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A METHOD OF DISCRIMINATING PARTIAL KNOWLEDGE

CHAPTER I 

INTRODUCTION

Testing in the Social Sciences 

In a general sense, tests in the social sciences are used to 

measure the nature and extent of differences among individuals. 

Thus a test is defined as a systematic procedure for measuring a 

sample of an individual's behavior. In a strict sense, the re­

sponse an examinee makes to a test item is the only behavior a 

test measures. Even this behavior is only a sample of possible 

behaviors within a given domain.

The necessity for sampling gives rise to two questions. 

First, would the examinee obtain the same score if he were to 

respond to a different sample of items from the same behavior 

domain? This question concerns the reliability of a test.

Second, are the items chosen for inclusion in a test a repre­

sentative sample of the universe of possible behaviors in the
t

area of interest? This is the question of validity.

Test constructors and test users find themselves in a 

special situation. Because their tests are never perfectly 

valid or reliable, test scores contain rather sizable errors 

of measurement. In addition, the characteristics or differences

—1—
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among Individuals which are of greatest interest for study are 

usually not directly measurable but rather must be studied in­

directly, through the measurement of other quantities e.g., the 

responses of examinees to test items.

The investigator comes to grips with these problems by con­

structing theories of mental testing and formulating models that 

provide a framework which permits logical deductions concerning 

general and specific relationships which have yet to be empiri­

cally demonstrated.

These models allow the investigator to make measurements 

because they provide procedures for the assignment of numbers to 

specific characteristics of the experimental units in a way that 

preserves the specific relationships in the behavioral domain of 

interest. Thus, test scores become indicants from which an in­

vestigator may make inferences about the characteristics of an 

unobservable variable.

In psychological testing, these characteristics are often 

referred to as traits. A trait is a hypothetical construct 

referring, in an operational sense, to a cluster of empirically 

interrelated behaviors. The trait name (e.g., intelligence, self 

concept) is a descriptive label applied to the group of behaviors.

Through the years psychology as a science has become organized 

and unified by the development of theories which have served to 

describe, explain, and predict some aspects of individual differences. 

In the course of this development, mental tests have distinguished 

themselves in the areas of vocational placement, diagnosis, hypo-
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thesis testing and hypothesis building in research settings, and in 

many areas of evaluation.

Although nothing in the definition of a test requires that one 

specific format be used, much of psychology uses the responses of an 

examinee to questions on paper and pencil tests as an inferential 

numerical index of the strength of a psychological trait. The test 

item, then, represents the experimental stimulus the psychologist 

deems sufficient to elicit behavior characteristic of a specific 

latent psychological trait.

The test constructor generally wants to determine as reliably as, 

possible the rank order of a group of examinees On a given psycholo­

gical trait as measured by a set of stimulus test items. If the test 

constructor is dissatisfied with the test reliability or validity, 

or both, several alternatives for improving these characteristics 

present themselves. Among other strategies, he may replace or revise 

some of the test items, he may inprove the criterion measure, he may 

lengthen the test, or he may score the test in a manner which may 

yield more information from the test items. It is with scoring 

formulas that investigations of partial knowledge have been con­

cerned.,

Multiple-Choice Test Item (conventional scoring)

A multiple-choice item scored in the conventional manner asks 

the examinee to choose the correct alternative for one point credit 

and gives no credit when an incorrect alternative (distractor) is 

chosen.



Several authors (Garvin, 1972; Hambleton, 1970; Rippey, 1971) 

indicate that an examinee's ability to choose the correct alternative 

to a given item is not particularly informative about the state of 

knowledge of the examinee with respect to the item. No matter how 

or why they were selected, all correct answers look alike. A single, 

unqualified choice does not separate the confident examinee from the 

timid one. Nor does it distinguish between the lucky guesser and the 

expert. It is not difficult to imagine situations in which the se­

lection of alternatives based on grossly disparate levels of relevant 

knowledge receive the same credit.

Hambleton (1970) suggests further that the multiple-choice 

testing format poses a problem when an incorrect alternative or an 

omit is given because nothing of great value is learned about the 

examinee except that he has failed to identify the correct alterna­

tive.

Dressel and Schmid (1953) put forth the argument:

there are meaningful distinctions in the ability 
of students which are not disclosed by the selection 
or non-selection of the keyed response to the usual 
multiple-choice item. It is apparent that these dis­
tinctions are particularly significant in the case 
wherein the responses themselves help to set the situ­
ation to which the student must respond.

There is a tendency to assume that such a 
difference in the student certainty about the cor­
rectness of his response will be accounted for over 
the entire test. To put it the opposite way, the 
student whose response contains an element of guessing 
will tend to miss enough items over the entire test 
to differentiate him from the student who responds 
with complete certainty. This hypothesis needs more 
careful investigation rather than ready acceptance.
Particularly this is true if assurance about what 
one knows and does not know is a desired educational 
outcome. (p 576) ,
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So, as Coombs, Mllholland, and Womer (1956) have suggested, 

although the multiple-choice testing format enjoys a great deal of 

popularity, its merits are not necessarily optimal psychometrically. 

When multiple-choice items are scored in the conventional manner, 

Hambleton et al. (1970), Coombs et al. (1956), and others have 

pointed out several disadvantages:

First, the accuracy of estimating the degree to which an exami­

nee is in possession of a psychological trait is reduced because of 

the inability to discriminate between partial and complete knowledge. 

Second, is the encouragement of guessing, which is only compensated for, 

not penalized by, the conventional right-minus-wrong correction formu­

las (Hamilton, 1950). Third, guessing operates to truncate scores at 

the lowest ability levels while dichotomous scoring operates to trun­

cate scores systematically at the highest ability levels. The result 

is a reduction in the range of scores and the introduction of a chance 

variable. Both of these effects combine to reduce the reliability of 

the test and the test item (Frary, 1969a, 1969b; Garvin, 1972; Grier 

and Ditrichs, 1968).

Multiple-Choice Test Item (partial knowledge)

The concept of partial knowledge has grown out of the belief 

that multiple-choice tests have been used inefficiently because the 

only score obtained is the number right score.

As Powell (1968) expressed it:

Much time is spent by the examiner in the pre­
paration of foils for multiple-choice tests. A 
proportionally large time is spent by the examinee
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in making his selection decision among the 
alternatives. In spite of the time thus spent, 
the foils are generally treated as a mask to the 
right answer and are lumped together in a general 
wrong category. The rating of the examinee is 
usually entirely dependent on his total number 
of correct items on any given test or subtest.
On the other hand, if a multiple-choice test 
has been well prepared, particular wrong answers 
may have nearly equivalent discriminating power 
as do the right answers, (p 403)

The concern here is placed on the scoring formula and the ability 

to extract more information from each test item rather than with the 

multiple-choice item itself.

Nedelsky (1954) pointed out that examiners using conventional 

scoring method were making the assumption that with respect to the 

ability tested by given questions all students who choose any one of 

several wrong alternatives form a fairly homogeneous group. He 

noted further that this assumption is demonstrably false for most 

tests because neither the degree nor the kind of falseness is the 

same for all wrong alternatives. Nedelsky (1954) presented the 

results of a study of examinee scores based on the frequency with 

which they chose a particular kind of incorrect alternative. The 

conclusion was that although the poor examinees exhibited no reliably 

measurable differences in their ability to select correct alternatives,I
they did show considerable differences in their ability to reject 

grossly incorrect alternatives.

From another point of view, we might argue that while an exami­

nee may not know the correct alternative to an item, he may know some 

of the things which are incorrect. The idea of correct discrimination 

among distractors in multiple-choice tests was used by Coombs,
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Mllholland, and Womer (1956) to conceptualize partial knowledge. In 

formulating a basis upon which to test for evidence of partial know­

ledge, Coombs et-at. (1956) considered the conventional scoring 

formula for correcting for guessing. This formula assumes that an 

examinee either knows the correct alternative or guesses randomly.

If there were no partial knowledge and there were a way of telling, 

on those items an examinee missed, what his second choice for the 

correct alternative would be, he would be expected to get 1/(K - 1) 

of them correct by chance, where K is the number of alternatives. 

However, if partial knowledge exists there would be a dispropor­

tionate number of the examinees getting more than 1/(K - 1) of these 

items correct on their second choice. This line of reasoning could 

be extended to an examinee's third, fourth, and fifth choices.

Coombs al. (1956) devised an investigation to test this hypothesis. 

Their

results indicated that examinees-with less than 
complete information on a given subject may have con­
siderable partial information and that this may be 
used as a valid basis for discriminating among them.
(p. 22)

Davis and Fifer (1956) carried out a study designed to find out 

whether; the source of variance associated with distractors was of any 

practical value. Their method was to compare the gain in reliability 

and validity of an experimental scoring formula over the conventional 

scoring formula. They concluded that

the increase in reliability arises from the differen­
tial weighting of responses to incorrect choices in items. 
Variance arising from selection by examinees among distrac­
tors of unequal merit is obtained; this variance is excluded
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from measurement when all Incorrect choices are weighted 
equally, (p 165)

Other Investigators (Hambleton et al. 1970; Jacobs, 1962; .

Jacobs and Vandeventer, 1970; Sigel, 1963) have approached partial 

knowledge from the point of view that the choice of a dis- 

tractor reflects a non-chance Influence of some Importance. The 

results of these studies Indicate that good multiple-choice test 

Items stimulate a rather Involved and extended thought process on 

the part of the examinee. Although each of these studies have made 

attempts to recover this Information, Shuford, Albert, and Massenglll 

(1966) argue;

...upon reflection It Is quite apparent that all 
techniques In current use for assessing the present 
state of a student’s knowledge fall to extract all of 
the potentially available information. In the case
of objective testing the response methods upon
which they are based extract only a very small fraction 
of the Information (partial knowledge) potentially 
available from each query., (p 126)

The Problem

Methods devised to Incorporate this basic idea of differential 

examinee knowledge into mathematical models which make theoretical 

and practical sense in the context of test theory have taken several 

forms. These forms fall into the basic category of differential 

weighting of item alternatives.

There have been many investigations of partial knowledge over 

the past SO years. Although the standards for evaluating the dif­

ferent models have not been consistent there seem to be two conclusions 

which can be reached. First, there is ample evidence (intuitive.
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analytical, and experimental) that partial knowledge exists in an 

amount worth recovering. Second, given that the quality of item 

writing is high, formula scoring methods provide a valid tool for 

recovering partial knowledge.

