INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

75-15,268

NELSEN, Jerry Jon, 1939-
A MODEL FOR THE MOVEMENT OF SELENIUM IN A CLOSED AQUATIC SYSTEM.

The University of Oklahoma, Ph.D., 1974 Ecology

Xerox University Microfilms, Ann Arbor, Michigan 48106

(C) 1975

JERRY JON NELSEN

ALL RIGHTS RESERVED

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A MODEI」 FOR THE MOVEMENT OF SELENIUM IN A CLOSED AQUATIC SYSTEM

A DISSERIATION

SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
JERRY J. NELSEN
Norman, Oklahoma
1974

A MODEL FOR THE MOVEMENT

OF SELENIUM IN A CLOSED AQUATIC SYSTEM

ii

ACKNOWLEDGMENTS

The author is indebted to many people at the University of Oklahoma for the assistance they offered in this study. Dr. Robert Y. Nelson, Chairman of the Dissertation Committee, is gratefully acknowledged for his advice, encouragment, and assistance throughout the graduate program and researci. The technical comments, suggestions and advice offered by Dr. Larry Canter, Dr. Edwin H. Klehr, Dr. Paul Risser, and Dr. James M. Robertson are deeply appreciated.

Special appreciation and gratitude are given to the author's wife, Kathryn and two small boys, Mark and Matthew, for their understanding and encouragement which allowed the needed time away from home for this research. The author also expresses his gratitude to Mrs. Lillian Kellock for typing and preparation of the manuscript and to Mr. Theodore Hillmer for his voluntary help in the laboratory. This project was supported by the Department of Civil Engineering and Environmental Science, University of Oklahoma.

TABLE OF CONTENTS

Page
LIST OF TABLES vii
LIST OF ILLUSTRATIONS viii
CHAPTER
I. INTRODUCTION AND LITERATURE SURVEY 1
II. DEVELOPMENT OF THE SELENIUM MODEI 8
Selenium in Living SystemsPhysical ModelSystem Boundaries
Carriers
Chemical Forms and Transformation MechanismsThe Superimposing of Chemical Forms and Trans-formatiors into the carrier Flow TableThe Mathematical Expression of the Model
III. EXPERIMENTAL PROCEDURES AND METHODS 39
Experimental System PreparationSampling the Experimental SystemRadioisotope Tracer ProceduresPost-experimental procedure
IV. DATA AND DISCUSSION 66
Organization
Stability ParametersExperimental Runs and Associated DataRadio Tracer Methods (Spectrophotometric Assayof Se)
Projected Parameters from Data
Summary
V. SIMULATION OF THE MODEL AND CONCLUSIONS--------116

APPENDIX

A. EXPERIMENTAL SYSTEM PREPARATION-------------127

A-2. Sediment Sieve Size Analysis-------------129
A-3. Distribution of Sediment in Sampling Containers According to Sieve Analysis-133
A-4. Qualitative Distribution of Particle Size on Bottom---------------------------134
A-5. Comparison of Pipettes-------------------135
B. SAMPLING THE EXPERIMENTAL SYSTEM--------------136

B-1. Water, First Kun, Tank I-----------------137
B-2. Suspended Particulate, First Run, Tank I-139
B-3. Fish, First Run, Tank I--n---------------142
B-4. Sediment, First Run, Tank I--------------145
B-5. Water, First Run, Tank II----------------151
B-6. Suspended Particulate, First Run,

B-8. Sediment, First Run, Tank II------------159
B-9. Water, Second Run, Tank I---------------165
B-10. Suspended Particulate, Second Run,Tank 1-169
B-11. Fish, Second Run, Tank I-----------------171
B-12. Sediment, Second Run, Tank I------------174
B-13. Water, Second Run, Tank II---------------186
B-14. Suspended Particulate, Second Run,
Tank II----------------------------------190
B-15. Fish, Second Run, Tank II---------------192
B-16. Sediment, Second Run, Tank II-----------195
B-17. Stability Parameters, First Run----------209
B-18. Stability Parameters, Second Run---------210
B-19. Suspended Particulate Filter Weights, First Run------------------------------211
B-20. Suspended Particulate Filter Weights,

APPENDIX (Continued)
Page
B. SAMPLING THE EXPERIMENTAL SYSTEM (Continued) 136
B-21. Sorption on Microscope Slide 216
B-22. Fish Orientation Comparison- 217
B-23. Fish Compartment Weights 218
B-24. Species List 219
C. RADIOISOTOPE TRACER PROCEDURES 220
C-1. Selenium-75 Decay Scheme 221
C-2. Parts Per Million in Assay Amount 222
C-3. Spike Quantity for Experimental 223
C-4. Selenium-75 Spectrum Data 224
C-5. Selenium-75 Spectrum Plot 226
C-6. Selenium-75 Spectrum, Published 227
C-7. Counting Efficiency Calibration 228
c-8. Calculation of Efficiency 229
C-9. Sorption of Selenium-75 on Test Tubes 230
C-10. Normalization of Water 231
C-ll. Normalization of Suspended Particulate 232
C-l2. Normalization of Fish 233
C-13. Normalization of Sediment 234
C-14. Sediment Transmission and Stirring Data-- 236
C-15. Sediment Transmission Calculations 237
C-16. Theoretical Calculation of Transmission-- 238
C-17. Significance of Calculation 239
C-18. Background Count Rates 240
C-19. Schedule of Decay of Residual Selenium From First Run 241
D. POST-EXPERIMENTAL PROCEDURE 246
D-l. Spectrophotometric Analysis of Selenium 247
BIBLIOGRAPHY 248

LIST OF TABLES

Table Page

1. Kifer Data 9
2. Selenium-75 by Activation Analysis 14
3. Carrier Interaction Table 20
4. Forms of Selenium in Natural Water 25
5. Selenium Forms and Their Transformation Me- chanisms 26
6. Transfer Matrix 30
7. Equations--Linear Donor Controlled 37
8. Summarization Definitions 38
9. Specific Activity for Experimental Run 56
10. Calibration Energies -57
11. Calculation of Equilibrium Values by Initial slope, Second Run- 108
12. Parameters from Uptake Data 110
13. Determination of Equilibrium Time 111
14. Calculation of Biological Half Times 112
15. Concentration Factors and Final Selenium Concentration, Second Run 113
16. Diagonal Matrix 117
17. Matrix Form With Incomplete Solution 117

LIST OF ILLUSTRATIONS

Figure Page

1. Physical Batch System of Selenium Model 12
2. Simplified Flow Diagram 19
3. Flow Diagram 35
4. Mathematical Model 37
5. Physical Model 40
6. Plan View of Aquarium, Geometric Areas, Dis- tribution of Sediment,Sample Containers, Quadrants 45
7. Compartment Normalization Schemes 61
8. Suspended Particulate weight. Second Run (Tank I and Tank II) 71
9. Suspended Particulate Weight. Second Run (Tank I and Tank II) 72
10. Uptake of Selenium, First Run, Tank I- -74
11. Uptake of Selenium, First Run, Tank II 75
12. Uptake of Selenium, Second Run, Tank I 76
13. Uptake of Selenium, Second Run, Tank II 77
14. Linear Regression, Second Run, Tank I, Water- 98
15. Linear Regression, Second Run, Tank I, Suspended Particulate 99
16. Linear Regression,Second Run,Tank I,Fish 100
Figure Page
17. Linear Regression, Second Run, Tank I Sediment 101
18. Linear Regression, Second Run, Tank II, Water 102
19. Linear Regression, Second Run, Tank II, Suspended Particulate- 103
20. Linear Regression, Second Run, Tank II,
21. Linear Regression, Second Run, Tank II Sediment 105
22. Simplified Flow Diagram With Initial Flow 118
23. Simplified Analog Computer Program 120
24. Completed Matrix 119
25. Complete Analog Computer Program 121
26. Analog Simulation of Selenium Model 122

CHAPTER I

INTRODUCTION AND LITERATURE SURVEY

Introduction

Selenium is widely distributed in the earth's crust. It is frequently found in industrial processes and occurs in our energy resources. It is an important trace element in the biological world, but may become a toxic substance through bio-magnification. It has been given quality criteria limitations in air and water. Despite this availability and potential hazard, the biochemistry of selenium is not well known and its movement and distribution in ecosystems has not been investigated to any significant extent.

The scope of this work, then is to develop the beginnings of a modeling effort which will ultimately lead to a predictive capability in the various trophic levels of natural systems. Completion of the model will be reserved for future works. The present effort will be limited to
preliminary aspects of "system identification" (Patten 1969) rather than system analysis. An attempt will be made to hypothesize a model on biological grounds and to observe its ability to simulate a physical laboratory model.

Historical Background and Literature Survey

Historically, selenium poisoning was known to farmers and stockmen as "alkali disease." The symptoms of selenium poisoning were called, "blind staggers" (Franke, 1934). Enormous losses of livestock occurred in some of the areas of the midwest and southwest. The cattle and horses would become lame, lose hair and hooves and develope loss of control of voluntary muscles. Death eventually occurred from internal hemorrages. The woody aster (Xyloriza) and milk-vetch (Astragalus) involved in the historic selenium poisonings, were shown to accumulate selenium to $10,000 \mathrm{ppm}$. These plants have a growth requirement for selenium and can apparently accumulate it from the soil no matter what chemical form it is in (Rosenfeld \& Beath 1964). This concentration was then passed trophically to the livestock and accumulated readily to toxic levels.

Robinson (1933) could reproduce this pathology with native forage that was shown to accumulate selenium. Shortly thereafter Franke (1934), using grains grown in areas where alkali disease occurred, demonstrated the toxic substance to be selenium. He subsequently demonstrated (Franke and Potter 1935) that selenium-containing feed would produce toxic effects in rats. Grains containing 25-30 ppm resulted in growth inhibition, jaundice, anemia, and hemorrage.

The role of selenium in biological systems is unclear and diverse. Its position in group VI of the periodic table reflects its chemical similarity to sulfur in living organisms (White, Handler, and Smith 1959). Painter, Edgar, and Page (1940), suggest the association of sulfur and selenium in soils and biologic materials in constant ratios. Franke showed an association of selenium with protein (1934). Schultz and Lewis (1940) observed the conversion of selenite to dimethylselenide in rats. The blue-green alga, Anacystis nidulans replaced sulfur compounds with the uptake of selenium analogues (Kumer and Prakash 1971).

Selenate toxicity was suggested by Shrift (1954) to be due to competitive inhibition of sulfur for metabolic enzymes. This inhibition occurred at membrane sites also.

Others suggest selenium to have antagonistic relationships with arsenic (Rhian and Moxon, 1943).

Selenium has been suggested to have a synergistic effect with Vitamin E and a relation to the reduction of lipids (O'Hara 1970, Schroeder 1970, Young 1970). It was found necessary in small amounts.

Irrespective of its biochemical role in the living system, selenium represents a potential hazard to man (Moxon and Rhian 1943). Clinton (1947) described the sequence of acute selenosis from selenium fume exposure. Smith and others (1938) described a high absorption through the intestine and subsequent elimination through the kidney. Franke (1936) demonstrated toxicity of selenium in rats. Lekin (1972) showed acute and chronic selenosis in animals feeding on vegetation containing selenium at levels less than 30 ppm .

In addition to toxic effects of selenium accumulation, Muth and others (1958) prevented White Muscle Disease (WMD) in lambs by the addition of selenium to feed. Glover (1967) described calves and lambs with muscular dystrophy, inhibition of growth, and reduced fertility on selenium deficient diets.

In general, the normal dietary levels of selenium for most species range from 0.1 to 0.5 ppm (Weswig 1972). Concentrations around five ppb produce the selenium defiency syndrome, and at higher concentrations of one to ten ppm can produce toxic effects. In addition, levels in the latter range are more likely to produce toxic effects through chronic trophic relation.

The U.S. Public Health Service has recognized a hazard to potable waters and recommended a safe upper limit to be 0.01 ppm . In addition, the American Conference of Governmental and Industrial Hygienists in 1962, documented a threshold limit value ($T L V$) of $0.1 \mathrm{mg} / \mathrm{m}^{3}$ for a forty-hour week occupational exposure.

The distribution of selenium is widespread (Goldschmidt 1954). It occurs in minute concentrations in soil and sulfide minerals. The average earth's crust value is only 0.09 ppm . The widespread distribution and relationship to sulfur was suggested by Pillay and Sivasankara (1971) to be used as an indicator of sulfur dioxide pollution. They held that measurable selenium:sulfur ratios could be indicative of petroleum or other fossil fuel sources used for combustion. Mast and Ruch (1973) in a survey of Illinois crude oil wells found an association of selenium in the sulfur-containing
wells ranging from 0.2 to 0.4 ppm . Johnson (1970) found that burning of coal released 0.7 ppm to 7.38 ppm selenium. Volcanic deposits have been found to contain as much as 120 ppm (Byers 1935), and values of 680 ppm have been reported from carbonaceous siltstone in western Wyoming (Beath, Hagner and Gilbert 1946).

Other sources and forms of input into the environment have been reported. Johnson (1970) reported nearly 20 ppm from the burning of solid waste such as newspapers, cardboard and tissue. Olson (1970) measured 0.05 ppm in paper and 0.03 ppm to approximately 1 ppm to tobaccos. Selenium collected in air filters from United States cities was found to range from 0.05 to 10 ppm selenium. Hashimoto (1967) measured 0.21 ppb in rainwater.

In addition to levels and sources mentioned, there is a fairly significant industrial input into the environment (Lakin and. Davidson 1967). Major industrial sources of selenium are from mining and refining of copper, lead, gold, nickel, and silver (Ledicotte, 1961). Selenium is also a waste product in the manufacture of sulfuric acid, pigments, insecticides, stainless steel, photo-electric cells, rubber, and glass.

Sources of selenium in the environment are widely distributed. The potential for greater input from man's energy use is becoming more prevalent. Mechanisms for the availability to the biotic system are present and bioaccumulation to high concentrations has been shown. Toxicity has been demonstrated. All of these facts suggest a potential hazard in the movement and accumulation of selenium in an ecosystem. Therefore, there is a need for ecosystem research.

CHAPTER II

DEVELOPMENT OF THE SELENIUM MODEL

Selenium Living Systems

There is little knowledge of the importance of selenium as a trace element in living systems (Wainerdi 1971). The classic studies of Franke (1934) demonstrated bioaccumulation and trophic movement. However, the data was not collected with an ecosystem view. Subsequent research often involved feeding animals specified levels of selenium as opposed to observing movement and accumulation of ambient levels in the natural forage. In other studies of terrestrial living systems. Allaway (1964) demonstrated bioaccumulation by detecting levels of selenium in various biological materials. Aquatic surveys by Kifer (1969) found natural levels of selenium in marine fish (See Table 1).

table 1

KIFER DATA

```
East Canadian Herring.....1.3-2.6 ppm
Tuna......................3.4-6.2 ppm
Smelt.....................0.49-1.23 ppm
Menhaden...................0.75-4.2 ppm
```

Wiersma and Lee (1971) sampled several Wisconsin lakes and found 0.5 ppm to 3.5 ppm in sediments. Work in trophic systems is lacking or absent. Where studies have been made, at least in earlier work, emphasis has been on health aspects or survey rather than characterization of ecological association and movement of the selenium.

Physical Model

The lack of data makes it difficult to observe movements and flows of selenium which might occur in natural situations. No postulates can be made based on field observations. Therefore, a model must be developed from basic ideas; synthesized from biological, chemical, and physical principles. The kind of model selected was based on these principles. There are many types and categories of models depending on the criteria one uses to distinguish among them. The choice of models was narrowed somewhat by the nature of the system being studied. It seemed prudent (Patten 1969,

St. Petersburg) to investigate both the physical and mathematical aspects of the selenium movement to approach a more realistic representation of what may occur in a natural system. A batch system was decided upon. A closed system such as an an aquarium would allow an added check on the model. The total amount of selenium is constant throughout the experimental period. (With a plug flow system or flume, one would have to be able to measure accurately the flows in and out of the system.) Thus, if projected to the natural environment, a batch system would represent an idealized lake rather than a stream.

A further decision was obvious from the nature of the problem. Little is known of the chemical transformations or even of the chemical forms that are biologically mediated in the movement of selenium into and out of organisms. Thus, the biological model or non-mechanistic model was chosen. Such a model could not account for mechanisms of uptake or for transformations within the living organism. It would, however, be a summarizing description of the mechanisms of flow among compartments. A mechanistic model would logically succeed the knowledge gained from a non-mechanistic model or biological type model. In addition, a continuous system type of mathematics was chosen. This would be more
representative of selenium movement, growth, or bioaccumulation than a discrete or stochastic mathematical representation. Thus, the initial model chosen was a non-mechanistic, continuous, closed biological model representing a batch system.

At this point, decisions about the physical systems were made which would allow a more precise definition of the mathematical model. A system representing natural conditions was desired, so a sample of water from a natural source was chosen. Lake Thunderbird was in close proximity to the University of Oklahoma and represented a typical impounded water of the southwestern United States. The lake was selected for the source of water and sediment. It was undesirable to use a laboratory alga such as Chlorella sp. for want of indigenous biota. A diverse natural flora and fauna would enhance the meaning of any result that might be obtained.

A physical system was then envisioned in which a diverse biota in a closed aquatic bounded aquarium would interact with the bottom sediment in a natural manner (Figure I). Continuous lighting was considered necessary for maintenance of algal growth for sufficient oxygen production. A rich growth was desired from the standpoint

of measurement of selenium in the various suspended materials. A motorized propeller would be used to enhance the mixing of oxygen and exposure of algae to light. The control of pH could be affected by the addition of free carbon dioxide.

Minnows (Cyprinidae) were also selected for use in the system. A bottom feeder would complicate a.model by an added variable, the changes in mass of the sediment. It would be more tractable to keep the masses of compartments discrete and constant. A strict algae-eating fish might be readily obtained, as an exotic species, but it was considered of value again to use an idigenous species.

In addition, it is documented information (Prosser 1945, Lovelace and Pololiak 1952, Rosenthal 1956, and Chipman 1956) that many chemical species may pass into fish through gills, skin and fins. Uptake does not necessarily infer feeding. Thus, a model may allow for predisposition to uptake through incidental feeding and membrane transfer without a strict trophic relationship. Also, the habit of constant gill ventillation was a desirable characteristic in the minnows for a system which may develop low oxygen levels. Radiotracer methods were perhaps most attractive from the standpoint of continuous system data collection. A
sensitive colorimetric method is reported in Rosenfeld and Beath (1964). This was a complex procedure for continuous sampling and could be considered only as an alternate check. The radiotracer method was the preferred choice for repeated sampling.

Selenium has a number of isotopes which are radioactive with short half-lives. There are no naturally occurring radioactive isotopes. All are produced synthetically. Selenium-75 is produced by activation analysis according to the following schemes in Table 2.

TABLE 2
SELENIUM-75 BY ACTIVATION ANALYSIS

$$
\begin{aligned}
& { }^{74} \mathrm{Se}(n, \gamma)^{75} \mathrm{Se} \\
& { }^{75} \mathrm{As}(\mathrm{~d}, 2 \mathrm{n}) \\
& { }^{75} \mathrm{Se} \\
& { }^{75} \mathrm{As}(\mathrm{p}, \mathrm{n})^{75} \mathrm{Se}
\end{aligned}
$$

Selenium-75 is suitable for experimental purposes because it has a reasonably long half-life (121.4 days).

The subsequent decisions were not so clear and were made through step-by-step process (Klehr 1972) obviated in in the remaining discussion.

A transfer matrix was constructed as an expression of the physical system. It could be written in terms of a mathematical matrix. This process of constructing the matrix must: (a). Summarize information in a comprehensive manner which would allow interaction of the various disciplines in an expeditious way. (b). Identify significant aspects of the chemistry and biology involved. (c). Recognize areas of lack of knowledge. (d). Help organize and expedite the research effort. The format can be summarized in the following steps:

1. Identify system and boundaries.
2. Identify selenium carriers and develop flow charts for them.
3. Identify chemical forms and chemical transforming mechanisms.
4. Relate and superimpose forms and transformations onto carrier flow charts.

The result is found to be a transfer matrix.

System Boundaries

The batch mix would be contained in an aquarium and the confines thereof considered to be the system boundaries. Flows into and out of the container, such as evaporation, would not be considered part of the system. Water would be added for evaporation loss. The container would be idealized and it would not be a part of the system. One must account for sorption onto the sides of the aquarium. The total
selenium in the system should remain constant and radiotracer methods must correct for radioactive decay.

Carriers

The basic carriers include the biota, water, suspended material, and sediment. The carriers were listed at length considering each biologically and chemically. simplifying decisions can be made if reasonable (Patten, 1969) by grouping carriers into functionally similar groups.

The selection of carriers was made with two important criteria in mind. The first was its biological correctness as a natural unit. The second was its ability to be discretely measured with techniques and instrumentation available.

There were numerous kinds of algae (Appendix B-24) including green and blue-green algae. It was considered that these would be discrete as a group of autotrophs and would make a reasonable biological entity. The differences of nutrient requirement between green and blue-green alga might suggest they be separate carriers. However, with mixing, constant lighting, addition of nutrients, and pH control, these differences might be resolved. This would unify the group for purposes of the model.

In addition to algae, the culture contained bacteria, minute fauna, such as protozoa and ashelminths, and other particles. The particles were made of reentrained sediment and a range of suspended and colloidal materials. To sample the water as a compartment carrier, a technique would have to be devised that would allow precise repeatable sampling, and make ecological sense.

A further investigation of sorption and uptake by bacteria and fine particles (Jones 1960) points out that uptake onto small organisms may be related to sorption onto fine particles associated closely with bacteria and algae. The discrete separation of these is not afforded by a simple technique. The 0.45 micron membrane filter was chosen to distinguish the water, colloids, and the dissolved solids from the particles in suspension greater than 0.45 microns. The suspended particulate compartment would contain all particles greater than 0.45 micron. Fish feces would also be included in the suspended particulate compartment. Fine colloids may be excluded.

The fish were seen to be discrete, well-defined entities except for fine particles that would closely adhere to the surface. Larger particles might be quickly rinsed off for repeatability of measurement. The finer particles
that closely adhere would not readily be disturbed in a natural situation.

The sediment would be recognized as the unsuspended bulk. Settling and reentrainment were accepted as natural processes involved in selenium movement to be considered in the model.

The carriers then were simplified into four compartments called water, suspended particulate, fish, and sediment (Figure 2). Exchanges might occur among many of the compartments. For example, suspended particulate may have flows of selenium with fish, water, or sediment, that is, with compartment two, three, or four. The suspended particulate may release selenium to the water or may take it from the water. Flows occur in both directions between compartments. It will be noticed that no flows occur between compartments two and four.

To determine the nature of these flows, a carrier interaction table was constructed (Table 3.). The selected carriers or compartments were listed such that the two-way interaction table was formed. The procedure was carefully carried out such that the list of carriers was written in sequence across the top of the table from left to right. They were then placed in the same sequence at

FIGURE 2
SIMPLIFIED FLOW DIAGRAM

the left of the table from top to bottom:

TABLE 3
CARRIER INTERACTION TABLE

	(1) Suspended Particulate	(2)	(3)	(4)
(1)Suspended Particulate	--	Water	Sediment	
(2) Fish	\mathbf{x}	\mathbf{x}	\mathbf{x}	
(3) Water	\mathbf{x}	$\mathbf{- -}$	\mathbf{x}	0
(4) Sediment	\mathbf{x}	\mathbf{x}	$-\mathbf{x}$	

Decisions about interactions between any combination of carriers was made by focusing attention on a single interaction couple corresponding to a carrier on the left vs. a carrier on the top of the table. The question was asked, "Can selenium in this carrier (one selected from the left-hand column) become selenium in (or move into) a carrier at the top of a column?" An "X" indicating a positive decision was placed in the corresponding box. A negative decision was represented by an "O".

It was considered important that only single step processes be considered. Moreover, a judgement was made as
to the significance of a particular flow or interaction movement. An interaction might have been indicated "O" if, even though it occurred, its action in the movement of selenium was insignificant.

The carriers were numbered for convenience, and reference to a decision about a flow was made by a coordinate pair (e.g. suspended particulate to fish would correspond to 1,2). In a discussion, use of the carrier names would be considered a less confusing means of communicating with another person.

One, one; 2,2; 3,3; and 4,4 represent flows and interactions within a carrier and, although interesting, were not important to a non-mechanistic model. These would be storage interactions from the standpoint of the model.

One, two would mean a movement of suspended particles directly to the fish in a phytophagous action, although not primarily a feeding response. This would be the case of incidental swallowing of material not a normal food substance. This was not considered insignificant to the model since even a small flow in this case might be the only flow in the considered direction between the two carriers. Thus, it may have a controlling effect on the movement of selenium. The reverse flow, 2,1 would involve defecation and in
one step would mean a biological flow from fish to suspended particulate. One, three and 3,1 are representative of chemical flows between the water and suspended particulate in one step.

One, four and 4.1 would result from the natural physical action of mixing and gravity.

Two, three and 3,2 are separate biological actions involved with transport of materials across membranes.

Two, four and 4,2 would involve death of the fish or would not occur in a one-step process. An attrition rate through death was not considered a desired research object in the early development of a selenium model. Thus, no provision was made for it and the assumption of no death was made. These were considered insignificant flows.

Three, four and 4,3 would represent chemical interactions in a one-step flow between the sediment and the water.

Chemical Forms and Transformation Mechanisms

The chemical forms were first selected, by investigation of natural forms and chemical reactions (Rosenfeld and Beath 1964, Subcommittee on Selenium 1971, Sienko and Plane 1961, Leddicotte 1961).
unstable compounds are in the +2 states. The binding in these states is primarily covalent. In the +4 state, the elements show both reducing and oxidizing properties but in the +6 state act as oxidants. In selenide, selenium assumes the oxidation state of -2. Polyselenides are known, but they are less stable than polysulfides.

Inorganic selenium compounds in natural water are oxides, acids, halides, sulfides, and selenides (Rosenfeld and Beath 1964). All selenium oxides are less stable than their sulfur analogues. The most stable state is SeO_{2} rather than SeO_{3}. Selenium trioxide reacts vigorously with water producing selenic acid, $\mathrm{H}_{2} \mathrm{SeO}_{3}$. This form was chosen as the experimental source for the initial condition of selenium to be added to the water.

The acid formed from dissolution of selenium dioxide is selenious acid, a weak dibasic acid. Selenic acid is less stable and a stronger oxidizing agent. Selenic acid forms selenate and acid selenate salts. The halides are unstable in aqueous solutions and decompose. The sulfides, ses and SeS_{2}, are insoluble in water. Hydrogen selenide is a colorless, very toxic gas resembling hydrogen sulfide in odor and properties. It is less stable. The selenide is a stronger acid than hydrogen sulfide and much more soluble.

Organic selenium compounds that may exist in biological systems and aquatic environments are as follows (Rosenfeld and Beath 1964): (1) Seleno-amino acids such as selenocysteine, selenomethionine, selenocystamine, selenohypotaurine, selenotaurine. (2) Homocyclic and heterocyclic seleno compounds such as selenoguanine, selenocystosine. (3) Selenopantethine. (4) Dimethyl selenide. The selenium forms possible in water are summarized in Table 4. This list was subsequently reduced in preparation for the interaction table of forms and transformation mechanisms (Table 5). By consideration of chemical properties, various chemical forms of selenium were eliminated from consideration. This was done in sequence of oxidation states as they appear in Table 4 , starting with selenium in the elemental state ($S e^{0}$). Elemental selenium is not soluble; thus, the possibility of soluble forms of free selenium were eliminated from consideration.

The oxidizing conditions of the system proposed would not allow formation of inorganic selenides of the -2 oxidation state. This reduction would occur in biological systems to form organic selenides, but selenious acid would not undergo the reduction in the system. Another possibility was the formation of sodium selenide. This is improbable

TABLE 4
FORMS OF SELENIUM IN NATURAL WATER

TABLE 5
SELENIUM FORMS AND THEIR TRANSFORMATION MECHANISMS OUTPUT FORM

INPUT FORM	$\begin{aligned} & S e^{0} \\ & (0, p) \end{aligned}$	$\begin{aligned} & \mathrm{se}^{0} \\ & (i, p) \end{aligned}$	$\begin{aligned} & s e^{-2} \\ & (0, p) \end{aligned}$	$\begin{aligned} & \mathrm{se}^{-2} \\ & (0, s) \end{aligned}$	$\begin{aligned} & \mathrm{se}^{+4} \\ & (\mathrm{i}, \mathrm{p}) \end{aligned}$	$\begin{aligned} & \mathrm{se}^{+4} \\ & (\mathrm{i}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{se}^{+6} \\ & (\mathrm{i}, \mathrm{p}) \end{aligned}$	$\begin{aligned} & \mathrm{Se}^{+6} \\ & (\mathrm{i}, \mathrm{~s}) \end{aligned}$
$\begin{aligned} & S e^{0} \\ & (0, p) \end{aligned}$	-	Desorption	Metabolism	$\begin{aligned} & \text { Metabolism } \\ & \text { and } \\ & \text { Release } \end{aligned}$	Multistep	$\begin{aligned} & \text { Metabolism } \\ & \text { and } \\ & \text { Release } \end{aligned}$	Multistep	Metabolism and Release
$\begin{aligned} & s e^{0} \\ & (i, p) \end{aligned}$	Adsorption		Metabolism	$\begin{aligned} & \text { Metabolism } \\ & \text { and } \\ & \text { Release } \end{aligned}$	Multistep	Multistep	Multistep	Multistep
$\begin{aligned} & \mathrm{Se}^{-2} \\ & (0, \mathrm{p}) \end{aligned}$	$\begin{aligned} & \text { Oxidation } \\ & \text { and } \\ & \text { Adsorption } \end{aligned}$	Oxidation	-	Decomposition	Multistep	$\begin{aligned} & \text { Metabolism } \\ & \text { and } \\ & \text { Release } \end{aligned}$	Multistep	Meta- bolism and pelease
$\begin{aligned} & \mathrm{Se}^{-2} \\ & (0,8) \end{aligned}$	Oxidation and Adsorption	Oxidation	Diffusion or Membrane Transport	-	Multistep	Multistep	Multistep	Multistep
$\begin{aligned} & \mathrm{Se}^{+^{4}} \\ & (i, \mathrm{p}) \end{aligned}$	Multistep	Multistep	Multistep	Reduction by Metabolites		Dissolution or ion-exch. or Reductio	oxidation	```oxidation and Dissolu- tion```
$\begin{aligned} & \mathrm{Se}^{+4} \\ & (\mathrm{i}, \mathrm{~s}) \end{aligned}$	$\left\|\begin{array}{c} \text { Reduction } \\ \text { and } \\ \text { Adsorption } \end{array}\right\|$	Bacterial Metabolism or Reduction	Reduction by metabolites or Metabolism	Reduction by metabolites or Metajolism	precipi- tation or Ion- Exchange		```Oxidation and Ion- Exchange```	Oxidation
$\begin{aligned} & \mathrm{Se}^{+6} \\ & (1, \mathrm{p}) \end{aligned}$	Multistep	Multistep	Metabolism	Multistep	Reduction	Reduction		IonExchange
$\begin{aligned} & \mathrm{Se}^{+6} \\ & (\mathrm{i}, \mathrm{~s}) \end{aligned}$	$\left\|\begin{array}{l} \text { Reduction } \\ \text { and } \\ \text { Adsorption } \end{array}\right\|$	Bacterial Metakolism Reduction	```2-step Reduction or Metabolism```	2-step Reduction or Metabolism	$\begin{aligned} & 2-s t e p \\ & \text { Reduction } \\ & \text { or } \\ & \text { Metabolisu } \end{aligned}$	Reduction	IonExchange	

due to the instability of the compound. Anaerobic production of hydrogen selenide was not considered likely to be significant. Only the organic forms of the -2 oxidation state were considered.

Selenites and selenates were thought to be significant in inorganic forms. Organic forms exist only in the reduced state. The +4 and +6 oxidation states of inorganic selenium were thought to be important both as soluble and particulate forms.

This elimination process left eight chemical forms of importance. Table 5 was prepared to summarize the interaction possibilities of these forms. They were considered as one-step processes, but for convenience, sometimes more than one step was recorded. Each change of solubility, oxidation state, form, or carrier, would constitute a step.

The table was interpreted in the same manner as the previous interaction matrix, with the considered transformation going from row to column. For example, by row (the first input form), elemental selenium in the organic particulate form can be transformed into inorganic particulate by desorption, a single step process. It may transform itself into organic selenide particles by metabolic processes. This would be a single step in which proteins may be formed within the living organisms. The formation
of soluble organic selenide requires an additional transfer of carrier by release after the metabolic process. This requires a two step process. The remaining selenites and selenates require more than a single step.

Continuing down to the second row, elemental selenium in the inorganic particulate form may transform to the organic particulate form by adsorption, a single step. It may also form organic selenide particles through the metabolic process. However, to form the soluble organic selenide, two processes are required; that of metabolic synthesis and release of a soluble form. The process is more than a single step since the formation of a product requires a change of carriers or compartments. The remaining oxidized forms all require processes in addition to metabolism and are therefore multi-step processes. Continuing with the third and remaining rows, transfers of various kinds are suggested.

This table was thought to illustrate most of the significant kinds of chemical transformations that might occur in the proposed selenium model. These transformations are superimposed on the carrier flow diagram to identify the chemical, physical, and biological flows between the carrier couples. The following section explains the process in more detail.

The Superimposing of Chemical Forms and

Transformations onto the Carrier Flow Table
Each of the chemical forms and transformation mechanisms was compared with a carrier flow interaction couple and the transforming chemical change was identified as a chemical, physical, or biological mechanism and recorded in the corresponding box (Table 6). Each carrier couple was treated in the same manner until all possibilities were recorded in the transfer matrix. For example, if Table 5 is observed for one-step processes, the first transfer is a desorption as described previously. Free selenium particulate is changed from organic to inorganic. Desorption would result in free, metallic selenium which is insoluble. This process is chemical, and would probably occur only within a given carrier and would not be represented as a flow in the final transfer matrix.

An additional example would occur with the metabolic change of free organic selenium particles to the organic selenide, particulate form. This reduction represents a complex process of oxidative deamination of proteins and the anabolic process of synthesis of biological material containing selenium. This would be identified on the final transfer matrix as feeding of the fish. This also occurs in the transformation of free inorganic particulate to organic

TABLE 6

TRANSFER MATRIX

selenide particles.
The next occurrence of a single step process in Table 5 is adsorption of inorganic free selenium particles to form organic particles of free selenium. This would be a flow in the transfer of suspended particulate by adsorption onto fish.

Additional single-step processes from Table 5 not already mentioned, are listed directly as a chemical process or included in a physical or biological process on the transfer matrix. Oxidation represents the transformation of soluble and particulate selenide to free, inorganic particles. The former would represent a flow from water to suspended particulate. The latter would cause no change of carrier. An additional oxidation of soluble selenite to soluble selenate would likewise result in no flow since this would occur without a change of carrier. The same is true with the particulate selenite to particulate selenate oxidation. Decomposition would be a cause of flow of organic selenide particulate to soluble organic selenide. This flow would be found from suspended particulate to water and from sediment to water as bacteria decompose the organic material.

Diffusion or membrane transport is the biological uptake that would transform soluble, organic selenide into
a particulate organic selenide. No other transformation of this type occurs as a single step. The flows which would result would be from water to fish and water to suspended particulate.

Reduction by metabolites is a transformation of particulate and soluble selenites to selenides. The particulate selenite becomes soluble selenide representing flows from suspended particulate and from sediment to water. Soluble selenite forms particulate selenide in the same way, representing a flow from water to suspended particulate or from water to sediment.

