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I. AN INVESTIGATION OF THE REACTIVITY OF THE ANION DERIVED 

FROM 2-FROFENYL-l,3-DITHIANE

History and Background

1 2  3The observations by Arens, Ohno and Truce that strong bases

converted mercaptals to their corresponding anions (see scheme 1) added a

new dimension to carbanion chemistry. The stability of these carbanions

is attributed to the overlap between the vacant d-orbitals of the sulfur

atoms and the adjacent carbanion and the inductive effect of the sulfur

atoms of the mercaptal groups.

Subsequent alkylation and acylation of these anions followed

by hydrolysis or desulfurization of the products provided new synthetic

routes to a wide variety of functional groups. However, the yields of

the products were low due to a competing reaction between the anion and

the solvent, dimethylformamide. Furthermore, the synthetic utility of

0 Ef-S S-Et
II . I. base \ /  I. base 9

R— CHg— C— R ^  R— C— H ^ R— C— CHj
2. R '-C -C l 2 . M elI 0
3 R a-N i S.HgClg

Scheme 1 

1
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anions derived from mercaptals is also limited by their failure to 

react with secondary halides and carbonyl compounds.

The synthetic utility of thiocarbanions suggested by the work 

of Arens and coworkers and Truce was greatly expanded by Corey and
4Seebach who investigated the reactivity of anions derived from 1,3- 

dithiane and substituted 1,3-dithianes

n-BuLi ^  I j R -  X ^

S ^ / S  THF

H ' ^ R
I 2

n - B u L i^  I I R -X  ^
S ^ , S  THF S S S S

H " ^ R '  R ' ^ ^ R

Scheme 2

Their remarkable ease of preparation, relative stability, and exceptional 

reactivity established anions of type 2  and ^  as extremely useful inter­

mediates in organic synthesis.

Anions of types ^  and ^  with R = primary, secondary, or t-alkyl, 

allyl, benzyl and aryl have been generated. They undergo alkylation 

with primary and secondary halides and dihalides (see scheme 2) to give 

excellent yields (70-90%) of purified products. The anions 2  and ^  

react with epoxides (see scheme 3) to form mercaptals of 3-hydroxy 

ketones or aldehydes, e.g. _5, in good yields; reaction with aldehydes and 

ketones yield mercaptals of a-hydroxy aldehydes and ketones, e.g.



0 
II 

R — C — H

V
! x "CHg-CHg-OH

><>/\
Scheme 3

Imines, nitriles and carbon dioxide react with the anions to form pro­

ducts which can be subsequently hydrolyzed to the corresponding amino 

ketones or aldehydes, diketones or keto aldehydes and a-keto acids.

In general, acid chlorides and esters proved to be unsatisfac­

tory as acylating agents; benzoyl chloride and methyl benzoate reacted 

with 2 to form the di-addition product. Even in the presence of a

0 
P h - C - O M e

Ph
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tenfold excess of methyl benzoate, the ketone formed from the initial 

reaction of ^  with the ester reacted further with 2̂ to form _7.

In addition to Corey and coworkers, Carlson and Helquist^ have 

investigated the reactivity of carbanions which are stabilized by sulfur 

in its various oxidation states. These workers oxidized 1,3-dithiane 

(_1) to 1,3-dithiane monoxide (^) by treatment with 1 equivalent of 

sodium metaperiodate. Treatment with n-butyllithium rapidly converted 

8 to the anion 9.

N a lQ . I I n-BuLi
■g g  g S - > 0  Tu 'c ^

-  THF 

8

The anion 9̂ exhibited behavior which is characteristic of both 

anion 2 and the anion of dimethyl sulfoxide as evidenced by its rapid 

reactions (see scheme 4) with benzophenone to form 3^ and with ethyl

S. Se
9

0II
Ph— G— Ph —>0 

H ^ ^ C - O H

10
— >0

H " ^ ^ C - P h
II0

II

Scheme 4



5

benzoate to form the g-ketosulfoxide The reaction of 9̂ with ethyl

benzoate to form is in sharp contrast to the reaction of ^  with ethyl 

benzoate which resulted in the formation of the di-addition product J_.

Anions derived from mercaptoles, 1,3-dithianes, and 1,3-dithiane 

monoxide do not undergo conjugate addition to a,g-unsaturated carbonyl 

systems. Both^and 2̂ react with a,B-unsaturated carbonyl systems^ 

(Michael acceptors) in a 1,2-manner; anions derived from mercaptoles 

do not react in any manner with a,g-unsaturated carbonyl compounds. 

Otherwise, the chemical behavior of anions derived from mercaptoles,

1,3-dithianes and 1,3-dithiane monoxide is identical to the chemical 

behavior of other carbanions.



INTRODUCTION

Anions derived from the dithianes of cx,B-unsaturated aldehydes 

present an interesting problem in that reaction can occur at either of 

two sites, a or Y to the geminal sulfur atoms. Since the chemical 

behavior of this type of anion has not been reported in the literature 

and since one of the reactions in a proposed synthesis (see section II 

of this thesis) of the natural product illudin-S entailed the reaction 

of such an ambident nucleophile, an investigation of the behavior of 

such allylic anions with alkylating and acylating reagents was under­

taken. The results of this investigation will be presented in this 

section.



RESULTS AND DISCUSSION

The dithiane used in the preliminary investigation was pre­

pared by reacting crotonaldehyde with 1,3-propanedithiol in the presence 

of a catalytic amount of boron trifluoride-etherate.

H H 0
C H , - C = C - C - H  + h - S - ( C H , ) , - S - H  etherate

CHCI3

A ?_V \f
C H3— C — C — C — H 

12

The nmr spectrum of 12 exhibits a signal at 5.0-6.2 ppm due to the two 

olefinic protons. This signal appears as a complex multiplet. The 

signal for the proton on carbon bearing the geminal sulfur atom appears 

as a doublet (J = 6 Hz) at 4.62 ppm. The signals for the six methylene 

protons of the six membered ring appear as multiplets at 2.5-3.0 and 

1.8-2.3 ppm. The signal for the vinyl methyl appears as a doublet 

(J = 5 Hz) at 1.70 ppm.

A solution of 12 in tetrahydrofuran was treated with 1 equi­

valent of n-butyllithium, and the resulting anion was subsequently 

reacted with an excess of ethyl iodide. A single organic product 

was obtained in 80% yields.

7
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The mass spectrum of exhibits a parent ion at m/e 188 and 

a base peak at m/e 85. An examination of the nmr spectrum of JU re­

vealed that the absorptions in the olefinic region correspond to two 

protons. In contrast, if the alkylation had occurred at the position 

Y to the geminal sulfur atoms, the resulting product lA would exhibit 

only one olefinic proton absorption in its nmr spectrum rather than two 

as in 1^. The evidence obtained from a comparison of the nmr spectra 

of 12 and indicated that the alkylation of the anion of 12 with ethyl 

iodide had occurred exclusively at the position a to both sulfur atoms 

and thus 1^ has the structure indicated.

H H s O
,2 '̂ h f  ^  c H 3 - L U ' - E ,

A "
H H S S 
I I \ /  

C H _ - C - C = C  
^ I 

Et

14

Additional evidence which further confirmed the structure of 

13 was obtained from its transformation products. Raney nickel in 

refluxing ethanol converted to hexane; when a solution of 13 and 

methyl iodide in aqueous acetone^ was refluxed for twenty-four hours, 

ethyl propenyl ketone 13 (identified as its 2 ,4-dinitrophenylhydrazone) 

was obtained in 75-80% yields.

0II
M e l, C H - C - C H ,  013 3 II
------------------------------ >  CH - C H = C H - C - E t

H O  3
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Several attempts to hydrolyze 13 (see Table 1) to 1^ employing mercury 

salts were unsuccessful. Invariably, the treatment of 13 with mercuric 

chloride and mercuric oxide in tetrahydrofuran or acetonitrile resulted 

in the formation of a solid product which was not identified. Corey
g

and coworkers have observed that unsaturated dithianes cannot be suc­

cessfully hydrolyzed to the corresponding unsaturated aldehydes and 

ketones with mercury salts due to concomitant reaction of the double 

bond. Thus a plausible explanation for the failure of mercury salts to 

convert 13 to 13 has been presented. However, when a solution of ^  

in methanol was treated with mercuric chloride and mercuric oxide, a 

small quantity of a product (less than 1% yield) was obtained. This 

product was not fully characterized, but its nmr and ir spectra indi­

cated that it was probably 5-methoxy-2-hexanone which could have re­

sulted from the conjugate addition of methoxide ion to 15.

When the anion of 12 was treated with 1 equivalent of benzal- 

dehyde, a mixture of the diastereoisomeric forms of was obtained.

,2 "  >  C H , - L L c ^ 33 I2) P h -C -H  H -C -O H

°  Ph 16

The mass spectrum of lb exhibits peaks at m/e 266 (M^) and 108 (base 

peak). The ir spectrum shows absorptions at 3450 cm (OH) and 1692 

cm ^ (C=C). The nmr spectrum of product lb showed the following im­

portant features: two broad singlets at 7.4 and 7.2 ppm (aromatic

protons), a pair of doublets at 5.25 (J = 5 Hz) and 4.5 ppm (J = 8 Hz),
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TABLE I

Some Procedures for Hydrolyzing Dithioketals 

to Carbonyl Compounds

Protection
Group

Moles of Reagent 
Per Mole of 
Thioketal

Aqueous Solvents 
(%) Experimental 

Conditions

Yield % 
of

Carbonyl
Product

Ref.

dithiane NBS (6-9) 
AgNOj (4-4.5)

Me CM (80) or 
(CHjgCO (96) RT 10

75-80
min

8

dithiane NCS (4.0)* 
AgNO^ (4-4.5)

MeCN (80) or 
(CH )gCO (96) RT 10

71-100
min

8

dithiane II go or CdCo„ 
and Hg Cl^ (2-3)

(CH ) CO (95) 
MeCN (90-95) 
Reflux

70-80 5

dithiane BF--etherate 
HgO

THE, (15%) 
ACOH

30-80% 11

dithiane 
and dithiolane

Mel (excess)^ (CH^)2 C0  reflux 
several hours

Not Reported 7

dithiolane Chloramine-T (4) C^H^OH (80) 86% 10

Methods a and b are suitable for unsaturated dithianes,
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olefinic proton, and a pair of doublets at .9 (J = 5 Hz) and .6 ppm 

(J = 8 Hz), terminal methyl.

The evidence provided by its nmr spectrum unequivocally estab­

lished 2^ as a mixture of diastereoisomers. The signals for the aro­

matic protons, the olefinic protons and the methyl groups are clearly 

distinguishable for each isomer; furthermore, the ratio of the intensi­

ties of each pair of these signals is approximately (3:2). Further 

justification for this structural assignment was provided by the struc­

ture of the product 12 which resulted from the treatment of a solution

of 32 in tetrahydrofuran with dilute hydrochloric acid. The ir spec-
-1trum of exhibited a strong absorption at 1778 cm (y-lactone car­

bonyl). The mass spectrum of 2Z exhibited a molecular ion at m/e 176; 

the nmr spectrum of 17 showed the following important features: a 5

proton multiplet at 7.1-7.9 due to the aromatic protons; signals for 

the benzylic proton, doublets at 5.62 (J = 5 Hz) and 4.95 ppm (J = 7 

Hz) respectively; and signals for the methyl group, doublets at 1.25 

(J = 7 Hz), and .7 ppm (J = 5 Hz). The signals for the remaining pro­

tons appear as a multiplet at 2.0-3.2 ppm. Thus, g-methyl-y-phenyl- 

y-butyrolactone j2 is a mixture of diastereoisomers just as its pre­

cursor, 16.

16 HCI, THF

17
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When the anion of was treated with 1 equivalent of ethyl 

benzoate, a compound formulated as was the only product isolated 

from the reaction mixture. Presumably, the anion of 1^ reacted ini­

tially with ethyl benzoate to form the ketone 1^ which then reacted 

with an additional mole of the anion of 3^ to form the di-addition 

product This is consistent with the observation of Corey and co­

workers who reacted the anion of 1,3-dithiane with a tenfold excess 

of ethyl acetate and obtained the di-addition product; inverse addition 

produced the same results.

A
H H S S 
I I \ /  

C H ^ -C = C —C ©

0
_ II
Ph— C— OEî I I s

c Hj - c _ c = c< ® 2 >
o = c

I
Ph

18

A
H H S S

,_ C  =  C—C © CH

H H 
I Ic _ c = c <

H H 
' I I ^ S —  

HO—0 —C— /
I I 

Ph CHj

19



SUMMARY

Anions derived from the dithianes of a ,3-unsaturated aldehydes 

alkylate at the position a to both sulfur atoms, acylate at the position 

Y to both sulfur atoms and undergo addition to carbonyl compounds (al­

dehydes and ketones) at the position y to both sulfur atoms. Hydrolysis 

of the products resulting from the alkylation of these anions provides 

a new route to the synthesis of ot,3-unsaturated ketones.

During this study considerable effort was devoted to the hydro­

lysis of the dithiane 23 to the corresponding a ,g-unsaturated ketone. 

Procedures utilized in attempts to effect these conversions along with 

other procedures reported in the literature are summarized in Table 1.

13



EXPERIMENTAL

All metling points and boiling points are uncorrected. Ail 

solvents were redistilled prior to use. Anhydrous solvents were pre­

pared by distillation from calcium hydride. Column chromatography sup­

ports were silicAR CC-7 (Mallinckrodt, 100/200 mesh) and silica Gel H 

(Merck AG, Darmstadt). Thin layer chromatography was performed on 5 x 20 

cm glass plates coated with silica gel H (Merck AG, Darmstadt). The 

developed plates were exposed to iodine vapor for visualization of the 

chromatogram.

Gas chromatographic analyses were performed on a Varian Aero­

graph Model 1220-1 or Aerograph Model 1740-1 gas chromatograph. The 

infrared spectra were taken on a Beckman lR-8 spectrometer as potassium 

bromide pellets or in solutions of carbon tetrachloride or chloroform. 

Ultraviolet spectra (uv) were taken in 95% ethanol solutions with a 

Hitachi Perkin-Elmer, model 124 spectrometer. Nuclear magnetic resonance 

spectra (nmr) were taken on Varian A-60 or T-60 spectrometers using 

tetramethylsilane (TMS) as an internal reference. Samples were run in 

varying concentrations of carbon tetrachloride and deuteriochloroform. 

Chemical shifts are reported in 6-units (parts per million from TMS) and 

are followed by the multiplicity of the signal, the number of protons, 

the corresponding coupling constant and the assignment. The multipli­

cities are denoted by the symbols: s, singlet; d, doublet; dd, double

doublet; t, triplet; and m, multiplet,

14
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The mass spectra were taken on a Hitachi Perkin-Elmer RMU-7 

spectrometer using perfluorokerosene as an internal reference. Major 

peaks and molecular ions are reported followed by percentage of the base 

peak.

Combustion analyses were carried out by Bernhardt Laboratories 

in MUlheim, West Germany.

2-propenyl-l,3-dithiane (12)

A solution of 80 g (1.14 mol) of crotonaldehyde and 108 g (1 

mol) of 1,3-propanedithiol in 500 ml of chloroform was placed in a 1 1 

three-necked flask which was equipped with a magnetic stirring bar and 

an addition funnel. The flask was immersed in an ice-water bath at 0° 

and 15 ml of boron trifluoride-etherate was added slowly to the contents 

of the flask. The reaction mixture was stirred for 12 hr during which 

time the temperature of the bath was allowed to rise to room temperature. 

The chloroform solution was first washed with a 10% solution of sodium 

bicarbonate and then with a saturated solution of sodium bisulfite. The 

chloroform solution was then dried over anhydrous sodium sulfate and 

evaporated to yield 156.8 g (96%) of the crude dithiane. Distillation 

of 78 g of crude product yielded 60.4 g (80%) of 2-propenyl-l,3-dithiane 

as a colorless liquid, bp 77-78° (1 mm). An analytical sample was ob­

tained by collecting a middle fraction from the distillate, bp 77-78°

(1 mm); n^ 1.5771; ir (thin film) 1658 cm (carbon-carbon double bond); 

1419 cm ^ (carbon-sulfur stretch); nmr (CDCl^) 6 5.3-6.3 (m, 3, olefinic 

protons), 4.65 (proton on C-2 of the dithiane ring), 2.70-2.95 (m, 4, 

methylene protons on carbons 4 and 6 in the dithiane ring), 1.8-2.2 

(m, 2, remaining methylene protons of the dithiane ring), 1.7 (d, 3,
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J = 5 Hz, vinyl methyl); mass spectrum 163 (1), 162 (19), 161 (7),

160 (69), 119 (23), 105 (12), 103 (15), 95 (16), 87 (15), 86 (47), 85 

(100), 74 (25), 73 (23), 71 (11), 58 (10), 55 (13), 53 (18), 47 (16),

46 (25), 45 (68), and 41 (33).