Latent Ability Test Model

In 1952, Lord presented a latent ability test model, adapted 

from the works of Lawley (1943) and Lazarsfeld (1950), for use 

with binary scored aptitude and achievement tests. This model 

specifies a function which relates the probability of success on an 

item to the underlying latent traits or abilities which the test 

measures. When a single latent trait is assumed to underlie test 

performance, the function is termed an item characteristic curve.

The item characteristic curve approach specifies the interrela­

tion of underlying examinee ability, item discrimination, and item 

difficulty in a way that provides a logical framework for describing 

precisely how an item functions. To date there have been no studies 

of partial knowledge using the mathematical model proposed by Lord 

(1952).

The purpose of this study will be the construction and evaluation
(

of the properties of a partial knowledge extension of Lord's (1952) 

basic latent trait model. A three parameter binary scoring formula 

will be contrasted with a three parameter rank order scoring formula 

(the third parameter being a guessing parameter) in terms of item 

reliability and validity varied across levels of item difficulty and 

discrimination.



CHAPTER II 

REVIEW OF RELATED LITERATURE

The review of the literature is organized to point out the major 

developments in the area of partial knowledge investigation. There 

have been three main directions of study to date. First, differen­

tial weighting of item alternatives; second, confidence testing; and 

third, probabilistic scoring. Each of these categories have analyti­

cal, experimental, and intuitive arguments supporting them.

Differential Weighting of Item Responses

There are two general methods of weighting item options in tests. 

One involves weights chosen empirically to maximize the relationship 

of the testing instrument to some internal or external criteria 

(Stanley and Wang, 1968). The other involves the use of ^  priori 

weights.

Keying option weights to some internal or external criterion 

stems from the work of Strong (1943) in the area of interest and 

personality inventories. Strong weighted the options of his interest 

items so as to maximally differentiate among various occupational 

groupings of people. Strong used the percentage of response to each 

option as a basis for keying each option to each group of people.

Kuder (1957) also utilized this approach.

Both Strong and Kuder found positive empirical evidence to 

support the value of differential option weighting in interest and 

personality inventories.
-10-
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Staffelbach (1930) obtained regression coefficients for three 

scores on a 60 item true-false test. The three scores were number 

correct, number Incorrect, and number omitted. Since the test was 

made up of true-false items, the weighting was for incorrect respon­

ses as opposed to omitted responses.

Kelly (1934) developed a weighting procedure for use with 

dichotomous variables. His procedure took into account the item- 

criterion correlation.

One of the earliest investigations of the effects of differential 

option weighting on test reliability and predictive validity was done 

by Guilford,'Lovell, and Williams (1942). They used the first 100 

items of a 308 item general psychology test as those for which re­

sponse weights were to be chosen. From 300 answer sheets 2 samples 

of 100 were chosen.. The first was from those making the highest 

scores, the second from those making the lowest scores. Percentages 

of response for each item were then calculated and used as response 

weights.

An additional sample of 100 was drawn from the original 300 

students who took the test. Each of these 100 answer sheets were 

scored using the conventional and weighted procedures. Scores on the
I

odd and even items were used to calculate the reliability coefficients.

A very serious limitation involves the fact that the 100 test 

papers used to calculate reliability for the weighted scores were 

sampled from the same sample on which the weights were initially 

established. This may have produced spuriously high reliability 

coefficients.
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A study by Dressel and Schmid (1953) was among the earliest to 

attenq>t to increase the discriminating power of multiple-choice items 

by varying the formula scoring procedures. There were five groups of 

examinees, each taking a 44-item test under a different set of instruc­

tions. The first group was scored by the number of correct responses. 

The second group was asked to indicate the certainty of their responses 

on a 4-point scale. The third group was to mark all alternatives they 

thought correct. Group four had a test modified so that more than one 

correct response was possible. The fifth group took a test having 

exactly two correct answers per item. Dressel and Schmid did not re­

port any significant gains in reliability among the five methods.

Coombs, Milholland, and Womer (1956) devised a study in which the 

task presented to examinees was that of selecting and marking the dis­

tractors rather than the answer to multiple-choice questions. One 

point credit is gained for each distractor correctly identified and 

three points credit lost if the answer is incorrectly marked as a 

distractor. Coombs, et al. (1956) postulated that this seven-point 

item score scale would produce greater item and test variance than the 

conventional two-point item score scale. They also suggested that 

their experimental method would penalize random guessing associated
I

with partial knowledge. To test these hypotheses they administered a 

40-item, 4-choice multiple choice test. Increases in reliability 

were noted in terms of Kuder Richardson 20 formula (KR - 20).

The specific examinee response to difficult and easy items pro­

vided evidence that the reliability of a test composed of difficult 

items is more likely to be increased by the use of response weights
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than the reliability of a test made up of easy items. This result 

has also been expressed by Lord (1963).

Nedelsky (1954) presented a study of examinee scores based on the 

frequency with which they chose a particular kind of wrong response, 

specifically a response which, if mistaken for a right response, 

showed gross ignorance on the part of the examinee. In Nedelsky's 

system, instructors classified the distractors to each multiple-choice 

Item of the test as:

R response or right answer

F response or responses which are so obviously 
wrong that they would have little appeal 
except to the poorest examinees.

W responses other than F or R responses

A composite C-score was proposed.

C *= R - F/f
where: f is the average number of F responses per

item in the test.

Nedelsky's data were obtained from the administration of a 113 

item physical science test to 306 examinees. Nedelsky then computed 

KR-20 reliability coefficients for R, F, and C scores for examinees 

who were graded A, B, C, D, F on the test. The R score was found to 

have negative reliability for D and F graded examinees. Tlie F-score 

reliability was highest for this group of examinees.

The C-score was considered to be the most reliable of the three 

scores, possibly because only 70 of the 113 items contained F-respon- 

ses. However, it was noted that the F-score furnishes evidence that, 

although the poorer students exhibit no reliably measurable differences
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±n their ability to select correct answers, they did show considerable 

differences In their ability to reject grossly wrong answers.

Merwln (1959) studied six methods of scoring three-choice 

multiple-choice Items while varying the Item parameters. He used 

correct answer only, a set of Integer weights, and weights based upon 

the mean criterion score for examinees choosing a particular response 

pattern. Merwln concluded that scoring methods used In connection 

with the latter weights will yield an Item validity as high as any other 

method. He also noted that the gains In Item reliability and validity 

were relatively small and would be even smaller after cross-validation.

Davis and Flfer (1959) investigated the effects of Item option 

weighting of multiple-choice Items on the reliability and validity of 

a high school arithmetic reasoning test. From a pool of 300 Items, 

two parallel forms were constructed, each containing 45 Items. Two 

mathematicians, working independently, assigned weights to each al­

ternative in the two tests. These weights were on a seven-point scale 

, ranging from -3 to +3. These ̂  priori weights were then used for all 

choices In the two tests. A sample of 370 examinees were scored, 

using the weights and the conventional right-only method. Parallel- 

forms reliability was computed and a gain from .68 (the conventional 

method) to .76 (the weighted response method) was noted. This In­

crease In test reliability was equivalent to that obtained by lengthen­

ing the test one and one-half times. Davis and Flfer did not, however, 

find a significant increase in test validity using the option weighting. 

They did conclude that a significant increase in test reliability can 

be gained without reducing the validity, altering test length, testing
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time, or scoring time if the option weighting is used on a well- 

constructed test.

Sabers and White (1969) reported an empirical study of the 

scoring procedure used by Davis and Fifer (1959). Methodologically 

speaking, their study was weaker than that of Davis and Fifer, and 

therefore were unable to replicate the findings. Sabers and 

White endeavored to increase validity but obtained an improvement of 

not more than .03. This small improvement was due in part to the 

mismatching of cross-validation groups.

Hambleton, Roberts, and Traub (1970) made a comparison of the 

reliability and validity of two methods of assessing partial knowledge 

on multiple-choice tests. They administered the midterm exam in an 

educational measurement course under three different procedures. The 

first was the conventional right-only method, the second was a method 

using differential weighting of responses, and the third was a confi­

dence-testing format. To arrive at differential response weights,

22 experts rank ordered for correctness the five responses for each 

of the 40 multiple-choice items in the midterm exam. These rankings 

were scaled using a technique devised by Brock (1960). This technique 

assigns values to ranks so as to discriminate optimally among the ob­

jects being scaled. The confidence testing was scored using the 

procedure suggested by Shuford and Massengill (1967). Hambleton, 

et al. estimated the reliability from the odd-even split halves and 

validity from the correlation between scores on the midterm exam and 

scores on the final exam. Coefficients of effective length of .692 

and .711 were noted for the reliability increase and 4.1 and 2.05 for
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valldity. These seem to be rather substantial increases. They should 

be noted with great caution for several reasons. First, the sample 

representativeness and size are in serious question. Second, the 

testing time was unequal in each of the three procedures. Third, the 

test employed in the study was easy for the group being tested. In 

situations like this it is doubtful that partial knowledge is being 

tested.

Bayuk (1973) conducted an investigation to determine the effects 

of response-alternative weighting and item weighting on reliability 

and predictive validity. Weights were assigned which were propor­

tional to the mean criterion score of examinees selecting that altern­

ative. Weights were derived for each alternative including omit and 

not read. Item weights were computed by maximizing the relationship 

between the composite of item scores and a criterion using multiple 

regression. Results indicated that scores resulting from response- 

alternative weighting were significantly more reliable than scores 

corrected for chance success. Scores significantly less reliable 

than scores corrected for chance were obtained when item weighting 

and response weighting were used together. There were no gains in 

predictive validity reported.

Confidence Rating

Multiple-choice items scored in the conventional manner seem to 

imply that knowledge is a dichotomous or trichotomous entity. The 

majority of the advocates of confidence testing view knowledge as a con­

tinuous variable in the sense that there are varying degrees of it. Some
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authors contend that confidence testing discourages guessing since 

the score systems for some methods are derived In such a manner that 

an examinee will maximize his expected score only If he reveals his 

true degree of certainty In responding.

Much of the subject of confidence testing Is concerned with the 

manner In which the examinee Is asked to respond to the Items and 

the scoring formula that Is used for each Item.

