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A bstract

Ground Penetrating R adar (GPR) is a proven m ethod of characterizing the 

shallow subsurface. Most interpretations using G PR  have relied upon raw data 

records or records th a t have been processed w ith seismic da ta  processing tech­

niques. To aid in  the interpretation of G PR  reflection sections, a regularized 

pseudo-inverse algorithm  is described based on Geophysical Diffiraction Tomog­

raphy (GDT) from multifrequency multi-monostatic G P R  measurements. The 

algorithm is based on the first Bom approximation for vector electromagnetic 

(EM) scattering. Fully analytical reconstm ction results are obtained by us­

ing a regularized pseudo-inverse operator. In contrast to  existing matrix-based 

methods, which numerically calculate the pseudo-inverse, our calculations are 

based on continuous operators. The main advantage of our method is the com­

putational efficiency. While the existing, analytical, GDT techniques, known 

as Filtered Backpropagation (FBProp), require a  lossless background, the al­

gorithm described here allows either a lossless background medium or an a t­

tenuating background. Since radar wavelengths are often times on the same 

order as the dep th  and size of underground object of interest, the evanescent 

components are included in our algorithm to enhance the image resolution. 

The quality of the images and hmitations of some simplifying assumptions are 

investigated for two-dimensional and three-dimensional algorithms using both 

simulated and  experimental data. It is found th a t our inversion formula yields

X ll



good image quality and is not substantially lim ited by the necessary simplifying 

assumptions.
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1 Introduction

In this thesis, the inverse scattering methodology is used to develop an algorithm for 

geophysical imaging which is based on Geophysical Diffraction Tomography (GDT) 

[10. 13, 34, 41, 53, 56, 59]. Inverse scattering problems are, in general, nonlinear [3|. 

However, it is possible to linearize the original nonlinear inverse scattering problems 

by using some approximations, such as the Bom or Rytov approxim ation [36], geomet­

rical optics approxim ation [32], etc. Our algorithm uses the regularized pseudo-inverse 

operator [3, 9, 10], to  compute minimum energy solutions for linear underdetermined 

inverse scattering problems.

The pseudo-inverse algorithm [9, 10] employed in this thesis is useful for geophysical 

tomographic imaging in a monostatic measurement geometry w ith intended appUca- 

tion for the signal processing of G PR data. G PR imaging is one of the most popular 

techniques associated with shallow subsurface characterization, such as locating pipes 

at construction sites, detecting explosive mines in m ihtary zones, locating toxic waste 

at industrial dumps, etc. G PR  tends to be one of the methods of choice because of 

its field efficiency and  nonintrusiveness.

In the hterature, m any authors have used the regularized pseudo-inverse as the basis 

for geophysical imaging. Some of the methods focused on numerical matrix-based 

techniques [43, 45, 48], such as Singular Value Decomposition (SVD) and Conjugate 

Gradients (CG) algorithm. In contrast, our algorithm is based on continuous oper­



ators rather than  matrices. Computational efficiency is the main advantage of our 

directly fully analytical inversion.

1.1 Electromagnetic (EM) Inverse Scattering

Inverse scattering is the designation for mathematical methods tha t are used to ob­

tain information about an object from the scattered wave field measured outside the 

object (Figure (1-1)). Inverse scattering appHes to a wide range of areas, such as 

landmine detection, remote sensing, medical imaging, target identification, geophysi­

cal exploration, and non-destructive testing. The object, from which the information 

is desired, is usually inaccessible or its m aterial properties are unknown such that the 

application of wave fields is one of the few possible means for exploration. Our GPR 

imaging problem belongs to the category of EM  inverse scattering problems in which 

EM wave fields are employed.

EM inverse scattering can be considered as the opposite of forward scattering. In 

forward scattering one determines the exphcit or impficit relation for the electric or 

magnetic field outside the object as a function of some properties describing the ob­

ject. For instance, for our GPR imaging problems, the properties of the object of 

interest are the constitutive parameters, which are, permittivity, permeability, and 

conductivity. The exphcit or impficit relation is referred to as the forward model. The 

inverse scattering scheme is arrived at by inverting the forward model. This scheme 

expresses the  constitutive parameters as a function of the electric or magnetic field.

2



Sensor system

Incident wave

Scattered wave

Figure 1-1: Illustration o f inverse scattering configuration (after A.J. Devaney, 1999)

By measuring the electric or magnetic field and using the inverse scattering scheme 

it is possible to obtain the desired information about the object.

The inversion of the forward model is, however, not a simple task. The EM inverse 

scattering problems are, in general, nonlinear problems. In order to simplify' the 

problem or to transform it from an impficit into an explicit expression, it is often 

convenient to introduce some physical approximations, which allow a linearization 

of the nonlinear problem. A well-known case is th a t of a weak scatterer: here Born 

approximation [36] may be used. Another kind of approximation that also leads to 

a linear problem is Rytov approximation [36], which is valid when variations in the 

properties of the scatterer are large compared to  the wavelength of the incident ra­

diation [3]. In our GPR imaging problems, the first Born approximation is used to 

linearize our forward scattering model.



The linear EM inverse scattering problem can be formulated as follows [3]: Given 

g  E  U  and a linear operator >1 : U  —>■ V , find f  E  V  such tha t

g  =  -4f (1-1)

An element of V  will be called an object while an element of U  will be called an image. 

Accordingly, V  will be the object space and U  will be called the image space. A  is 

a  coupled set of integral operators describing the physical process. For example, in 

G PR  imaging problems, ^  is a  hnearized forward EM scattering model, based on the 

wave equation, relating underground inhomogeneities to measurements of the scat­

tered EM field. In such problems, it is assumed that both U  and V  are Hilbert spaces.

According to the definition introduced by Courant and Hilbert, in Equation (1-1) the 

inverse problem of finding f , given g, is well-posed in the sense of Hadam ard [3] if the 

solution f  E  V  exists for any g  E  U  (existence of solution), if the solution f  is unique 

in V  (uniqueness), and if the inverse mapping g  —> f  is continuous (stabihty). When 

Equation (1-1) is the mathem atical model of the given EM inverse scattering problem, 

it may not satisfy these criteria. In  such cases, the problem is said to be ill-posed. 

For example, G PR imaging is ill-posed since it is underdetermined, which means that 

there’s not enough data  to uniquely determine the unknown function describing the 

properties of the object. Regularization is one of the basic theories in the treatment 

of ill-posed problems. This will be addressed below.



1.2 Ground Penetrating Radar (GPR) Imaging

R a d a r  {radio detection and ranging for short), a  system th a t uses short EM pulses, 

was fully developed in B ritain for defense against enemy planes during the Second 

World War. although several such systems did exist in Britain, France, Germany and 

the USA before the Wax[2]. In  addition to its numerous m ilitary and civil apphcations, 

radar is now a very im portant tool in ground investigations, normally from the near 

surface to a depth of several tens of meters. Ground penetrating radar (GPR) is a 

geophysical method which employs EM waves, typically in 1 MHz to iGHz frequency 

range, for high-resolution detection, imaging and mapping of subsurface structures.

A typical G PR system has three main components: T ransm itter and receiver tha t are 

directly connected to antennas, and a control unit (timing) (Figure (1-2)). The trans­

m itting antenna radiates a short high-frequency incident EM pulse into the ground. 

This incident wavefield is then scattered as it encounters changes in dielectric per­

m ittivity and electric conductivity corresponding to subsurface inhomogeneities. The 

propagation of a radar signal depends mainly on the electrical properties of the sub­

surface materials. Waves th a t are scattered back toward the earth's surface induce 

a signal in the receiving antenna, and are recorded as digitized signals for display 

and further processing. This process is normally repeated many times, where in each 

experiment either the incident field is altered or the transmitting/receiving antennas 

are repositioned. By processing the group of scattered field measurements, we seek 

to identify buried structures and /o r determine their m aterial properties.



Display <4—

Record

Timing

Transmitter Receiver

Antenna Antenna

Underground

Figure 1-2: Flow chart for a typical G PR  system  (after Davis et al., 1989)

GPR systems can be deployed in three basic modes. The most common operation 

mode of G PR is the Reflection mode, whereby traces of returned waves are collected 

either continuously or in stations along a line, thus creating a time cross-section of the 

subsurface [2]. Common-mid-point Sounding which is used to estimate velocity versus 

depth by varying antenna spacing and identifying the time move out versus antenna 

separation for the various EM wavefronts, and Transillumination are other two modes 

of operation [1, 2]. In this thesis, both two-dimensional and three-dimensional GPR 

data were collected using the reflection mode.

When operating a G PR system in the conventional reflection mode, a reflection pro­

file is obtained. Most of the returned signals in such a profile are reflections from



subsurface discontinuities. However, in certain common conditions during GPR in­

vestigations, in addition to reflections, the EM waves undergo diffractions, which is 

the main interest for our imaging objective in this thesis, from small inhomogeneities 

and objects. Diffiractions th a t can be identified as hyperbolas in the time section 

occur in two cases: when the dominant wavelength in the radar pulse is lager than 

the dimensions of the diffractions’ source, and when waves are diffracted from sharp 

edges [2],

G PR surveys are based on two different measurement geometries that are referred to 

here as the multi-monostatic and multi-bistatic geometries. In this thesis, our pseudo­

inverse algorithm is used to solve the imaging problems for multi-monostatic GPR 

data. But, it also could be used to solve GPR imaging problems in multi-bistatic 

geometry by slightly changing the algorithm.

The multi-monostatic geometry is defined to be measurements made with a co-located 

transm itter and receiver tha t are moved in unison along a  line on the ground surface 

(Figure (1-3)). This is the commonly utifized measurement geometry in GPR and is 

also referred to as zero-offset seismic reflection. This measurement geometry' is mono­

static in the sense that transm itters and receivers cannot be independently positioned. 

The multi-bistatic geometry is defined to be the standard seismic reflection geometry 

(Figure (1-4)) where an array of receivers is deployed a t a  uniform spacing over a fine 

on the ground surface. Multiple transm itter positions are similarly established at a 

uniform spacing over the same line. This geometry is referred to as bistatic because



the transm itter and  receiver positions are independent of each other.

r3 5 3 2 i

F ig u re  1-3: Illustration of the two-dimensional multi-monostatic reflection geometry. The x and 
• represent transm itter and receiver locations, respectively. One transmitter/receiver pair is rep­
resented in black while the rest are gray to indicate tha t only a single pair is used to traverse the 
x-direction or, if an array of receivers is employed, d a ta  is recorded for the receiver co-located with 
the transmitter. (After A.J. Witten, 1999)

A useful step in processing the large volume of raw d a ta  acquired by GPR is to com­

pute a radar image th a t shows (approximately) the location and strength of scattering 

centers, such as buried objects. This thesis describes a  G PR  imaging algorithm, called 

pseudo-inverse imaging, which is an extension of a D T algorithm for multi-monostatic 

GPR imaging developed by Deming and Devaney [9, 10]. This imaging technique be­

longs to the general category known as EM inverse scattering methods. EM inverse 

scattering m ethods in general consist of two steps, first, deriving a mathematical 

equation representing the forward model, and second, mathematically inverting the 

forward model, subsequently solving for a function describing the buried objects.
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F ig u r e  1-4: Illustration of the two-dimensional multi-bistatic reflection geometry. The x and 
represent transmitter and receiver locations, respectively. (After A.J. W itten, 1999)

Our pseudo-inverse imaging algorithm is related to weU established method of DT, 

which is used in various forms for such applications as optical inverse scattering, 

medical ultrasonic imaging, and geophysical imaging. In many applications of DT 

[13, 14, 41, 53, 56, 59, 61], the ground attenuation effects are assume to be neg­

ligible, evanescent components are discarded, and the assumption of ideal point 

sources/receivers are employed. However, in GPR imaging, the soil background 

losses are significant, and evanescent wavefield components are im portant because 

radar wavelengths are often times on the same order as the depth and size of un­

derground objects of interest [10]. Therefore, in our algorithm, the soü attenuation 

is incorporated into the mathematical inversions, and evanescent components are in­

cluded to help enhance the image resolution. Moreover, a realistic near-field model 

for the transmitting/receiving antenna pair is employed. Deming and Devaney [10] 

successfully tested the two-dimensional algorithm using computer simulated data.