Anal. Calcd. for ^2,50; H, 7.50; S, 40,00. Found:

C, 52.40; H, 7.63; S, 40.11.

2-Ethvl-2-propenyl-l,3-dithiane (13)

A solution of 24 g (.15 mol) of 2-propenyl-l,3-dithiane in 200 

ml of dry tetrahydrofuran was placed in a 500 ml three-necked flask 

which was equipped with a mechanical stirrer, a septum cap and a nitrogen 

inlet. The flask was immersed in a dry ice-acetone bath at -60-70° and 

the solution was stirred under a nitrogen atmosphere (which was maintained 

throughout the experiment) while .15 mol of n-butyllithium in hexane was 

added to the contents of the flask. Stirring was continued for 4 hr 

at -50-60° and then 42.6 g (.30 mol) of ethyl iodide was added to the 

reaction mixture. Stirring was continued for 18 hr at 0-5°, and then 

the reaction mixture was acidified to a pH of 4 with 10% hydrochloric 

acid and extracted twice with 150 ml portions of chloroform. The chloro­

form solution was washed with a saturated solution of sodium bisulfite, 

dried over anhydrous sodium sulfate and evaporated to yield 24 g (85%) 

of crude product. Distillation of the crude product yielded 20.85 g 

(74%) of 2-ethyl-2-propenyl-l,3-dithiane as a colorless liquid, bp 96-98° 

(1 mm). An analytical sample was obtained by collecting a middle fraction

from the distillate, bp 96-98° (1 mm), n^^ 1.5570; ir (thin film) 1650
-1 -1 cm (carbon-carbon double bond), 1435 cm (carbon-sulfur stretch);

nmr (CDCl^) 6 5.17-6.2 (m, 2, olefinic protons), 2.3-3.1 (m, 4, methylene
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protons on carbons 4 and 6 of the dithiane ring), 1,6-2.3 (complex multi­

plet, 7, contains discernible d at 1.8 corresponding to a vinyl methyl 

group; remaining signals due to methylene of ethyl group and C-5 protons 

of dithiane ring); .90 (t, 3, J = 6 Hz, terminal methyl); mass spectrum 

189 (7), 188 (60), 164 (11), 159 (45), 135 (21), 115 (10), 114 (36),

113 (35), 107 (22), 106 (10), 99 (17), 87 (10), 86 (12), 85 (100), 84 

(15), 81 (21), 73 (31), 47 (20), 45 (35), and 41 (45).

Anal. Calcd. for CgH^^S2 : C, 57.45; H, 8.51. Found: C, 57.24;

H, 8.32.

1-(1,3-propylenedithio)-3-methyl-4-hydroxy-4-phenyl-l-butene (16)

A solution of 12 g (.075 mol) of 2-propenyl-l,3-dithiane in 100 

ml of dry tetrahydrofuran was placed in a 500 ml three-necked flask which 

was equipped with a mechanical stirrer, a septum cap and a nitrogen in­

let. The flask was immersed in a dry ice-acetone bath at -70° and the 

solution was stirred under a nitrogen atmosphere which was maintained 

throughout the experiment while a solution of .075 mol of n-butyllithium 

in hexane was added by means of a syringe to the contents of the flask. 

The reaction mixture was stirred for 4 hr at -70° and 8 g (.075 mol) of 

benzaldehyde was added to the contents of the flask. Stirring was con­

tinued for 5 min at -70°, then the reaction mixture was acidified with 

10% hydrochloric acid and extracted twice with two 100 ml portions of 

chloroform. The chloroform solution was washed several times with a 

saturated solution of sodium bisulfite and dried over anhydrous sodium 

sulfate. Evaporation of the solvent yielded 12.6 g (78.8%) of a dia- 

stereoisomeric mixture of l-(l,3-propylenedithio)-3-methyl-4-hydroxy-4- 

phenyl-l-butene as an oily solid. Three recrystallizations from 95%
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ethanol yielded an analytical sample, mp 74-77°; ir (KBr) 3440 cm
-1 -1 (hydroxyl), 1692 cm (carbon-carbon double bond), 1415 cm (carbon-

sulfur stretch); nmr (CDCl^) ô 7.1-7.5 (m, total 5, aromatic protons),

5.3 and 4.6 (doublets, total 1, J = 6 Hz, and J = 8 Hz, olefinic protons),

3.2-3.7 (m, 2, allylic proton and the benzylic proton), 1.8-3.0 (m, 7,

protons of the dithiane ring and hydroxylic proton), 1.05 and .90 (dou­

blets, total of 3, J = 6 Hz, and J = 7 Hz, methyl); mass spectrum 267 

(2), 266 (8), 133 (11), 120 (33), 119 (20), 110 (12), 108 (100), 93 (16),

47 (11), 43 (27), and 41 (10).

Anal. Calcd. for 62.95; H, 6.76; 0, 6.01. Found;

C, 62.95; H, 6.66; 0, 5.87.

The Reaction of the Anion of 2-propenyl-l,3-dithiane (12)

with Ethyl Benzoate

A solution of 2 g (12.5 mmol) of 2-propenyl-l,3-dithiane in 100 

ml of dry tetrahydrofuran was placed in a 500 ml three-necked flask which 

was equipped with a mechanical stirrer, a gas inlet and a septum cap.

The flask was immersed in a dry ice-acetone bath at -30°, and the reac­

tion was placed under a nitrogen atmosphere which was maintained through­

out the experiment. A solution of 12.5 mmol of n-butyllithium in hexane 

was added by means of a syringe to the contents of the flask. The reaction 

mixture was stirred at -30° for 4 hr and 6.75 g (45 mmol) of ethyl ben­

zoate was added to the contents of the flask. Stirring was continued 

for 18 hr at 0-5°, and then the reaction mixture was acidified to a pH 

of 4 with a 10% hydrochloric acid and extracted twice with 100 ml portions 

of chloroform. The chloroform solution was dried over anhydrous sodium 

sulfate and evaporated to yield 8.54 g of a mixture of ethyl benzoate and
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the di-addition product 22" The mixture was shaken with 25 ml of ethyl 

acetate and white crystals separated from the solution. The crystals 

were collected by suction filtration and air dried to yield 3.71 g (70%) 

of the di-addition compound 20, mp 138-139°. Two recrystallizations

from hexane-methylene chloride yielded an analytical sample, mp 142-143°;
-1 -1 ir (KBr) 3505 cm (hydroxyl), 1405 cm (carbon-sulfur stretch); nmr

(CDClg) 6 7.0-7.75 (m, 5, aromatic protons), 6.3 (d, 1, J = 10 Hz, ole­

finic proton), 5.8-5.9 (m, 1, olefinic proton), 3.1-3.7 (m, 2, allylic 

protons), 1.4-3 (m, 12, all of the methylene protons of the dithiane 

ring), 1.90, 0.60 (doublets, total of 3, J = 5 Hz, J = 6 Hz, methyls);

mass spectrum 424 (3), 266 (12), 265 (16), 264 (100), 161 (10), 160

(11), 159 (60), 132 (10), 129 (13), 115 (14), 106 (15), 105 (25), 104 

(20), 86 (10), 85 (25), 84 (10), 77 (15), 73 (13), 57 (44), 56 (28),

49 (17), 44 (15), 43 (25), 42 (16) and 41 (50).

Anal. Calcd. for C^^H^gS^O: C, 59.43; H, 6.60; S, 30.19.

Found: C, 59.29; H, 6.64; S, 30.23.

B-Methyl-y-phenylbutyrolactone (17)

A solution of 250 mg (.94 mmol) of jU6 and 5 ml of 10% hydrochloric 

acid in 25 ml of tetrahydrofuran was heated at 50° for 2 hr, cooled to 

room temperature and extracted with 100 ml of chloroform. The chloro­

form solution was dried over anhydrous sodium sulfate and evaporated 

to yield .205 g of an oil which was a mixture of 1,3-propanedithiol and 

B-methyl-y-phenylbutyrolactone (.17) . The oil was dissolved in 25 ml of 

95% ethanol, 1 g of potassium hydroxide was added, and the reaction 

mixture was refluxed for 12 hr and then evaporated to dryness. The 

solid residue was washed several times with ether and air dried. The
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residue was then treated with 5 ml of concentrated hydrochloric acid and

extracted twice with 50 ml portions of ether. The ether solution was

dried over anhydrous sodium sulfate and evaporated to yield 99.2 mg

(60%) of g-methyl-y-phenylbutyrolactone as a colorless oil; ir (thin 
-1film) 1785 cm (lactone carbonyl); nmr (CDCl^) 6 7.2-7.9 (m, 5, aromatic 

protons), 5.60, 4.90 (both doublets, total l , J = 5 H z , J = 8 H z ,  ben­

zylic proton on carbon bearing oxygen), 2.1-3.0 (m, remaining ring protons),

1.25, .70 (both doublets, total 3, J = 5 Hz, J = 8 Hz, methyl); mass 

spectrum 177 (5), 176 (45), 117 (13), 116 (5), 115 (10), 107 (100), 106 

(24), 105 (99), 91 (14), 79 (15), 78 (10), 77 (36), 70 (14), 69 (11),

65 (6), 50 (18), and 40 (31).

Anal. Calcd. for 75.00; H, 6.82. Found: C, 73.50;

H, 6.89.

Ethyl Propenyl ketone (15)

A mixture of 1 g (5.3 mmol) of 2-ethyl-2-propenyl-l,3-dithiane 

(13), 5 ml of methyl iodide, 1 ml of water and 50 ml of acetone was re­

fluxed for 24 hr and then distilled at atmospheric pressure until most 

of the acetone was removed. The mixture was cooled to room temperature,

3 ml of water was added and the mixture was distilled through a short 

path distillation column. A fraction consisting of a mixture of the 

ketone and water was collected, bp 98-101°. The mixture was poured 

into 25 ml of ether and the ether layer was collected and dried over 

anhydrous sodium sulfate. Evaporation of the ether and subsequent dis­

tillation yielded .360 g (69%) of dry ethyl propenyl ketone, bp 81-82°

(12 mm); 2,4-dinitrophenylhydrazone, mp 168-169°, n^^ 1.4380 [Lit.^ 

bp 76.2° (8.5 mm); 2 ,4-dinitrophenyhydrozone, mp 170°].
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II. STUDIES DIRECTED TOWARD THE SYNTHESIS OF ILLUDIN-S

History and Background

The fungal metabolites illudin-S (I.) and illudin-M (^) were 

first isolated from jack-o'-lantern mushrooms in 1950 by Anchel and

coworkers. ' Somewhat later, but before the structure of 1 and 2 had
2 3been published, Japanese investigators ’ isolated a substance which

they named lampterol from the poisonous mushroom. Lampteromyces japoni-

cus, which grows on rotten beech trees in Japan. It was later found

that lampterol is identical to illudin-S, and since the latter name

was the first reported in the literature, it has been retained as the

family name for a group of closely related compounds.

The illudins are of considerable interest because of their

antitumor activity, antibacterial activity and their possession of a
3unique non-isoprenoid structure. Anchel and McMorris assigned struc­

tures and ^  except for absolutely stereochemistry; the structure which
4they assigned to was corroborated by an independent investigation 

carried out in Japan.

HQ
QH„OH

OH

HO

2

22
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Matsumoto and cowo r k e r s ^ h a v e  accomplished the total synthesis 

of 2  and 2" In preparation for their total synthesis of 2. and 2, they 

conducted several preliminary investigations into the synthesis of key 

intermediates which possess the structural features of the illudins 

and the necessary functionality required for conversion to the illudins.

The first such compound to be prepared^ was 9_, The series of 

reactions leading to the synthesis of 9̂ is outlined in Scheme 1, The 

6-ketosulfoxide ^  required for the synthesis of 9̂ was prepared (see 

scheme 1) from methylsulfinyl carbanion and the ethylene ketal of 1- 

acetyl-l-carboethoxycyclopropane by the method of Corey and Chaykovsky.^

The Michael addition of _3 to ^  in ethanol catalyzed by sodium 

ethoxide afforded _5 as the only product in 60% yields. Amalgamated alu­

minum foil in dioxane-water at room temperature converted _5 to_6 which was 

transformed to the triketone _7 by p-toluenesulfonic acid in aqueous 

acetone. Potassium t-butoxide in t-butyl alcohol transformed 1_ to the 

diketone Methyl magnesium iodide (1 equivalent) reacted selectively 

with the non-conjugated carbonyl group of _8 to form 9_.
9After synthesizing compound 9̂, Matsumoto and coworkers pro­

ceeded by a similar series of reactions to synthesize the more highly 

functionalized illudin precursor 16. The sequence of reactions leading 

to the synthesis of is depicted in scheme 2. The series of reactions 

employed in the synthesis of IJO, the other intermediate required for 

the synthesis of 1^, is also shown in scheme 2.

Treatment of _A with iodine in methanol yielded an epimeric pair 

of tetrahydrofuranones 1J_. Sodium borohydride reduction of '\J_ yielded 

18 (an isomeric mixture of tetrahydrofuranols) which was converted to 22
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by treatment with acetic anhydride in pyridine. Dilute hydrochloric 

acid converted to the ketoaldehyde W  which in turn was cyclized to 

10 by sodium hydride in refluxing benzene.

The Michael addition of ^  to in ethanol catalyzed by sodium 

ethoxide yielded as the only product. In the presence of acetic
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anhydride and pyridine underwent the Pummerer^^ rearrangement to

form 1^. Treatment of 1^ with amalgamated aluminum in ethanol afforded

13 which was subsequently transformed to the triketone jW by aqueous

acetone containing a trace of p-toluenesulfonic acid.

Potassium-t-butoxide in t-butyl alcohol transformed 1^ to the
9enone Matsumoto and coworkers based their stereochemical assign­

ment in 15 on the following evidence: = 9 Hz, therefore, H. and  Aa a

AcO OAc

15

14are trans to each and axial to the cyclopentanone ring. Since
14J = 12 Hz, it was similarly concluded that H and H are also transDA D A

to each other and axial to the cyclohexanone ring. Thus, it was con­

cluded that has the stereochemistry shown in scheme 2. Compound 1^ 

was converted to by méthylmagnésium iodide which reacted selectively 

with the six-membered carbonyl group in a highly stereoselective manner.

The sequence of reactions leading to the synthesis of the ex­

ploratory compound ^  provided the key intermediate ^  which ultimately 

lead to the synthesis of illudin-M (2) » ̂  When 12 was heated in ethanol 

(see scheme 3), it rearranged to 21. Treatment of 21̂  with potassium- 

t-butoxide in t-butyl alcohol afforded which was then converted to 

the acetate 22- Methyl magnesium iodide also reacted selectively with
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the six-membered ring carbonyl group of 22 a highly stereoselective 

manner to form 22* Reduction of 2A with sodium borohydride in tetra­

hydrofuran yielded the diol 22 the only product. Treatment of 25

.OAc PAc

12

EtOH
OAc

HO

21

t-BuOK
t-BuOH

H OAc
I I I AcO 0 . ^ 5  OAc

22, R=H
23, R = Ac 24

nAcO Ov OAc
NoBHL

-> HO'

HjO

-----  HgClg
L/' — ------^  __k. y C  CH,COCH, ^

OH

25
(racemic Illudin-M)

Scheme 3
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with mercuric chloride in aqueous acetone afforded racemic illudin-M (^).

The chemical and physical properties of the synthetic illudin-M (^) were 

identical in all respects to the natural occurring substance.

Proceeding by a similar sequence of reactions (see scheme 4), 

Matsumoto and coworkers^ synthesized illudin-S (Ĵ ). The treatment of 3̂ 

with potassium t-butoxide in t-butyl alcohol followed by the addition of 

26 afforded the Michael adduct 22 70% yields. When 22 was treated with

methoxyacetic anhydride, the Pummerer^^ rearrangement occurred to form 28 

in quantitative yields. In the presence of ethanol, was transformed 

to 22; potassium t-butoxide in t-butyl alcohol converted 22 to the a,6- 

unsaturated ketone 22* The treatment of 22 with acetic anhydride in pyri­

dine resulted in the acétylation of the hydroxyl group to form 31.