In general terms, the examinee Is asked to Indicate not only 

what he believes to be the correct response to an Item, but also how 

certain he Is of his response. % e n  his response Is scored, the 

examinee receives more credit for a correct response given confi­

dently than he receives for one given diffidently. But the penalty 

for an Incorrect response given confidently Is heavy enough to dis­

courage unwarranted pretense of confidence (Ebel, 1965)»

Hevner (1932) reported one of the first uses of confidence 

testing for minimizing the effect of guessing -In true and false 

testing. She set out to study the degree of Improvement In reli­

ability between the conventional and confidence testing formula 

scoring systems on tests of music appreciation. Subjects In her 

study were to choose the more musical of two pieces and then In­

dicate their degree of confidence In their choice on a three point 

scale.

Hevner conpared the reliability of four different scoring form­

ulas. The first was the number of correct responses; the second was 

the number correct minus an Incorrect score using the weights men?' 

tloned In the weighted correct procedure. The weighted correct score
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showed the most Improvement in reliability.

Of the three methods compared to the conventional scoring 

formula, the weighted correct showed the greatest gain in reliability. 

Since there was no penalty for misplaced confidence, Hevner found it 

necessary to keep the scoring formula a secret so that the dishonest 

subjects could not raise their score artificially.

Soderquist (1936) reported a study similar to that of Hevner.

His scoring formula used a weighted-correct minus a weighted-incorrect 

score; the weights for the incorrect responses were double the amount 

of credit claimed by the student on the item... The weighted-correct 

minus the weighted-incorrect score was compared with the conventional 

right minus wrong score and reliabilities were confuted on random 

split-halves. Soderquist found substantial gains in reliability using 

the scoring formula weighted for student confidence. Soderquist found 

coefficients of effective length of 2.2 using the scoring formula 

weighted for student confidence.

Several authors reviewed the studies by Hevner and Soderquist and 

postulated the existence of personality traits which might influence con­

fidence testing procedures. Wiley and Trimble (1936) performed a study 

which seemed to confirm this. Although they concluded that personality 

factors were present and that confidence testing could be used to study 

personality, they did not indicate specifically which personality vari­

ables were operating in their study. In an attempt to isolate person­

ality factors more specifically, Swineford (1938).administered several 

true-false tests using Soderquist*s confidence testing method. Swineford
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Identified what was termed a gambling score. She concluded that even 

though a coefficient of effective length of 1.42 was obtained using 

Soderquist's system, confidence testing confounds the measurement of 

achievement with an irrelevant personality trait, the willingness to 

gamble in a conq>etitlve academic situation. In 1941, Swineford repli­

cated the earlier study using-other tests and further concluded that 

boys tended to gamble to a significantly greater extent than did girls, 

both sexes gambled more on unfamiliar material, and that gambling 

scores were independent of achievement test scores.

Jacobs (1968) repeated Swineford's study and found the same 

results. In 1971 Jacobs formally questioned the use of confidence 

testing on the grounds that the scoring procedure is contaminated to 

a very large extent by individual differences in examinee personality. 

Two students of equal true ability but indicating different degrees 

of confidence would look like students of differing ability under 

most confidence testing procedures.

In an effort to improve the discrimination of multiple-choice 

items without increasing testing time, Dressel and Schmid (1953) 

experimented with four modifications of the conventional multiple- 

choice item.
I

They termed the first modification a free choice test. Under 

this test condition the examinees could choose as many alternatives 

as they thought correct. The second modification was termed the 

degreerof-certainty test. Under this testing condition the examinees 

were to indicate on a four point scale how certain they were with 

respect to a single response. The other two modifications are de-
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scrtbed under response weighting procedures. Unlike earlier studies 

of thie nature, the examinees in each testing condition were made 

aware of the scoring formula being used. Under the free choice 

testing condition, superior students were found to mark fewer alterna­

tives across test items than did average and poor students. The 

degree-'of-certainty testing condition was found to differentiate 

among superior, average, and poor students quite well. There was 

an improvement in reliability using the degree^of-certainty method 

as indicated by a coefficient of effective length of 1.16.

Ebel 0-9.63) described what is basically a modification of 

Soderquist's scoring formula, and adapted it for use with true-false 

test items. Like the early experimenters in confidence testing,

Ebel's intent was to reduce the error component due to guessing in 

test scores. Ebel's formula scoring system combines the basic fea­

tures of confidence testing and both forms (additive and subtractive) 

of the correction for guessing.

Ebel 0965) reported reliability data from three different 

classroom tests using the Kuder-Richardson 20 formula. He found the 

confidence testing formula scoring procedure to yield coefficients of 

effective length of 1.84, 1.48, and 1.72.

Ebel 0965) concluded:

The results of these hypothetical studies suggests 
that confidence weighting can be effective if the more 
capable students are also more discriminating than less 
capable students in choosing which responses to give 
confidently. But the results of recent experimental 
studies suggest that sometimes the more capable students 
are not much, more successful than their less capable 
classmates in deciding when to answer confidently and 
when to answer cautiously. (p 55)
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Ebel also found the attitude toward gambling, as did Swineford (1938), 

to affect the test score and to be uncorrelated with achievement. To 

neutralize the irrevelant influence of the gambling trait, Ebel 

suggested that the proportion of answers that must be given confi­

dently be specified in advance for all students.

There have been two basic approaches to confidence testing 

described thus far. One method, the examinee may indicate any number 

of answers to be correct or incorrect. This approach is typified by 

Dressel and Schmid (1953). The other approach asks the examinee to 

first indicate his response and then to indicate his confidence in 

that response. Ebel (1965), Hevner (1932), Jacobs (1968), Soderquist 

(1936), and Swineford (1941, 1938) have used this approach to for­

mula scoring. Each of these two methods gives a correct response 

given confidently more credit than a correct response given without 

confidence.

Probabilistic Scoring 

In 1965 the statistician de Finetti brought a high degree of 

mathematical sophistication to confidence testing by deriving formula 

scoring methods based on assumptions of examinee behavior, elements
I

of decision theory, and personal probability. He posed the question 

of how an examinee should behave when he is required to choose one 

among k alternatives to a test item. The majority of earlier confi­

dence-testing scoring formulas were quite arbitrary in their makeup.

De Finetti s method, based on a mathematical model, presented a 

continuous scoring method which seemed very powerful. It was assumed 

that for each k-choice item, the degree of examinee partial knowledge



relevant to the Item could be expressed In a complete and unique way 

by a set of values pj, J = 1, 2,  k such that

k
P

The Pj values are the examinee’s personal probabilities that the jth 

choice is the correct alternative. The item) score takes the form

0 i  Sh - 2Ph i

where h is the correct alternative. In all cases the minimal value 

is attained when the total probability is concentrated on a single 

incorrect alternative and the maximum value is attained when it is all 

on the correct alternative. Since the penalty is the square of the 

distance from that point representing the examinee's opinion to the 

correct alternative, the examinee must indicate his true personal 

.probability if he is to maximize his expected score.

Recognizing that the assignment of exact probabilities to each 

item alternative was a very difficult task, de Finetti experimented 

with several other simpler approaches to the problem. These alternate 

methods were designed to estimate an examinee’s personal probability. 

The most notable of de Finetti’s methods is the five-star scoring 

formula. This method restricts examinees to a finite set of proba­

bility responses in multiples of .2. Like the continuous method, 

examinees must place the five .2 stars on the item alternatives so as 

to indicate his relative strength of belief about the alternatives.
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The distribution of stars for each item is referred to in tables pro­

vided by de Finetti to produce the item score.

Even though the theoretical work of de Finetti (1965) is pro­

mising, several psychological and operational factors were never 

considered. No studies of possible score contaminating factors (such 

as Swineford's gambling trait) have been done. Nothing is mentioned 

about the difficulty of the directions, time necessary for hand scoring, 

increase or decrease of testing time, or improvement in test relia­

bility.

Other authors approached the confidence testing problem using 

scoring formulas with reproducing properties; that is, an examinee 

could maximize his expected score with respect to his personal pro­

bability distribution only if he honestly indicates his personal 

probabilities. Early work in this field was done by Toda (1963).

Toda experimented with logarithmic and quadratic schemes. Roby 

(1965) reported a spherical scoring formula.

Shuford, Albert, and Massengill (1966) in an important paper 

suggested that a larger amount of information can be extracted from 

objective test items than is accomplished by a standard scoring method. 

They further suggested that the additional information about ability 

is contained in an examinee's personal probabilities for various item 

alternatives. Their scoring formula is termed admissible probability 

measurement and has reproducing properties.

Although their formula scoring procedures went through some 

evolution, a single truncated logarithmic scoring function was de­

veloped, and is given below
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1 + log,. R. for .01< R 1
f(R. ) = < ^  ^

' “1 for 0- \ £  .01

where is the probability given to the correct response. Shuford, 

et al. have shown that a payoff function is necessary if the examinee 

is to be expected to indicate his true level of certainty. They fur­

ther demonstrated for conditions with more than two alternatives that 

the logarithmic is the only valid method to use. Shuford et have 

marketed their scoring technique in a kit form.

Ebel (1968) acknowledged the logic of their method but criticized 

the kit because the administration time was nearly double that of a 

conventional test, and the kit itself was too complex. He further 

cited the lack of evidence of increases in validity and reliability. 

Echternacht (1971) criticized the work of Shuford, et al. for lack of 

control groups and very small sample sizes. He further concludes 

that confidence test scores (using the truncated logarithmic scoring 

function) could be higher than conventional right-only scores in part 

because of the scoring scheme. Hansen (1971) found that examinees 

displayed a tendency to either be confident or not. This confidence 

characteristic was found to be stable frog test to test and only 

slightly correlated with the examinee's knowledge. Hansen concluded 

that training in the use of confidence testing methods does not re­

duce the errùr in the scoring system. To ease the understanding of 

directions and difficulty in scoring, Michael (1968) experimented 

with a simpler modification of personal probability. Her scoring
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formula required examinees to give 10 points to the various Item al­

ternatives. Each Item was scored by the proportion of points given 

to the correct response. Michael found higher reliabilities and 

lower standard errors using this method. Ripply (1970) used Michael's 

method In a study and recommended Its use because of the scoring ease 

and high rellablltly.

Regardless of the specific formula scoring used, the primary 

purpose of confidence weighting and subjective probability has been 

to Increase ability-related variance while reducing error variation.

It Is In this light that It must be evaluated (Lord, 1968).

Several studies have shown these scoring formulas to be complex 

and difficult for subjects to understand. Other studies have pointed 

out the existence of a general "gambling" factor that may actually 

Increase error variation In the test.

