. and machine

learning.

The following section presents two design studies that use the controller design methaodol-
ogy outlined above to design constant gain feedback controllers for two different “Smart Plate”

applications.

4.4 Design Studies

In this section. two design studies are presented to illustrate the design process outlined in
Section 4.3.2. The first design study was concerned with designing a set of feedback gains for a
clamped graphite/epoxy/PZT smart plate subjected to a mechanical impulse. This studyv compared
feedback gains designed withour consideration of the magnitude of the electric field applied to the
piezoelectric actuators. to two designs that limited the magnitude of the electric field applied to
the actuators. The second design study was concerned with designing a set of feedback gains to
control thermoelastic vibrations induced in a simply supported graphite/epoxy/PZT smart plate by

a thermal impact.

4.4.1 Design Studv 1: Clamped Graphite/Epaxy/PZT Smart Plate Subjected to a Mechanical

Impulse

This design study was concerned with designing a set of feedback gains to minimize the
vibration response of a clamped graphite/epoxy/PZT smart plate subjected to a mechanical impulse.
The graphite/epoxy/PZT smart plate and mechanical impulse used in this study were described in
Section 3.3.2. See Figure 3.10 for the open loop impulse response of the smart plate. Three different
designs were compared. Design 1 usee a linear controller with two different fixed gains: a charge.
or position. feedback gain. K,. and an amperage. or rate. feedback gain. A.. Due to the plate

svmmetry the gains for the top and bottom piezoelectric sensor/actuator pair were the same. The

95



response to be minimized was

J = min w(t)i dt (4.4)

where w(t) is the plate center displacement. A classical SISO frequency domain constraint. the
closest point of approach of the Nyquist plot to the critical point. —1. was used to insure robustness
of the design to model uncertainty. This design parameter, ag. was required to be > 0.6. Figure 4.1
illustrates the linear Simulink (57! model used to simulate the time domain response of the closed
loop system. Figure 4.2 illustrates the linear SISO model used for robustness analysis. Due to
symmetry. only the robustness of the top sensor/actuator feedback loop was checked. Note that
robustness was checked with the bottom sensor/actuator feedback loop closed. This is an example
of one-loop at a time robustness analysis. which is the only method possible with classical SISO

control theory.
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Figure 4.1: Linear Simulink model used to simulate design 1 closed loop response. The thick lines
represent vector signals.
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Figure 4.2: Linear Simulink model used to check robustness of designs 1. 2. and 3.

This design did not limit the electric field strength applied to the actuators. Since PZT can be

depolarized by a strong electric field with polarity opposite to the original poling voltage. this design
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can result in damage to the piezoelectric actuators. Designs 2 and 3 were the same as design 1 except
they limited the negative electric field applied to the actuators to avoid damaging the actuators.
Design 2 limited the negative electric field to > —500;3% and design 3 limited the negative electric
field o > —1000;‘%. which were the lower and upper bounds recommended in the Morgan Matroc
Piezoelectric Ceramic Data Book for Designers (49]. Figure 4.3 illustrates the non-linear Simulink
mode! used to simulate the closed-loop time-domain response of designs 2 and 3. These designs also

used the model shown in Figure 4.2 for robustness analysis.
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Figure 4.3: Non-linear Simulink model used to simulate designs 2 and 3 closed loop response. The
thick lines represent vector signals.

All three designs minimized the cost. J. using Design Optimization Tools ;58i. or DOT. a
gradient based FORTRAN optimizer that utilizes the Modified Feasible Direction Algorithm '39i. A
MATLAB script was used to set up the optimization parameters to call a MATLAB MEX-File :60:
version of DOT. and to simulate the appropriate Simulink model. The initial gains used to start the
optimization process were A, = 4 x 10° € and A, =1 x 10° x. and the upper and lower hounds
on the relative change in the gains were set to 1 x 10'0 and 1 x 10719, respectively. Note that DOT

requires that the constraints be normalized. For these designs. the normalized constraint was

g=1-— {4.5)

Therefore. the constraint is satisfied for g < 0. i.e.. ag > 0.6. Table 4.1 compares the designs after
optimization. and also lists the pertinent performance metrics of the open loop response. This table
contains values for the feedback gains. A, and K. the cost. J. the constraint. g. the maximum

absolute center plate deflection. max 'w (t)|. and the maximum and minimum applied electric fields.
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Table 4.1: Design Study 1 Results

R, K, J g | max |w(t)i max E min £
Design ¥ X mm-ms | NA mm S =
Open-Loop || NA NA 3503 | NA 2.20 NA NA
1 4x107% | L17x10° | 213 | -3 1.17 3.6x10° | —8.6 x 10°
2 4x1073 | 1.88x10°| 238 | -2 1.32 1.58 x 10* | -5 x 10?
3 4x1073 | 1L.72x10° | 259 | -2 1.33 131 x 10% | —1x10°

E. Notice that for all three designs the optimized value for A, was limited by the lower bound
on the relative change in gain. This was a result of optimizing the plate’s impulse response. The
applied pressure impulse excited vibrations but produced near zero average deflection. In this case.
rate feedback was more effective at minimizing J than was position feedback. If the system was
optimized with respect to an input that vielded a non-zero average defiection. say a step response.
the stiffness added by the position feedback gain would help minimize J. As expected. design 1
vielded the lowest cost. A’. gain. and maximum plate deflection. but exceeded the recommended
negative electric field limit by 800%. Designs 2 and 3 had similar cost. maximum deflection. and
maximum positive applied electric fields. but design 2 had a 9.4% larger A’.. This larger gain helped
to offset the additional limiting imposed on the applied negative electric field. Figures 4.4 through
1.8 graphically compare the three designs. Figure 4.4 shows the closed loop response of the center
plate deflection for all three initial designs. Figure 4.5 shows the closed loop response of the center
plate deflection for all three optimal designs. As noted above. this figure demonstrates that design 1
had the best response and designs 2 and 3 were indistinguishable. Comparison of Figures 4.4 and 4.5
illustrates that the optimized design performed significantly better than the initial designs. Figures
4.6 and 4.7 show the applied electric field for the top and bottom actuators. respectively. These
figures illustrate that design 1 drastically exceeded the recommended negative electric field. and
would be unsuitable in any long-term application. Figure 4.8 compares the Power Spectral Density

(PSD) of the three responses illustrated in Figure 4.4. This figure shows that the nonlinear feedback
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controller excited the natural vibration modes more that the linear feedback controller, especially
the second mode. This was the primary reason that designs 2 and 3 had 20% greater cost compared
to design 1. Lastly note that all three designs were not affected by the frequency domain constraint.
Therefore, the optimal K. gains were affected only by the cost. In this case, a larger K, only served
to excite the vibrations which increased the cost. This is shown in Figure 4.9 which compares the
plate center displacement for the optimal design 1 gains, and a design with gains twice as large.
Figure 4.10 compares the PSD of the two responses illustrated in Figure 4.9. This figure shows that

increasing the gains from optimal increased the first and second vibration modes.