Here, reconstructed images from two-dimensional and three-dimensional simulated 

and experimental data will be presented.

We summarize our methodology as follows. The pseudo-inverse algorithm employed 

in this thesis consists of several steps. First, a  vector EM forward scattering model is 

defined based on the Bom approximation. We use either ideal point sources/ receivers 

or Kerns’ scattering m atrix formulation [27] to simulate the near-field characteristics 

of the transmitting and receiving antennas. This forward model then yields a coupled 

set of integral equations, relating the data  at each excitation frequency to the "object 

function” . Finally, the regularized pseudo-inverse algorithm is applied to get the fully 

analytical inverse solution for the object function.

1.3 Dissertation Organization

EM inverse scattering and G P R  imaging are introduced briefly above. In Chapter 2, 

background information is given to better understand the application of the pseudo­

inverse imaging algorithm based on DT techniques. We start with the derivation of 

the first Born approximation in Section 2.1, then a general review of the existing im­

portant tomography methods in Section 2.2, including Filtered Backprojection (FBP), 

Filtered Backpropagation (FBProp), Algebraic Reconstruction Technique (ART) and 

Synthetic Aperture Radar (SAR). In Section 2.3, the pseudo-inverse algorithm is in­

troduced in full detail.

10



Chapter 3 is devoted to our GPR imaging algorithm, using both point sources/ receivers 

and Kerns' scattering m atrix model. The three-dimensional algorithm is given in 

Section 3.1, and the  two-dimensional algorithm is given in Section 3.2. For both al­

gorithms. first, th e  forward EM Scattering model is developed based on the vector 

wave equation- T hen, the inversion method based on a fully analj'tical pseudo-inverse 

technique is developed.

We present our reconstruction results in Chapter 4. Two-dimensional and three- 

dimensional images of both synthetic and experimental G PR da ta  are presented in 

Section 4.1 and Section 4.2, respectively. Here, we show reconstructed images for 

a number of examples. Experimental examples show tha t the algorithm  can image 

plastic and metallic pipes buried in a half-space. The examples are designed to show 

the robustness of our algorithm and the improvements over standard DT algorithms. 

Finally, in Section 5, we give conclusions about this research project and discuss pos­

sible future directions.

11



2 B a c k g r o u n d

2.1 Born Approximation

Our DT algorithm is designed based on the framework of linearized EM inverse scat­

tering. The term linearized refers to the fact that the forward model underlying the 

inverse scattering problem has been linearized using the first Bom approximation. 

Thus, we give a brief derivation of the first Bom approximation as following.

It is well-known that the EM wave field U (r, t) in the time domain is governed by- 

vector wave equation

V 'ü (r . t) -  =  P(r, t) (2-1)

where r  is the spatial coordinate, t  is the time variable, c(r) is defined as a  spatially- 

variable wave speed and p(r, t)is a source distribution. Equation (2-1) can be trans­

ferred into the frequency domain

c2 (r)
V"U(r, w) -f- ^ U ( r ,  w) =  p(r, u) (2-2)

where w is the angular frequency. Define the object function  O  as

0 ( r )  =  l - ^  (2-3)

12



where cq is the background wave speed. Defining k to be the associated wave number 

at frequency w, the term  w^/c^(r) appearing in Equation (2-2) can be written as

c2 (r) <f(r) c2 (r)
=  -  fc2Q(r) (2-4)

Using this relationship in Equation (2-2) gives

V ^U (r, w) -h fc^U(r, a,’) =  p(r, w) -t- A:^0(r)U(r, w) (2-5)

Or, Equation (2-5) can be expressed in the form of an integral equation

U (r, ^ )  = - j  cj)G{t -  t  u ) - k ^  j  d $ 0 (()U (( , w )G (r -  t  u) (2-6)

where G is Green’s dyadic. If the goal of an analysis is to image, that is to char­

acterize O and thus c(r) in terms of measurements of U  over some contour r, it is 

clear that left hand side of Equation (2-6) is known by measurement. On the right 

hand side of Equation (2-6), the term U(^, w) appearing under the second integral is 

unknowm since this is the wave field that exists within the inhomogeneities. If not for 

this term, all quantities would be known except O and it would be possible to invert 

Equation (2-6) so as to express O in terms of the measured data  U .

13



In order to facilitate this inversion, Equation (2-6) can be linearized by invoking the 

first Bom approximation. This is accomplished by defining the wavefield U to be 

an incident field Uf and a scattered field associated with the inhomogeneities 

0 (r) #  0

U  = Ui + eUs (2-7)

where e is a small real positive number, and the fact th a t Us is assumed to be small is 

explicitly represented by this small multiplicative factor. Similarly, it is assumed that 

the small scattered field Us is created by weak inhomogeneities exphcitly expressed 

as eO(r). Substitu ting these expression into Equation (2-5) and collecting terms of 

the same order of e gives

: V^Ui -i- fc^Ui =  p incident field

: V^Us -t- fc^Us =  fc^OUi scattered field (2 -8 )

e2  : fc2 o U s  . . .

Using Equation (2-8), Equation (2-6) splits into two equations

Ui(r, uj) = -  J  d (p ((, w)G(r -  $, w) (2-9)

and
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U ,(r , uj) = y  rf40(e)U ,(C , w)G(r -  a,-) (2-10)

Thus, by invoking the first Bom approximation, the unknown term  U  appearing un­

der the integral in Equation (2-6) has been replaced by the incident field U i and, in 

this form, an inversion of Equation (2-10) can be derived.

From the derivation above, we could summarize that the first Bom approximation 

imphes that multiple interactions w ithin a scattering object are neglected. Hence, 

the approximation is valid only for weak scattering objects, that is, the  size of the 

object must be small in wavelengths or its EM properties (permittivity, conductivity, 

permeabihty) must not differ much firom those of the background medium.

2.2 Existing Inversion Algorithms for Tomography Problems

The inverse scattering problem is, in general, nonhnear and iU-posed. Over the years, 

several techniques have been developed for this problem, and a very rough classifica­

tion would place these into hnearized model or solving the full nonlinear problem by 

optimization methods [6 ]. These approaches have their advantages as well as their 

drawbacks. Generally, nonhnear m ethods can generate more accurate solutions since 

they are not limited by the linearized approximations. But, nonlinear methods are 

more computational intensive since they require a certain amount of iterations to get 

to the final results and these iterations may not necessarhly converge to the correct
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result. Nonlinear methods are not the focus of our current research, but could be an 

important direction for future research. In this section, we give several tomography 

algorithms based on the linearized model that serve as a basis for our GPR imaging 

algorithm. These methods are discussed individually below.

2.2.1 Filtered Backprojection (FBP)

The basic idea of tomography is to use data outside an object to infer values inside the 

object. Radon [8 ] showed th a t if a complete set of sums or projections of the object's 

parameters were measured then the parameters of the object could be Ccilculated. In 

fact. Radon derived an analytic formula (Radon Transform) th a t relates the object's 

parameter (object function) to  its projections. The Radon transform provides the 

mathematical basis for slant stack procedures and is weU known by geophysicists. In 

tomographic appHcations, the transform is used to map a series of one-dimensional 

projections into a two-dimensional grid from which an image of an object may be 

obtained. Given a line I which is a perpendicular distance d and form an angle 9 with 

respect to a Cartesian coordinate system origin (Figure (2-1)), the Radon transform 

changes the system from an (x, y) to (d,9) coordinate system by integrating a function 

of (x, y) along the line I [33].

/ OO 1*00

/  dxdyS(xcos9 + ysinO — d)f{x , y) (2 - 1 1 )
-O O  J — OO

where f(x,y) is an object function, P(d,0) is a set of projections, and d =  xcosd 4-
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ysinO.

► X

Figure 2-1: Performing a  Radon Transform by integrating a  function of (x,y) along tiie line / to a 
function of (d, 9). (After Basson, 2000)

The forward and inverse Radon transform can easily be implemented using the Pro­

jection SHce theorem  [44]. This theorem states th a t the one-dimensional Fourier 

transform along a line U. is a shce at the same position of the two-dimensional Fourier 

transform of the original object:

P (K ,9 ) = - ^ f  f  dxdye
V  2 7 T  J  — OO J  — OO

(2- 12)

where K is the spatial frequency variable, and P {K , 9) is the spatially Fourier trans­

formed projection. This theorem provides the means to construct the two-dimensional 

object from a series of one-dimensional projections through the object. Backprojec-
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tion [21] is an  operation which stuns projected values (Radon transforms) together.

Backprojection is only valid when the wavelength of the source is significantly smaller 

than the dimensions of the object in question. In practice, the method of backpro­

jection is also limited by the finite bandwidth (a non-spike impulse response) of the 

insonifying wave. Thus, firom the reconstruction of backprojection, we often see a 

blurring image, or we might say that the true image has been convolved with the 

smearing Point Spread Function (PSP) to form the output image. To attain  a better 

image, it is reasonable to attem pt to design an inverse filter  to collapse the blur- or 

response back to a point. So, the notion of filtered backprojection (FBP) arises to 

provide a clearer image.

In FBP, the projections are multiphed by a  band-Hmited impulse function h defined 

bv

h{d) =  (2-13)

where the frequency bandwidth of K extends firom — u j  to 4-w where K and d  form a 

Fourier transform  pair [26]. The firequency weighting factor \K\ is the spatial decon­

volution factor which removes the backprojection blurring.

The filtering step can be expressed by the following equation [26]
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=  r  dd'h{d -  d ')^{d ',6 )  (2-14)
7—00

where ~Pfiit is referred to filtered data. In the spatial frequency domain, Equation 

(2-14) is represented as

PfiitiK, 0) = H {K )P (K , 9) (2-15)

where Pfut and P are spatial Fourier transforms of ’Pfiu and P respectively, and 

H {K ) = \K\ is the well known “rho” filter. After filtering, the backprojection step 

in the spatial firequency domain is given by

f(x, y) =  r  r  dK deé^'^P futiK , 0) (2-16)
J o  J  — OO

Here, the final reconstruction is obtained by integrating over viewing angles the fil­

tered and backprojected data.

FBP m ethod is commonly and successfully employed in medical imaging techniques 

such as computer tomography (CT) scanners of diagnostic medicine. However, when 

the wavelength of the insonifying source is not significantly smaller than the dimen­

sions of the object to be imaged, the raypaths become severely distorted due to

diffractions and dispersion of the wave and the FBP method is no longer a vahd

imaging technique. A generalization of the technique has been developed that incor­
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porates the wavelength of the source and is called diffraction tomography or filtered 

backpropagation (FBProp) [12, 13].

2.2.2 DiflEraction Tomography (DT)

Unlike x-rays, the longer wavelength employed in geophysical exploration using acous­

tic (as well as radar) waves do not travel in  straight lines and tha t interactions of these 

waves with subsurface inhomogeneities produce a redistribution of wave amplitude 

and phase known as diffraction. For this reason, Devaney proposed a geophysical 

imaging procedure, based on the concept of structure determination in holography 

[60], that he called geophysical diffraction tomography (GDT) [13]. Thus, diffraction 

tomography (DT) is actually a generahzation of the conventional tomography method 

(FBP) to incorporate wave diffraction effects. The goal in DT is to  generate an exact 

inversion of a linearized forward model relating an unknown scatterer to scattered 

wavefield m easurements. As discussed in the introduction, our imaging algorithm 

belongs to the category of GDT.