Ripply (1971) and Ebel (1965) suggested male and female differences 

on the gambling trait and that examinees don't handle their confidence 

well.

As Stanley and Wang (1970) stated:

The derivation of optimum response strategies In 
multiple choice testing represents an application of 
mathematical decision theory which underscores the 
decision process inherent In such tests. The success 
of testing procedures which attempt to control the 
decision process will be critically dependent on the 
ability of the subjects to effectively use optimal 
strategies. It Is not certain that all subjects are 
equally capable of learning to use such strategies.

There have been Improved reliability coefficients and other

evidence of the usefulness of the above procedures, but Garvin (1972)

points out that



widely- disparate situational factorsmtest length, 
format, difficulty, and content, and respondent motiva- 
tion?frand most important, disparate experimental methods 
ologles, make it difficult to abstract generalizations 
from these étudiés, (p 41

The rank order scoring procedure ( to be defined in Chapter III) 

offers some relief at this point. It is an obvious alternative to 

probabilistic scoring (mentioned by de Finetti, 1965) which makes 

explicit the probability distributions for items having varied character­

istics. This will allow the assessment of model capabilities independent 

of the determination of the fit of the model to empirical data. The 

question of model capabilities is more basic since for models showing . 

insufficient promise, tests of empirical fit would be superfluous.

However, from an empirical view point, ranking procedures should 

be very easy to teach examinees and should make it difficult for 

examinees to adopt a strategy, other than to.respond honestly, that 

would maximize their expected score.



CHAPTER III 

METHODOLOGY

This study was designed to conq>are the reliabilty and validity 

of a binary and a rank order latent trait test model over a range of 

situations. This was to be accomplished by the confuter simulation 

of the conditional, joint, and marginal probability distributions of 

test score for each of the two models. The variance and covariances 

necessary for the computation of item reliability and validity followed 

from these probability distributions.

Basic Assumptions of the Binary Model

It is assumed that the trait or ability under consideration can 

be thought of as an ordered variable represented numerically in a 

single dimension. This means that the examinees are considered as 

existing on a continuum in a way that inçlies that the amount of 

ability an examinee possesses is represented quantitatively by his 

position on the continuum.

The following are also assumed.

1) The proportion of correct responses made by examinees of 

very low ability will be close to 1/k, where k is the number of 

alternatives. The proportion of correct responses made by examinees 

of very high ability will be close to 1.0.

2) The proportion of correct responses increases as the ability 

level of the examinees increases.

3) All examinees will answer each test item.
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4) Examinee ability is normally distributed in the population.

5) The number of examinees at any specified level of ability is 

assumed to be so large that sampling fluctuations may be ignoiped.

Three Parameter Normal Ogive Model for Binary Score 

In this model, the item characteristic curve takes the form

PgCSf) = Cg + (1 - Cg)4>(ag(0^ - bg)) (3.1)

Where Pg(8 )̂ is the probability that an examinee with ability 0^

answers item g correctly. The parameter a^ is the item discrimination-

index and is proportional to the slope of at the point .0^ = b^.

This parameter indicates the quality of an item in the .basic-sense-of -

the amount of information the item provides about 0. The parameter b^

is the item difficulty index and represents the point on the ability

scale at which the slope of the item characteristic curve is a maximum.

The parameter c^ is the guessing parameter or the lower asymptote of the

item characteristic curve. The symbol $ indicates the cumulative normal

distribution function. It can be seen from (3.1) that an item will only

be useful if the probability of a correct answer increases as 0 increases.

It is for this reason that consideration will be restricted to items

having the properity 0 < a^ ̂  . It is assumed that- » < ® and

c B 1/k, where k is the number of item alternatives.
8

Three Parameter Normal Ogive Model for Rank-Order Score 

A test administered under the rank order model requires the 

examinee to rank order, using the ranks 1 to k, the alternatives he 

believes to be most, second,   and least correct. In addition to
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to the assumptions of the binary model, the rank order model assumes 

that the ranks (1, 2,....., k) an examinee places on the correct 
alternative may be used as an index of his partial knowledge of the 

trait or ability being measured. Limiting consideration to the rank 

placed on the correct alternative has the effect of reducing the number 

of possible item scores from k! to k. The value is the item score

if the correct alternative is given the rank h (h = 1, 2 ,....   k)

with Xjj decreasing (Xĵ  > Xg > ....X^). An examination of equation

(3.1) reveals the probability of successfully identifying the correct 

alternative in the normal ogive model for binary scores to be equivalent 

to placing the rank of one on the correct alternative in the normal 

ogive model for rank order scores. The model considered here states 

that the probability of placing the rank of one (P(R^)) on the correct 

alternative of item X^ given ability 0^ takes the form

p(Rj) = PgCep = p(Xg=i|e^)

= Cg + (1 - Cg)$(ag(0j, - bg) (3.2)

Equation (3.2) indicates that the examinee of ability 0^ has 

assigned the first rank with a probability P(R^) that he assigned it 

to the correct alternative. Consideration now turns to the probability 

P(Rg) that the examinee will place the rank of two on the correct 

alternative. Let P^0^ = 4>(ag(0ĵ  - bg)). Also EP(R^) = 1.0. With 

k-1 ranks remaining to be assigned, the probability of the examinee 

assigning the rank of two to the correct alternative is hypothesized 

to take the form



PCRg) “ P(Xg«2|0 )̂ «

{1 - P(R^»{P^0ĵ + c (1 - P^0^)} , (3.3)

where = l/(k_- 1)

Following a similar line of reasoning, the probability that the 

examinee assigns the rank of three to the correct alternative takes 

the form

PCRg) = P(Xg=3|0^> =

. {1 - P(Rj) - P(R2)}{P^0^ + c (1 - P^0^)} , (3.4)

where c^^ = l/(k - 2)

The remaining two ranks In a five choice Item follow the same 

pattern and are:

P(R^) = P(X =4|0^) = (3.5)

{1 - P(R^) - P(Rg) - P(Rg)}{P^0j^ + Cg^d - P^0^)} ,

where c„, = 1/(k - 3) g4

P(R^) = P(Xg=5|0^) = 1 - P(R^) - P(R2) - P(Rg) - P(R^) (3.6)

The normal ogive model for rank ordered alternatives takes the 

general form ,

P(Xg=h|0j  =
{Cg + (1 - Cg)4> (3gC0^ - bg) } If h=l

if h

=n|0i; = <

> 1 L
K3.7)
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Rellablllty and Coefficient of Effective Length 

One point of comparison between the binary and rank order 

scoring formulas is their respective reliabilities. The reliability 

of a test is defined as the correlation between observed score (x) 

and true score^Xt).

P(x,t)= 4- (3 8)
where' o^ is the true score variance, and

0^ is the observed score variance.,

Since improvement in reliability is a main point of interest 

it is necessary to provide a suitable metric for expressing this 

factor. The Coefficient of Effective Length for Reliability (CEL-R) 

serves this purpose. (Gulliksen, 1950, p 83)

CEL-R = ~ ril)%kk--- (3.9)

- Bkk)?!!

where: r^^ is the reliability of a binary scored test item,

and R ^  is the reliability of a rank order scored test item. The 

CEL-R is interpreted as the factor by which the binary scored test 

would have to be lengthened or shortened to yield the reliability 

of thç same test administered using the rank order scoring procedure.

Validity and Coefficient of Effective Length 

A second point of comparison between the two formula scoring 

procedures is their respective validities. The validity of a 

test item is defined as the correlation between observed test score (x) 

and.underlying ability (0).
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But since the distribution of e is assumed»to be N(0,1), 

equation (3.10) becomes

p, «-covCx^eL (3.11)
a(x)

Since improvement in validity is a main point of interest it 

is necessary to provide a suitable metric for expressing this factor. 

The Coefficient of Effective Length for Validity (CEL-V) serves 

this purpose. (Gulliksen, 1950, p. 93)

CEL-V = ~ fjl) (3.12)

where; r^^ is the validity of a binary scored item,

r^j is the reliability of a binary scored item, and

% i  the validity of a rank order scored item.

The CEL-V is interpreted as the factor by which a binary scored

test would have to be lengthened or shortened to yield the validity

of the same test administered under the rank order scoring procedure.

Conditional, Joint, and Marginal Distributions

The variances and covariances necessary for the computation of

item reliability and validity are constructed from the conditional

distribution of test score x for a fixed 0., and the joint dis-
g 1

tribution of x and 0^. These distributions follow directly from g i
the definition of 0^ and its probability distribution.
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It can be seen from the relationship of equation (3.1) to (3.2) 

that the binary model Is a special case of the rank order model.

This relationship allows the definition of the conditional, joint, 

and marginal distributions to follow a general form. Since the 

probability of a point on a continuous function Is equal to zero, 

ability Is specified as a set of discrete points In units of standard

deviation. The area contained within the Interval $(0^ - G^_2)/2 to

$(Gĵ  x^ed as an estimate of the probability of the point

This area Is calculated for each point 0^ from -3a to +3a In 

Increments of 0.2a.

The conditional distribution of test score Is a (k,n) matrix

with k ranks and n 0 points If 0 Is discrete.

P(Xg=ll0p P(Xg=l|0i+i) .................... . P(Xg=l|0j

P(X =2j0 )  ..........................P(X =2|0 )
® . 1  ̂,

. P(Xg=k|0^)  P(Xg=k|0^) .

I
It can be seen that the conditional distribution of test score for 

the binary model Is found In the first row of this matrix. The joint 

distribution (P(X^,0)) of observed score (X) and (0) Is obtained by 

multiplying each entry In the matrix of conditional probabilities by 

its corresponding probability of P(G^).
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The marginal distribution of observed score (P(X =k)) is 

obtained by summing the rows of the joint distribution. This yields 

a k.element vector.

Having specified the conditional, joint, and marginal dis­

tributions of test score, true and observed score variances are 

calculated.

True Score and Observed Score Variance

The binary and rank order normal ogive models assume 8^̂ to be 

the only source of true variance among people. It follows then that 

when 0^ is fixed true score is also fixed. As a result, the expected 

value of observed score for a fixed 0^̂ is the true score for 0 .̂

Let equal the true score corresponding to the ability level 

0^ and let equal observed test score. The item true score takes 

the general form

Tj . E(xj0j)

. ZP(X^=k|0i)'Wg

= P(Xg=lI"W^ + P(X^=2|0^)"Wg + ....
.... P(X.=k|0^) 'w (3.13)g k

where w^ are the item alternative weights. For the binary model, 

there are only two possible outcomes and the correct one receives a 

weight of one while all other alternatives receive weights of zero.

