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ABSTRACT

A new approach for eigenvalue assignment in a linear
time-invariant, deterministic feedback system is presented. The
problem of pole assignment with complete or incomplete state feedback
is investigated. A sufficient condition for placing an r number of
poles using an r number of measurable states is derived. Algorithms
for complete and for incomplete state feedback are developed separately.

The application of dominant eigenvalue assignment for

model simplification is developed.
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DOMINANT EIGENVALUES ASSIGNMENT METHODS

FOR STATE FEEDBACK SYSTEMS
CHAPTER 1
INTRODUCTION

This dissertation presents a new eigenvalue placement procedure
by application of state feedback and system decomposition principle.
The design of feedback controllers eigenvalue placement, for linear
time-invariant multivariable systems has received considerable attention
[1-17]. Anderson and Luenberger [l] have developed an effective method
which transforms the system matrix into companion form. The state
variable feedback may then be easily computed from the difference between
coefficients of the closed loop characteristic polynomial and the open
loop characteristic polynomial. In practice, however, not all the state
variables are measurable, hence an observer is required to provide
complete state feedback [2]. Wonham's method [3] requires conversion of
a multi-input controllable system into a single~-input controllable one.
Heyman [4], and Chen [5] have proposed an improved multi-input controllable
to single-input controllable conversion algorithm separately. Ding and
Pearson [6] have shown that it is possible to obtain eigenvalue assignment
by using a dynamic compensator which requires repeated differentiation
of the input. This method was extended by Brash and Pearson [7] to show

that arbitrary pole assignment may be obtained by adding a compensator



of the order P = min[(Vc-l)(Vo-l)], where Vc and Vo are respectively

the controllability and observability indices of the plant. Similar
results are obtéined by Hse and Chen [9]. These techniques lead to the
design of an augmented system with guarranteed stability. Retallack and
MacFarlane [10] have derived a state feedback pole-shifting algorithm
using HSU~CHEN theorem [8]. Fallside and Seraji [11], and Widodo [12]
used the concept of the return-difference matrix to find the state
feedback matrix. Park and Seborg [13] have shown that it is possible to
assign the eigenvalues of the augmented system, while eliminating steady
state error arising from sustained disturbance by using proportional-inte-
gral state feedback. A new eigenvalue assignment method via singular
perturbation has been shown by Porter and Shenton [14].

However, all the poles of the system do not have to be preassigned
for stabilization purposes. (Jameson [15]) Therefore, a pole assignment
method using incomplete state feedback to assign some of the closed loop
poles was investigated by Davison [16], Sridhar and Lindorff [17].

Davison [16], Sridhar and Lindorff [17] have shown that, for a
completely controllable and completely observable system, the maximum
number of poles that could be assigned using output feedback is equal
to Max (Rank[B], Rank[C])- For this case, an observer is not required.

However, the remaining unassigned eigenvalues will assume any
values. Therefore, even if the open loop system is stable, by applying
output feedback to achieve Max (Rank[B], Rank[C]) pole placement, the
closed loop system might become unstable.

Dominant eigenvalue placement has been investigated for the
purpose of system reduction. Davison [18] has shown how to use a

simplified model, consisting of the dominant eigenvalues of the original



system, to approximate the original system. A more accurate result is
given by Chidambara [19]. Chen's [20] simplification method requires
continued fraction expansion and turncation of the transfer function
matrix. The suboptimal control based on the simplified model has been
developed by Rao and Lamba [21,22]. Suboptimal control has been applied
to the control of power systems using a simplified model by Elangovan
and Kuppuajulu [23].

This dissertation presents a new eigenvalue placement method
which can apply complete or incomplete state feedback to assign real or
complex eigenvalues.

Chapter 2 develops eigenvalue assignment in single variable
systems. An algorithm for placing n eigenvalues with complete state
feedback is developed. The algorithm is then attend to allow placement
of r number of poles using an r number of measurable states. Sufficient
conditions for eigenvalue assignment of incomplete state feedback is
determined.

Chapter 3 is concerned with the multivariable systems. In
parallel with the structure of Chapter 2, algorithms are derived to
assign all or part of the n eigenvalues by using complete or incomplete
state feedback. The sufficient conditions for eigenvalue assignment of
incomplete state feedback is also determined.

In Chapter 4, the eigenvalue assignment method is applied to
model reduction with results compared with those of Childambara's
simplification method [19].

Some numerical examples are given in Appendix to demonstrate

application of the new method.



Related areas of further investigation along with comparative

observation of current effort are presented in the conclusion.



CHAPTER 2
SINGLE VARIABLE SYSTEMS

2.0 INTRODUCTION:

It was shown by Anderson and Luenberger [l1], and by Wonham [2]
that if a linear time-invariant system is controllable, then all the
closed loop poles can be placed at the desired locations by using state
feedback. However, their methods require complete state feedback. In
practice, not all the states are available for feedback. In this Chapter,
a new pole assignment method, from which incomplete state feedback can be
derived, is developed. This is achieved by introducing a non-singular
matrix T to the system equation. A state feedback matrix K is then found
such that TA + TBK = Ac, where Ac = fglé K%; . Acl and Ac2 are compan-

Az 10 An’
respectively. Unlike the incomplete state feedback method proposed by

ion matrices with desired eigenvalues Al, ceny Ar, and A
Davison [16], Sridhar and Lindorff [17], which uses output vector to
assign Max(Rank[B], Rank[C]) poles but let the remaining poles blindly
assuming any values. The new incomplete state feedback method will set

a bound to the remaining poles. The sufficient conditions for incomplete
state feedback is found. A stability criterion is derived from that

sufficient conditions.

2.1 COMPLETE STATE FEEDBACK SYSTEMS

Consider a linear time-invariant controllable system described

by
X = AX + bu (2.1)



where X is an n x 1 state vector.
A is an n x n system matrix.
b is an n x 1 input matrix.
u is a scalar input.
The dynamic equation (2.1) is controllable by assumption; hence
n~1

the set of n x 1 column vectors b, Ab, ... A" b is linear independent.

Consequently, the following set of n x 1 vectors:

n A b
L aq® + 04" = ab+ 3D
2L A" 4 5. = A% + 9.Ab + 3D (2.2)
\ 2 1 2
?
1
14,2 n_ ,n-1 n-2
Q¢ SAC+3 = ATTD + A Th L 0 b

is linearly independent and qualify as a basis of the state space of

(2.1). Observe that
1

n n-1 -9
Ag- = (A" +3,A7 "+ .. 43 LA+3 )b -3D 1
1 2 n
=-3b=-3q" = & ... &9
0
-3
L n
2 _ 1 n_[l 2 n] [1 7]
AQ" =q -3 .4 =19 9 ... q] 0 (2.3)
' 0
! 1]
1
- 1 2 n|] [0
Aqn=qn1~81qn= [q q ... q] 0 ]
1




(2.3) can be rewritten as

(2.4)

A[ql q2 qn]= [ql qz' qn]

9 -2 eee =3

and béqn=l:ql qn_-[ :

-1 A1 2 -
Let p =[q q qn], and let x = PX, then the dynamical equation

(2.1) can be transformed into

X = PAP X + Pbu
o (2.5)
= Ax + bu
f010.. 0
- 0 0 0 .. 0
where A= . s
-an s s e -81
(2.6)
0
S = .
L1
Now introducing state feedback
-1- —
U=V+EKx=v+Kp x=v+Kx 2.7)
where
g=xpt (2.8)

Since the eigenvalues are invariant under equivalence transforma-
tion, the set of eigenvalues of (A + bK) is equal to the set of the eigen-

values of (A + bK). Let the characteristic polynomial of the matrix



(A + bK) with desired eigenvalues be

s"+as™l . +a.
1 n

If K is chosen as

K = (an_an, an—l_an-l’ eo ey al-al) (2 09)
then the state feedback dynamical equation becomes
0 1.. 0 0
. 0 01.. O .
x=1: x+ | " {v (2.10)
-an s e e -al ].

Since the characteristic polynomial of the A matrix in (2.10) is
s® + alSn-1 + ...+ a s it follows that the state feedback equation
(2.10) has the desired eigenvalues.

Note that if any of the states are not available for feedback,
an observer is needed. Therefore, a new pole placement method,
which can apply both complete or incomplete state feedback will be
derived. This is achieved by introducing a non-singular matrix T to

the closed-loop system equation

(A + bK)x + bV (2.11)

X

yielding

77L(TA + TBR)% + BV (2.12)

X

A complete state feedback matrix K can be found so that

TA + TbK = A, (2.13)
where
b1} o0 2.14)
Ac - O'fK_— ? @-



Acl and Ac2 are companion matrices with desired eigenvalues Al’ AZ’ eeey
lr’ and Ar+1’ ooy An’ respectively. Note that Ac is chosen as (2.14)
because that form lends itself to treating an incomplete state feedback.
Most important, the form lends itself to treating the placement of the
selected sub-set of eigenvalues as in the case of dominant eigenvalue

selection.