Dissolution is the process transforming particulate selenite to soluble form and represents a flow in the final 'transfer matrix of suspended particulate to water, and sediment to water.

Reduction is a chemical process which makes selenium more soluble when it has been precipitated with ferric ion flock formation. The reduction of the iron complex releases the selenium. An example of reduction is the transformation of particulate selenate to soluble selenite. This would be part of the flow of suspended particulate to water or sediment to water. The reverse case might occur in the reduction of soluble selenate to a particulate selenite
such as an insoluble calcium selenium oxide or sulfide. This transformation would represent flow from water to suspended particulate or water to sediment. The transformation of particulate selenate to particulate selenite and the transformation of soluble selenate to soluble selenite represent no flows when superimposed on the carrier flow matrix.

Precipitation is the process transforming soluble selenite to particulate selenite and may be represented by the scavenging action of the ferric ion or the reaction of selenious acid with calcium ion. The flow represented on the transfer matrix would be from water to suspended particulate or from water to sediment.

Ion-exchange occurs as a single step when the oxidation state does not change. The ion-exchange in both directions between particulate selenite and soluble selenite would constitute flows of selenium between suspended particulate and water, and sediment and water. Similar flows would occur among the selenates.

The chemical, physical and biological actions were thus identified and are summarized as shown in the final transfer matrix (Table 6). Physical flows which were not recognized by identification of chemical and biological
processes were due to the physical mixing of the system and were identified in the proper places. Settling and impingement would cause suspended particles to become sediment by definition. Likewise, reentrainment of sediment would define suspended particulate.

The Mathematical Expression of the Model

The transfer matrix represents a summary of the preceeding discussions and lends itself to mathematical expression. The transfer matrix was diagrammed in schematic form so that the flow relationships could more readily be visualized for mathematical expression (Figure 3). The arrows Fil , Fi2, Fi3,... represent the sum of the flows out of a certain compartment (X_{i}) and are part of the sum of flows into other compartments. The boxes represent the chosen carriers and are frequently referred to as compartments in the model. The model chosen was assumed to be linear as suggested by Patten (1969) when no clear knowledge of non-1inear relationships occur. A classic model (Odum 1957) utilized completely the donor controlled model. That is, with a given variable X_{i}, and a time-related constant $a_{i j}$, consider the flow $F_{i j}=a_{i j} X_{i}$. This represents a donor controlled relationship. Other types of flows may be:

$$
F_{i j}=a_{i j} X_{j} \quad \text { or } \quad F_{i j}=a_{i j} X_{i} X_{j}
$$

FIGURE 3
FLOW DIAGRAM

S.P. - Suspended Particulate

F - Fish
W - Water
SED - Sediment

The former is of the acceptor controlled type and the latter nonlinear, controlled by both the donating carrier and accepting carrier. An example of acceptor controlled flow would be a cow foraging on lush vegetation. The flow into the cow, $F_{i j}$, is related to the capacity of the cow to eat and not to some quality of the grass. If, on the other hand, the amount of grass were limited, the donor (grass) would control the flow of energy since the cow would not be eating to capacity. In ecosystem modeling the assumption is frequently made that the donor has nonlimiting amounts and therefore controls the flow. This assumption was made with each forward and reverse flow in the selenium model. From this point, the complete model was readily expressed mathematically (Table 7) as a system of linear donor-controlled equations. The equations were expressed in matrix form (Figure 4) for convenient notation.

Related information was put in tabular form for concise expression of pertinent assumptions surrounding the model (Table 8).

With the completion of the theoretical aspects of the model, the experimental methods and procedures were next to be developed.

TABLE 7

EQUATIONS --LINEAR DONOR CONTROLLED

$$
\begin{aligned}
\dot{x}_{1} & =F_{21}+F_{31}+F_{41}-F_{12}-F_{13}-F_{14} \\
& =a_{21} x_{2}+a_{31} x_{3}+a_{41} x_{4}-a_{12} X_{1}-a_{13} x_{1}-a_{14} x_{1} \\
\dot{x}_{2} & =F_{12}+F_{32}-F_{21}-F_{23} \\
& =a_{12} x_{1}+a_{32} x_{3}-a_{21} x_{2}-a_{23} x_{2} \\
\dot{x}_{3} & =F_{13}+F_{23}+F_{43}-F_{31}-F_{32}-F_{34} \\
& =a_{13} x_{1}+a_{23} x_{2}+a_{43} x_{4}-a_{31} x_{3}-a_{32} x_{3}-a_{34} x_{3} \\
\dot{x}_{4} & =F_{14}+F_{34}-F_{41}-F_{43} \\
& =a_{14} X_{1}+a_{34} x_{3}-a_{41} x_{4}-a_{43} x_{4}
\end{aligned}
$$

FIGURE 4
MATHEMATICAL MODEL
$\left(\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4}\end{array}\right)=\left(\begin{array}{llll}b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & 0 \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & 0 & b_{43} & b_{44}\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$
The notation $b_{i j}$ represents uptake rate constants $a_{i j}$
in matrix form.

TABLE 8
 SUMMARIZING DEFINITIONS

```
OBJECTIVE - The objective of the study was to propose a
    model of the movement of selenium in a simplified,
    closed aquatic system.
CRITERIA - Experimentally determined parameters and estimated
    values would be substituted into the mathematical
    model and simulation would be made with analog com-
    puter programs.
COMPONENTS \(-\mathrm{X}_{1}=\) Suspended particulate-algal mixture,
                                    bacteria, other biota, feces, sorbed and
                                    suspended particles.
    \(X_{2}=\) Fish-Minnows, Hybognathus nuchalis
    \(\mathrm{X}_{3}=\) Water-Lake water culture filterable
        through 0.45 micron filter.
    \(\mathrm{X}_{4}=\) Sediment-Dredge sample lake sediment,
        unsuspended bulk.
INITIAL CONDITION - Spike selenium-75 and stable selenium
    in form of selenious acid into \(\mathrm{X}_{3}\).
VARIABLES \(-\mathrm{X}_{\mathrm{i}}=\) Milligrams selenium per compartment.
    \(a_{i j}=\) Average uptake constants, fraction per
        hour.
    \(F_{i j}=\) Flows between compartments representing
        physical, chemical, and biological
        activities describing the movement of
        selenium between compartments.
```


CHAPTER III

EXPERIMENTAL PROCEDURES AND METHODS

The flow diagram in Figure 3 summarizes the model. The objective is to obtain parameters which will lead to simulation of the model. The experimental procedures were designed with this objective in mind. The physical system was set up to allow flows of selenium from the water to the other three compartments as seen in Figure 3. Methods were devised to measure the amount of selenium in each compartment as a function of time. Statistical analyses of the data are used to determine flow rate constants which will ultimately develop the final simulation.

Experimental System Preparation

The laboratory container selected for use in the experimental system was a twenty gallon aquarium (one foot by two feet) with a depth of one foot. Precise dimensions can be seen in the diagram (Figure 5). The system was run with duplicate aquaria (Tanks I and II). The tanks were stirred continuously throughout the experimental period.

FIGURE 5. PHYSICAL MODEL, CLOSEUP OF SEDIMENT CONTAINER IN SITU

The tanks were situated in front of identical banks of General Electric Cool White fluorescent bulbs. They were continuously illuminated with approximately 100-300 footcandles light intensity as measured with a light meter through the tanks. The variation of light intensity was a result of changes of turbidity within the system during operation.

A fish enclosure $15 \mathrm{~cm} . \mathrm{x} 15 \mathrm{~cm} . \mathrm{x} 30 \mathrm{~cm}$. was hung over the edge of each of the tanks. A four millimeter nylon mesh was used (Figure 5).

Water
The water selected for the experimental tanks was taken locally from Lake Thunderbird, a Bureau of Reclamation impoundment at Norman, Oklahoma. The samples were taken in open water, filtered through cotton and used in the laboratory for preparation of the stock cultures. To the culture was added a modified Knop's nutrient media (Appendix A-1). The culture was stirred constantly and put - under continuous lighting similar to the experimental tanks. This was the stock culture for the water and suspended particulate compartments.

Sediment

The sediment was also obtained from Lake Thunderbird by means of an Eckman dredge sampler. Three open water sites were selected at random and samples were combined. The sediment was air dried, ground and passed through a No. 10 sieve. A particle size analysis by sieve series was carried out (Appendix A-2).

The sediment thus prepared was spread in an even layer on large porcelain trays. It was sectioned into 16 regular sections and portions were drawn at random from the tray and combined to make up the sediment compartment to be put into the bottom of the experimental tanks. A small cup was used to procure the combined sediment by dipping it to overflowing and leveling it with a spatula. This technique was used to prevent discrimination against particles of a given size.

It was considered that free grab samples of the sediment would be disruptive and result in non-reproducible sampling. Therefore, a method was devised which would allow for standardized in situ sampling containers which would be retrievable for measurement and could be replaced without disturbing either the sample or the sediment. The sampling containers were prepared (Figure 5) in the following manner.

The sediment sample containers were made from the 19 mm . diameter plastic autoclavable caps for $16 \times 160 \mathrm{~mm}$. culture tubes. A band saw was used to cut from the open end until the desired height was reached. The 26 mm . vials thus produced were prepared to be recessed into the sediment. Since removal of samples would allow selenium flow into the hole or cause its walls to collapse, a sleeve with a bottom was used to line the hole in which the sample container was placed. This lining sleeve was fashioned by cutting the top from a 15 ml . screwcap polyethylene bottle, resulting in a wide top cyclinder with a bottom. Thus, when the sample container was in place, it nested in the sleeve so that the top was protruding only enough to allow grasping by the sample retriever.

The sample containers were filled with sediment by weighing out particle size grades (Appendix A-3) of sediment that represented precisely the particle size distribution for the whole sediment as previously determined. Such a distribution totaling 10.8289 g . was carefully weighed into each container. This weight represented

$$
\frac{10.82 \mathrm{~g}}{7200 \mathrm{~g}}=\frac{1}{664.887}
$$

of the total sediment compartment. Eleven containers were
saturated with water and put in place in the sediment in each tank (Figure 6).

In order to decide representative placement of the sediment sample containers, some sort of bottom profile of dynamic similarities was sought. Before putting sediment into the experimental tanks, a 30.8 x 60.4 cm. rectangle of blotting paper was saturated with water and placed on the bottom of each of the tanks. The tank was filled with water to the 60 l. mark and the propeller was then turned on. A representative sample of sediment was introduced around the center of the tanks above the propeller by graded particle size in sequence. The particles were allowed to impinge upon the paper at the bottom. In addition, a quantity of suspended particulate (algae, fish, feces, etc.) was treated in the same manner and allowed also to impinge onto the bottom paper. The resultant bottom profile (Figure 6) was removed carefully with the paper and allowed to dry. It was fixed with spray shellac, and photographed. The profile was then used as a rationale for the positioning of sediment sample containers. The bottom profile was divided into four geometric areas (Figure 5), concentrically inscribed within each other as follows: an outside rectangle containing an elipse,

a circle, and in turn, a small rectangle. The dimensions for these areas was determined by a combination of tracing on acetate overlay, inspection, and measurement with a metric ruler. The idealized areas were drawn more carefully to actual size. Placement of sampling containers was based on a combination of calculated centroid position, symmetrical placement of duplicate samples and wall reflection interference (Figure 6). The geometric areas were symbolized by letter for their mutually exclusive areas, starting with the inner rectangle, R, the circle, C, elipse, E, and the corners, H (from hyperbola). The areas of each of the regular geometric figures was calculated and the area of the mutually exclusive sampling regions was determined by subtraction. The total bottom area was calculated to be $1860.32 \mathrm{~cm}^{2}$, and the described geometric mutually exclusive areas were determined to be fractions of the bottom area:

$$
\mathrm{H}=.4408, \mathrm{E}=.3111 \quad \mathrm{C}=.1289, \mathrm{R}=.1142 .
$$

Fish

The supply of fish was obtained from a local bait shop and the fish were sorted into a rough size range. Only those within the one to three gram range were used experimentally. Hybognathus nuchalis was used for the stock fish source. The fish were kept in the same tank used for the
stock culture of water and of suspended particulate compartments.

The fish enclosures in the experimental tanks were suspended over quadrants 3 and 4 of Tank I and over quadrants 1 and 2 of Tank II (Figure 6).

The fish were fed at the rate of 0.11 g . food per g. fish per day using crushed pellets under the commercial name of SHRIMP-EL-ETTES. Both the lake water, lake sediment, and the fish food were analyzed for selenium by the aminobenzidine procedure taken from APHA, "Standard Methods for the Examination of Water and Waste Water." The fish food and sediment were crushed and homogenized in O.IN. HCl and diluted in a volume of water before the standard ized procedure was followed. The samples and standards were read in the Beckman D-B Spectrophotometer at 420 nanometers. Percent transmittance was recorded, and concentrations of selenium determined.

Suspended Particulate

The suspended particulate was that which developed naturally from the culture. The diverse biota which developed in the experimental tanks was examined occasionally for species and types, but no stringent attempt was made to characterize it (Appendix B-24).

The first run weights of suspended particulate were small enough so that it contributed in part to the lack of statistical precision in count rate data. Nutrients were added prior to the second run to stimulate a higher level of algal growth and improve the data obtained.

Experimental System Operation

To prepare for the experimental period, the sediment containers were filled as described previously. When wetted, the sediment sample containers had a depth the same as total sediment depth in the tank. The sediment and sample containers were left in place and the supply stock culture of suspended particulate and water was added carefully without disturbing the sediment. Time was allowed for the sand to be wetted and the voids filled with water. Then water was added up to a volume of sixty liters. The propellers were positioned and turned on. The light banks were lighted and the fish were introduced into the enclosure. The system was operated for a few days prior to addition of the radioselenium.

Sampling The Experimental System

Sampling

Sampling both experimental variables and stability
parameters of the physical system were made on a daily or near daily basis. Parameters that were chosen to monitor the stability of the system were temperature, pH , dissolved oxygen, and filterable residue. Sampling of the compartment variables in the experimental tanks was done on a logarithmic time basis. Samples were taken at first by minutes, then increased to a daily interval. The sampling routine was as follows: The stability parameters were measured first as explained below. Then, the experimental variables were sampled in sequence: the water compartment, suspended particulate, fish, and sediment. With the completion of sampling, the sides of the tanks and other immersed structures (net, propeller) were scraped or brushed clean of deposition of suspended material. A microscope slide permanently fixed onto a glass rod was used as a scraper for the tank walls. The fish were fed, and the level of the tanks was returned to the 60 l. $\pm 3 \%$. Evaporation loss accounted primarily for the approximately 250 ml . of water added per day.

The only water used in all experimental work or associated procedures, with the exception of the stock culture, was deionized water prepared by distillation and subsequent percolation through an ion exchange resin.

The stability parameters measured were temperature, dissolved oxygen, pH , and filterable residue. The temperature was measured to the nearest degree by suspending a thermometer in each tank. The thermometer was read through the glass wall without removal.

Dissolved oxygen was determined to the nearest 0.1 p.p.m. A membrane-type dissolved oxygen meter was used. It was calibrated and checked by the alkaline azide dissolved oxygen modification in Standard Methods.

A dip sample was taken for pH determination on a Photovolt digital pH meter to the nearest 0.1 pH unit. The sample was then returned to the tank. If the pH approached 9.0 units, it was lowered with the addition of carbon dioxide gas.

Filterable residue was determined with a total dissolved solids meter. The filtrate sample used to determine the water compartment counting rate was used for the determination. The reading was taken directly from the meter, adjusted for dilution, and recorded to the nearest part per million. The sample was returned to the tank.

Water Compartment, Suspended Particulate Compartment The water and suspended particulate compartments were
sampled together. In the first experimental run a 20.0 ml sample was freely drawn from a point approximately 10 cm. below the surface of the tank. A pipette was used which had been broken, fire-polished to a larger orifice, (Appendix A-5) and re-calibrated. The sample was pipetted into a 47 mm . diameter glass Millipore filter apparatus which was fitted to a $1,000 \mathrm{ml}$. suction flask operated off a water faucet aspirator. After the pipetting was complete, the sample was filtered through a 0.45 micron cellulose acetate Millipore filter and collected directly into a clean 25 X 250 mm Pyrex test tube. The tube was removed and the count rate determined. The value was recorded as the water compartment sample counting rate. The filtrate was used for filterable residue determination and then returned to the experimental tank. The filter was removed with the filter cake and dried in a planchet oven at $50^{\circ} \mathrm{C}$. for 24 hours. The filter was placed in a 50 mm . petri dish, covered, removed from the oven, and allowed to cool for a short time before weighing to constant weight. The weight was recorded to the nearest 0.1 milligrams. The dried filter was rolled and inserted into the bottom of a 25×250 mm . Pyrex test tube and a count rate determined. This was recorded as the suspended particulate sample rate.

In the second experimental run, the water and suspended particulate sampling was done as 2 consecutive 20.0 ml . samples. The first 20.0 ml . pipetting was superimposed on top of the filter cake such that it was completely re-suspended by the additional 20.0 ml . Then the suction was turned on. The filtrate thus obtained was simply returned to the experimental tanks. The filter cake was treated as above, dried, weighed, and counted with the recording of weight and count rate to reflect a 40.0 ml . sample instead of a 20.0 ml sample.

In both experimental runs, the filter apparatus was rinsed 6 times with deionized water after each sample was filtered. Pipettes were likewise rinsed with dilute HCl and then acetone.
Fish

The fish were handled one at a time. Each was netted, clasped in gloved hand, and given a quick rinse in a beaker of deionized water. The purpose of this was to remove any loosely adhering particles properly belonging to the suspended particulate compartment. The fish was then put anterior end down into a $25 \times 250 \mathrm{~mm}$. clean test tube. Deionized water was used to bring the volume of fish and water to 20 ml . The tube containing the fish was put into
the counting chamber and a counting rate was determined. This was recorded for each fish as a sampling of the fish compartment. The fish was placed in a waiting tank containing oxygenated, deionized water until all the fish in the tank were counted; and then they were all returned to the experimental tank. After counting each fish, the water in which the fish was counted was returned to the counting chamber for the detection of loss from the fish while being counted.

Sediment

The sediment was of constant depth and organized for the purpose of sampling into four geometric areas as described in a previous section. The samples were removed with the help of a retrieving device similar to those used in grasping objects that have fallen into small tubular orifices such as sink drains. The grasping device was used as a sample retriever by immersing the distal end to the bottom of the experimental tank. By squeezing the top, one could carefully grasp the container without disturbing the sediment or the sleeve in which it was sitting. If the visibility of the sample container was occluded by the turbidity of the suspended material, a depth-viewing device was employed. This allowed the experimenter to see the
container with greater clarity. This was simply a 1000 ml . graduated cylinder with the projecting part of the base removed to allow juxtaposition of the viewer to the sample retriever. The viewing device was held by hand and the otherwise nonvisible samples could be seen clearly and retrieved with the necessary care.

When the sample containers were removed, each was drained of excess water and put into the counting chamber. A count rate was recorded for each sample container. During the time when the samples of sediment were removed, it was almost never necessary to turn off the propeller or to disturb the mixing dynamics of the experimental tanks. There was a separate Roman Numeral designation for each tank (I, II) and numerals for the quadrant relative to a tank center origin (1, 2, 3, 4). Thus, a sample container in the lower left hand corner of tank II, would be designated II3H (Figure 6).

Radioisotope Tracer procedures

> Radioisotope Source Preparation

The radioisotope was received as selenium-75 in the chemical form $\mathrm{H}_{2} \mathrm{SeO}_{3}$ in 0.5 N . HCl. The 1 mCi . source had a specific activity of 175 mCi . per mg., having a total of 0.0057 mg . solids in 0.1 ml . The isotope was removed from
the container, checked for contamination and opened. The total volume was made up to 5.0 ml . by adding deionized water. This was the stock solution of radioselenium with a specific activity of 1 mCi per 5.0 ml .

Specific Activity for Run I
Several five lambda aliquots of radioselenium were removed and diluted 1:200,000. This was the same material as used for the efficiency calibration (see Appendix c-7, 8).

A total quantity of the $2.4316 \times 10^{6} \mathrm{cpm}$ was added to a volume of water containing 1.200 mg . selenium. The selenium solution was prepared from $\mathrm{H}_{2} \mathrm{SeO}_{3}$ reagent and deionized water. The labeled selenium mixture was diluted to 400 ml , mixed for 15 minutes, and then divided into two aliquots for spiking the two experimental tanks for the first run.

The specific activity for the first run spike quantity was then:

$$
\frac{2.4316 \times 10^{6} \mathrm{cpm}}{1.200 \mathrm{mgSe}}=2.0263 \times 10^{6} \frac{\mathrm{cpm}}{\mathrm{mgSe}} .
$$

Specific Activity for Run II

Approximately 50 lambda were removed from the stock radioselenium solution and diluted l:200,000 as in the first run. Four aliquots were taken for readings in the
standardized $20.0 \mathrm{ml} .25 \times 250 \mathrm{~mm}$. test tube. Count rates were as follows in table 9.

TABLE 9
SPECIFIC ACTIVITY FOR EXPERIMENTAL RUN

Aliquot from Dilution of Radioselenium Solution	Count Rate Standard Geometry cpm per 20.0 ml
1	64,377
2	63,992
3	64,234
4	64,572
Average......	. $64,294 \mathrm{cpm} \pm 508 \mathrm{cpm}$

A total quantity of the dilution containing 25,717,600 cpm was added to a volume of water containing 12.000 mgSe . The selenium was prepared from $\mathrm{H}_{2} \mathrm{SeO}_{3}$ reagent and deionized water. The labeled selenium mixture was diluted to 400 ml ; mixed for 15 minutes, and divided into two aliquots for spiking the two tanks of experimental run II.

The specific activity for the second run spike quantity was then:

$$
\frac{25.7 .76 \times 10^{6} \mathrm{cpm}}{12.000 \mathrm{mg} \mathrm{Se}}=2.1431 \times 10^{6} \frac{\mathrm{cpm}}{\mathrm{mg} \mathrm{Se}}
$$

Counting System

A gamma counting system was set up consisting of a 3 inch sodium iodide well crystal, a photomultiplier, and an Ortec Model 420 single channel analyzer. The detection unit was fixed upright in a counting chamber constructed of lead-bricks which were precleaned to provide low background counting rates.

The following standard sources were used to calibrate the single channel analysis system. The linearity of the system was determined by using the same sources.

TABLE 10
CALIBRATION ENERGIES

$$
\begin{aligned}
& 57_{\mathrm{CO}}-0.136 \text { M.e.v. } \\
& 133_{\mathrm{Ba}---0.080,0.276,0.302,0.356,0.382 \mathrm{M.e.v.}} \\
& 137 \mathrm{Cs}---0.662 \text { M.e.v. }
\end{aligned}
$$

A gamma spectrum of the selenium-75 was run to establish the proper operating voltage, baseline, and window width for the detection of the isotope. A source was placed in the counting chamber and the spectrum was obtained by recording count rate for the source at incremental increases
in voltage. A plot was made of count rate vs. pulse height voltage (Appendix C-5).

Optimum operating parameters for the counting system were a baseline setting of 0.029 V . to eliminate noise, and a window width of 0.500 V . to allow greatest sensitivity for detection of the complete selenium-75 spectrum.

Counting Efficiency

Several 5 lambda aliquots were removed from the selenium-75 stock solution and placed into $25 \times 250 \mathrm{~mm}$. test tubes in a droplet at the bottom. The tubes were diluted by the addition of 20.0 ml . of deionized water. The count rate was determined after gentle swirling. A 100 lambda aliquot of the dilution was removed and put into a similar clean test tube. To this second tube were added 19.9 ml of the deionized water bringing the volume to 20.0 ml . The total dilution from the 1 mCi stock bottle was then a factor of 2×10^{-5}. The machine efficiency was then calculated on the basis of this fraction of the source activity in a 20.0 ml . volume contained in a $25 \times 250 \mathrm{~mm}$. Pyrex test tube (Appendix C-7). The efficiency was determined to be 64.2%.

One lambda of radiolabeled $\mathrm{H}_{2} \mathrm{SeO}_{3}$ from the stock solution was pipetted into each of eight $25 \times 250 \mathrm{~mm}$. Pyrex test tubes. A series of concentrations of the same compound with stable selenium was prepared and 20.0 ml . of each respective concentration was added to the tubes containing the isotope. All dilution and rinse water was deionized water. Tubes were pre-cleaned in an acid bath of the same water. The pre-counted tubes were filled as described, allowed to set 15 minutes, and placed into the counting chamber. Counting rates were recorded before and after emptying and rinsing a series of times. The fraction of selenium sorption on glass test tubes was determined (Appendix C-9).

Calculation of amounts of selenium added with the tracer was made to see if the very dilute concentrations of stable selenium compound were significantly altered by the addition of the isotope (Appendix C-2).

Sorption was checked in the experimental tanks by daily scraping of the walls with a microscope slide fixed to a glass rod. As a check on this, another microscope slide was left in the tanks throughout the duration of the experiment. A second slide was put into each tank on occasion and left
for a 24 hour period after which it was removed and scraped in a manner similar to the above tank walls, and placed on the crystal detector to be checked for remaining activity. At the end of the experimental period, the slide that had remained in each of the tanks for the duration of the experiment, was removed and counted, then scraped and again counted.

Normalization
Since the specific activity was determined in a standard 20.0 ml . volume, the water and other compartments must be normalized to this geometry (Figure 7). Count rates can then be converted to milligrams of selenium. The water compartment was normalized in the following manner: Five lambda were removed from the source stock bottle and diluted to 20.0 ml . A 100 lambda aliquot was removed and placed into each of several previously counted standard test tubes. A counting rate was determined and the tubes were filled with 20.0 ml . of 10^{-2} p.p.m. unlabeled selenium solution and again counted. A more complete set of paired data was obtained in a similar manner with the exception that counting rates were determined for 1.0 ml . increments up to 20.0 ml . (Appendix $\mathrm{C}-10$).

SUSPENDED
PARTICULATE

FISH

The effect of stirring was observed by preparing two series of test tubes as above, all with the same amounts of radioactive stock selenium solution and 20.0 ml . of 10^{-2} p.p.m. unlabeled selenium solution. Counting rates were determined on each of the tubes in both series, one series, while being stirred, the other not stirred at all (Appendix C-15) .

The sediment compartment was normalized by washing the contents of the sediment sample containers into $25 \times 250 \mathrm{~mm}$. Pyrex tube and diluting to 20.0 ml . with the deionized water. The counting rate was determined while stirring (Appendix C-15).

The effect of attenuation by sand was observed by preparing two series of test tubes. Into all tubes was pipetted identical amounts of the radioactive selenium solution. One series had the subsequent addition of 20.0 ml. of 10^{-2} p.p.m. unlabeled selenium solution, and to the other series was added 10.82 g . of non-radioactive sand from the same source as used to prepare the experimental tanks. This second series was then diluted to a total volume of 20.0 ml . allowing time for the saturation of the void space in the sand. Stirred counting rates were determined on all tubes in both series (Appendix $\mathbf{C - 1 5}$).

Calculations were made of the theoretical attenuation by the sandy sediment assuming the sediment to be glass homogeniously distributed throughout the 20.0 ml . volume (Appendix C-16, 17).

The normalization of the fish compartment was determined by preparing a separate tank with uptake conditions similar to the experimental tanks and allowing the group of fish to build up in an activity to a reasonable level for detection significance. Radioselenium-75 of the same specific activity as that used in the experimental tanks was introduced. The fish were treated in the same manner as the experimental fish. A count rate was determined prior to wet ashing in a sequence of sulfuric and hydrochloric acids. Concentrated acids were used and the resulting solution was diluted to 20.0 ml . for an additional count rate determination for each fish (Appendix C-12).

The suspended particulate compartment was normalized by dissolving the previously counted dried filters containing the samples of suspended material in a 20.0 ml . quantity of acetone. The suspension was stirred while a count rate was determined (Appendix C-ll).

Counting Statistics and Data Analysis
Background counting rates were kept to near $100 \mathrm{c} . \mathrm{p} . \mathrm{m}$. by detector shielding and by frequent wiping of the inside of the counting chamber and well crystal. All glassware was washed and rinsed when re-used so that its counting rate fell within 95% confidence limits of the background counting rates. When practical, a thin food wrap was used to line the well crystal to avoid contamination of the counting chamber.

When repeated daily sample counting rates fell within 95\% confidence limits of the average value, the system was considered to have reached steady state or completion of uptake for the experimental sampling.

Regression analyses were made on the uptake data to determine the parameters for the selenium model.

Post Experimental procedure

At the end of the experimental period the tanks were drained and the sediment removed with a spatula. Each of the geometric areas was separated and kept in a separate container. Each area was mixed in a blender to homogeneity with the aid of deionized water. The sample areas were air dried and a 10.82 g . aliquot was put into a clean sediment sample container, re-saturated with the deionized water
and placed in the counting chamber as a representative of its respective geometric area. The counting rate was recorded as such.

Samples of these areas were treated in a blender with hot methanol and homogenized in volumes of deionized water. The samples were analyzed for selenium using the diaminobenzidine procedure as in the APHA "Standard methods for the Treatment of Water and Waste Water." standard solutions were prepared and samples and standards were read in a Beckman D-B Spectrophotometer. Recordings were made of $\%$ transmittance and concentrations were determined.

CHAPTER IV
 DATA AND DISCUSSION

Organization

The analysis of the data will be divided into four parts. The first part will be a discussion of the stability parameters. How stable was the system in terms of the design of the model?

The second part will be an analysis of the uptake data by compartments. Pre and post-experimental work will be included in the discussion. The primary objective will be the determination of uptake constants for the simulation of the model in Chapter V. This will be done through the use of regression analysis.

The third part will assess the validity of radiotracer methods and selenium concentrations obtained.

The last part will be a projection of the data to determine other parameters related to the data. These are not germain to the simulation of the model, but are important for suggesting additional research.

Stability Parameters

The stability parameters were sampled as a part of experimental data to determine the stability of the system. All of this data is located in Appendix B-17, 18. Significant changes in these parameters might cause changes in the physiological function of the living organisms. They may produce flows or rates of uptake which were not considered in the design of the model.

Changes in pH (Appendix $\mathrm{B}-17,18$) occurred with a relatively small variation. The highest and lowest values from either tank in both runs varied no more than a pH unit. This relatively small deviation would not likely result in any physiological stress for the fish. The algae were able to maintain a relatively constant pH after approximately one week of acclimation by addition of carbon dioxide. The tendency of the algal culture to drive the pH up was moderated and very little addition of carbon dioxide was necessary after the first week.

Since the pH change was so small, there was likely no important change in the driving force influencing chemical reactions.

Dissolved oxygen fluctuated a considerable amount, but the variations of both runs was approximately the same.

The only generalization that might be made is that perhaps the values were slightly higher during the first week of each run. It is possible that the algae were still in the log phase of growth and liberating oxygen at a maximum rate. During the remaining weeks, there was a cycling of decomposition and growth at a relatively constant and stable rate. This hypothesis is somewhat verified by the suspended particulate weight data (Appendix B-19, 20) which indicates a mass increase and weight fluctuations after an initial period.

The primary concern for dissolved oxygen is not for fluctuation, but for a minimum level for support of life. The minnows have the habit of constant gill ventillation and seemed not to be under any physiological stress when the dissolved oxygen dropped below four parts per million. This habit and the mixing action of the propeller probably maintained the oxygen transfer across the gill membrane well within normal values.

The only other concern, then, was for maintenance of an oxidizing state for chemical reactions which may have occurred. As long as any oxygen tension remained, this state was maintained. Only until oxygen is depleted completely, would the redox potential begin to change.

The total dissolved solids changed very little within runs; but the second run was significantly higher in TDS (Appendix $B-17, B-18)$. This may be attributed in part to added nutrients in establishing the culture for the second run. The TDS was constant for each run and was therefore controlled for any experimental run. No effects were observable with this change in dissolved ions. The most significant factor was probably the tenfold increase in selenium concentration in the system. This may have made a significant contribution to the increase of dissolved material; however, the loss of selenium from the water was not accompanied by a drop in $T D S$ throughout the course of the experiment. The additional selenious acid may have increased the solubility product for compounds which allowed more to be dissolved. The increased dissolved materials, then, may not have precipitated upon removal of selenium from solution. They may have super-saturated without precipitating and maintained a constant TDS. Calcium ions, for instance, may have increased in solubility with the increase of selenious acid. The trophic loss of selenium from the water was not accompanied by a precipitation of selenium because of a shift in the bicarbonate equilibrium to more acid conditions. The pH would not shift
due to a loss of free CO_{2}. This type of equilibrium, however, could not account for the doubling of TDS alone. The limits of dissolved materials were not excessive, and normal physiology and constant chemistry within any run were maintained.

Temperature changes of a degree up or down were the maximum limits of variation. The slight changes would not be considered significant to change the physiology or chemistry of the system. The first run averaged a degree or two lower than the second run. This was due to an increase in room temperatures. This difference would not be significant for purposes of the model.

The suspended particulate weights remained relatively constant throughout the experimental period. Fluctuations were due to sampling error. This was primarily a function of the mixing, since the pipetting error was considered to be less than 5 per cent, and the weighing error a maximum range of 0.4 mg . (See Figures 8 and 9.) Outside the bounds of the sampling error there seemed to be a slightly cyclic variation of weight. This was found to be true in both experimental runs. This cyclic nature might be explained as alternating growth and decomposition release periods. Changes in free nutrient levels could cause this to occur.

Figure 8.-SUSFENDED PARTTCULATE WEIGHT
mg

This fluctuation might be related to variation in levels of dissolved oxygen. No statistical correlation was made, but a visual scanning of the data would reveal relationships of this kind. In general, this cycling would seem to have no significant effect on the movement of selenium in the total system. This will be discussed later in this chapter. Other biota in the system would indicate stability of the system (Appendix B-24). Diversity of types and small numbers would indicate a stability. Stalked protozoans and rotifers would indicate the more advanced succes sional stages. The adundance of an alga such as Ankistro desmus sp. and Scenedemus sp. is common for ponds and aquaria. They are considered planktonic algae when mixing action occurs. Blue-green forms were not abundant. Thus the algal forms also represent species established for periods of time in pools and ponds.

The non-experimental parameters and biota in general represent a system that is established for a period of time and relatively constant.

Experimental Runs and Associated Data

 The two experimental runs represent four similar systems which responded with repeatable similarity at two different levels of selenium concentration (Figures 10-13).Tigure la - UPARE UR SELminM

Figure 11 UPTARE OE SEIEAINM

The first run was more truly experimental. Techniques were untried and the precision of sampling was not developed by the experimenter as well as in the second run. Reliability of equilibrium values is not quite as good in the first run. The specific activity of selenium-75 in stable selenium was such that the random fluctuation of the count rate was greater than the variation in selenium amounts. This occurred particularly when the water became somewhat devoid of selenium, near the equilibrium value (or steady state).

The equilibrium time in general was suggested by consecutive variations of sampling data which were within a 95% confidence interval. This was the judgement used for completion of experimental data.

The increase or loss of selenium over a period of time is related to the unique character of each compartment and must be examined compartment by compartment.

Water

The water compartment is by logic the first to be discussed since the selenium is introduced into the system in a completely soluble form and becomes immediately a part of the water compartment. The remaining three compartments are initially devoid of selenium and the flow begins out of
the water to the remaining three compartments. Since the total amount of selenium is contained in the system, the other compartments take up the selenium as the water loses it.