%  " V ' *  * P(Xg=2.3.4.5|8i)'0
-F(Xg=l|0j) (3.14)
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True score variance (o^ ) follows from the expected values of 

the sum and sum of squares of true score.

o2 » Et2 - E(t)2 • (3.15)

« 2 P(t^)‘t2 - { S ^ }2 (3.16)

» r P(G^)2'Gj -{ Z P(G^)* G^ (3.17)

Observed score variance follows from the expected value of the 

marginal distribution.

o% = Ex% - E(x)2 (3.18)

•= Z P(Xg=k)«Wj^ - Z P(Xg-=k) .w| (3.19)

where. P(Xg=k) is the marginal probability for the kth alternative 

and w^ is the scoring weight for the kth alternative.

Procedure

Test items were simulated using the normal ogive models for 

binary and rank order scoring of multiple-choice items discussed 

earlier. The marginal distributions of test score and true score 

for the simulated items were used to compute item reliability. The 

joint distribution of observed score and ability were used to compute 

validity. The resulting reliabilities and validities were contrasted

by expressing them as coefficients of effective lengths for reliability
I

(CEL-R) and validity (CEL-V). The thirty-six items simulated were 

made up of all combinations of item discrimination ( 0.5 to 2.5) and 

item difficulty ( -1.5 to 2.5) in increments of 0.5.



CHAPTER IV 

RESULTS

A co^putex simulation of the conditional, joint, and marginal 

di35trl$îtit±pn of test score for items scored using the binary and 

rank.order normal ogive formula scoring procedures was performed.

By varying the item difficulty and item discrimination, thirty-six 

different test items were simulated. The item reliabilities and 

validities calculated for each, item using the two different pro­

cedures and the coefficients of effective length for reliability 

GîELrRl and validity CCELr̂ Vl for the thirty-six items are presented 

in Table 1.

An inspection of Table 1 shows item reliability decreases as 

item difficulty (Bg) increases for a fixed level of item discrimination. 

Except for items 31 to 35, items scored using the rank order procedure 

have reliabilities equal to or higher than the same items scored 

using the binary procedure. The greatest gains in reliability 

(largest CEL-R) result when the item discrimination index (â ) is 

less than or equal to 1.0. Alternatively, if the item difficulty is 

held constant the CEL-R decreases as the item discrimination index 

(Agi increases. Rank order scoring produces the greatest gain in 

reliability over the binary scoring for very easy and very difficult 

test items.

If the item discrimination index is held constant, item validity 

increases as item difficulty increases to bg = 0.0 and then decreases. 

This is the attenuation paradox. QLoevinger, 19.54). Although improvement 

in validity does not always favor the rank order scoring procedure,

—36—
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when iteinj dl.acrinjinatixsn is held constant the improvement in validity 

G)EL<3SfL increases' aa item difficulty, increases. In general, as 

item^iscrimination increases the CEL?«V decreases with the smallest 

CEIt̂ V occurring with the highest item discrimination and lowest 

item difficulty. The largest CELr-V's occur with the more difficult 

test items. Test items 1 to 9 and 12 to 18 represent combinations 

of item difficulty and item discrimination commonly found in aptitude 

and achievement testing QLord, 1968}. Scoring these items using 

the rank.order procedure results in gains in reliability and validity, 

ft should Be noted that the greatest gains in reliability and validity 

only occur for the more difficult test items. ,

In order to further Illustrate the relationship between item 

discrimination, item difficulty, and underlying ability, nine 

items d, 5, 7, 10, 14, 16, 19, 23, 25 from Table 1.) representing 

comhinations of easy, moderate, and high difficulty with moderate, 

high, and very high discrimination were chosen and their conditional 

distributions of rank order score were plotted (Figs. 1-9). From

top to bottom, the curves represent P(Ri), PCRg), , P(R^). For

each of these nine items the conditional error variance (scaled for 

total test variance) at each point on the ability continuum 

calculated (Tables 2 r- 10).



Table 1 

Summary Statistics 

for 

Binary and Rank Order Models

ITEM
PARAMETERS

BINARY
ITEM

RANK ORDER 
• ITEM IMPROVEMENT

b
g

Reliability Validity Reliability Validity CEL-R CEL-V

1) 0.5 -1.5 0.09 0.28 0.17 0.29 1.82 1.09
2) 0.5 -1.0 0.09 0.29 0.15 0.31 1.65 1.18
3) 0.5 -0.5 0.09 0.29 0.14 0.32 1.58 1.26
4) 0.5 0.0 0.09 0.29 0.14 0.33 1.55 1.35
5) 0.5 0.5 0.08 0.27 . 0.12 0.32 1:55 1.43
6) 0.5 1.0 0.07 0.26 0.11 0.31 1.57 1.51
7) 0.5 1.5 0.06 0.23 0.09 0.28 1.61 1.58
8) 0.5 2.0 0.04 0.20 0.07 0.25 1.66 1.64
9) 0.5 2.5 0.03 0.16 0.05 0.21 1.73 1.69

10) 1.0 -1.5 0.22 0.39 0.32 0.38 1.46 0.89
11) 1.0 -1.0 0.24 0.44 0.31 0.44 1.31 0.99
12) 1.0 -0.5 0.24 0.46 0.30 0.48 1.24 1.08
13) 1.0 0.0 0.22 0.46 0.27 0.48 1.21 1.16
14) 1.0 0.5 0.19 0.42 0.23 0.46 1.20 1.23
15) 1.0 1.0 0.15 0.36 0.18 0.40 1.20 1.28
16) 1.0 1.5 0.10 0.27 0.12 0.31 1.23 1.34
17) 1.0 2.0 0.05 0.18 0.07 0.22 1.29 1.40
18) 1.0 2.5 0.02 0.11 0.03 0.13 i.45 1.49

&09I



• » Table 1 (cent.) « M

*8
bg Reliability Validity Reliability Validity CEL-R CEL-V

19) 1.5 -1.5 0.33 0.43 0.42 0.39 1.29 0.79
20) 1.5 -1.0 0.35 0.50 0.41 0.48 1.17 0.88
21) 1.5 -0.5 0.35 0.54 0.39 0.53 1.11 0.95

• 22) 1.5 0.0 0.33 0.54 0.35 0.54 1.07 1.01
23) 1.5 0.5 0.28 0.48 0.29 0.49 1.04 1.05
24) 1.5 1.0 0.20 0.39 0.20 0.40 1.02 1.08
25) 1.5 1.5 0.12 0.27 0.12 0.28 1.02 1.13
26) 1.5 2.0 0.05 0.15 0.06 0.16 1.09 1.20
27) 1.5 2.5 0.02 0.07 0.02 0.08 1.31 1.32

28) 2.0 -1.5 0.41 0.44 0.49 0.39 1.19 0.72
29) 2.0 -1.0 0.43 0.53 0.46 0.50 1.09 0.80
30) 2.0 -0.5 0.43 0.58 . 0.44 0.56 1.03 0.86
31) 2.0 0.0 0.40 0.58 0.39 0.56 0.99 0.90
32) 2.0 0.5 0.33 0.51 0.31 0.50 0.95 0.93
33) 2.0 1.0 0.24 0.40 • 0.21 0.39 0.91 0.95
34) 2.0 1.5 0.13 ' 0.26 0.12 0.25 0.90 0.98
35) 2.0 2.0 0.06 0.13 0.05 0.14 0.96 . 1.05
36) 2.0 2.5 0.02 0.05 0.02 0.06 1.21 1.19

&
VOi
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TABLE 2

CONDITIONAL ERaOR VARIANCES

ABIL ITY BINARY •RANKED
I) -3.0 1.329 3.368
2 ) - 2.8 1.359 3.179
3) -2.6 1-383 2-973
4) -2.4 1.400 2.751
5) -2.2 1.405 2.520
6 ) - 2.0 1.406 2.285
71 - 1.8 1.393 2-051
8 ) - 1.6 1.369 1-823
9) -l .4 1.333 1.605

lOJ . - 1.2 1.286 1.400
1 1 ) -1 .0 1.228 1-212
1 2 ) —G . 8 1- 161 1.042
13) —C .6 1.007 0.BP9
14) -0.4 1.007 0.754
15) -C.2 0-923 0-636
16) 0.0 0-836 0-534
17) 0.2 0-750 0.446
1») 0.4 0 . 666 0-371
19) 0.6 0-584 0.308
?0 ) 0.8 0-507 0.254
2 1 ) 1 .0 0-436 0.208
2 2 ) 1.2 0.371 0-170
23) 1.4 0.312 0-138
24) 1 .6 0.260 0-112
25) , 1.8 0.214 0-090
26) 2 .U 0-175 0.072
27) 2.2 0-141 0-0S7
28) 2.4 0- 113 0-045
29) 7.6 0-090 0.035
30) 2.8 0-070 0-027
31) 3.0 0-C55 0-021

= 0.5, bg = -1 .5
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TABLE 3,
CONDITIONAL ERROR VARIANCES f

ABILITY BINARY RANKED
1 ) -3.0 0.658 1.406
7) - 2.8 0.673 1.400
3) -2.6 0.689 1.391
AJ -2.4 0.70b 1.379
5) - 2.2 0.729 1.363
6 ) -2.0 0.752 1.341
7) - 1.8 0-775 1.314
8 ) - 1.6 0.800 1.280
9) -1.4 0.825 1.239

101 - 1.2 0.849 1.190
Ix) - 1.0 0.871 1.133
1 2 ) — 0 .8 0.090 .1.070
13) — 0 . 6 0.906 1.000
14) -n.4 0.917 0.926
15) -0.6 0.923 0.84P
16) 0.0 0.921 0.769
17) 0.2 0.913 0.690
18) 0.4 0.897 0.613
19) r .6 0.873 0.540
2 0 ) 0.8 0.842 0.471
2 1 ) l.u c.acs 0.408
2 2 ) 1.2 0.761 0.350
23) 1.4 0.712 0.299
2hI 1.6 0.660 C.254
25) 1.8 0.6C4 0.214
26) 2.V 0.54S 0.180
27) 2.2 0.491 0.150
26) 2.4 0.436 0.125
29) 2.6 0.383 0-103
30) 2.8 0.332 0.085
31) 3.0 0.236 0.070