The basis for D T is the GeneraUzed Projection Shce Theorem (GPST) [12], which 

is the DT generahzation of the projection shce theorem of CT, relating a known 

function of the measured data to the spatially veiriable refractive index, subject to 

a weak scattering approximation. For a wave equation in the frequency domain 

(Equation (2-2)), the weak scattering approximation (Bom approximation) yields its 

hnearized version, which can also be expressed as the integral equation form
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U .(r,w ) =  - k ^  j  j (0 (()U ,.( ( ,w )G (r  -  (,w ) (2-17)

where G  is the Green’s function for the scalar Helmholtz operator. It can be readily 

seen from Equation (2-17) th a t Us is derived from measurement and the function 

Ui and G  can be computed making the only unknown quantity the object profile 

0 ( r ) .  In the form given by this equation, the desired inversion can be accomphshed 

by deconvolution of the integral. This deconvolution can be achieved by representing 

the Green’s function by its plane wave expansion^ [36]

G (r,w ) = ^  f  (2-18)47T j 7 (0 :)

where 7 (0 ) =  ± y/k^  — a^, w ith  the sign chosen to render S  [7 ] >  0. The quantity  k 

is the wavenumber in the homogeneous background, x  and z are unit vectors in the 

X and z directions, respectively, and measurement of U  (Us) are made along a line 

parallel to the x-axis on the ground surface (Figure (2-2)). For receivers deployed 

on the line r  =  (Z, 0 ), assuming the incident field is a plane wave propagating in the

So direction", U{(r, w) =  and using Weyl’s expansion of the Green’s function

given by Equation (2-18), Equation (2-17) becomes

^For simplicity, we consider only the two-dimensional case. A similar plane wave expansion 
(Green’s dyadic) can be used in the three-dimensional case.

“Again for simplicity, plane wave illumination is assumed. Point source/receiver illumination or 
beam pattern can also be used for our derivation.
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U /r ,w )  =  J  ■ (2-19)

receiver array

incident 
pianewave

Scattering
object

Figure 2-2: Illustration of geometry and notation used in the derivation of the G PST inversion 
algorithm.

The deconvolution of Equation (2-19) can be accomplished by defining the Fourier 

transform of the d a ta  Us as

Us =  y dle-*>'Us (2-20)

and applying this integral transform to Equation (2-19) gives
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Ù ,(/x, w) =  ~ 2^  /  (2-21)

where 7 (/i) =  ±-\/fc^ — /x ,̂ w ith the sign chosen to render [7 ] >  0. This procedure 

yields the final form of the GPST

jU2
Ù .( /x ,u ; ) = - — 0 (K )  (2-22)

where

0 (K ) =  J  d^O (^)e -* -^  =  y d ( 0 (^)e-:[A^-MrWz-t.o| (  (2-23)

Here, K  = fix + 'y{fJ.)z — kso = k{s — Sq) is the wave vector variable, and Sq and 

s are incident and scattered wave, respectively. The desired result of an analytic 

expression between measurement and subsurface properties is achieved in Equation 

(2-22); which relates the one-dimensional Fourier transform of the scattered field to 

the two-dimensional Fourier transform of the object profile.

It is now possible to reconstruct the spatial variations in O. Rewriting Equation 

(2 -2 2 ) as

Ô (K ) =  Hî^ Ü , ( ^ . w) . (2-24)
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then inverting the integral transform of O  by

(27t)
2i

{2-Kkf
J  WÜX/%, . (2-25)

For example, for illumination by a plane wave propagation straight down, the incident 

field is U i(r) =  and the wave vector is

K  =  {Kx, Kr) =  (At, j i f i )  -t- k) . (2-26)

Thus, we get the final form of the imaging algorithm

0{r) = - ^  f  ̂  J + k] Ü.{ ,̂„)e '«“ +h(<‘)+‘l--> . (2-27)

Imaging by means of the GPST and the transform  inversion given by Equation (2-25) 

has become known as diffraction tomography (DT) and it is analogous to holographic 

imaging using a variety of laser beam illumination direction Sq- The GPST, Equation 

(2-22), provides a knowledge of Ô over a  wave vector space K  =  K(sq, s ) .  The result­

ing image quahty wiU depend upon the extent of the wavenumber k and the directions 

spanned by both the incident wave Sq and the scattered wave s. For an infinitely long 

receiver array and full range of view angles ( 0  to 27t) , K-space coverage is of a circle of
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radius 2k [53]. For any particular view direction, K-space coverage will be a  portion 

of a circular arc [57]. A s  the view direction changes, a region of K-space is "swept" 

out. For any practical geophysical measurement geometry, there will necessarily be 

gaps in K-space that will introduce artifacts (blurring) into the image. The eSects 

of measurement geometry on image quality are addressed in [13] and [50]. While the 

image quahty will be strongly influenced by measurement geometry, in general, some 

elongation of the image will always occur along the dominant direction of incident 

wave propagation. This phenomenon also appears in our G PR imaging results using 

the pseudo-inverse algorithm.

The previous discussion is appropriate for wave-based methods such as seismic reflec­

tion, which typically employs independently positioned sources and receivers (multi­

bistatic). In  our multi-monostatic G PR survey, a collocated source/ receiver pair is 

moved in unison. For this measurement geometry, individual incident and scattered 

wave directions cannot be independently controlled and, as a consequence, only a 

single arc in K-space can be reahzed for a particular frequency ui. Fortunately, in 

general, G PR  systems are pulsed, offering a reasonable source bandwddth. This band­

width can be exploited by representing the integration over K  in Equation (2-25) as 

a sum m ation over frequencies u j  and an integration over the spatial Fourier transform 

variable fj.. By this means, K-space coverage is a series of concentric arcs sufficient 

to yield good tomographic images [57].

In geophysical imaging, there have been many modifications and extensions to the
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application of the DT algorithm. In [13] and [61], DT has been used in various geo­

physical geometries, such as offset vertical seismic profile (VSP) and cross-well. GDT 

in a layered background has been discussed in [14]. These algorithm neglect evanes­

cent waves and require a  lossless soil model. W itten [49] investigated the influence of 

a number of factors on the quality of tomographic reconstructions obtained via the 

DT algorithm. These factors include the approximate generation of plane waves, the 

attenuation of high frequency components (evanescent wave), the density of receivers, 

the quality of the received signal, etc. The author found that the density' of receivers 

limits the size of the smallest features tha t can be imaged, while the loss of evanescent 

wave components limits the image sharpness, and errors that can occur as a result 

of the approximate generation of plane waves can be overcome by an appropriate 

slant stack procedure. A GDT algorithm with arbitrary source illumination has been 

presented in [50], in which a cyhndrical beam (a point source in two dimensions) illu­

mination is implemented. GDT has also been incorporated into field instrumentation 

[54], and apphed to problems such as the location and identification of buried waste 

[51], imaging the skeletal remains of a  supergiant sauropod dinosaur [55], detecting 

tunnels in the Korean demilitarized zone [52], and quantifying the spatial extent of 

subterranean features at Shiqmim, Israel [58]. In these apphcations, the background 

medium is assumed to be lossless and nondispersive, and point sources/receivers are 

used.

Several author have addressed, within the context of DT, the problem of fully an­

alytical inverse scattering using a multi-monostatic geometry instead of using plane
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wave illumination. The multi-monostatic geometry is convenient and popular in GPR 

imaging applications. In [39], exact inversion formulas, w ithin the Bom approxima­

tion, is derived using broadband multi-monostatic measurements conducted on pla­

nar. spherical and cylindrical surfaces. The authors use an ideal point source/receiver 

approximation, and assume the distance to a scattering object is much greater than 

a wavelength. This treatm ent requires transm itted pulses th a t are not bandlimited, 

however the authors suggest Wiener filtering as a means to circumvent this restriction. 

In [62], DT imaging methods are described using multifrequency multi-monostatic 

da ta  for both constant and vertically varying backgrounds. Inversion formulas are 

given using both the Bora and the physical optics approximations, assuming a lossless 

background medium. Efiicient two-dimensional and three-dimensional DT imaging 

algorithms with scalar waves for the multi-monostatic geometry are derived in [34] and 

[24], respectively. In these algorith m s, the derived inversion schemes have been clas­

sified as Fourier transform and far-field methods [34]. The Fourier transform method 

relates the spatial Fourier t r ansform of the object profile to the  spatial Fourier trans­

form of the data  as in the GPST, while the far-field method relates the transform of 

the object profile to the data  itself. SimpHfying cissumptions also include weak scat­

tering approximations, point sources/receivers and a lossless background medium.

There are some limitations of the use of these DT algorithms in G PR  imaging. First, 

in G PR imaging, the soil attenuation effects can be significant and therefore must be 

incorporated to the forward scattering model. Second, most of the DT algorithms 

use point sources/ receivers. Third, imaging blurring associated with long wavelengths
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can be reduced by inclusion of high spatial frequency (evanescent) components of the 

data. These challenges will be addressed in this thesis.

2.2.3 Algebraic Reconstruction Technique (ART)

FBP and FBProp belong to  non-iterative methods in tomography reconstruction tech­

niques. The algebraic reconstruction technique (ART) [18, 19, 20, 22, 23] and simul­

taneous iterative reconstruction technique (SIRT) [16, 17, 31] are iterative methods. 

The iterative methods generate reconstructions via an iterative process, which be­

gins with an initial estim ate of the object being reconstructed and then improves 

on this initial estim ate via a sequence of estimates th a t presumably converge to an 

‘optim um ’ reconstruction after some number of iterations. ART was first employed 

in conventional CT, then  formulated for medical and  geophysical problems in DT 

[28. 29, 30]. The m athem atical foundation of the ART algorithms is the m ethod of 

Kaczmarz [25, 37], which is described briefly below.

In our tomographic imaging apphcations (Equation (1-1)), it is assumed tha t the 

measured data g can be divided into a finite num ber of partitions g„ E  U „ ,n  =  

1 , 2 , . . . ,  N , each associated with a particular experiment. Likewise, the operator A  

can be partitioned into a set of hnear and continuous operators An,  each mapping the 

unknown function f E  V into the data  g„ E  from each experiment. Therefore, 

Equation (1-1) can be expressed as the following coupled set of linear equations [9]:
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gl \ f  ^
g2 =

A 2

I gvv / K A f f  )

(2-28)

Karzmarz’s m ethod can be used to iteratively solve the coupled set of Equation (2 - 

28), and takes the form of the following iteration structure:

f(0) =  j =  1, 2 , J

f„ =  f„_i -I- -  A ifn -l)  n =  I, 2, N

=  (n

where J is the to ta l number of iterations, N is the total number of experiments, is 

the initial estim ate, f  is the intermediate approximation of f  computed after j iter­

ations, and is the Hermitian adjoint of An- It is proven [37] th a t as the number of 

iterations J  ^  oo, converges monotonically to a solution of Equation (2-28). if a 

solution exists. If Equation (2-28) is underdetermined, converges to the solution

having minimum Euchdean distance to the initial assigned value If

f(°) is initiahzed as =  0 , then approaches the minimum norm solution of 

Equation (2-28).