The loss of selenium by water in the first run (Figure 10, 11) did not obtain as low a value as in the second run. The reliability of the data in the first run was not as good as that in the second run (Appendix B-1, 5, 9, 13). The two tanks in the first run showed values at 700 hours to be about 0.2 mg loss from 0.6 mg . The count rate for the first run ranges from approximately 2500 counts per ten minutes to 1900 counts per ten minutes for the last 200 hours of run time. This final value with correction for decay falls nearly within the 95% confidence interval for approximately a week run time. This is close enough to suggest steady state or equilibrium time is approaching. The value can be looked at more carefully with regression analysis as will be discussed later in this chapter.

The water compartment in the second run (Figures 12,
13) shows a lower value on approach of steady state. This would be expected since the 95% confidence interval about the 400 hour counting rate contains the curve for more than a week (Appendix B-9, 13).

Within the second run, the final values compare very well for the two tanks. A variation of 0.3 mg or less than 5% for more than a week occurs. The tanks are then identical for the water compartment within the sampling error. The water is a massive compartment ($60,000 \mathrm{~g}$.) which reached equilibrium in about 400 hours. The data from the second run suggests the most reliable values but is not contradicted by the values from the first run.

There would appear to be no complication in the geometry or normalization of the sample data, since the standardization of counting rate to mg . of selenium was identical to the sampling of the water compartment. Sorption loss was insignificant (Appendix C-9). In concentration ranges from $10^{-4} \mathrm{ppm}$. to 10 ppm ., glass sorption was linear and amounted to only about 2%.

Suspended Particulate

The accumulation of selenium in the suspended particulate was related to the mass of suspended particulate. The mass of the algae was very small compared to the water or sediment mass, and smaller uptake values were apparent. It is difficult to determine the equilibrium value from the first experimental run (Figures 10-11). The
count rate is so low that the significance of selenium amounts cannot be detected above background (Appendix c-18). The 62 hour counting rate of 1,618 counts per ten minutes is significantly above background at the 95% confidence interval. The value reached by the suspended particulate appears to be 0.05 mg or about 8% of the total amount. After the initial sample in the second run, the count rates were significant throughout the experimental period. In both tanks of the second run, there was an overgrowth of selenium uptake and subsequent drop to the equilibrium value. Tank II did not reach as high a value and was lower during the latter part of the run. An examination of the suspended particulate weights (Appendix B-19, 20), show that Tank I averaged 1.46 times the weight of Tank II. The selenium uptake in the suspended particulate (Figures 12, 13), are in agreement with this factor.

The rich culture was produced by a Knopp's modified media (Appendix A-I). This provided micro nutrients and trace materials necessary to stimulate a rich growth. This was probably more rich than most natural waters, but provided large enough samples for statistical meaning with the count rates obtained.

Standardization and normalization procedures were verified by data found in Appendix C-ll. Ten samples of suspended particulate were counted at a standard geometry and found to average a slightly lower count rate than those obtained with the experimental sampling procedure. The variance of the samples was relatively small and supports the validity of only a small correction factor (0.9055). In the sampling procedure, the rolled filter was placed directly into the test tube and counted. With this method, the center of density of particulate would go slightly deeper into the well of the detecting crystal as compared to the standard geometry. This would allow fewer of the gamma emissions to escape detection and thus result in a counting rate higher than with standard geometry. A large difference would not be expected.

The buildup and continued drop, or latent depression of compartment uptake in suspended particulate is not unusual. When flow occurs into a compartment and a subsequent flow out, an overshoot sometimes occurs. There is a lag time before the loss rate equilibrates with the inflow. It may exceed the inflow for a period of time in which the amount in the compartment is decreasing to a final equilibration.

An experiment was done, however, which provides some contradictory data (Appendix A-5). A comparison of pipettes was made in which a broken-end pipette was compared to the normal-end pipette used in sampling. The broken-end pipette was calibrated to an identical volume, but had a larger orifice for the sample to enter. The broken-end pipette seemed to be collecting a different statistical population than the normal pipette. The broken-end pipette was collecting 1.62 times the weight of suspended material than the normal pipette was obtaining. The standard deviation of this pipette was also more than two times the normal pipette. This strongly suggests that the experimenter was not obtaining the larger aggregates of suspended particulate in the sampling technique. The obvious particles excluded would be fish feces, but no other data substantiates this suggestion. If this were so, the selenium concentration of the excluded portion may be at variance with the concentration in the remaining portion. Results would lower uptake values in proportion to the amounts excluded.

The growth of selenium in the suspended particulate is not surprising and may be considered consistent from first to second run. The differences within the second run can be explained such that they are considered identical in response
to the modeling effort.

Fish
The uptake into fish was relatively small (Appendix B-3, 7, 11, 15). Their physiology appeared normal. They suffered no apparent stress from dissolved oxygen, temperature, pH , or salinity (Appendix $\mathrm{B}-17,18$). It may be concluded that the results obtained are representative of normal biological activities of the minnows and represent a consistent pattern in all four situations. Weight data (Appendix B-23), showed some growth for most fish. This was apparently continuous and did not cause perterbations in the uptake values obtained. Although normal fluctuations might be expected with living organisms, these were for the most part smooth and continuous. In the first run, Tank II fish weight, there was a loss amounting to nearly 2 grams through the death of two fish. The accompanying data (Appendix $B-7$) and Figure 11 show this. The equilibrium value approached by Tank II is a lower value than that in Tank I. The final mass of the fish compartment is lower in Tank II also. This weight difference was continued into the second run using the same fish and the uptake response reflected the mass difference in a very similar way. The final values for Tank I in the first and second runs were
about 0.006 total selenium. Tank II had a similar response and it was lower, reflecting the mass difference as before. The curve of Tank I in the first run showed more erratic values at the final portion of the curve, which made judgement of an equilibrium time more difficult without the use of statistical analysis. A 95% confidence interval was exceeded occasionally from the 300 hour time to the completion of sampling. These differences might be accounted for in the physiology of the fish itself. Iiving organisms may deviate from what may be considered normal activity on an individual basis without being under stress. This is a variable that is difficult to control without large populations of the living organisms.

A further observation might be made on fish number 2 Finom the first run, Tank I (Appendix B-3). The notation "up" indicates the fish was counted with its anterior end up. This was a habitual response of certain fish, that when placed anterior end down to determine the count rate, they reversed themselves in the tube. Some fish were so difficult as to make it impractical to keep them in the mroper position. They were simply counted anterior end up. This produced a difference in their counting geometry so that a correction was needed.

In an attempt to determine this correction factor, 20 samplings of 10 different fish were obtained with count rates normal and inverted. The results may be seen in Appendix B. The fish inversions are compared and an adjustment fraction determined. Therefore, if a fish was counted anterior-end up, the count rate could be adjusted by this factor to make up for the undetected counts.

If fish number 2, as referred to above, was normally uptaking at a low rate, then the adjustment would cause values to be erratically high on the uptake curve. If the reverse were true, the values would be low.

In addition to this fact, the count rate depended on the fish to remain straight. If it curved its body, it could increase the count rate by settling deeper into the well crystal. On the other hand, it could decrease its count rate by remaining high in the tube. The water volume was little enough (20 ml . total volume) so that the latter was not likely.

Another variability that could occur was due to the inability of the investigator to observe the position of the fish while in the counting chamber. The fish was observed before and after counting. If the duplicate counts were similar, it was assumed that the fish had
maintained the proper position throughout the counting time. It would be possible, however, for a fish with a tendency to invert, to do so while in the chamber and resume its proper position just prior to removal. The counting rate could be lessened significantly. If the fish remained inverted for most of both duplicate counts, they would show no difference and would be recorded as counts taken in the proper position.

The greatest amount of uptake in the fish must be due to membrane uptake (gills, etc.). This would be expected since minnows do not normally feed upon algae or suspended materials of this nature. The trophic relation is more incidental.

The normalization of fish data was attempted two ways (Appendix C-12). Both a wet and dry ashing procedure was attempted. The dry ashing procedure resulted in poorest recovery of counting rate. The values were erratic. The best yield was obtained by the wet ash technique and resulted in data which was consistent with little variation. For this reason, the wet ash correction factor was used (0.706). The liberation of heat during the solubilizing action may be cause for loss of activity from volatilization. Since the total amount of selenium in the system is constant,
losses should be conspicuous when summing up the values of all compartments. The fraction of total selenium in fish is in the order of a few thousandths and would never be observed by such a procedure since it would be so small. The consistency of the wet ash data is supportive of its correctness. It would be expected that differences in addition of acids would show up in more variation of data if this kind of loss were significant.

Sediment

The sediment compartment was a massive compartment consisting of $7,200 \mathrm{~g}$. The major portion of selenium moved to the sediment. The sediment is made up of inorganic particles and living material. The forces moving selenium into the sediment are thus physical and biological. The final observations of the sediment showed a well developed green surface layer composed of algae and organic material. Settled particulates could function as sediment to uptake selenium in addition to the original inorganic particles. Sieve analysis showed the sediment to be of a sandy nature with a distribution of particle size about a mean of the hundred mesh size (Appendix A-2). The distribution was skewed slightly to the fine particle size since the size greater than ten mesh was excluded in an initial screening.

The fine particles were any particle less than 200 mesh or 74 microns. The fine particles were a relatively small fraction of the total distribution constituting 7.6% of the weight. Jones (1960) suggests the importance of fine particles on uptake due to the large surface area. Ten identical sediment sampling containers were filled with sediment by an impartial procedure and a sieve analysis done on each. The results were consistent and the averages accepted for the amounts to be placed in the sediment samplers. The samplers were assumed to be identical units which could be retrieved as such and returned without disturbance. The amount contained in each sampler was calculated to be a known fraction of the total sediment mass. This was done by area ratio of the container to total bottom (Appendix A-3). The largest error would be in the measurement of the diameter of the sampling container. This measurement would be consistent in both Tank I and Tank II. The distribution of particle size on the bottom (Appendix A-4), was consistent with the choice of geometric areas for sampler placement. The observation of falling particles by size showed them to fall in the distinct areas which were hypothesized from a look at the bottom. If particles would grade themselves into separate areas, then
these areas might have different uptake rates and should be sampled likewise. The calculation of these areas was shown in Figure 6. The fractions of bottom area represented were used to adjust the respective sample data so that the total selenium in the sediment compartment could be determined (Appendix B-4, 8, 12, 16). Each of the areas showed continuous increase in selenium as did the sediment compartment. It is interesting to note that raw data shows certain areas to uptake at faster rates. The pattern in general follows the qualitative particle size distribution (Appendix A-4). The area predisposed to smaller particle sizes had higher uptake values in terms of count rates. Areas E and H in general seemed to have higher values than C or R. This was true for both tanks in both runs. This would seem to support the contention that smaller particles have a greater uptake for a given mass as compared to larger particles. An important factor, however, must be the settling of living particles in the same areas that fine particles are collected. This would add significantly to the uptake of these areas since small masses of algal material uptake selenium well from solution. In addition, if the fecal material from the fish contains a large amount of selenium, these areas would uptake at a faster rate.

Since the fish do not accumulate very much selenium, one might ignore this suggestion. But if fish uptake rates were high, their loss rates could be very high so as to result in little accumulation in the fish. The result would be to add large amounts of selenium in the form of feces to the suspended particulate. This is possible since accumulation in the fish is very low. It would seem reasonable that large volumes of water ventilate the gills and could allow intake rates that would be high. The late depression of suspended particulate noted earlier in this chapter could support this hypothesis. If by the comparison of pipettes data (Appendix A-5), one accepts the sampling method to be excluding feces, this hypothesis is supported. That is, the high loss rate via fish feces does not show up as suspended particulate, but is settled to the bottom and shows up as additional sediment uptake. An additional perspective can be gained by careful comparison of the values of raw counting rate in the E and H areas in Tanks I and II of both runs. A higher uptake rate is in most cases associated with quadrants three and four in Tank 1 , but with 1 and 2 in Tank II. This is meaningful since the fish enclosure is above these quadrants in the respective tanks as mentioned. All of this discussion strongly supports a
possibility of a high uptake and loss by the fish which is not accounted for by the model, and shows up as sediment uptake. In this case, a balance of total selenium would still occur. The balance of total selenium in all cases supports the area correction for sediment samplers.

In general, the approach of sediment uptake to a steady state value could be assessed by the same means as done previously with other compartments. Ninety-five percent confidence limits could contain the uptake curves for a week in most cases. The stability of this massive compartment was greater than others. Higher count rates near equilibrium allows better statistical fit.

An additional correction used on the sediment samplers was a geometry normalization and attenuation factor. Normalization factors can be observed on data from both tanks (Appendix C-13). The stirring was used to maintain homogeneity while a counting rate was determined on sediment sampling containers. A normalization factor was determined from averages taken on both tanks and used to modify the sample counting rates for the sediment uptake data. This factor was supported by sediment transmission and stirring data (Appendix C-14). This demonstrated that the effect of stirring did not change the count rate by observing the
mean and approximated standard deviation. They indicated the same statistical population. For example, proper stirring would not allow formation of a vortex that would produce a different counting geometry. The sediment however produced different count rates when stirred. This indicated there was some attenuation by the sediment distribution. Sediment transmission calculations from the data (Appendix $C-15$) shows the attenuation to be 4.5%. If an additional study is made of the theoretical calculation of transmission (Appendix C-16), a comparison can be made of the probable limits of attenuation by the sediment. Since the sediment was essentially sand, the maximum and minimum mass attenuation coefficents could be referenced in a handbook (Bureau of Radiological Health 1970). The two values represent the range of gama energies of selenium-75 in silicon dioxide. Subsequent calculations suggest a theoretical attenuation by the sediment to be from 5\% to about 19\%. The significance of the attenuation calculation (Appendix $C-17$) shows by examination of per cent emissions the 5% value to be the most probable attenuation: This fits the data precisely and supports the factors of attenuation and geometry used to modify the sample data.

Radiotracer Methods and Selenium Amounts

The selenium-75 decay scheme (Appendix C-I) shows four energy ranges of gamma to be important in detection. These constitute the significantly large percentages that will be detectable. Optimum detection efficiency was obtained with a window width corresponding to the spectrum energy range. Standard energy sources were used to verify the spectrum energies (Table 10). The determined spectrum corresponded to published data (Appendix C-6) throughout the energy range.

Calculations of amount of selenium showed the weight of selenium-75 to be insignificant chemically when added to stable selenium (Appendix $C-2$).

The efficiency calibration data and calculations (Appendix $C-7,8$), are verified by the fact that the total selenium was equal to the sum of the four compartment amounts. Sorption of selenium-75 experiments (Appendix C-9) showed a linear relationship of sorption on glass to all concentrations of selenium. The approximately 2% value was insignificant and would not be observed in any of the compartment values for selenium uptake. It was observed that sorption occurred within 15 minutes. The data collected demonstrates a stability of sorption within 4 hours.

Sorption on a microscope slide (Appendix B-21) gives in situ indication of greater percentages remaining on the glass. However, standard geometry could not be used and the statistical confidence in the value is not nearly so good as the sorption experiment. At a count rate of approximately 130 cpm , the fluctuation of 2 to 16% is still within a 95\% confidence interval for that low count rate. The in situ data was considered to support the 2% value. The sorption was accepted as insignificant on the experimental tanks.

The background counting rates were relatively constant throughout the period of experimentation. clean, heavy shielding would account for this. One-hundred-minute counting times were used daily. The 95% confidence interval of the background counting rate was never more than plus or minus four counts per minute. Due to a longer counting time, this was always a smaller value than the confidence limits around any of the sample data.

A complication in background occurred with the use of the same tanks for the second run. This meant that the total concentrations of the second run would have to be considerably higher than that of the first run. Also, the specific activities of the first and second run spike amounts
was made similar. Similar specific activities would allow residual counting rates to be subtracted in the same manner as background. The residual counting rates could be subtracted directly from the raw counting rates of the second run data. For example, the residual selenium was measured in all compartments possible. Background was subtracted and the remainder was taken as the residual value from the first run. This value was used to construct a schedule of decay of residual selenium for each of the compartments (Appendix $C-19$). This schedule was prepared by calculation according to the laws of radioactive decay. Thus, the total background in the second run was different from the normal background of the first run. In addition to normal background, it contained a residual selenium-75 background from the first run. In order to adjust the raw counting rates for the second run, two subtractions were necessary. The raw counting rate was determined, normal background was subtracted, and then residual selenium was subtracted according to the schedule of decay (Appendix C-19) for that compartment and tank. The calculations from measured values of residual selenium was accepted as the true value and used to adjust the raw counting rates for the second run. In most cases,
the residual amount was insignificant.
The spectrophotometric method to determine selenium amounts did not achieve a 100 per cent yield (Appendix D-1). The standard curve and samples corresponded in linearity however and all were consistently lacking in yield. The loss is not surprising since the hot methanol would only lyse cells. Soluble selenium would be most readily released. Any refractory organic material would not likely be degraded to release selenium. As a consequence, it was lost to the preliminary oxidation of the standard method used.

Water and fish food samples lacked selenium to the limits of detection. Assuming maximum interference and best technique, the value found in the samples was probably less than 0.001 parts per million.

Parameters Projected from Data

The basic technique of data reduction used was the linear regression analyses of all uptake curves (Figures 14-21). This technique was used to determine the initial uptake constants and is based on the data approaching equilibrium. For this reason, the regression analysis was done on the initial data. The initial data was chosen by an approximation of the 68% confidence interval, two

Figure 14. Water Compartment
Second Run, Tank I (Linear Regression)

Figure 15. Suspended Particulate Compartment Second Run, Tank I (Linear Regression)

100
Figure 16. Fish Compartment Second Run, Tank I (Linear Regression)

$$
\begin{aligned}
& I=-9.354 \\
& \text { Slope }=-0.001 \\
& r=-0.302 \\
& \text { S } E=0.386
\end{aligned}
$$

Figure 17. Sediment Compartment Second Run, Tank I (Linear Regression)

Figure 18. Water Compartment Second Run. Tank II (Linear Regression)

Figure 19. Suspended Particulate Compartment Second Run, Tank II (Linear Regression)

Figure 20. Fish Compartment Second Run, Tank II (Linear Regression)

Figure 21. Sediment Compartment Second Run, Tank II (Linear Regression)

$$
\begin{aligned}
I & =-3.232 \\
\text { Slope } & =-0.007 \\
\mathbf{r} & =-0.913 \\
\mathrm{~S} \mathrm{E} & =0.281
\end{aligned}
$$

times the square root of a mean value, as will be described. When the time occurred in which the data first came near equilibrium, the mean value was determined for the data of an additional equivalent length of time. The confidence interval was constructed about this mean. The initial data for the regression analysis was considered to be that data collected prior to the interval.

This method for logarithmic growth and decay curves was based on the principle of developing a linear relationship. The differentials, ΔX_{i} and Δt, were calculated for each sample interval. A linear regression analysis was made on the natural logarithm of the differential quotient as a function of time. The relationship is shown by the mathematical expression in Table 11. The initial uptake rate $\left(a_{i j}\right)$ is obtained from the value projected to zero time. The antilog to base 10 is needed to determine equilibrium values. This equilibrium value represented a best fit value for a linear uptake relationship. The initial uptake rate $\left(\mathrm{a}_{\mathrm{ij}}\right)$ is the primary objective of the analysis. These values for each compartment will be used directly as necessary parameters in the simulation of the model. This will be discussed more fully in Chapter V.

The calculations derive values which are consistent with the previous discussions of uptake curves. The first run has a larger error, and was not analysed by this method. The second run shows a precise fit in both tanks and conforms well to a total selenium balance. This in general would support the model design as being a reasonable representative of the flows between compartments. The greatest source of contradiction is the calculated values for suspended particulate found in the second run (Table 11). This would add validity to the alternate hypothesis concerning the latent depression in suspended particulate uptake.

Further analyses are helpful for projecting new meaning into the data obtained. The following types of calculations are useful for adding perspective or suggesting research efforts needed (Table 12). The table lists uptake constants, turnover times, and equilibrium values to steady states. Biological half lives are also calculated. This determination of equilibrium times and calculation of steady state values is shown in Tables 13 and 14. Additional parameters (Table 15) are calculated. Concentration factors and parts per million selenium show the bio-accumulation of selenium and suggest potential hazard.

CALCULATION OF EQUILIBRIUM VALUES (x_{j}) BY INITIAL SLOPE (Second Run, Tanks I, and II)

RELATIONSHIP:

$$
x_{i}=x_{i}\left(1-e^{-a_{i j} t}\right)
$$

DIFFERENTIAL:

$$
\ln \frac{d x_{i}}{d t}=\ln \left(a_{i j} x_{i}\right)-a_{i j} t
$$

$$
\text { At to.............Intercept }=\ln \left(a_{i j} x_{i}\right)-a_{i j}(0)
$$

TANK I
-WATER.

$$
\begin{aligned}
& 2.948=\ln \left(-.009 x_{3}\right) \\
& x_{3}=\frac{5.24}{.009} \times 10^{-2}=5.82 \mathrm{mg} \text { (lost) }
\end{aligned}
$$

-SUSPENDED PARTICULATE... $-4.738=\ln \left(-.008 x_{1}\right)$

$$
x_{1}=\frac{8.730}{.008}=1.09 \mathrm{mg}
$$

. FISH...

$$
\begin{aligned}
& -9.354=\ln \left(-.001 x_{2}\right. \\
& x_{2}=8.64 \times 10^{-5}=.086 \mathrm{mg}
\end{aligned}
$$

-SEDIMENT... $-3.222=\ln \left(-.011 x_{4}\right)$

$$
x_{4}=\frac{4.00 \times 10^{-2}}{.011}=3.63 \mathrm{mg}
$$

TABLE 11 (CONTINUED)
CALCULATION OF EQUILIBRIUM VALUES (x) BY INITIAI SLOPE (Second Run, Tanks I, and $I I$)

TANK II

$$
\begin{array}{r}
\text {-WATER... }-2.549=\ln \left(-.011 x_{3}\right) \\
x_{3}=\frac{.078}{.011}=7.09 \mathrm{mg} \text { (lost) }
\end{array}
$$

-SUSPENDED PARTICULATE.

$$
\begin{aligned}
& -5.646=\ln \left(-.005 x_{1}\right) \\
& x_{1}=\frac{3.52}{.005} \times 10^{-3}=.704 \mathrm{mg} \\
& -10.077=\ln \left(-.001 x_{2}\right) \\
& x_{2}=\frac{4.19 \times 10^{-5}}{.001}=.0419 \mathrm{mg}
\end{aligned}
$$

-FISH.
-SEDIMENT... -3.232 $=\ln \left(-.007 x_{4}\right)$

$$
\frac{-3.94 \times 10^{-2}}{.007}=5.62 \mathrm{mg}
$$

TABLE 12
PARAMETERS FROM UPTAKE DATA

	UPTAKE CONSTANT $a_{i j}\left(h r^{-1}\right)$	$\begin{gathered} \text { TURNOVER } \\ \text { TIME } T^{-1} \\ (h r) \end{gathered}$	EQUILIBRIUM VALUE \mathbf{x}_{i} (mgse)	$\begin{aligned} & \text { EQUILIBRIUM } \\ & \text { TIME } \mathrm{t}_{\mathrm{ss}} \\ & (\mathrm{hr}) \end{aligned}$	EFFECTIVE HALF TIME $t_{\text {eff }}(h r)$	BIOLOGICAL HALF TIME $t_{B}(h r)$
WATER	0.010	100	5.15 loss	230	69	71
SUSPENDED	0.006	166	0.212	383	115	120
PARTICULATE						
FISH	0.001	1000	0.034	230	693	71
SEDIMENT	0.009	111	3.93	256	77	79 光

TABLE 13

DETERMINATION OF EQUILIBRIUM TIME
$t_{s s}=$ time to steady state
$\mathbf{x}_{\mathbf{i}}=$ equilibrium value X_{i}
Equation for Regression Line:

$$
\ln \left[\frac{\Delta x_{i}}{\Delta t}\right]=\ln \left(a_{i j} x\right)-a_{i j} t
$$

If: $\ln \left[\frac{\Delta X_{i}}{\Delta t}\right]=0$, then $t=t_{s s}$

$$
\text { And: } \quad \frac{-\ln 0.1}{a_{i j}}=t_{s s}
$$

$$
\frac{x_{i}}{x_{i}}=1-e^{-a_{i j} t}
$$

Since true equilibrium is reached at infinite time, $0.9 \mathrm{x}_{\mathrm{i}}$ is practical equilibrium. (Davis and Foster 1958).
$0.9=1-e^{-\$_{i j}}{ }_{s s}$
$0.1=e^{-{\theta_{i j}}^{t_{s s}}}$
$-\ln (0.1)=a_{i j} t_{s s}$
Since.... $\left[a_{i j}=\frac{.693}{t_{e f f}}\right]$
$-\ln (0.1)=\frac{.693}{t_{e f f}} t_{s s}$
$t_{s s}=t_{\text {eff }} \frac{(-\ln 0.1)}{.693}$

And

$$
\frac{1}{t_{e f f}}=\frac{1}{t_{B}}+\frac{1}{t_{R}}
$$

Then at 90% Equilibrium:

$$
t_{s s}=\frac{2.302}{\frac{.693}{t_{B}}+\frac{.693}{t_{R}}}
$$

And $t_{B}=\frac{.693 t_{s s}}{2.302-\frac{.693}{2889.6} t_{s s}}$

TABLE 15
CONCENTRATION FACTORS AND FINAL
SELENIUM CONCENTRATION
SECOND RUN

	TANK I			TANK II		
	$\frac{\mathrm{mg}}{\mathrm{~g} \text { Compartment }}$	C.F.*	Selenium ppm	$\frac{\mathrm{mg}}{\mathrm{~g} \text { Compartment }}$	C.F.**	enium ppm
WATER	$\frac{0.848}{60.000}$	1	0.014	$\frac{0.379}{60,000}$	1	0.0063
SUSPENDED PARTICULATE	$\frac{0.212}{4.62}$	3,248	45.8	$\frac{0.065}{2.65}$	3,883	24.5
FISH	$\frac{0.034}{14.3}$	168	2.37	$\frac{0.0108}{10.8}$	158	1.00
SEDIMENT	$\frac{3.934}{7,200}$	38	0.546	$\frac{5.454}{7,200}$	120	0.757

In summary, the four compartments uptake as expected. The separate tanks of both runs compare favorably and the four sets of data can be considered similar systems. The summing of compartments to a constant value of total selenium is good and supportive of the model.

The objective was continued in determination of rate constants for simulation in Chapter V.

The late depression of uptake in suspended particulate is probably due to slow equilibration of intake with losses.

Good supportive data has been obtained for the correction factors used and the model itself substantiates them by a good fit.

An hypothesis has been suggested which would account for the depression of the suspended particulate uptake by a failure of sampling design which caused added sediment uptake. It would propose that the low uptake amounts in the fish compartment is due to high intake and high loss rates. In general, the data are statistically good, internally consistent and fitting to the proposed model. Radiotracer methods are sound and analytical methods substantiate the amounts of selenium detected.

Regression analyses add validity to steady state values, and parameters determined by calculation should support the model and suggest new research.

CHAPTER V

SIMULATION OF THE MODEL AND CONCIUSIONS

It will be the objective in this final chapter to adapt the selenium model in a meaningful way to an analog computer program. An attempt will be made to simulate the data collected in the laboratory.

The outcome of this simulation will be productive in substantiating the value of the modeling effort for verification and for raising research questions. The initial uptake constants obtained from the linear regression analyses are important in developing the model. The diagonal of the matrix of the selenium model represents the sum of the flows out of the respective compartments. The remaining entries in each column $b_{i l} \ldots b_{i 4}$ represent the flows into each of the respective compartments, X_{i}. At steady state $\frac{d x_{i}}{d t}=0$ and $\sum_{i=1}^{4} b_{i j}=0$ for all
columns (See Table 16).

The solution to the matrix is affected by obtaining uptake constants in sufficient number to solve the set of simultaneous equations. Table 17 represents the incomplete solution in which there are four equations in ten unknowns.

TABLE 17
MATRIX FORM WITH INCOMPLETE SOLUTION
$\left(\begin{array}{llll}.006 & b_{12} & b_{13} & b_{14} \\ b_{21} & .001 & b_{23} & 0 \\ b_{31} & b_{32} & .010 & b_{34} \\ b_{41} & 0 & b_{43} & .009\end{array}\right)\left(\begin{array}{c}0.89 \\ 0.063 \\ -6.5 \\ 4.6\end{array}\right) \cong\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$

Average values from the second run were used, therefore, a precise materials balance of 6.0 mg . total is not possible. A solution is impossible without the use of analog simulation. Knowing the columns add to zero yields eight equations. Simulation of two additional unknowns would allow solution.

A simpler model is conceived in which the initial flows are assumed as unidirectional (Figure 22).

FIGURE 22

SIMPLIFIED FLOW DIAGRAM WITH INITIAL FLOWS

An analog computer program can be written to fit this simpler model (Figure 23). With this simple model. a search can be made to find flows P and Q between suspended particulate and fish and suspended particulate and sediment (Figure 22). These are assumed as initial flows and would represent the initial flows and would represent the initial uptake rates.

The simulation occurred with the flow $P \cong 0.001$ and $Q \cong 0.010$

The matrix can be completed (Figure 24) with the simulation of the original data on the complete model.

Figure 24. Completed Matrix.
$\left(\begin{array}{cccc}.006 & .0005 & .001 & .008 \\ .001 & .001 & .008 & 0 \\ .001 & .0005 & .010 & .001 \\ .004 & 0 & .001 & .009\end{array}\right)$

The complete analog computer program that produced this simulation is shown in Figure 25. The analog simulation obtained from this matrix is shown in Figure 26.

Figure 23. Simplified Analog Computer Program

Figure 26. Analog Simulation of Selenium Model

An examination of the solution matrix (Figure 24) can summarize the thinking that went into the development of the selenium model.

The suspended particulate shows almost equal flows in and out of the fish. This fits our knowledge that the fish is not accumulating selenium by feeding on algae. Its rate of uptake from water is equal to its loss rate. One would expect sorption and metabolic uptake to produce accumulation. The transfer rate to sediment is double the reverse rate. Settling is going on at a higher rate than re-entrainment.

The fish compartment shows a much lower rate of uptake from water than loss and again no trophic gain appears from the suspended particulate. Apparently what is eaten is passed through without much absorption in the gut wall. This is supported by the observation of green fecal material which appears to have been passed by the fish without damage to the algal cells.

As expected, the water compartment shows rates to the other compartments greater than the incoming rates. The sediment shows an uptake rate from the water no greater than the reverse flow. Both chemical and physical actions are greater for flow into the sediment than out. Sorption would occur more likely than desorption, and
apparently precipitation or ion exchange reactions tend to move selenium to the sediment. The rate from the suspended particulate is greater than the loss by sediment to that compartment.

A brief reiteration would allow that the primary interaction of suspended particulate is a water uptake and a settling loss to sediment. The water is donating to all compartments, and the fish is accumulating mostly by membrane uptake with relatively little loss through the kidney. The sediment is gaining selenium both from the water and suspended particulate at favorably large rates.

From the conclusions, certain other relationships are evident from Tables 12 and 15 (Chapter IV). The suspended particulate has a small mass, rapid loss to sediment, and good uptake from water. This results in a high concentration factor and fairly rapid turnover rate with a short equilibrium time and biological half life. The fish has only one uptake source and a relatively large mass. Its concentration factor is thus low. It has a longer turnover time and biological half life because of a possible low excretion rate. The water loses to all compartments and would have a short turnover time. The large mass of sediment and relative
rates of uptake from two compartments give it a relatively low concentration factor and large accumulation. Since it contains settled suspended particulate it might be expected to have shorter turnover rates than fish.

The simulation fits the data and the uptake constants generated make good biological sense. The model seems to have no obvious contradiction. However, it would still allow for the alternate hypothesis suggested in the previous chapter by the latent depression of the suspended particulate uptake. It is possible that the large settling rate of the suspended particulate is due to the swallowing, concentration, and defecating action of the fish. The fecal pellets, being larger, settle at a high rate. The function of the fish would be to advance the settling rate of the suspended particulate with a very low absorption such that the fish receives no significant build up of selenium. The biological half life of the fish that has been calculated, then is essentially due to kidney excretion vs. membrane uptake.

The important value of the model must be to stimulate meaningful questions which can verify or contradict various aspects of the model. For instance, questions arise: Is the high concentration factor of suspended particulate
associated with the bacteria or other flora or is it associated with.fine particles? It would be interesting to find the biological half life of the fish in a feeding relationship compared to membrane uptake alone. The fraction absorbed in the gut should be investigated. Questions about migration rates in the sediment would be valuable studies. In addition, further trophic studies should be undertaken to elucidate a more complete food chain. The ultimate modeling effort should be related to field observations. For example, if field observations show a different equilibrium time than is measured in the laboratory, then $a_{i j}=\frac{-\ln 0.1}{\text { time }}$ assuming 90% equilibrium. Selenium could be measured in the lake and converted to laboratory values with the assumptions of equilibrium. Additional modeling efforts will become more mechanistic. Better analytical chemistry is needed to help this kind of modeling.

As all of these kinds of studies continue, the model will change. A model represents only a fabrication of the methods used to investigate the problem. As new techniques are developed, the model must change also. In doing so, it improves predictability and stimulates new questions.

APPENDIX A

APPENDIX A-1

CULTURE MEDIA
(Fogg 1965, P. 35)
NUTRIENT \%
KNO_{3} 0.1
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ 0.01
$\mathrm{K}_{2} \mathrm{HPO}_{4}$ 0.02
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ 0.01
FeCl_{3} 0001
Vitamins Trace
Difco-Peptone Excess

APPENDIX A-2

SEDIMENT SIEVE SIZE ANALYSIS

		WEIGHT (g)					
SAMPLE	MESH	PLANCHET \&	WEIGHT (g)		WEIGHT (g)	\%	
NUMBER	SIZE	SEDIMENT	PLANCHET		SEDIMENT	TOTAL	
\#1	>40	10.0780	9.4320		0.6460	4.4	
	>60	11.6203	9.5509		2.0694	14.1	
	>100	15.4725	9.2750		6.1975	42.4	
	>140	12.5833	9.4950		3.0883	21.2	
	>200	10.9557	9.4049		1.5508	10.6	
	Fines	10.2210	9.1760		1.0450	7.1	
				TOTAL	14.5970	100.00\%	
\#2	> 40	10.0758	9.4377		0.6381	4.5	N
	>60	11.4850	9.5504		1.9346	13.8	
	>100	15.2162	9.3772		5.8390	41.7	
	> 140	12.4495	9.4119		3.0376	21.7	
	>200	10.8245	9.2923		1.5322	10.9	
	Fines	10.4691	9.4581		1.0110	7.2	
				total	13.9925	100.00\%	
\#3	>40	9.9476	9.3388		0.6088	4.3	
	>60	11.3613	9.3753		1.9860	14.1	
	>100	15.2750	9.4605		5.8145	41.4	
	>140	12.3570	9.3501		3.0069	21.4	
	>200	11.1528	9.6052		1.5476	11.0	
	Fines	10.7743	9.7019		1.0724	7.6	
				TOTAL	14.0362	100.00\%	

APPENDIX A-2 (CONTINUED)
SEDIMENT SIEVE SIZE ANALYSIS

APPENDIX A-2 (CONTINUED)
 SEDIMENT SIEVE SIZE ANALYSIS

		WEIGHT (g)					
SAMPLE	MESH	PLANCHET \&	WEIGHT (g)		WEIGHT (g)	\%	
NUMBER	SIZE	SEDIMENT	PLANCHET		SEDIMENT	TOTAL	
\#7	>40	10.0152	9.3847		0.6305	4.4	
	>60	11.3121	9.4318		1.8803	13.1	
	>100	15.6200	9.5346		6.0854	42.6	
	>140	12.5013	9.3975		3.1038	21.8	
	>200	11.1506	9.6288		1.5218	10.6	
	Fines	10.4720	9.4094		1.0626	7.4	
				TOTAL	14.2844	100.00\%	
\#8	>40	9.8383	9.2390		0.5993	4.8	
	>60	11.5137	9.5793		1.9344	13.2	$\underset{\sim}{\omega}$
	>100	15.3616	9.2600		6.1016	41.8	
	>140	12.5747	9.4327		3.1420	21.3	
	>200	11.1962	9.6048		1.5914	10.9	
	Fines	10.6371	9.5397		1.0974	7.7	
				TOTAL	14.4661	100.00\%	
\# 9	>40	9.9803	9.2920		0.6883	4.8	
	>60	11.5579	9.6962		1.8617	13.2	
	>100	15.5643	9.6754		5.8889	41.8	
	>140	12.6444	9.6463		2.9981	21.3	
	$\cdots 200$	11.1283	9.5867		1.5416	10.9	
					1 neff	7.7	

APPENDIX A-3

DISTRIBUTION OF SEDIMENT IN SAMPLING CONTAINERS ACCORDING TO SIEVE ANALYSIS

- Area of Experimental Tanks $=1860.32 \mathrm{~cm}^{2}$
- Area of 1 sampling container $=\pi\left(\frac{D}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{(3.1416)(1.89 / 2)^{2}}{\mathrm{~cm}^{2}} \\
& =2.805 \mathrm{~cm}^{2}
\end{aligned}
$$

where container diameter $=1.89 \mathrm{~cm}$.