Methyl magnesium iodide (one equivalent) reacted selectively 

with the six-membered ring carbonyl group of 22 to form 22; this reac­

tion was also highly stereoselective. Sodium borohydride in tetrahydro­

furan transformed 2 2  to 2 2  which in turn was converted to 22 by mercuric 

chloride in aqueous acetone. Compound 22 was hydrolyzed to illudin-S 

(2) by treatment with aqueous sodium carbonate. The physical and chemical 

properties of the synthetic illudin-S (2) were found to be identical

in all respects to the natural occurring substance.
13Illudin S has been assigned the absolute configuration implied

in formula 1, based on an application of the dibenzoate chirality rule to

a phenolic degradation product. It has been theorized that the biogenesis of
3 11 121 and 2  from famesyl phosphate ’ ’ occurs in the manner indicated in

scheme 5. According to that biosynthetic hypothesis, humelene serves as 

a precursor of the unique non-isoprenoid structure of the illudins. 

Investigators are conducting experiments in an effort to determine the 

biosynthetic sequence leading to the illudins.
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INTRODUCTION

The objective of this study was to develop a sequence of reac­

tions which would ultimately lead to the synthesis of the natural product 

illudin-S (1). The general approach to the synthesis of 1̂ is depicted in 

scheme 6 in which the principal reaction leading to the illudin skeleton 

involves the combination of the dithiane ^  with 1,1-diacetylcyclopro- 

pane (41). Several alternate approaches to the synthesis of the key 

intermediates and ^  will be discussed in this section.

A preliminary report on the synthesis of ^  appeared about the 

time this work was initiated. An examination of the sequence of reac­

tions employed by Matsumoto and coworkers in the synthesis of 2 revealed 

that the plan for synthesizing and ^  laid out for evaluation in this 

thesis was different from that of the Japanese workers, and if success­

ful would result in a shorter synthesis of 1 and 2- In view of the 

fact that the synthesis of 2 had been reported, it was decided to ex­

plore methods for synthesizing 1.

31
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RESULTS AND DISCUSSION

Compound 41 was prepared by the method of Ichakawa and coworkers. 15

CH2 =  CH2 I. Hg(OAc)^, Ac OH

2 C H g-C 0C H 2-C 0C H y NoOH 
3. KOH

0
II
C -C H ,

s-“ .0
41

2-methy1-2-carbomethoxycyclopentanone (35) was prepared by a slight 

modification of the procedure of Meyer and coworkers.

0 0
II II

M eO -C — (CH ) — C -O M e
I. NaH(xylene)

2. Mel
3.H+ 0 

35

-COOMe

During the early stages of this reaction, the originally fluid suspen­

sion of sodium hydride in xylene turned to a thick mush as a result of 

the insolubility of the enolate of the S-keto ester obtained as a result 

of step 1. Consequently, the reaction mixture was difficult to stir 

by ordinary methods and as a result poor yields of the final product 

35 were obtained. However, the yield of 15 was improved considerably

33
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by rapid stirring and keeping the reaction mixture fluid by continuously 

adding solvent at intervals throughout the initial stage of the reac­

tion (enolate formation).

Treatment of ^  with an excess of bromine in methylene chloride 

afforded 3^ in 95% yield (80%) purified. The next step in the reaction 

sequence called for the dehydrobromination of _36 to 2-bromo-4-methyl- 

4-carbomethyoxycyclopentene-3-one (37). However, the possibility of 

the direct conversion of ^  to by the action of alcoholic potassium 

cyanide was recognized. This conversion could take place by an initial 

dehydrobromination of to 3_7 which in turn could undergo a conjugate 

addition of cyanide ion followed by a second dehydrobromination to give 

38. When a solution of in methanol was actually treated with a sus­

pension of potassium cyanide in methanol, a dark tar was obtained. Analysis 

of the tar by nmr and ir spectroscopy indicated that no olefinic or 

nitrile groups were present in the product.

After attempts to convert directly to 3^ proved to be un­

successful, attention was directed to accomplishing this conversion in

a stepwise sequence, the first of which consisted of the dehydrobromina-
18tion of 3^. Lithium carbonate in dimethylformamide, diazobicyclo

19 20[4.3.0] nonene (DBN) , and collidine have been used to successfully con­

vert a-haloketones to the corresponding a,8~unsaturated ketones. When 

a solution of ^  in benzene was treated with diazobicyclo [4.3.0]nonene, 

a dark tar resulted. Chromatography of the tar on silica gel yielded 

a small quantity of 37,the desired product. Other dehydrohalogenation 

procedures employed in attempts to improve the yield of 37, including 

lithium carbonate in acetone and collidine in acetone, were also unsuc­

cessful. In general, tars and unaltered 36 were recovered.
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The dehydrobromination of ^  (see scheme 7) was ultimately 

accomplished by treatment with sodium bicarbonate in dimethylformamide, 

whereupon was obtained in 80% yields. Treatment of a solution of 

37 in acetonitrile and acetic acid with potassium cyanide afforded ^  

in 66-70% yields without isolation of any intermediates.

.COOMe
NaHCO.
DMF

36

NO

COOMe

38

COOMe

37

KCN, MeCN 

AcOH

Rq- N I COOMe
HCO.H

45

Scheme 7

The next two steps in the reaction sequence called for the con­

version of to the a,S-unsaturated aldehyde 39. and the conversion

of to the dithiane ^  (see scheme 6). Table summarizes some reported 

methods for converting nitriles to aldehydes. In our

initial approach to the problem of converting the nitrile ^  to the

a,S-unsaturated aldehyde various modifications of the procedures of
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TABLE 2

A Survey of Literature Procedures for Reducing 

Nitriles to Aldehydes

Reducing
Agent

Solvent Conditions % Yield of 
Aldehyde

Ref.

DiBAH Et^O,
MeCl^ or

RT. or reflux 70-80 24

LiAl(OEt), EtgO,
T.H.F.

80-90 22

Raney
Nickel and 
NaHgPO.'HgO

NCOOH, or R.T.
ACOH.H^O
pyridine

70-90 21

Raney
nickel

formic
acid
45-50%

80 80-90 21

HCI, SnCl^ Et^O 50-90 23

Hydrazine
and

Raney nickel

H^Ü R.T. 75-80 33
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21Statsun and Backberg were employed. It was assumed that the nitrile 

gro.up in _38 would resemble that of benzonitrile in terms of chemical 

reactivity and, therefore, if benzonitrile could be successfully reduced 

to benzaldehyde by these procedures, the nitrile ^  could be success­

fully reduced to the aldehyde 39_ under similar conditions. Indeed, when 

benzonitrile was treated with Raney nickel in formic acid, benzaldehyde 

was obtained in 80% yields. However, when the nitrile was subjected 

to the same reaction conditions employed in the reduction of benzonitrile, 

unaltered ^2 recovered from the reaction mixture.

After several attempts to convert 3^ to _39 using the procedures 

of Statsun and Backberg proved unsuccessful, the reaction conditions 

were reviewed to determine which factors could be varied in order to 

bring about the reduction of 2§i to The variables considered were

the amount of Raney nickel used per gram of nitrile, the volume of formic 

acid,used per gram of nitrile, the amount of water in the formic acid, the 

reaction time, the reaction temperature, and the activity of the Raney nickel 

catalyst. Each of these factors was varied one at a time, but none of the reduc­

tion attempts converted _3£ to the desired aldehyde _3£* However, when 

a solution of _3§. iu 75% formic acid was treated with Raney nickel cata­

lyst (1 to 1.5 grams of catalyst per gram of nitrile) at 75-80° for 

1-1.5 hours, the saturated aldehyde ^  (see scheme 2) was obtained in 

50-60% yields. Thus it was concluded that could not be reduced to _32. 

by the Raney nickel procedures. It was further concluded that the a- 

raount of Raney nickel per gram of nitrile, the reaction time and the 

reaction temperature were critical to the reduction of 38. to the saturated 

aldehyde (See table 3 for more details.)
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TABLE 3

Results of Attempts to Reduce The Nitrile 
to the Aldehyde 39

Moles Reducing Agent Solvent + Product +
of 38 and Conditions % Yield

No. of Moles

.0042 LiCOEt)^-
(.0042)

-Al-H Et 0, 0° 38 (45)

.004 LiCOEt)^-
(.004)

-Al-H Et^O, R.T. 
1 hr

38 (80)

.011 Li(OEt) --Al-H THF ^  (90)
(.001) R.T. 42 hr 

Reflux 2 hr
.007 DIBAH (.007) Benzene 

R.T. 3 hr R.T. 3 hr
38 (80)

Raney Nickel Procedures

Grains 
of 38

Grams of 
Catalyst

Aqueous
Solvent Conditions

% Yield of 
Product

2 3 50% formic 
acid

60°, 2 hr (52) saturated 
aldehyde

2 3 44% formic 
acid

100°, 7 min (52) sat. aid.

2 2 45% formic 
acid, 1,2 
dichloroethane

30-60° 
3 hr

(60) of 4^

2 6 44% formic 
acid

Reflux 
5 min

(48) of ^

1 .5 50% formic 
acid

50-60° 
15 min

(80) of 38.

1 1.5 50% formic 
acid

50-60° 
15 min

(55) of ^
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After attempts to reduce 8̂̂  to ^2 with various modifications of

the Raney nickel procedures proved unsuccessful, some otlier procedures

for the conversion of nitriles to aldehydes were explored. A search
22 23of the literature revealed that the methods of Brown, Stephens,

Meyer^^’̂ ^ and procedures employing diisobutylaluminum hydride^^ have

been used to convert nitriles to aldehydes.

The first of these procedures to be explored was the method

employing lithium triethoxyaluminum hydride which was developed by 
22Brown. In an effort to develop the technique for applying this poten­

tially useful reaction to the problem of reducing ^  to it was de­

cided that an attempt should be made to duplicate the results obtained 

by Brown and coworkers in one of their experiments. Accordingly, benzo­

nitrile was treated with lithium triethoxyaluminum hydride, and benzal­

dehyde was obtained in 80% yields. Brown and coworkers reported a 90% 

yield.

Since the attempt to duplicate the experimental results of 
22Brown and coworkers proved successful, the nitrile ^  and lithium tri- 

etboxyaluminum hydride (1:1 molar ratio) were reacted under the same 

experimental conditions employed in the reduction of benzonitrile. 

However, only unaltered was recovered from the reaction mixture. 

Similar results were obtained when a solution of ^  and triethoxyaluminum 

hydride (1:1 molar ratio) in tetrahydrofuran was refluxed for about four 

hours. Next, compound ^  was treated with a tenfold excess of lithium 

triethoxyaluminum hydride, and the reaction mixture worked up with deu­

terium oxide. The ir spectrum of the resulting product exhibited strong
-1 -1 -1 absorptions at 3450 cm (hydroxyl), 2215 cm (nitrile) and 1645 cm
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(carbon-carbon double bond) and lacked the carbonyl absorptions due to 

the ester and ketone functions of The nmr spectrum of the product

indicated that the acidic methylene protons of ̂  did not exchange with 

deuterium.
N C \ l.)LiAI(OEf),H NCs.

COOMe
1.)LiAI(OEf)jH

2.) DgO ^CHgOH

OH

It had been postulated that the inertness of the nitrile function in 

38 toward reducing agents might be due to abstraction of the ring 

methylene protons by the reducing agents to give an enolate that would 

not react further. However, the evidence presented above does not sup­

port this hypothesis.

The failure of these established reduction procedures to effect 

the conversion of 38_ to ^  indicated that a stronger reducing agent 

should be employed. Accordingly, a solution of ^  and diisobutylaluminum 

hydride (1:1 molar ratio) in benzene was refluxed for four hours; un­

altered _38 was recovered from the reaction mixture. When a solution 

of and lithium aluminum hydride (4:1 molar ratio) in ether was 

stirred at -70° for one hour, the ester function of ^  was partially

reduced. The ir spectrum of the product mixture exhibited absorptions
-1 -1 -1 at 3500 cm (OH), 1745 cm (ester) and 1710 cm (ketone). Further

analysis of the mixture by thin layer chromatography (tic) and nmr

spectroscopy indicated that the mixture consisted mostly of 3^ and that

no aldehyde was formed.
23Next, the method of Stephens was utilized in an attempt to 

reduce ^8 to 9̂̂ . It is reported that the Stephens method fails to
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convert a,g-unsaturated nitriles to the corresponding aldehydes. Never­

theless, a mixture of _38 and stannic chloride in absolute ether was 

treated with dry hydrogen chloride gas; however, only unaltered 38 was 

recovered from the reaction mixture.

Finally, the procedure developed by Meyers and coworkers was 

employed in an attempt to convert ^  to 39_ (see scheme 8). Based on

NC

.COOMe BF- —etherote
COOMeCH^-ÇH-CH^-ÇH -(CH^g 

OH OH
4738

COOMeH +NoBH

COOMe
39

Scheme 8

the examples reported by Meyers and collaborators, it was anticipated

that boron trifluoride-etherate catalyzed reaction of ^  with 2-methyl-

2 ,4-pentanediol would result in the formation of the 1,3-oxazine 47.

However, when a solution of 2-methyl-2,4-pentanediol and boron

trifluoride etherate in ether was maintained at 0° for 48 hours, no

appreciable reaction occurred.

In view of the failures encountered in attempts to convert 3^

to ^  and the fact that ^  could be successfully reduced to the saturated

aldehyde ^  (see scheme 2), some methods for dehydrogenating ^  to give

39 were considered. Literature reports indicated that dichlorodicyano-
32quinone and selenium dioxide would convert some saturated steriodal
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ketones to the corresponding a,g-unsaturated ketones. When a solution 

of ^  and dichlorodicyanoquinone in benzene was refluxed for about two 

hr, a dark colored tarry product was obtained. Analysis of the reaction 

mixture by tic and nmr spectroscopy indicated the presence of a com­

plex mixture of products which exhibited no aldehyde or olefinic pro­

tons. Hence it was concluded that decarbonylation of the aldehyde ^  

had taken place during the dehydrogenation attempts. Similar results 

were obtained when selenium dioxide was reacted with ^

Since all attempts to convert ^  to the corresponding aldehyde 

39 failed, the physical data on compound was re-examined. This 

examination revealed that the structure assigned to 3^ was fully con­

sistent with all spectra and analytical data except that the ir spectra
-1of ^  exhibits very weak absorption in the region of 2210 cm . A

search of the literature revealed that, in general, a ,3-unsaturated

nitriles substituted in the B-position with a carbonyl group show vir-
"“1 27 28tually no absorption in the region 2210 cm . ’

,C = N

48

.COOMe

38

e

©

In order to account for this abnormality it was proposed that electrons 

are displaced toward the more electronegative carbonyl group in the
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manner indicated for compounds and If the dipolar form of 3^

contributes significantly to its overall electronic structure, this 

might explain why this compound fails to undergo reduction to the cor­

responding aldehyde.

In view of the fact that cyanide ion adds readily to 27_ to form 

38 (see scheme 2), it was believed that some other nucleophiles would 

undergo the Michael reaction with ^2 to form precursors to 39. —

(see scheme 1). Accordingly the anion of nitromethane^^'^^ was pre­

pared by treating nitromethane with potassium t-butoxide in t-butyl 

alcohol; however, no appreciable reaction occurred when 3J_ was added

to the anion. Attempts to catalyze the addition of nitromethane to 32
31with potassium fluoride in absolute ethanol were also unsuccessful.

Several attempts to add the anions of 1,3-dithiane and 1,3-dithiane

monoxide to 22. were also futile. As a result of these failures, the

approaches to the synthesis of 22. ^nd 42 involving the Michael reaction

were abandoned and attention was again turned to compound 38.

Treatment of 22, with p-toluenesulfonic acid and ethylene glycol

in refluxing benzene (see scheme 9) resulted in the ketalization of the

carbonyl group of 22. bo form 42 in high yields. The mass spectrum of

49 showed a molecular ion at m/e 22 3. In sharp contrast to compound
-138, the ir spectrum of 42 showed a pronounced absorption at 2210 cm 

due to the cyano group. The nmr spectrum of 42 showed the following 

important features: a one proton triplet at 6.1 ppm (J = 1.0 Hz),

olefinic proton, and a four proton multiplet at 3.95-4.25 ppm, protons 

on carbons bearing oxygens. The reaction of 42 with Raney nickel and 

sodium hypophosphite in acetic acid, water and pyridine (1:1:2) afforded
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the aldehyde 50̂  in 60% yields. The mass spectrum of 50̂  exhibited a

molecular ion at m/e 226. The ir spectrum showed significant absorp-
-1 -1 tions at 1740 cm (ester carbonyl) and 1685 cm (aldehyde carbonyl).

The uv spectrum showed 218 my (e, 18,000). The nmr spectrum of

50 showed the following important features: a sharp singlet at 9.5

ppm, aldehyde proton; a triplet at 6.4 ppm (J = .5 Hz) olefinic proton,

and a four proton multiplet at 3.90-4.25 ppm, protons on carbon atoms

bearing oxygens.