2; —_—————
L "= Initial Design 1 _
Pa i — tnitial Design 2 i
,51_{‘ ) : Initial Design 3 &
il :
SR I ‘
n—'l F -
e e
g { ‘ It M o
= el i’i L VT
il ‘
BRI R |
oo H R by SRt
- R R T T A -
g IR A :
8-0.5 r h "‘f V. ° : =
g ] - i
8 : \l' I
L Y T 4
Al , .
Cop |
15+ ¢ .:
: . I
2 5 10 15 20 25 30 35 4 45 0

Time (msec)

Figure 4.4: Center of plate displacement comparison of initial designs 1. 2, and 3.
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4.4.2  Design Study 2: Simplv-Supported Graphite/Epoxy/PZT Smart Plate Subjected to a Thermal

Shock

This design study was concerned with designing a set of feedback gains to minimize the
impulse response of a simply supported graphite/epaxy/PZT smart plate subjected to a thermal
impulse on its top surface. The bottom of the plate was insulated and the temperature at the
boundary of the plate was constant. The plate was initially at rest and at the same temperature as
the boundary. Figure 4.11 illustrates that the sensors and actuators were collocated. The insulating
laver required between the sensor and actuator was ignored in this analysis. The plate was a four-
layer 0/90/90/0 graphite-epoxy laminate with the lamina mechanical properties listed in Table 4.2.
The piezoceramic mechanical and piezoelectric properties are also listed in Table 3.1. Note that
the pyroelectric constant is negative and is relatively large which will result in significant coupling
between the displacement. thermal and electric fields. The plate dimensions were: a = b = 6.0
inches. h = 0.125 inches. the piezoceramic sensors and actuators fully covered the plate. and each

piezoceramic element was 0.015625 inches thick.

Table 4.2: Mechanical and Thermal Properties of a Graphite-Epoxy Lamina

Mechanical Thermal
Elastic Moduli r Conductivities
En | 1972x105% kuy 30.5- 3
Ex.Ep| 1236 x 1082 || kn.ksm 0.392; 8
Gz | 0641x10°%
Poisson’s Ratios Expansion Coefficients
V12 0.278 ay —1.028 x 1078 i;',‘r
vay 0.017 ag.azz | 2.007 x 10752
Density Specific Heat
P 1.763 x 1038 C. 6.917 50
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Table 4.3: Mechanical, Thermal, Piezoelectric, and Pyroelectric Properties of PZT

Mechanical Thermal
Elastic Moduli Conductivities
E 9137 x 1058 || ki kn 1.213:Bre

G 3.568 x 108,

Poisson’s Ratios Expansion Coefficients
v 0.28 au,az2 | 5.00x 1077 %
Density Specific Heat
p | 853x107EE | C, 3.228 B
Piezoelectric Constant Pyroelectric Constant

d31,dza | 9.843 x 10792 P3 -7.168 x 1073 Cx

Section A-A

= Z |
Graphite/Epoxy Plate Sensor Actuator

Figure 4.11: Graphite/Epoxy plate with collocated PZT sensors and actuators. PZT sensors and
actuators fully cover the plate.



Because of biaxial symmetry, only a quarter of the plate was analyzed. The quarter plate was
modeled by a 4 x 4 x 12 mesh (z, y. and z directions, respectively), resulting in 405 x 403 global
mechanical mass and stiffness matrices, 1053 x 1033 global thermal mass and stiffness matrices.
and thermo-mechanical coupling matrices of consistent dimensional size. Mechanical damping with
o = 0.001 (0.1%) was added to all the mechanical vibration modes using Equation (3.227). This

model had 1504 states. 5 inputs. and 9 outputs. The five inputs were:

1. Top of plate uniform heat flux, Btu /s/ in?.

[V
H

Top piezoelectric actuator voltage. V.

3. Bottom piezoelectric actuator voltage. V.

4. Top piezoelectric actuator voltage rate. V /s.

5. Bottom piezoelectric actuator voltage rate. V' 's.

The nine outputs were:

1. Center of plate vertical displacement. in.

"~
H

Top piezoelectric sensor charge. C.

3. Top piezoelectric sensor current. A.

4. Top piezoelectric sensor current rate. A /s.

3. Bottom piezoelectric sensor charge. C.

6. Bottom piezoelectric sensor current. A.

Bottom piezoelectric sensor current rate. A /s.

8. Top center of plate temperature change. °F

9. Bottom center of plate temperature change. °F
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The number of states in this model made it time consuming to simulate the response of the
system to arbitrary inputs. To reduce the number of states in the model, Balanced Model Reduction,
see Appendix A section A.4, was applied to this model. This yielded a system with 789 states. which
required ~ 72% less computation to simulate. To test the validity of the reduced model, a comparison
of the plate response to a thermal impulse was performed. The models were subjected to a uniformly
distributed thermal load over the top surface of the entire plate for a duration of 2.5 x 10~2 seconds.
The magnitude of the pulse was —1 x 103 ;?f? , (positive heat flux was out of the plate). Figures
4.12 through 4.20 show a comparison of the heat flux impulse response of the full state model and
the reduced model. The only signals with significant error (~ 0.1%) was the bottom sensor charge
and bottom center of plate temperature change. All other signals had insignificant errors. Figures
4.21 and 4.22 show a comparison of the singular values for both models. These comparisons indicate
that the reduced state model accurately captured the significant dynamics of the full state model.

and was suitable for controller design.
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Figure 4.12: Top: Comparison of the full state model and the reduced state model plate center
vertical displacement due to a heat flux impulse. Bottom: Difference between the full state model
and the reduced state model plate center vertical displacement due to a heat flux impulse.
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state model and the reduced state model top thermopiezoelectric sensor current rate output due to
a heat flux impulse.

n
=
-
o
a8

[ — Full Model :
| — Reduced Order Made! |

o
-
-'-'
e
[l i

&
¥
'

Charge (C)

IS
T
\

4 ; ) .
0 002 004 006 008 01 012 014 016 018 02
Time (seconds)

‘xlou
!
osk
g
]
: o
=
S
° N4

1
'
i
h
i

45+

|
]
-1 &

002 004 Q06 008 a1 Q12 014 016 018 0.2
Time (seconds)
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This design used a linear controller with four different fixed gains: top actuator charge. or
position. feedback gain. Ap,. top actuator amperage. or rate. feedback gain. A’, bottom actuator
charge. or position, feedback gain. A, bottom actuator amperage. or rate. feedback gain. A's.
A linear controller was acceptable in this case since the feedback voltages were small. Due to the

polarization of the sensors and actuators this model used positive feedback. The response to be

minimized was

0.2
= i tiw(t) dt 4.6
J Kot l\':nf%rn Kph./o lw( )l ( )

where w () is the plate center displacement. The same SISO frequency domain constraint described
in Section 4.4.1. Design Study 1. was applied to the control and voltage rate feedback loops of
this design to insure a robust design. Figure 1.23 shows the linear SISO model used for robustness
analysis. To use this robustness mesasure requires that only one loop be broken. For example. to
check the robustness of loop one in Figure 4.23. close loops two through four and determine aq. To
check the robustness of loop two. close loops. one. three. and four and calculate ag. Repeat this
process to check the robustness of loops three and four. This process is referred to as successive loop
closure. As in Design Study 1. DOT. MATLAB. and Simulink were used to solve the constrained
optimization problem. The initial constant feedback gains used to start the optimization process
were Ape = 4 x 107 &. Ky = 1 x 10% X, Kpp =4 x 107 ¥. and Ky = 1 x 10* . The upper and
lower bounds on the relative change in the gains were set to 1 x 10'® and —1 x 10'°. respectively.
Figure 4.24 illustrates the linear Simulink model used to simulate the time domain response of the
closed loop system. Note that both models incorporated free convective heat loss through the top
surface of the plate. and used a convective heat transfer coefficient. h.. of 3 h—gf“;—l,. {61}. Assuming
that the air surrounding the plate was at the plate inital temperature and that the temperature
change was sinusoidally distributed. the heat loss over the top surface could be appraximated using

the top center of the plate temperature change as

0 = 22 [ [ () n () oy
1h O,
=2
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Table 4.4: Design Study 2 Results