- Fraction of sediment in one container by area ratio =

$$
\frac{2.805 \mathrm{~cm}^{2}}{1860.32 \mathrm{~cm}^{2}}=.001508
$$

- Total weight sediment in tank $=7200 \mathrm{~g}$
and
- Weight of Sediment to be placedin one container =

$$
(.001508) 7200 \mathrm{~g}=10.857 \mathrm{~g} / \text { container } .
$$

- Weight by particle size required for container to be representative.

PARTICLE SIZE DISTRIBUTION

APPENDIX A-4
 QUALITATIVE DISTRIBUTION OF PARTICLE SIZE ON BOTTOM

The blotter paper was positioned on the bottom of the tanks and a particle size distribution was introduced in the center by the propeller sequentially by size.

The following visual observations were made. Water was in the tank. See FIGURE VI for letter code.

	MESH SIZE	DISTRIBUTION
FINES	<200	General, primarily H
	<140	C and E
	<100	C
	<60	R and C
	<40	R

APPENDIX A-5

COMPARISON OF PIPETTES
Normal Pipette: 20.0 ml
Broken End Pipette: Tip broken off and recalibrated to 20.0 ml to allow larger orifice.

WEIGHT SUSPENDED
SAMPLE PARTICULATE MILLIGRAMS

STATISTICAL
NUMBER

1
2
3
4
NORMAL
5
6
7
8
9
10
1.7
1.8
1.7
1.7
1.9
1.9
1.8
1.9
2.0
1.9
 ANALYSIS

		MILuIGRAMS	AMALYSIS
	1	1.7	
	2	1.8	
	3	1.7	
	4	1.7	
NORMAL	5	1.9	mean $=1.83 \mathrm{mg}$
	6	1.9	
	7	1.8	$\sqrt{n}=0.105 \mathrm{mg}$
	8	1.9	
	9	2.0	$1.96 \sqrt{\mathrm{n}}=0.207 \mathrm{mg}$
	10	1.9	

APPENDIX B

APPENDIX B-1

WATER COMPARTMENT (FIRST RUN, TANK I)

HOURS ELAPSED TIME	FILTER NUMBER	RAW 10 MIN. COUNT 20 ml SAMPLE	cpm CORRECTED FOR BACKGROUND	\qquad	$\begin{gathered} \mathrm{mg} \text { Se } 20 \mathrm{ml} \\ \text { SAMPLE } \\ \times 10^{-3} \\ \hline \end{gathered}$	mg Se 601 TANK
0						
1.5	19	536-476 *	401	401	. 1978	. 5936
2.0	17	602-559 *	476	476	. 2349	. 7047
12	5	512-500 *	401	401	. 1978	. 5936
13	7	4,941	389	389	. 1919	. 5759
19	9	5,510	446	446	. 2201	. 6603
29	11	5,035	398	398	. 1966	. 5899
37	13	5,164	411	411	. 2030	. 6090
55	15	4,900	385	389	. 1922	. 5766
62	2	4,891	384	388	. 1917	. 5751
87	3	4,417	336	340	. 1680	. 5042
110	21	4,797	375	383	. 1892	. 5676
134	23	4,429	338	346	. 1711	. 5134
190	25	4,078	304	318	. 1569	. 4709
212	27	3,855	282	295	. 1454	. 4364
232	29	3,685	266	281	. 1387	. 4163
278	31	3,342	231	248	. 1222	. 3667
310	33	3,976	294	315	. 1552	. 4657
354	35	3,235	220	241	. 1187	. 3562
432	37	3,095	206	228	. 1124	. 3374
476	39	2,801	174	195	. 0963	. 2889

APPENDIX B-1 (CONTINUED)
WATER COMPARTMENT (FIRST RUN, TANK I)

HOURS		RAW	cpm CORRECTED	cpm CORRECTED	mg Se 20 ml	mg Se
ELAPSED	FILTER	10 MIN. COUNT	FOR	FOR	SAMPLE	601
TIME	NUMBER	20 ml SAMPLE	BACKGROUND	DECAY	$\times 10^{-3}$	TANK
498	41	2,750	171	192	. 0945	. 2837
526	43	2,695	169	190	. 0939	. 2818
549	45	2,474	145	164	. 0810	. 2432
573	47	2,415	141	161	. 0796	. 2388
650	49	2,170	115	134	. 0659	. 1977
672	51	2,180	117	137	. 0678	. 2035
692	53	2,242	124	146	. 0720	. 2160
716	55	2,065	105	124	. 0612	. 1838
740	57	1,913	90	108	. 0532	. 1596

```
        APPENDIX B-2
SUSPENDED PARTICULATE (First Run, Tank I)
```


APPẸNDIX B-2 (CONTINUED)

SUSPENDED PARTICULATE (First Run, Tank I)

110	21	$\begin{aligned} & 142,101, \\ & 129 \end{aligned}$	25	31	28	14	. 042
134	23	1,280*	29	36	33	16	. 049
190	25	$\begin{aligned} & 114,120, \\ & 115,126 \end{aligned}$	20	25	22	11	. 033
212	27	$\begin{aligned} & 116,103, \\ & 120 \end{aligned}$	14	17	16	8	. 024
232	29	1,168*	18	22	20	10	. 030
278	31	$\begin{aligned} & 106,108, \\ & 134 \end{aligned}$	17	21	19	9	. 029
310	33	$\begin{aligned} & 115,113, \\ & 115 \end{aligned}$	15	19	17	8	. 026
354	35	$\begin{aligned} & 116,113, \\ & 137 \end{aligned}$	23	29	26	13	. 039
432	37	1,150*	16	20	18	9	. 027

```
            APPENDIX B-2 (CONTINUED)
SUSPENDED PARTICULATE (First Run, Tank I)
```

	$\begin{aligned} & \text { 冩罳 } \\ & \text { 雲 } \\ & \hline \end{aligned}$
476	39
498	41
526	43
549	45
573	47
650	49
672	51
692	53
716	55
740	57

＊ten minute count

APPENDIX B-3
FISH COMPARTMENT (First Run, Tank I)

ELAPSED TIME	FISH NUMBER					
IN HRS.	1	2	3	4	5	6
0	121-105	111-106	111-98	105-108	113-104	109-110
2.75	139	158	160	165	-	-
13	262-250	255-287	274-273	302	332	-
38	337-394	403-366	412	465-450	545-551	-
	357				545	
63	446-430	478-484	514-561	649-645	659-639	756-727
88	568-596	631-617	714-725	722-713	785-793	906-849
191	284-151	722-703	1,080-1,031	1,079-1,100	1,512-1,623	1,784-1,817
230	879-788	863-893	1,047-1,054	1,147-1, 208	1,625-1,734	1,939-1,933
254	733-734	859-882	1,015-970	1,228-1,276	2,001-2,010	1,996-2,031
287	746-839	1,172	1,495-1,430	1,697-1,738	1,845-1,897	2,333-2, 366
		940 up				
310	1,248-1, 192	1,171	1,752-1,733	1,901-1,878	2,694-2,630	$\begin{aligned} & 2,980-3,003 \\ & 2,985-3,031 \end{aligned}$
		1,388 up				
330	1,091-1,073	1,040	1,284	1,675-1,657	2,784-2,908	3,146-3,042
		1,126 up	1,303 up			
354	1,045-1,099	1,250	1,597-1,617	1,869-1,914	2,927-2,823	2,826-2,931
		1,167 up				
374	1,109-1,051	1,436	1,671-1,718	$1,950-1,958$	$2,913-3,090$	3,129-2,955
		1,177 up				

> APPENDIX B-3 (CONTINUED)
> FISH COMPARTMENT (First Run, Tank I)

$\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \end{aligned}$	FISH NUMBER					
IN HRS.	1	2	3	4	5	6
476	1,095-1,025	1,083-1,182	1,219	1,666-1,670	2,960-2,792	2,943-2,919
			1,208 up			
500	1,008-1,043	1,037	1,577-1,576	1,661-1,903	2,861-2,929	2,964-3,063
	995	1,035 up		1,749	2,830-2,787	
518	1,028-1,129	1,164	1,183	1,637-1,654	2,756-2,779	2,995-2,892
		1,158 up	1,180 up			2,905
549	985-990	1,087-1,149	1,135-1,150	1,564-1,570	2,087-2,683	2,788-2,774
			1,156		$\begin{aligned} & 1,984 \text { up } \\ & 2,680 \end{aligned}$	
574	950 down	1,096	1,518-1,543	1,643-1,685	2,765-2,686	2,876-2,707
	1,051	1,083 up				
650	926-882	1,056-1,094up	1,388-1,449	1,700-1, 685	2,630-2,608	2,606-2,689
			1,452			
672	881-871	1,090-1,007	1,410-1,411	1,591-1,589	2,409-2,371	2,612-2,724
		1,003 up				
694	889-895 up	1,348-1,270	1,451-1,385	1,561-1,550	2,609-2,621	2,682-2,589
						2,652
716	931-886	1,200-1,109	1,159-1,208	1,610-1,594	2,528-2,470	2,660-2,597
			1,231			
740	942-886	1,135	1,138 up	1,135-1,193	2,466-2,558	2,626-2,643
		1,105 up	1,105-1,108			

APPENDIX B-3 (CONTINUED)
FISH COMPARTMENT (First Run, Tank I)

ELAPSED TIME IN HOURS	BACKGROUND CORRECTED SUM COMPARTMENT	COMPARTMENT CPm DECAY CORRECTED 0	$\begin{gathered} 10^{-6} \\ \text { COMPARTMENT } \\ \text { mg Se* } \\ \hline \end{gathered}$	$\begin{gathered} 10^{-6} \\ \text { COMPARTMENT } \\ \text { mg Se } \\ \text { NORMALIZED** } \end{gathered}$
0	0	0	0	0
2.75	303	303	149	105
13	1,090	1,090	538	379
38	1,961	1,961	967	683
63	2,864	2,897	1,429	1,009
88	3,705	3,748	1,849	1,306
191	5,816	6,090	3,005	2,122
230	6,933	7,260	3,583	2,529
254	7,246	7,675	3,787	2,674
287	9,210	9,869	4,870	3,438
310	11,994	12,851	6,342	4,477
330	12,252	13.278	6,553	4,626
354	11,760	12,745	6,289	4,440
374	12,304	13,492	6,658	4,701
476	10,966	12,164	6,003	4,237
500	12,063	13,536	6,679	4,716
518	12,020	13,488	6,656	4,699
549	11,420	12,963	6,397	4,517
574	11,051	12,688	6,261	4,420
650	10,541	12,242	6,042	4,265
672	10,116	11,885	5,865	4,140
694	9,831	11,550	5,700	4,024
716	9,941	11,814	5,830	4,116
740	10,232	12,160	6,001	4,236
* (0.49350 $\times 10^{-6}$) mg/cpm				
** Nor	alization Fa	tor $=.706$		

APPENDIX B-4

SEDIMENT COMPARTMENT (First Run, Tank I, Raw cpm)

$\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \end{aligned}$						
IN HRS	I 3 H	I 2 H	I 1 H	I 3 R	I] R	14 C
0	1,045*	1,032*	1,029*	1,052*	1,055*	1,035*
3	147	190	-	215	-	233
19	1,959*	2,960*	2,855*	3,366*	3,403*	4,104*
44	3,153*	4, 363*	4,205*	4,654*	5,154*	5,755*
70	306-322	516-481	497-574	539-554	563-566	699-735
133	6,997*	7.775*	6,752*	6,360*	8,355*	9,513*
212	8,313*	8,919*	7,523*	7,202*	8,564*	9,217*
242	898-848	847-874	865-896	743-747	931-949	947-1,009
278	1,268-1,248	814-736	889-946	801-776	802-823	1,031-984
311	1,515	751-790	1,024-1,051	833-839	931-929	1,017-984 岕
332	1,459-1,484	786-815	945-1,002	870-855	771-794	975-1,004
355	1,485-1,471	905-932	1,066	839-876	907-920	1,047-1,096
375	1,497-1,550	950-1,003	1,171-1,148	968-919	1,125-1,055	1,298-1, 321
477	1,625-1,556	1,016-1,058	1,176-1,198	955-952	1,098-1,084	1,294-1,284
502	15,380*	10,264*	1,166-1,223	9,665*	1,039-1,090	13,219*
550	15,985*	10,613*	1,277-1,253	9,810*	1,125-1,133	13,227*
574	16,490*	10,463*	1,209-1,306	10,274*	1,084-1,126	13,402*
673	18,623*	10,818*	1,308-1,346	10,310*	1,100-1,094	13,503*
693	17,902*	10,586*	1,352-1,325	9,938*	1,058-1,158	13,544*
717	17,761*	10,556*	1,346-1, 282	9,539*	1,130-1,108	13,076*
735	1,699-1,697	999-1,063	1, 290-1, 304	8,802*	1,044-1,038	1,308-1,360

APPENDIX B-4 (CONTINUED)
SEDIMENT COMPARTMENT (First Run, Tank I, Raw cpm)

ELAPSED TIME					
IN HRS.	$\underline{I} 2 \mathrm{C}$	I 4 E	I 2 E	I 3 E	I 1 E
0	1,045*	1,059*	1,039*	1,022*	1,063*
3	-	230	-	209	1.063*
19	4,001*	3,878*	3,536*	3,744*	2,991*
44	5,880*	5,484*	5,111	5,447*	489-437
70	662-653	587-631	667-657	551-562	470-476
133	9,402*	8,898*	7,912*	7,727*	5,758*
212	11,195*	10,567*	10,326*	9,224*	7,234*
242	1,073-1,094	1,004-1,036	970-942	968-955	755-703
278	1,083-1,044	1,028-1,006	878-929	952-898	743-705 岕
311	1,149-1,198	991-1,034	949-947	1,014-1,038	714-720
332	1,148-1,078	972-980	930-911	994-940	850-813
355	1,178-1,315	1,105-1,125	996-1,041	1,037-1,039	747-890
375	1,411-1,400	1,168-1,057	1,048	1,161-1,128	948-927
477	1,470-1,482	1,279-1,223	1,127-1,101	1,268-1,251	978-928
502	1,398-1,431	1,249-1,266	11,781*	12,553*	930-942
550	1,433-1,434	1, 376-1, 261	12,363*	12,937*	975-977
574	1,413-1,419	1,264-1,299	12,444*	13,323*	$\begin{aligned} & 975-1,002 \\ & 939-996 \end{aligned}$
673	1,453-1, 394	1, 264-1, 255	12,460*	13,421*	997-1,005
693	1, 460-1, 361	1,280-1,222	12,416*	12,968*	1,013-964
717	1,420-1,416	1,309-1, 255	12,137*	12,949*	969-965
735	1,327-1, 362	1,249-1,287	1,211-1,216	1,268-1,237	967-974

* ten minute count

APPENDIX B-4 (CONTINUED)

SEDIMENT COMPARTMENT (First Run, Tank I, Corrected* for Background, Normalized+for A.ttenuation, Geometry)

ELAPSED TIME						
IN HRS.	I 3 H	I 2 H	$\underline{1}$	I 3 R	$\underline{I} \mathrm{I}$	I 4 C
0	0	0	0	0	0	0
3	42-34	85-68	-	110-88	-	128-103
19	91-73	191-153	180-144	232-186	235-189	305-245
44	210-169	331-266	315-253	360-289	410-330	471-378
70	209-168	394-316	430-346	441-355	460-369	612-491
133	595-478	673-541	570-458	532-427	731-587	847-680
212	727-584	788-632	648-521	616-495	752-604	817-656
242	770-618	758-609	778-624	642-516	837-672	875-703
278	1,154-926	671-538	813-653	684-550	709-569	903-726
311	1,411-1,133	667-535	934-950	732-587	826-663	896-720
332	1,367-1,098	697-560	870-698	759-609	678-544	886-711
355	1,374-1, 103	814-654	962-773	753-605	809-650	968-777
375	1,417-1,138	870-699	1,053-846	838-673	984-790	1,203-966
477	1,486-1,193	933-749	1,187-953	849-682	987-792	1,185-952
502	1,437-1,154	925-743	1,093-878	865-695	963-774	1,220-980
550	1,498-1, 202	960-770	1,164-934	880-707	1,028-825	1,221-981
574	1,547-1,242	945-759	1,156-929	926-744	1,004-806	1,238-994
673	1,761-1,414	980-787	1,226-985	930-747	996-800	1,249-1,003
693	1,689-1,356	957-769	1,237-993	892-717	1, 007-809	1,253-1,006
717	1,675-1,345	954-767	1,213-974	852-685	1,018-817	1, 206-969
735	1,597-1,282	930-747	1,196-960	779-626	940-755	1, 233-990

[^0]
APPENDIX B-4 (CONTINUED)

SEDIMENT COMPARTMENT (First Run, Tank I, Corrected* for Background, Normalized+for Attenuation, Geometry)

ELAPSED TIME TN HPS					
IN HRS.	I 2 C	I 4 E	I 2 E	I 3 E	I 1 E
0	0	0	0	0	0
3	-	125-100	-	107-86	-
19	295-237	283-227	249-200	269-216	194-156
44	483-388	443-356	406-326	440-353	358-287
70	552-444	504-405	557-447	451-363	368-296
133	836-672	785-631	687-552	669-537	471-379
212	1,015-816	953-765	929-746	819-657	619-497
242	981-787	916-736	853-685	858-689	626-503
278	960-771	913-733	800-642	821-659	620-498
311	1,069-859	908-730	844-678	922-740	613-492
332	1,009-810	872-700	817-656	863-693	728-584
355	1,143-917	1,011-812	915-734	934-750	714-573
375	1,300-1,044	1,006-808	942-756	1,039-834	831-667
477	1,372-1, 102	1,147-921	1,010-811	1,156-928	849-681
502	1,314-1,055	1,156-929	1,077-864	1,154-926	835-670
550	1,333-1,070	1,217-978	1,135-912	1,193-958	875-703
574	1,315-1,056	1,180-947	1,143-918	1,231-988	877-704
673	1,322-1,062	1,158-930	1,145-919	1,241-996	900-722
693	1,314-1,055	1,150-923	1,140-916	1,196-960	887-712
717	1,317-1,058	1,181-948	1,112-893	1,194-959	866-695
735	1, 244-999	1,167-937	1,112-893	1,151-925	869-698

APPENDIX B-4 (CONTINUED)
SEDIMENT COMPARTMENT (First Run, Tank I, Decay Correction, Geometric Average, Mg Selenium)

HOURS	H		R		C		E	
ELLAPSED TIME	AVERAGE cpm	FRACTION	AVERAGE \qquad	$\begin{gathered} \text { FRACTION } \\ \hline \end{gathered}$	AVERAGE cpm	$\begin{gathered} \text { FRACTION } \\ \text { Cpm } \\ \hline \end{gathered}$	AVERAGE cpm	FRACTION cpm
0	-	-	-	-	-	-	-	-
3	51	22	88	10	-	-	93	29
19	111	49	188	21	241	31	200	62
44	214	94	310	35	383	49	331	103
70	249	110	362	41	468	60	378	118
133	489	215	507	58	676	87	525	163
212	580	256	550	63	736	95	666	207
242	617	272	594	68	745	96	653	203
278	760	335	560	64	749	97	633	197
311	938	413	625	71	790	102	660	205
332	864	381	576	66	761	98	658	205
355	908	400	628	72	847	109	717	223
375	955	421	732	84	1,005	130	766	238
477	1,022	451	737	84	1,027	132	835	260
502	982	433	735	84	1,018	131	847	264
550	1,027	453	766	87	1,026	132	888	276
574	1,043	460	775	89	1,025	132	889	277
673	1,150	507	774	88	1,033	133	892	277
693	1,118	493	763	87	1,031	133	878	273
717	1,107	488	751	86	1,014	131	874	272
735	1,068	471	690	79	995	128	863	269

APPENDIX B-4 (CONTINUED)

SEDIMENT COMPARTMENT (First Run, Tank I, Decay Correction, Geometric Average, Mg Selenium)

$\begin{aligned} & \text { HOURS } \\ & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$	IDEALIZED CONTAINER SUM OF FRACTIONS	$\begin{gathered} 10^{6} \mathrm{cpm} \\ \text { COMPARTMENT* } \end{gathered}$	$10^{6} \mathrm{cpm}$ DECAY CORRECTED	mg Se ** COMPARTMENT
0	0	0	0	0
3	70	. 0465	. 0465	. 0229
19	163	. 1083	. 1083	. 0534
44	281	. 1868	. 1889	. 0932
70	329	. 2187	. 2212	. 1092
133	523	. 3477	. 3558	. 1756
212	621	. 4128	. 4323	. 2133
242	639	. 4248	. 4500	. 2221
278	693	. 4607	. 4880	. 2408
311	791	. 5259	. 5635	. 2781
332	750	. 4986	. 5435	. 2682
355	804	. 5345	. 5826	. 2875
375	873	. 5804	. 6328	. 3123
477	927	. 6163	. 6875	. 3393
502	912	. 6063	. 6842	. 3377
550	948	. 6303	. 7176	. 3541
574	958	. 6369	. 7313	. 3609
673	1,005	. 6682	. 7851	. 3874
693	986	. 6555	. 7741	. 3820
717	977	. 6495	. 7719	. 3809
735	947	. 6296	. 7483	. 3693
$\begin{gathered} *(\text { Idealized } \times(664.88747) \\ * *\left(0.49350 \times 10^{-6} \frac{\mathrm{mg}}{\mathrm{cpm}}\right) \end{gathered}$				

APPENDIX B-5
WATER COMPARTMENT (FIRST RUN, TANK II)

HOURS ELAPSED TIME	FILTER NUMBER	RAW 10 MIN. COUNT 20 ml SAMPLE	cpm CORRECTED FOR BACKGROUND	\qquad	$\begin{gathered} \text { mg Se } 20 \mathrm{ml} \\ \text { SAMPLE } \\ \times 10^{-3} \\ \hline \end{gathered}$	mg Se 60 1 TANK
0						
1.5	20	510-496 *	398	398	. 1964	. 5892
2.0	18	523-449 *	381	381	. 1880	. 5690
12	6	494-436*	360	360	. 1776	. 5329
13	8	459-437 *	343	343	. 1692	. 5078
19	10	4,677	363	363	. 1789	. 5369
29	12	4,404	335	335	. 1655	. 4965
37	14	4,493	344	344	. 1699	. 5097
55	16	4,364	331	335	. 1654	. 4963
62	1	4,931	389	394	. 1942	. 5827
87	4	4,201	316	320	. 1578	. 4734
110	22	3,983	294	301	. 1486	. 4458
134	24	3,903	286	293	. 1445	. 4337
190	26	3,501	246	258	. 1271	. 3815
212	28	3,296	225	236	. 1165	. 3497
232	30	3,240	221	234	. 1155	. 3465
278	32	3,137	210	225	. 1108	. 3326
310	34	3,026	198	212	. 1044	. 3134

* one minu e count

```
    APPENDIX B-5 (CONTINUED)
WATER COMPARTMENT (FIRST RUN, TANK II)
```

HOURS		RAW	cpm CORRECTED	cpm CORRECTED	mg Se 20 ml	mg Se
ELAPSED	FILTER	10 MIN. COUNT	FOR	FOR	SAMPLE	601
TIME	NUMBER	20 ml SAMPLE	BACKGROUND	DECAY	$\times 10^{-3}$	TANK
354	36	2,802	176	193	. 0953	. 2859
432	38	2,593	155	172	. 0849	. 2549
476	40	2,443	138	155	. 0765	. 2295
498	42	2,470	143	160	. 0791	. 2373
526	44	2,199	114	130	. 0643	. 1930
549	46	2,410	139	158	. 0777	. 2333
573	48	2,308	129	148	. 0731	. 2192
650	50	2,066	105	121	. 0599	. 1798
672	52	1,918	91	106	. 0526	. 1578
692	54	1,960	90	113	. 0556	. 1668
716	56	1,866	84	101	. 0496	. 1488
740	58	1,785	78	93	. 0459	. 1378

วunos ə7nựw uə7 *

APPENDIX B-6 (CONTINUED)
SUSPENDED PARTICULATE (First Run, Tank II)

526	44	113	15	19	17	8	. 025
		115					
549	46	108	13	17	15	7	. 023
		117					
573	48	108	18	22	20	10	. 030
		126					
650	50	1,164*	17	22	20	9	. 029
672	52	1,170*	18	22	20	10	. 030
692	54	1,120*	13	16	15	7	. 022
716	56	1,157*	17	21	19	9	. 028
740	58	1,129*	14	17	16	7	. 024
* ten	e coun	** m	$\mathrm{cpm}=0$	10^{-6}			

APPENDIX B-7
FISH COMPARTMENT (First Run, Tank II)

APPENDIX B-7 (CONTINUED)
 FISH COMPARTMENT (First Run, Tank II)

ELAPSED	FISH NUMBER					
IN HRS.	1	2	3	4	5	6
574	951-1,010	1,355-1,251	1,100	1,460-1,512		
			1,048 up			
650	817-723 up	1,216-1,265	1,037-1,070up	1,053-1,112		
672	791-726 up	820-850 up	979-1,015up	1,523		
694	919-979	1,122-1,127	953-1,005up	1,191-1,154		
716	967-972	1,188-1,103	1,435-1,327	1,082-1,098		
740	1,062-958	$1,210-1,224$	1,043-972 up	1,063-1,088		

APPENDIX B-7 (CONTINUED)

FISH COMPARTMENT (First Run - Tank II)

ELAPSED TIME IN HOURS	BACKGROUND CORRECTED SUM COMPARTMENT	$\begin{gathered} \text { COMPARTMENT } \\ \text { CPm } \\ \text { DECAY } \\ \text { CORRECTED } \\ \hline \end{gathered}$	$\begin{gathered} 10^{-6} \\ \text { COMPARTMENT } \end{gathered}$ $\mathrm{mg} \mathrm{Se}^{*}$	$\begin{gathered} 10^{-6} \\ \text { COMPARTMENT } \\ \text { mg Se } \\ \text { NORMALIIZED** } \end{gathered}$
0	0	0	0	0
3	385	385	189	134
14	740	740	365	257
38	1,585	1,585	782	552
63	2,215	2,240	1,105	780
88	2,318	2,344	1,157	817
118	4,610	4,717	2,328	1,643
191	4,691	4,912	2,424	1,711
230	4,338	4,542	2,241	1,582
254	4,857	5,144	2,538	1,792
287	5,730	6,139	3,029	2,139
310	5,587	5,986	2,954	2,085
330	5,826	6,314	3,116	2,199
354	4,371	4,737	2,337	1,650
374	4,960	5,438	2,683	1,894
476	4,704	5,217	2,574	1,817
500	5,297	5,943	2,933	2,070
518	4,912	5,511	2,720	1,920
549	4,968	5,639	2,782	1,964
574	4,805	5,516	2,722	1,922
650	4,793	5,566	2,747	1,939
672	4,526	5,317	2,624	1,852
694	4,576	5,376	2,653	1,873
716	4,553	5,411	2,670	1,885
740	4,604	5,471	2,700	1,906
* (0.49350×10^{-6}) mg/cpm				

APPENDIX B-8
SEDIMENT COMPARTMENT (First Run, Tank II, Raw Data)

ELAPSED TIME						
IN HRS ${ }_{\text {. }}$	II 3 H	II 2 H	II 1 H	II 3 R	II 1 R	II 4 C
0	1,059*	1,032*	1,051*	1,043*	1,057*	1,029*
3	-	143	-	-	-	-
23	2,457*	2,484*	2,432*	2,238*	2,032*	2,457*
47	349	3,755*	3,082*	2,886*	2,451*	3,043*
71	427-412	427-454	466-464	304-312	302-286	332-338
137	5,077*	6,144*	6,701*	5,258*	3,735*	4,329*
214	523-558	834-877	999-1,112	551-560	346-374	522-546
243	561-540	900-952	1,076-1,080	505-527	464-473	484-490
280	647-684	1,007-1,113	1,089-1,041	$\begin{aligned} & 568-550 \\ & 583-607 \end{aligned}$	413-435	$\begin{aligned} & 455 \text { eroded G్ర } \\ & 536 \end{aligned}$
312	605-543	$\begin{aligned} & 979-1,008 \\ & 1,027 \end{aligned}$	1,212-1, 189	538-539	409-403	504-545
333	582-630	1,084-1,138	1,219-1,244	608-599	436-474	$\begin{aligned} & 494 \text { eroded } \\ & 511 \end{aligned}$
376	728-708	1,520-1,467	1,703-1,652	695-672	515-525	643-704
478	766-686	1,600-1,699	1,875-1,872	761-726	559-568	633-693
503	746-698	1,611-1,568	1,609-1,656	668-730	562-537	675-687
550	766-762	1,784-1,726	1,826-1,773	720-733	523-520	692-697
575	788-787	1,769-1,743	$\begin{aligned} & 1,336 \text { feces } \\ & 1,430 \text { out } \end{aligned}$	washed 769-800	542-579	691-686
674	792-800	1,807-1,912	$\begin{aligned} & 1,673 \text { eroded } \\ & 1,533 \end{aligned}$	793-782	$\begin{aligned} & 548-567 \\ & 633 \end{aligned}$	741-741
695	819-769	1,918-1,806	1,725-1,691	723-786	591-592	$\begin{aligned} & 686-736 \\ & 714 \end{aligned}$
736	791-816	1,914-1,800	* ten minute count			

APPENDIX B-8 (CONTINUED)
SEDIMENT COMPARTMENT (First Run, Tank II, Raw Data)

ELAPSEDTIME					
IN HRS.	II2 2	II 4 E	II2E	II 3 E	II 1 E
0	1,060*	1,049*	1,044*	1,037*	1,050*
3	-	-	155 one	-	-
23	3,610*	2,752*	2,900*	294	3,295*
47	5,239*	398	412	375	446
					420
71	486-516	500-471	402-425	460-485	531-529
	558-506				
137	6,749*	7,108*	5,763*	8,045*	8,239*
214	678-729	619-637	692-709	731-689	834-810
243	741-750	665-717	636-621	645-706	872-911
280	769-800	549 eroded	666-612	740 erosion	918-951
		573		826	
312	769-789	421-454	701-696	640-678	954-913
333	708-696	457 eroded	615-642	602-604	896-916
		464			
376	956-905	610-585	817-840	782 dumped \&	1,178-1,090
				813 eroded	1,082-1,134
478	892-890	669-593	859-860	768-804	1,067-1,027
503	959-991	634-624	873-821	810-799	1,192-1,174
550	915-965	654-658	841-900	859-816	1,186-1,133
					1,186
575	1,019-959	663-642	868-896	845-822	1,179-1,164
674	943-1,006	$\begin{aligned} & 721,697 \\ & 675 \end{aligned}$	817-911	868-833	1,214-1,254
695	954-944	678-673	843-853	865-801	1,132-1,209

APPENDIX B-8 (CONTINUED)
SEDIMENT COMPARTMENT (First Run, Tank II, Corrected for Background, Normalized for Attenuation, Geometry) *

ELAPSED TIME					
IN HRS.	II 2 C	II 4 E	II 2 E	II 3 E	II 1 E
0	0	0	0	0	0
3	-	-	50-40	-	-
23	256-205	170-136	185-148	189-151	224-180
47	418-336	293-235	307-246	270-216	328-263
71	411-330	380-305	308-247	367-295	425-341
137	569-457	605-486	471-378	699-561	718-577
214	598-480	523-419	595-478	605-485	717-575
243	640-514	586-470	521-418	570-458	786-631
280	679-545	456-366	534-428	678-544	829-666
312	674-541	378-303	593-476	554-444	828-665
333	597-479	355-285	523-420	498-399	801-643
376	825-662	492-395	723-580	692-556	1,016-815
478	786-631	526-422	754-605	681-546	942-756
503	870-698	524-420	742-595	699-561	1,078-865
550	835-670	551-442	765-614	732-588	1,063-853
575	884-709	547-439	777-623	728-584	1,066-856
674	869-698	592-475	759-609	745-598	1,129-906
695	844-677	570-458	743-596	728-584	1,065-855
736					
1,912					