The next step in the reaction sequence called for the reaction

of with 1,3-propanedithiol (see scheme 4) followed by.hydrolysis of

ketal moiety to form the ketothioacetal 40. When this reaction was

attempted using boron trifluoride-etherate as the catalyst, a mixture

of products inseparable by alumina or thin layer chromatography
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was isolated. This mixture exhibited practically no olefinic proton 

absorption in its nmr spectrum. Presumably, the 1,3-propanedithiol 

reacted with the carbon-carbon double bond of ^  as well as the aldehyde 

function under the reaction conditions (chloroform, 0°). Inverse addi­

tion (the addition of a solution of 1,3-propanedithiol and the acid 

catalyst) to the aldehyde produced the same results. The use of weaker 

acid catalysts such as p-toluenesulfonic acid, zinc chloride, and stannic 

chloride, as well as varying the reaction temperature from 0° to -70° 

were to no avail. Other attempts to circumvent the problem posed by 

the facile addition of 1,3-propanedithiol to carbon-carbon double bond 

of ^  were also futile; these attempts included hydrolysis of the ketal 

function and bromination of the double bond. In view of these insur­

mountable difficulties combined with the time and effort devoted to the 

project, the attempt to synthesize 1 was abandoned.



SUMMARY

Attempts to synthesize illudin-S (1̂ ) resulted in the prepara­

tion of the compounds depicted in scheme 1 0 .
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EXPERIMENTAL

All melting points and boiling points are uncorrected. All sol­

vents were redistilled prior to use. Anhydrous solvents were prepared 

by distillation from calcium hydride. Column chromatography supports 

were silicAR CC-7 (Mallinckrodt, 100/200 mesh) and silica gel H (Merck 

AG, Darmstadt). Thin layer chromatography was performed on 5 x 20 cm 

glass plates coated with silica gel H (Merck AG, Darmstadt). The de­

veloped plates were exposed to iodine vapor for visualization of the 

chromatogram.

Gas chromatographic analyses were performed on a Varian Aero­

graph Model 1220-1 or Aerograph Model 1240-1 gas chromatograph. The 

infrared spectra were taken on a Beckman lR- 8  as potassium bromide 

pellets or in solutions of carbon tetrachloride or chloroform. Ultra­

violet spectra (uv) were taken in 95% ethanol solutions with the Hitachi 

Perkin-Elmer, Model 124, spectrometer.

Nuclear magnetic resonance spectra (nmr) were taken on a Varian 

A-60 or T-60 spectrometers using tetramethylsilane (TMS) as an internal 

reference. Samples were run in varying concentrations of carbon tetra­

chloride and deuterochloroform. Chemical shifts are reported in 6 -units 

(parts per million from TMS), and are followed by the multiplicity of the 

signal, the number of protons, the corresponding coupling constant and 

the assignment. The multiplicities are denoted by the symbols: s,

singlet; d, doublet; dd, double doublet; t, triplet; and m, multiplet.

47
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The mass spectra were taken on a Hitachi Perkin-Elmer RMÜ-7E 

spectrometer using perfluorokerosene as an internal reference. Major 

peaks and molecular ions are reported followed by percentage of the base peak.

Combustion analyses were carried out by Bernhardt Laboratories 

in MUlheim, West Germany, and Mr. E. Meier, Chemistry Department, Stan­

ford University, Palo Alto, California.

2-Methvl-2-Carbomethoxycyclopentanone (35)

The procedure of Meyer and coworkers^^ was used.

To a 5-1 three-necked flask which was equipped with a mechanical 

stirrer, a Vigrueaux column carrying a distillation head, and an addition 

funnel were added 24 g (1 mol) of sodium hydride as a 57% dispersion in 

mineral oil and 2 1 of dry xylene. Under a nitrogen atmosphere (which 

was maintained throughout the reaction) 174 g (1 mol) of dimethyl adipate 

was added and the reaction mixture was stirred and the methanol xylene 

azeotrope was slowly distilled. After about 2 hr a thick mush formed and 

an additional 100-1500 ml of xylene was added to the reaction mixture.

The reaction mixture was stirred rapidly and the distillation was continued 

until the temperature of the distillate reached 120°. The reaction mix­

ture was cooled to room temperature, 213 g (1.5 mol) of methyl iodide was 

added to the reaction mixture and stirring was continued for 16 hr. An 

additional 71 g (.5 mol) of methyl iodide was added to the reaction mixture, 

stirring was continued for 24 hr and the mixture was distilled in order to re­

move the excess methyl iodide. The mixture was cooled to room temperature,

500 ml of 10% hydrochloric acid was added to the mixture and the layers were 

separated. The aqueous layer was extracted once with 500 ml of 1:1 ether- 

benzene, the combined organic layers were washed with a saturated solution of
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sodium bisulfite and dried over anhydrous sodium sulfate. Removal of 

the solvents by distillation yielded 145.2 g of a mixture of the crude 

keto ester and mineral oil. Distillation of the mixture on a spinning 

band column yielded 114.5 g (78%) of 2 -methyl-2 -carbomethoxycyclopenta- 

none (35) as a colorless liquid, bp 92-94° ( 6  mm), n^^ 1.4532 [Lit^^ 

bp 105-106° (15 mm)]; ir (CCl^) 1760 cm ^ (ketone carbonyl), 1740 cm  ̂

(ester carbonyl); nmr (CDCl^) 6 3.68 (s, 3, ester methyl), 1.85-2.6 

(m, 6 , methylene protons), 1.23 (s, 3, quatenary methyl).

5 ,5-Dibromo-2-methyl-2-carbomethoxycyclopentanone (36)

A solution of 104 g (0.66 mol) of 2-methyl-2-carbomethoxycyclo- 

pentanone (35) in 350 ml of dichloromethane was placed in a one liter 

three-necked flask which was equipped with a magnetic stirring bar, an 

addition funnel, and a condenser. The contents of the flask were stirred 

and 224 g (1.4 mol) of bromine in 50 ml of dichloromethane was added 

dropwise to the flask over a 30 min period. Hydrogen bromide was evolved 

immediately, and stirring was continued for an additional 12 hr. The 

methylene chloride solution was first washed with a 1 0 % sodium bicar­

bonate solution to remove the hydrogen bromide, and then with a satu­

rated solution of sodium bisulfite to remove the excess bromine. The 

methylene chloride solution was then dried over anhydrous sodium sul­

fate and evaporated to yield 190 g (91%) of the dibromide as a yellow 

oil. Distillation of 10 g of the crude product yielded 8.2 g (75%) of 

2-methyl-2-carbomethoxy-5,5-dibromocyclopentanone (36) as a colorless

liquid, bp 98-100° (2 mm). An analytical sample was obtained by col-
25lecting a middle fraction from the distillate, bp 98-100° (2 mm), n^

-1 -1 1.5198; ir (CCl^) 1768 cm (ketone carbonyl) , 1735 cm (ester carbonyl);
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nmr (CCl^) ô 3.73 (s, 3, ester methyl), 1.85-3.2 (m, 6 , methylene pro­

tons), 1.58 (s, 3, quatenary methyl); mass spectrum 316 (13), 315 (3), 

314 (20), 312 (13), 286 (28), 185 (19), 175 (34), 173 (29), 165 (21),

127 (39), 95 (23), 69 (100), 6 6  (25), 65 (24), 59 (25), 41 (70).

Anal. Calcd for CgH^gBrgO^: C, 30.57; H, 3.19; 0, 15.29.

Found: C, 30.78; H, 3.34; 0, 15.45.

2-Bromo-5-methyl-5-carbomethoxy-2-cvclopenten-l-one (37)

A mixture of 21 g (.25 mol) of sodium bicarbonate and 62.8 g 

(.20 mol) of 2 -methyl-2 -carbomethoxy-5 ,5 -dibromocyclopentanone (36) and 

125 ml of dimethylformamide was placed in a 500 ml three necked flask 

which was equipped with a magnetic stirring bar and a condenser. The 

flask was immersed in an oil bath, the temperature of the bath was 

raised to 80°, and the reaction mixture was stirred and heated for 4 

hours with the temperature of the bath being maintained at 80-85°. Then 

the reaction mixture was allowed to cool to room temperature and poured 

into 500 ml of benzene. The benzene solution was filtered in order to 

remove the insoluble inorganic residue, and washed several times with 

water to remove the dimethylformamide. The benzene solution was dried 

over anhydrous sodium sulfate and the solvent was evaporated to yield

38.5 g (83.3%) of crude product as a dark brown oil. Distillation of 

the crude product yielded 2-bromo-5-methyl-5-carbomethoxy-2-cyclopen- 

ten-l-one (37) as a colorless oil (31.5 g, 70%), bp 132-134° (1 mm).

The oil crystallized on cooling to form a white solid, mp 48-49°. An 

analytical sample was obtained by collecting a middle fraction from the 

distillate, bp 132-134° (1 mm), mp 48-49°. Recrystallization from 

hexane-methylene chloride did not change the melting point; ir (CCl^)



51
-1 -1 -1 1745 cm (ester carbonyl), 1725 cm (ketone carbonyl), 1585 cm

(carbon-carbon double bond); uv 243 my (e 6,857); nmr (CCl^)

& 7.86 (t, 1, J = 2 Hz, olefinic proton), 3.68 (s, 3, ester methyl),

3.30 (dd, 1, J = 2 Hz, J = 18 Hz, methylene proton), 2.60 (dd, 1, J

= 2 Hz, J = 18 Hz, methylene proton), 1.40 (s, 3, quatenary methyl);

mass spectrum, 235 (2), 234 (24), 233 (3), 232 (22), 175 (15), 174 (12),

173 (14), 172 (10), 121 (100), 6 6  (21), 65 (32), 59 (13), 53 (11),

41 (15).

Anal. Calcd. for CgHgBrO^: C, 41.20; H, 3.85; Br, 34.33.

Found: C, 41.37; H, 3.90; Br, 34.41.

4-Methyl-l-cyano-4-carbomethoxy-2-cvclopenten-3-one (38)

Into a 500 ml three-necked flask which was equipped with an 

addition funel, a magnetic stirring bar and a gas inlet were placed 

26 g (.4 mol) of potassium cyanide and 125 ml of acetonitrile. The 

gas inlet was connected to a trap containing a saturated solution of 

sodium hydroxide. A solution of 31 g (.13 mol) of 2-bromo-5-methyl- 

5-carbomethoxy~2-cyclopenten-l-one (37) in 100 ml of acetic acid was 

added dropwise to the mixture over a 30 min period. The reaction mixture 

was stirred at room temperature until all of the starting compound had 

reacted as indicated by nmr and thin layer chromatographic analysis 

(about 5 days). The reaction mixture was then poured into 300 ml of 

benzene and washed several times with a 1 0 % solution of sodium bicar­

bonate in order to remove the acetic acid. The benzene solution was 

then dried over anhydrous sodium sulfate and evaporated to yield 2 0  g 

(8 6 %) of a yellow oil. Distillation yielded 16.4 g (70%) of 4-methyl-

1- -4-carbomethoxy-2-cyclopenten-3-one (38) as a light yellow oil
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bp 120-122° (1 mm), mp 38-39°. Recrystallization from 1:1 hexane-methyl­

ene chloride did not change the melting point. An analytical sample 

was obtained by collecting a middle fraction from the distillate, bp 

120-122° (1 mm), mp 38-39°; ir (CCl^) 1755 cm ^ (ketone carbonyl), 1725 

cm ^ (ester carbonyl); 1595 cm ^ (carbon-carbon double bond); uv

250 mp (e 22,000); nmr (CCl^) 6 6.75 (t, 1, J = 1.5 Hz, olefinic pro­

ton), 3.72 (s, 3, ester methyl), 3.45 (dd, 1, J = 1.5 Hz, J = 18 Hz,

methylene proton), 2.75 (dd, 1, J = 1.5 Hz, J = 18 Hz, methylene proton),

1.45 (s, 3, quatenary methyl); mass spectrum, 180 (6 ), 179 (42), 168

(35), 164 (60), 148 (29), 147 (65), 316 (29), 121 (21), 120 (100),

119 (57), 109 (28), 108 (55), 93 (23), 92 (58), 91 (37), 81 (26), 69

(20), 6 6  (36), 65 (76), 59 (44), 55 (20), 51 (20), 43 (41), 41 (53).

Anal. Calcd. for CgHgNO^: C, 60.34; H, 5.03; N, 7.82; 0, 26.81.

Found: C, 60.26; H, 5.16; N, 7.73; 0, 26.67.

Methyl l-methvl-4-cyano-2-ethvlenedioxv-3-cvclopenten-l-carboxylate (49)

In a 500 ml one-necked flask which was equipped with a Dean 

Stark phase separator (carrying a reflux condenser) and a magnetic stir­

ring bar were placed 6  g (.033 mol) 4-methyl-l-cyano-4-carbomethoxy-

l-cyclopenten-3-one (38), 10 g (.16 mol) of ethylene glycol, 50 mg of 

p-toluenesulfonic acid and 60 ml of dry benzene. A sufficient quantity 

of dry benzene was placed in the phase separator in order to maintain 

a constant volume of benzene within the flask during the reaction and 

the reactiom mixture was stirred and refluxed with the continuous re­

moval of water for a period of about 60 hr. The benzene solution was 

washed once with 50 ml of a 10% solution of sodium bicarbonate and 

dried over anhydrous sodium sulfate. The benzene was removed on the
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rotary evaporator to yield 6.38 g (92%) of the cyano ketal as a yellow 

solid, mp 56-58°. Recrystallization from 1:1 benzene-hexane yielded

6.2 g (8 8 %) of methyl l-methyl-4-cyano-2-ethylenedioxy-3-cyclopenten-l- 

carboxylate (49) as a white crystalline solid, mp 59-60°. Two recrystal­

lizations from benzene-hexane yielded an analytical sample, mp 60-61°;
-1 -1 ir (KBr) 2218 cm (nitrile stretch), 1745 cm (ester carbonyl), 1632

-1 -1 cm (carbon-carbon double bond stretch), 1075 cm (carbon-oxygen

stretch); uv (A^°^) 215 my (e 680); nmr (CDCl^) ô 6.10 (t, 1, J = 1.5 

Hz, olefinic proton), 3.95-4.20 (m, 4, methylene protons on carbons bear­

ing oxygens), 3.70 (s, 3, ester methyl), 3.45 (dd, 1, 1.5 Hz, J = 18 

Hz, one of the methylene protons of the five membered ring), 2.35 (dd,

1, J = 1.5 Hz, J = 18 Hz, remaining methylene proton of the five mem­

bered ring), 1.35 (s, 3, quatenary methyl); mass spectrum 224 (5),

223 (29), 208 (84), 192 (93), 191 (20), 166 (54), 164 (70), 165 (100),

151 (33), 137 (20), 136 (62), 135 (20), 134 (24), 124 (30), 121 (25),

120 (45), 119 (33), 107 (30), 123 (60), 103 (2,0), 93 (46), 92 (32),

91 (55), 90 (23), 8 6  (24), 80 (37), 79 (76), 78 (27), 77 (65), 76 (21),

69 (22), 6 6  (38), 65 (39), 64 (44), 63 (36), 59 (54), 53 (25), 52 (50),

51 (6 6 ), 50 (54), 40 (39).

Anal. Calcd. for C^^H^^NO^: C, 59.20; H, 5.83; N, 6.78.

Found: C, 59.05; H, 5.85; N, 6.41.

3-Ethylenedioxv-4-methyl-4-carbomethoxvcyclopenten-l-carboxaldehyde (50)
21The procedure followed was that of Staskun and Backberg.