The intermediate solutions monotonically approach any solution f  of Equation 

(2-28) with increasing iterations [9]. Since A n î =  gn (from Equation (2-28)) and 

Anin — gn; therefore the vector (f — fn) is in the null space of An- Since An is
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Hermitian, it can be shown from inner product relations tha t any vector in the null 

space of An  is orthogonal to any vector (A^^g^), where E  Thus, (f — fn) is 

orthogonal to

(fn -  fn_l) -  Al(AnAl)~^(gn ~  Anfn-l) -  A^g'̂  . (2-29)

Using this orthogonal argument, we can show that the repeated iterations will suc­

cessively reduce the energy of the error ||f — fn|p. Because the vector (f — f„) and 

( f n  —  f n - i )  are orthogonal, we can compute the inequality on the relative errors be­

tween the iterations (n-1 ) and n, i.e.,

=  |l(f — fn) +  (fn — fn-l)||^

=  ||f ~  fniP +  ||fn — fn-l|l^

> l|f-fn ||"  - (2-30)

Thus, the error successively decreases with each iteration, and therefore Kaczmarz's 

method approaches a solution f  of Equation (2-28).

In [28], ART has been generahzed to DT within the Rytov approximation. The al­

gorithm was shown to yield a minimum-norm solution to the hmited-view problem 

in DT when the data  are noise free and to reduce to the  CT ART algorithm in the 

short-wavelength limit  when DT is known to reduce to CT. The algorithm assumes the
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so-called conventional scan configxiration, which employs plane wave illumination and 

planar measurement surfaces. The m ethod has also been developed to cross-well geo­

physical tomography in [29]. Although ART can generate high-quahty reconstructed 

images, non-iterative tomography methods, such as FBP, FBProp and pseudo-inverse 

imaging algorithms have the advantage of high execution speed and high-quality of 

reconstructions when a  relatively large number of tomographic experiments are avail­

able.

SIRT is a variation of ART. When solving a system of equations in an ART-type 

algorithm, the solution is updated after each iteration. In the SIRT-type meth­

ods the same guessed solution is updated by each iteration, and then aU of these 

updated solutions are then averaged before beginning the next cycle through the set 

of equations. SIRT-type algorithms are ideally suited for a parallel processing ma­

chine as each iteration or equation can be handled independently and simultaneously. 

Making the equation solution and averaging operation in parallel could decrease the 

computing time significantly.

2.2.4 Synthetic Aperture Radar (SAR)

Another tomography method is synthetic aperture radar (SAR) which acquires broad- 

area imaging a t high resolution firom airplanes and satellites. SAR systems take ad­

vantage of the long-range propagation characteristics of radar signals and the complex 

information processing capabiUty of m odem  digital electronics to provide high resolu­
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tion imagery. SAR complements photographic and other optical imaging capabihties 

because of the minimum constraints of time-of-day and atmospheric conditions and 

because of the unique responses of terrain and cultural targets to radar frequencies.

A SAR antenna transm its pulses very rapidly. In fact, SAR is generally able to 

transm it several hundred pulses while its parent spacecraft passes over a particular 

object. Many backscattered radar responses are therefore obtained for that object. 

After intensive signal processing, ail of those responses can be manipulated such that 

the resulting image looks like the data were obtained from a large, stationary an­

tenna. The distance the spacecraft flies in synthesizing the antenna is known as the 

synthetic aperture (Figure (2-3)). A narrow synthetic beamwidth results from the 

relatively long synthetic aperture, which yields finer resolution than is possible from 

a smaller physical antenna.

The m athematical algorithms in SAR reconstruction are rather complicated. Here, 

we give a short description of the basic idea underlying the algorithms used in most 

present systems [4]. Assume in SAR imaging, an antenna (on a plane or a sateUite) 

flies along a nominally straight track, which we wül assume is along the Zg axis (Figure 

(2-4)). The antenna emits pulses of EM radiation in a  directed beam perpendicular 

to the flight track (i.e., in the Xi direction). These waves scatter off the terrain, and 

the scattered waves are detected writh the same antenna. The received signals are 

then used to produce an image of the terrain. The d a ta  depend on two variables, 

namely time t and position x along the X2 axis, so we expect to be able to reconstruct
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Last time SAR 
senses object

night path
Distance SAR traveled while object was 
in view = Syidhetic Aperture

First time SAR 
senses object ... Groimd track

Figure 2-3: Illustration of geometry of Synthetic Aperture, 

a function of two variables.

We assume that the earth  is roughly situated at the plane Z3  =  0, and th a t for X3  >  0, 

the wave speed is the speed of hght in vacuum, c(x) =  c q .  The fundamental solution 

of the free-space wave equation [47] is Go(t — r ,x  — y), given by

Go(t - T , x - y )  = S ( t - T -  I x - y  I / c q )  

Att \ x - y  \
(2-31)

It has the physical interpretation of the field a t (x,t) due to a delta function point 

source at position y  and time r .  If the source signal at y has the time histor}^ of the

form
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Figure 2-4: The geometry of a  conventional SAR system (after Cheney, 2000)

P{t) = (2-32)

where ujq is the angular frequency and A is a slowly varying am plitude that is allowed 

to be complex. The resulting field z — y) satisfies the equation

V 2  — ^ Uy(t, z - y )  = P{t)6{z — y) (2-33)

and thus is given by

Uj,(t, z)  =  (Go * P){t,  z - y ) =  y |/co )g,wo(t-|z_T,|/co)
47r|2 -  y\

(2-34)
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The anteana, however, is not a  point source. Most conventional SAR antennas are 

either slotted waveguides [11, 63], or m icrostrip antennas [40], and in either case, a 

good mathematical model is a rectangular distribution of point sources. Therefore, 

we denote the length and width of the antenna by L and D, respectively. We denote 

the center of the antenna by x; thus a point on the antenna can be w ritten as y =  x 

4- q, where q is a  vector from the center of the antenna to a point on the antenna. 

Define coordinates on the antenna to be q  =  Siêi -T sgêz, where êi and êg are unit 

vectors along the width and length of the  antenna. After some approximations of 

series expansions ([4]), we get

Uj,(É, z)  ~  <7 (2-35)
 ̂ 47t|z  — a:| ^

where k =  ujq/ cq, and the hat denotes a unit vector. Far from the antenna, the field 

from the antenna is

J-L/2  J-D/2  47T 2 — X- L / 2  J - D / 2

(2-36)

where W  is the antenna beam pattern. From classical EM scattering theory, we know 

th a t a scattering solution can be written as

U (t, x) = x)  +  U^(i, x) (2-37)
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where is the incident field and U® is the scattered field. Using the Bom approx­

imation, we get [4]

U^(t, x) % J  J  Go(t — T ,x  — z ) V x)drdx  

V (z)
4 7 t |x  — z=  /  -  4 /co .z )d z  (2-38)

where V (z) =  In the case of SAR, the antenna emits a series of fields

of the form as Equation (2-36) as it moves along the flight track. In particular, ŵ e 

assume that the antenna is located at position x” at time nT, then the incident field 

is U*'^(r, z) =  X3nU ^(r, z). Substituting Equation (2-36) to Equation (2-38), we get

[4]

U '(t  -  nT,%") = -  [  —  — 2 |z x " |/co) V(z) . (2-39)
J 4 7 t | z - x ^ |  4 7 r | z - x ^ |  > \ j

In Equation (2-39), we note tha t 2jz — x^ \ /cq is the two-way travel time from the 

center of the antenna to the point z. The factors 47t | z  — x” j in the denominator 

corresponds to  the geometrical spreading of the spherical wave emanating from the 

antenna and from the point z. So, we get the forward scattering model for SAR

system.
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The SAR reconstruction problem is to reconstruct V from Equation (2-39). It would 

be a problem in integral geometry if the transm itted signal P were a  delta function. 

Unfortunately a delta function cannot be produced in practice. To circumvent this 

difficulty SAR system use matched filter processing [4, 46], in which the system trans­

mits a complex waveform and then compresses the received signal m athem atically 

to synthesize the response from a short pulse. Besides the standard matched filter 

reconstruction algorithm, a filtered backprojection scheme [38] can also be used.

SAR technology has provided terrain structural information to geologists for min­

eral exploration, oil spill boundaries on water to environmentahsts, sea state and ice 

hazard maps to navigators, and recormaissance and targeting information to military  

operations. There are many other appfications or potential apphcations. Some of 

these, particular civilian, have not been adequately explored because lower cost elec­

tronics are just beginning to make SAR technology economical for smaller scale uses.
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2.3 Pseudo-inverse Algorithm

In Equation (1-1), the pseudo-inverse of operator A  can be defined as [3]:

•  Left pseudo-inverse of A:

A ^  =  (2-40)

•  Right pseudo inverse of A:

>1*1 =  AHAA^)-'^  (2-41)

where A^ is the Hermitian adjoint^ of A ,  uniquely defined by the following inner 

product relation [3]

{ A f ,  g)u = (f, ̂ ^g)v (2-42)

which holds for any f G V and g G U.

^The adjoint is given by the complex conjugate transpose of A  . This operator is also linear 
and continuous and has the same norm as A  : | | v 4 ^ | |  =  | | v 4 . | | .  For example, we consider a  particular 
example of Equation (1-1), the case of Fredolm intégral equation of the first kind of the tv-pc

g (r) =  K .(x,y)î{y)dy, c < x  < d

which can be written in the general form

(>lf)(x) =  /C(x, y)t{y)dy, c < x  < d

In this case, the adjoint operator is given by the equation

(A^e)(y) =  AC(x,!/)fg(x)dx, a < y < b  .
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Here, we use A  to represent the pseudo-inverse, A  =  -4^ =  A ^ .  It is also called 

the generalized or Moore-Penrose generalized inverse of the linear operator A  [3].

The solutions to Ul-posed problems are unstable, since small fluctuation in the data 

function g might cause large changes in the solution f . Our G PR imaging problem is

ill-posed since it is underdetermined and sometimes singular. For underdetermined

inverse problems, we have an  infinite number of solutions f satisfying the data g  

Thus, we consider a solution tha t is unique in the least squares sense.

The unconstrained least squares estimate f minimizes the  norm

J  =  | | g - X f f  . (2-43)

A solution vector f th a t minimizes Equation (2-43) must satisfy

A ^ A i  = A ^z  . (2-44)

If a !'A  is nonsingular. Equation (2-44) gives [3]

f  =  -4-g  (2-45)

as the unique least squares solution for Equation (1 - 1 ). Here, A  is the pseudo-inverse
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of A, A -  =  {A^A)-^A^ =  A^AA^)-K

The method of pseudo-inverse solutions provides a satisfactory answer to questions of 

existence and uniqueness for Equation (1-1) only when the pseudo-inverse is continu­

ous and well-conditioned. This means tha t the  range'* of the operator A  is closed and 

the condition number® is not much greater th an  one. The m ethod is not adequate 

when the pseudo-inverse is not continuous, or if continuous the condition number is 

too large [3]. In the  first case, the pseudo-inverse solution may not exist because the 

data are contam inated by experimental errors; in the second case, the solution always 

exists but a small change in input can yield a drastic change in output. Because of 

these cases, regularization methods are introduced to obtain physically meaningful 

approximation of the pseudo-inverse solutions.