[^1]```
 APPENDIX B-8 (CONTINUED)
 SEDIMENT COMPARTMENT (First Run, Tank II, Corrected
for Background, Normalized for Attenuation, Geometry)*
```

| $\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN HRS | II 3H | II 2H | II 1 H | II 3 R | II 1 R | II 4 C |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | - | 38-30 | - | - | - | - |
| 23 | 140-112 | 143-115 | 138-110 | 118-95 | 98-78 | 140-112 |
| 47 | 244-195 | 270-217 | 203-163 | 183-147 | 140-112 | 199-160 |
| 71 | 314-252 | 335-269 | 360-289 | 203-163 | 189-151 | 230-184 |
| 137 | 402-323 | 509-409 | 565-453 | 420-337 | 268-215 | 327-269 |
| 214 | 435-349 | 750-602 | 950-763 | 450-361 | 255-205 | 429-344 |
| 243 | 445-357 | 821-659 | 973-781 | 411-330 | 363-291 | 382-306 |
| 280 | 560-450 | 955-766 | 960-770 | 470-377 | 319-256 | 390-313 |
| 312 | 469-376 | 903-725 | 1,095-879 | 434-348 | 301-241 | 419-336 |
| 333 | 501-402 | 1,006-807 | 1,126-904 | 498-400 | 350-281 | 397-319 |
| 376 | 613-492 | 1,388-1,114 | 1,572-1, 262 | 578-464 | 415-333 | 568-456 |
| 478 | 621-498 | 1,544-1,240 | 1,768-1,420 | 638-512 | 458-368 | 558-448 |
| 503 | 617-495 | 1,484-1, 192 | 1,527-1,656 | 594-476 | 444-356 | 576-462 |
| 550 | 659-529 | 1,650-1,324 | 1, 694-1,360 | 621-499 | 416-334 | 589-473 |
| 575 | 682-548 | 1,651-1,325 | 1,278-1,026 | 679-545 | 455-365 | 583-468 |
| 674 | 691-554 | 1,754-1,408 | 1,498-1,202 | 682-548 | 477-383 | 636-510 |
| 695 | 689-553 | 1,757-1,410 | 1,603-1,287 | 649-521 | 486-390 | 607-487 |
| 736 | 698-560 | 1,752-1,406 |  |  |  |  |
| 1,912 | 506-406 | 1,522-1,222 |  |  |  |  |

[^2]APPENDIX B-8 (CONTINUED)
SEDIMENT COMPARTMENT (First Run, Tank II, Decay Correction, Geometric Average Mg Selenium)

| HOURS | H |  | R |  | c |  | E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED TIME | AVERAGE cpm | FRACTION | AVERAGE cpm | $\begin{gathered} \text { FRACTION } \\ \text { CPm } \\ \hline \end{gathered}$ | AVERAGE cpm | FRACTION | AVERAGE cpm | FRACTION cpm |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 30 | 13 | - | - | - | - | 40 | 12 |
| 23 | 112 | 49 | 86 | 9 | 158 | 20 | 153 | 47 |
| 47 | 192 | 84 | 129 | 14 | 248 | 31 | 240 | 74 |
| 71 | 265 | 117 | 157 | 17 | 257 | 33 | 297 | 92 |
| 137 | 377 | 166 | 276 | 31 | 363 | 46 | 500 | 155 |
| 214 | 515 | 227 | 283 | 32 | 412 | 53 | 489 | 152 |
| 243 | 538 | 237 | 310 | 35 | 412 | 53 | 494 | 153 |
| 280 | 609 | 268 | 316 | 36 | 429 | 55 | 501 | 155 |
| 312 | 589 | 259 | 294 | 33 | 438 | 56 | 472 | 146 |
| 333 | 628 | 277 | 340 | 38 | 399 | 51 | 436 | 135 |
| 376 | 840 | 370 | 398 | 45 | 559 | 72 | 586 | 182 |
| 478 | 914 | 402 | 440 | 50 | 539 | 69 | 582 | 181 |
| 503 | 959 | 422 | 416 | 47 | 580 | 74 | 610 | 189 |
| 550 | 935 | 412 | 416 | 47 | 571 | 73 | 624 | 194 |
| 575 | 861 | 379 | 455 | 51 | 588 | 75 | 625 | 194 |
| 674 | 929 | 409 | 465 | 53 | 604 | 77 | 647 | 201 |
| 695 | 950 | 419 | 455 | 52 | 582 | 75 | 623 | 193 |

## APPENDIX B-8 (CONTINUED)

SEDIMENT COMPARTMENT (First Run, Tank II, Decay Correction, Geometric Average Mg Selenium)


APPENDIX B-9
WATER COMPARTMENT (Second Run, Tank I)


* Ten minute count

APPENDIX B-9 (CONTINUED)
WATER COMPARTMENT (Second Run, Tank I)

| Elapsed |  | Raw cpm | cpm | cpm | $\begin{aligned} & \mathrm{mg} \mathrm{Se} \\ & 20 \mathrm{ml} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time in | Filter | 20 ml | Corrected | Corrected | Sample | mg Se |
| Hours | Number | Sample | Background | Decav | $\times 10^{-3}$ | Tank |
| 96 | 29 | 1,898 | 1,782 | 1,824 | 0.8510 | 2.553 |
|  |  | 1,989 |  |  |  |  |
| 134 | 33 | 1,490 | 1,297 | 1,343 | 0.6266 | 1.879 |
|  |  | 1,428 |  |  |  |  |
| 157 | 35 | 1,239 | 1,082 | 1,120 | 0.5225 | 1.567 |
|  |  | 1,249 |  |  |  |  |
| 183 | 37 | 1,066 | 894 | 936 | 0.4367 | 1.310 |
|  |  | 1,062 |  |  |  |  |
| 232 | 39 | 719 | 556 | 587 | 0.2748 | 0.8244 |
|  |  | 713 |  |  |  |  |
| 256 | 41 | 7,895* | 662 | 701 | 0.3270 | 0.9812 |
| 280 | 43 | 757 | 567 | 608 | 0.2836 | 0.8510 |
|  |  | 695 |  |  |  |  |
| 303 | 45 | 667 | 503 | 539 | 0.2514 | 0.7544 |
|  |  | 654 |  |  |  |  |
| 353 | 47 | 5,940* | 436 | 475 | 0.2216 | 0.6649 |
| 400 | 49 | 5,873* | 429 | 473 | 0.2207 | 0.6621 |
| 421 | 55 | 5,883* | 430 | 475 | 0.2216 | 0.6649 |
| 447 | 57 | 591 | 390 | 435 | 0.2029 | 0.6089 |
|  |  | 505 |  |  |  |  |

* Ten minute count

APPENDIX B-9 (CONTINUED)
WATER COMPARTMENT (Second Run, Tank I)

| Elapsed |  | Raw cpm | cpm | cpm | $\begin{aligned} & \mathrm{mg} \mathrm{Se} \\ & 20 \mathrm{ml} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time in | Filter | 20 ml | Corrected | Corrected | Sample | mg Se |
| Hours | Number | Sample | Background | Decay | $\times 10^{-3}$ | Tank |
| 472 | 59 | 5,190* | 411 | 459 | 0.2141 | 0.6425 |
| 496 | 61 | 501 | 408 | 460 | 0.2146 | 0.6439 |
|  |  | 501 |  |  |  |  |
| 518 | 63 | 515 | 383 | 432 | 0.2015 | 0.6047 |
|  |  | 515 |  |  |  |  |
| 568 | 65 | 504 | 359 | 412 | 0.1922 | 0.5767 |
|  |  | 520 |  |  |  |  |
| 617 | 67 | 542 | 413 | 480 | 0.2239 | 0.6719 |
|  |  | 577 |  |  |  |  |
| 641 | 69 | 527 | 386 | 448 | 0.2090 | 0.6271 |
|  |  | 538 |  |  |  |  |
| 720 | 71 | 552 | 380 | 452 | 0.2109 | 0.6327 |
|  |  | 497 |  |  |  |  |
| 736 | 73 | 532 | 397 | 472 | 0.2202 | 0.6607 |
|  |  | 554 |  |  |  |  |
| 830 | 77 | 726 | 560 | 685 | 0.3196 | 0.9588 |
|  |  | 687 |  |  |  |  |
| 904 | 81 | 6,732 * | 527 | 656 | 0.3061 | 0.9182 |

* Ten minute count


APPENDIX B-10
SUSPENDED PARTICULATE COMPARTMENT (Second Run, Tank I)

| Elapsed Time in Hours | Filter Number | Raw Ten Minute Count Rate $\qquad$ | Background Corrected $\qquad$ cpm | Decay Corrected $\qquad$ | $\begin{gathered} \text { Normaliza- } \\ \text { tion } \\ (\times \quad .9055) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \mathrm{mg} \mathrm{Se} \\ & 40 \mathrm{ml} \\ & \mathrm{Sample} \\ & \times \quad 10^{-6} \\ & \hline \end{aligned}$ | mg Se Compartment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 1 | 1,305 | 10 | 11 | 10 | 0 | 0 |
| . 083 | 3 | 1,697 | 48 | 52 | 47 | 21.93 | 0.03289 |
| . 25 | 5 | 1,782 | 57 | 63 | 57 | 26.59 | 0.03975 |
| . 5 | 7 | 1,636 | 43 | 47 | 42 | 19.59 | 0.02938 |
| 1 | 9 | 1,758 | 55 | 61 | 55 | 25.66 | 0.03849 |
| 3 | 11 | 1,779 | 57 | 63 | 57 | 26.59 | 0.03988 |
| 12 | 13 | 1,925 | 72 | 79 | 72 | 33.59 | 0.05038 |
| 18 | 15 | 2,326 | 112 | 124 | 112 | 52.26 | 0.07839 |
| 23.5 | 17 | 2,506 | 130 | 143 | 130 | 60.66 | 0.09099 |
| 37 | 19 | 3,440 | 223 | 246 | 222 | 103.59 | 0.15538 |
| 48 | 21 | 3,903 | 269 | 297 | 269 | 125.48 | 0.18822 |
| 61 | 23 | 5,168 | 396 | 438 | 397 | 185.05 | 0.27758 |
| 70.5 | 25 | 5,794 | 458 | 505 | 457 | 213.24 | 0.31986 |
| 81 | 27 | 6,602 | 539 | 594 | 538 | 251.03 | 0.37654 |
| 96 | 29 | 7,081 | 588 | 648 | 587 | 273.89 | 0.41083 |
| 113 | 31 | 9,449 | 825 | 910 | 824 | 384.48 | 0.57672 |
| 134 | 33 | 9,835 | 864 | 953 | 863 | 309.36 | 0.46404 |
| 157 | 35 | 10,777 | 958 | 1,056 | 956 | 446.07 | 0.66910 |
| 183 | 37 | 11,410 | 1,014 | 1,118 | 1,012 | 472.20 | 0.70880 |
| 232 | 39 | 11,772 | 1,052 | 1,160 | 1,050 | 489.93 | 0.73489 |
| 256 | 41 | 12,571 | 1,126 | 1,242 | 1,125 | 524.93 | 0.78739 |
| 280 | 43 | 12,465 | 1,116 | 1,231 | 1,145 | 534.26 | 0.80139 |

APPENDIX B-10 (CONTINUED)
SUSPENDED PARTICULATE COMPARTMENT (Second Run, Tank I)

| Elapsed <br> Time in <br> Hours | Filter <br> Number | Raw Ten Minute Count Rate $\qquad$ | Background Corrected _ cpm | $\qquad$ | $\begin{gathered} \text { Normaliza- } \\ \text { tion } \\ (x \quad .9055) \\ \hline \end{gathered}$ | mg Se <br> 40 ml <br> Sample <br> $\times 10^{-6}$ | mg Se Compartment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 303 | 45 | 11,959 | 1,034 | 1,140 | 1,032 | 481.53 | 0.72229 |
| 353 | 51 | 11,239 | 1,003 | 1,106 | 1,002 | 467.53 | 0.70129 |
| 400 | 53 | 12,237 | 1,103 | 1,216 | 1,102 | 514.19 | 0.77128 |
| 421 | 55 | 7,923 | 671 | 740 | 670 | 312.62 | 0.46893 |
| 447 | 57 | 9,020 | 781 | 861 | 780 | 363.95 | 0.54592 |
| 472 | 59 | 9,432 | 822 | 906 | 820 | 382.61 | 0.57391 |
| 496 | 61 | 9,071 | 787 | 868 | 785 | 366.28 | 0.54942 |
| 518 | 63 | 8,572 | 718 | 792 | 717 | 334.55 | 0.50182 |
| 568 | 65 | 6,888 | 549 | 637 | 577 | 269.22 | 0.40384 |
| 617 | 67 | 5,809 | 462 | 537 | 486 | 226.76 | 0.34015 |
| 641 | 69 | 5,032 | 384 | 446 | 404 | 188.50 | 0.28275 |
| 720 | 71 | 3,617 | 235 | 321 | 291 | 135.78 | 0.20367 |
| 736 | 73 | 2,705 | 144 | 197 | 178 | 83.05 | 0.12458 |
| 792 | 75 | 2,829 | 156 | 213 | 193 | 90.05 | 0.13508 |
| 830 | 77 | 3,161 | 199 | 248 | 225 | 104.78 | 0.15717 |
| 904 | 81 | 4,015 | 281 | 366 | 332 | 170.88 | 0.25633 |
| 928 | 83 | 3,905 | 273 | 355 | 322 | 150.31 | 0.22547 |
| 952 | 85 | 3,928 | 273 | 355 | 322 | 150.31 | 0.22547 |
| 1,024 | 87 | 3,774 | 257 | 334 | 303 | 141.50 | 0.21225 |

FISH COMPARTMENT (Second Run, Tank I)

| $\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | FISH NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |
| 0 | 731 | 431 | 956 | 1,509 | 1,363 |
|  | 750 | 892 | 1,005 | 1,566 | 1,451 |
| 1.5 | 628 | 711 | 1,037 | 1,317 | 1,417 |
|  | 586 | 703 | 1,015 | 1,378 | 1,368 |
| 6 | 1,029 | 1,064 | 1,198 | 1,430 | 1,602 |
|  | 995 | 1,048 | 1,196 | 1,495 | 1,714 |
| 22.5 | 1,588 | 1,583 | 1,760 | 1,763 | 2,363 |
|  | 1,556 | 1,666 | 1,750 | 1,824 | 2,345 |
| 37 | 1,973 | 2,115 | 2,205 | 2,351 | 3,230 |
|  | 2,010 | 1,978 | 2,159 | 2,310 | 3,123 |
|  |  | 2,018 |  | 2, 322 |  |
|  |  |  |  | 2,326 |  |
| 47.5 | 1,993 | 2,766 | 2,880 | 3,237 | 3,975 |
|  | 2,002 | 2,807 | 2,822 | 3,207 | 3,750 |
|  |  |  |  |  | 3,792 |
| 62 | 2,914 | 3,180 | 3,741 | 3,773 | 4,581 |
|  | 3,067 | 3,215 | 3,626 | 3,601 | 4,462 |
| 71 | 3,616 | 3,915 | 3,955 | 4,260 | 5,262 |
|  | 3,708 | 4,065 | 4,181 | 4,081 | 5,358 |
| 81 | 3,904 | 4,123 | 4,283 | 4,746 | 6,304 |
|  | 3,962 | 4,119 | 4,243 | 4,570 | 6,262 |
| 96 | 4,555 | 4,658 | 5,327 | 5,452 | 6,944 |
|  | 4,628 | 4,556 | 5,163 | 5,594 | 6,768 |
| 113 | 5,254 | 5,392 | 6,355 | 6,601 | 7,396 |
|  | 5,233 | 5,672 | 6,346 | 6,436 | 7,369 |
| 134 | 6,163 | 7,307 | 7,264 | 7,349 | 8,839 |
|  | 6,305 | 7,018 | 7,320 | 7,478 | 8,691 |
| 160 | 8,068 | 8,282 | 8,184 | 8,355 | 8,145 |
|  | 8,231 | 8,075 | 8,383 | 8,221 | 8,538 |
| 183 | 8,087 | 8,108 | 8,985 | 9,570 | 9,895 |
|  | 8,038 | 8,198 | 8,843 | 10,025 | 9,908 |
|  | 8,106 |  |  | 9,641 |  |
| 232 | 8,363 | 10,355 | 10,407 | 10,722 | 10,875 |
|  | 8,281 | 10,225 | 10,287 | 10,729 | 10,745 |
| 256 | 8,098 | 10,691 | 10,822 | 10,884 | 11,886 |
|  | 8,057 | 10,825 | 10,839 |  | 11,573 |
| 303 | 8,447 | 11,626 | 12,223 | 14,039 | 22,341 |
|  | 8,516 | 11,776 | 12,221 | 14,051 | 22,105 |
| 353 | 9,376 | 12,324 | 13,595 | 15,020 | 22,830 |
|  | 9,292 |  | 14,162 | 15,149 | 22,325 |

APPENDIX B-11 (CONTINUED)
FISH COMPARTMENT (Second Run, Tank I)

| $\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | FISH NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |
| 400 | 9,767 | 13,833 | 16,244 | 16,579 | 24,245 |
|  | 9,565 | 14,251 | 15,209 | 16,336 | 23,681 |
| 447 | 10,454 | 15,441 | 15,770 | 17,549 | 23,607 |
|  | 10,372 | 15,167 | 15,420 | 17,727 | 23,802 |
| 518 | 9,336 | 14,961 | 15,457 | 17,262 | 22,957 |
|  | 9,464 | 15,034 | 14,889 | 17,114 | 22,970 |
| 568 | 10,351 | 14,064 | 16,044 | 16,915 | 22,714 |
|  | 10,207 | 13,799 | 16,821 | 16,518 | 22,731 |
| 641 | 9,452 | 13,134 | 15,494 | 17,395 | 22,175 |
|  | 9,490 | 13,005 | 15,600 | 17,600 | 22,032 |
| 760 | 11,141 | 14,608 | 16,537 | 20,169 | 23,790 |
|  | 11,331 | 14,388 | 16,732 | 20,270 | 23,532 |
|  |  |  |  | 20,078 |  |
|  |  |  |  | 21,287 |  |
| 830 | 12,353 | 16,295 | 17,828 | 19,754 | 24,451 |
|  | 12,354 | 16,146 | 18,247 | 20,274 | 24,424 |
| 880 | 12,617 | 16,600 | 18,439 | 19,192 | 24,770 |
|  | 12,763 | 16,619 | 18,488 | 19,393 | 24,758 |
| 1,024 | 11,595 | 15,893 | 17,079 | 19,278 | 23,273 |
|  | 11,591 | 16,163 | 16,817 | 19,078 | 23,095 |

## APPENDIX B-11 (CONTINUED)

## FISH COMPARTMENT (Second Run, Tank I)

| ELAPSED TIME |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5,577 | 0 | 0 | 0 | 0 |
| 1.5 | 5,050 | 0 | 0 | 0 | 0 |
| 6 | 6,386 | 809 | 809 | . 0003 | . 00026 |
| 22.5 | 9,100 | 3,523 | 3,523 | . 0016 | . 00115 |
| 37 | 11,714 | 6,142 | 6,142 | . 0028 | . 00202 |
| 47.5 | 14,696 | 9,182 | 9,289 | . 0043 | . 00305 |
| 62 | 18,080 | 12,566 | 12,712 | . 0059 | . 00418 |
| 71 | 21,201 | 15,687 | 15,869 | . 0074 | . 00522 |
| 81 | 23,258 | 17,744 | 17,950 | . 0083 | . 00591 |
| 96 | 26,873 | 21,416 | 21,915 | . 0102 | . 00721 |
| 113 | 31,027 | 25,570 | 26,167 | . 0122 | . 00861 |
| 134 | 36,867 | 31,410 | 32,142 | . 0149 | . 0105 |
| 160 | 41,241 | 35,800 | 37,058 | . 0172 | . 0122 |
| 183 | 44,766 | 39,335 | 40,718 | . 0189 | . 0134 |
| 232 | 50,495 | 45,120 | 47,247 | . 0220 | . 0155 |
| 256 | 52,280 | 46,975 | 49,757 | . 0232 | . 0163 |
| 303 | 68,673 | 63,368 | 67,899 | . 0316 | . 0223 |
| 353 | 73,199 | 68,003 | 74,137 | . 0345 | . 0244 |
| 400 | 79,855 | 74,717 | 82,400 | . 0384 | . 0271 |
| 447 | 82,655 | 77,565 | 85,541 | . 0399 | . 0281 |
| 518 | 79,722 | 74,684 | 84,279 | . 0393 | . 0277 |
| 568 | 80,082 | 75,089 | 86,202 | . 0402 | . 0283 |
| 641 | 77,553 | 72,672 | 84,400 | . 0393 | . 0278 |
| 760 | 86,626 | 81,854 | 91,676 | . 0427 | . 0301 |
| 830 | 91,064 | 86,363 | 105,621 | . 0492 | . 0347 |
| 880 | 91,820 | 87,177 | 108,099 | . 0504 | . 0356 |
| 1,024 | 84,931 | 82,382 | 104,611 | . 0488 | . 0344 |

APPENDIX B-12

SEDIMENT COMPARTMENT (Second Run, Tank I, Raw cpm)

| HOURS <br> ELAPSED <br> TIME | I3H | I2H | I1H | I3R | I1R |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4.25$ | 2,309 | 1,232 | 1,516 | 1,556 | 1,483 |
|  |  |  | 1,591 |  | 1,477 |
| 13 | 3,504 | 2,050 | 2,314 | 3,160 | 2,716 |
|  | 3,894 | 1,934 | 2,280 | 3,018 | 2,718 |
|  | 4,010 |  |  |  |  |
| 25 | 5,175 | 2,376 | 3,522 | 4,541 | 3,955 |
|  | 5,208 | 2,490 | 3,470 | 4,523 | 3,862 |
| 40 | 7,939 | 3,335 | 4,816 | 7,229 | 5,731 |
|  | 8,085 | 3,373 | 4,829 | 7,136 | 5,543 |
| 50 | 7,554 | 3,678 | 5,844 | 8,929 | 6,889 |
|  | 7,632 | 3,718 | 5,914 | 8,779 | 6,818 |
| 63 | 9,274 | 4,794 | 7,370 | 10,884 | 7,890 |
|  | 9,457 | 4,765 | 7,436 | 10,900 | 7,951 |
| 72 | 9,693 | 5,684 | 8,694 | 12,025 | 8,400 |
|  | 9,640 | 5,714 | 8,534 | 11,909 | 8,626 |
| 82 | 10,455 | 6,678 | 9,547 | 13,093 | 9,688 |
|  | 10,309 | 6,500 | 9,381 | 12,830 | 9,542 |
| 97 | 10,909 | 7,364 | 10,992 | 14,457 | 10,989 |
|  | 10,847 | 7,355 | 10,937 | 14,491 | 10,902 |
| 114 | 11,601 | 8,481 | 11,932 | 14,893 | 11,891 |
|  | 11, 355 | 8,634 | 11,849 | 15,189 | 11,751 |
| 136 |  | $9,833$ | 13,045 | 15,473 | 12,791 12,987 |
|  |  | 9,744 | 13,125 | 15,301 | 12,987 |

## APPENDIX B-12 (CONTINUED) <br> SEDIMENT COMPARTMENT (Second Run, Tank I, Raw cpm)

| HOURS ELAPSED TIME | I4C | I2C | I4E | I2E | I3E | IIE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |
| 4.25 | 1,574 | 2,038 | 1,508 | 1,508 | 2,272 | 1,741 |
|  |  | 2,135 |  |  | $2,260$ | $1,724$ |
| 13 | 2,054 | 2,832 | 2,450 | 2,236 | 3,845 | 2,542 |
|  | 2,031 | 2,785 | 2,474 | 2,221 | 3,818 | 2,522 |
| 25 | 2,759 | 4,054 | 3,468 | 3,098 | 5,489 | 3,579 |
|  | 2,733 | 4,196 | 3,537 | 3,072 | 5,630 | 3,561 |
| 40 | 3,587 | 5,623 | 4,795 | 4,245 | 7,626 | 4,875 |
|  | 3,640 | 5,690 | 4,809 |  | 7,636 | 4,985 |
| 50 | 4,144 | 6,573 | 5,541 | 4,994 | 9,238 | 6,223 |
|  | 4,039 | 6,580 | 5,702 | 5,139 | 9,200 | 6,499 |
| 63 | 4,454 | 7,937 | 6,426 | 6,274 | 10,372 | 7,654 |
|  | 4,489 | 8,003 | 6,459 | 6,490 | 10,177 |  |
| 72 | 4,873 | 8,509 | 7,246 | 7,340 | 11,496 | 8,437 |
|  | 4,773 | 8,463 | 7,229 | 7,308 | 11,495 | 8,542 |
| 82 | 5,157 | 9,627 | 8,194 | 8,387 | 12,506 | 9,777 |
|  | 5,121 | 9,730 | 8,021 | 8,476 | 12,547 | 9,671 |
| 97 | 5,683 | 10,816 | 8,889 | 9,673 | 13,712 | 10,965 |
|  | 5,365 | 10,566 | 8,954 | 9,672 10,600 | 13,576 | 11,052 |
| 114 | 5,597 | 11,761 | 8,841 | 10,600 | 13,578 | 11,835 |
|  | 5,618 | 12,053 13,172 | 9,013 10,097 | 10,476 11,517 | 13,876 14,359 | 11,849 13,115 |
| 136 | 6,030 6,089 | 13,172 13,173 | 10,097 10,430 | 11,517 11,373 | 14,359 14,193 | 13,115 13,209 |

## APPENDIX B-12 (CONTINUED)

SEDIMENT COMPARTMENT (Second Run, Tank I, Raw cpm)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |
| TIME | 13 H | I2H | IIH | I3R | IIR |
| 158 | 17.938 | 10,527 | 14,023 | 14,935 | 13,729 |
|  | 18,255 | 10,531 | 14,064 | 14,934 | 13,544 |
| 184 | 16,305 | 10,693 | 14,739 | 15,304 | 13,925 |
|  | 16,818 | 10,757 | 14,616 | 15,159 | 14,128 |
| 233 | 15,299 | 11,113 | 15,545 | 15,546 | 14,995 |
|  | 15,544 | 11,439 | 15,454 | 15,592 | 15,026 |
| 280 | 15,271 | 11,510 | 15,685 | 15,974 | 15,337 |
|  | 15,452 | 11,585 | 15,836 | 15,957 | 15,258 |
| 332 | 15,482 | 10,766 | 15,311 | 16,406 | 15,575 |
|  | 15,723 | 10,850 | 15,436 | 16,354 | 15,684 |
| 375 | 16,841 | 11,195 | 15,449 | 16,349 | 15,204 |
|  | 16,684 | 11,221 | 15,500 | 16,111 | 15,063 |
| 421 | 13,978 | 11,121 | 15,386 | 15,972 | 15,184 |
|  | 13,862 | 11,264 | 15,457 | 15,854 | 15,256 |
| 472 | 14,015 | 11,749 | 15,810 | 15,280 | 15,875 |
|  | 14,078 | 11,574 | 16,018 | 15,232 | 15,872 |
| 543 | $15,562$ | 11,595 | 15,791 | 16,161 | 15,435 |
|  | 15,751 | 11,519 | 15,646 | 15,928 | 15,210 |
| 568 | 12,853 | 11,616 | 15,324 | 15,720 | 15,313 |
|  | 12,772 | 11,935 | 15,804 | 15,927 | 15,445 |
| 736 | 14,041 | 11,928 | 16,409 | 16,124 | 15,868 |
|  | 14,180 | 12,267 | 16,199 | 15,988 | 15,717 |

## APPENDIX B-12 (CONTINUED)

SEDIMENT COMPARTMENI (Second Run, Tank I, Raw cpm)


APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background, Normalization, Attenuation)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED <br> TIME |  |  |  |  | IIR |
|  | I3H | I2H | I1H | I3R |  |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 4.25 | 909 | 494 | 588 | 750 | 699 |
|  | 730 | 396 | 472 | 602 | 561 |
| 13 | 2,402 | 1,254 | 1,332 | 2,283 | 1,936 |
|  | 1,928 | 1,006 | 1,069 | 1,833 | 1,554 |
| 25 | 3,806 | 1,702 | 2,541 | 3,734 | 3,135 |
|  | 3,056 | 1,366 | 2,040 | 2,998 | 2,517 |
| 40 | 6,627 | 2,629 | 3,867 | 6,384 | 4,916 |
|  | 5,321 | 2,111 | 3,105 | 5,126 | 3,947 |
| 50 | 6,208 | 2،967 | 4,924 | 5,056 | 6,080 |
|  | 4,985 | 2,382 | 3,953 | 4,059 | 4,882 |
| 63 | 7,980 | 4,048 | 6,448 | 10,094 | 7,147 |
|  | 6,407 | 3,750 | 5,177 | 8,105 | 5,739 |
| 72 | 8,296 | 4,976 | 7,669 | 11,207 | 7,748 |
|  | 6,661 | 3,995 | 6,158 | 8,999 | 6,221 |
| 82 | 9,012 | 5,866 | 8,519 | 12,171 | 8,850 |
|  | 7,236 | 4,710 | 6,840 | 9,773 | 7,106 |
| 97 | 9,508 | 6,636 | 10,019 | 13,684 | 10,180 |
|  | 7,634 | 5,328 | 8,045 | 10,988 | 8,174 |

LEGEND: Above Number - cpm corrected for background
Below Number - cpm with additional correction for normalization and attenuation.

```
 APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background,
Normalization, Attenuation)
```

| HOURS ELAPSED TIME | I3H | I2H | I1H | I3R | I1R |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 114 | 10,123 | 7,841 | 10,955 | 14,259 | 11,064 |
|  | 8,128 | 6,296 | 8,796 | 11,449 | 8,884 |
| 136 | 13,000 | 9,072 | 12,150 | 14,605 | 13,132 |
|  | 9,636 | 7,284 | 9,756 | 11,727 | 10,544 |
| 158 | 16,741 | 9,813 | 13,108 | 14,152 | 12,879 |
|  | 13,443 | 7,879 | 10,525 | 11,364 | 10,341 |
| 184 | 15,220 | 10,015 | 13,752 | 14,457 | 13,282 |
|  | 12,221 | 8,042 | 11,042 | 11,608 | 10,665 |
| 233 | 14,095 | 10,580 | 14,583 | 14,803 | 14,269 |
|  | 11,318 | 8,495 | 11,710 | 11,886 | 11,458 |
| 280 | 14,049 | 10,858 | 14,854 | 15,207 | 14,564 |
|  | 11,281 | 8,718 | 11,927 | 12,211 | 11,694 |
| 332 | 14,226 | 10,227 | 14,477 | 15,297 | 14,612 |
|  | 11,423 | 8,209 | 11,600 | 12,283 | 11,773 |
| 375 | 15,478 | 10,533 | 14,587 | 15,488 | 14,416 |
|  | 12,428 | 8,457 | 11,713 | 12,436 | 11,576 |
| 421 | 12,150 | 10,523 | 14,533 | 15,179 | 14,510 |
|  | 9,756 | 8,449 | 11,669 | 12,188 | 11,651 |

LEGEND: Above Number - cpm corrected for background
Below Number - cpm with additional correction for normalization and attenuation.

## APPENDIX B-12 (CONTINUED) <br> SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background, Normalization, Attenuation)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED TIME | I3H | I2H | I1H | I3R | I1R |
| 472 | 12,790 | 10,999 | 15,045 | 14,530 | 15,170 |
|  | 10,270 | 8,832 | 12,081 | 11,667 | 12,181 |
| 543 | 14.414 | 10,901 | 14,858 | 15,325 | 14,626 |
|  | 11,574 | 8,753 | 11.930 | 12,305 | 11,744 |
| 568 | 11,695 | 11,126 | 14,713 | 15,111 | 14,690 |
|  | 9,391 | 8,929 | 11,828 | 12,134 | 11,796 |
| 736 | 12,376 | 11,466 | 15,480 | 15,407 | 15,124 |
|  | 9,937 | 9,207 | 12,430 | 12,371 | 12,144 |