+ *8 •= 1.0 , b = 
g -1.5
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TABLE
CONDITIONAL ERROR VARIANCES

ABILITY BINARY RANKED
1) -3.0 0.651 1.096
2 ) -2.8 0.658 1.095
3) -2 .6 0.666 1.094
4) -2.4 0.675 1.093
5) - 2.2 0.687 1.090
6 ) — 2 . 0 0.700 1-087
7) - 1.8 0.716 1.002
8 > ”̂ 1.6 0.734 1-075
91 -1 .4 0.754 1-066

1 0 ) - 1.2 0.776 1.054
1 1 ) - 1.0 0.8C0 1.037
1 2 ) - 0.8 0.825 1.016
13) — 0 . 6 0.851 0.990
14) -0.4 0 .8 TB 0.958
15) -0.2 0.903 0.920
16) 0.0 0.927 0.676
17) 0.2 0.948 0.627
18) 0.4 0-964 C.773
19) 0.6 0.976 0.716
2 0 ) 0.8 0.982 0.656
tl) 1.0 0.980 0.595
2 2 ) 1 .2 0.971 0.534
23) 1.4 0.954 0.474
24) 1.6 0.929 0.418
25) 1.8 0.896 0-364
26) 2.0 0.856 0.315
27) 2.2 0-810 0.271
28) 2.4 0.758 0.231
29) 2.6 0.702 0.196
30) 2.8 0.643 0.166
31) 3.0 0.583 0.139

= 1.5, b = -1. 
g .5
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TABLE 5
rUNDITIONAL ERROR VARIANCES t

ABILITY BINARY RANKED
1 » -3.0 1-423 4-498
2 ) -2.8 1-513 4.392
3} —2 .6 1.610 4.214
41 -2.4 1.711 • 3-946
5) -2.2 1.8 C2 3-580
6 ) -2.'0 1.866 3.129
7) — 1.8 1.887 2.626
8 ) - 1.6 1.852 2-115
9) -1.4 1-756 1-639

1 0 ) -1 . 2 . - 1.602 1.229
11 ) — 1.0 1.403 0.895
1 2 ) — 0 .8 1.170 0-637
13) -0 .6 0-948 0-445
14) -0.4 0.730 0-305
15) — 0 .2 0.539 0-2C6
16) 0.0 0.3B2 0-136
17) 0.2 0-260 0-088
IP) 0.4 0.169 0-055
19) 0.6 0.106 0.034
2 0 ) 0.8 0.064 0-020
2 1 ) 1.0 0.037 0-012
2 2 ) 1.2 0.021 0-006
23) 1.4 0.011 0-003
24) 1.6 0-0C6 0.002
25) 1.8 0.003 O-COl
26) 2.0 O-COl O.OGC
27) 2.2 C.GOl O.CCC
28) 2.4 O.OOü O-COO
29) 2.6 0.000 0-000
30) 2.8 0-000 0-000
31 ) 3.0 c.ooo 0.000

" 0.5, bg = 0.5
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TABLE 6

CONDITIONAL ERROR VARIANCES t

ABILITY BINARY RANKED
1) -3.0 0.517 0.960
2) -2.8 0w517 0.960
3) -2.6 0.518 0-960
4) -2.4 0.519 *0.960
5Î -2.2 0.522 0.960
61 -2.0 0.526 0.960
7) — 1.0 0.533 0.959
8) — 1.6 0.543 0.958
9) -1.4 0.559 0.955

10) -1.2 0. 531 0.949
n  ) — 1.0 0.610 0.937
12) -0.8 0.647 0.915
13) —0.6 0.636 0.878
14) -0.4 0.731 0.822
15) -0.2 0.770 0.746
16) 0.0 0.797 0.652
17) ^.2 0.8 36 0.547
lo) 0.4 0.792 0.441
19' 0.6 C.750 0-342
20) 0.8 0.685 0.256
21) 1.0 0.600 0.187
22) I .2 0.504 0.133
23) 1.4 0.405 0.093
24) 1.6 0.312 0.064
25) 1.8 0.230 0.043
26) 2.0 0.163 0.C28
27) 2.2 0.111 0.018
28) 2.4 0.072 C.Oll
29) 2.6 0.045 0.GC7
30) 2.8 0.027 0.C04
31) 3.0 0.016 0.002

+ *g = 1.0, & = 
g

0.5
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TABLE 1

CONDITIONAL ERROR VARIANCES

ABILITY BINARY RANKED
1} —i • 0 0.66b 0.892
2\ -2.8 0.668 0.892
3) -2.6 0.668 0.892
4) -2.4 0.668 •0-892
5) -2.2 0.668 0-892
6) -2.0 0.669 0.892
7) -1.8 0.66 9 0-392
8) — 1.6 0.670 0-892
9) -1 .4 0.672 0.892

10) -1.2 0.675 0.892
11) - — 1.0 0.681 0.891
x2) — 0 .8 0-689 0.891
13) —0 .o 0.703 0.890
14) -0 .4 0.724 0-888
15) -0.2 0.752 0-832
16) U.D 0.790 0.871
17) 0.2 0.837 0.850
16) 0.4 0.091 C.S16
19) 0.6 0.947 0.764
2 0 O.B 0.997 0-693
^1 ) 1.0 1.032 0.606
22) 1 .2 1.044 C.50R
23) 1.4 1-025 0-409
24) 1.6 0.971 0-317
25) 1.8 0.886 0.238
26) 2.0 0.776 0.173
27) 2.2 0.652 0.123
28) 2.4 0-524 0.086
29) 2.6 u-404 0.059
30) 2.8 0.298 0-040
31) 3.0 0.211 0.026

f a = 1.5, b = 0.56 g
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TABLE 8
CONDITIONAL ERSOR VARIANCES

ABILITY PINARV RANKED
1} -3.0 1.41-3 4-149
?.) -2.8 1.467 4.137
3) — 2.6 1-555 4.098
4) -2.4 • 1.685 3.989
5) -2.2 1.849 3.747
6) -2.0 2.013 3.318
7) -1.8 2.121 2.711
8) -1 .6 2.110 2.020
9) — 1 .4 1.947 1.379

10) -1.2 1.646 0-876
II) -1.0 1-267 0-526
12) -0.8 0.885 0.303
1^) —0 .6 0-561 0. 167
14) -0.4 0.324 0.088
15) -0.2 0-171 0-044
16) 0.0 0.CS3 0-021
17) 0.2 0.037 0.C09
le) 0.4 0.015 0.004
19) 0.6 0.0C6 0.001
2 0 0.8 0-002 0.000
21) 1.0 C.COl 0-000
22) l.*> O.OÛO 0-000
23) 1.4 0.000 C-COO
74) 1 .6 C.OOu 0.000
25) l.b C.OOO o-oco
26) 2.0 C.OCO O.CGO
27) 2.2 0.0 0.0
29) 2.4 0-0 0.0
291 2.6 0.0 0.0
3 0 2.8 0.0 0.0
31) 3.0 0.0 0.0

= 0.5, bg = 1.5
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TA8LE 9

CONDITIONAL ERROR VARIANCES

ABILITY BINARY ■RANKED
1) -3*0 0.465 0.794
2} -2.8 0.465 0.794
31 — 2.6 0.465 0.794
4) -2.4 0.465 0.794
51 — 2.2 * 0.465 0.794
61 —2 . 0 0.466 0.794
71 -1.8 0.466 0.794
81 — 1.6 0.467 0.794
91 -1.4 0*4 68 0. 794

10) -1.2 0.473 0.794
il) — 1.0 0.482 0.793
12) -0.8 0.500 0.791
131 —0 .6 ■ 0.530 0.783
141 —V .4 0.574 0.763
15) —0 . 2 0.630 0.717
16) 0.0 0-686 0.634
171 0.2 0.723 0.518
181 0.4 0.719 0.386
19) 0.6 0. 6c4 0.264
2v) 0.8 0-561 0.167
21 ) 1.0 0.432 0. ICI
22) 1.2 0.302 0-058
231 1.4 0.191 0.032
24) 1.6 0.111 0.017
25) 1.6 C.05S 0.0C8
26) 2.0 0.02P 0.004
27) 2.2 0.012 0.002
281 2.4 0.005 0.001
29) 9.6 0.002 O.CCO
30) 2.8 O.COl O.COO
311 3.0 o .c c o 0.000

t a = 1.0, b = 1.5
g g
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TABLE 10
CONDITIONAL ERROR VARIANCES

ABILITY BINARY ■RANKED
1) —3 • 0 0.693 0-859
2) -2.8 0.693 0.859
1) —2 . 6 0.693 0.859
4) -2.4 0.693 0.859
5) — 2.2 0.693 0.859
6) -2.r) 0.693 0.359
7J -1.8 0.693 0-859
8) — 1.6 - 0.693 0.859
9) -1.4 0.693 0.859

10) -1.2 0.693 0.859
n ) -1.0 0.693 0.859
12) —ü . 8 0.693 0.859
13) —0 . 6 C.694 0.859
14) —0.4 0.697 0-859
15) -0.2 0.704 0.859
16) 0.0 0.718 0.858
17) 0.2 0.744 0.856
18) 0.4 0.789 0.847
19) 0.6 0.955 0.825
PO) 0.8 0.938 0.775
21) 1.0 1.021 0.686
22) 1.2 1.076 0.561
23) 1.4 l.Ofl 0.418
24) 1.6 0.988 0.285
25) 1.6 0.835 0.181
26) 2.0 0.643 0.109
27) 2.2 0.449 0.063
28) 2.4 0.285 0.035
29) 2.6 0. 165 0-018
30) 2.P 0.087 0.009
31) 3.0 0.042 0.004

= 1.5, Bg = 1,.5



CHAPTER V 

DISCUSSION

Despite the fact that foirmula scoring in partial knowledge 

studies has been characterized by a long history of disappointing 

results, it is obvious that response methods presently used in paper 

and pencil testing probably extract only a very small fraction of 

the information potentially available from each question. The amount 

of residual information which can in fact be recovered by introducing 

a more refined response method has been the subject of this study.