2.2 THEORY DEVELOPMENT

Let Tc be a linear operator, TC: V +~ V over the complex field

c". Consider V be decomposed into 2 subspaces V. and V, such that

1 2

V= Vl @ V2. Now let Tc be the direct sum of operator Tc and Tc such

1 2

that V1 and V2 are invariant under Tc. That 1is Tclvl - Vl’ Tc2v2 2°

From linear algebra theory ([35], p. 159), it may be readily shown that

>V

the matrix analogue to Tc is the block diagonal matrix Ac, where

s o |erio
c 0 'A |’
c2

and where Ac and Abz are r x r and (n-r) x (n-r) matrices respectively.

1

Since Tc is the direct sum of Tc and TcZ' Then the characteristic

1
polynomial of Tc is the product of characteristic polynomial of Tcl and

Tc2 [35], or det(SI - Acl) det(SI - Ac2) = det(SI - Ac)

where
det(SI - A ) = s" + IR I (2.15)
det(SL - &) = s" T+ 8" v v, (2.16)
and
det(ST -A) =5S"+ a s+ L ta . (2.17)
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If Ac has eigenvalues A AZ’ cesy An, then the decomposition yields a

1’

subset of the Ai's to Acl and the remainder to Ac Note that each set

2.

must retain pair-wise complex conjugate eigenvalues. For convenience, Acl

and Ac2 may be put into companion form. Note that the assigned set of
eigenvalues which determined the characteristic polynomial of Acl and Ac2
directly relate to the elements of Acl and Ac2’ if Acl and Ac2 are

represented in companion form, or

01l0... 0
001... 0
Acl = . and
-3 r . . —3 l
_ (2.18)
0 1o0. 0
0 01. 0
Ac2 = . :
:Bn—r T -Bl

Now let the matrix Af be an n x n matrix over field C™ such that Af is

in companion form with characteristic polynomial identical to Ac’

or

0 10 ... O
0 01l ... 0
=] ° 2.2
Ag : (2.20)
-an -an_l cee —al

Since both matrices Af and Ac have the same characteristic polynomial
then they are similar. ([35], p. 165).
Theorem 2.1

1f A, is a quasi-diagonal matrix over the field C™, and Af is a
companion form matrix over the field Cn, and det(SI -~ Ac) = det(SI - Af),
then there exists a non-singular T over Cn such that Ac = TAf, where all

the eigenvalues of Ac (or Af) must be non-zero.



11

proof:

If T exists, then T = AcAf » Which requires that Af

non~-singular. Thus it is necessary that Af must possess non-zero

be

eigenvalues.

Since Ac and Af are similar, then det(Ac) = det(Af).

1

Therefore, det(T) = det(AcAf- ) = det (Ac) det (Ac-l)

l.

Hence T exists. T is non-singular.

2.3 TRANSFORM ALGORITHM:

Since T = AcAf , where Ac and Af have the form as shown in
(2.14) and (2.20) respectively. By [39], Af“1 can be easily obtained

by inspection as shown below:

- - - N
%=1 -2 A R
a a a a
n n n n
0
-1 _
AT = . . _ . (2.21)
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(2.22)

> N —
o o o 3 o o o O
— 1 1
1| o O o
1 [T |
®© ~—
— § 1_ g1 O © - @
gl o ~ ; © le !
. . . ] . 1 1“—
| . I ¢ o~ . ,_g
D : oo o_a
an © [= JE « T | Mr i ]
[} m J 5 i 1]
= 1] A |
N ! -1 (=]
1—.. rm O—a —OO-ooooﬁB
Bl 8 e et m e e e e g e e = e e e e = = = =
o |© - O (] | i
) -
— o [} .ﬂ 1
- — | -
| ~ o
[N e] [~ 23 -] I - I
| tm !
. - 3 - | gl
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I - e as em wm e e o [ IR Tl L e e e e T T T T
[~ ] | . 1
Il - O - .
] 1 . |
) (=]
_00. R_p 1 o~ |
lllllllllll —
— ] [V
o o o | 3
| I ] ]
[} ~
| (32 }
olno— o
s e e e o ™ [« ] (AR
L . S | gl
|l o 1
!
| )
o . | i
- i U
I1 -
1 2] i (] ]
-~ O ¢+ o | i
o | | ~ )
(] | O
M (%] ] - O 0_ .|_.n_
Y S O * o ] =1 K\ |
[-)] | I} o
tv] — I [
2 ] - . .
) (3 ] o 0
LT Y]




13

The determinant of the matrix T is

n-1
det(T) = (-1)™F °r (1 o )
= .. . o
0 .. 0 . e 0
o ... .. 0
) 1 ... 0
Lo 0 B, B ...B 0
( e e e .0
RN PN e PP P
an n-r -

- 2@ oo
a

n

= 1. (2.22a)

Thus, it has been verified that the determinant of T is equal to 1.



Let 3. = B8

Tij

1l and a

0

= 1.

The inverse of the matrix T is:

-1 -1,-1 -1
T = (A A )T = A
_f \(
il R TR I | e L
001.. 0O Br Br
1 0
* 0 1
-a . =a .
k n 1‘ 0 _ _ 0 ___1_.0
f
= 1 . 0 s e e 0
0. 1 ...0
0. e o o 1
rth
vow| O OO0
9 a ?d
nth r-1 nl
row 2 Br o + ar “3n-r+l

14

The T matrix can be expressed as:

n-rj

(1=1r, 1ci<n-1, 1 £ j £ n).

-9 (i=r’j =l, ¢ s 0y r)-
l=r,j=r+1, ..., n). (2.23)
(i=n,3j=1, ..., r-1)

(i=n,j=1r, ooy n).
R R
) 9 !
T r ,
0 o !
0 o !
1
!
1 o !
Qe e e et - - -
-1 ... 8 4
|
| Bn--r Bn-r n-r
] 1 0 e . 0
1 O 1 .
] . .
] 0 e 1 0
rth : (2.24)
golumn, )
1 1
[ 1
Par-1 Para ! -1

'Bn-r | Bn--r Bn-r Bn—r

r- - -~ - == - -~ == === ==

¢ 1 0 . .. o . 0

I 0 [} 1 . ceve 0 . 0

, 0 0 1., o . 0

1 |

,fg_ fn-r n-r-1 a an-rBl a %n-r

1% 0 B n-r-1 Bpr 1 B

[
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Let Bo = 1, The T'-1 can be written as:

8ij, (i Ar, i=
0, 1=1r,3=
8.
T‘J" (i=r’j=
n-r
anar .

1. | Sta ., (d=n,j-=

Tij ar n-j
an
— = i =
a (i n’J
r
an--r
B Png -y 737
n-r
2
B ’ (l=n’J=
\ n-r

2.4 FEEDBACK MATRIX DETERMINATION:

l’ L

r).

n-1, j =1, ... n).

r+1, ..., n).

1, ..., T-1).

).

r+1, ..., n-1).
n).

Consider now the system equation with state feedback

x = (A + bK)x + bV

where A, b have the form

(0 1 0 ..
0 0 1 .

A= .
{ 4, 9h1

0

0

b= .

= O

(2.25)

(2.26)

(2.27)
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Without changing the system, T may be introduced so that

% = T 1(TA + THK)x + bV (2.28)
The problem now is to find the K matrix so that
TA + TbK = Ac

where Ac has Al’ Az, «.+« A_ as its eigenvalues, let

det(SI - Acl) = (8§ - Xl) ees (S - Ar)
=g +3,s5 1 + 9 (2.29)
l LU r, .
Let the remaining eigenvalues be denoted Ar+l’ cee An.
Let
det(SI - Acz) = (S - Ar+1) eeo (S - An)
n-r n-r-1 -
=S + Bls + ...+ Bn-r’ (2.30)
Let
det (S1I - Af) = det(SI -~ Acl) + det(SI - AcZ)
_ N n~1
=S + als + ... + an. (2.31)
With the 3,'s, Bi's and a,'s known, the matrices A_. and Ac can be found

i i £

as in (2.18) and (2.20). Hence the T matrix can be generated as in

(2.22). Substitute this T matrix into (2.28) and solving for K, then



(2.32)
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a
o~
— .
(= ...u. .
s — <
~ —
© ~ : — lo © @
. b e §
- O J , .
’ - o '
o O . g o o ] -
. e e . e e e —f
v | ;
— - r
S — ! 1
(=}
I O o_P
1= Mmoo o I | - !
o | ~ oo o 1 Y
] ] o | |
.o . ( o
1 | I «Q | | — QO ©O© e o
-] « o ] - «Q _ 1
Lo ! [} ! 1 em e e e e mm e e = o e = o
bR : 5y -
o O % — o o © |
(B I | ~ 1 = 1 ) T )
| - . . 1
I ._.. I ) __u . ._
. 1 .
. o
O . | | o_p \
JUR D U oo = =mfo = - - - o 1_.._
[T B | r [ VI | ~ ~ ~
PE & A BV & w1
T T -2 o T !
- = g e mm e em e e = O O LR YR |
L R | I T | ©
o o . . [
(L | ! |
. * ~—
1 | | I
o~ ~ it
01..r... O ~ _L.
Lo B I
U _1_
—~ O «q ° | - O _n_
_h_ I =
— — — -
+



After multiplication, the left hand side of (2.32) yields

.
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[N

0 . 1 l..lo
0. 0 1..0
‘ 0
______ I _ ... __
_a-q_
Wr.l ... Wr.r ...., Wr.n-1 ar 1
_________________ o
0.1 . 0
o 01 ..
| -Bn_r ss n -Bl
J
r 3
0 0 9
+ T r T (2.33)
I T K 3 %
an_o_mno o n_ _
J
Where 3
r
Wroj = Tr-j-l - —— - (Tr-o = 0’ j = l,
4 T 3+l R ) (2.34)
Comparing the rth row of both sides of (2.32) yields
3, [ -8 . (G =1, ...0)
Wr.j + Ik, = J .
a J 0 (j = r+l, ...n) (2.35)
Next solve (2.35) for kj' . a
3 _E =
. - (—3r+1“j-Wr.J) ar s (3 1, ..., 1)
] a
-Wr.jsg-, (G=r+1, ...m) (2.36)
\ r
With the kj chosen as (2.36), the desired relation TA + TbK = Ac is met.