A suspension of 10 g of Raney nickel catalyst (1:1 nickel-aluminum)

and 200 ml of 2N sodium hydroxide were stirred at room temperature for

40 minutes in a 2-1 flask. The base was decanted and the activated catalyst
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was washed three times with water. Then a solution of 10 g (.045 mol) 

of methyl l-methyl-4-cyano-2-ethylenedioxy-3-cyclopenten-l-carboxylate 

(49) in 100 ml of methanol, 400 ml of a 2:1:1 mixture of pyridine-acetic 

acid-water and 40 g (.30 mol) of sodium hypophosphite was added to the 

flask and the reaction mixture was stirred at room temperature in a 

nitrogen atmosphere for 12 hr. The reaction mixture was filtered with 

suction and the filtrate was poured into 600 ml of chloroform. The 

chloroform solution was washed first with a 1 0 % solution of hydrochloric 

acid in order to remove the pyridine, and then a 1 0 % solution of sodium 

bicarbonate to remove the acetic acid. The chloroform solution was then 

dried over anhydrous sodium sulfate and evaporated on the rotary evapora­

tor to yield 6 . 8  g (6 8 %) of the crude aldehyde as a dark yellow solid, 

mp 65-66°. Recrystallization from hexane-methylene chloride (1:1) 

yielded 5.2 g (52%) of 3-ethylenedioxy-4-methyl-4-carbomethoxycyclopenten-

1-carboxaldehyde (50) as a white solid, mp 68-69°. Two recrystalliza­

tions from benzene-hexane yielded an analytical sample, mp 69-70°; ir 

(CHClg) 2820 and 2715 (formyl carbon-hydrogen stretch), 1735 (ester 

carbonyl), 1685 (aldehyde carbonyl), and 1625 cm (carbon-carbon double 

bond); uv 215 my (e 18,000); nmr (CDCI3 ) ô 9.5 (s, 1, aldehyde

proton), 6.4 (t, J = 1.5 Hz, 1, olefinic proton), 4.2-3. 8  (m, 4, methy­

lene protons on carbon atoms bonded to oxygens), 3.6 (s, 3, ester methyl),

3.3 (dd, 1, J = 1.5 Hz, J = 18 Hz, methylene proton of five membered 

ring), 2.3 (dd, 1, J = 1.5 Hz, J = 18 Hz, methylene proton of five mem­

bered ring), 1.35 (s, 3, quatenary methyl); mass spectrum 227 (3), 226 

(16). 182 (30), 150 (25), 125 (16), 123 (19), 122 (26), 101 (43), 95 

(32), 84 (30), 69 (55), 59 (35), 58 (28), 56 (14), 55 (20), 45 (20),

43 (41), 42 (15), and 41 (100).
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Anal. Calcd. for C, 58.41; H, 6.19. Found: C, 57.71;

H, 5.88.

1,3 Dithiane

In a one liter three-necked flask which was equipped with a 

reflux condenser, an addition funnel, and a magnetic stirring bar 

were placed 300 ml of chloroform and 10 ml of boron trifluoride etherate. 

The chloroform was refluxed gently, and 57 g (.75 mol) of freshly dis­

tilled dimethoxymethane and 54 g (.50 mol) of 1,3-propanedithiol were 

added slowly through the addition funnel. When the addition was com­

pleted, the heating was ceased and the reaction mixture was stirred 

for 12 hours at room temperature. The chloroform solution was washed 

twice with 50 ml of a 10% solution of sodium hydroxide, dried over 

anhydrous sodium sulfate and evaporated on the rotary evaporator to 

yield 48.3 g (80%) of 1,3-dithiane as a crystalline white solid, mp 

48-49° [lit.^^ mp 54°].

1,3-Dithiane Monoxide
34The procedure used was that of Carlson and Helquist.

A solution of 4 g (.033 mol) of 1,3-dithiane in 250 ml of methanol was 

placed in a 500 ml three-necked flask which was equipped with an addi­

tion funnel and a mechanical stirrer. The flask was immersed in an 

ice-water bath at 10°, the solution was stirred and a solution of 7.36 

g (.034 mol) of sodium metaperiodate in 70 ml of water was added to the 

reaction mixture over a 30 min period. Stirring and cooling were con­

tinued for 30 min, and then the mixture was filtered to remove the sodium 

iodate. The filtrate was evaporated to near dryness on the rotary
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evaporator and extracted with chloroform. The chloroform solution was 

dried over anhydrous sodium sulfate and evaporated to yield 3.98 g (90%) 

of crude 1,3-dithiane monoxide, mp 80-82°. Two recrystallizations from 

cyclohexane-chloroform 1:1 yielded 3.42 g (83%) of 1,3-dithiane monoxide 

as a white solid, mp 87-88° [Lit. mp 87°].

4-Methyl-3-oxo-4-carbomethoxvcyclopentane-l-carboxaldehyde (45)

The procedure followed was a slight modification of the proce-
21dure of Staskun and Backberg. A suspension of 6  g of Raney nickel 

alloy and 120 ml of 2N sodium hydroxide was stirred for 40 min at room 

temperature. The base was decanted and the activated catalyst was washed 

three times with water. Then 15 ml of water was added to the activated 

catalyst and the mixture was heated to 80° and a solution of 2 g ( 1 1  mmol) 

of methyl l-methyl-4-cyano-3-ethylenedioxy-3-cyclopenten-l-carboxylate 

(38) in 17 ml of 8 8 % formic acid was added to the mixture. The heating was con­

tinued at 80° for 5 min and the hot reaction mixture was then poured 

into 50 ml of water and extracted with 100 ml of chloroform. The chloro­

form solution was washed several times with a 1 0 % solution of sodium 

bicarbonate and dried over anhydrous sodium sulfate. Evaporation of the 

solvent yielded .950 g (49%) of a mixture of the diastereomeric forms 

of ^  as a dark yellow oil. Bulb to

bulb distillation of the oil yielded .732 g (37%) of the aldehyde as a color­

less oil, bp 110-112° (.2 mm). An analytical sample was prepared by 

preparative gas chromatography (JXR 3%, 1.5% gas chrom. Q 8 ' x 3/8");

ir (CCl^) 2705 cm ^ (formyl C-H), 1755 cm ^ (ester carbonyl), 1740-1720 
- 1cm (ketone and aldehyde carbonyls); nmr (CDCl^) <5 9.8 (bs, 1, aldehyde 

proton), 3.8, 3.68 (singlets, total of 3 H, ester methyl), 1.75-3.4
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(m, 5, methylene protons), 1.4, 1.35 (singlets, total of 3 H, 

quaternary methyl) ; mass spectrum 184 (7), 153 (28), 127 (16), 125 (20),

124 (17), 122 (16), 121 (38), 110 (18), 100 (98), 96 (21), 95 (17),

94 (50), 93 (28), 84 (19), 83 (80), 82 (17), 81 (16), 80 (16), 77 (35),

76 (15), 73 (16), 6 8  (77), 67 (15), 6 6  (80), 65 (15), 59 (17), 58 (20),

55 (26), 54 (44), 45 (87), 44 (100), 43 (48), 42 (71), 41 (20) and

40 (90).

Anal. Calcd. for C , 58.66; H, 6.52. Found: C, 58.17;

H, 6.47.

The attempted reaction of the anion of 1,3-dithiane with 2-bromo-

5-methyl-5- carbomethoxy -2-cyclopenten-l-one (37). The apparatus was 

flame dried in a nitrogen atmosphere which was maintained throughout the 

experiment. A solution of 2.27 g (.021) of 1,3-dithiane in 100 ml of 

dry, freshly distilled tetrahydrofuran was placed in 250 ml three necked 

flask which was equipped with a septum cap, a mechanical stirrer and 

nitrogen inlet. The flask was flushed with nitrogen, immersed in a 

dry ice-acetone bath at -30° and 13.1 ml of a 1.6 molar solution 

of n-butyllithium in hexane was slowly added by means of a syringe to 

the flask. The reaction mixture was stirred for 3 hr at -30°, and a solu­

tion of 5 g (.021 mol) of 2-bromo-5-methyl-5-carbomethoxy-2-cyclopen- 

ten-l-one (37) in 25 ml of dry tetrahydrofuran was added slowly to the 

reaction mixture. Stirring was continued for 48 hr at 0-10° , the reac­

tion mixture was poured into 100 ml of water and acidified to a pH of 4 

with 2N hydrochloric acid. The reaction mixture was extracted twice 

with 100 ml portions of chloroform. The chloroform solution was dried
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over anhydrous sodium sulfate and removed on the rotary evaporator to

yield 5.83 g of product mixture. Analysis of the mixture by tic and

nmr spectroscopy indicated that no appreciable reaction occurred.

The attempted Michael Addition of the anion of 1,3-dithiane

monoxide with 2-bromo-5-methvl-5-carbomethoxy-2-cyclopenten-l-one (37).
34The procedure of Carlson and Helquist was used to prepare the anion of

1,3-dithiane monoxide. A nitrogen atmosphere was maintained throughout 

the experiment. A 250 ml three-necked flask containing a solution of 

2.94 g (.216 mol) of 1,3-dithiane monoxide in 100 ml of tetrahydrofuran 

was immersed in a calcium chloride-ice water bath at -10° and 13.1 ml 

of a 1 . 6  molar solution of n-butyllithium was added to the flask over 

a 5 min period. The reaction mixture was stirred at -10° for 30 min 

and a solution of 5 g (.216 mol) of 2-bromo-5-methyl-5-carbomethoxy-2- 

cyclopenten-l-one (37) in 50 ml of tetrahydrofuran was added to the 

anion. Stirring was continued for 1 hr at 0° and 24 hr at room tempera­

ture. The reaction mixture was then acidified with IN hydrochloric acid 

and extracted with 100 ml of chloroform. The chloroform solution was 

dried over anhydrous sodium sulfate and evaporated to yield a mixture 

of a polymeric substance and 2 -bromo-5 -methyl-5 -carbomethoxy-2 -cyclo- 

penten-l-one (37).

The attempted Stephen Reduction of 4-methyl-l-cyano-4-carbo-
23methoxy-l-cyclopenten-3-one (38). The procedure of Stephens was 

used.

Preparation of the stannous chloride reducing agent. To a 

beaker containing 30 ml of acetic anhydride, 22.6 g (.1 mol) of stannous 

chloride dihydrate was slowly added. The anhydrous salt separated from
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the solution immediately. The salt was collected by suction filtration 

and air dried under vacuum. Yield of anhydrous stannous chloride was

18.5 g (97%).

In a dry 250 ml three-necked flask which was equipped with cal­

cium chloride tubes and a gas inlet was placed a suspension of 1.5 g 

( 8  mmol) stannous chloride in 50 ml of absolute ether. The suspension 

was saturated with dry hydrogen chloride gas until a homogeneous mixture 

was attained. Then a solution of 1 g (5.6 mmol) of 4-methyl-l-cyano-

4-carbomethoxy-l-cyclopenten-3-one in 10 ml of absolute ether was added 

to the reaction mixture. The reaction mixture was stirred at room tem­

perature and after about 1 0  minutes a yellow oil separated from the 

solution. Stirring was continued for an additional 4 hr at room tem­

perature, and the ether was decanted. The oil was collected, refluxed 

with 100 ml of water for 2 hr and poured into 100 ml of ether. The 

ether solution was dried over anhydrous sodium sulfate and removed on 

the rotary evaporator to yield .895 g of unaltered 38.

The reaction of 4-methyl-3-oxo-4-carbomethoxycyclopentane-l-carbox-
32aldehyde (45) with selenious acid. The procedure of Schafer was used.

A solution of 200 rag (1.12 mmol) of ̂

and 2 0 0  mg of selenious acid in 1 0  

ml of benzene was refluxed in a nitrogen atmosphere for 24 hr. Evapora­

tion of the solvent left .358 g of a dark residue which was filtered 

through a column containing 20 g of activity 6 neutral alumina. Analysis 

of the product by thin layer chromatography and nmr spectroscopy indi­

cated a complex mixture of products which exhibited no olefinic or 

aldehyde protons.
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Similar results were obtained when dichlorodicyanoquinone was 

substituted for selenious acid in the above procedure.

The reaction of sodium cyanide with (36). A suspension of 1 g 

(17 mmol) of sodium cyanide and .7 g (2.2 mmol) of 5 ,5-dibromo-2-methyl-

2-carbomethoxycyclopentanone (36) in 50 ml of methanol was refluxed in 

a nitrogen atmosphere for 18 hr and cooled to room temperature. The 

reaction mixture was concentrated on the rotary evaporator and dissolved 

in 100 ml of methylene chloride. The methylene chloride solution was 

washed several times with water and dried over anhydrous sodium sulfate. 

Evaporation of the methylene chloride yielded a dark tar which exhibited 

no olefinic or nitrile absorption when analyzed by nmr and ir spectro­

scopy.

The reaction of 5 ,5-dibromo-2-methyl-2-carbomethoxycyclopentanone

(36) with 1,5-diazobicyclo[4.3.0]-5-nonene (DBN). The procedure of 
19Oidiger was used.

A solution of 8  g (.025 mol) of 5,5-dibromo-2-methyl-2-carbo- 

methoxycyclopentanone (36) and 3.1 g (.025 mol) of DBN in 100 ml of 

dichloromethane was stirred in a nitrogen atmosphere at 0° for 1.5 hr.

The dichloromethane solution was washed several times with a 10% solu­

tion of hydrochloric acid and dried over anhydrous sodium sulfate. 

Evaporation of the solvent yielded 5.2 g of a dark yellow oil. Analysis 

by thin layer chromatography indicated the presence of two products.

The oil was chromatographed on 280 g of 100-200 mesh silic acid (50 

X  4-1/2 cm column). A solution of 6.2 g of the oil was eluted with 

benzene and 75 ml fractions were collected. Fractions 14 + 15 were 

combined; evaporation of the solvent yielded .620 g of the unreacted 

amine. After fraction 16, the solvent was changed to 95% benzene-5%
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ethyl acetate. Fractions 25 and 26 yielded 2.78 g (47%) of 2-bromo-5- 

methyl-5-carbomethoxy-2-cyclopenten-l-one (37) as a yellow solid, mp 

48-49°.

The attempted reaction of the anion of nitromethane with 2-bromo-

5-methyl-5-carbomethoxy-2-cyclopenten-l-one (37). The nitromethane 

was dried over anhydrous sodium sulfate and distilled from calcium hy­

dride. The apparatus was flame-dried in a nitrogen atmosphere which 

was maintained throughout the experiment.

In a 250 ml three-necked flask which was equipped with a gas 

inlet and an addition funnel was placed a mixture of 1.3 g (.02 mol) 

of nitromethane, 1.16 g (.02 mol) of sodium methoxide and 50 ml of 

absolute methanol. The flask was immersed in an ice-water bath at 0-5°, 

flushed with nitrogen, and the reaction mixture was stirred for 1  hr 

at 0-5°. A solution of 2-bromo-5-methyl-5-carbomethoxy-2-cyclopenten-

1-one (37) in 25 ml of absolute methanol was then added to the reaction 

mixture and stirring was continued for 1 2  hr at 0 - 1 0 ° at which time an 

aliquot was removed from the flask and analyzed by thin layer chroma­

tography and nmr spectroscopy. No appreciable reaction occurred under 

these conditions. Similar results were obtained when the reaction was 

run at room temperature or refluxed.

When the above procedure was repeated using potassium-t-butoxide 

in t-butanol instead of sodium methoxide in methanol, only starting 

materials were recovered.

The attempted Michael addition of the anion of nitromethane to

2-bromo-5-methyl-5-carbomethoxy-2-cyclopenten-l-one (37) using potassium 

fluoride as the catalyst. A mixture of 1.8 g (.03 mol) of nitromethane, 

2.33 g (.01 mol) of 2-bromo-5-methyl-5-carbomethoxy-2-cyclopenten-l-one
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(37) and .1 g potassium fluoride in 50 ml of absolute ethanol was refluxed 

for 8  hr. The ethanol solution was poured into 100 ml of water and ex­

tracted twice with 100 ml portions of ether. The ether solution wa.s 

dried over anhydrous sodium sulfate and evaporated to yield 2.25 g of 

the unaltered 37.

The attempted reaction of 2-methyl-2.4-pentanediol with (38).

A 125 ml Erlenmeyer flask containing a solution of 1.2 g (.01 mol) of

2-methy1-2,4-pentanediol, 1 g (.006 mol) of 4-methyl-l-cyano-4-carbo- 

methoxy-l-cyclopenten-3-one (38), and .1 ml boron trifluoride-etherate 

in 25 ml of absolute ether was stored in a refrigerator for 48 hr.

Analysis of the mixture by tic indicated that no reaction had occurred.

The reaction of 1,3-propanedithiol with 3-ethylenedioxy-4-methyl-

4-carbomethoxycyclopenten-l-carboxaldehyde (50). A solution of 2.8 g 

(12 mmol) of 3-ethylenedioxy-4-methyl-4-carbomethoxycyclopenten-l-carbox- 

aldehyde (50) in 15 ml of chloroform was placed in a 100 ml three-necked 

flask. The flask was placed in an ice-water bath at 0°, flushed with 

nitrogen and a solution of 1.23 g (12 mmol) of 1,3-propanedithiol and 

.1 ml of boron trifluoride-etherate in 15 ml of chloroform was added 

to the flask over a 10 min period. The reaction mixture was stirred 

for 1 2  hr at 0 ° in a nitrogen atmosphere and poured into 1 0 0  ml of 

chloroform. The chloroform solution was washed with a 10% solution of 

sodium carbonate and dried over anhydrous sodium sulfate. Evaporation 

of the solvent yielded 2.92 g of an oil whose nmr spectrum exhibited no 

olefinic proton absorptions. The above procedure was repeated using 

zinc chloride, stannic chloride, and p-toluenesulfonic acid as cata­

lysts. Similar results were obtained in each case.
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1,1-Diacetylcyclopropane (41)

The procedure of Ichakawa and coworkers^^ was used.