Reasonableness of Assumptions Underlying the Models 

It Is clear that if an examinee’s marks on an answer sheet are 

viewed without any assumptions at all, the amount of knowledge he may 

possess can not be estimated. The assumptions of these two models 

have been chosen so that the scoring formulas will depend upon a set 

of parameters for which consistent estimates may be found. The basic 

assumptions of the binary model were listed in Chapter 111. Those 

numbered. JL and..2 have been reviewed in great detail by Lord (1952, 

1953, 1968) and lead to equation (3.1). Assumption 3 was introduced 

to eliminate the possibility of omission which is not the subject of 

concern in this study. The assumption that the rank placed on the 

correct alternative can be used as an index of the partial knowledge 

possessed by an examinee becomes a device constructed to make it 

profitable for examinees to respond to test items in a specific way. 

The rank order procedure scores examinees according to a rule which 

relates the examinee's ranking decision to the examinee's beliefs 

about the relative correctness of each of the item alternatives.

’■58-- •
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In light of work reported by Coombs, Milholland, and Womer (1956); 

de Flnettl (1965); Nedelsky (1954); Powell (1968) and others, the 

rank order responding and scoring procedure seems very reasonable, 

less arbitrary, and much less demanding to teach examinees.

Rank-Order Responding vs Binary Responding 

The main purpose for studying a rank order scoring and responding 

procedure was to determine If an examinee’s ability can be measured 

with greater precision than Is possible using binary scoring. A 

review of the basic trends In Item reliability. Item validity, CEL-R, 

and CEL-V for the thirty-six simulated test items were described in 

Chapter III. It is obvious from Table 1 that rank order scoring is 

superior to binary scoring in specific situations only. Insight as 

to why this is so can be gained from a careful inspection of the 

plots of conditional distributions of ranked score for each of the 

nlme sample items (Figs. 1 - 9 )  and their respective conditional 

error variances (Tables 2 - 10), For example. Figures 1, 2, and 3 

are plots of conditional distributions of rank order scores for 

Items of equal difficulty (very easy) and increasing discrimination. 

Each curve in the plot represents the regression of rank order score 

on ability for each of the ranks 1, 2,...., k. From equation (3.2)
I

It can be seen that the top curve represents the Item characteristic 

curve for the binary model and the probability that a rank of one 

is placed on the correct alternative In the rank order model. It 

can be seen that this curve provides differential Information about 

the probability that an examinee with ability will rank the correct
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alternative one. Further, the curve functions over the entire range of 

examinee ability ( -3.0a to 3.0a ). The second curve represents the 

probability that an examinee with ability 0^ will place a rank of two 

on the correct alternative. This curve functions from -3.0a below 

the mean ability to 2.7a above the mean ability providing differential 

information about the probability of rank order scores. Curves 

representing the probability of ranking the correct alternative 3, 4, 

and 5 (the 3rd, 4th, and 5th curve respectively) indicate additional 

information about the probability of rank order score although the 

range of examinee ability over which these curves function becomes 

smaller as the rank increases. Only examinees of very low ability 

are likely to rank the correct alternative 3, 4, or 5.

Conditional error variances for item 1 (Figure 1) are presented

in Table 2. For low'examinee ability ( -3.0crtb -rl.2 a).rank order 

error variances are much higher than the corresponding binary variance. 

This indicates that the rank order scoring system is not discriminating 

very well among examinees of low ability. Rank order variance is 

larger because of the noise introduced by guessing at these low abilities. 

It is not surprising to find a CEL-R of .1.82 and a CEL-V of only 1.09.

In Figure 2 (item 10) we find a plot of an item of equal difficulty

to item 1 but a higher item discrimination. The effect of increasing

the item discrimination is to increase the slope of all the curves.

The lower asymptote of each curve is nearer 0.2 indicating more random 

response for examinees of very low ability. The binary item (top 

curve) is becoming more discriminating over a narrower range of
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examinee ability. Curves 2, 3, 4, and 5 are functioning over smaller 

ranges of examinee ability than they did in item 1 (Figure 1). The 

conditional error variances for this item are presented in Table 3.

Again it is found that the rank order procedure is not effective at 

low abilities while almost equal precision results for examinees of 

high ability as the item becomes more discriminating. Table 1 indicates 

that item reliability increases as item discrimination increases.

The increase in item reliability, however, is much greater for the 

binary scored item than it is for the rank order scored item; Thus 

as item discrimination increases, at a fixed difficulty, the CEL-R 

decreases. This is true for CEL-V also. This pattern becomes even 

more pronounced in Figure 3. Here the item difficulty remains the 

same but the item discrimination is increased still further. The 

slope of P(R1) becomes almost vertical and the range of examinee 

ability over which each of the curves functions become smaller.

Table 4 records the conditional error variances for this item (item 19). 

For examinees below -l.Sr^he rank order procedure is not effective 

while for examinees above 0.6rreither scoring system will do. Table 1 

shows CEL-R and CEL-V to decrease.

Item sets (5, 14, 23 & 7, 16, 25) have different difficulties
I

(0.5 & 1.5) but have equally increasing discriminations. The effect 

of increasing the item difficulty is to shift the curves to the right 

side of the plot although the pattern within each set of items is 

the same as that described above. Thus if item difficulty is held 

constant and item discrimination is increased, the range of examinee
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ability over which the test item functions becomes narrower and

concentrated around the point 0 = b^. For a binary item, increasing

item discrimination to infinity would yield a vertical slope for

PCR^) resulting in an item with perfect reliability and no validity.

Examinees below the point 0 = b would miss the item (would placeg
ranks at random) and examinees above 0 = b^ would would be getting

a perfect score (placing the trank of one on the correct alternative).

Rank order scoring would not be expected to result in improvement

because it would have low precision below 0 = b^ and equal precision

above 0 = b . CEL-R <1.0 and CEL-V < 1.0 would be expected g -  -
with items of this type. It is easily seen why gains in reliability 

and validity would not result from the rank order scoring of test 

items with high discrimination indices.

High item discrimination at a fixed item difficulty is one of 

the few situations in which rank order scoring is not superior to 

binary scoring. This occurs when a^ exceeds unity ( see Table 1). 

However, for items found in practice, values of exceeding unity 

are rare (Lord, 1968). Thus, items found in practice have moderate 

to high difficulty and moderate discrimination (a^ ̂  1.0). An 

inspection of Table 1 reveals substantial gains in reliability and 

validity are had when items with these characteristics are scored 

using the rank order procedure. It must be realized that the 

greatest iinprovement in rank order scoring over binary scoring will 

be found for examinees of moderate to high abili^.
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. Other Problems

Further research attention might be directed toward estimating 

reliability and validity within a truncated çange of examinee ability. 

This would provide clearer pictures of the effectiveness of rank order 

scoring for examinees of specified abilities and more precise In­

formation about how and where testing could be benefited. In addit­

ion, the Item Information structure proposed by Lord (1968) should 

be used as an alternative In evaluating an Item's effectiveness. Such 

research would provide estimates of the Information content of Item 

alternatives . This type of knowledge would be helpful In Item 

construction and diagnostic feedback to the Instructor and examinee.

It should be noted that what has been proposed and simulated 

In this study Is a procedure for scoring Individual test Items 

which utilizes ranking. No rationale has been provided for the 

combination of test Items Into a total test. There has been no 

suggestion that scoring Items so combined using the rank order procedure 

would result In gains In reliability and validity over binary scoring., 

This would certainly be an Important question to be answered by 

future research. Other questions regarding cost In time. In effort, 

and money necessary to obtain partial knowledge must be evaluated
J

within the empirical framework.

Conclusion

This study provides evidence that the main arguments for and 

against the use of rank order scoring are not to be found In group 

statistics but rather In the undesirable effects of one kind of
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of scoring procedure or another for certain examinees. It has been 

demonstrated that for examinees of.moderate to high ability, 

substantial gains In reliability and validity may result from the 

rank order scoring of Items of moderate discrimination and varying 

difficulty. Items commonly found In practice In aptitude and 

achievement testing possess these characteristics. Despite the 

problems noted above, the rank order scoring model does present 

a promising line of Investigation for studying and extracting 

partial examinee knowledge In multiple-choice testing.
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REAl»4 TllOOlIf rS(10Ol|,AS<T(lOOlltW($).X(5,lOOn,TH£TA(l

•OODiZTSCC 1001*.ri.( 10111,013,311 
REAL$4 SUH,SSO,aAN4,R^ERO,RTV,RrEV,2TS,ZTSSQ,RTS,RTSSQ,•RIEStRTtSSi., 2Tr,y.Z,UP,0L,UPl,DLl,D 
DIHEkSIJN AA(101,an(lot 

C... THE VECTCk T HUL''S THE £-SCQRE VALUES OF THETA
C.., THE VECTOR TS HOLUS THE TRUE SCORES FOR THE RANK-ORDER MODEL
C... THE VECTPR 1ST HOLDS THE INTERVAL WIDTHS WHICH REPRESENT THE
C... PROBAaiLITV OF OCCURANCE OF THE TA 
C... THE VECTOR H CUNT&1NS THE ITEM HEIGHTS
t... the MATRIX CONTAINS A WORK AREA FOR THE COMPUTATION OF CONDITIONAL
C.«. DISTKIEUTIONSAND AS AREA FOR THE COMPUTATION OF JOINT AND MARGINAL 
C... DISTRIEUTIDVS.
C... THE VECTCrt THETA CONTAINS THE POINTS (STANDARD DEVIATION UNITS!
C... OF THETA OR LEVEL OF ABILITY.
C REWIND 2.

KP=5READ15,7777) RI.ADD 
7777 FnR“AIllfr,FS-3l 

K U = K I » 6  
N=(KI-ll/2 
K = N + i
READ(5,4)(H(II.I=1,KPI 

4.FORMAT ISr10.5)
ZOIXI=O.D 
START= 23IRI DD V999N l=l,N 
START=ST4RT«ADD
Z0(K-1I=-1.o*sraRT 
ZQIKtl) - START 

99999 CONTINUE
REAO(5,7{>) ( AAII),I=1.4I ^
READ(5,7<.t (BHITJ.1 = 1,91 

76  F 0 R M A T I K l F 3 . i l  
DO 2000 IJ=1,4 
DO 2001 I 1 = 1,9 
A=AA(IJ1 
B=BB(1I1

C ^
C... KP = NJMBtR UF ITEH RESPONSES 
C... KI * THE HUMBER OF ABILITY POINTS
C... <J « KP ♦ KI ♦ 1 AND IS USED AS A 01 MENTION OF THE MATRIX X 
C
C... ZERO OJT 
C

SJM=0.
SSQ=C,
RANK=0.
RZER0=0.
RTVsO.