Now (2.27) can be transformed to its original form
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as

x = T-]'Acx +bY = Ax + bV (2.37)

Since A.f is similar to Ac, then the desired closed loop eigenvalues
Al, AZ’ esey An are still maintained.

The above procedure of finding the feedback matrix K can
be summarized as follows:

(1) Use (2.29), (2.30) and (2.31) to define the matrices

Ac and Af.
(2) Use (2.22) to generate the matrix T.
(3) Use (2.34) to find each Wr.j.

(4) Find every kj as shown in (2.36).

(5) k= [kl, cees kn] is the desired feedback matrix.

2.5 INCOMPLETE STATE FEEDBACK:

In the above section, a complete state feedback is applied
to place n poles at the desired locations. However, in practice, it is
not necessary to preassign all the poles. 1In fact, only some of the
n poles need to be placed at the desired locations. In doing so, not
all the states are needed in feedback. Generally speaking, to place an
r number of poles only a r number of available states is needed in
feedback, provided certain conditions hold. 1In this section, an
incomplete state feedback matrix k and the conditions under which incom-
plete state feedback can be applied will be found.

Consider a linear time-invariant controllable system
described by

x = Ax + bU (2.38)
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and an r number of poles to be assigned, kl, ceny Ar. It is desired
to find an incomplete state feedback matrix k such that with feedback
from an r number of measurable states (i.e. U = Kx + V, where only first
r elements out of n of the K vector have non-zero values) so that the
closed loop system
x = (A + bK)x + bV _ (2.39)

has at least Al, Az, ooy Ar as its eigenvaiues.

The following assumptions are needed before the solution
procedure can be found:

Assumption 1: The number of measurable states is greater than or

equal to the number r.

of (2.14) are

Assumption 2: All the states associated with Acl

measurable.
From the known eigenvalues Al, ceey Ar’ form the character-

istic polynomial as in (2.15):

det(ST - A_)) = (8 = M) -en (S - 1)
=sTra st e L, (2.40)
and let
det(ST - A) =" T+ ps" Ty v, (2.41)

denote the characteristic polynomial of Ac2’ where Bi's are unknown

constants. Next let Sn + ::118“"1 + ... + an denote the characteristic

polynomial of A Then one obtains the following relation:

£

s® + als’“'1 + ouus

PP o r-1 n-r n-r-1
ta = (8 +29,8 t .o+ 3)x (S + B, +B8 )
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Compare the coefficients of the same power of S yields

8, +8; =3
BZ + 81 Bl + 82 = a2

(2.43) can be rewritten as:

Y (
( 1 00 .... 0 10...0
1 |
al al 0 LI Y l
a, 2,9, 1 0 o :
1
a3 83 82 31 0.. |
E . I
: I
= ]
a_ Br ar_l .. 1 0 |
ar+l r . e 1 Q :
. . '
. 0 ;0
1,0
_ée-s Y I O_Sr Erzl_al - -:
& -r+l eee 0 ar cee 81 1 00
. . ( 1 0
. 1 1
. . [
a 0 :
an—l ® e e ar 2r—l| LU )
L n J L Y L] 0 0 r ' L] .

- em e e e o em e = -

. 0
.e 0
.o 0

1

1

(2.43)

J
(2.44)

Following the same procedure as shown in section 2.4, the K matrix can

be found as in (2.36). However, because only the first r states are

available in feedback, it follows that
Kr+l = Kr+2 = .. .= Kn =0
By (2.36), that is the same as

Wre.j =0 (j=r1+l, ..., n)

(2.45)

(2.46)

the above n-r conditions serve as the sufficient conditions that the

placement of r poles using r states for feedback is possible.

Therefore,
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one has the following theorem:
Theorem 2.2:

For a completely controllable system described by (2.38)
together with r eigenvalues ll, Az, - Ar, the sufficient conditions

for placement of r poles using r states for feedback is

ai = qi. (i = l’ so ey n-r) (2.47)
proof:
It is shown above that the sufficient condition for placement

of r poles using r states for feedback is

Wr.j = 03 G=r+1, ..., n)

But from (2.34) and (2.25)

9
. . r
Wr.j = Tr.j-1 - Z_qn-j+l
n
a
Tr.j = -ffliar (2.48)
n

3
Hence Wr.j = O implies Tr.j-1 = ;Eqn_j+l for j =r+1, ..., n. Which
n

is the same as

n-(j-1) r .
a Br a_dn-j+1 (j=r+1l, ..., n)
Therefore
a; =q (i=1, ..., n-r) Q.E.D.
Equation (2.44) can be rewritten as:
1 1
a C11 1 0 B
a C21 ) sz 0 (2.49)
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Where
al = (1, ays ooy an—r)T’
a2 = (an-r+l’ ceey an) T,
B = (1, Bys +ees B T
1 .o
31 1 o.. ...0
Ci1 = | 9 9, 1.0
] N
c

11 is an (n-r+l) x (n-r+l) matrix,
022 is an r x r identity matrix, and

021 is an r x (n-r+l) matrix with forms
[0. .. .0 3
0....0 0 3

21

-

Equation (2.49) can be rewritten as

1
a

a2 =C

Cllﬁ
21F
Using the following relation

det[’é g} = det(M) - det(N)

repeatedly, it may be shown that
det(Cll) =1

Therefore, Cll-l exists.

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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From eq. (2.53) and eq. (2.56)

=11
11 @ (2.57)

(2.57) shows how to find B's coefficients from the known values of d's

B=C¢C

and ai's (i=1, ..., n-r).
The remaining r coefficients of a's can be found as

follows:

2 _ -1
a® = ¢yC, B | (2.58)

The above procedure of finding an incomplete state feedback matrix K is
summarized in the following:
(1) Use (2.29), (2.30) and (2.31) to define
the matrices Ac and Af.
(2) Use (2.57) to solve for Bi’ i1=1, ..., n-¥)
with the aid of (2.47).
(3) Use (2.22) to generate the matrix T.
(4) Find each kj’ (j =1,...,r), with the
aid of (2.36)
(5) K= [kl, ceey kr, 0, 0, ...0] is the
state feedback vector.
It is possible that, using an r number of measurable states to assign an
r number of poles, the closed loop system might become unstable because
the other n-r poles have to meet the n-r conditions defined by (2.47).
Therefore, a criterion to determine the closed loop stability has to be

developed.

The characteristic polynomial of the matrix A_ in (2.20) is

f
D(S) = st + alsn-1 + ... + a - Form the so-called Hurwitz matrix
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a1 a3 as o o s an 0 . . 0
a2 a R 1 0 .« e e
a, a o« . e a, 0. .
A * L] L] .
H 2 13 3 (2.59)
0 S a; ag - . ea
Note that the elements of the diagonal of H are 315 855 ¢.. 2. By
([36], Vol. 2, p. 221; [34] p. 327), it follows that the polynomial
D(S) is a Hurwitz polynomial if the following leading minors of H
Al = a; - .
173
A, = det
2 L} a,
a; 3, ag
A3 = det|1l a, a, (2.60)
. 0 a; a3
A = det H
n
are all positive.
Now, define
A n-r n-r-1
Q(s) =S + qlS + ... + 9y (2.61)
A n-r n-r-1
Dl(S) =S + alS + ... + a - (2.62)

Similarly, Dl(S) is a Hurwitz polynomial if the following determinants
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a, a
A, = det 1 :1
2 l a
. i 2
", n
. al a3 -t eeo0
1 a . an-r-l 0...0
_ 0
An-r = det (2.63)
_0 al . an-r_

are all positive.