J maxg { max |w(t)| | maxE | minE
Design pin -ms NA uin x £
Open-Loop 1.071 x 10% NA 0.5834 NA NA

Initial Closed-Loop || 3.492 x 10% | —0.6667 22478 13.56 | —19.84

Optimal Closed-Loop {| 2.258 x 10% | —0.4227 0.9758 7.15 -3.38

After optimization. the constant feedback gains were Kj = -4.3532 x 10° %. A, =
9.9796 x 10° ¥. Apy = 44804 x 107 ¥, and K., = 1.0001 x 10* ¥. In this case the top position
feedback gain is negative. which goes against intuition. Table 4.4 compares the open-loop response
(with convective heat loss included), the initial closed-loop response. and the optimized closed-loop
response. This table contains values for the cost. J. the constraint. g. the maximum absolute center
plate deflection. max :w(t)i. and the maximum and minimum applied electric fields. £. Note that
the initial design had a worse cost and significantly worse maximum absolute deflection than the
open-loop design. This was & direct result of the complex interaction of the displacement. electrical.
and thermal fields introduced by the pyroelectric constant. The optimal design had a significantly
better cost than the open-loop design but a worse maximum absolute deflection. This was achieved
by changing the sign on the position feedback gain for the top sensor/actuator pair. The other gains
were not significantly changed. The net result of this design was to balance the thermal and control
moments as time progressed. Figures 4.25 through 4.27 graphically compare the three designs. Fig-
ure 4.25 shows the center plate deflection for all three designs. in which the initial closed-loop design
clearly had the worst response. The open loop response was also bad in that it did not decay very
fast with time. This was a function of the poor conductivity of the graphite/epoxy and PZT. Figure
4.26 illustrates the change in temperature of the top center of the plate. which was dominated by the
heat flux input and the conductive heat loss. The slight difference between the closed-loop responses
and the open loop response was due to the voltage rate coupling. The initial design slightly lowered

the peak temperature change. but added to the temperature as time increased. The optimal design
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slightly increased the peak temperature, but decreased the temperature as time increased. The two
closed-loop designs had opposite effects due to the opposite sign on K. Figure 4.27 illustrates the
change in temperature of the bottom center of the plate. Both closed-loop designs had significantly
more temperature change than the open-loop design, which was because of the coupling between
the voltage rate and the thermal field in the actuator. The voltage rates were oppaosite due to the
opposite direction of deflection between the two designs. Figures 4.28 and 4.29 compare the control
voltages of the two closed-loop designs, which clearly indicates that the two designs used opposite
control voltages to control the plate deflection. This design study clearly indicates that a controller
designed for mechanically induced deflections/vibrations may be unsuitable to control thermally

induced deflections/vibartions.
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Figure 4.25: Comparison of plate center vertical displacement due to a heat flux impulse.
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4.5 Summarv

An approach for designing optimal controllers using classical performance and robustness
measures was presented. This method automates the iterative design process by utilizng constrained
optimization software to find a design that optimizes the required performance metric and meets
the other design requirements by treating them as constraints. This method was demonstrated for
two different smart plate control design problems: (i) a clamped graphite/epoxy/PZT smart plate
subjected to a mechanical impulse. and (ii) a simply-supported graphite/epoxy/PZT smart plate
subjected to a thermal impulse. The latter design study showed that the coupling between the
displacement. electrical. and thermal fields. in a system excited by thermal inputs. can complicate

the feedback control design.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

From the results of the theory and the mathematical simulations described in the previous

chapters, it is reasonalbe to conclude:

L

[V
.

A theoretical solution was developed for the dynamic response of a symmetric. cross-ply.
laminated composite plate subject to a thermal shock. The solution was validated by using it
to determine the response of a homogeneous isotropic plate and comparing it to the response
obtained from a solution derived specifically for homogeneous isotropic plates. Comparing
the solution for the symmetric. cross-ply. laminated composite plate to the solution for an
isotropic plate indicates that they have a very similar form. The main difference is that an
explicit summation in the isotropic solution has been replaced by implied summations resulting

from vector inner product multiplications in the composite solution.

A new finite element based method of solving coupled thermoelastic plate problems was de-
veloped. This method combines the accuracy and flexibility of solving the thermal portion of
the plate problem using three-dimensional finite elements with the computationally efficient
method of solving the mechanical portion of the plate problem using two-dimensional finite
elements. The use of three-dimensional finite elements for the thermal portion of the model
makes it possible to handle general thermal boundary conditions and internal heat sources.
The main disadvantage is the large number of states required by this modeling technique which
translates into more time required to perform simulations. This disadvantage can be partially
overcome by applving advances in model reduction techniques developed by the control sys-
tem theorists and advances in computer technology. which has produced inexpensive personal

computers with sufficient computational horsepower and memory to handle high-order models.

An approach for designing optimal controllers using classical performance and robustness mea-

sures was presented. This method automates the iterative design process by utilizng optimiza-
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tion software to find a design that optimizes the required performance metric and meets the

design requirements.

3.2 Sugsestions for Future Work

Subjects for further research related to the current work include:

1. Develop laboratory experiments to verify the coupled thermoelastic models developed in Chap-
ters 2 and 3. and the smart plate feedback control designs developed in Chapter 4. Refine the

models to account for differences in the experimental and theoretical results.

"~
H

Extend the theoretical solution developed in Chapter 2 to nonsymmetric laminated compasites
which will have bending-extension coupling resuiting in a set of four coupled partial differential
equations. To extend this approach. the r and y boundary conditions must be consistent with

modal expansion techniques.

ad

Apply the coupled thermomechanical finite element model approach developed in Chapter 3

to include

¢ Other plate geometries and shells

¢ Internal heating

¢ Anisotropic material properties. including anisotropic damping
¢ Higher order plate theories

o Higher order thermal theories.

4. Extend the finite element model developed in Chapter 3 to include the differential equations
governing the electric potential. Compare the response of this higher fidelity model to me-
chanical and thermal loads to the response of the model developed in Chapter 3 and the model
developed by Zhou et af ‘9]. This analysis will determine the validity of the assumptions and

modeling approach applied in this work.
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3.

Develop modeling techniques to properly handle large changes in temperature. These tech-
niques will have to account for the non-linearities in the governing thermal equations as well
as the change of the material properties, mechanical. thermal. piezoelectric. and pyroelectric.

with temperature.