```
LEGEND: Above Number - cpm corrected for background
 Below Number - cpm with additional correction for normalization and attenuation.
```

APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background, Normalization, Attenuation)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED <br> TIME |  |  |  |  |  | IIE |
|  | I4C | I2C | I4E | I2E | I3E |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4.25 | 733 | 1,271 | 657 | 743 | 1,197 | 1,085 |
|  | 588 | 1,020 | 527 | 596 | 961 | 871 |
| 13 | 1,201 | 1,992 | 1,611 | 1,463 | 2,762 | 1,885 |
|  | 964 | 1,599 | 1,293 | 1,174 | 2,217 | 1,513 |
| 25 | 1,914 | 3,319 | 2,661 | 2,328 | 4,501 | 2,930 |
|  | 1,536 | 2,665 | 2,136 | 1,869 | 3,614 | 2,352 |
| 40 | 2,893 | 4,906 | 3,961 | 3,488 | 6,573 | 4,290 |
|  | 2,323 | 3,939 | 3,180 | 2,800 | 5,278 | 3,444 |
| 50 | 3,259 | 5,876 | 4,780 | 4,309 | 8,161 | 5,721 |
|  | 2,616 | 4,718 | 3,838 | 3,460 | 6,553 | 4,593 |
| 63 | 3,639 | 7,164 | 5,598 | 5,625 | 9,216 | 7,014 |
|  | 2,922 | 5,752 | 4,495 | 4,516 | 7,400 | 5,632 |
| 72 | 4,000 | 7,688 | 6,406 | 6,575 | 10,448 | 7,856 |
|  | 3,212 | 6,173 | 5,144 | 5,279 | 8,389 | 6,308 |
| 82 | 4,316 | 8,880 | 7,275 | 7,682 | 11,479 | 9,091 |
|  | 3,465 | 7,130 | 5,841 | 6,168 | 9,217 | 7,300 |
| 97 | 4,701 | 9,893 | 8,089 | 8,923 | 12,597 | 10,390 |
|  | 3,774 | 7,944 | 6,495 | 7,165 | 10,115 | 8,343 |

[^3]APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background, Normalization, Atienuation)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | I4C | I2C | I4E | I2E | I3E | IIE |
| 114 | 4,793 | 11,113 | 8,104 | 9,797 | 12,691 | 11,215 |
|  | 3,848 | 8,923 | 6,507 | 7,866 | 10,190 | 9,005 |
| 136 | 5,245 | 12,374 | 9,440 | 11,212 | 13,240 | 12,535 |
|  | 4,211 | 9,936 | 7,580 | 9,003 | 10,631 | 10,065 |
| 158 | 5,906 | 12,732 | 10,597 | 11,792 | 13,326 | 12,882 |
|  | 4,742 | 10,223 | 8,509 | 9,468 | 10,700 | 10,344 |
| 184 | 6,194 | 13,654 | 11,909 | 12,588 | 13,523 | 12,679 |
|  | 4,973 | 10,964 | 9,562 | 10,108 | 10,858 | 10,181 |
| 233 | 7,248 | 14,337 | 12,484 | 12,772 | 13,300 | 13,365 |
|  | 5,820 | 11,512 | 10,024 | 10,255 | 10,679 | 10,732 |
| 280 | 7,346 | 14,838 | 13,368 | 12,780 | 13,039 | 14,574 |
|  | 5,898 | 11,914 | 10,734 | 10,262 | 10,470 | 11,702 |
| 332 | 8,141 | 15,403 | 13,808 | 13,452 | 13,654 | 14,531 |
|  | 6,537 | 12,368 | 11,087 | 10,801 | 10,964 | 11,668 |
| 375 | 8,016 | 15,007 | 17.511 | 12,953 | 13,603 | 14,331 |
|  | 6,436 | 12,050 | 14,061 | 10,401 | 10,923 | 11,507 |
| 421 | 8,623 | 14,525 | 14,609 | 13,390 | 13,283 | 14,589 |
|  | 6,924 | 11,663 | 11,731 | 10,752 | 10,666 | 11,714 |

LEGEND: Above Number - cpm corrected for background
Below Number - cpm with additional correction for normalization and attenuation.

APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Correction for Background, Normalization, Attenuation)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |  |
| TIME | I4C | I2C | I4E | I2E | I3E | IIE |
| 472 | 8,729 | 15,146 | 14,951 | 12,985 | 13,805 | 14,757 |
|  | 7,009 | 12,162 | 12,005 | 10,426 | 11,085 | 11,849 |
| 543 | 8,789 | 15,170 | 15,000 | 13,162 | 13,423 | 14,574 |
|  | 7,057 | 12,181 | 12,045 | 10,569 | 10,778 | 11,702 |
| 568 | 8,649 | 15,252 | 14,657 | 13,622 | 13,595 | 14,518 |
|  | 6,945 | 12,247 | 11,769 | 10,938 | 10,916 | 11,657 |
| 736 | 8,935 | 15,221 | 15,113 | 12,960 | 12,069 | 15,126 |
|  | 7,174 | 12,222 | 12,135 | 10,406 | 9,691 | 12,146 |
| LEGEND: | Above Number - cpm corrected for background |  |  |  |  |  |

APPENDIX B-12 (CONTINUED)
SEDIMENT COMPARTMENT (Second Run, Tank I, Decay Correction, Geometric Average of Area, Milligrams Selenium)

| HOURS | H |  | R |  | C |  | E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED <br> TIME | AVERAGE cpm | FRACTION $\mathrm{cpm}$ | AVERAGE cpm | FRACTION cpm | AVERAGE cpm | FRACTION cpm | AVERAGE <br> cpm | $\begin{gathered} \text { FRACTION } \\ \hline \end{gathered}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4.25 | 533 | 235 | 581 | 66 | 804 | 103 | 739 | 230 |
| 13 | 1,483 | 654 | 1,693 | 193 | 1,281 | 165 | 1,549 | 482 |
| 25 | 2,379 | 1,049 | 2,757 | 314 | 2,101 | 270 | 2,493 | 775 |
| 40 | 3,964 | 1,747 | 4,536 | 518 | 3,131 | 403 | 3,676 | 1,143 |
| 50 | 4,076 | 1,796 | 4,471 | 510 | 3,667 | 472 | 4,611 | 1,434 |
| 63 | 5,311 | 2,341 | 6,922 | 790 | 4,337 | 559 | 5,511 | 1,714 |
| 72 | 5,869 | 2,587 | 7,610 | 869 | 4,692 | 604 | 6,280 | 1,953 |
| 82 | 6,506 | 2,867 | 8,439 | 963 | 5,298 | 682 | 7,132 | 2,218 |
| 97 | 7,160 | 3,156 | 9,581 | 1,094 | 5,859 | 755 | 8,029 | 2,498 |
| 114 | 7,837 | 3,454 | 10,167 | 1,161 | 6,386 | 823 | 8,942 | 2,780 |
| 136 | 9,078 | 4,001 | 11,136 | 1,271 | 7,074 | 911 | 9,320 | 2,899 |
| 158 | 11,322 | 4,991 | 10,852 | 1,239 | 7,483 | 964 | 9,755 | 3,035 |
| 184 | 10,882 | 4,796 | 11,137 | 1,271 | 7,968 | 1,027 | 10,177 | 3,166 |
| 233 | 10,710 | 4,721 | 11,672 | 1,332 | 8,666 | 1,117 | 10,423 | 3,242 |
| 280 | 10,802 | 4,761 | 11,453 | 1,365 | 8,906 | 1,148 | 10,792 | 3,357 |
| 332 | 10,664 | 4,700 | 12,008 | 1,371 | 9,452 | 1,218 | 11,130 | 3,462 |
| 375 | 11,257 | 4,962 | 12,006 | 1,371 | 9,243 | 1,191 | 11,723 | 3,647 |
| 421 | 9,908 | 4,367 | 11,920 | 1,361 | 9,293 | 1,197 | 11,216 | 3,489 |
| 472 | 10,363 | 4,568 | 11,924 | 1,361 | 9,585 | 1,235 | 11,341 | 3,528 |
| 543 | 10,958 | 4,830 | 12,025 | 1,373 | 9,619 | 1,239 | 11,273 | 3,507 |
| 568 | 9,885 | 4,357 | 11,965 | 1,366 | 9,596 | 1,236 | 11,320 | 3,521 |
| 736 | 10,378 | 4,574 | 12,258 | 1,399 | 9,698 | 1,250 | 11,095 | 3,451 |

## APPENDIX B-12 (CONTINUED)

SEDIMENT COMPARTMENT (Second Run, Tank I, Decay Correction, Geometric Average of Area, Milligrams Selenium)

| HOURS <br> ELAPSED <br> TIME | IDEALIZED CONTAINER SUM OF FRACTIONS | COMPARTMENT cpm | COMPARTMENT mg Se | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 4.25 | 634 | 421,538 | . 1966 | . 1966 |
| 13 | 1,494 | 993,341 | . 4634 | . 4634 |
| 25 | 2,408 | 1,601,049 | . 7469 | . 7469 |
| 40 | 3,811 | 2,533,886 | 1.1821 | 1.195 |
| 50 | 4,212 | 2,800,506 | 1.306 | 1.321 |
| 63 | 5,404 | 3,593,051 | 1.676 | 1.695 |
| 72 | 6,013 | 3,997,968 | 1.865 | 1.886 |
| 82 | 6,730 | 4,474,692 | 2.087 | 2.111 |
| 97 | 7,503 | 4,988,650 | 2.327 | 2.381 |
| 114 | 8,218 | 5,464,045 | 2.549 | 2.608 |
| 136 | 9,082 | 6,038,508 | 2.817 | 2.916 |
| 158 | 10,229 | 6,801,133 | 3.172 | 3.283 |
| 184 | 10,260 | 6,821,745 | 3.182 | 3.332 |
| 233 | 10,412 | 6,922,808 | 3.229 | 3.420 |
| 280 | 10,631 | 7,068,418 | 3.297 | 3.533 |
| 332 | 10,751 | 7,148,205 | 3.334 | 3.617 |
| 375 | 11,171 | 7,427,457 | 3.465 | 3.797 |
| 421 | 10,414 | 6,924,138 | 3.230 | 3.578 |
| 472 | 10,692 | 7,108,976 | 3.316 | 3.717 |
| 543 | 10,949 | 7,279,852 | 3.396 | 3.864 |
| 568 | 10,480 | 6,968,020 | 3.250 | 3.731 |
| 736 | 10,674 | 7,097,008 | 3.311 | 3.934 |

APPENDIX B-13
WATER COMPARTMENT (Second Run, Tank II)

| $\begin{aligned} & \text { HOURS } \\ & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | FILTER NUMBER | RAW COUNT cpm 20 ml SAMPLE | BACKGROUND CORRECTED cpm | DECAY CORRECTED cpm | $\begin{gathered} \left(\begin{array}{l} \mathrm{x} \quad .4666 \times 10^{-6} \end{array}\right) \\ \mathrm{mg} \mathrm{Se} \\ 20 \mathrm{ml} \text { SAMPLE } \\ \hline \end{gathered}$ | COMPARTMENT <br> mg Se <br> (SAMPLE <br> $\times 3,000)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 1,418 ten* | - | - | - | - |
|  | 4 | 43,684 ten* | 4,225 | 4,225 | 1,971 | 5.91 |
| $.25$ | 6 | 4,357 | 4,201 | 4,201 | 1,960 | 5.88 |
|  |  | 4,331 |  |  |  |  |
| . 5 | 8 | 44,591 ten* | 4,316 | 4,316 | 2,013 | 6.04 |
| 1 | 10 | 44,035 ten* | 4,260 | 4,260 | 1,987 | 5.96 |
| 3 | 12 | 43,260 ten* | 4,183 | 4,183 | 1,951 | 5.85 |
| 12 | 14 | 41,847 ten* | 4,041 | 4,041 | 1,885 | 5.65 |
| 18 | 16 | 4,005 | 3,863 | 3,863 | 1,802 | 5.41 |
|  |  | 4,006 |  |  |  |  |
| 23.5 | 18 | 3,733 | 3,680 | 3,680 | 1,717 | 5.15 |
|  |  | 3,913 |  |  |  |  |
| 37 | 20 | 3,601 | 3,439 | 3,439 | 1,604 | 4.81 |
|  |  | 3,564 |  |  |  |  |
| 48 | 22 | 3,229 | 3,091 | 3,126 | 1,459 | 4.37 |
|  |  | 3,239 |  |  |  |  |
| 61 | 24 | 3,115 | 2,948 | 2,982 | 1,391 | 4.18 |
|  |  | 3,068 |  |  |  |  |
| 70.5 | 26 | 2,466 | 2,299 | 2,326 | 1,085 | 3.26 |
|  |  | 2,419 |  |  |  |  |
| 81 | 28 | 2,672 | 2,510 | 2,539 | 1,185 | 3.56 |
|  |  | 2,635 |  |  |  |  |

* ten minute count