Therefore, if Dl(S), or which is identical to Q(S), is a
Hurwitz polynomial, then the first n-r determinants of H defined as
(2.63) are all positive. However, the remaining r coefficients of ai's
(i.e. A bl tte an) are determined by the r eigenvalues to be assigned.
But those r poles can be chosen at any value. Therefore, all the r poles
can be appropriately chosen to have negative real parts such that the

8 b1ttt an together with a a forms a Hurwitz polynomial

1’ LI BN L] n—r
as in (2.20), then the closed loop system is stable.
If the assumption 2 does not hold, one needs the following

assumption:

Assumption 2a: The number of pairs of complex conjugate poles to be

assigned is less than or equal to the number of pairs
of adjoining measurable states.
If the above assumption holds, one can still handle the case
where some of the states in Abl are not measurable and some of the states

in A , are measurable.
c2
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Consider a linear time~invariant controllable system described
by
x = Ax + bU (2.64)
where x = (xl, ey XMy XMyogs ey Ky, Xy 05 cee, xm3)T, n, + m,
+ m, = n. m1 < r and my + m3 2 r. Suppose the first my states are
measurable, the next m, states are not measurable, and the last m, states

3

are again measurable, A state feedback matrix K will be found so that

with state feedback from the first my states and the last m, states,

3

(i.e. U =KX + V, where K = [kl, cens kml, Oy, «o. 0, km

2+1’ ey km3])
the closed loop system
x = (A+ bK)x + bV (2.65)
has Al’ AZ’ cees Ar as its eigenvalues.
First select an my number of eigenvalues out of the r desired
eigenvalues, denoted Al’ 12, et ey Aml. Form the matrices Acl’ Ac2 and
Af as in (2.18) and (2.20) respectively. Then the T matrix can be found

as in (2.23) such that
|
A1, 0_

f
_0 [ Ac2

TAf = Ac =

where Acl is an m1 X m1

Another Tl matrix is found so that

matrix and all the states in A.c are measurable.

1

A 1

T,A , = {-“31- 1.0 -] (2.66)
i
1

where Ac22 is an (rqml) X (r-ml) matrix. Ac21 is an (n-r) x (n-r) matrix,

and all the states in Ac22 are measurable. Now define a n x n matrix P

1'0
pa |-t

i
0| Tl

’



28

where I is an m; X my identity matrix, and Tl is an (n—ml) b4 (n-ml) matrix

defined in (2.66), then

Introduce matrices P and T into (2.65) yielding

e
]

771(TA + TbK)x + bV

L (PTA + PTOLK)x + BV (2.67)

[

Therefore, the problem becomes to find a k matrix such that

A" "o
el _
PTA + PTbK ={ O 'Ac2 1 O (2.68)
T
1 ; ¢c22

where ACl and Acz has () ..Aml) and (lml+l, cees Ar) respectively

2 v

as its eigenvalues.

The matrix K can be found by a procedure similar to that in

section 2.5.



CHAPTER 3
MULTIVARIABLE SYSTEMS
3.0 INTRODUCTION

Instead of considering single input system, this chapter is
devoted to the pole-assignment problem of linear multivariable systems.
Anderson and Luenberger [1] were first to treat this problem. However,
their method sometimes fails to assign pairs of complex conjugate poles.
Wonham [2] suggests a way which introduces state feedback so that the
resulting dynamical equation is controllable by a single component of
input vector V, and then applies the result established for the single
variable systems. However, Wonham's method requires complete state
feedback. When any of the states are not available for feedback, an
observer needs to be constructed.

Therefore, a new pole-assignment method which can apply
complete or incomplete state feedback to assign pairs of complex conjugate
eigenvalues needs to be considered.

In parallel with the structure of Chapter 2, algorithms are
derived to assign all or some of the n poles of the closed loop systems
by applying complete or incomplete state feedback. The sufficient
condition for incomplete state feedback is found. A stability criterion
is established from that condition.

3.1 COMPLETE STATE FEEDBACK

Consider a linear time-invariant system described by

% = Ax + BU (3.1)

29
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where x is an n x 1 state vector.
Uis anm x 1 control input.
A is an n x n system matrix.
B is an n x m input matrix
Since the system is assumed controllable, one could use the tranformation

method in section 2.1 so that A and B have the forms:

(0 1 0 0 )
0 01 .0 ! !
. | |
. | |
. | |
- ] |
B A N S b o e e e - =
-ml 0 |l 0 0 f
-m, 0,0 1 0
- Tl | 1
. O | |
. . If |
"mq i q o _—El' -----------
A=|"~"~"~"77-===~ 1= - =1

| {e

1 | .

| |

] ] .

t I
P
-nl ) | 1 01 0

. | | 1 0 01 O
| ! !

| | 1 .

. | | |
L-ne | 1 |—he... —1'11J

i | ]

o o0 0

0 0. . =«

. L] 1

B =
0 L]
0 L]
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For simplicity, the system described by (3.1) is assumed to

have 2 inputs only. Under this assumption, A and B become

(0 ..1....0 1 )
!
0-.0-10 '
. [
1
-2 e e s e ell
A=|-L-__-_-.=z I and
-m g 1.. 0
t
-m 0 0 1..
1
'.
-] Lf . -f
Lmq 1 4 14
(3.3)
[0 o)
B = : i <« rth row
(1 0
Consider a linear time-invariant controllable system
x = Ax + BU (3.4)

where A and B have the forms as in (3.3) and an n number of eigenvalues
Al, AZ’ ceey An' The problem in this section is to find a state feedback
matrix K so that with U = Kx + V, the closed loop system

x = (A + BK)x + BV (3.5)

has Al’ ceey An as its eigenvalues.

3.2 THEORY DEVELOPMENT

Let Tc be a linear operator, TC:V +> V over the complex field

of Cn. Consider V be decomposed into 2 subspace V1 and V2 such that

V=v,@V,. NowletT = Tcl®Tc2 such that T_,V, +V

11 1 Tc vV, = V_.

2°2 2
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From linear algebra theory [35] it may be readily shown that the matrix
analogue to Tc is the block diagonal matrix Ac’ where

Aal o
A= 1012
¢ c2

and where Acl and AcZ are r x ¥ and (n-r) x (n-r) matrices respectively.
Since T = Tcl(:)Tcz, then the characteristic polynomial of T, is the

product of the characteristic polynomial of Tcl and Tcz.[35]. or

det(SI - Acl) . det(SI - Ac2) = det(SI - Ab)’ where
[ s-1
- = + * o6 3.6
det(SI - A,,) = § +1;8 +r (3.6)
det(SI - A,) =S +a;8 oo tag (3.7)

If Ac has eigenvalues Al, cees An’ then the decomposition yields
a subset of the Ai's to Acl and the remainder to Acz' Note that each set
must retain pair-wise complex conjugate eigenvalues. For convenience,

Ac1 and ACZ may be put into companion form. Note that the assigned set

of eigenvalues determined the characteristic polynomial of Acl and Ac2
directly relate to the elements of Acl and Ac2 are represented in
companion form or
[ 1 ... ]
0o 1..
Acl = ?
:—rs . . . -I'lJ
(3.8)
(0 )
0 1
Ac2 -
_a -
L p al‘
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Let the matrix Af be a quasi-diagonal matrix over the field c" such that

A < b1l 0
£~ WM&

£2

when Afl and Af2 are (r x r) and (n - r) x (n - r) matrices with forms

([0 1.... 0)
0 0 1... 0
Afl = N ’
L-ar ... '31‘
(3.9)
[ 1 0...0)
o 1. 0
Agy =
L"‘gq * e . S _glJ
and
(an... 0. . .0 )
—m2 0 .
M=

11} 0 ¢ e 00
. 4 )

is an (n - r) x r matrix, where det(SI - Af) = det(SI - Ac), that is
det(SI - Afl) det(SI - Afz) = det(SI - Acl)-det(SI - AcZ)' Since both
Af and Ac have the same characteristic polynomial, then they are

similar. [35]
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Theorem 3.1

If Ac and Af are quasi-diagonal matrices over the field Cn,
A.c and Af have the form as (3.8) and (3.9) respectively, and
det(SI - Ac) = det(SI - Af), then there exists a non-singular matrix T
over Cn such that TAf = Ac where all the eigenvalues of Ac (or Af) must
be non-zero.

proof:

If T exists, then T = AhAf-l, which requires that A_ be

f
non-singular. Thus it is necessary that Af must possess non-zero

eigenvalues.
Since matrices Ac and Af are similar, then det(Ac) = det(Af).
Therefore, det T = det(AcAf_l) = det(Ac) det(Af_l) = det(Ac) det(Ac-l) =1,

Hence T exists. T is non-singular.

QDE.D.
Since
T=a4a"1 (3.10)
cf *
and
-1
-1 %10 ] 4 0
A"t = = (3.11)
£ W A, o Ly L, 1
7 e 2 N 7
(8q-1  Bq2 . . . P11
gq 8q 8¢ B
—l 1 O e s o @
Afl - 0 1 .. .. 0 (3.12)
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r- - - \

1 . 7

-1 % % % %
By = |1 0o ... 0 o0 (3.13)

0 1 ...0 o0

Lo . ... 1 0

Substituting (3.13) (3.12) into (3.11) yields

r )
-9__, {q-1 M__ M -9_ , q-1 M M
_az_lz 1,4 a_raz _&-_i+_&_,,__1§_ +
r i=1 gq gq r i=1 gq gq T
ar-l r-2 fl_
13 L) L )
T r r
9 9 m
- —1_ r-l 1’—2 . . . 2
“Ago lMAfl = N W 7
T r r
* m
ar_l q-1
mq 5 . o . ar
L r J
(3.14)

Substituting (3.12) (3.13) and (3.14) into (3.11l) and multiplying out

the right hand side of (3.10). Let Bo = 0, 30 - 1, and S-r = e.