■*The range of the operator A  , denoted by R(A ), is the set into which A  maps V

R(>1) =  { g € U |g  =  X f , f e  V}

and therefore R(X) is the linear subspace of the exact or noise free images (data).
^In the case of well-posed problem, the propagation of realtive errors from the data to the solu­

tion. is controlled by the  condition number. If fg  is small variation of g  and 5f the corresponding 
variation of f  =  A  *g, then

li'^f||v/||fl| <  cond(X)||<5g[|u/l|g||u 

where cond(A)is the condition number given by

cond(X) =

Here ||v4|| and denote the norms of the continuous operator A  and A~^, respectively. When
cond(X) is not too large, the problem Equation (1-1) is said to be well-conditioned and the solution 
stable r\nth respect to  small variations of the data. On the other hand, when cond(^) is very large 
the problem is said to  be ill-conditioned and a small variation of the data can produce a completely 
different solution.
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One well-known regularization method is Tikhonov-Phillips regularization [3, 37], 

which generates the following approximation solution to Equation (1-1)

=  ( ^ U  -h p i ) - U ^ g  (2-46)

where P is known as the regularization parameter and X  is the identity operator. It is 

apparent that as 0 , the regularized solution îg approaches the minimnm norm 

solution f, which satisfies Equation (1-1). An alternate form of Tikhonov-Phihps 

regularization is

fp = A^{AA^  -h /?X )-'g  (2-47)

Determining a good regularization parameter is one of the crucial points in the ap­

plication of regularization methods. The larger the regularization parameter P, the 

smoother the solution, but the worse the residuals, and vice versa. Choosing an opti­

mal P will clearly yield a  weU balanced compromise of a sufficiently smooth solution 

tha t satisfies the discretized integral equation. We do not discuss this m atter, assum­

ing tha t a good regularization parameter can be found by trial and error.

Deming [9] discussed the computational efiiciency advantage of our directly analytical 

pseudo-inverse imaging algorithm over the other numerical matrix-based techniques 

based on the regularized pseudo-inverse. The author points out that the main goal 

of these methods is a  feasible means of computing and inverting a large m atrix rep>-
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resented, for example, by (AA^ +  pT)  in Equation (2-47). As we show in Equation 

(2-28), the m atrix A. can typically be partitioned into N submatrices An, and the 

vector g can be partitioned into N sub-vectors g„, where N is the  number of tomo­

graphic experiments. If  M is the number of samples in each sub-vectors gn and P is 

the number of pixels (or voxels) in the unknown function f , then each submatrix: An 

is M xP. From Equation (2-47), in order to calculate the regularized pseudo-inverse 

of A  we must compute the inverse of

(A A t -f (31)

■ (AiAÎ-k/?J) AiA^ A1A3 A iA lj-
A 2A 1 (,A2Ai +  .dI) A2A3 AgA^
-A3A1 A3A2 ( A s A l + m  . AsAjv

Aiv-AÎ Aiv><4.2 . (AjvAjv +  3X)  _
(2-48)

where each block A nA ^ is M xM . The total matrix: will be N M xN M  and full un­

less special techniques are employed. The calculation of each element wiU take 

0 [ N ‘̂ M‘̂ P) complex multiphcations. For example, for a two dimensional imaging 

problem, if N % 100, M % 256, P =  256^, then we have to store and  invert a full ma­

trix which is NM xNM  =  25,600 x  25,600, and computing all of the m atrix elements 

will take 0 { N ‘̂ M ^P)  =  0(6.55 x 10*) [9]. For three dimensional imaging problems, 

this number will be orders of magnitude higher. Evidently, direct m atrix solutions 

will be computationally intense. Much of the hterature on pseudo-inverse is devoted 

to such techniques.
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In the imaging algorithm described in this thesis, our forward model is linearly trans­

formed such that the block matrices in Equation (2-48) become diagonal [9].

Therefore, not only are there a factor of M less elements to compute, but due to 

its convenient form the total m atrix is inverted with on the order of less multi­

phcations. This advantage will be particularly impressive for our three dimensional 

imaging algorithm.
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3 Pseudo-inverse Imaging for Multi-monostatic GPR 
Data

In this section we describe a  pseudo-inverse imaging algorithm, which is an extension 

of the DT algorithms developed by Deming and Devaney [9, 10]. The algorithm is 

based on DT, which will yield quantitative underground images from multi-monostatic 

G PR data. Our inversion algorithm includes both point sources/ receivers and the 

Kerns’ scattering m atrix simulation for the near-field characteristic of the transm it­

ting and receiving antennas.

In section 3.1. the full derivation of the three-dimensional imaging algorithm is given.

We first define the forward EM scattering model (section 3.1.1) based on vector wave 

equation, then give the inversion algorithm (section 3.1.2) based on fully anal\*tical 

computation of the pseudo-inverse operator. In section 3.2, we give the analogous 

version of the two dimensional algorithm.

3.1 Three-dimensional (3-D) Pseudo-inverse Algorithm

We consider an imaging geometry for a 3-D multi-monostatic G PR  survey (Figure 

(3-1)). By probing the earth  with EM wavefields, we wish to estim ate the electrical 

perm ittivity distribution in the  underground region z <  0  firom scattering field mea­

surements at the surface z =  0. The incident fields are generated by a GPR system 

operating in pulse-echo mode. Our forward scattering models are developed here in 

the frequency domain, related to the time domain through the standeird Fourier and
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inverse Fourier transform definitions® [9, 10].

Glgectfinclkii

F ig u re  3-1 : Illustratioa of the 3-D geometry of a multi-moaostatic G PR  survey. The x s and #'s 
represent source and receiver locations, respectively.

We assume th a t our GPR survey consists of a number of m onostatic experiments, 

each corresponding to a different location of the transm itting/receiving antermas on 

the ground surface, and each incorporating da ta  collected over a band of frequencies 

tu. In each experiment the scattering field results from the interaction of the incident 

field w ith inhomogeneities in the subsurface, described by the object function

0(r, w) =  1 (3-1)

® A consistent notation of Fourier and inverse Fourier transform is defined throughout our deriva­
tion. We define the Fourier transform

and the inverse Fourier transform

F(t) = ^ f Z d K e ' - ^ ‘F(K) 
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Here, r =  ( x ,y ,z )  is the 3-D spatial coordinate and e(r, w) =  s'{r,uj) -\-icr(r,oj)/uj is 

the complex perm ittivity in the underground. The quantity g%r, w) is the real dielec­

tric constant and cr(r, w) is the conductivity, while eo(c<;) is the complex permittivity 

of the background soil medium. It is assumed th a t the magnetic permeabihty in the 

underground is equal to fiQ, the value in a vacuum.

3.1.1 Forward Model for Electromagnetic Scattering

The Fourier amphtude of the measured to tal electric field satisfies the well-known 

Lippman-Schwinger equation[5, 9, 10, 36]

E(r,w) = Ei(r,w) -l-Es(r,w)

=  E ^(r,w )-A :§M  j"  d ( G ( r - ( ,w ) .E ( ( ,w ) 0 ( ( ,w )  (3-2)

where E{(r, w) is the incident field, Es(r,w ) is the scattered field component of the 

electric field vector, ko(uj) =  -v/w^^o^o +  ifJ-ocruj  ̂ is the complex wavenumber of the 

background soil medium, and G (r, w) is the Green’s dyadic. We assume that the 

scattered field satisfy the Sommerfield radiation condition[36] as |z| 0, and the

suitable boundary conditions® are also specified. In computing the scattered field we

^For a lossless case, we assume the conductivity of background soil medium a — 0, thus Atq is 
real, and ko{ui) =  ujy/JIôëô-

®The appropriate conditions to be imposed in this case are the continuity of E  and d E fd z  across 
the ground-air interface.
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neglect the scattering effect of the  ground-air interface and approximate the incident 

field by its infinite medium value.

In order to establish an analytical expression for the object function O in terms of 

the scattered field component of the electric field vector E^, we linearize Equation 

(3-2) by using the Bom approximation[9, 10, 13, 36]. This gives

Es(r, u;) =  — fco(ct;) J  d (G (r  — w) - E^(^, u;)0 (^, w) . (3-3)

In Equation (3-2), the scattered field Eg(r, w) appears imphcitly both on the left-hand 

side and within the ^ integration of the equation. As we introduced in Section 2.1, 

by using the Born approximation, the to ta l field E(^, w) within the $ integration is 

replaced by the incident field E i( ( ,  w), which is convenient for us because it allows a 

Linear relation between the object function 0(r, w) and the scattered field Eg(r,w). 

The Born approximation is a “weak scattering approximation” , but we'll show in 

Section 4 that in G PR imaging application, it should not be overly restrictive. Our 

imaging algorithm is not only suitable for larger weak scatterers, but good image 

results are also obtained from smaller diameter strong scatterers such as metal pipes.

To incorporate the characteristics of the transmitting/receiving antenna into Equation 

(3-3), we first transform the equation into the spatial frequency domain, then use point 

source illumination or Kerns’ antenna scattering matrix formulation to model the 

near-field characteristics of the transmitting/receiving anterma. To convert Equation
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(3-3) to the spatial frequency domain, we use the spectral plane wave expansion for 

the Green’s dyadic [5]

d K

oo 7 (K,w)

where K  =  A'lX -f- K yy  is the spatial frequency variable, k"^(w) =  K  +  j ( K . , u j ) z  

is the wave vector for each planewave in the expansion, 7 (K,u;) =

±\J kQ̂ Lj) — K  - K  w ith  the sign chosen to render @[7 ] >  0, and X  is the identity 

operator. For the m atrix  , if we assume th a t the transm itted  electric

field has only a ÿ polarization, tha t is n =  (0 , 1 , 0 ), then

n X -
k+(w) -k+(w) 

k^{uj)
n =  [ 0  1 0

1 0  0 ' '  0 ■

0 1 0 1
0  0 1 0

=  1 —

koiuj) 

K?.

r FT,,7l r 0  1

0 1 0 ] /ir,7 1
.  ATr7  Ky-{ 7“ . 0

kl (3-5)

If the polarization of the  transm itted electric field is assumed to be n =  ( 1 ,0 ,0 ), then 

by the same derivation as Equation (3-5), we get tha t

n X- k+(w) • k+(w) 
kl{uj)

n = 1 -
kl

(3-6)
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In wave propagation theory, for the above plane wave expansion (Equation (3-4)). 

when the wave vector k'^(cj) is purely real, the wave is called a propagating wave, 

whereas when k'*'(w) is purely imaginary, the wave is called an evanescent wave, 

which wUl decay exponentially with increasing depth. We are treating both the loss­

less case (lossless soil background) and the lossy case (attenuating soil background) 

in this thesis. In  the lossless case (real ko), the above plane wave expansion includes 

both propagating (|K[ <  ko) and evanescent plane waves (|K | >  ko)- In the lossy 

case (complex ko), all plane waves will have complex wave vectors. Thus, in the 

lossy case, the term  ‘evanescent’ is often applied to plane waves corresponding to 

the range >  5R[A;o], in which the plane waves will decay quickest with increasing 

depth [9, 10]. In  most GDT application, the evanescent waves are discarded [13, 34] 

since it is assumed that the inhomogeneity is many wave lengths deep. But for some 

GPR imaging appHcation, the scatterer may be near the surface and therefore the 

evanescent waves may contain valuable information. Therefore, we use evanescent 

waves to enhance our image quality.

Substituting Equation (3-4) into Equation (3-3) and evaluating the resulting expres­

sion at 2  =  0 yields the scattered electric field at the ground surface. This expression 

is converted to the  spatial frequency domain by Fourier transforming relative to the 

'X- = XX + yQ coordinate to obtain
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Ê,(K,w) = —  rf27r)2 J-, d X e-* -^[E ,(r,a ;)],^o(2 T) 2

87t27(K, w) Jz'<oL o ' ^ ‘
X -

k+(w) • k+(w)
kl{uj)

(3-7)

and then we use ideal point source/ receiver illumination or the Kerns' antenna scat­

tering matrix formulation [9, 10, 27] to model the near-held interactions between 

antennas and scatterers.

