INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

75-15,243

ALGUIRE, Robert Thornton, 1937-COMPUTER MODEL FOR REGIONAL PLANNING OF WATER AND SEWER SYSTEMS.

The University of Oklahoma, Ph.D., 1974 Engineering, civil

Xerox University Microfilms, Ann Arbor, Michigan 48106

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

COMPUTER MODEL FOR REGIONAL PLANNING OF WATER AND SEWER SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

ROBERT THORNTON ALGUIRE
Norman, Oklahoma

COMPUTER MODEL FOR REGIONAL PLANNING OF WATER AND SEWER SYSTEMS

Approved by

Dissertation Committee

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to the individuals who made significant contributions to this work. Professor George W. Reid must be singled out for his guidance, encouragement and patience.

Acknowledgement is extended to the other members of my committee for their guidance and assistance; Dr. Leale E. Streebin, Professor J. W. Keeley, and Dr. William R. Southard. Further, my appreciation is given to David Morgan and Gary Crews for their invaluable assistance in programming and to Dr. Silas Law who assisted in the preparation of the final report.

I wish to express my thanks to the Office of Water Resources Research,

Department of the Interior, for their financial support in pursuit of this
study and the continuation of my education.

For the love and understanding I received from my wife, Michel, and my children during the preparation of this manuscript, I give a special thanks that cannot be expressed in words alone.

TABLE OF CONTENTS

ACKNOWL	EDGEM	ENTS .				•		•	•	•	•	•	•	• •	•	•	•	• :	•	•	•	iii
LIST OF	TABL	ES .				•		•				•	•		•	•	•	•	•			vi
LIST OF	FIGU	RES .				•		•		•									•			vii
ABSTRAC'	r.					•					•		•			•	•	•		•	•	viii
Chapter																						
ı.	INTRO	ODUCTIO	n.																			1
	1.1	Object State	of Art			•			•	•	•	•			•	•	•	•	•	•		1 2 5
	1.3	Genera	1 Meth	odo.	Logy	'	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	5
II.	DATA	PREPAR	ATION	AND	THE	P01	PUL	AT:	ION	M	OD	EL	ı		•	•	•	•	•	•	•	13
	2.1 2.2 2.3 2.4	Introd Sewer Genera Popula	and Wa 1 Data	ter	Sys	tem •		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	13 13 15 15
III.	LAND	USE .				•		•	•				•		•	•	•	•	•		•	23
	3.1 3.2 3.3	Introd Invent Land U 3.3.1 3.3.2 3.3.3 3.3.4 Land U Data L	ory Prise Profe Profe Analy Analy "Hard	oceo ject ssic tica st l-Co ida	dure tion onal al M - Pl re"	s Place ether anne Math	ann ods er	er Appat	Me pro	eth	h h Mc	i · ·	: 1i:	ng	•	•	•	•		•		23 25 26 26 28 30 30 32 33
IV.	DEMA	ND MODE	L			•		•	•	•		•	•		•	•	•	•	•	•		34
	4.1 4.2 4.3	Introd Model 4.2.1 4.2.2 Data R	Descri Model Model	ptic Con Me	on . ncep thod	t olog	• •	•	•	•	•	•	•		•	•	•	•		•		34 34 35 38 50
	4.4 4.5	4.3.1 Data A Model 4.5.1 4.5.2	Input rrange Format Input	ment : : Dat	 t . ta .	•	 	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	50 58 58 60 64

		Pago
	4.6	Model Validation
v.	WATE	ER NETWORK MODEL
	5.1	Introduction
	5.2	
	5.3	· · · · · · · · · · · · · · · · · · ·
	3.0	5.3.1 Water Source Costs
		5.3.2 Transmission Costs
		5.3.3 Treatment Costs
		5.3.4 Distribution Costs
		5.3.5 Total Costs
	5 /	Data Requirements
	5.5	
	5.6	2 mm 112 mm 9 mm 112 mm
	5.7	
	5.7	model validation
VI.	SEWE	ER NETWORK MODEL
	6.1	Introduction
	6.2	
	6.3	
	6.4	
	6.5	
	6.6	
	6.7	
	0.7	liouel vullaucion
VII.	DEVE	ELOPMENT OF THE WATER AND SEWER PLAN
	7.1	Introduction
	7.2	
		Limitations and Future Research Needed

;

LIST OF TABLES

Table	Page
4-1	Main (Demand)
4-2	Subroutine Watout (KTYP, KKK)
4-3	Subroutine Write (KH, KL)
4-4	Subroutine (KTYP, KKK)
4-5	ubroutine Swsout (KKK)
5-1	ain
5-2	ubroutine Prelim
5-3	Subroutine Cutoff
5-4	Subroutine Arcrd
5-5	Subroutine Noderd
5-6	ubroutine Postrd
5-7	ubroutine Solve
5-8	ubroutine Kilter
5-9	ubroutine Breakt
5-10	Subroutine Raise
5-11	Subroutine Output
5-12	Subroutine Label
5-13	unction Nodeno
5-14	unction Lookup
5-15	ogical Function Equal