Equation (3.10) yields
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Gi'j (i = l, s e r"‘l, j = l, ce ey n)
Tr.r+d = —0 < (1=r,d=1, ... q
g
q
-1 9 M8,
Tr.r:-a—l-z _gj__d_ (i:j:r)
r a=1 Bq
Tr.r ar-j i=1r,j=1, ..., r=1)
-Md
Tr+d.j = - 9 (d=1, ..., e-l, j=1, ..., )
r
8i.j (i=1r+l, ..., 8-1, j = r+l, ..., n)
T
Ts.n = —= (1 =s, j =n)
g
q
Bq-d
Ts.r+d = -r + 2= (1=s,d=1, ..., e-1)
e—d g e
q
Te
TS.S""d = g ¢ - (i = 8, d = 0’ ey p_l)
p-d g
q
Ts.j = -rs~j + Ts.r - ar—j (i=s,3=1, «v., r-1)
Ts+d.j = :l-M + 9 (d=1, ..., n-s=-1, 3 =1
'J a e+d r—j 9 ’ bl ]
r cees T)
Gicj (i = S+l, ey n_l’ j = r+1, e ey n)
Tn.s+d = -ap-d (i=n,d=1, ..., p)
1 Pl
Tn.r=-— I M, a (1=n, j=r1)
Br d=1 d+e p-d
Tn.r o ar—j (i=n,3j=1, ..., r=1)
0 (i=n, j=r1+l, ..., s-1)

(3.15)
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3.3 FEEDBACK MATRIX DETERMINATION:

Consider now the system equation with state feedback

x = (A + BK)x + BV (3.16)

where A and B have the following forms:

(0 1 ...0 )
0 0 1..0
-e -e
A= B and,
-my 0 1 ...0
. 0 0 1..0
-f ~f
\ﬂmg g 1)
K 0 )
0
B = 1 (3.17)
L] 0
0 .
\1 OJ
Without changing the system, T may be introduced so that
% =T L (TA + TBK)x + BV (3.18)
The problem is to find the K matrix so that
TA + TBK = A (3.19)

[

where Ac has Al, ceny An as desired eigenvalues for the closed loop
system.
Select an s number of eigenvalues from n desired eigenvalues,

denoted 11, cevy ks.

Let det(SI - A, (S =) «n (8 =1

8 s-1
S” + rls + ...+ r, (3.20)

1



Let

det(SI - A
c

Also, select an r number of

.3

2)

denoted Al,..., Ar.
Let
det(SI - Afl) = (S
=S“r
det(SI -~ Afz) = (S
=gl

1
With ri S, ai

's, gi's and A,

(s -2

+

8

stl

1

) eee (S =)

=sP+asPly . +a

Substituting this T matrix into (3.18) yields

1 0 ... 0
0 1 ...0
0 ... 1 0

Tn.l .. Tn.n

P

eigenvalues from n desired eigenvalues,

1 1fo 1..
) 0 01.
I « s
] - 1
.o Tr.s [ . _Tf.g -, 0 1
1 % e 0 0 L] 0 0
0 ceese O : . .
O eeee 1L O ___v_____ ) ’
cees Ts.s o] Ts.n * ‘
io".T. " 0"
0 1: .
""" TNeS .+2e. 1To.n-1 0 {|-m -£ ..
__________________ ,_____{ q q
0 0)(k,....k [0 1...0 )
R 0 01..0
: l = .
c -r -r
1 0flk,, ...k s 1
21" 2n —m, 0 1 0 ..0
* o 0 1 LN 2 0
-m a -a
L q P 1

(3.21)

(3.22)

(3.23)

's known, the T matrix can be found as (3.15).

(3.24)
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After multiplication, (3.26) can be rewritten as

ro l ...0 I ] N\
0 0 1..0 ! |
. I i
. | |
We.lm T Wr.r TW;.§+I . ﬁr?s": ------ Wr.n
01 o !
IO 0 1 )
e e L - - - - =
Ws.1 Ws.r | T T Ws.s “Ws.n
________ U U
, 0717 .00
' 0 0 1..0
i
{ : :Wn s+l ... Wn.n
(oo
_Tf'f ) Er;r_ kll cees kln
+ 0 0
_______ P
_TIs.n _ TIs.r_
LO Tn.rJ
(0 1 0 o, )
0 0 1... 0 1
|
LN N l
-rs ceee -rl:
B = R i (3.25)
. 1t 0 0 1..
[ ] l
l- Y] -
o, ! a, all
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Where
( q
-2 Tr.x+td M, -« Tr.r e (i=1r, j=1)
d r
d=1
Tr.j-1 - Tr.r er-j+1 (i=1r,j=2, ..., £r=-1)
Wr.r+d = Tr.n fq_d+1 + Tr.r+d-1 il=r,d=1, ..., qQ
q
-Ts.r e_-I Ts.std M (1=s,j=1)
T d
d=1
Wi.j = Ts.j~1 - Tr.r er+l—j (i=s8,j=2, «.., 1)
Ws.r+d+1l = -Ts.r+d - Ts.n fq—d (i=s,d=1, ..., q-1)
-Ts.nfq (i1 =35, j=rtl)
e-1
-Tn.r - Z_ Tn.s+d Mq—e+d (i=n, j=1
d=0
0 (1=n, =2, ..., 8)
Tn.s+d-1 (i=n,d=s+l, ..., n)
\
(3.26)
By comparing the elements on both sides, one obtains:
. _ {0 j¥r+1
Wr.j + Tr.nkl.j + Tr.rkz'j [1 j=r+1 (3.27)
. -r - i=1, ..., 8
Ws.j + Ts'nkl.j + Ts.rkz.j - {0 s+r-j j = sl,....n
(3.28)
and
Wn.std + Tn.rk d=1, ..., p (3.29)

21s+d | op+d-1
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Solving (3.27), 3.28) and (3.29) for k yields

5 Tr.r + Tr.rWs.j - Ts.rWr.j
=i+l r + Tr.rWs.j Ts.rWr.j L i=1, ..., s-1

Ts.rTr.n - Tr.rTs.n

kl . - | -Tr.r [Wn.s| _Wr.s ~
.J Tr’n Tn‘r Tron j =8
* _ Tr.r(?p_d+l + Wn.s+d) _ Wr.s+d (d - )
l.s+d Tn.r Tr.n Tr.n = s sseyP
and L (3.30)
[ r Tr.n + Tr.nWs.j - Ts.nWr.j
s=f+1 . 4
Tr.rTs.n - Tr.nTs.T J 3 sse5 S
-Wn.s o
k,. = Tn.r ] ] (3.31)

- Wn.s+d

-a
_ TPpti-a
k2.s+d Tn.r Tr.n

(s
(]

1, ..., P

Therefore, with the k chosen as (3.30) and (3.31), the desired relation-
ship TA + TBK = Ac is met, so the closed loop system has Al’ ceey An as
its eigenvalues.

The above procedure of finding the matrix K can be summarized
as follows:

1. Define matrices Ac and Af as in (3.8) and (3.9).

2. Find the matrix T as in (3.15).

3. TFind each Wi.j as in (3.26).

4. Use (3.30) and (3.31) to find kl i and k2 j respectively.
k LN ] * *
11 In

5. k=
k21 "'k2n

is the state feedback matrix.
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3.4 INCOMPLETE STATE FEEDBACK

In the previous section, a complete state feedback matrix is
applied to placed n poles at the desired locations. However, in practice,
only some of the poles need to be placed at the desired locations.
Therefore, an incomplete state feedback matrix K will be found so that
an s number of poles could be preassigned by using feedback from an s
number of states.

Consider a linear time-invariant controllable system described
by

x = Ax + BU (3.32)
and an s number of eigenvalues Al’ ooy As. The problem in this section
is to find a state feedback matrix K such that with feedback from an s
number of measurable states (i.e. U = [Kl,0]x'+ V, where K1 is an 2 x S

matrix), the closed loop system

x = (A + BK)x + BV (3.33)
has Al, ceny ks as its eigenvalues.
The following assumptions are needed before the solution pro-

cedure can be found.

Assumption 3-1: The number of measurable states is greater than or

equal to the number s. (s > 1)

Assumption 3-2: All the states in Acl of (3.7) are measurable.

From the known eigenvalues_kl, AZ’ e ey AS, form the character-

istic polynomial

det(SI - Acl) (s - Al) ... (8 fjks)

s r-1
S + rls + ... + L (3.34)
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and let

- = gP p-1
det (SI Acz) s + alS + ... + ap (3.35)

denote the characteristic polynomial of Ac2’ where Bys sees ap are
unknown constants.