A suspension of 64 g (.2 mol) of mercuric acetate and 60 g 

( 1 mol) of glacial acetic acid was treated with ethylene until the 

mixture became homogeneous. The reaction mixture was then treated suc­

cessively with 10 ml of a 10% solution of sodium hydroxide, 40 g (.4 

mol) of acetylacetone and 15 g of 70% perchloric acid. After standing 

overnight, the mixture was treated with a 1 0 % solution of sodium chloride 

and white crystals separated from the solution. The crystals were col­

lected, air dried and recrystallized from 95% ethanol to give 52 g (75%) 

of 3,3-diacetylpropylmercuric chloride, mp 132-133° [Lit^^ 131-132°].

A suspension of 50 g (.14 mol) of the mercury salt and 70 ml 

of 1 0 % potassium hydroxide was allowed to stand at room temperature 

for 2 hr. The reaction mixture was filtered and the filtrate was ex­

tracted with ether. The ether solution was dried over anhydrous sodium 

sulfate and evaporated to yield 4.5 g of crude product. Distillation 

yielded 3.8 g of 1,1-diacetylcyclopropane, bp 52-53°, (2 mm) n^^ 1.4524 

[Lit^^ bp 74-74.5° ( 8  mm)].
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III. The Thermal Decomposition of Sulfones and Sulfoxides 

History and Background

The pyrolysis of sulfones (see scheme 1) has been used extensively 

in theoretical and synthetic organic chemistry. Leonard^ pyrolyzed 

sulfones of type 1 at low pressures and temperatures of 600-700° and 

obtained good yields of symmetrical diarylethanes.

A
R -Ph-C H  -S O  -C H  -P h -R  2 2 2 

I

- >  R -P h -C H  -C H  - P h - R  + SO  ̂2 2 2

R=CH ; OCH ;

P h -S O g -P h

P h -S O -P h
3

A

A

Ph-S0g-CHg-CH = CH2 A
P h -C H g -C H zzC H g *  SOg

A
SO.

A + so.

7

A

Scheme 1 
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SO,

A
->

A

1 0

Scheme 2

Levy and Ambrose studied the kinetics of the decomposition of
3sulfone 7̂ and the sulfoxide _3. Lacorabe and Stewart observed that the 

allylic sulfone ^  lost sulfur dioxide and formed an olefin when heated at 

300-400°. Cava and Deanna^ obtained good yields of benzocyclobutene from 

the vapor phase pyrolysis of The thermal decomposition of ^  has analogy 

to the well known thermal decomposition of _5.^^ Chambers and Cunningham^ 

observed that the mass spectrum of 7_ exhibited a peak at ) - 48. This 

indicated that 7_ could possibly eliminate sulfur monoxide when pyrolyzed. 

Alien 7_ was pyrolyzed, the ether that was formed corresponded to the loss 

of sulfur monoxide.

Mock^ investigated the thermal decomposition of sulfones of the 

type depicted in scheme 2. Tliese reactions were found to be stereospecific 

in some cases and stereoselective in others and they provided a new route 

to the synthesis of alkenes, pclyalkenes and divinyl ethers. Furthermore, 

’iocic found these reactions were useful in elucidating the concepts of 

orbital symmetry.



INTRODUCTION

Kissick^ prepared 1 ,1 ,3,3-tetraoxo-2,2 -dlphenyl-l,3-dithiolane 

and pyrolyzed it at 240°. Sulfur dioxide was evolved, and a mixture of 

the starting disulfone and another product were recovered from the re­

action mixture. Somewhat later the other product was identified as 

benzophenone.

The objective of this investigation was to determine the scope 

and limitations of the reaction suggested by the work of Kissick, identify 

all of the reaction products and propose reasonable mechanistic pathways 

for their formation. Several sulfones and sulfoxides were pyrolyzed, 

and the results will be presented in this section.
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RESULTS AND DISCUSSION

The sulfones and sulfoxides utilized in tliis study were prepared 

from compounds 11-18. Tlie reactions employed in the preparation of 

compounds 11-18 are depicted in scheme 3. Tl:e dithiolanes 11-15 and the 

dithiiane lj6 were routinely prepared from the appropriate ketone (alde­

hyde in the case of 1 2 ) and 1 ,2 -ethanedithiol (1 ,3-propanedithiol in

the case of 16). The oxathiolane ]J_ was prepared from benzophenone and
92-mercaptoethanol by the method of Marshall and Stevenson. The mercap- 

tole was prepared from benzophenone and ethanethiol by the method of 

Uolfrom and Karabinos.^^

The cyclic disulfones 19-23 were prepared by oxidation of the cor­

responding dithiolanes (dithiane in the case of 23) with an excess of pera­

cetic acid. In order to ensure complete oxidation of the dithiolane 

1 1  and the dithiane 1^  to the corresponding disulfones, it was necessary 

to carry out these oxidations in dilute solutions (ca. 1 g of the di­

thiolane per 25 ml of solvent). Under these conditions the reaction 

mixture remained homogeneous and 1 1 _ and 1_6 were completely oxidized to 

the corresponding disulfones. In contrast, when the oxidation of ld_ 

was carried out in more concentrated solutions, a crystalline substance 

separated from the hot solution before the oxidation was complete. This 

substance was a mixture of the desired disulfone and small cuantity

of an impurity (presumably the trioxide).
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H CgHg
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Scheme 3
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Attempts to oxidize the dithiolane 1^ to the corresponding dl- 

sulEone by this procedure produced disappointing results. \Hien 1 2  was 

heated with excess peracetic acid, an exothermic reaction occurred, and 

a crystalline substance immediately separated from the solution. The ir 

spectrum of this substance exhibited strong absorptions at 1310 and 1130 

cm ^ (sulfone) and 1030 cm ^ (sulfoxide) . Tiie evidence obtained from the 

ir spectrum and tic analysis indicated that the crystalline substance was 

a mixture of the trioxide (see scheme 4) and a small quantity of benzoic 

acid, hlien the mixture was treated with a dilute solution of sodium 

bicarbonate, the trioxide was hydrolyzed to benzaldehyde. Similar results 

were obtained when was treated with excess m-chloroperbenzoic acid.

The disulfone was prepared by the oxidation of the mercaptole

with m-chloroperbenzoic acid. The unstable sulfone 2^ was prepared by

the oxidation of the oxathiolane IJ with excess m-chloroperbenzoic acid.

On standing at room temperature for about 48 hours, the sulfone ^  spon­

taneously decomposed to give benzophenone. However, a freshly prepared 

sample gave satisfactory spectral data.

The sulfoxides 2^ and ^  utilized in this investigation were pre­

pared by the oxidation of and 1^  with hydrogen peroxide in dioxane. 

Hydrogen peroxide in acetone hydrolyzed 17 to benzophenone. However, a

0 S 0 so
Ph— c — Ph — -------------------------------------->  Ph—\ : - P h

solution of hydrogen peroxide in dioxane buffered with a 1 0 % solution of 

sodium carbonate convened 17 to the sulfoxide 27.
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n n
0

I I 26

Several attempts were made to oxidize to the disulfoxide, hut dis­

appointing results were obtained. Invariably, product mixtures were ob­

tained when 1_1 was heated with 2 equivalents or more of hydrogen peroxide, 

rinalysis of the mixtures by ir and mass spectroscopy indicated the presence 

of both the monosulfoxide and the disulfoxide. Attempts to oxidize the 

monosulfoxide (which was present in the mixture) to the disulfoxide resulted 

in the formation of a product whose ir spectrum exhibited both sulfone and 

sulfoxide absorptions. T’nis product was presumably the trioxide. Tlieo- 

retically, the disulfoxide or the isomeric monosulfone could result from 

the treatment of a dithiolane with 2 equivalents of an oxidizing agent. 

However, ir spectroscopy can easily distinguish between these two pos­

sibilities for the ir spectra of sulfones exhibit two strong absorptions
-1 -1at 1300-1330 cm and 1010-1030 cm , whereas the ir spectra of sulfoxides

-1exhibit a single absorption at 1010-1030 cm.

Tlie primary objective of this study was to determine the scope of 

t.ie reaction suggested by the work of Kissick, all of the reaction

products and propose reasonable mechanistic pathways for their formation.

In an effort to accomplish this objective, 1,1,3,3-tetraoxo-2,2-diphenyl-

1,3-dithiolane (19) was pyrolyzed under the following conditions: at 225°

and atr'osphcric pressure, at 225° and 2 mm of pressure, and at 225° .and 

atmospheric pressure in the presence of a trace of benzoyl peroxide. In 

each instance the thermal decomposition of 19 yielded benzophenone, sulfur,
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ethylene and sulfur dioxide. Under the first set of experimental conditions 

the product yields were as follows: benzophenone (.006 mol), sulfur (.0025

mol), ethylene (.0058 mol) and sulfur dioxide (.007 mol). Taking the yield 

of benzophenone as unity, this corresponds to a molar ratio of (1: .4: 

.96:1.16 ). Only the yields of benzophenone and sulfur were determined 

when was pyrolyzed under the last two sets of conditions. The reaction 

products were identified by comparison of their spectral or physical pro-

A N
Ph— C— P h------------- >■ Ph— C— Ph + CHg =  CH2 + SO2 + S

19

parties with those of authentic samples or with published data. In the 

cases of ethylene and sulfur dioxide, the ir spectra were compared with 

published ir spectra of authentic samples. Ethylene was also converted 

to ethylene dibromide which in turn was identified by comparing its nmr 

spectrum and refractive index with those of distilled samples. Benzo­

phenone was identified by direct comparison to an authentic sample with 

respect to melting point, nmr and ir spectra. Sulfur was identified by 

its melting point.

The evidence obtained from studies of the thermal decomposition 

of indicated that radical chains probably were not involved in the 

decomposition pathway since benzoyl peroxide, a powerful radical chain 

initiator, had no effect on the reaction. The results also established 

that the carbonyl oxygen atom of benzophenone came from the sulfone group 

since benzophenone was obtained when was pyrolyzed in an evacuated 

system (no other source of oxygen was present in the system). This fact 

and the formation of all the observed products can be rationalized by the
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intramolecular free radical pathway depicted in scheme 5.

The stoichoimetry of the pathway depicted in scheme 5 requires
g

that sulfur monoxide be formed as a product from tiie thermal decomposition 

of 22. However, the instability^ of sulfur monoxide renders its detection 

impossible; at all temperatures sulfur monoxide undergoes rapid dispro­

portionation to give sulfur dioxide. Thus, the recovery of sulfur from 

the thermal decomposition of 19 combined with the fact that sulfur dioxide

P h — C — Ph  >  P h - C

19

P h - C - P h  ---------^  p h _ ? _ p h  +

2 9

: S = 0

0

"S==0

I
A

V   >  CHg = CHg + SO
S 
II 0
30

Scheme 5
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was formed in larger quantities than ethylene gives credence to the con­

jecture that sulfur monoxide was formed from the decomposition of 19. 

Therefore, the mechanism depicted in scheme 5 is fully consistent with 

the observed facts. The failure of benzoyl peroxide to facilitate the 

decomposition of does not rule out an intramolecular free radical path­

way such as the one outlined in scheme 5, but indicates homolytic cleavage 

of the disulfone is facile and does not require an external initiator.

Another reasonable mechanism for the thermal decomposition of 

is depicted in scheme 6 . This proposed mechanism entails a heterolytic 

fission of the carbon sulfur bond of 1^  to give the carbonium ion 2^  which.

nOjS JSOj 
Ph —  C— Ph

19

S = 0

Ph — C

29

\ : 7o
II 0
30

A

A

Ph-

O
II

■C— Ph

SO,

CH- = CHg + sOg

Ph

28

o = s ; ^
J/-

Scheme 6
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in turn cyclizes to the six-membered ring intermediate 2^. The mechanistic 

pathways outlined in schemes 5 and 6  propose that 29̂  is the intermediate 

which gives rise to benzophenone and that the episulfoxide ^  gives rise 

to ethylene and sulfur monoxide. Thus, the products resulting from the 

thermal decomposition of can reasonably be imagined to arise from a 

free radical pathway, a carbonium ion pathway or by competing pathways 

involving both carbonium ions and free radicals.

The results of the thermal decomposition of compounds 19-27 are out­

lined in scheme 7 and Table 4. All of the products resulting from the

/^°2 A  M
Ph —  C —  Ph -------------- >  Ph —  C— Ph + CH =  CH + SO + S

I i 19 2 2 2

A _ _ H
Ph— C — CHg  >  Ph— C— CHg + CH2 =  CH2 + SO2 + S

“  A
CHg— C— (CHg)g— CHg -------------->  No Reaction

/— \ /SOp— I A ^
^  ^  No Reaction

22 AOjS SOj 0
Ph — C— Ph -------------- >  Ph — C— Ph +

r 1 23
\  A  H

Ph— C— Ph ----------- >  Ph— C— Ph + CH«=CH„ + S0„2 2 2

A + 30 +5 2

24
EtSOp SOpEt . 0

^ A  II
  P h — C— Ph ----------------^  Ph —  C— Ph ♦ ?
n  25
\  /  A  H

Ph— C— Ph ---------------->  Ph— C— Ph + C H „ = C H „  + S

26 n ' 2 " 2

0 S ”  0 V 0
\  /  II

Ph — C— Ph ------------------ >  Ph—C— Ph

27
Scheme 7
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TABLE 4

The Results of the Thermal Decomposition 

of Sulfoxides and Sulfones

Compound
Experimental
Conditions % Yield of Products

19

19

19

20 

21 

21 

22 

22 

23

24

25 

27

26

225° (2 mm)

225° (atm. pres. )* 
peroxides present

225° (atm. pres.)*

250-260° (2 mm) 

2 0 0 ° ( 2  mm)

300° (2 mm)

400° (2 mm)

500° (atm. pres.)* 

300° (atm. pres.)*

300° (2 null)

140° (2 mm)

200° (5 mm)

120-130° (2 mm)

130-140° (atm. 
pres.)*

benzophenone 65% sulfur 60% 
ethylene, sulfur dioxide

benzophenone 62%, sulfur 58% 
ethylene and sulfur dioxide 
(yields no det.)

sulfur 60%, benzophenone 65% 
ethylene 60%, SO^ 6 6 %

Acetophenone 33%

90% of 21̂  recovered

89% of 21̂  recovered

85% of 2^ was recovered

8 8 % of 2^ was recovered

benzophenone (76.5%), sulfur 58% 
sulfur dioxide 55%

benzophenone 70%, sulfur 62%

benzophenone 65%

benzophenone 70%

benzophenone 78%

benzophenone 74%, sulfur 28% 
ethylene 64%
no sulfur dioxide was detected.

*Pyrolyzed under a sweep of nitrogen gas.
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decomposition of 1^ and 2^ were identified. Sulfur dioxide, sulfur, benzophenone 

and a product tentatively identified as cyclopropane resulted from the pyrolysis 

of 23. In all other instances only the ketone was fully characterized.

Hie aliphatic disulfones ^1^ and 2^ were found to be thermally stable at 

temperatures 100-200° above their melting points (6 8P and 252°). This may 

be attributable to the destabilising effect that the sulfone group would 

have on the intermediate ( radical or carbonium ion) that would result from 

the cleavage of the carbon sulfur bond. Compound 2^ decomposed slowly at 

temperatures 120° above its melting point (131-133°).

In sharp contrast to the thermal behavior of 20, 21 and 22, com­

pounds 2^  and 2_7 (freshly prepared samples) decompose smoothly and com­

pletely at their melting points. On standing at room temperature for 

about 48 hours both 2^ and ^  spontaneously decomposed into benzophenone.

A concerted pathway (see scheme 8 ) is very favorable for the thermal 

decomposition of 24 and 27.