```
APPENDIX B-13 (CONTINUED)
```

WATER COMPARTMENT (Second Run, Tank II)

| $\qquad$ | FILTER NUMBER | RAW COUNT cpm 20 ml SAMPLE | BACKGROUND CORRECTED cpm | DECAY CORRECTED cpm | $\begin{gathered} \left(x .4666 \mathrm{x} 10^{-6}\right) \\ \mathrm{mg} \mathrm{Se} \\ 20 \mathrm{mI} \text { SAMPLE } \\ \hline \end{gathered}$ | $\begin{gathered} \text { COMPARTMENI } \\ \text { mg Se } \\ \text { (SAMPLE } \\ \times 3,000 \text { ) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 96 | 30 | 2,440 | 2,333 | 2,387 | 1,114 | 3.34 |
|  |  | 2,421 |  |  |  |  |
|  |  | 2,565 |  |  |  |  |
| 134 | 34 | 1,721 | 1,562 | 1,598 | 746 | 2.24 |
|  |  | 1,688 |  |  |  |  |
| 157 | 36 | 1,472 | 1,305 | 1,351 | 630 | 1.89 |
|  |  | 1,423 |  |  |  |  |
| 183 | 38 | 1,192 | 1,026 | 1,062 | 495 | 1.49 |
|  |  | 1,145 |  |  |  |  |
| 232 | 40 | 789 | 652 | 683 | 318 | 0.956 |
|  |  | 798 |  |  |  |  |
| 256 | 42 | 600 | 459 | 486 | 226 | 0.681 |
| 280 | 44 | 464 | 351 | 371 | 173 | 0.520 |
|  |  | 520 |  |  |  |  |
| 303 | 46 | 488 | 374 | 401 | 187 | 0.562 |
|  |  | 543 |  |  |  |  |
| 353 | 48 | 5,236 ten* | 383 | 418 | 195 | 0.585 |
| 400 | 50 | 4,651 ten* | 325 | 358 | 167 | 0.501 |
| 421 | 56 | 4,633 | 323 | 356 | 166 | 0.499 |

APPENDIX B-13 (CONTINUED)
WATER COMPARTMENT (Second Run, Tank II)

| HOURS ELAPSED TIME | FILTER NUMBER | RAW COUNT cpm 20 ml SAMPLE | BACKGROUND CORRECTED cpm | DECAY CORRECTED cpm | $\begin{gathered} \left(\mathrm{x} \cdot 4666 \mathrm{x} 10^{-6}\right) \\ \mathrm{mg} \mathrm{Se} \\ 20 \mathrm{ml} \text { SAMPLE } \\ \hline \end{gathered}$ | $\begin{gathered} \text { COMPARTMENI } \\ \text { mg Se } \\ \text { (SAMPLE } \\ \times 3,000) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 447 | 58 | $\begin{aligned} & 422 \\ & 473 \end{aligned}$ | 307 | 339 | 158 | 0.475 |
| 472 | 60 | 4,556* | 314 | 350 | 163 | 0.491 |
| 496 | 62 |  | 323 | 364 | 170 | 0.510 |
| 520 | 64 | 432 | 282 | 318 | 148 | 0.446 |
| 568 | 66 | $\begin{aligned} & 418 \\ & 397 \end{aligned}$ | 268 | 308 | 143 | 0.431 |
| 617 | 68 | $\begin{aligned} & 380 \\ & 376 \end{aligned}$ | 239 | 274 | 128 | 0.384 |
| 641 | 70 | $400$ $371$ | 254 | 295 | 137 | 0.413 |
| 720 | 72 | $\begin{aligned} & 384 \\ & 390 \end{aligned}$ | 249 | 295 | 138 | 0.414 |
| 736 | 74 | $\begin{aligned} & 397 \\ & 389 \end{aligned}$ | 255 | 303 | 141 | 0.424 |

APPENDIX B-13 (CONTINUED)
WATER COMPARTMENT (Second Run, Tank II)

| HOURS ELAPSED TIME | FILTER NUMBER | RAW COUNT CPm 20 ml SAMPLE | BACKGROUND CORRECTED cpm | DECAY CORRECTED cpm | $\left.\begin{array}{c} (x .4666 ~ x ~ \\ \mathrm{mg} \mathrm{Se} \\ 200^{-6} \end{array}\right)$ | $\begin{gathered} \text { COMPARTMENT } \\ \text { mg Se } \\ \text { (SAMPLE } \\ \times 3,000) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 830 | 78 | $\begin{aligned} & 396 \\ & 398 \end{aligned}$ | 260 | 318 | 148 | 0.445 |
| 904 | 82 | 3,652 ten* | 228 | 283 | 132 | 0.397 |
| 928 | 84 | $\begin{aligned} & 364 \\ & 354 \end{aligned}$ | 223 | 277 | 129 | 0.388 |
| 952 | 86 | $\begin{aligned} & 390 \\ & 344 \end{aligned}$ | 222 | 277 | 129 | 0.387 |
| 1,024 | 88 | $\begin{aligned} & 346 \\ & 356 \end{aligned}$ | 215 | 270 | 126 | 0.379 |

* ten minute count

APPENDIX B-14
SUSPENDED PARTICULATE COMPARTMENT (Second Run, Tank II)

| HOURS ELAPSED TIME | FILTER NUMBER | RAW 10 MIN. COUNT RATE 40 ml | BACKGROUND CORRECTED cpm | DECAY CORRECTED cpm | cpm <br> NORMALIZED <br> (x.9055) | mg Se PER 40 ml SAMPLE | COMPARTMENT mg Se |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 1,274 | 0 | 0 | 0 | 0 | 0 |
| . 083 | 4 | 1,745 | 16 | 18 | 16 | 8 | . 0114 |
| . 25 | 6 | 1,665 | 8 | 9 | 8 | 4 | . 0057 |
| . 5 | 8 | 1,685 | 10 | 11 | 10 | 5 | . 0069 |
| 1 | 10 | 1,611 | 2 | 2 | 2 | 1 | . 0012 |
| 3 | 12 | 1,670 | 8 | 9 | 8 | 4 | . 0057 |
| 12 | 14 | 1,795 | 21 | 23 | 21 | 10 | . 0145 |
| 18 | 16 | 1,723 | 13 | 14 | 13 | 6 | . 0088 |
| 23.5 | 18 | 1,826 | 24 | 26 | 24 | 11 | . 0164 |
| 37 | 20 | 2;081 | 49 | 54 | 49 | 23 | . 0342 |
| 48 | 22 | 2,272 | 68 | 75 | 68 | 32 | . 0475 |
| 61 | 24 | 2,627 | 104 | 115 | 104 | 49 | . 0728 |
| 70.5 | 26 | 3,033 | 144 | 159 | 144 | 67 | . 1007 |
| 81 | 28 | 3,096 | 151 | 167 | 151 | 71 | . 1058 |
| 96 | 30 | 3,438 | 185 | 204 | 185 | 86 | . 1292 |
| 113 | 32 | 3,581 | 199 | 219 | 198 | 93 | . 1387 |
| 134 | 34 | 3,999 | 241 | 266 | 241 | 112 | . 1685 |
| 157 | 36 | 4,394 | 280 | 309 | 280 | 131 | . 1958 |
| 183 | 38 | 4,767 | 318 | 351 | 318 | 148 | . 2224 |
| 232 | 40 | 6,135 | 455 | 502 | 455 | 212 | . 3181 |
| 256 | 42 | 4,717 | 313 | 345 | 312 | 146 | . 2186 |
| 280 | 44 | 5,099 | 351 | 387 | 350 | 164 | . 2452 |

APPENDIX B-14 (CONTINUED)
SUSPENDED PARTICULATE COMPARTMENT (Second Run, Tank II)

| $\qquad$ | FILTER NUMBER | RAW 10 MIN. COUNT RATE $\qquad$ 40 ml | BACKGROUND CORRECTED cpm | $\qquad$ | NORMALIZED $(x .9055)$ | mg Se PER 40 ml SAMPLE | COMPART- <br> MENT mg Se |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 303 | 46 | 5,359 | 377 | 416 | 377 | 176 | . 2636 |
| 353 | 48 | 5,147 | 356 | 393 | 356 | 166 | . 2490 |
| 400 | 50 | 6,146 | 456 | 503 | 455 | 212 | . 3187 |
| 421 | 56 | 5,265 | 368 | 415 | 376 | 175 | . 2630 |
| 447 | 58 | 4,721 | 317 | 358 | 324 | 151 | . 2268 |
| 472 | 60 | 4,778 | 323 | 365 | 331 | 154 | . 2313 |
| 496 | 62 | 4,394 | 286 | 325 | 294 | 137 | . 2059 |
| 520 | 64 | 4,608 | 307 | 351 | 318 | 148 | .2224 ↔ |
| 568 | 66 | 4,192 | 266 | 310 | 281 | 131 | . 1964 |
| 61.7 | 68 | 3,516 | 198 | 231 | 209 | 98 | . 1463 |
| 641 | 70 | 2,891 | 136 | 158 | 143 | 67 | . 1001 |
| 720 | 72 | 3,635 | 211 | 258 | 234 | 109 | . 1635 |
| 736 | 74 | 3,259 | 173 | 212 | 192 | 90 | . 1343 |
| 792 | 76 | 2,958 | 143 | 175 | 158 | 74 | . 1109 |
| 830 | 78 | 2,681 | 120 | 149 | 135 | 63 | . 0944 |
| 904 | 82 | 2,561 | 108 | 141 | 128 | 60 | . 0893 |
| 928 | 84 | 2,517 | 104 | 136 | 123 | 58 | . 0862 |
| 952 | 86 | 2,432 | 95 | 124 | 112 | 52 | . 0785 |
| 1,024 | 88 | 2,343 | 80 | 104 | 94 | 44 | . 0659 |

## APPENDIX B-15

DATA FISH COMPARTMENT (Second Run, Tank II)

| $\qquad$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FISH NUMBER |  |  |  |
|  | 1 | 2 | 3 | 4 |
| 0 | 617 | 696 | 681 | 857 |
|  | 542 | 679 | 777 | 753 |
| 2 | 634 | 766 | 778 | 915 |
|  | 654 | 761 | 791 | 921 |
| 6.5 | 799 | 794 | 880 | 1,023 |
|  | 781 | 790 | 911 | 1,017 |
| 23 | 1,023 | 1,278 | 1,275 | 1,645 |
|  | 1,024 | 1,199 | 1,274 | 1,700 |
| 37 | 1,330 | 1,485 | 1,533 | 2,041 |
|  | 1,332 | 1,447 | 1,491 | 1,959 |
|  |  |  | 1,546 |  |
| 47.5 | 1,705 | 1,808 | 2,179 | 2,836 |
|  | 1,745 | 1,758 | 2,038 | 2,755 |
| 62 | 1,889 | 2,234 | 2,533 | 2,857 |
|  | 1,957 | 2,102 | 2,617 | 2,942 |
| 71 | 2,295 | 2,316 | 2,555 | 3,377 |
|  | 2, 285 | 2,385 | 2,696 | 3,193 |
| 81 | 2,448 | 2,668 | 2,773 | 3,321 |
|  | 2,408 | 2,715 | 2,717 | 3,315 |
| 96 | 2,975 | 3,476 | 3,550 | 4,117 |
|  | 2,940 | 3,563 | 3,613 | 3,958 |
| 113 | 3,763 | 4,303 | 4,714 | 5,483 |
|  | 3,737 | 4,461 | 4,562 | 4,808 |
| 134 | 4,839 | 5,439 | 5,688 | 7,389 |
|  | 4,749 | 5,326 | 5,580 | 7,442 |
|  |  |  | 5,628 |  |
| 160 | 6,186 | 6,741 | 8,365 | 8,975 |
|  | 6,194 | 6,763 | 8,483 | 9,033 |
| 183 | 7,911 | 7,877 | 9,841 | 11,952 |
|  | 7,780 | 7,937 | 9,601 | 11,507 |
| 232 | 10,863 | 11,558 | 11,842 | 14,071 |
|  | 10,782 | 11,517 | 11,909 | 14,046 |
| 256 | 9,915 | 10,394 | 11,010 | 14,238 |
|  | 9,845 | 10,436 | 10,903 | 13,843 |
|  |  |  |  | 13,903 |

APPENDIX B-15 (CONTINUED)
DATA FISH COMPARTMENT (Second Run, Tank II)

| $\begin{aligned} & \text { HOURS } \\ & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | FISH NUMBER |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 303 | 10,536 | 10,569 | 11,615 | 14,607 |
|  | 10,665 | 11,004 | 12,004 | 14,607 |
|  |  | 11,064 | 12,100 |  |
|  |  | 10,764 |  |  |
| 353 | 11,018 | 10,894 | 11,322 | 15,344 |
|  | 10,874 | 11,059 | 11,363 | 15,156 |
| 400 | 10,266 | 16,482 | 11,238 | 14,668 |
|  | 10,339 | 10,375 | 11,186 | 14,146 |
| 447 | 10,437 | 11,380 | 11,315 | 15,466 |
|  | 10,407 | 11,177 | 11,346 | 15,469 |
| 518 | 8,637 | 9,851 | 10,036 | 13,438 |
|  | 8,476 | 10,035 | 10,410 | 13,246 |
| 568 | 8,299 | 9,138 | 10,082 | 12,392 |
|  | 8,267 | 9,070 | 10,303 | 12,270 |
| 641 | 7,584 | 8,263 | 10,005 | 12,120 |
|  | 7,854 | 8,029 | 9,996 | 11,856 |
| 760 | 7,176 | 7,834 | 9,371 | 11,091 |
|  |  | 7,769 |  | 10,683 |
| 830 | 6,521 | 7,186 | 9,217 | 9,948 |
|  | 6,464 | 7,109 | 9,438 | 10,039 |
| 880 | 6,262 | 6,508 | 9,474 | 9,700 |
|  | 6,450 | 6,514 | 9,495 | 9,603 |
| 1,024 | 5,146 | 5,539 | 8,126 | 9,264 |
|  | 5,287 | 5,374 | 8,265 | 9,239 |

APPENDIX B-15 (CONTINUED)
DATA FISH COMPARTMENT (Second Run, Tank II)

| HOURS ELAPSED TIME |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 2 | 308 | 308 | 143 | . 00010 |
| 6.5 | 696 | 696 | 324 | . 00022 |
| 23 | 2,408 | 2,408 | 1,123 | . 00079 |
| 37 | 3,519 | 3,519 | 1,642 | . 00115 |
| 47.5 | 5,638 | 5,703 | 2,661 | . 00187 |
| 62 | 6,791 | 6,870 | 3,205 | . 00226 |
| 71 | 7,777 | 7,867 | 3,670 | . 00259 |
| 81 | 8,408 | 8,506 | 3,968 | . 00280 |
| 96 | 11,349 | 11,613 | 5,418 | . 00382 |
| 113 | 15,168 | 15,522 | 7,242 | . 00511 |
| 134 | 20,477 | 20,954 | 9,777 | . 00690 |
| 160 | 27,649 | 28,621 | 13,354 | . 00942 |
| 183 | 34,482 | 35,694 | 16,655 | . 01175 |
| 232 | 45,649 | 47,800 | 22,303 | . 01574 |
| 256 | 42,577 | 45,099 | 21,043 | . 01485 |
| 303 | 45,322 | 48, 562 | 22,659 | . 01599 |
| 353 | 45,898 | 50,028 | 23,343 | . 01648 |
| 400 | 43,738 | 47,958 | 22,377 | . 01579 |
| 447 | 45,930 | 50,945 | 23,771 | . 01678 |
| 518 | 39,521 | 44,599 | 20.809 | . 01469 |
| 568 | 37,391 | 42,562 | 19,859 | . 01402 |
| 641 | 35,381 | 41,091 | 19,173 | . 01353 |
| 760 | 32,832 | 39,020 | 18,207 | . 01285 |
| 830 | 30,581 | 37,299 | 17,404 | . 01228 |
| 880 | 29,675 | 36,614 | 17,084 | . 01206 |
| 1,024 | 25,827 | 32,796 | 15,302 | . 01080 |

APPENDIX B-16
SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |
| TIME | II3H | II2H | IIIH | II3R | IIIR |
| $\begin{aligned} & 0 \\ & 5.5 \end{aligned}$ | 0 | 0 | 0 | 0 | 0 |
|  | 1,338 | 2,860 | 3,204 | 1,354 | 1,176 |
|  | 1,308 | 2,990 | 3,262 | 1,442 | 1,144 |
| 13.5 | 2,000 | 4,756 | 5,065 | 2,200 | 1,612 |
|  | 2,076 | 4,903 | 5,040 | 2,213 | 1,571 |
|  | 2,059 |  |  |  |  |
| 26 | 3,077 | 7,886 | 7.758 | 3,577 | 2,212 |
|  | 2,984 | 7,858 | 7,858 | 3,605 | 2,201 |
| 41 | 4,699 | 12,848 | 10,811 | 5,353 | 2,912 |
|  | 4,804 | 13,010 | 11,110 | 3,250 | 2,974 |
|  | 4,804 |  |  |  |  |
| 51 | 5,674 | 15,724 | 12,705 | 6,292 | 3,220 |
|  | 5,679 | 15,903 | 12,598 | 6,315 | 3,237 |
| 64 | 6,584 | 17,780 | 15,101 | 7,549 | 3,865 |
|  | 6,554 | 17,861 | 14,886 | 7,668 | 3,873 |
| 73 | 7,450 | 18,393 | 16,170 | 8,454 | 4,127 |
|  | 7,451 | 18,668 | 16,345 | 8,441 | 4,225 |
| 83 | 8,096 | 19,713 | 18,281 | 9,316 | 4,703 |
|  | 8,380 | 19,311 | 18,534 | 9,402 | 4,795 |
|  | 8,490 |  |  |  |  |
| 98 | 9,851 | 20,073 | 21,322 | 10,634 | 5,312 |
|  | 9,943 | 20,426 | 21,732 | 10,554 | 5,205 |
| 115 | 11,290 | 21,509 | 21,777 | 11,527 | 5,517 |
|  | 11,329 | 21,549 | 21,551 | 11,764 | 5,681 |

$$
\begin{aligned}
& \text { APPENDIX B-16 (CONTINUED) } \\
& \text { SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II) }
\end{aligned}
$$

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | II3H | II2H |  |  |  |
|  |  |  | IIIH | II3R | IIIR |
| 136 | 14,514 | 23,157 | 26,763 | 13,649 | 6,583 |
|  | 14,659 | 23,071 | 27,034 | 13,795 | 6,620 |
| 159 | 16,707 | 23,269 | 29,339 | 15,287 | 7,473 |
|  | 16,704 | 23,448 | 29,326 | 15,190 | 7,315 |
| 185 | 18,847 | 23,550 | 30,441 | 16,824 | 7,327 |
|  | 19,050 | 23,793 | 30,242 | 16,802 | 7,214 |
| 234 | 21,806 | 23,976 | 36,478 | 19,295 | 8,413 |
|  | 21,878 | 23,791 | 36,480 | 19,534 | 8,397 |
| 280 | 22,634 | 22,662 | 31,466 | 19,859 | 8,344 |
|  | 22,665 | 22,627 | 32,010 | 19,989 | 8,306 |
| 332 | 23,325 | 24,241 | 39,981 | 20,045 | 8,669 |
|  | 23,338 | 24,419 | 40,304 | 20,560 | 8,696 |
| 375 | 23,048 | 25,565 | 37,105 | 20,053 | 8,329 |
|  | 23,313 | 25,640 | 37,502 | 20,249 | 8,508 |
| 421 | 23,347 | 25,898 | 37,559 | 20,037 | 8,400 |
|  | 23,242 | 26,162 | 37,540 | 20,154 | 8,296 |
| 472 | 23,383 | 25,206 | 37,758 | 19,981 | 8,348 |
|  | 23,108 | 25,347 | 37,634 | 19,917 | 8,375 |
| 543 | 22,582 | 24,137 | 37,386 | 19,648 | 8,193 |
|  | 22,902 | 23,952 | 37,189 | 19,781 | 7,948 |
|  |  |  |  |  | 8,140 |

## APPENDIX B-16 (CONTINUED) <br> SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |
| TIME | II 3H | II 2 H | IIIH | II3R | IIIR |
| 568 | 22,332 | 24,246 | 37,508 | 19,870 | 8,054 |
|  | 22,666 | 24,102 | 37,303 | 19,768 | 8, 155 |
| 617 | 22,185 | 24,592 | 35,918 | 19,437 | 8,147 |
|  | 22,142 | 24,461 | 36,057 | 19,442 | 8,042 |
| 880 | 22,269 | 23,285 | 32,637 | 18,543 | 7,928 |
|  | 22. 298 | 23,322 | 32,799 | 18,674 | 7.899 |
| , 024 |  |  |  |  |  |

APPENDIX B-16 (CONTINUED)
SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II)

| $\begin{aligned} & \text { HOURS } \\ & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | II4C | II2C | II4E | II2E | II3E | IIIE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.5 | 13,670 ten* | 1,563 | 1,380 | 1,452 | 1,562 | 1,699 |
|  |  | 1,497 | 1,378 | 1,436 | 1,507 | 1,620 |
| 13.5 | 1,772 | 2,187 | 2,083 | 2,268 | 2,206 | 2,426 |
|  | 1,904 | 2,171 | 2,160 | 2,227 | 2,163 | 2,466 |
| 26 | 2,441 | 3,075 | 3,000 | 3,294 | 3,211 | 3,561 |
|  | 2,446 | 3,069 | 3,128 | 3,344 | 3,040 | 3,553 |
| 41 | 3,241 | 4,224 | 4,005 | 5,254 | 4,550 | 5,285 |
|  | 3,322 | 4,285 | 4,095 | 5,076 | 4,614 | 5,368 |
| 51 | 3,581 | 5,159 | 5,055 | 6,649 | 5,565 | 6,185 |
|  | 3,520 | 5,198 | 4,862 | 6,671 | 5,625 | 6,128 |
| 64 | 3,945 | 5,087 | 6,056 | 6,715 | 6,463 | 7,303 |
|  | 3,825 | 5,258 | 5,940 | 6,721 | 6,634 | 7,397 |
| 73 | 4,235 | 5,981 | 6,766 | 6,933 | 7,248 | 8,590 |
|  | 4,058 | 6,117 | 6,771 | 6,948 | 7,166 | 8,434 |
|  |  |  |  | 6,823 |  |  |
|  |  |  |  | 7,035 |  |  |
| 83 | $4,803$ | $6,701$ | 7,499 | 7,878 | 8,019 | 8,736 |
|  | 4,735 | 6,810 | 7,555 | 7,974 | 8,047 | 9,772 |
|  |  |  |  |  |  | 9,798 |

* ten minute count


## APPENDIX B-16 (CONTINUED)

SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED TIME |  |  |  |  |  |  |
|  | II4C | II2C | II4E | II2E | II3E | IIIE |
| 98 | 4,739 | 7,566 | 8,668 | 9,343 | 9,369 | 11,328 |
|  | 4,754 | 7,829 | 8,662 | 9,364 | 9,355 | 11,044 |
| 115 | 5,407 | 8,638 | 9,431 | 11,078 | 9,841 | 12,338 |
|  | 5,272 | 8,646 | 9,492 | 11,076 | 10,100 | 12,698 |
| 136 | 6,264 | 10,427 | 10,338 | 13,330 | 11,859 | 14,290 |
|  | 6,948 | 10,567 | 10,516 | 13,519 | 11,548 | 14,510 |
| 159 | 6,845 | 12,367 | 11,182 | 16,036 | 13,328 | 15,933 |
|  | 6,727 | 12,296 | 11,138 | 15,930 | 13,302 | 15,801 |
| 185 | 7,689 | 13,507 | 12,494 | 18,160 | 14,883 | 17,813 |
|  | 7,606 | 13,622 |  | 18,090 | 14,676 | 18,139 |
| 234 | 8,472 | 15,574 | 12,912 | 21,724 | 16,526 | 19,682 |
|  | 8,566 | 15,770 | 13,336 | 22,279 | 16,355 | 19,664 |
| 280 | 8,659 | 15,790 | 14,379 | 22,164 | 17,214 | 19,789 |
|  | 8,346 | 15,614 | 14,285 | 22,340 | 17,148 | 19,880 |
| 332 | 8,250 | 14,684 | 15,009 | 22,791 | 16,894 | 19,391 |
|  | 8,213 | 14,604 | 14,809 | 22,824 | 16,511 | 19,487 |
| 375 | 8,229 | 14,388 | 13,887 | 21,925 | 16,501 | 18,890 |
|  | 8,272 | 14,028 | 13,864 | 22,102 | 16,548 | 19,188 |
| 421 | 8,143 | 13,820 | 14,285 | 22,201 | 16,390 | 18,655 |
|  | 8,102 | 13,942 | 13,893 | 22,344 | 16,324 | 18,855 |

## APPENDIX B-16 (CONTINUED)

SEDIMENT COMPARTMENT RAW DATA CPM (Second Run, Tank II)


APPENDIX B-16 (CONTINUED)
SEDIMENT COMPARTMENT CPM (Second Run, Tank II) (Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | II3H | II2H | IIIH | II 3R | IIIR |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 5.5 | 712 | 1,298 | 1,639 | 853 | 666 |
|  | 571 | 1,042 | 1,316 | 684 | 534 |
| 13.5 | 1,434 | 3,202 | 3,458 | 1,661 | 1,097 |
|  | 1,151 | 2,571 | 2,777 | 1,334 | 881 |
| 26 | 2,419 | 6,245 | 6,214 | 3,046 | 1,712 |
|  | 1,942 | 5,014 | 4,989 | 2,445 | 1,375 |
| 41 | 4,172 | 11,302 | 9,366 | 4,756 | 2,449 |
|  | 3,350 | 9,075 | 7,521 | 3,819 | 1,966 |
| 51 | 5,071 | 14,204 | 11,075 | 5,763 | 2,739 |
|  | 4,072 | 11,406 | 8,893 | 4,628 | 2,199 |
| 64 | 5,964 | 16,211 | 13,417 | 7,068 | 3,380 |
|  | 4,789 | 13,017 | 10,774 | 5,676 | 2,714 |
| 73 | 6,845 | 16,921 | 14,681 | 7,907 | 3,687 |
|  | 5,496 | 13,587 | 11,789 | 6,349 | 2,960 |
| 83 | 7,717 | 17,903 | 16,831 | 8,819 | 4,260 |
|  | 6,196 | 14,376 | 13,515 | 7,081 | 3,420 |

LEGEND: Above Number - cpm corrected for all background.
Below Number - cpm normalized, corrected for geometry.

SEDIMENT COMPARTMENT CPM (Second Run, Tank II)
(Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS <br> ELAPSED |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | II 3 H | II2H | IIIH | II3R | IIIR |
| 98 | 9,298 | 18,657 | 19,967 | 10,059 | 4,773 |
|  | 7,466 | 14,981 | 16,033 | 8,077 | 3,833 |
| 115 | 10,710 | 19,937 | 20,104 | 11,110 | 5,114 |
|  | 8,600 | 16,009 | 16,143 | 8,921 | 4,106 |
| 136 | 13,992 | 21,539 | 25, 355 | 13,192 | 6,121 |
|  | 11,235 | 17,295 | 20,360 | 10,593 | 4,915 |
| 159 | 16,111 | 21,781 | 27,789 | 14,708 | 6,914 |
|  | 12,937 | 17.490 | 22,314 | 11,810 | 5,551 |
| 185 | 18,360 | 22,113 | 28,814 | 16,288 | 6,794 |
|  | 14,743 | 17,757 | 23,138 | 13,079 | 5,455 |
| 234 | 21,254 | 22,325 | 34,952 | 18,889 | 7,929 |
|  | 17,066 | 17,927 | 28,066 | 15,168 | 6,366 |
| 280 | 22,067 | 21,103 | 36,800 | 19,404 | 7,853 |
|  | 17,720 | 16,946 | 29,551 | 15,581 | 6,305 |
| 332 | 22,754 | 22,805 | 38,648 | 19,787 | 8,214 |
|  | 18,271 | 18,312 | 31,034 | 15,889 | 6,596 |
| 375 | 22,608 | 24,093 | 35,825 | 19,640 | 7,954 |
|  | 18,154 | 19,347 | 28,767 | 15,770 | 6,387 |

LEGEND: Above Number - cpm corrected for all background.
Below Number - cpm normalized, corrected for geometry.

APPENDIX B-16 (CONTINUED)
SEDIMENT COMPARTMENT CPM (Second Run, Tank II)
(Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |
| TIME | II3H | II2H | IIIH | II3R | IIIR |
| 421 | 22,722 | 24,521 | 36,071 | 19,584 | 7,884 |
|  | 18,246 | 19,690 | 28,965 | 15,726 | 6,330 |
| 4.72 | 22,678 | 23,783 | 36,233 | 19,443 | 7,901 |
|  | 18,210 | 19,098 | 29,095 | 15,612 | 6,344 |
| 543 | 22,185 | 22,583 | 35,855 | 19,217 | 7,641 |
|  | 17,814 | 18,134 | 28,791 | 15,431 | 6,136 |
| 568 | 21,948 | 22,728 | 35,988 | 19,326 | 7,656 |
|  | 17,624 | 18,250 | 28,898 | 15,518 | 6,148 |
| 617 | 21,617 | 23,096 | 34,585 | 18,951 | 7,650 |
|  | 17,358 | 18,546 | 27,772 | 15,218 | 6,143 |
| 880 | 21,762 | 21,947 | 31, 389 | 18,141 | 7,488 |
|  | 17,475 | 17,623 | 25,205 | 14,567 | 6,013 |
| LEGEND: | Number <br> Number | $\begin{aligned} & \text { rected f } \\ & \text { malized, } \end{aligned}$ | ackgroun <br> for |  |  |

APPENDIX B-16 (CONTINUED)
SEDIMENT COMPARTMENT CPM (Second Run, Tank II)
(Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED TIME | II4C | II2C | II4E | II2E | II3E | IIIE |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.5 | 827 | 904 | 865 | 790 | 993 | 679 |
|  | 664 | 725 | 694 | 634 | 797 | 545 |
| 13.5 | 1,298 | 1,553 | 1,607 | 1,593 | 1,643 | 1,466 |
|  | 1,042 | 1,247 | 1,290 | 1,279 | 1,319 | 1,177 |
| 26 | 1,903 | 2,446 | 2,550 | 2,665 | 2,584 | 2,577 |
|  | 1,528 | 1,964 | 2,047 | 2,139 | 2,075 | 2,069 |
| 41 | 2,741 | 3,628 | 3,536 | 4,511 | 4,041 | 4,346 |
|  | 2,201 | 2,913 | 2,839 | 3,622 | 3,244 | 3,490 |
| 51 | 3,015 | 4,558 | 4,449 | 6,013 | 5,059 | 5,186 |
|  | 2,421 | 3,660 | 3,572 | 4,828 | 4,062 | 4,164 |
| 64 | 3,350 | 4,552 | 5,489 | 6,071 | 6,012 | 6,380 |
|  | 2,690 | 3,655 | 4,407 | 4,875 | 6,671 | 5,123 |
| 73 | 3,611 | 5,429 | 6,259 | 6,300 | 6,671 | 7,542 |
|  | 2,900 | 4,359 | 5,026 | 5,059 | 5,356 | 6,056 |
| 83 | 4,234 | 6,135 | 7,008 | 7,279 | 7,497 | 8,465 |
|  | 3,399 | 4,926 | 5,627 | 5,845 | 6,020 | 6,797 |

LEGEND: Above Number - cpm corrected for all background Below Number - cpm normalized, corrected for geometry.

APPENDIX B-16 (CONTINUED)
SEDIMENT COMPARTMENT CPM (Second Run, Tank II)
(Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | II4C | II2C | II4E | II2E | II3E | IIIE |
| 98 | 4,216 | 7,083 | 8,161 | 8,712 | 8,831 | 10,226 |
|  | 3,385 | 5,688 | 6,553 | 6,996 | 7,091 | 8,211 |
| 115 | 4,809 | 8,028 | 8,957 | 10,436 | 9,439 | 11,558 |
|  | 3,862 | 6,446 | 7,192 | 8,380 | 7,579 | 9,281 |
| 136 | 6,081 | 9,889 | 9,927 | 12,789 | 11,177 | 13,450 |
|  | 4,883 | 7,940 | 7,971 | 10,269 | 8,975 | 10,800 |
| 159 | 6,261 | 11,723 | 10,660 | 15,348 | 12,789 | 14,917 |
|  | 5,027 | 9,413 | 8,559 | 12,324 | 10,269 | 11,978 |
| 185 | 7,127 | 12,952 | 11,999 | 17,496 | 14,258 | 17,036 |
|  | 5,723 | 10,400 | 9,635 | 14,049 | 11,449 | 13,679 |
| 234 | 7.999 | 15,070 | 12,629 | 21,372 | 15,919 | 18,733 |
|  | 6,423 | 12,101 | 10,141 | 17,162 | 12,783 | 15,042 |
| 280 | 7,987 | 15,105 | 13,841 | 21,629 | 16,665 | 18,903 |
|  | 6,413 | 12,129 | 11,114 | 17,368 | 13,381 | 15,179 |
| 332 | 7,720 | 14,053 | 14,422 | 22,190 | 16,190 | 18,518 |
|  | 6,199 | 11,284 | 11,580 | 17,818 | 13,000 | 14,869 |
| 375 | 7,744 | 13,622 | 13,393 | 21,402 | 16,017 | 18,127 |
|  | 6,218 | 10,938 | 10,754 | 17,186 | 12,862 | 14,555 |

LEGEND: Above Number - cpm corrected for all background.
Below Number - cpm normalized, corrected for geometry.

## APPENDIX B-16 (CONTINUED)

SEDIMENT COMPARTMENT CPM (Second Run, Tank II)
(Corrected for Background, Normalized for Attenuation, Geometry)

| HOURS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELAPSED |  |  |  |  |  |  |
| TIME | II4C | II2C | II4E | II2E | II3E | IIIE |
| 421 | 7,616 | 13,295 | 13,607 | 21,661 | 15,850 | 17,843 |
|  | 6,116 | 10,675 | 10,926 | 17,394 | 12,727 | 14,327 |
| 472 | 7,617 | 12,837 | 13,357 | 21,162 | 15,669 | 17,691 |
|  | 6,116 | 10,308 | 10,725 | 16,993 | 12,582 | 14,205 |
| 543 | 7,615 | 12,729 | 12,789 | 20.769 | 14,894 | 17,185 |
|  | 6,114 | 10,221 | 10,269 | 16,677 | 11,959 | 13,799 |
| 568 | 7,488 | 12,403 | 14,088 | 20,658 | 15,078 | 16,690 |
|  | 6,013 | 9,959 | 11,313 | 16,588 | 12,108 | 13,402 |
| 617 | 7,521 | 12.248 | 14,238 | 20,245 | 15,043 | 16,843 |
|  | 6.039 | 9,835 | 11,433 | 16,256 | 12,079 | 13,525 |
| 880 | 7,355 | 12,195 | 14,253 | 19,313 | 14,384 | 16,257 |
|  | 5,906 | 9,792 | 11,445 | 15,508 | 11,550 | 13,054 |

LEGEND: Above Number - cpm corrected for all background. Below Number - cpm normalized, corrected for geometry.

APPENDIX B-16 (CONTINUED)
SEDIMEXT (Second Run, Tank II, cpm)
Decay Correction, Geometric Average, Mg Selenium

| HOURS ELAPSED TIME | H |  | R |  | C |  | E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVERAGE cpm | FRACTION cpm | AVERAGE cpm | $\begin{gathered} \text { FRACTION } \\ \text { cPm } \end{gathered}$ | AVERAGE cpm | FRACTION <br> cpm | AVERAGE cpm | FRACTION cpm |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.5 | 875 | 385 | 609 | 69 | 694 | 89 | 667 | 207 |
| 13.5 | 1,912 | 842 | 1,107 | 126 | 1,144 | 147 | 1,266 | 393 |
| 26 | 3,471 | 1,530 | 1,910 | 217 | 1,746 | 224 | 2,082 | 647 |
| 41 | 5,824 | 2,566 | 2,892 | 329 | 2,557 | 329 | 3,298 | 1,026 |
| 51 | 7,110 | 3,133 | 3,413 | 389 | 3,040 | 391 | 4,156 | 1,292 |
| 64 | 8,342 | 3,676 | 4,195 | 478 | 3,172 | 408 | 5,269 | 1,638 |
| 73 | 9,092 | 4,006 | 4,654 | 530 | 3,629 | 467 | 5,374 | 1,671 |
| 83 | 10,070 | 4,438 | 5,250 | 598 | 4,162 | 536 | 6,072 | 1,888 |
| 98 | 11,486 | 5,062 | 5,955 | 678 | 4,536 | 584 | 7,212 | 2,243 |
| 115 | 12,338 | 5,437 | 6,513 | 742 | 5,154 | 664 | 8,108 | 2,522 |
| 136 | 15,031 | 6,624 | 7,754 | 883 | 6,411 | 826 | 9,503 | 2,956 |
| 159 | 16,419 | 7,236 | 8,680 | 989 | 7,220 | 930 | 10,782 | 3,354 |
| 185 | 17,595 | 7,754 | 9,267 | 1,056 | 8,061 | 1,038 | 12,200 | 3,795 |
| 234 | 20,031 | 8,827 | 10,767 | 1,227 | 9,262 | 1,193 | 13,782 | 4,287 |
| 280 | 20,484 | 9,027 | 10,943 | 1,247 | 9,271 | 1,194 | 14,260 | 4,435 |
| 332 | 21,472 | 9,462 | 11,242 | 1,281 | 8,741 | 1,126 | 14,316 | 4,453 |
| 375 | 21,105 | 9,301 | 11,078 | 1,262 | 8,578 | 1,105 | 13,839 | 4,304 |
| 421 | 21,286 | 9,381 | 11,028 | 1,257 | 8,395 | 1,081 | 13,843 | 4,306 |
| 472 | 21,153 | 9,322 | 10,978 | 1,251 | 8,212 | 1,058 | 13,626 | 4,238 |
| 543 | 20,638 | 9,095 | 10,783 | 1,229 | 8,167 | 1,052 | 13,176 | 4,098 |
| 568 | 20,599 | 9,077 | 10,833 | 1,234 | 7,986 | 1,028 | 13,352 | 4,153 |
| 617 | 20,258 | 8,927 | 10,680 | 1,217 | 7,937 | 1,022 | 13,323 | 4,144 |
| 880 | 19,444 | 8,569 | 10,290 | 1,173 | 7,849 | 1,011 | 12,889 | 4,009 |

APPENDIX B-16 (CONTINUED)
SEDIMENT (Second Run, Tank II, cpm)
Decay Correction, Geometric Average, Mg Selenium

| $\begin{aligned} & \text { HOURS } \\ & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ | IDEALIZED CONTAINER SUM OF FRACTIONS | Cpm COMPARTMENT | mg Se COMPARTMENT | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 5.5 | 750 | 498,665 | . 2326 | . 2326 |
| 13.5 | 1,508 | 1,002,650 | . 4678 | . 4678 |
| 26 | 2,618 | 1,740,675 | . 8121 | . 8121 |
| 41 | 4,250 | 2,825,771 | 1.318 | 1.318 |
| 51 | 5,205 | 3,460,739 | 1.614 | 1.631 |
| 64 | 6,200 | 4,122,302 | 1.923 | 1.944 |
| 73 | 6,674 | 4,437,458 | 2.070 | 2.092 |
| 83 | 7,460 | 4,960,060 | 2.314 | 2.339 |
| 98 | 8,567 | 5,696,090 | 2.657 | 2.715 |
| 115 | 9,365 | 6,226,671 | 2.905 | 2.969 |
| 136 | 11,289 | 7,505,914 | 3.502 | 3.579 |
| 159 | 12,509 | 8,317,077 | 3.880 | 3.965 |
| 185 | 13,643 | 9,071,059 | 4.232 | 4.373 |
| 234 | 15,534 | 10,328,361 | 4.819 | 4.979 |
| 280 | 15,903 | 10,573,705 | 4.933 | 5.153 |
| 332 | 16,322 | 10,852,293 | 5.063 | 5.406 |
| 375 | 15,972 | 10,619,582 | 4.954 | 5.348 |
| 421 | 16,025 | 10,654,821 | 4.971 | 5.366 |
| 472 | 15,869 | 10,551,099 | 4.923 | 5.373 |
| 543 | 15,474 | 10,288,468 | 4.772 | 5.323 |
| 568 | 15,492 | 10,300,436 | 4.806 | 5.420 |
| 617 | 15,310 | 10,179,427 | 4.749 | 5.415 |
| 880 | 14,762 | 9,815,068 | 4.579 | 5.454 |

## APPENDIX B-17

STABILITY PARAMETERS FIRST RUN
(Data of Non-Experimental Parameters, Tanks I, II)

| DAY | pH |  | DO |  | TDS |  | TEMPERATURE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | $\underline{I}$ | II | I | II | I | II |
| 1 | 8.4 | 8.3 | 9.8 | 8.4 | 410 | 460 | 21 | 21 |
| 2 | 8.5 | 8.4 |  |  | 420 | 440 | 21 | 22 |
| 3 | 8.5 | 8.4 | 9.0 | 8.2 |  |  |  |  |
| 4 | 8.5 | 8.4 | 8.3 | 7.6 | 400 | 450 | 22 | 22 |
| 5 | 8.5 | 8.5 | 8.0 | 8.3 | 430 | 450 | 21 | 22 |
| 6 | 8.3 | 8.4 |  |  |  |  | 21 | 22 |
| 7 | 8.5 | 8.4 | 7.8 | 9.1 | 410 | 465 |  |  |
| 8 | 8.4 | 8.3 |  |  |  |  | 22 | 22 |
| 9 | 8.5 | 8.3 | 7.2 | 8.3 | 400 | 480 | 22 | 23 |
| 10 | 8.4 | 8.3 | 7.8 | 8.0 |  |  | 22 | 23 |
| 11 |  |  |  |  | 450 | 470 | 21 | 23 |
| 12 | 8.6 | 8.5 | 8.2 | 7.5 |  |  | 22 | 23 |
| 13 | 8.5 | 8.4 | 7.8 | 7.2 | 435 | 470 | 21 | 22 |
| 14 | 8.5 | 8.6 | 8.1 | 7.5 |  |  | 21 | 22 |
| 1.5 | 8.5 | 8.4 | 6.2 | 7.4 | 410 | 480 | 21 | 22 |
| 16 | 8.3 | 8.6 | 6.8 | 6.6 |  |  | 22 | 22 |
| 17 | 8.4 | 8.5 | 7.2 | 6.2 | 430 | 450 | 21 | 22 |
| 18 | 8.3 | 8.4 |  |  | 440 | 460 | 21 | 22 |
| 19 | 8.5 | 8.5 | 6.5 | 7.1 |  |  | 21 | 22 |
| 20 |  |  |  |  | 420 | 475 | 22 | 23 |
| 21 | 8.5 | 8.4 | 6.6 | 6.8 | 420 | 470 | 22 | 23 |
| 22 | 8.4 | 8.6 | 5.4 | 7.3 | 430 | 465 | 21 | 22 |
| 23 | 8.5 | 8.6 | 5.8 | 6.4 |  |  | 21 | 22 |
| 2.4 |  |  |  |  | 425 | 485 |  |  |
| 25 | 8.5 | 8.4 | 6.1 | 5.9 | 430 | 480 | 22 | 22 |
| 26 |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  | 21 | 22 |
| 28 | 8.4 | 8.5 | 6.2 | 5.8 | 430 | 485 | 21 | 22 |
| 29 | 8.5 | 8.4 | 5.9 | 6.2 | 440 | 490 |  |  |
| 30 | 8.5 | 8.5 | 6.4 | 6.5 |  |  | 21 | 22 |
| 31 | 8.4 | 8.5 | 5.9 | 6.7 |  |  | 21 | 23 |

## APPENDIX B-18

## STABIIITY PARAMETERS SECOND RUN

(Data of Non-Experimental Parameters, Second Run, Tanks I, II)

|  | pH |  | DO |  | TDS |  | TEMP. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DAY | I | II | I | II | I | II | I | II |
| 0 | 8.9 | 8.5 | 7.3 | 6.2 | 800 | 790 | 24 | 24 |
| 1 | 8.7 | 8.4 | 9.0 | 8.4 | 800 | 780 | 24 | 25 |
| 2 | 8.9 | 8.5 | 8.2 | 6.5 | 800 | 780 | 24 | 24 |
| 3 | 8.5 | 8.4 | 7.9 | 7.3 | 820 | 800 | 23 | 24 |
| 4 |  |  | 8.1 | 7.9 |  |  | 23 | 24 |
| 5 |  |  | 9.2 | 7.5 | 840 | 800 | 24 | 25 |
| 6 | 8.5 | 8.5 |  |  | 860 | 800 | 24 | 25 |
| 7 |  |  | 8.3 | 8.0 |  |  | 24 | 25 |
| 8 | 8.5 | 8.5 | 7.9 | 7.6 | 840 | 800 | 23 | 24 |
| 9 |  |  |  |  | 840 | 800 | 24 | 25 |
| 10 |  |  | 6.4 | 5.9 | 840 | 800 | 29 | 25 |
| 11 |  |  | 5.8 | 5.8 | 830 | 810 | 24 | 24 |
| 12 | 8.4 | 8.3 | 5.5 | 6.0 | 850 | 840 | 25 | 26 |
| 13 |  |  | 7.2 | 6.5 | 780 | 820 | 25 | 26 |
| 14 |  |  |  |  |  |  | 25 | 26 |
| 15 | 8.4 | 8.3 | 8.5 | 7.9 | 830 | 800 | 25 | 26 |
| 16 |  |  | 8.3 | 8.1 | 825 | 810 | 24 | 26 |
| 17 | 8.5 | 8.4 | 7.6 | 7.7 | 830 | 830 | 24 | 26 |
| 18 |  |  | 6.5 | 6.0 | 835 | 810 | 24 | 26 |
| 19 | 8.4 | 8.4 |  |  | 800 | 790 | 24 | 25 |
| 20 |  |  | 5.0 | 4.8 | 840 | 805 | 23 | 24 |
| 21 |  |  | 4.2 | 5.1 | 810 | 780 | 23 | 25 |
| 22 | 8.3 | 8.2 | 3.9 | 3.5 | 830 | 820 | 24 | 25 |
| 23 |  |  | 4.5 | 4.5 | 770 | 780 | 24 | 25 |
| 24 | 8.3 | 8.3 | 4.2 | 3.8 | 800 | 790 | 24 | 25 |
| 25 |  |  | 4.5 | 4.3 | 860 | 800 | 23 | 24 |
|  | 8.4 | 8.3 | 3.2 | 3.9 |  |  |  |  |
| 29 |  |  | 3.0 | 4.5 | 850 | 805 | 24 | 25 |
| 30 | 8.3 | 8.5 | 4.2 | 6.1 | 875 | 820 | 24 | 26 |
| 34 |  |  | 3.4 | 5.6 | 800 | 800 | 25 | 25 |
| 37 | 8.3 | 8.4 | 4.7 | 6.0 | 780 | 810 | 25 | 25 |
| 38 |  |  | 3.7 | 3.5 | 800 | 790 | 24 | 25 |
| 39 |  |  | 5.2 | 4.1 | 800 | 780 | 24 | 24 |
| 42 | . 3 | . 5 | 4. | 0 | 800 | 78 | 24 | 25 |

## APPENDIX B-19

SUSPENDED PARTICULATE
FILTER WEIGHTS (First Run, Tank $I_{\text {, }}$ 20 ml Sample)

| FILTER | SUSPENDED |  |  |
| :---: | :---: | :---: | :---: |
|  | FILTER | PARTICULATE |  |
|  | WEIGHT | + FILTER | DIFFERENCE |
| NUMBER | GRAMS | GRAMS | mg |
| 00 | . 0781 | . 0796 | 1.6 |
| 19 | . 0717 | . 0732 | 1.5 |
| 17 | . 0688 | . 0696 | 0.8 |
| 5 | . 0953 | . 0965 | 1.2 |
| 7 | . 0861 | . 0874 | 1.3 |
| 9 | . 0856 | . 0868 | 1.2 |
| 11 | . 0565 | . 0580 | 1.5 |
| 13 | . 0707 | . 0721 | 1.4 |
| 15 | . 0708 | . 0727 | 1.9 |
| 2 even | . 0818 | . 0830 | 1.2 |
| 3 | . 0836 | . 0849 | 1.3 |
| 21 | . 0586 | . 0871 | 1.5 |
| 23 | . 0625 | . 0633 | 0.8 |
| 25 | . 0659 | . 0672 | 1.3 |
| 27 | . 0707 | . 0719 | 1.2 |
| 29 | . 0663 | . 0671 | 0.8 |
| 31 | . 0665 | . 0681 | 1.6 |
| 33 | . 0830 | . 0851 | 2.1 |
| 35 | . 1012 | . 1030 | 1.8 |
| 37 | . 1082 | . 1109 | 2.7 |
| 39 | . 1006 | . 1032 | 2.6 |
| 41 | . 1013 | . 1041 | 2.8 |
| 43 | . 1025 | . 1056 | 3.1 |
| 45 | . 1010 | . 1038 | 2.8 |
| 47 | . 0987 | . 1014 | 2.7 |
| 49 | . 0989 | . 1017 | 2.8 |
| 51 | . 1029 | . 1058 | 2.9 |
| 53 | . 1033 | . 1057 | 2.4 |
| 55 | . 1022 | . 1051 | 2.9 |
| 57 | . 1061 | . 1068 | 2.7 |
| AVERAGE |  |  | 1.88 |

## 212 <br> APPENDEX B-19 (CONTINUED) <br> SUSPENDED PARTICULATE

FILTER WEIGHTS (First Run, Tank II, 20 ml Sample)

|  | FILTER | SUSPENDE <br> PARTICUL |  |
| :---: | :---: | :---: | :---: |
| FILTER | WEIGHT | + FILTER | DIFFERENCE |
| NUMBER | GRAMS | GRAMS | mg |
| 0 | . 0672 | . 0690 | 1.8 |
| 20 | . 0649 | . 0665 | 1.6 |
| 18 | . 0681 | . 0699 | 1.8 |
| 6 | . 0878 | . 0899 | 2.1 |
| 8 | . 0858 | . 0877 | 1.9 |
| 10 | . 0566 | . 0588 | 2.2 |
| 12 | . 0605 | . 0623 | 1.8 |
| 14 | . 0702 | . 0716 | 1.4 |
| 16 | . 0706 | . 0718 | 1.2 |
| 1 | . 0855 | . 0868 | 1.3 |
| 4 | . 0859 | . 0874 | 1.5 |
| 22 | . 0639 | . 0651 | 1.2 |
| 24 | . 0592 | . 0607 | 1.5 |
| 26 | . 0660 | . 0677 | 1.7 |
| 28 | . 0701 | . 0720 | 1.9 |
| 30 | . 0658 | . 0679 | 2.1 |
| 32 | . 1003 | . 1026 | 2.3 |
| 34 | . 0810 | . 0830 | 2.0 |
| 36 | . 1038 | . 1061 | 2.3 |
| 38 | . 1124 | . 1148 | 2.4 |
| 40 | . 0941 | . 0969 | 2.8 |
| 42 | . 1003 | . 1034 | 3.1 |
| 44 | . 1016 | . 1046 | 3.0 |
| 46 | . 0976 | . 1002 | 2.6 |
| 48 | . 0990 | . 1019 | 2.9 |
| 50 | . 1029 | . 1055 | 2.6 |
| 52 | . 1034 | . 1060 | 2.6 |
| 54 | . 1014 | . 1037 | 2.3 |
| 56 | . 1016 | . 1041 | 2.5 |
| 58 | . 1047 | . 1067 | 2.0 |
| AVERAGE |  |  | 2.08 |

APPENDIX B-20
SUSPENDED PARTICULATE FILTER WEIGHTS
(Second Run, Tank I, 40 ml Sample)

| FILTER | TIME | FILTER | FILTER \& | WEIGHT |
| :---: | :---: | :---: | :---: | :---: |
| NO. | ELAPSED | WTP. G. | SAMPLE G. | SAMPLE mg |
| 1 | 0 | . 1011 | . 1035 | 2.4 |
| 3 | 0.083 | . 0937 | . 0958 | 2.1 |
| 5 | 0.25 | . 1079 | . 1101 | 2.2 |
| 7 | 0.5 | . 0949 | . 0972 | 2.3 |
| 9 | 1 | . 0931 | . 0955 | 2.4 |
| 11 | 3 | . 0882 | . 0903 | 2.1 |
| 13 | 12 | . 0860 | . 0880 | 2.0 |
| 15 | 18 |  |  |  |
| 17 | 23.5 | . 0870 | . 0896 | 2.6 |
| 19 | 37 | . 1011 | . 1032 | 2.1 |
| 21 | 48 | . 0860 | . 0882 | 2.2 |
| 23 | 61 | . 0856 | . 0877 | 2.1 |
| 25 | 70.5 | . 1015 | . 1044 | 2.9 |
| 27 | 81 | . 1006 | . 1032 | 2.6 |
| 29 | 96 | . 0998 | . 1022 | 2.4 |
| 31 | 113 | . 0995 | . 1026 | 3.1 |
| 33 | 134 | . 0982 | . 1012 | 3.0 |
| 35 | 157 | . 1025 | . 1057 | 3.2 |
| 39 | 232 | . 1213 | . 1244 | 3.1 |
| 41 | 256 | . 1097 | . 1123 | 2.6 |
| 43 | 280 | . 0997 | . 1029 | 3.2 |
| 45 | 303 | . 0870 | . 0898 | 2.8 |
| 51 | 353 | . 0993 | . 1024 | 3.1 |
| 53 | 400 | . 0992 | . 1025 | 3.3 |
| 55 | 421 | . 1008 | . 1036 | 2.8 |
| 57 | 447 | . 1059 | . 1088 | 2.9 |
| 59 | 472 | . 1026 | . 1055 | 2.9 |
| 61 | 496 | . 0971 | . 0994 | 2.3 |
| 63 | 518 | . 1021 | . 1044 | 2.3 |
| 65 | 568 | . 1055 | . 1077 | 2.2 |
| 71 | 720 | . 1013 | . 1033 | 2.0 |
| 73 | 736 | . 0994 | . 1015 | 2.1 |
| 75 | 792 | . 1008 | . 1028 | 2.0 |
| 77 | 830 | . 1039 | . 1082 | 4.3 |
| 81 | 904 | . 1001 | . 1056 | 5.5 |
| 83 | 928 | . 1000 | . 1055 | 5.5 |
| 85 | 952 | . 1014 | . 1071 | 5.7 |
| 87 | 1,024 | . 1005 | . 1076 | 7.1 |
| 89 |  | . 1002 | . 1081 | 7.9 |
| AVERAGE |  |  |  | 3.08 |

214
APPENDIX B-20 (CONTINUED)
SUSPENDED PARTICULATE FILTER WEIGHTS (Second Run, Tank II, 40 ml Sample)

| FILTER | TIME | FILTER | FILTER \& | WEIGHT |
| :---: | :---: | :---: | :---: | :---: |
| NO. | ELAPSED | WT. G. | SAMPLE | SAMPLE mg |
| 2 | 0 | . 0936 | . 0952 | 1.6 |
| 4 | 0.033 | . 1038 | . 1054 | 1.6 |
| 6 | 0.25 | . 0957 | . 0971 | 1.4 |
| 8 | 0.5 | . 0960 | . 0978 | 1.8 |
| 10 | 1 | . 0927 | . 0942 | 1.5 |
| 12 | 3 | . 0852 | . 0866 | 1.4 |
| 14 | 12 | . 0862 | . 0877 | 1.5 |
| 16 | 18 | . 0873 | . 0886 | 1.3 |
| 18 | 23.5 | . 1007 | . 1022 | 1.5 |
| 20 | 37 | . 1007 | . 1020 | 1.3 |
| 22 | 48 | . 0861 | . 0874 | 1.3 |
| 24 | 61 | . 1000 | . 1021 | 2.1 |
| 26 | 70.5 | . 1038 | . 1059 | 2.1 |
| 28 | 81 | . 1030 | . 1046 | 1.6 |
| 30 | 96 | . 1042 | . 1060 | 1.8 |
| 34 | 134 | . 1010 | . 1031 | 2.1 |
| 36 | 157 | . 0970 | . 0988 | 1.8 |
| 38 | 183 | . 1047 | . 1060 | 1.3 |
| 40 | 232 | . 1076 | . 1091 | 1.5 |
| 42 | 256 | . 1101 | . 1110 | . 9 |
| 44 | 280 | . 1064 | . 1077 | 1.3 |
| 46 | 303 | . 1092 | . 1112 | 2.0 |
| 48 | 353 | . 1023 | . 1042 | 1.9 |
| 50 | 400 | . 1037 | . 1055 | 1.8 |
| 56 | 421 | . 1080 | . 1099 | 1.9 |
| 58 | 447 | . 1061 | . 1075 | 1.4 |
| 60 | 472 | . 0949 | . 0966 | 1.7 |
| 62 | 496 | . 1067 | . 1084 | 1.7 |
| 64 | 518 | . 1067 | . 1080 | 1.3 |
| 66 | 568 | . 1009 | . 1025 | 1.6 |
| 68 | 617 | . 1044 | . 1061 | 1.7 |
| 70 | 641 | . 1033 | . 1046 | 1.3 |
| 72 | 712 | . 1002 | . 1027 | 2.5 |
| 74 | 736 | . 1000 | . 1024 | 2.4 |
| 76 | 792 | . 1027 | . 1046 | 1.9 |
| 78 | 830 | . 1048 | . 1078 | 3.0 |
| 82 | 904 | . 1001 | . 1020 | 1.9 |

215
APPENDIX B-20 (CONTINUED)
SUSPENDED PARTICULATE FILTER WEIGHTS (Second Run, Tank II, 40 ml Sample)

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| FILTER | TIME | FILTER | FILTER \& | WEIGHT |
| NO. | ELAPSED | WT. G. | SAMPLE | SAMPLE mg |
| 84 | 928 | .0993 | .1011 | 1.8 |
| 86 | 952 | .1011 | .1033 | 2.2 |
| 88 | 1,024 | .0996 | .1026 | 3.0 |
| 90 |  | .1000 | .1029 | 2.9 |
| AVERAGE |  |  |  | 1.77 |

## 216 <br> APPENDIX B-21 <br> SORPTION ON MICROSCOPE SLIDE

SECOND RUN
A microscope slide was in situ for the duration of the experiment.

It was counted and then scraped clean and counted again.

A second slide was immersed for 15 minutes and allowed to drip dry and then counted.

|  | RAW COUNT PER TEN MINUTES |  | CORRECTED cpm |  |
| :---: | :---: | :---: | :---: | :---: |
|  | TANK I | TANK II | TANK I | TANK II |
| Duration Slide | 2,442 | 2,371 | 132 | 125 |
| Scraped | 1,226 | 1,562 | 10.6 | 44 |
| 15 minute slide | 1,212 | 1,327 | 9.2 | 20.7 |
| \% Remaining on Glass (Duration Slide) |  |  | 8\% | 16\% |

APPENDIX B-22
FISH ORIENTATION COMPARISON
(Count Rates Anterior End Up Compared) (Down/Up)

| INVERSION OCCURENCE | ANTERIOR UP cpm | AVE. | ANTERIOR DOWN CPM | AVE. | ADJUSTMENT FRACTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 968 | 999 | 1,389 | 1,442 | 1.44 |
|  | 1,030 |  | 1,496 |  |  |
| 2 | 1,349 | 1,349 | 1,441 | 1,512 | 1.12 |
|  |  |  | 1,583 |  |  |
| 3 | 1,089 | 1,148 | 1,562 | 1,534 | 1.33 |
|  | i, 207 |  | 1,506 |  |  |
| 4 | 820 | 825 | 1,062 | 1,010 | 1.22 |
|  | 830 |  | 958 |  |  |
| 5 | 940 | 925 | 1,172 | 1,172 | 1.26 |
|  | 911 |  |  |  |  |
| 6 | 1,177 | 1,177 | 1,436 | 1,436 | 1.22 |
| 7 | 2,087 | 2,035 | 2,683 | 2,684 | 1.31 |
|  | 1,984 |  | 2,686 |  |  |
| 8 | 1,096 | 1,102 | 1,603 | 1,622 | 1.47 |
|  | 1,109 |  | 1,641 |  |  |
| 9 | 754 | 754 | 931 | 911 | 1.20 |
|  |  |  | 892 |  |  |
| 10 | 1,505 | 1,484 | 1,973 | 1,991 | 1.34 |
|  | 1,464 |  | 2,010 |  |  |
| 11 | 1,974 | 1,959 | 2,857 | 2,899 | 1.48 |
|  | 1,944 |  | 2,94.2 |  |  |
| 12 | 2,798 | 2,790 | 4,123 | 4,12. | 1.47 |
|  | 2,783 |  | 4,119 |  |  |
| 13 | 5,644 | 5,644 | 7,349 | 7,413 | 1.31 |
|  |  |  | 7,478 |  |  |
| 14 | 5,358 | 5,467 | 8,282 | 8,178 | 1.49 |
|  | 5,576 |  | 8,075 |  |  |
| 15 | 9,593 | 9,593 | 12,324 | 12,324 | 1.28 |
| 16 | 11,506 | 11,507 | 16,579 | 16,457 | 1.43 |
|  | 11,509 |  | 16,336 |  |  |
| 17 | 12,140 | 12,228 | 16,915 | 16,716 | 1.36 |
|  | 12,316 |  | 16,518 |  |  |
| 1.8 | 7,504 | 7,515 | 12,353 | 12,353 | 1.64 |
|  | 7,526 |  | 12,354 |  |  |
| 19 | 7,261 | 7,187 | 9,948 | 9,993 | 1.39 |
|  | 7.114 |  | 10,039 |  |  |
| 20 | 6,892 | 6,971 | 9,474 | 9,484 | 1.36 |
|  | 7,050 |  | 9,495 |  |  |
| AVERAGE |  |  |  |  | 1.356 |

## APPENDIX B-23

FISH COMPARTMENT WEIGHTS
(Weight in Grams)



* Numbers do not correspond to the same fish from first to second runs but do within the second run.


## SPECIES LIST

## ALGAE

## MYXOPHYCEAE

Phormidium (abundant in bottom)
Oscillatoria
SCENEDESMACEAE
Scenedesmus (Predominant Plankton First Run)

## OOCYSIACEAE <br> Ankistrodesmus (Predominant Plankton Second Run)

CHLOROCOCCACEAE
Golenkinia (Abundant First Run)
ULOTRICHACEAE
Ulothrix

DESMIDACEAE
Tetmemorus
BACILLARIOPHYCEAE
Navicula (common)
Stauroneis
PROIOZOA
Vorticella
Stylonychia
Amoeba

ASHELIINTHES
Philodina
Nematode

APPENDIX C

## 221 <br> APPENDIX C-1 <br> SELENIUM-75 DECAY SCHEME

The mode of decay is by electron capture and gamma emission of various energies ranging from 0.402 Mev to $0.199 \mathrm{Mev}:$

$$
\begin{aligned}
& 0.136 \mathrm{Mev} . . .57 \% \\
& 0.265 \mathrm{Mev} . . .60 \% \\
& 0.280 \mathrm{Mev} . . .25 \% \\
& 0.402 \mathrm{Mev} . . .12 \%
\end{aligned}
$$



222 APPENDIX C-2

PARTS PER MILIION SELENIUM IN ASSAY AMOUNT

Assay: $\quad[0.0057 \mathrm{mg} / 0.1 \mathrm{ml}] \quad \mathrm{H}_{2} \mathrm{SeO}_{3}$
then $0.0057 \mathrm{mg} / 0.1 \mathrm{ml}=\left[\frac{0.057 \mathrm{mg}}{\mathrm{ml}}\right] \mathrm{H}_{2} \mathrm{SeO}_{3}$
and $\frac{0.057 \mathrm{mg} \mathrm{H}}{2} \mathrm{SeO} 3\left(\frac{0.612 \mathrm{Se} 79}{\mathrm{H}_{2} \mathrm{SeO}_{3}}\right.$
$=[0.0348 \mathrm{mg} / \mathrm{ml}] \mathrm{Se}=.0348$ grams per liter
$=34.8 \mathrm{mg} / 1=34.8 \mathrm{ppm} \mathrm{Se}$

If use whole 0.1 ml Assay amount
$=0.00348 \mathrm{mg} / 60$ liter
$=5.8 \times 10^{-5} \mathrm{mg} / \mathrm{l}=\mathrm{ppm}$ insignificant
to levels in experimental tanks 0.01 ppm
If use 5 lambda from whole Assay amounts then order of $10^{-3}$ less significant.

## SPIKE QUANTITY FOR EXPERIMENTAL SYSTEM

## Stock Solution:

$$
\begin{aligned}
5.0 \mathrm{ml} & =0.0057 \mathrm{mg} \mathrm{H} \\
2 & \mathrm{SeO}_{3} \text { in } 0.5 \mathrm{~N} . \mathrm{NCL} \\
& =1 \mathrm{mCi} \text { April } 2,1973 \\
& =175 \mathrm{mCi} / \mathrm{mg} .
\end{aligned}
$$

Remove: 1 lambda from stock:
Contains $\frac{1}{5000} \mathrm{mCi}$
and $\frac{0.0057}{5 \times 10^{3}}$
$=1.14 \times 10^{-6} \mathrm{mg} \mathrm{H}_{2} \mathrm{SeO}_{3}$
and $1.14 \times 10^{-6}(.612)=0.697 \times 10^{-6} \mathrm{mg} \mathrm{Se}$
Remove: 5 lambda from stock:
Contains $\frac{1}{1000} \mathrm{mCi}$
and $5.7 \times 10^{-6} \mathrm{mg} \mathrm{H}_{2} \mathrm{SeO}_{3}$
and $5.7 \times 10^{-6}$ (.612) $\frac{\text { Se a. m. u. }}{\mathrm{H}_{2} \mathrm{SeO}_{3} \text { a. m. u. }}$
$=3.48 \times 10^{-6} \mathrm{mg} \mathrm{Se}$

APPENDIX C-4
SELENIUM-75 SPECTRUM ( $\triangle E=.050 \mathrm{~V}$ )

| PULSE | COUNTS | PULSE | COUNTS | PULSE | COUNTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HEIGHT | PER | HEIGHT | PER | HEIGHT | PER |
| VOLTAGE | MINUTE | VOLTAGE | MINUTE | VOLTAGE | MINUTE |
| 0.010 | 8,178 | 0.166 | 2,742 | 0.268 | 9,012 |
| 0.028 | 8,201 | 0.168 | 2,863 | 0.270 | 8,637 |
| 0.030 | 8,568 | 0.170 | 2,856 | 0.272 | 8,175 |
| 0.040 | 9.706 | 0.172 | 2,874 | 0.274 | 7,818 |
| 0.050 | 10,523 | 0.174 | 2,878 | 0.276 | 7,013 |
| 0.060 | 10,864 | 0.176 | 2,857 | 0.278 | 6,248 |
| 0.070 | 11,057 | 0.178 | 2,990 | 0.280 | 5,653 |
| 0.080 | 11,821 | 0.180 | 2,967 | 0.282 | 5,416 |
| 0.090 | 14,668 | 0.182 | 2,896 | 0.284 | 4,764 |
| 0.100 | 20,049 | 0.184 | 2,875 | 0.286 | 4,458 |
| 0.102 | 22,193 | 0.186 | 2,911 | 0.288 | 3,986 |
| 0.104 | 23,593 | 0.188 | 2,946 | 0.290 | 3,544 |
| 0.106 | 25,273 | 0.190 | 2,999 | 0.300 | 2,327 |
| 0.108 | 26,226 | 0.192 | 2,848 | 0.310 | 1,575 |
| 0.110 | 27,114 | 0.194 | 2,829 | 0.320 | 1,431 |
| 0.112 | 27,731 | 0.196 | 2,893 | 0.330 | 1,438 |
| 0.114 | 27,618 | 0.198 | 2,794 | 0.340 | 1,409 |
| 0.116 | 27,712 | 0.200 | 2,867 | 0.350 | 1,608 |
| 0.118 | 26,889 | 0.208 | 2,949 | 0.360 | 1,759 |
| 0.120 | 25,851 | 0.216 | 3,725 | 0.370 | 2,172 |
| 0.122 | 24,343 | 0.224 | 4,433 | 0.380 | 2,759 |
| 0.124 | 22,226 | 0.226 | 4,899 | 0.390 | 3,380 |
| 0.126 | 20,263 | 0.228 | 5,453 | 0.392 | 3,386 |
| 0.128 | 18,077 | 0.230 | 6,033 | 0.394 | 3,474 |
| 0.130 | 16,263 | 0.232 | 6,726 | 0.396 | 3,568 |
| 0.132 | 14,197 | 0.234 | 7,203 | 0.398 | 3,601 |
| 0.134 | 11,670 | 0.236 | 7.438 | 0.400 | 3,701 |
| 0.136 | 8,194 | 0.238 | 7,901 | 0.402 | 3,544 |
| 0.138 | 6,547 | 0.240 | 8,362 | 0.404 | 3,648 |
| 0.140 | 5,770 | 0.243 | 9,103 | 0.406 | 3,652 |
| 0.142 | 4,736 | 0.244 | 9,583 | 0.408 | 3,563 |
| 0.144 | 4,135 | 0.246 | 10,127 | 0.410 | 3,343 |
| 0.146 | 3,627 | 0.248 | 10,768 | 0.412 | 3,315 |
| 0.148 | 3,262 | 0.250 | 11,040 | 0.414 | 2,973 |
| 0.150 | 3,059 | 0.252 | 11,345 | 0.416 | 2,824 |
| 0.152 | 2,863 | 0.254 | 11,818 | 0.418 | 2,736 |
| 0.154 | 2,880 | 0.256 | 11,559 | 0.420 | 2,388 |

## 225 <br> APPENDIX C-4 (CONTINUED)

SELENIUM-75 SPECTRUM ( $\Delta E=.050 \mathrm{~V}$ )

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PULSE | COUNTS | PULSE | COUNTS | PULSE | COUNTS |
| HEIGHT | PER | HEIGHT | PER | HEIGHT | PER |
| VOLTAGE | MINUTE | VOLTAGE | MINUTE |  | VOLTAGE |




Heath, R. L. USȦEC. Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, 2nd Edition, Volume.II, August 1964.

May 1, 1973
A five lambda aliquot was taken from stock solution of 1 mCi . in 5 ml . and diluted to 20.0 ml . as a standard counting volume. The 100 lambda aliquot of such dilution was taken and diluted to 20.0 ml standard volume.

Activity and Calibration Solution=
$\frac{5 \boldsymbol{\lambda} \text { aliquot } 1 \mathrm{mci} 100 \lambda \mathrm{ml} \mathrm{ml}}{20 \mathrm{ml} \cdot 5 \mathrm{ml} \cdot 20 \mathrm{ml} \cdot 1000 \boldsymbol{\lambda} 1000 \boldsymbol{\lambda}}=$
$\frac{1 \mathrm{mCi}}{4,000,000 \mathrm{ml.}}$ or $\frac{1}{200,000} \mathrm{mCi}$ in 20 ml.

Count Rate

| Test rube Sample | Counts $/ \mathrm{m} / 20.0 \mathrm{ml}$ |
| :---: | :---: |
| 1 | 6096 |
| 2 | 6086 |
| 3 | 6033 |
| 4 | 6101 |
| 5 | 6081 |
| 6 | 6037 |
| 7 | 6153 |
| 8 | 6053 |
| 9 | 6121 |
| 10 | 6192 |
| Average | 5916 |

Assay Amount:
$1 \mathrm{mCi} \mathrm{H}_{2} \mathrm{SeO}_{3}$ in 0.1 ml
containing $0.0057 \mathrm{mg} \mathrm{H}_{2} \mathrm{SeO}_{3}$

Stock Solution of Radioselenium:
Upon arrival of the above source, 4.9 ml distilled ion exchange water was added to dilute to a 5.0 ml stock solution.

Efficiency:
Use calibration data previously determined with $\frac{1}{200,000}$ dilution to calculate efficiency. Efficiency $=\frac{\mathrm{cpm}}{\mathrm{dpm}}$, where decay correction is 1.173
$=\frac{(1.173)(6.079 \text { counts })(\mathrm{min})(\mathrm{s})(\mathrm{mCi})\left(2 \times 10^{5}\right)}{(2 \mathrm{~m}}$ (min) (60) (s) (3.7 $\times 10^{7}$ ) (d) (mCi)
$=0.642$
=64.2\% Efficiency

APPENDIX C-9
SORPTION OF SELENIUM-75 ON TEST TUBES

| Total Selenium ppm | ```Time to Reading``` | $\begin{gathered} \text { cpm } \\ \text { in } \\ 20 \mathrm{ml} \\ \hline \end{gathered}$ | cpm after decanting | cpm after 3 rinses | cpm after 3 added ri | cpm was cpm in (Sorbed Fr | $\begin{aligned} & \frac{d \text { tube }}{\text { ml }} \\ & \text { tion) } \\ & \hline \end{aligned}$ | ppm sorbed | |
|---|---|---|---|---|---|---|---|---|---|
|  | Immediate | 225569 |  |  | (Repeated count) (Average of 8 hour, |  |  |  |
| 10 | 8 hours | 149522 | 7298 | 2018 | $1777-1721$ <br> Average 1749 | $4 \text { days }$ | $1.17 \times 10^{-1}$ |  |
|  | 4 days | 149408 |  |  |  | $1.17 \times 10^{-2}$ |  |  |
|  | Immediate | 196348 |  | 3832 | 3553-3558 |  | 2.40 | $\times 10^{-2}$ |
| 1 | 8 hours | 174569 | 8079 |  |  |  |  |  |
|  | 4 days | 172858 |  |  | Average 3555 | $2.40 \times 10^{-2}$ |  |  |
| $10^{-1}$ | Immediate | 245049 |  |  |  | $2.47 \times 10^{-2}$ | $2.47 \times 10^{-3}$ |  |
|  | 8 hours | 179328 | 9389 | 4681 | $4324-4239$ <br> Average4281 |  |  |  |  |
|  | 4 days | 166483 |  |  |  |  |  |  |  |
| $10^{-2}$ | Immediate <br> 8 hours <br> 4 days | 245217 | 8100 | 5407 | 5114-5131 <br> Average 5122 | $2.99 \times 10^{-2}$ | $2.99 \times 10^{-4}$ |  |
|  |  | 175241 |  |  |  |  |  |  |  |
|  |  | 166929 |  |  |  |  |  |  |  |
| $10^{-3}$ | Immediate <br> 8 hours <br> 4 days | $\begin{aligned} & 209772 \\ & 175676 \end{aligned}$ | 9625 | 6548 | $\begin{aligned} & 6002-5985 \\ & \text { Average } 5993 \end{aligned}$ | $3.48 \times 10^{-2}$ | $3.48 \times 10^{-5}$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | 168699 |  |  |  |  |  |  |  |
| $10^{-4}$ | Immediate <br> 8 hours <br> 4 days | $\begin{aligned} & 198180 \\ & 169917 \\ & 165173 \end{aligned}$ | 12809 | 4538 | $4155-4241$ <br> Average 4198 | $2.50 \times 10^{-2}$ | $2.50 \times 10^{-6}$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

APPENDIX C-10

NORMALIZATION OF WATER

Five $\boldsymbol{\lambda}$ from Stock Selenium Solution was diluted to 20.0 ml . A $100 \boldsymbol{\lambda}$ aliquot was removed and diluted stepwise as follows:
$100 \boldsymbol{\lambda}$
Corrected
Corrected
m1
cpm cpm
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
1.3 .0
14.0
15.0
16.0
17.0
18.0
19.0
20.0

7776
7700
7682
7734
7644 7596
7496 7638
7578 7499
7456 7380
7435 7520
7478 7421
7331 7245
7281
7168
7120
7135
6940
6893
6750
6965
6711
6744
6755
6576
6630
6456
6601
6235
6574
6130
6356
5963
6154
5809

## APPENDIX C-11

## NORMALIZATION OF SUSPENDED PARTICULATE

The filter containing suspended particulate was dissolved in 20 ml . acetone and stirred while a counting rate was determined. This was the standardized geometry.

|  | cpm | cpm |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ROLLED | DISSOLVED |  |  |
|  | FILTER AND | FILTER AND | cpm | GEOMETRY |
| FILTER | SUSPENDED | SUSPENDED | CORRECTED | CORRECTION |
| NO. | PARTICULATE | PARTICULATE | FOR DECAY | FRACTION |
| 50 | 6,146 | 4,796 | 5,051 | . 823 |
| 51 | 11,239 | 9,422 | 9,923 | . 883 |
| 52 | 5,067 | 4,166 | 4,388 | . 866 |
| 53 | 12,237 | 10,808 | 11,383 | . 930 |
| 54 | 5,760 | 5,171 | 5,446 | . 945 |
| 55 | 7,923 | 7.010 | 7,383 | . 932 |
| 56 | 5,265 | 4,514 | 4,754 | . 903 |
| 57 | 9,020 | 7.430 | 7,825 | . 868 |
| 58 | 4,721 | 4,231 | 4,456 | . 944 |
| 59 | 9,432 | 8,025 | 8,452 | . 896 |
| 60 | 4,778 | 4,406 | 4,640 | . 971 |
| AVE. |  |  |  | . 9055 |
| RANGE |  |  |  | . 148 |

## APPENDIX C-12 <br> NORHALIZATION OF FISH

Individual fish were wet or $d r y$ ashed then dissolved to 20.0 ml and counting rate determined while stirring.


APPENDIX C-13

NORMALIZATION OF SEDIMENT

| TANK I CONTAINER NUMBER | SAMPLE CONTAINER |  | STIRRED IN 20 ml |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { RAW COUNT } \\ & \text { com } \end{aligned}$ | BACKGROUND CORRECTED cpm | $\begin{aligned} & \text { RAW COUNT } \\ & \text { cpm } \end{aligned}$ | BACKGROUND CORRECTED cpm |
| 3 H | 6,511-6,388 | 6,341 | 4,606-4,601 | 4,490 |
|  |  |  | 4,621 |  |
| 2 H | 7,987-7,924 | 7,797 | 5,951-5,402 | 5,405 |
|  |  |  | 5,383-5,360 |  |
| 1 H | 9,781-9,780 | 9,672 | 7,416-7,490 | 7,334 |
| 3 R | 15,043-15,316 | 15,071 | 12,075-12,713 | 12,394 |
| 1 R | 11,669-11,614 | 11,533 | 8,529-8,688 | 8,587 |
|  |  |  | 8,836-8,722 |  |
| 4 C | 7,141-7,341 | 7,133 | 5,466-5,551 | 5,525 |
|  |  |  | 5,856-5,703 |  |
| 2 C | 11, 300-11,481 | 11,282 | 8,238-8,380 | 8,190 |
| 4 E | 11,651-11,668 | 11,551 | 9,212 | 9,118 |
|  |  |  | 9,386-9,115 |  |
| 2 E | 9,761-9,907 | 9,726 | 7,298-7,174 | 7,104 |
| 3 E | 10,088-10,096 | 9,984 | 8,058-8,098 | 7,959 |
| 1 E | 8,818-8,939 | 8,770 | 7,091-7,154 | 7,003 |