Choose an r number of the s eigenvalues and let it be denoted

As eees .. Form the characteristic polynomial of Ay, as in (3.9)
r r-1
=S + als + ... + Br (3.36)
Also let
- = g4 q-1
det(SI Afz) ST + ng + ...+ gq (3.37)

denote the characteristic polynomial of Afz’ where Bps +reo gq are

unknown constants that must satisfy

det(SI - A ;) « det(SI - A_,) = det(SI = A,;) - det(SI - Agy)
(3.38)

Since Af is similar to Ac, then the desired closed loop eigenvalues
Al, ceey As are still maintained. Following the same procedure as in
Section 3.1, the state feedback matrix K can be found as in (3.30).
However, because only the first s states are available for feedback,

it is necessary that

Kigra = 0 (1=1,24d=1, ..., n-s) (3.39)
This implies
Tr.r(ap_d+1 + Wn.s+d)  Wr.std _ 0o @-1 » (3.40)
Tn.r Tr.n Tr.n > o

(3.39) and (3.40) can be further reduced to

Wr.st+d = 0 (d=1, ..., p) (3.41)
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3 gy T MRS =0 (d=1, ..., p) (3.42)
By (3.15) and (3.26), it follows that
ap_d+l + Wn.s+d = 0 (d=1, ..., p) (3.43)

Hence (3.42) is an identity equation. Therefore (3.41) and (3.42)

reduced to (3.41) only. That is
Wr.s+d = 0 (d=1, ..., P) (3.44)

The above p = n-s number of conditions gserve as the sufficient conditions
that the placement of s poles using s states for feedback is possible.
Therefore, one obtains the following:
Theorem 3.2

For a completely controllable system described by (3.32),
together with s eigenvalues Al, ceey AS, the sufficient condition for

the placement of s poles using s states for feedback is
fi = gi (i = l, e s 0y q-E) (3045)

Note that theorem (3.2) is a generalization of theorem (2.2). Follow-
ing the same procedure as in section 2.4, an equation may be obtained
so that the remaining e coefficients of gi's can be determined from
the known values of fi's (1i=1, ..., q=e).

The above procedure of using an s number of states to assign
an s number of poles is summarized as follows:

1. Define matrix Ac and Af as in (3.8) and (3.9).

2. Solve (3.45) for 84 (i=1, ..., g-e). The

remaining e coefficients can be found by using (2.58).
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3. Find the matrix T as in (3.15).

4. Use (3.30) and (3.31) to find k and k, . for j =1,

1.j 2.3
...’ S.

kll e kls, 0, ...0

5. k = kzl’ oo kz , 0, ...0 is the state feedback matrix.

It is possible that, using an s number of states to assign an s
number of poles, the closed loop system might become unstable because
the remaining n-s poles have to meet n-s conditions shown in (3.48).
Therefore, a criterion to determine the closed loop system's stability

has to be considered.

ne>
[=]
1
(6]

Define Q(S) =S + £.8 + ...+ f (3.46)

>
=]
|
)
=]
1
@
|
=

D(8) (3.47)

Following the same procedure as in section 2.4, one may show
that the closed loop system can be stabilized if Q(S) or D(S) is a
Hurwitz polynomial.

If the assumption 3-2 does not hold, the following assumption is

needed:

Assumption 3-2-a: The number of pairs of complex conjugate poles to

be assigned is less than or equal to the number of
pairs of adjoining measurable states.
With the above assumption holds, one can still handle the case
where some of the states in Ahl are not measurable and some of the states

in A are measurable.
c2

Consider a linear time-invariant controllable system

x = Ax + BU (3.48)
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= T
where X = (xl, e Xo» xm1+1, sees Xy, xm2+l, ceny xm3) ,

= >
m1 + m2 + m3 n, ml < s and m1 + m3 2 s.

For simplicity, suppose the first m,

next m2 states are unmeasurable, and the last m3 states are again

states are measurable, the

measurable. One can use the procedure similar to that in section 2.4
to find a state feedback K such that with state feedback from the first

m, states and the last m, states,

1
i.e. U=Kzx +V,
kHﬁ"‘Hm ’0'°'0’Hm+1’ “'klm
k = 1 . 2 . 3
Kois oos k » 0 ... 0, s cos
21 2m1 2m2+l 2 g
the closed loop system
x = (A + BK)x + BV (3.49)

has Al’ cees AS as its eigenvalues.




CHAPTER 4

APPLICATION

4.0 INTRODUCTION

In this Chapter, the eigenvalue assignment method is applied
to dynamic model reduction. The results are compared with those of
Chidambara's simplification method [19]. It is found that both methods
yield the same system matrix. However, the input matrices are slightly
different. A review of Chidambara's simplification method is shown in
section 4.1 and in the same section, Rao's [21] notations are used for
all equations. A simplification procedure based on the decomposition
approach is derived in section 4.2. The application of the decomposition
method to the suboptimal control is presented, with examples, in

section 4.3 to provide a comparison to Chidambara's approach.

4.1 REVIEW OF CHIDAMBARA'S SIMPLIFICATION TECHNIQUE

Consider a linear time-invariant system described by

A 22 (B2 B,
- ,% + | v (4.1)
2 21 “22] 1*2 2

which may be written as

e

x = Ax + BU 4.2)
where x is an n vector and U is an m vector. The matrices A and B are
of order (n x n) and (nx m), respectively. The vector Xy contains r

elements of the state vector that are to be retained in the simplified

model.
47



48

Let X = Mz (4.3)

where M is the modal matrix of A. Then

z =Hz + LU (4.4)
where -1

H=M AM (4.5)
and -1

L=M'B "4.6)

If A has distinct eigenvalues,

0 LA 0
A

1
2 °° (4.7)

o.. o »

one may arrange the eigenvalues such that

lel < IAZI < el A (4.8)

ol

Since (4.4) can be rewritten as

2 H, O z L
1 1 1 1

él and éz can be put as

z, lel + LlU (4.10)

z,y szz + L2U (4.11)

Where zy is an r x 1 vector, and z, is an (n-r) x 1 vector.
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_1{

L, is the top r x m submatrix of n 3.
L2 is the bottom (n - r) x m submatrix of mnlB.
By taking the Laplace transform of both sides of (4.11) with an initial

condition of zero, one obtains:

z, () = (ST = K™ L,U(s) (4.12)
-, 11, LU(s) (4.13)
Hence z,(t) = -H,71L, U(t) (4.14)

Eq.(4.3) can be rewritten as
Y R T P A E
X T M M z (4.15)
2 21 22 2

X, Mllzl + MlZZZ (4.16)

that is

X, Mlel + M2222 (4.17)

Solving (4.16) for z,» one obtains

oyt -
z, = M11 X Mll lMlzz2 (4.18)

By substituting (4.18) and (4.14) into (4.17)

_ -1
xy = My M, xy - My, - MyMy, l“lz)H (4.19)

Substitution of (4.19) into (4.1) yields a simplified model represented
by:

2. = .2
Xy Fxl + GU (4.21)
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where -1

Ay + A M, M (4.22)

r
|

and 1M -1
G =By - [A My, = AL MM, M,IH,) L, (4.23)

4.2 SIMPLIFICATION BASED ON DECOMPOSITION METHOD

Consider a linear time-invariant controllable system described

by
t = Ax + BU (4.24)

It is noted that, without loss of generality, one can assume A, B to

have the form as (3.4) and (3.5).

Suppose Al’ AZ’ ce ey An are the eigenvalues of A and they are

selected in such a way that

< Iy ] < vees ]

Let
det(SI - Acl) = (S - ll) eee (8 = Xr)
_ r- l
= S + BlS ces ar (4.25)
det(SI - Acz) = (S - Xr+l) ..(S - An)
n-r n-r-1
=8 + Bls + ... + Bn-r (4.26)

fl

Also assume |hi| << |Aj|, i{=1, eeey r3 j =1r+tl, ..., n. By theorem

(3.1), the T matrix can be found such that

A
TA = 001 2 (4.27)
c2
where 0 1 0...0 0 1 0...0
0 0 l1...0 0 0 1...0
Abl = . and Ac2 = . (4.28)
—3 se s "'3
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Using the T matrix, eq. (4.24) can be put

% = T (Tax + TBU) (4.29)
Let
B
TB = B2 (4.30)

where B1 and B2 are of order r x m and (n -r)x m, respectively.

Then eq. (4.29) becomes

A x B
-l 81 Ao 1, BIU (4.31)
c2}*2 2

By virtue of the dominant eigenvalue associate with Acl and with respect

to the system response, it may be readily shown that the dominant dynamics

of the system may be approximated by

%)= A%, + B,U (4.32)

where vector X is defined on an r dimensional space.

Consider a numerical example given by Rao [21], where

0 1 0 0
x=1]0 0 l1 |x +)01\U (4.33)*
-0.5 -5.6 -6.1 1

The objective is to find a second-order simplified model.

Using the Chidambara's simplification method, one obtains the

dxl 0 1
—_— = + U (4.34)
dt -0.1 -1.1] 1 ]o0.204

* See Appendix

following:
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However, the proposed decomposition method yields

dx
’21% 9 1 +(% |y (4.35)
-001 -1-1 0.