^  0

Ph — C — Ph -------- >  Ph— C — P h + C H 2  =  CHg+ SOg

A ? _ r 1Ph— C— Ph P h ~ * C “ *Ph ♦ CHg —  CHg + j^SO J

27 SOg + S < -------- 1

Scheme 8

Compound 23, 25 and 2^ decomposed smoothly and completely at 

temperatures 10-20° above their melting points. The decomposition of 2^ 

can proceed by a radical pathway similar to the one depicted in scheme 5 

or the carbonium ion pathway similar to the one depicted in scheme 6 .
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A possible pathway for the decomposition of the non-cyclic sulfone 

25 is depicted in scheme 9. However, benzophenone was the only reaction 

product identified from the pyrolysis of 25, and, therefore, any discus­

sion regarding the mechanism of the decomposition of ^  in the absence of 

a complete identification of all of the reaction products is pure con­

jecture. The decomposition of 21 can proceed by the radical pathway 

depicted in scheme 1 0 : however, the evidence for the formation of cyclo­

propane from the thermal decomposition of 2 1  is not yet convincing.

Et Et

/ - o
Ph-C— Pti

A

Et
0=5=0 /  0

À /Ph— C— Ph

Et
I.5=0

0
II

Ph-C— Ph
f— 0 0 - I

II II oEt — S— 0— S— Et r

Scheme 9
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A
Ph—  C— Ph

23

C— Ph

0 
II 

- >  Ph— C— Ph +

t'S=0

Ph— C— Ph

*•^0
or

[ O ' -  ]
[so]. -> SOg* s

Scheme 10

Three general pathways are proposed for the thermal decomposition 

of the sulfones and sulfoxides utilized in this investigation. The illus­

trative free radical pathway depiced in schme 5, the carbonium ion pathway 

depicted in scheme 6 and the concerted pathway depicted in scheme 8  are 

consistent with all of the observed facts. Additional experiments which 

would allow one to distinguish between these three mechanisms have not yet 

been carried out



SUICIARY

The results of this Investigation indicate that disulfones de­

rived from the dithiolanes of aliphatic ketones are themally stable, and 

that disulfones derived from mixed dithiolanes (one alkyl group and one 

aromatic ring bonded to carbonyl carbon atom of the original ketone) de­

compose very slowly at temperatures far above their melting points. In 

contrast, sulfones and sulfoxides derived from the dithiolanes, dithianes, 

mercaptoles and oxathiolanes of aromatic ketones undergo facile decom­

position at their melting points and temperatures 1 0 -2 0 ° above their melt­

ing points. This evidence suggests that the initial step in the decom­

position pathway involves homolytic fission (see scheme 5 ) or heterolytic 

fission (see scheme 6 ) of the carbon sulfur bond to generate either a free 

radical or a carbonium ion on the carbon atom bearing the aromatic rings.

All new compounds used in this investigation gave satisfactory 

spectral data. The data taken on known compounds is consistent with tlie 

data reported in the literature.
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EXPERIMENTAL

All melting points and boiling points are uncorrected. All sol­

vents were redistilled prior to use. Anhydrous solvents were prepared 

by distillation from calcium hydride. Column chromatography supports 

were silicAR CC-7 (Mallinckrodt, 100/200 mesh) and silica gel H (Merck 

AG, Darmstadt). Thin layer chromatography was performed on 5 x 20 cm 

glass plates coated with silica gel H (Merck AG, Darmstadt). The de­

veloped plates were exposed to iodine vapor for visualization of the 

chromatogram.

Gas chromatographic analyses were performed on a Varian Aero­

graph Model 1220-1 or A.erograph Model 1740-1 gas chromatograph. The 

infrared spectra were taken on a Beckman lR- 8  spectrometer as potassium 

bromide pellets or in solutions of carbon tetrachloride or chloroform. 

Ultraviolet spectra (uv) were taken in 95% ethanol solutions with a 

Hitachi Perkin-Elmer, Model 124 spectrometer.

Nuclear magnetic resonance spectra (nmr) were taken on the Varian 

XL-100, or T-60 spectrometers using tetraraethylsilane (TMS) as an in­

ternal reference. Samples were run in varying concentrations of carbon 

tetrachloride and deuteriochloroform. Chemical shifts are reported in 

5-units (parts per million from TMS) are followed by the multiplicity 

of the signal, the number of protons, the corresponding coupling con­

stant and the assignment. The multiplicities are denoted by the symbols:

84
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s, singlet; d, doublet; dd, double doublet; t, triplet; and m, multi­

plet.

The mass spectra were taken on a Hitachi Perkin-Elmer RMJ-7E spec­

trometer using perfluorokerosene as an internal reference. Major peaks and 

molecular ions are reported followed by percentage of the base peak.

Combustion analyses were carried out by Bernhardt Laboratories 

in Mlilheim, West Germany, and Mr. E. Meier, Chemistry Department, Stan­

ford University, Palo Alto, California

2,2-Diphenyl-1,3-dithiolane (11)

A solution of 9.4 g (.10 mol) of 1,2-ethanedithiol, 18.2 g (.10 

mol) of benzophenone and . 1  g of p-toluenesulfonic acid in 2 0 0  ml of 

benzene was refluxed for 12 hr and cooled to room temperature. The 

benzene solution was washed once with 25 ml of a 10% solution of sodium 

bicarbonate and dried over anhydrous sodium sulfate. Removal of the 

benzene on a rotary evaporator and a vacuum pump yielded 25.1 g (97%) 

of the dithiolane as an oily solid, mp 97-99°. Recrystallization from 

95% ethanol yielded 23.8 g (90%) of 2 ,2-dipheny1-1,3-dithiolane as a 

white crystalline solid, mp 101-102.5°. [lit mp^^ 102^; ir (CCl^) 1440 

cm  ̂ (carbon-sulfur stretch); nmr (CDCl^) 5 7.1-7.75 (m, 10, aromatic 

protons), 3.40 (s, 4, methylene protons).

1,1,3,3-Tetraoxo-2,2-dipheny1-1,3-dithiolane (19)

In a 250 ml flask was placed a mixture of 2.58 g (10 mmol) 

of 2,2-dipheny1-1,3-dithiolane, 10 ml of 30% hydrogen peroxide and 50 

ml of acetic acid. The reaction mixture was heated on a steam bath for 

12 hr and cooled to room temperature. Upon cooling, white crystals
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separated from the solution. The crystals were collected by suction 

filtration, washed with benzene and air dried to yield 3.15 g (98%) of

1 .1 .3 .3 -tetraoxo-2 ,2 -dipheny1 - 1 ,3-dithiolane as a white crystalline solid, 

mp 217-210°. Two recrystallizations from benzene yielded an analytical 

sample, mp 222-222.5°; ir (KBr) 1332 cm ^ (sulfone stretch), 1123 cm  ̂

(sulfone stretch); nmr (CF^COOH) 5 7.35-7.75 (m, 10, aromatic protons), 

4.30 (s, 4, methylene protons); mass spectrum 258 (70), 192 (12), 166 

(100), 121 (20), 92 (10), 77 (75), 64 (60), 49 (12) and 43 (15).

Anal. Calcd. for : C, 55.90; H, 4.35; S, 19.87.

Found; C, 55.81; H, 4.44; S, 19.87.

2,2-Diphenyl-l,3-dithiane (16)

In a 500 ml flask was placed 9.1 g (.05 mol) of benzophenone,

5.4 g (.05 mol) of 1,3-propanedithiol, .5 g of p-toluenesulfonic acid 

and 300 ml of benzene. The reaction mixture was refluxed for 12 hr and 

cooled to room temperature. The benzene solution was washed with a 

1 0 % solution of sodium bicarbonate and dried over anhydrous sodium sul­

fate. Removal of the benzene on a rotary evaporator and a vacuum pump 

yielded 13.5 g (99%) of the dithiane as a white solid, mp 97-98°. TVo 

recrystallizations from 95% ethanol yielded 12.4 g (91%) of 2 ,2-diphenyl-

1.3-dithiane as a white crystalline solid, mp 109-110°. [ L i t m p  110°]; 

ir (CCl^) 1440 cm (carbon-sulfur stretch); nmr (CCl^) 6 7.15-7.75 (m, 

10, aromatic protons), 2.70 (t, 4, J = 6  Hz, methylene protons on carbon

atoms bearing sulfurs), 1 .8 - 2 , 1  (m, 2 , remaining methylene protons).

1,1,3,3-Tetraoxo-2,2-diphenyl-l,3-dithiane (23)

In a 500 ml flask was placed a mixture of 2.72 g (.01 mol) of

2,2-diphenyl-l,3-dithiane, 10 ml of 30% hydrogen peroxide and 100 ml of
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glacial acetic acid. The flask was heated on a steam bath, and after 

about 45 min, white crystals separated from the hot solution. The flask 

was stored in a refrigerator for 2 hr, and the crystals were collected 

by suction filtration and air dried to yield 3.11 g (92.8%) of the sul­

fone, mp 251-252°. Two recrystallizations from benzene yielded an analy­

tical sample, mp 254-254.5°; ir (KBr) 1335 cm  ̂ (sulfone stretch), 1130 

cm  ̂ (sulfone stretch); nmr (CF^COOH) 6 7.35-7.90 (m, 10, aromatic pro­

tons), 3.70 (t, 4, J = 6 Hz, methylene protons on carbon atoms bearing 

sulfone), 2.65-2.95 (m, 2, remaining methylene protons); mass spectrum 

336 (2), 209 (16), 208 (72), 207 (10), 183 (40), 182 (85), 179 (36),

167 (35), 166 (100), 165 (69), 130 (20), 105 (58), 91 (27), 90 (30),

64 (12), and 41 (19).

Anal. Calcd. for 57.14; H, 4.76; S, 19.05.

Found: C, 57.18; H, 4.79; S, 19.20.

2-(4-t-Butylspirocyclohexyl)-l,3-dithiolane (15)

A solution of 2.35 g (.025 mol) of 1,2-ethanedithiol, 3.85 g 

(.025 mol) of 4-t-butycyclohexanone, and .1 g of toluenesulfonic acid 

in 1 0 0  ml of benzene was refluxed for 1 2  hr and cooled to room tempera­

ture. The benzene solution was washed with 25 ml of a 10% solution of 

sodium bicarbonate and dried over anhydrous sodium sulfate. The ben­

zene was removed on a rotary evaporator and a vacuum pump to yield 5.64 

g (98%) of the dithiolane as white flakes, mp 64-65°. Two recrystalli­

zations from 95% ethanol yielded an analytical sample, mp 65-65.5°; 

ir (KBr) 1460 cm ^ (carbon-sulfur stretch); nmr (CCl^) ô 3.25 (bs, 4, 

methylene protons of the dithiolane ring), 2.3-1.2 (m, 9, protons of the 

cyclohexane ring), .9 (s, 9, protons of the t-butyl group); mass spectrum



88

232 (4), 231 (7), 230 (100), 133 (13), 132 (39), 131 (55), 87 (16), 81

(39), 79 (13), 62 (14), 58 (34), 56 (10), 44 (41), and 42 (26).

Anal. Calcd. for ‘"j^2^22^2 ' 62.61; H, 9.56. Found; C, 62.70;

H, 9.44.

1,1,3,3-Tetraoxo-2-(4-t-but-vlspirocvclohexvl)-l,3-dithlolane (22)

A solution of 2.3 g (.01 mol) 2-(4-t-butylspirocyclohex>'l)-l, 3- 

dithiolane and 8  ml of 30% hydrogen peroxide in 50 ml of glacial acetic 

acid was heated on a steam bath for 1 2  hr and cooled to room temperature. 

White crystals (flakes) separated from the solution upon cooling. The 

crystals were collected by suction filtration, washed several times with 

benzene and air dried to yield 2.85 g (94%) of the sulfone as white

flakes, mp 251-252°. Recrystallization from chloroform did not change
-1 -1 the melting point; ir (KBr) 1298 cm (sulfone stretch), 1122 cm (sul­

fone stretch); nmr (CF^COOH) 6 3.92 (s, 4, methylene protons of the 

dithiolane ring), 1.0-2.7 (m, 9, methylene protons of the cyclohexane 

ring), .95 (s, 9, protons of the t-butyl group); mass spectrum 294 (1), 

234 (62), 202 (41), 141 (22), 139 (25), 139 (49), 119 (35), 97 (31),

96 (30), 95 (37), 93 (20), 91 (24), 78 (44), 77 (55), 79 (60), 75 (48), 

67 (30), 65 (40), 64 (9), 56 (43), 55 (100), 54 (85), 53 (46), 51 (38), 

and 41 (38).

Anal. Calcd. for Cj^2^22^2^4‘ ^ ' 48.97; H, 7.48; S, 21.76.

Found: C, 49.04; H, 7.62; S, 21.96.

2-Phenyl-2-methyl-l,3-dithiolane (13)

A solution of 7.3 g (.05 mol) of acetophenone, 9.42 g (.05 mol) 

of 1,2-ethanedithiol and .5 g of p-toluensulfonic acid in 250 ml of 

benzene was refluxed for 12 hr and cooled to room temperature. The



89
benzene solution was washed with 50 ml of a 10% solution of sodium bi­

carbonate and dried over anhydrous sodium sulfate. Removal of the ben­

zene on a rotary evaporator and a vacuum pump yielded 10.4 g (99%) of 

the crude dithiolane as a clear liquid. Distillation yielded 9.7 g 

(83%) of 2-methyl-2-pheny1-1,3-dithiolane as a colorless liquid, bp 

134-135.5° (3.5 mm): n^^ 1.6158. [Lit^^ bp 131° (3 mm) n^^ 1.6162.]

1 ,1.3,3-Tetraoxo-2-methyl-2-phenyl-l,3-dithiolane (20)

In a 250 ml flask was placed 4.2 g (.02 mol) of 2-methyl-2- 

pheny1-1,3-dithiolane, 15 ml of 30% hydrogen peroxide, and 60 ml of 

glacial acetic acid. The reaction mixture was stirred at 70-80° for 12 

hr, cooled to room temperature, and poured into 500 ml of chloroform.

The chloroform solution was washed several times with a 10% solution 

of sodium bicarbonate and dried over anhydrous sodium sulfate. Evapora­

tion of the chloroform on a rotary evaporator and a vacuum pump yielded 

5.11 g (98%) of the sulfone as a white powder, mp 128-130°. Recrystal­

lization from hexane-dichloromethane (1:1) yielded 4.8 g (92%) of 2- 

methyl-2-phenyl-l,3-dithiolane as a white crystalline solid, mp 132-133°.

Three recrystallizations from hexane-dichloromethane (1:1) yielded an
- 1analytical sample, mp 132-132.5°; ir (KBr) 1315 cm (sulfone stretch), 

1 1 2 2  cm ^ (sulfone stretch); nmr (CDCl^) S 7.82-7.25 (m, 5, aromatic 

protons), 3.7 (s, 4, methylene protons), 2.15 (s, 3, methyl); mass spec­

trum 264 (4), 167 (44), 115 (17), 103 (33), 102 (100), 101 (48). 76 (39), 

75 (33), 64 (2), 49 (14), and 41 (20).

Anal. Calcd. for C , 46.15; H, 4.62; S, 24.62.

Found: C, 46.11; H, 4.62; S, 24.47.
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2-MethyL-2-hexyl-l,3-dithiolane (14)

A solution of 6.4 g (.05 mol) of 2-octanone, 4.7 g (.05 mol) 

of 1,2-ethanedithiol and .5 g of p-toluenesulfonic acid in 100 ml of ben­

zene was refluxed for 12 hr and cooled to room temperature. The ben­

zene solution was washed with 50 ml of a 10% solution of sodium bicarbonate 

and dried over anhydrous sodium sulfate. Removal of the benzene on the 

rotary evaporator yielded 10.05 g (99%) of 2 -methyl-2 -hexyl-l,3 -dithlolane

as a colorless liquid. Distillation yielded 9.25 g (90%) of the dithio-
25 17lane as a colorless liquid, bp 107-109° (2.5 mm) n^ 1.5108 [Lit. bp 

120° ( 6 mm) n^^ 1.5110].

1,1,3,3-Tetraoxo-2-methyl-2-hexy1-1,3-dithiolane (21)

A solution of 5 g (.024 mol) of 2-methy1-2-n-hexy1-1,3-dithio­

lane, 15 ml of 30% hydrogen perioxide, 50 ml of glacial acetic acid 

was stirred at 70-80° for 12 hr, cooled to room temperature, and poured 

into 500 ml of chloroform. The chloroform solution was washed several 

times with a 1 0 % solution of sodium bicarbonate and dried over anhydrous 

sodium sulfate. Removal of the chloroform on the rotary evaporator 

and the vacuum pump yielded 5.79 g (90%) of crude product, mp 66-67°. 

Recrystallization from hexane-dichloromethane (1:1) yielded 5.25 g (81.5%)

of 1,1, 3, 3-tetraoxo-2-methyl-2-hexy 1-1, 3-dithiolane as white flakes, mp 68-69°.