■RTEV=0.

ZTS=0.
ZTSSQsOi .
RTS-0.
RTSSC=0.
RTES=0.
RTESSU-0.

CcC..ZER0 TRUE (RANK) SCORE VECTOR 
C 00 100 J-1,XI 

ZISCI11=0. .
100 TS(jl=G.

f.



- :73- .
c... P R E F O R M  I T E M  P A R A M E T E R  M A N I P U L A T I O N S  AND T R A N S F O R M  TO Z - S C O R E  
X

0 0  8 8 8  l=i,KI 
888 T h E T A U ) = A * I Z 3 ( I I - B J  '

D O  9 0 0  1 = 1 , Kl 
Y = T H E T A ( I I  
C A L L  N T D  lf,Z,DI 
T ( ] I = Z  

9 D Ô  C O N T I N U E
C
C . . . C A L C U L A T E  T H E  I N T E R V A L  W I D T H  
C

S O M = 0 .
c « u e { n - z o i 2i i /2.
D D  901 J = 1 , K 1
VP~lQlJi*C 1
aL=zu(j>-c
C A L L  N T O I U P , U P l . O )
CALL N T D I 0 L , U L 1 , D J  
A N T i J ) =  A B S C U P l - O L l )

901 C O N T I N U E
C
C . . . C A L C U L A T E  C C N D I T I P N A L  D I S T R I B U T I O N S  
C

D O  101 J « 1 , K I  
C P = 0 .
D O  1 U 2  1^1,RP
X C I , 1 I = T ( J I
I H E T  = ( 1 . - C P 1 » T ( J )
X K * 1 . - C P  .
X « I , 2 I = T I J ) * X K
C X = C P + X I I , 2 1
X G = 1 . - C X
t G U E S S = l . / I K P - I I - H  J 
X < 1 , 3 I = X G » C G U E S S  *
X ( I , 4 ) = X ( I , 2 ) » X I 1.3)
XI I,J + 5 I = X ( I , 4 )
Xf I , 5 J = C P + X I I . 41
C P = X ( I , 5 :

1 0 2  C O N T I N U E  
101 c o n t i n u e

ccC.. . C O M P U T E - S U M  X  S S O  F O R  O N E - Z E R O  TRUE S C O R E  V A R I A N C E  
C . . . C O M M U T E  SUM C S S Q  F O R  R A N K - R R O E R  TRUE SCORE V A R I A N C Ec

X Z = K U - 1
1*0
D O  1 0 4 . J = 6 , K 2  
1* 1*1
Z T S = Z T S * X C 1,J I ^ A N T I  II 
Z 1 S S 0 = Z T S S 0 * X 1 1 , J I ^ X ( 1 , J I * A H T I I I  

. D O  Iu4 K = 1 , K P  
1S( n  = TS(l l*XIK,3)<=WtXI 

104' C O N T I N U E  
C. . .  C ü K P J T E  S T D  OF M E A S U R E M E N T  

00 SOI J=i,31 
501 O d . J  1= X ( 1 . J » S I  - X I I , J * 5 ) « X ( 1 , 0*51c

c DO 503 1=1,31 
012,1 1=0.
013.1 1*0.
DO 504 J=l,5
012.1 1=L(2,: l*X(J,I*5l*WUI
013.1 1=0(3,: r*X(J,I*5) » H(J)*W(JI

504 Cu NTINUE
013,I)=0(3,11-012,I)«QI2.il

503 CONTINUE



” 74—C...COKPUTF JOINT DlSTKIOUriOH
DO 203 J=1*K1 
00 203 1=1,RP203 «1I,J*51»XC1,J*5)*AMIIJ1

C...SUK «tows OF JOINT DISTRIBUTION TO OBTAIN MARGINAL 
DO 204 1=1,KP 
X(I,KU1=0.
DO 204 J=6,K1

204 XlIfKUl=Xn.KU)»X(l,J)c cC...COMPUTE SUM L SSL FOR RANK-OROER TOTAL TEST VARIANCE 
C...COMPUTE SUM £ SSO FOR RANK-OROER TTRUE SCORE VARIANCE 
C DO 233 1=1,KP RIES=RIFS»WTI»*=XI I,KU)
233 RTESSQ=RTESSOfrWIJ)*NIIJ*XIl,KU)

DC 207 1=1,KI 
RTS=RTS*ANTN1*TS(II :

207 RTSSO=RTSSn+TS(II*TS(T)*ANT(II
CC...COMPUTE VARIANCES

tTT=X£l,KUJ*ll.-K(l,KUII
2TRUE=ZTSSL-ZTSC£TS
RTEV=RTESSQ-(RTES*RTcS)
RTV=RISS0-(RTS*RT5I '

C...COMPUTE RELIABILITIES 
RANK=RTV/RTEV 
R2ERD=2TRUE/ZTT

C
C... CONVERT STD OF MEASUREMENT TO PROPORTIONS 
C

DO 5511 1=1,3101 l,l)=Uf l,II7ZTT«'C1.0-R2ER0)
013, 11=013,1)/RTEV »(l.O-RANK)

5511 CONTINUEURITET6.502) A,B,(011,J),J=1,31)
KRITEI6,502) 4,9.(0(3,11,1=1,311 

502 fORMATC DISC = *,F4.1,' niFF = •, F4.1/IOF8.4/10F8.4/10F8.4/FB.4) 
C C O M P U T E  COEFFICIENT OF EFFECTIVE LENGTH 

RC=RANK<=( l.-RZERO)
KCC=RZEKU*(1.-KZER0)
RC=RC/RCC

C
C... COMPUTE VALIDITY 
C

. S U K = 0 .
. DO 206 J=1,KI 

206 SUM=SUM*X(l,J*5)*ZQ(JI 1VAL = SJM/ SQRKZrXI 
/ SUH=0.
■ DO 2?S J=1.KI 

DO 205 1=1,5 
205 SUK=SJM+W(:)*X(T.J*5)*ZQ(JI VAt*SUM/ SLRTtRTEVI 

2V=VAL*VAL«(1.-RZER3)
RV=ZVAL»ZVAL-VAL*VAL*RZERO
ZV=ZV/RV
WRITE 12} A,B.£TRUE,ZTT,RZERO,£VAL,RTV,RTEV,RANK,VAL,RC,ZV
WRITE(6,68l) A,G 

eei FORMAT!//* ITEM DISCRIMINATION INDEX = *,F10.S/•• ITFH niFFICULTY INDEX * ',F10.5//I
WRITEI6.IS) ZTRUE,ZTI,RZERO,ZVAL,RTV,RTEV,RANK,VAL,RC,ZV



15 FORSATl//* 2ERQ-0*JE SCORING SYSTEM»/
*• TRUE SCORE /ARHMCE » '*F10.5/ '

TOTAL TEST VmRIANCE = »,F10.5/ 
RELIABILITY FOR ONE ITEM ■ »,F10.8/ 

*• VALIDITY FOR ONE ITEM = »,FI0.5///
*• RANK-OROER SCORING SYSTEM'/

TRUE SCORE VARIANCE = »,F10-S/
»•. TOTAL TEST VARIANCE = »,F10.5/

*» RELIABILITY FOR ONE ITEH «= *,FI0.8/
♦ * . VALIDITY FOR ONE ITEM = »,F10.5/
•• CEL FOR reliability = »,F10.S/

CEL FOR VALIDITY = »,Fl0.5///>
2000 CONTINUE

C REMIND 2 
WRITE(6,666I

■ 66ôF0RKAT(15X,» ITEM BINARY RANKED'/
XlSXt'PARANtTERS ITEM ITEM IMPROVEMENT'/
215X.'AID) BIG) REL VAL REL VAL CEL-R CEL-VI
DO 661 KK=l*3bREAD 12) A,B,2TRUE.ITT,R2ER0,tVAL,RTV,RTEV,RANK.VAL,RC,ZV
KRITEI6, 6F.2) Kx, A, E, RZERO, ZVAL, RANK, VAL,RC,2V 

662 FORMAT(lOX,12,')',8(3K,F4.2II 
661 CONTINUE

WRIT£(6,66A)
664 FORMAT I'1*1 

STOP 
END



- -  . . . .

S U B R Q U r n E  Z P L OT IX .Z O. Kl tK P)
DIMENSION X< 5,1001)
DIME>\SIDN XCUOOll 
DIMENSION ZQIIOOII.XXC^I

CC... SET PEN 3 IN. FROM RIGHT 
C

CALL PLDTIC.0,-29.5,-31 
CALL PLDTIO.0.3.0,-31

C... SET MAX. AND MIN. VALUES FOR X 
C

XX(11=0.0
XX(2I=l,0

C -C... SCALE X 
C CALL SCALE<KX,10.0,2,1|
C... SET SCALED MIN. = START t MAX. = DEL 
C

SrART=XX(3>
DEL=XX(4)
XC(XI»1I=START
XC(XIf2l=DEL

C.C... CALCULATE X-AXIS 
C CALL AXISIO-0,0.0,'TRUE SCORE*,10,10.0,90.0,START,0EL1
C... SCALE AND SET Y-XIS 
C XX(l)=-3.0

XX(2)=3.0
CALL SCALEIXX.IO.0,2,1)
Z0(KIH)=XX13)
ZOIXItZI=XXI4)CALL AXIS! 0.0, 0.0, 'LATENT ABILI TY*,-IA, 10. 0,0. 0, ZQIKUl) ,ZQ{ XI *2 ) I

CC... PLOT LINES 
C 00 100 1=1, XP 

DO 10 J=1,XI 
10 XC(J)=X(1,J$5)

IS = ICALL PL3TIZCI1),XC(1I,3)
CALL LINE(ZQ,XC,KI,1, 1,IS1

100 CUNTINUE , RETURN 
END

iSUBROUTINE NTD(X.P,D)
REAL»4 AX.T.C.PtX
AK= ABStX)
T = 1.0/11.0 » 0.2316419 ♦ AX)
0 - 0.3939423 * EKPI-X » X/2.01
P = 1.0-[:*T»I (((1.330274*1 -1.821256)*T ♦ 1.781478)*T - 0.3565638)

• *T *.0.3193815) .
IF (X) 1,2,2

1 P-l.O-P
2 RETURN

tND -