It can be seen that both methods yield the same system matrix
but different input matrices. This occurs because Chidambara's method
makes use of the approximation as shown in eq. (4.13), whereas the
decomposition method does not.

4.3 MODEL REDUCTION APPLIED TO SUBOPTIMAL CONTROL

Consider the standard linear regulator problem for a system

% = Ax + BU (4.36)

with a performance indeg

J (4.37)
where Q is a pos trix and R is a positive
definite symmet

he simplified model
X = (4.38)
where Acl and B1 are and (4.30), respectively.
Since the matrix A in (4.36) is assumed in companion form,
by the theorem of Wonham and Johnston [33], A could be written as
A= NEN T (4.39)
where _ _
Al
Ay
H = . (4.40)
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However, the proposed decomposition method yields

dx
T}: = © L +1°9 lu (4.35)

It can be seen that both methods yield the same system matrix
but different input matrices. This occurs because Chidambara's method
makes use of the approximation as shown in eq. (4.13), whereas the
decomposition method does not.

4.3 MODEL REDUCTION APPLIED TO SUBOPTIMAL CONTROL

Consider the standard linear regulator problem for a system
X = Ax + BU (4.36)

with a performance indes

Ll T T
J-zf:(xQx+URU)dt (4.37)
where Q is a positive semidefinite symmetric matrix and R is a positive
definite symmetric matrix.
The optimization is carried out on the simplified model

X, = Aclxl + BIU (4.38)

where Acl and B, are defined in (4.28) and (4.30), respectively.

1

Since the matrix A in (4.36) is assumed in companion form,
by the theorem of Wonham and Johnston [33], A could be written as

1

A = NHN (4.39)

where

H= . (4.40)




and

The matrix N is known as a Vandermonde matrix [36].
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Al 2
2
12 .
n-1 . n~-1
M A2

n-1

Using the following transformation

eq. (4.36) can be

W

or

where

]

1 O Y+ By o
H|| W,| | B,
1
)
Ar J
r+l
A
n—

(4.41)

(4.42)

(4.43)

(4. 44)

(4.45)

(4.46)

(4.47)
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and Ai's are arranged in a way such that

Al < g < vee < | (4.48)
Solving (4.45) for Wz(t) yields

H, t : H, (t-G)
W,(t) = e 2 W,(0) + jg e 2

B,U(G)dG (4.49)
If every eigenvalue of H2 is negative and very large, one can
assume that

Hzt
lim e = 0 (4.50)

t > o

Therefore, one can further assume that

Wz(t) =0 (4.51)

Eq. (4.42) can be written as

X = Nllwl + N12W2 (4.52a)
X, = N21W1 + N22W2 (4.52b)

when Wz = 0 the above equation becomes

x, = N W (4.53)
xy) = Ny)Wy

Thus X, can be found as

-1

Xy = Ny)lNjp X

L (4.54)
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Since eq. (4.37) can be written as
Iy Ix," sz] 811 812 %1 | + v'ru| 4t
: 12 ~22|| *2

1 T T T T
> f: [xl Qq%; + 2%, Q) ,%, + X, Qo + U RU] dt  (4.55)

[
1]
o=

the new performance index for the simplified system (4.38) can be
obtained by replacing X, by Xy in (4.55) with the relation defined in

(4.54). The performance index is then
_1 T T
3 =3 f: (x,"Qux, + URU)dt (4.56)

where Q1 is obtained as

Q,; Q I
-1,7| (~11 f12
Q= [T (N,,N ) -1 (4.57)
’ [ s ] ["12 sz] [Nn ‘11 ]

The optimal control of a simplified system described by (4.38)

and (4.56) is given by Anderson and Moore [31] as
U = =Kx (4.58)

where
K

]
P
=
o

(4.59)
and P is the solution of the matrix Ricatti equation

T -1 T _
+A,P-PBR B P-Q =0 (4.60)

PAc 1l 1

1
Then the equation (4.58) can be used as the suboptimal control policy of

the original system given by equation (4.36), i.e.

X

Usub = [K m[xl] (4.61)
2
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Consider the following numerical example which was presented
in example 4 of Appendix .

For the given system equation

0 1 0 0
x={0 0 1 {x+]|o0|U (4.62)
-0.5 =5.6 =6.1 1

and the performance index

5 0 0
3=2/ Ix"lo 4 of x+v'y| at (4.63)
0 0 1

Using the computer program developed by Melson and Jones [40],
the optimal solution of the problem presented by (4.62) and (4.61) was

obtained where

X
1

U= Kx = - (179 2.08 0.41] x, (4.64)
Xg

and the optimal control of Chidambara's simplified model for the same
system was found as

U= -chl

=-{1.82 2.41]xl (4.65)

The proposed decomposition method gives the optimal control of the

simplified model as given below. That is

AU = —del

Noted that the values of Kd are very close to that of Kc, which was to

be expected in that the simplified models were similar.
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Figures 1 and 2 show the simulation results of Chidambara's
simplified model, the original system, and the decomposition simplified
model, when the optimal control is applied.

Figure 1 shows how the x, state variable varies with time. It
has shown that both simplified models provide good approximation to the
original system. The X, value of Chidambara's simplified model seems
more close to that of the original system with this particular example.

Figure 2 shows how the x, state variable varies with time.

It is noted that the difference between the values of x, of the proposed

2
simplified model and that of the original system become sharply increased

when time is longer than 8 seconds.
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e ' The proposed simplified model
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Figure 1. Xl(t) versus time.

Time
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Xz(t) The proposed simplified model

e~ ww —w == Chidambara's simplified model

. Optimum control system

10 7 j=

5% 10

1 2 3 4 5 6 7 8 9 10 Time

Figure 2. Xz(t) versus time.



CHAPTER 5

CONCLUSION

In this dissertation, an alternate method is presented for
assigning eigenvalues to a linear time~invariant system using state feed-
back. This method relies on the simple decomposition of the system
matrix (in companion form) in order to define subdivided subsets of the
system eigenvalues. This decomposition is accomplished by an operator
matrix T whose coefficients may be determined by a relatively simple
algorithm. It has also been shown how the coefficients of T inverse may
be easily computed.

It is noted that if all the states are available for feedback,
one can arbitrarily assign all the closed loop poles. If only an r
number of states are available for feedback, then only an r number of
poles can be arbitrarily preassigned, provided some sufficient conditions
hold. Treatment of the incomplete state feedback in Chapters 2 and 3
show how to relate n - r coefficients of the closed loop companion form
system matrix directly to those of the open loop companion form system
matrix in order to provide a new and easy method for determining the
stability of a system that ﬁses incomplete state feedback to arbitrarily
assign an r number of its closed loop poles.

Unlike prior methods, which apply incomplete state feedback by
using an output vector to assign r poles, but let the remaining n - r
poles blindly assume any value, the new method presented by this paper

sets a bound on these n - r poles as determined by theorem 2.2 and 3.2.

60
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Although Chapter 3 was concerned with control systems driven
by 2 inputs, the result may be generalized to a control system with
more than 2 inputs by the repeated use of theorem 2.1 and 3.1 under
the assumptions provided. An example demonstrating the eigenvalue
assignment procedure to a multivariable system is presented in Appendix,

An appropriate application of the decomposition technique has
been applied to model reduction. The method is developed which assigns
r dominant poles on the upper r rows of the companion form system
matrix. It has been found that once the T matrix defined in (2.22) is
constructed, the simplified model can be easily obtained. Results of
the decomposition method have been shown to be similar to that composed
by Chidambara's method [21]. The noted difference is that the decomposi-
tion approach generates a more accurate input matrix than Chidambara's.
An example applying the model reduction technique to a suboptimal
control is presented in Appendix. Sufficiency of the technique with
respect to Chidambara's method is demonstrated.

While the procedures developed are complete by themselves, two
directions for further research should be mentioned. One direction is
the theoretical treatment of placing bounds other than stability on
those (n - r) non-specified eigenvalues resulting from incomplete state
feedback. Perhaps the model reduction approach can be applied relating
specified eigenvalues to desired dominant eigenvalues. Another research
direction might be in the application of the procedure developed to
adaptive control. .Fruitful application is a possibility due to the
computational simplicity of determining the feedback matrix for eigen-

value placement. This feature is important when considering that the
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feedback matrix coefficients must be continually updated as the control

system coefficients vary slowly with time.
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APPENDIX

NUMERICAL EXAMPLES

EXAMPLE 1 (COMPLETE STATE FEEDBACK)

Consider a linear time-invariant system described by

0 1 o0 0
x=10 0 1ix+ [oluU (1)
-12 =16 -7 1

The problem is to find a state feedback matrix K where

U =Kx + V; the closed loop system has -2, a%- + {gi and ;% - {gi as
its poles.
Solution
Step 1. Define matrices Ac and Af
_ 1,73 1 /3
Let det(SI - Acl) = (S + 2 + 3 i)(s + 2~ 3 i)
=s2+s+1 (2)
Therefore, 81 = 1, and 82 =1, (3)
Let det(SI - A ,) = (S +2),
then B, = 2, (4)
det(SI - Af) = det(SI -~ Acl) + det(SI - Acz)
=sd+3s2+35+2 (5)
Hence a, = 3, a, = 3, and a, = 2. (6)
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Step 2.