Develop smart plate models that include the sensor and actuator dymamics including non-
linear effects such as hysteresis and delays due to viscoelastic effects of the bonding material.
Develop dynamic digital controllers and control system design methods that work with the

non-linear effects incorporated into the smart plate model.
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APPENDIX A

ADDITIONAL DERIVATIONS AND SUPPLEMENTAL MATERIAL

A.l. Derivation of Dimensionless Differential Equations

Plate displacement equation
Fuw dw atw v Pmry Pmyy
— e VD) — — e [T} —— e — i —— A.
Dugm =gy = Do ~m @ ~ o T o 0 (A-D
Plate thermal equation
*T T 0 oT aT
k:ﬁ - A.y-a? - 5— (k;-g;) PCUE—
To:2 [(Que: - @ ) - (Quas - Quay) %] =0 (A2)
Bt[ 11Qr 12Qy 12C@r o0y ) a2 = Ao
where
D = Dya~2Dgs (A.3)
2 N
m = / pd::Zh”al (A4}
-3 1=1
mre = [ (Que: - Quay)(T - Ty) zd (A.3)
mr = [ (Quac~Quay (T - Ty e

subject to the following initial and boundary conditions

au.
w=0: E=O T=T, t=0)
w=0 ?'—12':0 {(r=0.r=a)
I
w=0; ?'—‘2"=0 (y =0. y = b): (A.6)
aT h aT h
kg =0 (z=3) +— =0 (z=-3)

e=ZL =3 -= 2.
\—a q-b 5= h.

AT
rehote =R 120 ot o
" T R2pC, T gh T % gaza?
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where

5 hip; ér- =

i3

toall

"

il
&> -

M=

&

ol

i~l)

H

i
= IO
M«

&

[+

H

A~

il
S
1=
>
ﬁ[\’]<

h {Cut (A.8)

Substitution of the appropriate terms from Equation (A.7) into Equation (4.1) vields

8w 96z OYW
= = K—aé (A.9)
Fw gar W
gw _ 88 OW A.10
5o Bk, 06007 (410
Fuw qa-a> W _
E .
Fu (ko \[gaa®) BW
a2~ \h?pC. k. ) or?
k.ga-a2 PW
s 92—.2 (A.12)
(h25C.)" 0T
62m-r, qh:’ dz ..
2 ’k, d£2 (Qlla: Qr2a,) ©¢dS (A.13)
62m1- qh3 32 3 - z-
e / (Quzcs ~ Qra,) 6 (A.14)
Multiplying the resulting equarion by z2£&— vields
FW FwW FW 1 PW PMpe  PMp, o
Y VoA o N A AR A it § QR il & Y| {A.15)
ae’ Yo%~ iop B ar? | oe o 2
Mre = [7_C3()6¢d¢: Mry = f C4 ) ©¢dg:
_ Dia® _ Dasa?
Ci=p G =3 5 (A.16)
-~ _ B (Qua; QI"Qy h%a® (Qua: Qmna,
Cri =g (T2 -2, gy = o (S0 - 22
B4=£h1(£§££) (A.I7)
m azk.

The initial and boundary conditions for the non-dimensional displacement differential equation be-

come
aw’
W=0 —-= = =0
. =0 ( )
. Fw
W=0 Y =0 (£=0.5=1) (A.13)
;W
W’ = 0 — = 0 =
52 (m=0.n=1)
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Substitution of the appropriate terms from Equation (A.7) into Equation (A4.2) yvields

&FT gh 3%*©
3 ok 9 (A.19)
T _ qh 8°© .
a2 bk o (A.20)
2 (k) - b0, 50 ,
0z \ ’8:) T R A <‘= a;) (A.21)
T _ (qh\(_k:_\9©
at - i‘:: th -,,- ar
= d @ )
- (hﬁ'v) ar (A.22)
NLACI h( ks (q&zaz) W
ator: hzbéu a_!’:: Sa‘ra&z
qa; \ . W
- . 3 A3
(hpcu)“a,—ag- (A.23)
-ﬁ. = h K’: (q&,w) 03“/
_ (480 W ,
- (hpC’va)“aranz (A.24)

multiplying the resulting equation by %;% vields

e e 9 a0 00 2 *n rPw
-_1 ™ - - —— _—"‘-—' '_)" ‘_," = A.g-
oo Ca % (0%) - F-m (e -osy) w
_ h*:pC, o _ RkpC o _ k:pCe
C5 (S) - az‘_tpcv- Cb (S) = bzi:':pc'_. . C, (&) - l.::p_C,_,'
T . . TsQma-a?
Csig) = OSCI.:Q (ar —va1a,): Co(q) = O—fcziT'(VmOz ~ay).
(A.26)

Since the boundary condition at z = 2 is nonzero. the transformations of the variables needs to be

applied to the boundary condition.

9z 7 9z
= k. ﬁ)%—? (A.27)
¢ = q"_%% (4.28)
I = Cm(()%? (A.29)
Ciols) = % (A.30)



The initial and boundary conditions for the non-dimensional thermal differential equation become

1 30 1
o=t (s=3)s F=o (=)

©=0 (¢=0.t=lnp=0n=1) (A.31)

A.2. Derivation of Displacement Inteero-Differential Equation

The simplified coupled non-dimensional differential equation governing the dispiacement of a

plate subject to a thermal impact. Equation (2.17). is repeated here for convenience

2w
dr?

-.iB'w = B / £30°d¢ (A.32)

Substituting Equation (2.23) into Equation { 4.32) yields

EW — . . | oer N
F-J‘B‘H = B‘g,@‘/\{ H, H }dg 1A33)

]
3
o {v
=
——
;’-
+
|
[]
4
'
!\
L
t
g
——rt
@
.

summing over all elements vields

i . 83 (7)
-~ BT = -BF L
{ i1 (7) )
= —B‘F(m:‘_z.il"{ap(Ar)—I}B‘— (A3

T N div’* .
/ exp(A(r—r))Bgd—;dr)
Q 1]
with A . B;. and B, defined in Equatior (2.37). and
_yh [ - A.35
_F - Z 6 Gl T 2{1 2(1-‘-[ TGy (‘ < )
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In Equation (A.33) the negative sign was included so that Equation (4.34) can be written in a form

similar to that of the integro-differential equation (Equation 11) in Kozlov

ﬁ{f— B = -B*/G(,— ~7) di 'd.;fm,—) (A.36)

dr*

where

G(r) = F-exp(A(7)) B (A3
- — 434 =1 4] 99"
d(r) = mn:rZF'A (I —exp (A7) B; (A.38)

A.3. Application of Method of Averaging

This derivation will follow Example 1 in the paper by G. S. Larionov ‘62 Since (G (7 - 7) <

1 the Method of Averaging can be used to solve the integro-differential equation:

_‘[d‘_‘ - 1B = -B*/G(r— £ ——df: i~ dir) (A.39)
Subject to
-
W =0 —d}i, =0 (r=0) (A-40)

To facilitate the solution of this equation. break the integro-differential equation into three parts.

W =07 -Wy-u3 (A41)

where the three parts satisfy the following three differential equations.

EWr . L dWr

d7—.~‘ 84""1 = -B /G(T—.)Fd‘r (A.42)
0

WS i ig* -1

T AR = b AT (&5

2w 434

—dr,—j--,.»{mw; = -— Lexp (A7) By (A.4)

For Equation (A.42) the Method of Averaging vields a solution of the following form.