```
APPENDIX C-13 (Continued)
```

NORMALIZATION OF SEDIMENT


## APPENDIX C－14

SEDIMENTTRANSMISSION AND STIRRING DATA
（All tubes 20.0 ml volumes total）
（All tubes identical aliquots of stock radioselenium）


| 1 | 9，058 | 9，032 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 9，005 |  |  |  |
| 2 | 9，092 | 9，024 |  |  |
|  | 8，955 |  |  |  |
| $\begin{aligned} & \text { 甼 } \\ & \text { 足 } \\ & \text { 晶 } \end{aligned}$ | 8，954 | 9，006 | 9，023 | 94.99 |
|  | 9，058 |  |  |  |
|  | 9，024 | 8，987 |  |  |
|  | 8，950 |  |  |  |
|  | 9，219 | 9，064 |  |  |
|  | 8，909 |  |  |  |


|  | 8，723 | 8，651 |
| :---: | :---: | :---: |
|  | 8，579 |  |
|  | 8，618 | 8，606 |
|  | 8，597 |  |
|  | 8，458 | 8，498 |
|  | 8，538 |  |
| N ${ }_{\text {N }}$ | 8，574 | 8，727 |
| $0^{\circ}$ | 8，880 |  |
| $-5+5$ | 8，497 | 8，569 |
|  | 8，640 |  |

8，610
92.79

## APPENDIX C-15

## SEDIMENT TRANSMISSION CALCULATIONS

## Attenuation Calculated from Data

-Average unattenuated counting rate=

$$
\frac{(9,009)+(9,023)}{2}=9,016 \text { c.p.m. }
$$

-Variation of attenuated from unattenuated counting rates=
$\frac{(9,016)-(8,610)}{9,016}=4.5 \%$ Attenuation
-Transmission $=$

$$
\frac{8,610}{9,016}=95.4 \%
$$

## Range for $\mathrm{SiO}_{2}$

## MI NIMUM

-100 Kev
$.087 \mathrm{~cm}^{2} / \mathrm{g}$

## MAXIMUM

500 Kev $.169 \mathrm{~cm}^{2} / \mathrm{g}$

- Linear Attenuation Coefficient: $=(\mu / e) e$

$$
(.087)(1.9)=.165 \quad(.169)(1.9)=.32
$$

- Relaxation Length $=(-\mu x)$

$$
(.165)(.675)=.11 \Sigma 4 \quad(.321)(.675)=.2167
$$

Use $x=0.675 \mathrm{~cm}$, S.G. silicon dioxide $=1.86$ ] Since 10.85 g Sand in $20 \mathrm{~cm}^{2}$ volume when stirred $=10.85 \mathrm{~g}=5.84 \mathrm{~cm}^{3}$ This volume spread the length of 20.0 ml in a test tube would have a radius of .675 cm solid sand.
-Transmission $\quad \frac{I}{I}=e^{-\mu x}$

## SIGNIFICANCE OF TRANSMISSION CALCULATION

Since Se-75
$0.136 \mathrm{Mev}=57 \%$
$0.265 \mathrm{Mev}=60 \%$
$0.280 \mathrm{Mev}=25 \%$
$0.402 \mathrm{Mev}=12 \%$
$154 \%$
. 136 Mev plus . 265 Mev spectra

$$
=57
$$

60
$117 \%$
and $\frac{117 \%}{154 \%} \cong .76$
thus $\sim 3 / 4$ of spectra occurs in lower half of energy range making attenuation less significant.

## APPENDIX C-18

BACKGROUND COUNT RATES (FIRST AND SECOND. RUN).

APPENDIX $\mathrm{C}-19$
WATER COMPARTMENT
SCHEDULE OF DECAY RESIDUAL SELENIUM BACKGROUND FROM FIRST RUN


ELAPSED
TIME
DAYS

0
17
21
22
23
27
35
38
46
89
96

## CAICULATED

cpm
RESIDUAL
SELENIUM
(-) BACKGROUND 40 ml SAMPLE TANK I TANK II
9.147 .2
$8.2 \quad 42.8$
$8.0 \quad 41.8$
$8.0 \quad 41.5$
$7.9 \quad 41.3$
$7.8 \quad 40.5$
$7.4 \quad 38.6$
$7.3 \quad 37.9$
$6.9 \quad 36.2$
$5.4 \quad 28.4$
$5.2 \quad 27.1$

TANK I: Zero Time: (Residual Selenium from First Run) 8.410 counts per ten minutes per 0.1999 g suspended particulate. Background $=11,202$ counts per 100 minutes and $728.1 \mathrm{cpm}=9.1 \mathrm{cpm}$ $0.1999 \mathrm{~g} \quad 40 \mathrm{ml}$ sample (Based on 792 hour ave. 2.5 mg per 40 ml sample, Appendix B-20)
TANK II: Zero Time: (Residual Selenium from First Run) 42,280 counts per 10 minutes per 0.1543 g suspended particulate. Background $=11,202$ counts per 100 minutes, and
411.6 cpm .1543 g suspended particulate $=$ $47.2 \mathrm{cpm} \quad$ (Based on Ave. of 1.7 mg per 40 ml sample 40 ml sample, Appendix B-20)

## APPENDIX C-19 (Continued)

FISH COMPARTMENT
SCHEDULE OF DECAY RESIDUAL SELENIUM BACKGROUND FROM FIRST RUN


APPENDIX C-19 (Continued)
SEDIMENT COMPARTMENT
SCHEDULE OF DECAY RESIDUAL SELENIUM BACKGROUND FROM FIRST RUN*

| HOURS | COUNTS PER MINUTE |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ELAPSED } \\ & \text { TIME } \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | II3H | II2H | IIIH | II3R | IIIR | II4C | II2C | II4E | II2E | II3E | IIIE |
| 0 | 499 | 1,515 | 1,482 | 433 | 382 | 428 | 514 | 402 | 542 | 429 | 868 |
| 51 | 493 | 1,497 | 1,464 | 428 | 377 | 423 | 508 | 397 | 535 | 424 | 858 |
| 98 | 487 | 1,480 | 1,448 | 423 | 373 | 418 | 502 | 392 | 529 | 419 | 848 |
| 136 | 482 | 1,463 | 1,431 | 418 | 368 | 413 | 496 | 388 | 523 | 414 | 838 |
| 185 | 476 | 1,446 | 1,415 | 413 | 364 | 408 | 490 | 383 | 517 | 409 | 828 |
| 280 | 470 | 1.429 | 1,398 | 408 | 360 | 403 | 485 | 379 | 511 | 404 | 819 |
| 332 | 465 | 1,413 | 1,382 | 403 | 356 | 399 | 479 | 375 | 505 | 400 | 809 |
| 375 | 460 | 1,397 | 1,366 | 399 | 352 | 394 | 474 | 370 | 499 | 395 | 800 |
| 472 | 455 | 1,381 | 1,351 | 394 | 348 | 390 | 468 | 366 | 494 | 391 | 791 |
| 543 | 445 | 1,349 | 1,320 | 385 | 340 | 381 | 457 | 358 | 482 | 382 | 773 |
| 568 | 439 | 1,334 | 1,305 | 381 | 336 | 376 | 452 | 354 | 477 | 377 | 764 |
| 617 | 434 | 1,318 | 1,290 | 376 | 332 | 372 | 447 | 349 | 471 | 373 | 755 |
| 880 | 409 | 1,244 | 1,217 | 355 | 313 | 351 | 422 | 330 | 445 | 352 | 713 |
| 1,024 | 396 | 1,202 | 1,176 | 343 | 303 | 339 | 407 | 319 | 430 | 340 | 688 |

Appendix C-19 (Continued)

SEDIMENT COMPARTMENT
SCHEDULE OF DECAY RESIDUAL SELENIUM BACKGROUND FROM FIRST RUN *

| ELAPSED | COUNTS PER MINUTE |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN HRS ${ }^{\text {e }}$ | I3H | I2H | I1H | I3R | IIR | I4C | I2C | I4E | I2E | I3E | I1E |
| 0 | 1,288 | 626 | 853 | 694 | 669 | 729 | 703 | 739 | 653 | 957 | 535 |
| 25 | 1,273 | 619 | 843 | 680 | 661 | 720 | 694 | 729 | 645 | 946 | 528 |
| 72 | 1,258 | 611 | 833 | 678 | 653 | 711 | 686 | 728 | 637 | 935 | 521 |
| 114 | 1,243 | 604 | 823 | 670 | 645 | 702 | 678 | 711 | 629 | 924 | 515 |
| 184 | 1,229 | 599 | 813 | 662 | 637 | 693 | 670 | 702 | 621 | 913 | 509 |
| 233 | 1,214 | 584 | 804 | 654 | 629 | 685 | 662 | 693 | 613 | 902 | 503 |
| 280 | 1,200 | 577 | 794 | 646 | 621 | 677 | 654 | 685 | 605 | 891 | 497 |
| 332 | 1,186 | 570 | 784 | 638 | 61.3 | 669 | 646 | 677 | 598 | 880 | 491 |
| 375 | 1,172 | 563 | 775 | 630 | 605 | 661 | 638 | 669 | 591 | 869 | 485 |
| 421 | 1,158 | 557 | 766 | 622 | 598 | 65.3 | 630 | 661 | 584 | 859 | 479 |
| 472 | 1,144 | 550 | 757 | 614 | 591 | 645 | 622 | 653 | 577 | 849 | 473 |
| 543 | 1,130 | 544 | 748 | 607 | 584 | 637 | 614 | 645 | 570 | 839 | 467 |
| 568 | 1,117 | 537 | 739 | 600 | 577 | 629 | 606 | 637 | 563 | 829 | 461 |
| 736 | 1,078 | 519 | 7.12 | 579 | 556 | 605 | 585 | 613 | 542 | 799 | 443 |
| 880 | 1,027 | 495 | 678 | 551 | 528 | 577 | 557 | 584 | 515 | 761 | 421 |

APPENDIX D


## SELECTED BIBLIOGRAPHY

Allaway, W. H. and E. E. Cary. 1964. Determination of Submicrogram Amounts of Selenium in Biological Material. Analytical Chemistry, 36:1359.

Allen, M. B. 1955. General Features of Algal Growth in Sewage Oxidation Ponds. California State Water Pollution Control Board Bulletin, Number 13.

American Conference of Governmental Industrial Hygienists Committee on Threshold Limit Values. 1962. Documentation of TLV. Cincinnati, Ohio.

Atomic Energy Commission Technical Report. September 1, 1963. Radioactivity Transport in Water--Behavior of Ruthenium in Algal Environment Technical Research Laboratory--Civil Engineering Department, University of Texas. Austin, Texas.

Auerbach, S. I. and J. S. Olson. 1963. Biological and Environmental Behavior of Ruthenium and Rhodium. Radio-ecology. Ed. by Schultz, and Klements. Reinhold Publishing Company, New York.

Auerbach, S. I. July 31, 1957. Uptake of ${ }^{106} \mathrm{Ru}$ and ${ }^{60}$ Co from Seep Water by Bean Plants. Health Physics Annual Progress Report (ORNL-2394). pp. 37-40.

Beath, O. A., Hagner, A. L. and C. S. Gilbert. 1946. Some Rocks and Soils of High Selenium Content. Geological Survey Wyoming Bulletin 36:23.

Byers, H. G. 1935. Selenium Occurrence in Certain Soils in the United States. U. S. Department of Agriculture Technical Bulletin 482:48.

Chase, Grafton D. and Joseph L. Rabinowitz. 1959. Principles of Radioisotope Methodology. Burgess Publishing Company, Minneapolis, Minnesota.

Clinton, M., Jr. 1947. Selenium Fume Exposure. Industrial Hygiene Journal, 29:225.

Davis, A. M. 1972. Selenium Accumulation in Cestrageslius Species. Agronomy Journal, 64:751.

Davis, J. J. and R. F. Foster. 1958. Bioaccumulation of Radioisotopes through Aquatic Food Chains. Ecology, 39 (3):530-535.

Eppley, R. W. 1962. Physiology and Biochemistry of Algae. Academic Press Incorporated, New York. pp. 839-840.

Fogg, G. E. 1965. Algal Cultures and Phytoplankton Ecology. University of Wisconsin Press.

Franke, K. W. 1934. Poisoning in Selenious Soils and Blind Staggers. Journal of Nutrition, 8:597-613.

Franke, K. W. and Potter, V. R. 1935. Toxicity Historic. Journal of Nutrition, 10:213-21.

Franke, K. W. and Potter V. R. 1936. Toxicity. Science 83: 330-332.

Franke, K. W., Rice, T. D., Johnson, A. C. and Schoening, H. W. 1934. Historical Se Poison Toxicity. U. S. Department of Agriculture Circular \#320: 1-9.

Glasstone, Samuel. 1958. Sourcebook on Atomic Energy. Van Nostrand Co.. New York. p. 394.

Glover, J. R. 1967. Selenium in Urine. Annals of Occupational Hygiene, 10, p. 3.

Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, Oxford. p. 730 .

Hashimoto, Hwang, and Yanagisawa. February 1970. A Possible Source of Atmospheric Pollution of Se. Encyclopedia of Science and Technology, 4 : (22) pp. 157-158.

Johnson, H. 1970. Determination of Selenium in Solid Waste. Environmental Science Technology, 4:850-853.

Jones, R. F. 1960. The Accumulation of Nitrosylruthenious by Fine Particles and Marine Organisms. Limnology and Oceanography, 3:312-325.

Kifer, R. R., Payne, W. L., and Ambrose, M. E. 1969. Selenium Content of Fish Meals, Part II. Feedstuffs, 4l:24-25.

Klehr, E. H. 1972. Use of Transfer Matrices in Environmental Chemistry, Tetrasectional. American Chemical Society Paper presented at Ponca City, Oklahoma.

Kumar, H. D. and Prakash, G. 1971. Toxicity of Selenium to the Blue-Green Algae Anacystis nidulans and Ana Baena variabilis. Annals of Botany, 38:697-705.

Lakin, H. W. and Davidson, D. R. 1967. Relation of Biochemistry of Selenium to its Occurrence in Soils. Symposium: Selenium in Biomedicine, AVI Publishing Company, Westport, Connecticut.

Lakin, H. W. 1972. Selenium Accumulation in Soils and its Absorption by Plants and Animals. Geological Society American Bulletin 83:181-189.

Leddicotte, G. W. 1961. Radiochemistry of Selenium. Subcommittee of Radiochemistry, National Academy of Science, Natural Research Council, USAE (Available at Office of Technological Services, Department of Commerce, Washington, D. C.)

Lunde, G. 1970. Analysis of Arsenic and Selenium in Marine Raw Materials. Journal of Science Food and Agriculture, 21:242-247.

Manville, I. A. 1939. American Journal of Public Health, 29: 709-719.

Mast, R. F. and R. R. Ruch. 1973. Survey of Illinois Crude Oils for Trace Concentrates of Mercury and Selenium. Environmental Geology Notes. Illinois State Geological Survey No. 65.

Mauchline, J. and W. L. Templetos. May 18, 1963. Dispersion in the Irish Sea of the Radioactive Liquid Affluent From Windscale Works of the United Kingdom Atomic Energy Authority. Nature, 198:48881.

Meyers, Jack and T. O. Morgan. 1953. Biological Accumulation of Inorganic Materials by Algae. Final Report to AEC, University of Texas Laboratory of Algal Physics.

Moxon, A. I. and Rhian, M. 1943. Selenium Poisoning. Physiological Reviews, 23:302.

Muth, O. H., Oldfeld, J. E., Schubert, J. R., and Remmert, L. F. 1958. Science, 128: 305.

National Academy of Sciences. 1971. Selenium in Nutrition. Subcommittee on Selenium. Committee on Animal Nutrition. Agricultural Board of the National Research Council, Washington, D. C.

Nelson, D. J. 1971. Interpretation of Radionuclide Uptake from Aquatic Environments. Nuclear Safety, 5: (2) 196-199.

Odum, H. T. L957. A Model Food Chain. Silver Springs Florida, Ecological Monographs, 27 and 61.

O'Fara, P. J., Pierce, Kenneth R., and Read, W. Kay. 1970. "Effects of Vitamin $E$ and Selenium on Cassia Occidentalis Intoxication in Cattle. American Journal Veterinary Research, 31: (12) 2151-2156.

Olson, O. E. 1970. Selenium in Papers and Tobacco. Environmental Science and Technology, 4:686-687.

Painter, Edgar Page. 1940. Chemistry and Toxicity of Selenium Compounds with Special Reference to the Selenium Problem. Chemical Reviews, 25:179-213.

Patten, B. C. 1969. Modeling of Aquatic Systems. Modeling the Eutrophication Process. Proceedings of a Workshop, at St. Petersburg, Florida; sponsored by the University of Florida and the Federal Water Quality Administration held in November, 1969.

Pillay, K. K., Sivasaskara, Thomas, Charles J., Jr.. Sandel, James A. 1971. Activation Analysis of Airborne Selenium as Possible Indicator of Atmospheric Sulfur Pollutants. Encyclopedia of Science and Technology, $\underline{5}$ : (1) 74-77.

Prescott, G. W. 1962. Algae of the Western Great Lakes Area. William C. Brown and Company, Dubuque, Iowa.

Rhian, M. and Moxon, A. T. 1943. Chronic Selenium Poisoning in Dogs and Its Prevention by Arsenic. Jcurnal of Pharmacological Experimental Theory, 78:249.

Robinson, W. O. 1933. Journal of the Association of Official Agricultural Chemistry, 16:423-424.

Rosenfeld, I. and Beath, O. A. 1964. Selenium. Academic Press, New York.

Schroeder, Henry A., Frost, Douglas V., Balassa, Joseph J. 1970. Essential Trace Metals in Man: Selenium. Journal of Chronic Diseases, 23:(4)227-243.

Schultz, J. and Lewis, H. B. 1940. The Excretion of Volatile Selenium Compounds After Administration of Sodium Selenite to White Rats. Journal of Biological Chemistry, 133:199.

Shrift, Alex. 1954. Sulfur Selenium Antagonism $I$, Antimetabilite Action of Selenate on the Growth of Chlorella vulgaris. American Journal of Botany, 41:223-230.

Smith, M. I., Westfall, B. B. and Stillman, E. E. 1938. Studies of the Fate of Selenium in the Organisms. Public Health Report, 53:1199.

Wainerdi, R. E.. L. E. Fite, W. E. Kuykenäall. 1971. Nuclear Analytical Methods and Systems for the Measurement of Trace Constituents in the Environment. Nuclear Techniques in Environmental pollution, IAEA, Vienna. pp. 451-458.

Watt, K. E. 1968. Ecology and Resource Management. McGrawHill, New York.

Weswig, Paul H. 1972. Selenium in the Environment, Seminar Conducted by Oregon State University Water Resources Research Institute, Fall Quarter.

White, A., Handler, P., and Smith, E. 1959. Principles of Biochemistry. McGraw Hill, New York. pp. 944, 984-6.

Wiersma, James H. and Lee, G. Fred. 1971. Selenium in Lake Sediments. Environmental Science and Technology, 5(12) 1203-1206.

Young, L. G. and Jameson, J. D. 1970. Protein and Copper Supplementation of Corn-Soybean Meal Diets for Young Pigs. Canadian Journal of Animal Science, 50:(3) pp. 727-733.


[^0]:    *Left Entry
    +Right Entry

[^1]:    * Left entry corrected for background. Right entry normalized for attenuation and geometry.

[^2]:    * Left entry corrected for background. Right entry normalized for attenuation and geometry.

[^3]:    LEGEND: Above Number - cpm corrected for background
    Below Number - cpm with additional correction for normalization and attenuation.