Step 3.

Step 4.

Step 5.

67

Now define the matrices Ac and

[0 1 0)
A.=]0 0 1
-2 -3 -3 |
and
f0 1 0)
A =|[-1-1 0
|0 0 -2 |

Generate the T matrix.

The T matrix can be found as

0

-1
T= AcAf =

o N
(X

-2

The inverse of T matrix is

1 00

~1 1
T =00 -5
3

1 2 2

Find Wz.j for =1, 2, 3.

WZ'l = -6 W?“2 = =7.5

Find K, for j = 1, 2, 3.

K 2

~
{

0

o N

Af as follows:

and W = =2.

2.3

10 K, =13 and K3 =4

= [10, 13, 4] is the desired state feedback matrix.

)

(8)

(9

(10)

(11)

(12)
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EXAMPLE 2 (INCOMPLETE STATE FEEDBACK)

Consider the following system

0 1 0
x={0 0 1 [x +
-2 -3 =3

(13)

- O O
o]

Assume that the Xy state is the only state that is available
for feedback. The problem is to find an incomplete state feedback
matrix K that will observe only the xq state, and use this single state

to give the closed loop system a pole at -1,

Solution
Step 1. Define the matrices Ab and Af.
Let det(SI - Acl) = (S + 1), then 31 = 1. (14)
2
Let det(SI - AcZ) =8 + els + 62 (15)
_ o3 2
det(SI - Af) =87 + als + aZS + a, (16)

Step 2. Solve Bl’ 82 and ag.
By theorem (2.2), the sufficient condition for incomplete state

feedback is

qy and a, =

a 2- 9

where = 3 and q, = 3. 17

9

From eq. (2.69), one obtains

(1 1 0 0 O 1
a, |_]l93 1 o0 o
1= o1 ) 8, (18)
2 1 0,
\ a3 0 0 31 1 0



Step 3.

Step 4.

Step 5.

Step 6.

69

or

1
LI G ] :Q—
a C21 _C22 0
Hence, B = C.. tal. B. and B. can be found as
’ 11 * 1 2
-1
1 1 0 0 1 17
Bl = 11 1 0 3 = 2
32 0 1 1 3 1

And a2 can be found as

- - -1, _
a® = a; =G, ¢, 8 [0 0 1]

Generate the T matrix

3 3 1
T={0 1 o0
1 =2 o
Find W, ..
W= 2
Find k,.
ko= 1

(19

(20)

(21)

(22)

(23)

(24)

K= [kl, 0, 0] = [1, 0, O] is the desired state feedback matrix.
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EXAMPLE 3 (INCOMPLETE STATE FEEDBACK)

Consider a linear time-invariant system represented by

[0 1 o' ] fo o o
0 0 1, 0 0 0 0 O
-4 =5 -4: 0 0 1
r o I R T R X R Sl I i Bl 25)
-2 0 : 0 0 1 : o0 0 ©
-1 1 =1 =3 =2 6 1 0
-1 V=== =- :'o"l' 000
L —2 0 =1 -2 ) 1l 0 0
|
or
! A, o ol|xt o bl
xi =M a xz +]0 b, U, (26)
% M, 0 Afl|=x b, 0 U

Assume that the states that are available for feedback are Xy and X,
states. The problem is to find an incomplete state feedback matrix K
that will observe only two states Xy and Xqs and use these states to
give the closed loop system 2 poles at -2 and -3 respectively.
Solution

This problem can be treated as to place one pole at -2 of the

following system

Xl xl
x, | = Al X, + blU3 27)
%3 X3
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by using state feedback from Xy state only, and to place another pole

at -3 of the following system

i7 %,
is = A3 xg + b3U1 (28)

by using state feedback from X, state.

Consider the case of placing one pole at -2 of the following

system

0 1 0 x

1 1
%,| = 0 0j]1 %, + blU3 (29)
X, -4 =5||-4 X,

Following the same procedure as in example 2, one can find the

_ -1
Tl matrix such that Tl = AclAfll
where (2 0 o)
A, = 0 0 1 (30)
L0 -1 -2}
( )
and 0 1 0
Agq = 0 1 (31)
=2 =5 =4
Therefore, (5 4 1)
T, = 0o 1 0 (32)
t—l -2 0
and (0 -2 -1)
, = o 1 o (33)
L1 5 )
Let ([0 0 0) %,
U3 = 0 0 0 X, + V3 (34)
Lk31 0 J X
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The value of k31 can be found by the same procedure as in

example 2.

k31 =2 (35)

Consider the case of placing one pole at -3 of the

following system

x 0 1) x
7| - 71 +bu (36)
] 1 -2 « 371
Xg 8
The matrix T3 is found such that T3 = Ac3Af3 where
(-3 0 )
A= (37)
(0 -2
[0 1)
and A, = (38)
£3 3 -2
Therefore, <2 -1 )
T3 = : (39)
(1 0
a1 [9 1)
T =~ = (40)
-1 2
)
rku
Let U, =10 o (61)
(0 0

Similarly, k.., can be found as

17

= 42
k, 4 (42)
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Therefore, the state feedback matrix is

-1
]
1

+V (43)

~
u
[\
o ©
© o
I

b
N oy

EXAMPLE 4 (MODEL SIMPLIFICATION AND SUBOPTIMAL CONTROL)

Consider a linear regulator problem given by Rao [21] as

o 1 0 0
k=10 0 1 {x+]|ofu (44)
-0.5 -5.6 -6.1 1

and a performance index

J = %— f: (sTox + UTRU)dt
where
Q=10 4 0 (45)
0 0 1
and R=1

The object is to find a suboptimal control via a second-order
simplified model.
Solution

Method 1 (Chidambara's method)

Let the second-order simplified model be represented by

1
dx— _ 1
it - Fx~ + GU (47)
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where xl is assumed to contain first two state variables of the system

governed by eq. (44). 1i.e.

X
xl A [ xl ] (48)

The eigenvalues of system matrix A in eq. (44) are -0.1, -1,

and -5, respectively. The eigenvector associated with those eigenvalues
are

(1

V- = [-0.1 (49)
\0.01

(1)
vé = |-1 (50)
(1)
and rl}

V' = |=H (51)
(25

Therefore, the model matrix is given by
(1 1 1)

M= {-0.1 -1 -5 (52)
| 0.01 1 25 |

( )
M M2
M M
| P21 22 |
From eq. (4.22)
1

F=A +AMMN,

B ] en o,

0 1
= l-0.1 -1.1 (53)
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From eq. (4:14)

2,(t) = —Hz-lLZU(t)

= -0.01020(t) (54)

From eq. (4123)

G =By - [A My, = A MM, L”’12]112“11,2

0
= 10.204 (53)

Therefore, the simplified model equation is

Lo 17, o N
=01 -1.1]% T |o.204]" (36)

From eq. (4.57) one obtains the equivalent performance index

5.1 1
Qe u 67

Using the computer program written by Melsa and Jones [40], one

obtains the optimal control of the above simplified model as

U= -K x1
c

X
- [1.82 2.41][ ] (58)

X2

Method 2 (The proposed decomposition method)

The eigenvalues of the system matrix A in eq. (44) are known as

= —Oul, )\ = —l, and A = —So

Al 2 3
Let

det(SI - Acl)

2

s” +1.1s + 0.1 (59)
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det(SI - Ac2) =S+ 35 (60)

From eq. (2.18)

0 1 0
A, =]-0.1 -1.1 0 (61)
0 0 -5

the T matrix can be found as

"o 1 01T o 1 o 1%
T=1]-0.1 -1.1 o0 || 0 0 1
0 0 -5][-0.5 -5.6 =-6.1

1 0 0 ]
=1 0.02 1.22 0.2 (62)
0 -5 0

- -

From eq. (4.30)

-6 "1 0 0 0
1
[ ] =TB = | 0,02 1.22 0.2 0

0 -5 0 1

L .
"0
= | 0.2 (63)
0

0
By = o.2 (64)

From eq. (4.32), the simplified model equation is

% = l_—g.l -1.1] x ¥ [g.] v (63)

So
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From eq. (4.41), the Vandermonde matrix is given by

1 1 1
 0.01 1 25
M NV 6
Ny, N
_ 22
Therefore,
1 1
Ni1 ":-0.1 -1] (67)
N,, = [0.01 1] (68)

The equivalent performance index for the simplified model can

be obtained by using eq. (4.57) as

Q Q I
-1 (1 Q2
Wy ¥y ) ][221 sz] [(Nlen-l)T]

5.1 1
=11 14 (69)

The optimal control of the proposed simplified model for the

Y

same system is found as

while the optimal control of the original system is
_ 1
U= —Kopt x = -[1.79 2.08 0.41] x (71)

X3