W (7) =exp(—a;7) 1 cos (A~ — ag) 7) ~ casin ((Ay ~ ag) 7)) (A.13)
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where

a = é{l’-[exp(As)cos(Ms)ds-Bg}

ar = Z‘;-{}"'/:‘exp(.xls)sin(k*/s)ds-3-1} {A.16)
A=

v = B

and ¢, and c; are determined from the initial conditions. Solve the following integral using integration

by parts:

2
/ exp(As)cos (A\ys)ds = .-l"lexp(As)cos(,\ﬁs)l:__o—
0
F.-i'lexp(/ls)(-Af;sin(,\ws})ds
0 > =3
= A'WO—I)-—MA"/ exp (As)sin (Avsjds
(i}
= —.-l"-A*’A'l{A"exp(As)sin(,\ws)i:c:O— {AAD
f A“‘expw)(xf.cos(m))ds}
(i
= —AT = AT {(0-~0) -
:\WA-lfxetp(As)COS(A'rs)ds}
)

= AP - %242 F exp (As) cos (Avs) ds
(1}

Rearranging vields

/ exp(As)cos()‘fas)ds-.-,\zfazA‘z/(xe(p(As)cos(,\-fs)ds = -A"!
0 0
(1—)‘"’-,'2.-‘1'2)/Gt’xp(As)cos(/\-ls)ds = -4t (A.43)
0
which vields
/osexp(As)cos(,\vs)ds = -2
0
= —(A2-x20)7'4 (A.49)
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Sclve the integral in the definition of a; using integration by parts:
i /: exp(As)sin (Ays)ds = A™'exp(As)sin(\vs)|,_, -
/GA"ewp(As) (A~ cos (Avs)) ds
= AH0-0)- AMA! /0 exp (As) cos (As) ds
= —AyA~! {A"exp(.As) cos(/\ws)[’x:o - (A.50)

/J‘ A exp (As)( \1rsin(,\',«s))ds}

= AT AT 0-0)-

A7 AT f exp (As) sin (A~s) ds}
0

= AvAT2 o A2 F exp (As) sin (A~s) ds
0

Rearranging vields

/ exp(.ds)sin(Avs)ds - ,\2-'2A‘2F&W(As)sm(A-.'s)d.e = MA~?
0 B " |
(I-2%2477) / explAsisin (\vs)ds = A~ (A.31)
0
which vields
F exp(Asisin(Mvs)ds = A+ ([ = A?-2472)7" A2
o
= A (A2 -2 (A.52)
Substituting Equationa (4.49) and (A.52) into Equation (A.46) vields
e, = -@F- (A2 =B
..'.’%BG 2 3 -1 ) -
ay = =L—F-(A-4B') B {A.33)
The solution of Equation (4.43) has the form of a constant
Wy =c (A.34)
Substitution into Equation (A.43) vields
0-cuiB = n’:f;; A7'B, (A.53)
G = —F-A7'B, (A.36)
mnw Wy



Wy = —=—F. A™'B, (A57)
mnw w'y
The solution of Equation (A.44) has the form
Wy =cF - (A2 =B ) A exp(Ar) By (A.38)
Substitution into Equation {A.44) yields
2 . 4 - 4B} _
csF - (A + B (A 2B ) Al exp(AT) By, = —— 5F - A7 exp (Ar) B(A.59)
-1 1B* -
aF - AT ep(Ar)B = —— S F - A exp (A7) B(A.60)
4
o = -’:f_? (A.61)
S0
- 18 2 -
nw; = mn-2F (A2 = AB' )7 At exp(An) By
= - 434.,5" (A2 =3B ) exp AT A8, (A.62)
mnx?
Use inititial conditions. Equations (2.43) to determine constants ¢; and c».
W =0 (A.63)
Wi -w30)-"W50 = 0 (A.64)
B.‘ ')
- TF-AT'B - ——F - (A 2Nt AB = 0 (A.63)
TlA .u‘ mnw
solving for c; vields
4 1 4 g2 ipginy-! -1
g = sF-{ == [ =B (A" =B ) Y AT'B
mnvT= wi
4 42 -
= ml—“-{—( 24BN - ..‘B“[}("'*-u.[B“I) A~lB,
92 -1 ,_
= mn_2 4F {-A - AB' - BT} (A2 -sBN) T A7'By
= 2 +F- A (A2 -uiBiI)” A"‘Bl
mnT wl
4 A2 - -1
= Al A QBT ABy (A.66)
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The initial condition on the derivative vields

‘“";i‘_‘o’ = 0 (A.67)
dW (0) W3 (0)
Ll g3 _ Al
dr 0 dr 0 (1.68)
4 a ; - _
—mn'2 ( lA B"I) (A‘)—.d:B"I) ‘31-63(Afw1-a»2, =0 (A.69)
Solving for ¢s vields
. S g 2 4 ‘A -
2= o (BI o )(A 4B (A.70)
For as < A~. and ll%r.A” &« ||B*I|]. c2 can be approximated by
= —iB.‘—F-(AZ— '43"1)-13
= mnw A~ -t !
1B* 2. 4piny!
= mF' (.-t _wlB [) Bl
= 2B F(e-4BN) B (A1)
mnw?ug

Substituting Equations (A.45). {A.57). (A.62). (4.66). and (A.71) into Equation (A.41) yields

. 4 9 ” -
W = exp(-a7) [—mn,“ os ((W2B2 = ap) 7) F- (A2 = 4B )" AB~
" ‘l
1B? -
mn—_z-ysm(( 2-02) )F (A"-.ulB"[) 181] (A.72)
“1
o4
— < F-A"'B, - B F (42 =B explAn) ABy
mnw "'l mnu

Simplifving the above equation yields

1
W= = mn"~'F ({ecp(—ap)L—COs((.u'le"az) T} A~

1B%sin ((wiB? —a2) 7) I] — «}B* A exp (Ar)} (A = BT - (AT

A\ B,
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The above equation can be further simplified by considering

~AB A exp (AT) (A2 + 3B )T = AT [APexp(Ar) - Alexp(AT) -

B exp (AT)] (A2 = BT

A7 A% exp (AT) — exp (A7) x (A7)

(A2 = AB' )] (A2 =3B

Aexp(Ar) (A2 = B )7 - A exp (A7)
Substituting this relationship into the equation for W and rearranging yields

v 4 / 2p2
We = m;.<{exp(—alr)[—cos((u;13 —a2)7T) A

3B%sin ((w3B? ~ ag) 7) I] = Aexp(Ar)} (A =BT -

AN - exp(AT))) By (A.73)

A.4.  Model Reduction bv Balanced Truncation

Consider an n** order stable linear time invariant (LTI) state space system

& = Ar+Bu {A.76)
y = Cr+Du {A.TT)
and suppose the realization of the system is balanced. ie.. its controllability and observability

Gramians are equal and diagonal. Denoting the balanced Gramians by ¥. then this requires that

the Gramians satisfy the following Lvapunov equations

AL -Z4°-BB° = 0 (A.78)

AX-¥A-C°C

I
g

(A.79)

where Equation (A4.78) is the controllability Lyapunov equation and Equation (A.79) is the observ-

ability Lvapunov equation. The system can also be described using the transfer function form
G(s)=C(sI-A)'B+D (A.30)
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or in a more compact notation