Two recrystallizations from hexane-dichloromethane gave an analytical
-1 -1sample, mp 68-69°; ir (KBr) 1305 cm (sulfone stretch), 1105 cm

(sulfone stretch); nmr (CDCl^) ô 3.6 (s, 4, methylene protons of the

five-membered ring), 2.3-1.9 (m, 2, methylene protons on carbons bearing

the sulfonyl group), 1.7 (s, 3, quatenary methyl), 1.25-1.55 (m, 8 ,

remaining methylene protons), .95 (t, 3, J = 3 Hz, terminal methyl);
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mass spectrum 268 (2), 112 (25), 111 (10), 71 (15), 70 (44), 57 (11),

56 (100), 44 (25), 43 (11), 42 (40), and 40 (10).

Anal. Calcd. for *̂]̂q^20^2^4' 44.77; H, 7.46; S, 23.87.

Found: C, 44.78; H, 7.40; S, 23.98.

2 ̂ 2-Diphenyl-l,3-oxathiolane (17)
9The procedure of Marshall and Stevenson was used.

A solution of 29 g (0.16 mol) of benzophenone, 14 g (.18 mol)

of 2-mercaptoethanol and 1 g of p-toluenesulfonic acid in 250 ml of dry

toluene was refluxed for 3 hr and cooled to room temperature. Upon

cooling, an amorphous solid separated from the solution. The mixture 

was filtered with suction, and the residue was washed with 1 0 0  ml of 

ether. The combined filtrates were washed once with 50 ml of a 10% 

solution of sodium bicarbonate and dried over anhydrous sodium sulfate. 

Evaporation of the solvents on the rotary evaporator yielded 20.6 g of 

a colorless oil. The oil was filtered through a column (48 x 4.5 cm) 

containing a slurry of 2 0 0  g of activity 1  neutral alumina in benzene. 

The oil was washed do;m. the column with 300 ml of dry benzene, and one 

500 ml fraction was collected. The benzene was removed on a rotary 

evaporator to yield 8.5 g (22%) of the oxathiolane as a colorless oil 

which crystallized on cooling in a refrigerator, mp 49-51°. Recrystal­

lization from methanol yielded 7.5 g (19%) of the oxathiolane as a white 

crystalline solid, mp 52-53°. [Lit.^ mp 52°]; ir (CCl^) 1440 cm  ̂

(carbon-sulfur stretch), 1052 cm (carbon-oxygen stretch); nmr (CDCl^)

5 7.1-7.6 (m, 10, aromatic protons), 4.18 (t, 2, J = 6 Hz, protons on 

carbon bearing oxygen), 3.18 (t, 2, J = 6  Hz, protons on carbon bearing 

sulfur).
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2.2-Diphenyl-l,3-dithiolane-1-oxide (26)

A mixture of 4.0 g (15.5 mmol) of 2,2-dipheny1-1,3-dithiolane 

and 20 ml of dioxane and 10 ml of 30% hydrogen peroxide was stirred 

at room temperature for 24 hr, and poured into 100 ml of water. White 

crystals separated from the solution. The crystals were collected by 

suction filtration and air dried to yield 4.41 g (98%) of the sulfoxide, 

mp 122-124°. Two recrystallizations from hexane-methylene chloride 

(1:3) yielded an analytical sample, mp 125-125.5°. Ir (KBr) 1055 cm  ̂

(sulfoxide stretch); nmr (CDCl^) 6 7.25-7.8 (m, 10, aromatic protons),

2.8-4.0 (m, 4, methylene protons); mass spectrum 274 (3) M^, 258 (3), 192 

(12), 181 (25), 163 (17), 124 (10), 121 (20), 105 (100), 77 (75), 64 

(10), 60 (15), 59 (15), 50 (47), 49 (12), and 43 (15).

Anal. Calcd. for Cj^^H^^S2 0 : C, 65.69; H, 5.11; S, 23.36.

Found: C, 65.50; H, 5.18; S, 23.60.

3,3-Dioxo-2,2-dipheny1-1,3-oxathiolane (24)

A solution of 0.50 g (2.1 mmol) 2,2-diphenyl-1,3-oxathiolane and

1.38 g ( 8  mmol) of m-chloroperbenzoic acid in 50 ml of absolute ether 

was stirred at room temperature for 24 hr during which time a white 

solid precipitated from the solution. The precipitate was collected 

by suction filtration and washed with ether and air dried. The yield 

of the crude sulfone was .523 g (95%), mp 132-134°.

Recrystallization from acetone-ether yielded .493 g (90%) of

3 ,3-dioxo-2,2-dipheny1-1,3-oxathiolane as a white crystalline solid, 

mp 134-135°. Two recrystallization from acetone-ether yielded a spectral 

sample, mp 136-136.5°. This compound decomposed on standing at room 

temperature for 48 hr, therefore, no elemental analysis could be obtained;
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-1 -1 ir (CHClg) 1309 cm (sulfone stretch), 1130 cm (sulfone stretch);

nmr (CDCl^) 6 7.2-7.9 (m, 10, aromatic protons), 4.5 (t, 2, J = 7 Hz,

protons on carbon bearing oxygen), 3.22 (t, 2, J = 7 Hz, protons on

carbon bearing the sulfone); mass spectrum, 274 (2), 182 (100) , 105

(40), 77 (75), 64 (30), 50 (47), 49 (12) and 43 (15).

2,2-Diphenyl-l,3-oxathiolane-3~oxide (27)

A mixture of .50 g (2.1 mmol) of 2 ,2-diphenyl-l,3-oxathiolane,

5 ml of 10% sodium carbonate, 10 ml of 30% hydrogen peroxide and 50 ml 

of dioxane was heated on a steam bath for 30 min and then stirred at 

room temperature for 4 hr. The reaction mixture was then diluted with 

water, and white crystals separated from the solution. The crystals 

were collected by suction filtration and air dried to yield ,539 g 

(99%) of the crude sulfoxide, mp 88-90°. Recrystallization from methyl­

ene chloride-hexane yielded ,486 g (90%) of 2,2-dipheny1-1,3-oxathio­

lane- 1-oxide as a white crystalline solid, mp 93-94°, Two recrystalli­

zations from methylene chloride-hexane yielded a spectral sample, mp 

93-94°; ir (CCl^) 1075 cm ^ (sulfoxide stretch), 1059 cm ^ (carbon- 

oxygen stretch); nmr (CDCl^) 6 4.65-4.92 (m, 1, proton on carbon bearing 

oxvgen), 4.-4.45 (m, 1, proton on carbon bearing oxygen), 2.9-3.35 (m,

2, methylene protons on carbon bearing sulfoxide); mass spectrum 258 

(3), 183 (24), 182 (35), 165 (10), 106 (16), 105 (100), 92 (12), 77 

(75), 76 (11), 60 (15), 51 (20), and 50 (7). This compound is unstable, 

therefore, no satisfactory data could be obtained.
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Benzophenone diethylmercaptole (18)

The procedure of Wolfrom and Karabinos^^ was used.

A mixture of 4.448 (.055 mol) of ethanethiol, 1.5 g of freshly 

fused zinc chloride and 2  g of anhydrous sodium sulfate was placed in 

a 250 ml flask. The flask was immersed in an ice-water bath at 0°, 

and 9.1 g (.05 mol) of benzophenone was added to the flask and the 

reaction mixture was stirred at 0-5° for 24 hr. The reaction mixture 

was then poured into 50 cc of ice water, and the organic layer was 

removed and washed with 50 ml of a 10% solution of sodium hydroxide and 

dried over anhydrous sodium sulfate. The solvent was evaporated and 

the crude mercaptole 14.38 g (98%) was collected and distilled to give

13.8 g (95%) of benzophenone diethyl mercaptole as a color­

less liquid, bp 182-184 (.3 mm); [Lit^^ bp 146-150° (.07 mm).]

Benzophenone diethyl mercaptole tetraoxide (25)

A solution of 5.76 g (.02 mol) of benzophenone diethyl mercap­

tole and 2 0 . 6  g ( . 1 2  mol) of m-chloroperbenzoic acid in 1 0 0  ml of ether

was stirred at room temperature, and after about 4 hrs a white solid 

separated from the solution. The solid was collected by suction fil­

tration, washed with ether and air dried. The yield of crude product 

was 6.9 g (98%), mp 195-198°. Two recrystallizations from methylene 

chloride-hexane yielded an analytical sample, mp 197-197.5°; ir (KBr)

1290 cm ^ (sulfone stretch), 1105 cm ^ (sulfone stretch); nmr (CDCl^)

Ô 7.28-8 (m, 10, aromatic protons), 3.1 (q, 4, J = 7 Hz, methylene pro­

tons of ethyl groups), 1.1 (t, 6 , J = 7 Hz, terminal methyls); mass spec­

trum 260 (3), 259 (16), 185 (2), 84 (16), 83 (100), 166 (5), 165 (8 ),

164 (28), 163 (4), 162 (4), 137 (4), 115 (3), 106 (5), 105 (61) and 77 (19)
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Anal. Calcd. for C, 59.97; H, 5.68; S, 18.20.

Found: C, 57.73; H, 5.76; S, 18.31.

The Pyrolysis of Sulfones and Sulfoxides 

Description of Apparatus.

The appratus consisted of a pyrex tube 33 cm X 1.5 cm which was 

connected to a flask for adding solids at one end and to a trap or to a 

series of traps at the other end. The tube was packed with sufficient 

glass beads and glass wool to cover a length of approximately 4-5 cm.

Pyrolysis of 1,1,3.3-tetraoxo-2,2-diphenyl-l,3-dithiolane (19)

A. Pyrolysis at atmospheric pressure under nitrogren.

The pyrolysis tube was connected to a series of three traps. The first 

trap (empty) was immersed in an ice-water bath at 0 °, the second trap con­

tained 25 ml of a 1% solution of sodium hydroxide and the third trap con­

tained a solution of 2 g of bromine in 50 ml of carbon tetrachloride.

The system was swept with nitrogen, the tube was heated to 225° and 3 g 

(9.3 mmol) of the disulfone was added slowly to the tube over a 10 min 

period. The temperature of the tube was maintained at 225° for 5 min and 

the tube was cooled to room temperature. The first trap was rinsed with 

chloroform, and after evaporation of the chloroform 1.203 g (72%) of 

benzophenone, mp 48-49° was recovered. The benzophenone was further char­

acterized by comparing its ir and nmr spectra with the ir and nmr spectra 

of authentic samples. The yellow residue which remained in the first 

trap was dissolved in carbon disulfide; evaporation of the carbon disulfide 

yielded 80.1 mg of sulfur, mp 119-121°. The sodium bisulfite solution in
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the second trap was heated at 80° for 24 hr with 5 ml of 30% hydrogen 

peroxide. The solution was cooled to room temperature and treated with 

excess barium hydroxide. The precipitate of barium sulfate was collected 

and dried in an oven at 200°. The yield of barium sulfate was 1.6310 g 

(.007 mol); the yield of sulfur dioxide (calculated on the basis of the 

barium sulfate) was .413 g (70%). The carbon tetrachloride solution in 

the third trap was washed with a saturated solution of sodium bisulfite,

dried over anhydrous sodium sulfate and distilled at atomspheric pressure.
25The yield of ethylene dibromide was 1.102 g (5.3 mmol), n^ 1.5382 

[Lit. 1.5389]. The yield of ethylene (calculated on the basis of the 

ehtylene dibromide obtained) was .149 g (60%).

B. Pyrolsis In the Presence of Benzoyl Peroxide.

A trace of benzoyl peroxide and 3 g (9.3 mmol) of 19 were pyro- 

lyzed under the conditions described above. The results are reported in 

Table 4 at the end of this section.

C. Pyrolysis of 1^ at Reduced Pressure.

The pyrolysis apparatus was connected to a trap which was immersed 

in liquid nitrogen and 2 g (6.3 mmol) of was pyrolyzed at 225° and 2 

ram of pressure. The trap was connected to a vacuum line and the mixture 

was distilled into a gas ir cell at room temperature until a pressure of 

4 cm was obtained. The ir spectrum of the mixture indicated the presence 

of sulfur dioxide and ethylene as determined by comparison of the ir 

spectra of the mixture with published ir spectra of sulfur dioxide and 

ehtylene. Benzophenone and sulfur were identified as previously described.
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Thevields are reported in Table 4,

The Pyrolysis of 1,1,3,3-tetraoxo-2-methyl- 

2 -phenyl-l,3-dithiolane (2 0 )

The pyrolysis set up was connected to a trap which was immersed

in a dry ice-acetone bath and 1 g (4 mmol) of 0̂̂  was pyrolyzed at 250-260°

and 2 mm of pressure. Acetophenone was recovered from the trap. See 

Table 4 for details.

Pyrolysis of 1,1,3, 3-tetraoxo-2-methyl-2-:iexyl-l, 3-dithiolane (21)

To the tube was added 1 g (3.8 mmol) of 21^which was pyrolyzed 

at 200° and 2 mm of pressure, and in a separate experiment 1 g (3.8 mmol)

of 21 was pyrolyzed at 300° and 2 mm of pressure. The results are reported

in Table 4.

Pyrolysis of 1,1,3,3-tetraoxo-2-(4-t-butyl- 

spirocyclohexyl)-l,3-dithiolane (2 2 )

To the tube was added 1 g (3.5 imxiol) of 2^ which was pyrolyzed at 

400° and 2 mm of pressure, in a separate experiment I g (3.5 mmol) of ^  

was pyrolyzed at 500° and 2 mm of pressure. The results are reported in 

Table 4.

Pyrolysis of 1,1,3,3-tetraoxo-2,2-diphenyl-l,3-dithiane (23)

To the tube was added 2 g ( 6  mmol) of ^  which was pyrolyzed under 

a nitrogen sweep at 300°. Sulfur dioxide, benzophenone and sulfur were 

collected and identified by the methods previously described. See Table
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4 for more details.

To the tube was added 1 g (3 mmol) of ^  which was pyrolyzed at 

300° and 2 mm of pressure. Tlie reaction products were collected in a trap 

which was immersed in a liquid nitrogen bath. The ir spectrum of the 

gaseous mixture (taken as previous descibed) showed the presence of sulfur 

dioxide and a substance whose ir spectrum resembled the ir spectrum of 

cyclopropane. Benzophenone and sulfur were obtained. Tlie yields are re­

ported in Table 4.

Pyrolysis of 2,2-diphenyl-l,3-oxathiolane-l,1-dioxide (24)

To the tube was added 2.78 g (.01 mol) of freshly prepared ^  

which was pyrolyzed at 150° and 2 mm of pressure. The results are reported 

in Table 4.

Pyrolysis of benzophenone diethyl mercaptole tetraoxide (25)

To the tube was added 0.5 g (1.4 mmol) of 2^ which was pyrolyzed

at 200° and 2 mm of pressure. The results are reported in Table 4.

Pyrolysis of 2,2-diphenyl-l,3-dithiolane monoxide (26)

To the tube was added 2.5 g (9.2 mmol) of 2^ which was pyrolyzed 

at 130-140° and I atm of pressure. Benzophenone, sulfur and ethylene 

dibromide were recovered. See Table 4 for yields.

Pyrolysis of 2,2-diphenyl-l,3-oxathiolane-monoxide (27)

To the tube was added 2 g (7.8 mmol) of TL which was pyrolyzed

at 120-130° and 2 mm. The results are reported in Table 4.
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2-Phenyl-l,3-dithiolane (12)

A solution of 5.3 g (.05 mol) of benzaldehyde, 4.7 g (.05 mol) 

of 1,2-ethanedlthiol and 2 ml of boron trifluoride-etherate in 50 ml of 

chloroform was stirred at room temperature for 12 hr. The chloroform 

solution was then washed with a 1 0 % solution of sodium bicarbonate and 

dried over anhydrous sodium sulfate. Evaporation of the chloroform 

yielded 8.9 g (98%) of crude product. Distillation yielded 8.5 g (93%) 

of 2-pheny1-1,3-dithiolane as a colorless liquid, bp 134-136“ (3.5 mm), 

nj^ 1.6366 [Lit.^^ bp 109.5° (.7 mm) n^^ 1.6368].

The Oxidation of 2-pheny1-1,3-dithiolane 

A mixture of 2 g (.011 mol) of 10 ml of 30% hydrogen per­

oxide and 50 ml of glacial acetic acid was stirred at room temperature 

and after about 5 min a white solid separated from the solution. The 

solid was collected by suction filtration, washed with benzene and air

dried to yield 1 . 8  g of a product whose ir spectrum exhibited absorp-
-1 - 1  tions at 1310, 1120 and 1030 cm (sulfone and sulfoxide), 1710 cm

(benzoic acid).

Attempts to oxidize with m-chloroperbenzoic acid produced 

similar results.
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