Point Source Illumination

For point sources deployed on the ground surface Xq =  xox-k-yoy, the incident electric 

held propagating in the negative z-direction is given by

w) — G (( — Xo, w) 

dKo 
7 (Ko,w)

^  I J  (,:ko-(w).(6 -Xo) (3-8)

where Kq =  Koa:X+Koyÿ, ko (w) =  Kq—7 (Kq, w)z, a n d 7 (Ko,u) = ±yjk'^(uj) — Kq ■ Kq 

with the sign chosen to render ^ [ 7 ] >  0 .
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If we assume th a t the inhomogeneity is dispersionless®, we can express the object 

function as 0 ( r ,  a;) =  0 ( r ) .  Substituting Equation (3-8) into Equation (3-7), we get

Ê s(K , w) —

8 x 2 7 (K,o;)
X -

k+(w) • k+(w) I dKoC—tICo'Xo
7 (K o ,w )

J  — OO J  — o o
(3-9)

We make the change of variables K  =  K  — K q, then dropping the bar notation on K  

to get

Ê^(K  +  Ko,w) =  P(w) y d K o g (K  +  Ko,Ko;w)

r d / e - '
y—oo

~*['Y(K+KoiW)+7 (ICq n  d X 'e
J —  O O

0 ( 0  (3-10)

where

V(u;) = ^o(w)
87t2 (3-11)

and
®This assumption allows us to  couple th e  measured data at each frequency, thus, incorporating 

more information into the mathematical inversions and leading to  b etter solutions for the object 
function, Deming [9, 10] discusses the alternatives, including: (i)solve for the frequency dependent 
object function 0 (r , w) independently at each single radar frequency; (ii)treat the object function 
as the product o f a known frequency dependent factor 8 (w ) and an unknown frequency independent 
factor 0 (r).
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g ( K , K o ; w )  =
-îK o-X o

7 ( K ,o ; ) 7 ( K o ,a ; )

k+(w) - k+(w)
kl{uj) (3-12)

It is assumed that, in a  three dimensional G PR  survey, the data is stored from N 

different excitation frequencies Un for each monostatic experiment- Thus, the forward 

model in the spatial frequency domain using ideal point source illumination for multi­

monostatic measurements is

È ,(K -F K o,a;n ) =  ^  dK o^(K  +  Ko,Ko;w^)

r  dz'e~^
J — OO

~*[7(K'l"Ko,U'n )-Hy (Ko )\z‘' [  d K ' e
J —oo

0 (0 (3 -1 3 )

K e rn s ’ Scattering Matrix Model

In a  multi-monostatic G P R  survey, a single transm itter and receiver are moved as a 

fixed unit over the ground surface. The incident field in each monostatic measurement 

is generated from a single transm itting antenna. Kerns’ scattering m atrix formulation 

[27] allows the simulation of the beam pattern of a transmitting/receiving antenna 

pair. Using Kem s’ scattering model, a transm itting antenna centered at a  position 

Xq =  xqX 4- yoy on the ground surface and driven by matched terminal voltage C(u;) 

wiU give rise to the following plane wave expansion for the incident electric field 

propagating in the negative z-direction [9, 10]
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/ oo __
dKoe-^o-^^SioCKo,a;)e'‘'o (-)->■ (3-14)

-OO

where Sio is off-diagoned scattering m atrix coefficient for the transm itting antenna, 

and is given by

g -a ( w )K -K

=  t (kT J )

where n(w) is chosen such that % -^[9, 10]. This coefficient weights the

direction components of the plane wave expansion given by Equation (3-4). By using 

this expansion (Equation (3-14)), the point source approximation needs not to be 

made.

Similarly, the matched terminal voltage a t a  receiver centered a t the spatial coordinate 

X q is given by [9, 10, 27]

V(w;Xo) =  r  -*°Soi(K, w )E,(K , w) (3-16)
J  ~~OC

where S'oi is an off-diagonal scattering m atrix coefficient for the receiving antenna. 

If the transm itting and receiving antermas are reciprocal, as would be the case for a 

typical m onostatic radar system [9, 10, 27],
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]^(w)Soi(K,w) =  2^ ü ’-y )s io (-K ,a ;)
UJfJ.0

(3-17)

where fiQ is the background magnetic permeability and Yq is the antenna term inal 

admittance.

Combining Equation (3-7), Equation (3-14), Elquation (3-16) and Equation (3-17) 

and also assuming a dispersionless object such as the case in ideal point source illu­

mination, gives

V(w;Xo) =  Viu;) r  d K  r
J — o o  J  — OO

r  n  (3-18)
J — OO J  — o o

where

r(w )  =
—iC{(jj)kQ{uj)
87r2a)Vh(a;)/io

(3-19)

and

5(K ,K o;w ) =  S io (-K ,w ) X- k+(w) • k"*'(w) 
ko(w)

Sio(Ko.w) . (3-20)
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Assume th a t in a three dimensional G P R  survey, a series of m onostatic experiments 

are performed over the ground surface a t evenly spaced locations corresponding to 

points on a two dimensional grid, and the  da ta  is stored from N different excitation 

frequencies u>n for each monostatic experiment. If the grid spacing is small enough 

to satisfy the Nyquist sampling criterion for the voltage measurements, the  transmit­

ter/receiver position can be treated as a  continuous variable X  =  (a:, y) and then, 

Equation (3-18) becomes

V (w ^;X ) =  V M  r  d K  r
J  —OO J  —OO

r  (3-21)
J —OO J —oo

By changing variables K  =  K  — K q, dropping the bar notation on K , and spatially 

Fourier transform ing Equation (3-21) w ith respect to the X  variable, we obtain

V(w^;K) =  tT 2 f  d X e-^ * V (w ^ ;X )
Z7T J  —oo

=  V{ujn) [  dK oB(K  -t- Ko, Ko; w^)
J  — O O

/ ° °  d X 'e “ ‘* ^ '^ '0 (C )-  (3-22)
J  —OO J  —OO

Hence, we get the forward scattering model (Equation (3-22)) in the spatial frequency 

domain using Kerns' scattering m atrix model for multi-monostatic measurements.
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3.1 .2  In v ers io n  A lg o r ith m

Since the forward scattering models using ideal point source illumination (Equation 

(3-13)) and using Kerns' scattering matrix formulation (Equation (3-22)) have the 

same mathematical formalism, the pseudo-inverse algorithm can be apphed to both 

cases in the same way. Here, we only give the brief derivation of the inversion algo­

rithm  for the forward scattering model using Kerns' scattering m atrix formulation, 

the reader is referred to [9, 10] for the full derivation.

In order to use the regularized pseudo-inverse method to  solve the unknown object 

function, first, define Hilbert spaces U  and Y  for the object function 0 (r )  and the 

transformed measured term inal voltage V {un', K ) respectively. The standard L^-inner 

products can be employed in both spaces. We also assume tha t the elements of each 

space have finite L^-norms^° Then, Equation (3-22) can be expressed in the compact 

mathematical operator form

V(uJn; K ) =  AO(wn; K) (3-23)

where .4 is a hnear operator which maps U into Y .

^°This means that [9, 10]

•  0 ( r )  E U, where U  is the space of square integrable functions defined on —oo < (x, y) <
oo, —oo <  z < 0;

• V(w„;K) E Y , where Y  is the direct product space of square integrable function on —oo < 
{Kx, Ky) < oo with the finite dimensional vector space Yq of functions of the discrete variable
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By using the regularized pseudo-inverse operator, we get the minimum L^-norm so­

lution for the object function 0 (r )  [3, 9, 10, 37]

=  A \ A A ^  + m ~ ^ S r

= -4.^Vfill (3-24)

where >4.̂  is the Hermitian adjoint of A , P is the Tikhonov-Phillips regularization 

parameter^^, I  is the  identity operator, and V fm  =  {AA^ PX)~^'V is referred to as 

the filtered data [9, 10].

By using the property of adjoint operators^^, we get the inverse of filtering operator

V (u ;^ ;K ) =  {AA^ +pX)Srfat{uJm-,K)
N

=  E  Qmn(K)V/irt(a;„; K ) -f- PVfutiujm', K ) (3-26)
n=l

where N is the to ta l number of the experiments; and

Generally, there is a tradeoff between selecting /3 small enough such that Og approximately 
satisfies the data yet large enough that the solution is stable, and typically 0  is selected by trial and 
error.

Given the vector space definitions, the Hermitian adjoint -4̂  of A  maps the space Y onto the 
space U  so that we have the inner product relation

MO,3,V)v  =  (0 ,9 ,^^V )u - (3-25)
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Qmn(K) =  r  dKo r  dK'o
J  —oo J  —oo

4z7r2p(g ;^ )P * (u ;„ )g (K  +  Kq, Kq; 0 /^ )5 *  ( K  +  K ^, K ' q I uj^ )  

? (K  4- Kq, WfTi) + 7 (Ko,a;Tn) — 7 "(K  4- Kg, — 7 *(Kg, Wn)

the * denotes the complex conjugate.

Equation (3-26) can be w ritten  in block m atrix notation

■ V (K ;w i) ■ r Q u(K ) -h /? Q i2(K)
V(K;w2) Q2i (K) Q22(K) 4-/)

V(K;wAf) . Qwi(K) Q^2(K)

Qxiv(K)
Q 2 jv(K)

Qivjv(K) 4- ,3

'Vfiit(K;uj2)

V/i7t(K:a;yv-)
(3-27

which can be inverted by Gaussian elimination, Cram er’s rule, or other methods in 

linear algebra to yield the filtered data V fm  in terms of the raw, unfiltered data V

Then the final form of the imaging algorithm can be estabhshed by expressing O as 

a function of the filtered d a ta  V jm  [9, 10]

0 ^ ( 0  =  A ^ ^ f i i t i i )

=  E  r  d K '  r  dK'5*(K' + K 'o , K'o-, U n )
n=l
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where ^ -  (X', z').

3.2 Two-Dimensional (2-D) Pseudo-inverse Algorithm

The 2-D case corresponds to  the situation in which a coordinate system is defined by 

i-ax is representing the ground surface, and z-axis pointing vertically upward (Figure 

(3-2)). The 2-D object function 0 (x , z) is assumed to be invariant in the y-direction. 

We can treat the 2-D imaging problem in a manner completely analogous to the 3-D 

case. In the 3-D case, a  series of monostatic experiments are conducted over a two- 

dimensional grid on the xy plane; whereas in 2-D case, we conduct the experiments 

at intervals along a line corresponding to the x-axis. We also wish to reconstruct the 

object function from the  scattered field measurement.

3.2.1 Forward Model for Electromagnetic Scattering

By using the Bom approximation, we get the scattered field component of the electric 

field vector

B .(r,w ) =  -tg (w ) J  d ^ G ( r - ^ ,u j )  • E^((,w)0 ((,w ) (3-29)

where r  =  (x, z) is the  two-dimensional spatial coordinate. In our 2-D imaging 

problems, we assume th a t the transmitted electric field has only a ÿ  polarization, and
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T ransm itter/receiver for m on ostatic  experim ent

U nderground
region

O b ject fu n ction

Figure 3-2: Illustration of the 2-D geometry of multi-monostatic GPR survey.

the antennas and scatterers do not vary in the ÿ direction, so th a t the Equation (3-4) 

becomes the scalar spectral plane wave expansions for the Green’s function

StT̂  7-00 7 (K,Cj)
(3-30)

where K  =  7G:X is the spatial frequency variable. Substituting Equation (3-30) 

into Equation (3-29) and evaluating the resulting expression a t z =  0 yields the 

scattered electric field at the ground surface. This expression is converted to the 

spatial frequency domain by Fourier transforming relative to the X  =  xx coordinate 

to obtain
^^This means in Equation (3-5), Ky =  0.
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=  8 P # Z l )  / _ < % e - + M ( E , ( ( .w ) 0 ( ( ,w ) .  (3-31)

If we use ideal point source illumination, for point sources deployed on the line Xq =

(%o,0 ),

E^((,w) =  G ( ( - X o ,w )

dKo 
7(Ko,cj)

=  i f  ^ 9  e : k o  (w).((-Xo) (3-32)
J 0 '(Kn,CJ)

where Kq =  K q̂ x . By m ethods similar to the three-dimensional analysis, assume for 

each monostatic experiment, the data is stored from N different excitation frequencies 

ui-a, and substituting Equation (3-32) into Equation (3-31), making the change of 

variables Kx = Kx — K qx, then dropping the bax notation on Kx fields

Ë s(K x  -h A oii <̂ n) =  ’P(Wn) J  dK oxB (K x  -h A'ox; -^Oii ̂ n )

J — OO

r  dx'e~^^-^'0{x', z') (3-33)
J  —OO

where
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^(Wn) =  (3-34)

and

g—îAbx- ^ 0

Thus, Equation (3-33) is a forward model in the spatial frequency domain using ideal 

point source illumination for 2-D m ulti-monostatic measurements.