Al B
G(s) = . (A81)
C|D
Partition the balanced Gramian as
£ 0
T = (A.32)
0
where
E‘ = diag(m[,l .ﬂg[,z ..... (Ty-[,,‘) (A-SS)
22 = diag (()’.-..1[_,,.i .IT.--zf,,-.,. - ﬂ,\'[“ ) (A.34)
and
T DA DA DO DTppa D DOY {A.33)
where , has multiplicity s,. i = 1.2...... V and s; ~ s9 —--- — sy = n. [f the system is partitioned
in accordance with the partitioning of the Gramian
Au dp| B W
Gis)=1| A9y Am| B i A.86)
¢ G| D
then the truncated system
An | B -
G-(s) = (A8T)
Ci | D

is balanced and asvmprotically stable with the bound on the £.. norm of the error given by

iG(5) = Gr(s)ine S2Oray = Frg = =x). (A.38)

For a proof of Equation (A.88) and an algorithm for obtaining a balanced state space realization
the reader is referred to the text by Zhou et. al. {63]. For a detailed presentation and solutions of

Lvapunov equations. the reader is referred to the text by Horn and Johnson {64].
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A.5. State-Space Solution Method

This section develops an alternate solution to the thermal impact problem solved in Chapter 2.
which will be referred to as the State-Space solution method. The simplified coupled non-dimensional

differential equations governing the thermal impact problem. Equations (2.17) and (2.18), are re-

peated here for convenience

g 2
4 di ~«iB'wW = B! / «300°d¢ (A.39)
a ao* 90" . 5 dW"
& (C,'E_-) - ? - .‘.'59 = J;S? {A.90)

subject to the following initial and boundary conditions

W =0 %—:0; 0" =0 (r=0)
J0° 4 . .1 .
Cra—c— oy (m.n=13.3....) (5—2> (A9

00" . 1
T=0 (=-3)

where the boundary condition at { = % is for a non-dimensional unit heat flux. Applying the finite

element method as outlined in Chapter 2 to Equation (.A4.90) vields

( \ (
2 o |
&: 4
2 2 w2
b~ A{ b =B¢ T (A.92)
. d‘ F.
k éi-..[ / \ e;—l J




Define the following states

Iy

I3

Iy

Tha?2

Ik+3

= 6i,

which allow us to couple Equation (A.39) with Equation (4.92) to vield

(
Iy

where

3 , \
I
I2
¢ =Amn g 2~ Bma
[ =3 )
0 1 [0 0].
-iB* 0 B'F
0
B, A
0

(A.93)

{A94)

(A.95)

(A9T)



For improved computational speed during numerical simulation, the order of Equation (A.94) can
be reduced using the balanced model reduction technique outlined in the previous section [63]. Note
that further reduction in the number of states is possible if the plate is square and the material is

homogenous since symmetry yields

A, = A, (A.98)
B, = 3, (A.99)
C, = C, (A.100)

To obtain the state-space model for the plate. assemble the modal state and input matrices. Apn

and B,,,. respectively. as follows

r h
Ay
A
L= . (A.101)
A‘l
L ]
B
B
B=| 3, (A.102)
Ell

where ii is the highest order mode to be incorporated into the model. To obtain the center plate

deflection as the output of the system define

Tn Ciz Ca Cul (A.103)

B}
mr

ssin () sn () 0~ 0] (a-104
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Other outputs can be obtained such as the non-dimensional temperature at the top center of the

plate through appropriate choice of the C,,, matrix. The complete state-space model is

[
"

Ar - Bg(r) (A.105)

wp = C,t ( A~106)

where § () represents a non-dimensional heat flux and wyq represents the displacement at the center
of the plate. The solution to Equation (.1.1035) is obtained using the variation of parameters method
137! and is given by

r =exp(AT)zxg —/‘; exp(A (7 — 7)) Bqd7 (A.107)

where rg is the initial condition of the state vector given by Equation (A.93). For a general non-
dimensional time varying input. the integral in Equation (A.107) is not solvable analytically and.
therefore. can only be solved numerically. The most common approach to solving the general case
of Equation (.A.103) is to numerically integrate the differential equations instead of using Equation

(A.107). For a constant input g, Equation (4.107) becomes

T =exp(Ar)zg - A lexp (AT) — [1Bg (A.108)
and

wo = C {exp (A7) 1o ~ A™! ‘exp (A7) ~ I{ Bg} (A.109)

where

[ h
exp (A7)
exp (Ao7)
exp(AT)=P exp (A37) pt {A.110)
exp (AxT)

The \, and P are found from the eigenvalue decomposition of A

A=PAP! (A.111)
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A
A2

A= A3 (A.112)

Ax

ph p2 p3 - PN (A.113)

where the A, are the eigenvalues of A and the p, are the associated eigenvectors.

A comparison between the solution obtained by Equation (.4.109) and the solution for the
plate center deflection using the Method of Averaging follows. The solution using Equation (4.109)
was obtained for the graphite-epoxy plate described in Chapter 2. §=1.m.n=1.3..... 17 and
balanced model reduction with a total infinity norm error tolerance of 1 x 10~'? applied to the
svstems defined by An,. Bnn. and Cr, and balanced model reduction with a total infinity norm
error tolerance of 1 x 10~!! applied to the systems defined by A. B. and T. This resulted in a system
with 386 states. Figure A.l shows the comparison of the quasi-static center plate deflection for
time from 0 to 25 seconds for both solutions. Figure A.2 shows the comparison of the center plate
deflection for time from 0 to 0.015 seconds for both solutions. Figure A.3 shows the comparison of
the center plate deflection for time from 25 to 25.015 seconds for both solutions. Note that a small
(7.82 x 10~1%) steady state offset was removed so that the oscillations could be compared. This
offset was due to the error introduced by using fewer modes. 17 vs. 21. and model reduction. This
figure illustrates that the dynamic deflection has the same frequency of oscillation and decay for

both solutions. These figures illustrate that the two solutions compare favorably.

Oue advantage of the State-Space solution method over the Method of Averaging solution
developed in Chapter 2 is that it can handle more general thermal heat flux inputs and does not

require anv additional assumptions.
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Figure A.l: Comparison of Method of Averaging and State-Space solutions: quasistatic deflection

(in) per umnit heat flux (%’;) at the plate center.
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Figure A.2: Comparison of Method of Averaging and State-Space solutions: deflection (in) per unit
heat flux (-!f%’—) at the plate center.
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APPENDIX B

SOURCE CODE

B.l. Overview

This appendix gives a brief description of the files and applications used to perform the
symbolic and numerical computations associated with this work. Due to the volume and length of

the files. all source code for these files is provided on a CD-ROM instead of as a printed listing.

B.2. File And Application Descriptions

This section describes the files and their associated application. This section separates the

files used by the Chapter they are associated with.

B.2..1 Chapter | Files and Applications

There are no files or applications associated with Chapter 1.

B.2..2 Chapter 2 Files and Appiications

The applications associated with the Chapter 2 files are:

l. Compaq Visual Fortran version 6.0: This application is part of the Microsoft Visual
Studio family of compilers. [t was used to develop and compile the FORTRAN (.for) files that
implement the equations in the paper by V. I. Kozlov '12|. The setup for the compiler and
linker for each program is controlled by the associated project files (.dsp). The workspace file

(.dsw) contains one or more project files.

o

MATLAB version 6.1: This application is used for general purpose numerical computation
and data visualization. The MATLAB m-files (.m) are ASCII files (text files) containing code
that can be executed in the MATLAB command window. The MATLAB mat-files are binary

files containing data and the associated MATLAB variable name.

3. Maple V Release 5.1: This application was used for symbolic manipulation. It was used to

check for dimensional consistency in the equations used in the modeling files.
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The files associated with Chapter 2 are:

kozlov.dsw: This workspace file contains the projects associated with the implementation of

the equations found in the work by V. L. Kozlov [12].

alumkozlov.dsp: This project file contains the compiler and linker settings for the FORTRAN

file alumkozlov.for.

alumkozlov.for: This text file contains the FORTRAN source code that implements the

equations governing the response of a square aluminum plate subjected to a thermal shock

derived in {12.

alumdecay.dsp: This project file contains the compiler and linker settings for the FORTRAN

file alumdecay.for.

alumdecay.for: This text file contains the FORTRAN source code to compute the vibration
response decay rate of the aluminum plate analvzed using alumkozlov.for. It utilizes the

response equations coded in alumkozlov.for.

AlumCh2.m: This script m-file implements the solution developed in Chapter 2 for a square

aluminum plate.

AlumCh2Decay.m: This script m-file contains the code to compute the vibration response
decay rate of the aluminum plate analyzed using AlumCh2.m. It utilizes the response equations

developed in Chapter 2.

GrEpCh2.m: This script m-file implements the solution developed in Chapter 2 for a square

0/90/90/0 4 laver graphite-epaxy plate.

GrEpCh2Decay.m: This script m-file contains the code to compute the vibration response
decay rate of the graphite-epaxy plate analyzed using GrEpCh2.m. It utilizes the response

equations developed in Chapter 2.

GenCh2F igs.m: This script m-file generates the figures used in Chapter 2.
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Ch2Figr.m: Where r takes the values from 1 to 9. These script m-files generate the individual

figures in Chapter 2.

Ch2Figr.mat: Where r takes the values from 1 to 9. These mat-files contain the data needed

to generate the figures in Chapter 2.

Ch2Tabl3Alum.m: This script m-file computes the steady-state thermal moments at the

center of the aluminum plate.

Ch2Tabl3GrEp.m: This script m-file computes the steady-state thermal moments ar the

center of the graphite-epoxy plate.

Ch2UnitCheck.msw: Maple file containing commands to check the units on the variables

used in the m-files AlumCh2.m. AlumCh2Decay.m. GrEpCh2.m. and GrEpCh2Decay.m.

B.2..3 Chapter 3 Files and Appiications

[
:

The applications associated with the Chapter 3 files are:

Maple V Release 5.1: [t was used to derive numerically implementable versions of the equa-
tions associated with the finite element mass. stiffness. coupling. input. sensor. and actuator
matrices/vectors derived in Chapter 3. These equations were then output as FORTRAN
source code that was subsequently converted to MATLAB m-file function code used to obtain
the finite element model. This application was also used to check for unit consistency in the

formulas used to construct the finite element model.

MATLAB version 6.1.

The files associated with Chapter 3 are:

FEModelDevelopment.msw: Maple file containing commands to derive equations for the
finite element mass, stiffness. coupling, and input matrices/vectors and FORTRAN source files

implementing equations.
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FEModelDevelopmentExtra.msw: Maple file containing supplemental derivations used to

check validity of Maple commands in FEModelDevelopment.msw.

Ch3UnitCheck.msw: Maple file containing commands to check the units on the variables

used in the m-files associated with the generation of the finite element model.

TwoPointQuadratureTest.mws: This Maple file contains commands to verify the analytic

two point Gauss quadrature formula in 47].

ReddyEx4p10.mws: This Maple file contains commands to verify the solution found in

Example 4.10 of Reddy i46|.

MatrixCheck.txt: This Maple text file was used to verifv the m-file code used to compute
the finite element mass. stiffness. and damping matrices by comparing the results computed

in MATLAB to the results computed numerically in Maple.

AlumSSPlate.m: This is the main script m-file for generating a linear finite element model of
a simply supported aluminum plate with both uniform thermal and uniform pressure loading

on the top surface as inputs. It stores the resulting model in AlumSSPlateModel.mat.

GrEpSSSmartPlate.m: This is the main script m-file for generating a finite element model of
a simply supported orthotropic laminated graphite-epaxy plate with both uniform thermal and
uniform pressure loading on the top surface as inputs. The model also includes a piezoelectric
sensor and actuator pair bonded to the top and bottom surface and the associated inputs and
outputs. It stores the resuiting model in GrEpSSSmartPlateModel.mat. It can also store

data for debugging in the files MechFE.mat and ThermFE.mat.

InitDispFiniteElements.m: This m-file function defines the mechanical finite element mesh
based on the plate dimensions and the number of finite elements in the r and y directions. and

the boundary conditions.

InitThermFiniteElements.m: This m-file function defines the thermal finite element mesh

based on the plate dimensions. the number of finite elements in the z. y. and z directions. the
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14.

16.

17.

13.

19.

actuator and sensor height. and the number of elements in the 2 direction associated with the

piezoelectric sensors and actuators.

AluminumParameters.m: This m-file function defines the mechanical and thermal charac-

teristics of an aluminum plate.

GrEpParameters.m: This m-file function defines the mechanical and thermal characteristics
of a layered graphite-epoxy plate based on the plate height. graphite epoxy layer orientation.

the graphite fiber weight fraction. and the laminate void volume fraction.

PZTParameters.m: This m-file function defines the mechanical, thermal. and piezoelectric

characteristics of PZT. from Zhou et al [9].

SmartPlateParameters.m: This m-file function computes the smart plate parameters based
on the data from GrEpParameters and PZTParameters as well as the piezoelectric actu-

ator and sensor thicknesses.

Stiffness.m: This m-file function computes the plate extensional. coupling. and bending
stiffness coefficients associated with the given reduced stiffness coefficient and the laminate

geometry.

RotateStiffness.m: This m-file function computes the stiffness of a laminate that has been

rotated about the 2 axis.

Inertias.m: This m-file function computes the plate normal. coupling. and rotary inertias

associated with the given laminate density and the laminate thicknesses.

ThermoMechanicalCouplingCoeff.m: This m-file function computes the thermo-mechanical
coupling coefficient matrix. .J. from the stiffness matrix and the thermal expansion coefficient

matrix.
TensorTransform.m: This m-file function performs tensor transformations (rotations).

ThermalMass.m: This file computes the finite element thermal mass matrix.
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30.

ThermalStiffness.m: This m-file function computes the finite element thermal stiffness ma-

trix.

ThemalStiffnessBCzrz.m: Where rz takes on the values x0. xn. v0. and yn. These m-file

functions are used to modify the thermal stiffness matrices of boundasv finite elements.

ThermoMechanicalDamping.m: This m-file function computes the finite element thermo~

mechanical damping coupling matrix.

MechanicalThermoStiffness.m: This m-file function computes the finite element mechanical-

thermal stiffness coupling matrix.

MechanicalStiffness.m: This m-file function computes the finite element mechanical stiffness

martrix.

MechanicalMass.m: This m-file function computes the finite element mechanical mass ma-

trix.

ActuatorInput.m: This m-file function computes the finite element piezoelectric actuator

input vectors associated with the mechanical and thermal differential equations.

ActuatorInput2.m: This m-file function computes the finite element piezoelectric actuator
input vectors associated with the mechanical and thermal differential equations for the case
where the piezoelectric actuator partially covers the area of the mechanical/thermal finite

element.

SensorQutput.m: This m-file function computes the finite element piezoelectric sensor out-

put vectors associated with the mechanical and thermal differential equations.