Using K em s ’ scattering matrix model, we assume the interval spacing along the x-axis 

is small enough to satisfy the Nyquist sampling criterion for the voltage measure­

ments, thus we can treat the measured voltage V(w^; x) as a  function of continuous 

variable x. By methods similar to the three-dimensional case, the d a ta  are defined as 

the spatial Fourier transform relative to the x coordinate of the measured voltage:

V (u ;„;i^ ,) =  ^  d x e-'^ -"V (u ;,;X )
JTT j —OO

/ OO

d K o x B { K x  4- K qx, K ox] u;n)
-OO

dx 'e~^^-^ '0{x \ z') (3-36)
J  — OO J  —  OO

where
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and

B{Kx, Kox'.UJn) — Sio(—Kx,UJn)Sio{KQx,UJn) - (3-38)

Thus, Equation (3-36) is a forward model in the spatial frequency domain using 

Kerns’ scattering m atrix formulation for 2-D multi-monostatic measurements.

3.2.2 Inversion Algorithm

Here we also use the Hilbert space definitions^'* for 0 { x , z )  and V(cJn-:-Kx). The 

regularized pseudo-inverse solution for the object function is

0 0 ( x , z )  = A ^ (A A ^+ jd T ) -^V (x , z )

= A^Vfiit{x,z)  (3-39)
14 This means that [9, 10]

•  0 {x ,z )  G W , where W  is the space of square integrable functions on —oo < x  < oo, 
—OO < z <  0;

• V ^ u j n ' j K x )  6 Z, where Z is the direct product space of square integrable functions on —oo <  
Kx <  oo with the finite-dimensional vector space Yq of functions of the discrete variable uin;

« is a linear operator which maps W  into Z
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The relation between the filtered da ta  V/:Z((w; and unfiltered da ta  V(w: is

V {u}m\ K j:) = {AA^  4- p x y v  
N _

= ^  +  ydVfut{uJm- K^)  (3-40)
n = l

where

/ OO f O O

dKox I  (^Kqx
-oo J  —oo

8iTr^V{uJm)V*{u;nMKx +  Kox, Kox;UJmWiKx -h K x :  i^Oxi^n)
j { K x  -I- K q x ,  ( j J m )  +  7 ( - ^ 0 i j  ^ m )  ~  +  -^Oxi ^ ’n.) ~  7 * ( - ^ 0 u  ^ n )

For each value of Kx, Equation (3-41) can be written in the m atrix  notation

'  V(Æ,,;wi) '

V ( K x;uj2} =

_  V { K x:cjn) _

C l x x { K x ) + 0  Q x 2 { K x )  
Q2x{Kx) Cl22{Kx)+0

Q n x ( K x ) Q n 2 ( K x )

Q xn(K x)
Q 2 iv(Ax)

-- QAr/v(FCj:) +  ^  J VfiuiKxluJi^)
(3-41)

^ f û t  ( K x  ; w%) 

^ f i l t i K x ' -  LJo)

which can be inverted by the standard methods of hnear algebra to yield the filtered 

data V fiit in term s of the raw, unfiltered data  V.
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Then the final form of the imaging algorithm can be estabfished by expressing O as 

a function of the filtered d a ta  V fm  [9, 10]

r o o  f O O

= Y ,  2 7 rP * K ) /  dK^' /  d K o J B \ K j  +  KoJ: ujn)
n = l  J - o o
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4 Reconstruction Results

The two-dimensional and three-dimensional pseudo-inverse imaging algorithms de­

scribed in the previous sections have been applied to both synthetic and experimental 

multi-monostatic G PR data. Good quantitative images of objects embedded in both 

lossless and attenuating background are generated. Our goal is to show that our 

algorithms are suitable for realistic G PR  appUcations.

4.1 2-D Pseudo-inverse Reconstruction

In Section 4.1.1, we show examples of image reconstructions for 2-D synthetic multi­

monostatic G PR  data. In Section 4.1.2, the reconstruction images of 2-D experimental 

multi-monostatic G PR data are shown. Both reconstructions use the direct analytical 

pseudo-inverse techniques described in Section 3.

4.1.1 Reconstruction Results for Synthetic Data

In our two-dimensional synthetic da ta  simulations, two 2-D objects are used, one 

is a point scatterer(Figure (4-1)), and the other is a rectangle (Figure (4-2)).^^ The 

point scatterer and rectangle are both  embedded in a soil background having a com­

plex dielectric contrast s/sq  =  0 . 8  ^®at all frequencies relative to the surrounding soil. 

Therefore, the value of object function is (from Equation (3-1)) 0 (x, z) = 1—0.8 =  0 . 2

^°In all the figures illustrated in Chapter 4, the plotting contrast has been reversed to improve 
the display so that, in the reconstructed images, the negative object function —O is plotted.

^®It has been shown [42] that DT using the Bom approximation is adequate for quantitatively 
reconstructing objects with roughly
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for the point scatterer or within the rectangle, and 0 = 0  within the background area.

0.5 , 1 ^ S r  2 2 5
Hoiif onlal Distance % W

Figure 4-1: Location of the two-dimensional point scatterer for pseudo-inverse sjuithetic data 
reconstruction. The point scatterer has a value of O  =  0.2 a t all frequencies, and the background 
value is zero.

Lossless Background

First, it is assumed that our objects exist in a non-attenuating background soil (real 

Figure (4-3) and Figure (4-4) are the forward scattering models of the point 

scatterer in the x-t domain using point source illumination and the Kerns’ scattering

(4-1)

or a 20% contrast, when the object size is on the order of a wavelength.
^^The range of the wavelengths A is 0.2m  <  A <  Im. For lossless case, ko =  27r/A.
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: RwtangteiOitftct

0.5 1 _ 1 5  2  Z5
HonzoNW DWmnc# x (m)

Figure 4-2: Original two-dimensional rectangle for pseudo-inverse synthetic data reconstruction. 
The rectangle has a value of O  =  0.2 at all frequencies, and the background value is zero.
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m atrix formulation. Figure (4^5) and Figure (4-6) are the reconstructed images of 

the point scatterer for both cases. Similarly, we show the forward model data for the 

rectangle in Figure (4-7) and Figure (4-8), and the reconstructed results are shown 

in Figure (4-9) and Figure (4-10).

rFofWwd .moM of a point scaltwK

J

;
ê

0.5 1 1.5 2 2.5
Horizontal Oiatanct X (m)

Figure 4-3: Forward model of a  two-dimensional point scatterer in the x-t domain using point 
source illumination in a lossless background.

The reconstruction results are all based on nine frequencies uniformly distributed over 

100 MHz to 500 MHz for a regularization parameter /3 =  10~®. It can be noted that 

we get the rather good representation of the original objects.

Lossy Background
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0.5 1 15  2
. Horizontal Ontanct.x(in)

2.5

Figure 4-4: Forward model of a two-dimensional point scatterer in the x-t domain using the Kems' 
scattering matrix formulation in a lossless background.
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Rtd p»t oTreconstiûMad

0.2

0 8

■14

1 1.5 2

Horizontal Dnt«nctK(in)
0.5 2 5

F ig u re  4-5: Two-dimensional pseudo-inverse reconstruction of a point scatterer using point source 
illumination based on nine frequencies in a lossless background.
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|RMipaitatraeomlnicl«d:PQiiit^alttrar.

iglyàyi n '

1 1.5 2 2 5
Horizontal Oittanc* X (m)

Figure 4-6: Two-dimensional pseudo-inverse reconstruction of a point scatterer using the Kerns' 
scattering matrix formulation based on nine frequencies in a lossless background.
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Fommdmo#o(*ï#d«ng^olg#cl

1 1.5 2
Horizontai OnlMct x (m)

Figure 4-7: Forward model of a  two-dimensional rectangle in the x-t domain using point source 
illumination in a  lossless background.
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Figure 4-8: Forward model of a  two-dimensional rectangle in the x-t domain using the Kerns’ 
scattering matrix formulation in a lossless background.
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>Rnl:pait of iwontiiuclad; ractangit ob|Kt ̂

F ig u re  4-9: Two-dimensional pseudo-inverse reconstruction of a  rectangle using point source illu­
mination based on nine frequencies in a  lossless background.
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-îReal-piil of meonsliucieAiielangle object-

1 1.5 . 2
HorizonlalOtitànct r  (m)

Figure 4-10: Two-dimensional pseudo-inverse reconstruction of a rectangle using the Kems’ scat­
tering matrix formulation based on nine frequencies in a  lossless background.
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We assume tha t our objects exist in an attenuating background soil (complex 

Figure (4-11) and Figure (4-12) are the forward scattering models of the point scat­

terer in the x-t domain using point source illumination and the Kem s’ scattering ma­

trix formulation, respectively. Figure (4-13) and Figure (4-14) are the reconstructed 

images of the point scatterer for bo th  cases. Similarly, we show the forward models 

of the rectangle in Figure (4-15) and Figure (4-16), and the reconstructed results are 

shown in Figure (4-17) and Figure (4-18).

- r  - 1.S - V2
HonzeNWDMmmcejicOn)

'i-3-

Figure 4-11: Forward model of a two-dimensional point scatterer in the x-t domain using point 
source illumination in a lossy background.

The reconstruction results are also based on the same nine frequencies used in the

'^^The range of the wavelengths A is 0.2m <  A <  Im. For lossy case, ko = 2tt/ \  + i f  depth 
(conductivity decreases linearly with depth).
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Fomntd model of # point: scottenr

1 1.5::'-:
Horizontal OlslanctK (in)

Figure 4^12: Forward model of a two-dimensional point scatterer in the x-t domain using the 
Kerns’ scattering m atrix model in a lossy beickground.
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Horizonlai Dwtamca x (m)

Figure 4-13: Two-dimensional pseudo-inverse reconstruction of a point scatterer using point source 
illumination based on nine frequencies in a lossy background.
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0:5 1 1.5 2

Horizontal Distança x (m)

F ig u re  4^14: Two-dimensional pseudo-inverse reconstruction of a point scatterer using the Kerns' 
scattering matrix formulation based on nine frequencies in a lossy background.
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1 I S  2 
Horizonltf Oittanca %(m)

Figure 4-15: Forward model of a  two-dimensional rectangle in the x-t domain using point source 
illumination in a lossy background.
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Figure 4-16: Forward, model of a  two-dimensional rectangle in the x-t domain using the Kerns' 
scattering matrix model in a  lossy background.
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RtatipMiorracqmtfuctfd nctangto

1 1.5 2
Horizontal OMlMCt X (m)

F igu re  4-17: Two-dimensional pseudo-inverse reconstruction of a rectangle using point source
illumination based on nine frequencies in a lossj’' background.
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F ig u re  4-18: Two-dimensional pseudo-inverse reconstruction of a  rectangle using the Kems' scat­
tering matrix formulation based on nine frequencies in a lossy background.
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lossless case. We get the fairly good images of the point scatterer and the rectangle. 