SensorOutput2.m: This m-file function computes the finite element piezoelectric sensor out-
put vectors associated with the mechanical and thermal differential equations for the case where

the piezoelectric sensor partially covers the area of the mechanical/thermal finite element.
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AddDamping.m: This m-file function computes the global mechanical damping matrix based

on equation (3.227).

AddRayleighDamping.m: This m-file function computes the Rayleigh global mechanical

damping matrix based on the equations in 63}

zout.m: This m-file function replaces small numbers in a matrix with zero. Size of the number

that is considered small can be specified through an input argument.

Ch2VsCh3ModelComparison: This m-file script generates the figures that compare the
Chapter 2 solution to the Chapter 3 solution of the thermal impact of a simply supported

rectangular aluminum plate.

CheckoutMechFE.m: This m-file script is used to debug the mechanical finite element

portion of the coupled thermomechanical model. It uses the data stored in MechFE.mat.

ReddyEx4p10.m: This script m-file is used to validate the mechanical finite element portion
of the coupied thermomechanical model by comparing the piate center vertical deflection to

the results found using the equations in Reddy 46:. Example 4.10.

CheckoutThermFE.m: This m-file script is used to debug the thermal finite element portion

of the coupled thermomechanical model. It uses the data stored in ThermFE.mat.

AlumSSPlateModel.mat: This mat-file contains the simpiv supported aluminum plate

model generated by AlumSSPlate.m.

GrEpSSSmartPlateModel.mat: This mat-file contains the simply supported graphite-

epoxy smart plate model generated by GrEpSSSmartPlate.m.

MechFE.mat: Data for the mecharical finite element portion of the coupled thermomechan-

ical model. Used for debugging.

ThermFE.mat: Data for the thermal finite element portion of the coupled thermomechanical

model. Used for debugging.



45.

46.

47.

49.

OpenLoopResponse.m: This script m-file computes the thermal impulse response of the

model generated by GrEpSSSmartPlate.m.

GrEpSSSmartPlateOL.mat: This mat-file contains thermal impulse response data associ-

ated with the model generated by GrEpSSSmartPlate.m.

ChandraFiniteElementModel.m: This is the main script m-file for generating the finite
element model described by Chandrashekhara and Agarwal [24]. It prompts the user for mat-

file to store the resulting model.

ChandraGrEpParameters.m: This m-file function defines the mechanical characteristics

of AS/3501-6 Graphite/Epaxy and the plate laminate configuration used in [24].

ChandraPZTParameters.m: This m-file function defines the mechanical and piezoelectric

characteristics of PZT G1195, from Chandrashekhara and Agarwal. [24].

ChandraComparison.m: This script m-file generates the figures similar to those presented
in [24]. It uses the data stored in OriginalPlateModel.mat, RateFeedback.mat, and

PositionFeedback.mat.

OriginalPlateModel.mat: This mat-file contains data for the response of the original plate

sans piezoelectric sensors and actuators.

RateFeedback.mat: This mat-file contains data for the open-loop response of the smart

plate and the closed-loop response of the smart plate using rate feedback.

PositionFeedback.mat: This mat-file contains data for the closed-loop response of the smart

plate using position feedback.

B.2..4 Chapter 4 Files and Applications

MATLARB version 6.1 was the only application associated with the Chapter 4 files. The

files associated with Chapter 4 are:
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OptimizeChandrar.m: Where z can be 1. 2. or 3. These script m-files were used to optimize
the three different fixed feedback gain controllers designed in Section 4.4.1. The final design

results were saved in OptimalControllerz.mat.

DOTS500MEX.dll: A MATLAB MEX-file of the FORTRAN Design Optimization Tools

{DOT) optimization routine. Commercial product. not included on CD.

ChandraSmartPlateLinSim.mdl: Simulink model used to compute the time response as-

sociated with design 1 in Section 4.4.1.

ChandraSmartPlateNLSim.mdl: Simulink model used to compute the time response as-

sociated with designs 2 and 3 in Section 4.4.1.

GainIncreaseControllerl.mat: This mat-file contains the performance data associated with
a linear design that uses gains twice as large as the optimal design 1 gains. This data was used
to illustrate that increasing the gains above the optimal values did not improve the impuise

response.

ChandraDesignComparison.m: This script m-file generates the figures that compare the
three different fixed feedback gain controllers designs. It also generates the figures that compare
the optimal design 1 with a design that uses gains twice as big. It uses the data stored in the

mat-files OptimalControllerz.mat and GainIncreaseControlleri.mat.

ModelReductionTest.m: This m-file script is used to develop the reduced state model using
the balanced model reduction technique outlined in Appendix A. The order of the reduced
state model is iterated on until the smallest model that closely matched the full state model
is obtained. The reduced state model is saved in mat-files MRTestr.mat. where r can be 1
through 3. Once a good reduced order model has been created. the mat-file MRTestz.mat.

containing this model is renamed to GrEpSSSmartPlateBRModel.mat.

CompareOLModels.m: This m-file script generates time domain thermal impulse responses

and frequency domain singular value data of the full state model and the reduced state model
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for comparison. It stores the data in CompareOLModels.mat. It uses the models stored in

GrEpSSSmartPlateModel.mat and GrEpSSSmartPlateBRModel.mat.

Ch4ModelComparison.m: This m-file script generates the figures that compare the full

state model to the reduced state model using the data stored in CompareOLModels.mat.

OptimalController.m: This script m-file was used to optimize the fixed feedback gain con-
troller for a graphite/epaxy/PZT smart plate subjected to a thermal impulse. The final design

results are stored in OptimalThermalController.mat.

InitialThermalController.mat: This mat-file contains the thermal impulse response of the

fixed feedback gain controller used as an initial guess for the optimization routine.

DesignComparison.m: This m-file script generates the figures that compare the open-loop

response. the initial feedback gain response. and the optimal feedback gain response.

B.2..5 Chapter 3 Files and Applications

There are no files or applications associated with Chapter 3.

B.2..6  Appendix A Files and Applications

MATLAB version 6.1 was the only application associated with the Appendix A files. The

files associated with Appendix A are:

[ B4
‘

GrEpAppA.m: This script m-file generates the model used in Appendix A. and stores it in

AppAModel.mat.

GenAppAFigs.m: This script m-file generates the figures used in Appendix A.

AppAFigz.m: Where r takes the values from 1 to 3. These script m-files generate the

individual figures in Appendix A.

AppAFigr.mat: Where r takes the values from 1 to 3. These mat-files contain the data

needed to generate the figures in Appendix A.
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5. AppAModel.mat: This mat-file contains the state-space model generated using the method
described in Appendix A. It is used in the AppAFigz.m files to generate the response for the

State-Space solution method described in Appendix A.

B.3. CD-ROM File Structure

The files listed above are stored on the accompanying CD-ROM. The file structure is as fol-
lows: The root directory contains a directory for each chapter, Chapter#, that has files as listed
above. Each chapter directory has subdirectories for the applications that use the files. For example.
the directory Chapter? contains the directories CompaqVF. Maple. and Matlab. The root directory
also contains a directory named DissertationSource which contains the ETgXfiles (including addi-
tional macros and the QU dissertation style) and graphics files used to create this document using
Scientific Word 3.31. Adobe Mlustrator version 7.0 was used to create the graphics files with the file

extension .ai.
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