As expected, there is a  shght loss of am phtude in the reconstructed images as com­

pared to the lossless background. We can also notice th a t the reconstructed rectangle 

is hollow, and only the boundaries of the rectangle are reconstructed. This is because 

for the K-space coverage [9] of our imaging algorithm, there is no coverage at the 

origin = Ky — 0. This suggests tha t there is no spatial DC component and the 

average value of the  reconstructed object function O wiU be zero, and consequently 

the image will be hollow.

4.1.2 Reconstruction Results for Experimental Data

Two-dimensional multi-monostatic G PR measurements were made over a cast iron 

pipe in a large sand pit using a Mala RAMAC system  with 200 MHz center-frequency 

antennas. The measurement line was perpendicular to the pipe axis. Figure (4-19) 

shows one of the vertical sections of the raw data.

Ah. reconstructions presented here assume a lossless background, a background wave 

speed of 0.11 m /ns, and use 30 frequencies uniformly distributed over the spectral 

band 50 - 417 MHz (Figure (4-20)). Dipole antennas, such as those used in this 

study, are characterized as being fairly directional, with (two-dimensional scalar) 

transmitting coefficients given by
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Mirf£RAMMC,R«darData xIO

Figure 4-19: Two-dimensional monostatic GPR data

W hen the exponential function a is large, the beam pattern is quite directional with 

most of the energy being radiated vertically and, conversely, when a is small, the 

antennas are nearly omni-directional. Since antenna beam patterns can change with 

soil conditions, there is no practical means to fuUy characterize the beam patterns of 

a particular antenna pair. Here, several forms of a are empirically tested.

In the first case, a(cu) — —o  ln(10)/%[A:o]^ is used. Figure (4-21) shows the recon­

structed image of perm ittivity for a  =  1 (left) and a  =  10 (right). The ringing of the 

shallower layers is caused by the  limited bandwidth.
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Figure 4-20: Frequency spectrum of a two-dimensional monostatic G PR  data set

As expected, the image of the pipe becomes more elongated as the beam pattern 

becomes more directional. For both cases shown in this figure, the beam  patterns are 

too directional.

The best reconstruction of the pipe was obtained for a  — 0.01 (Figure (4-22)). Here, 

the image of the pipe is nearly circular, as it should be. The deeper region of high 

permittivity is presumed to be water-saturated sand.

To evaluate the influence of frequency-dependence in the beam pattern, images are 

reconstructed for a =  —aln(lO ). Figure (4-23) shows the reconstructed spatial vari­

ations in perm ittivity for a  =  1  (left) and a. =  0 . 0 1  (right).
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1 1 i  2 25 3 3.5
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Figure 4-21: Reconstructed image of permittivity using the pseudo-inverse algorithm for two- 
dimensional monostatic GPR data using a  =  1 (left) and o  — 10 (right).
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Figure 4-22: Reconstructed image of perm ittivity using pseudo-inverse algorithm for two-
dimensional monostatic G PR data for q =  0.01.
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î^ortildaw^Çn)

Figure 4-23: Reconstructed image of permittivity using the pseudo-inverse algorithm for two- 
dimensional monostatic GPR data using a  =  1 (left) £ind a  =  10 (right).

The image of the pipe becomes less elongated as the beam pattern  becomes less di­

rectional; however, this form of the beam pattern provides results tha t are inferior to 

the frequency-dependent beam pattern.

4.2 3-D Pseudo-inverse Reconstruction

In Section 4.2.1, we show examples of image reconstructions for fully 3-D sjmthetic 

multi-monostatic GPR data. In Section 4.2.2, the image reconstruction of fuUy 3-D 

experimental multi-monostatic G P R  data  is shown. Both reconstructions use the di­

rectly analytical pseudo-inverse techniques described in Section 3. The comparison of
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our pseudo-inverse algorithm  and the traditional DT algorithm is also given Section 

4.2.2.

4.2.1 Reconstruction Results for Synthetic Data

In this section, the pseudo-inverse imaging formula is applied to broadband simulated 

data  for a point scatterer (Figure (4-24)) in bo th  lossless and attenuating background 

for the three-dimensional reflection geometry. Similar to the 2-D case, the point 

scatterer is embedded in a soü background, and has a complex dielectric contrast 

s/so  =  0.8 at all frequencies relative to the surrounding soü. Therefore, the value of 

object function is 0 ( x ,  z) = 1 — 0 . 8  =  0 . 2  for the point scatterer and 0  =  0  within 

the background area.

Lossless Background

First, it is assumed th a t our object exists in a  non-attenuating background soil (real 

ko). Figure (4-25) and Figure (4-26) are the forward scattering models of the point 

scatterer in the x-t dom ain using point source illumination and the Kerns' scattering 

m atrix formulation, respectively. Figure (4-27) is the reconstructed image of the point 

scatterer using point source illumination. Figure (4-28) is the reconstructed image of 

the point scatterer using the Kerns’ scattering m atrix  model.

The reconstructions are aU based on eight frequencies uniformly distributed over 100

91



PottSc«Mr PMScallmr

02

0.4

I
£ 0.6

0.8

U
0.5 1 1:5:

Hoizon;#[#«c,XW
1 1.5 2

’HonzaRMDHtanci ¥ ,^ )
25

0

4102

410*

4106

4}.0B

41
4112

4114

4116

mo

432

Figure 4-24: x-z slice (left) and y-z slice (right) of the original three-dimensional point scatterer for 
pseudo-inverse synthetic data reconstruction. The point scatterer has a  value of 0 .2  at all frequencies, 
and the background region has a value of zero.
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Figure 4-25; x-t slice (left) and y-t slice (right) of the forward model of a three-dimensional point 
scatterer using point source illumination in a  lossless background.
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Figure 4-26: x-t slice (left) and y-t slice (right) of the forward model of a three-dimensional point 
scatterer using the Kerns' scattering matrix model in a lossless background.
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Figure 4-27: x-z slice (left) and y-z slice (right) of three-dimensional pseudo-inverse reconstruc­
tion of a point scatterer using point source illumination based on eight frequencies in a lossless 
background.
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Figure 4-28: x-z slice (left) and y-z slice (right) of three-dimensional pseudo-inverse reconstruction 
of a point scatterer using the Kerns’ scattering matrix formulation based on eight frequencies in a 
lossless background.
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MHz to 500 MHz for a regularization parameter ,5 =  10 It can be noted that we 

get the rather good representation of the original objects.

Lossy Background

We assume that our object exists in an attenuating background soil (complex 

Figure (4-29) and Figure (4-30) are the forward scattering models of the point scat­

terer in the x-t domain using point source illu m in a t io n  and the Kerns' scattering 

matrix formulation, respectively. Figure (4-31) is the reconstructed image of the 

point scatterer using point source illumination. Figure (4-32) is the reconstructed 

image of the point scatterer using the Kerns’ scattering m atrix model.

The reconstructions are also based on the same eight frequencies used in the lossless 

case. We get a fairly good image of the point scatterer. As in the 2-D case, there is 

also a  shght loss of am phtude in the reconstructed images as compared to the lossless 

background.

4.2.2 Reconstruction Results for Experimental Data

Fully three-dimensional multi-monostatic GPR measurements were made over a plas­

tic water pipe beneath the street in Tampa, FL, using a Mala RAMAC system with 

250 MHz center-frequency antennas. Figure (4-33) shows two shces of the vertical

^®The range of the wavelengths A is 0.2m <  A <  Im . For lossy case, ko =  2/r/A 4- i / d e p t h  
(conductivity decreases linearly with depth).
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F ig u re  4-29; x-t slice (left) and y-t slice (right) of the forward model of a three-dimensional point 
scatterer using point source illumination in a  lossy background.
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Figure 4-30: x-t slice (left) and y-t slice (right) of the forward model of a three-dimensional point 
scatterer using the Kerns' scattering matrix model in a  lossy background.
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Figure 4-31: x-z slice (left) and y-z slice (right) of three-dimensional pseudo-inverse reconstruction 
of a point scatterer using point source illumination based on eight frequencies in a lossy background.
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Figure 4-32: x-z slice (left) and y-z slice (right) of three-dimensional pseudo-inverse reconstruction 
of a  point scatterer using the Kerns' scattering matrix formulation based on eight frequencies in a 
lossy background.
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sections of the raw data.
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F igu re  4-33: x-t slice (left) and y-t slice (right) of vertical sections of the three-dimensional 
monostatic G PR data

Our reconstruction presented here assumes a lossless background, a background wave 

speed of 0.1 m /ns, and uses 32 frequencies uniformly distributed over the spectral 

band 51 - 356 MHz (Figure (4-34)). Since we have no prior knowledge of the antenna 

beam pattern  used in this particular study, several antenna transm itting coefficients 

are tested in the reconstructions. The best result is shown in Figure (4-35). Figure 

(4-36) is the reconstructed plastic pipe in three-dimensions.

For comparison, we give reconstructions using the traditional DT algorithm for the 

same full three-dimensional G P R  d a ta  set in Figure (4-37). The reconstruction is also
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Figure 4-34: Frequency spectrum of a three-dimensional monostatic G PR  data set

based on the same background wave speed and the same spectral range. Comparing 

Figure (4-35) and Figure (4-37), we find that both images of the pipe are in exactly 

the same locations.
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F igure  4-35: x-z slice (left) and y-z slice (right) of the three-dimensional pseudo-inverse 
struction of a plastic pipe.
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Figure 4-36: Three-dimensional pseudo-inverse reconstruction of a plastic pipe.
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plastic pipe.

106



5 Conclusion and Discussion

In this thesis, a regularized pseudo-inverse algorithm is apphed to two-dimensional 

and three-dimensional multi-monostatic GPR data. The method employs a linear 

scattering model for electromagnetic wavefields based on the Bom approximation, 

which is inverted analytically to yield a subsurface image based on scattered field 

measurements. It provides a direct, non-iterative inversion formula, which has an 

advantage of computational efficiency. For synthetic G PR data, the reconstruction 

solutions satisfy the forward models exactly. For experimental G PR data, there is 

no apriori characterization of the frequency-dependent anterma beam pattern. The 

beam pattern function is determined empirically based on the quality of the recon­

structed images of the object (such as a pipe) known to be evident in the data. After 

this calibration, the object (pipe) as well as the deeper region of a saturated or non­

saturated soü background are well resolved in the images.

Reconstructions have been obtained for both a lossless and a lossy background. In 

realistic GPR imaging appUcations, the attenuation caused by the host geology is 

inevitable, and the evanescent wavefield components are important since radar wave­

lengths are often times on the same order as the depth and size of underground 

features of interest. Thus in this algorithm, soü attenuation can be incorporated 

into the mathematical inversions, and evanescent components are included to help 

improve image resolution. Point sources/ receivers are assumed in most of the tradi­

tional imaging methods. Here, the more realistic Kerns’ scattering m atrix formulation
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is used to simulate the transmitter/receiver beam pattern.

This work is an extension of a DT algorithm for m ulti-monostatic GPR imaging 

developed by Deming and Devaney [10]. There are also some directions for future 

extensions based upon the present work. First of all, we can do some further charac­

terization of antenna beam  patterns. For example, a delta function response can be 

generated by a buried steel ball. By using scattered field measurements over a steel 

ball and the traditional DT algorithm, the antenna beam p a tte rn  can be quantified 

analytically for a  particular antenna pefir in a G PR experiment. This antenna beam 

pattern then can be used in our pseudo-inverse reconstruction to get a better image 

of other features. Our imaging algorithm can also be used to reconstruct images for 

multi-bistatic G P R  d a ta  by introducing shght changing into the mathematical for­

mulation. Furtherm ore, it will be of interest to use Kaczmarz m ethod [10, 25] and 

find computationally efficient ways to incorporate prior information, thus obtaining 

image enhancement.
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