LIST OF FIGURES

Figu	ire	Page
1-1	System Sector Relationship	6
1-2	Operational Flow Chart	8
1-3	Planning Process	10
2-1	1990 Population Projection	18
2-2	United States - U. S. Census Series C	19
2-3	United States - U. S. Census Series C	20
2-4	Household and Income Characteristics	21
2-5	Population by Occupation 1990	22
4-1	Coding of Streams and Watershed	37
4-2	Demand Data Deck Set-Up	59
5-1	Existing Metropolitan Study Area	90
5-2	Future Requirements	94
5-3	Example of Flow Net	141
5 - 4	Linear Cost Functions	143
5-5	Average Daily Flow Net	166
6-1	Major River Basins	172
6-2	North Canadian River Basins (Plant Selection)	178
7-1	Final Procedure Outline	184

ABSTRACT

The objective of this study was to take an existing model that was capable of projecting both population and demand and evaluating a selection of network models in order to derive a practical planning technique for regional water and sewer systems. This research had as its goal the development of a usable tool that would give the average planning group a systematic approach for analyzing water and sewer networks -- a technique, which upon completion, would be functional without modification, for any type or size of region.

This was accomplished by the construction of six procedures which used three computer models: the inventory and data projection procedure which provides the input; the population model and procedure which generates the desirable alternatives in terms of people and their socio-economic characteristics; the land use procedure which allocates the output of the population model to an areal scheme; the demand model and procedure which produces the water demand and sewage output for the given areal scheme; the network model and procedure which optimizes on a least cost basis, while maximizing utilization of resources, the networks of water and sewerage that fulfill the alternatives available; and finally the plan procedures for the development of a continuing and comprehensive plan.

The steps between each procedure have built-in planner intervention points where the using group may "game" new alternatives based on the results and data acquired from the previous procedure. The procedures and models have relaxed the tedious process necessary to formulate a regional plan. The

techniques are spelled out on a step-by-step basis and all procedures and models are fully operational. The flexibility of the approach can only be realized when one applies it to an area and procedes to the gaming of each alternative against the desired future worlds.

This report is a portion of a major research grant from the office of Water Resources Research of the Department of Interior which is uniquely the author's. The total concept can be reviewed by reading the final report on "Systems Approach to Metropolitan and Regional Area Water and Sewer Planning." This report was co-authored by George W. Reid and Robert T. Alguire for OWRR in May, 1973.

COMPUTER MODEL FOR REGIONAL PLANNING OF WATER AND SEWER SYSTEMS

CHAPTER I

INTRODUCTION

1.1 Objectives

The prime objective of this research has been to develop a systems approach which would provide a practical method of planning regional water and sewer systems. The proposed techniques will equip the urban planner with the methodology for the selection of an optimal "plan" and for the establishment of the conditional boundaries from the solutions of all foreseeable developments. Using this approach, the model then becomes an effective tool in planning, for it not only furnishes the necessary output on which the planner can develop the water and sewer plan, but it also gives him the capability of gaming all the alternatives for each of the possible worlds.

It is this approach that makes this research unique. The basic approach from the very start was to develop a model that did not produce a mathematically elegant solution from the basic input data. The model, with built in intervention and decision levels for the user, was designed to proceed in steps. At each step the user explores all possible solutions and decides the possible worlds to be evaluated in the next level. This not only gives the operator the flexibility of gaming other alternatives but forces intervention and evaluation of alternatives based on the previous levels prior to proceding to the next phase.

If one evaluates the past efforts of others in this area, the greater part of this work is polarized as mathematically elegant at one end and scenarios on the other. It was, therefore, decided that this work would be dedicated to the fulfillment of the need for a system that lies somewhere between these two poles, a system that would not generalize in broad overall solutions nor run through complicated algorithms using specialized and expensive data inputs to "the solution".

It is to this approach that this research is dedicated. It is a system that not only employs readily available data for each phase, but one that forces the user to evaluate the results and alternatives produced at each level prior to proceeding to the next phase. Thus it insures that the user understands the results and commitments made previously. It is an approach in which a planner can re-evaluate new alternatives as they are developed and, most of all, it is a system that does not provide a "solution", but the data on which meaningful planning decisions can be evaluated and made.

1.2 State of the Art

A review of literature can best be stated by using a computer information retrieval system known as GIPSY to search the Water Resources Scientific Information Center (WRSIC) file compiled by the Office of Water Resources Research. This file is maintained by WRSIC and contains all the pertinent literature in the field of water research. This research of the files led to a large number of related articles. A review of these abstracts revealed that only a limited number were applicable to large areas on a regional basis. Of these, only a few were directly related to this study. Most dealt with specific regions and were geared to data collection, definable problems, or the development of general and specific recommendations related only to that defined region.

The ones that did offer new concepts, applicable methodology and modeling techniques, or pertinent conclusions are reviewed in this section. The general trend being followed is best summarized by Robert Dorfman (1), who states: "New methods for designing water resources systems are being evaluated as part of a general social tendency toward expressing social problems in the formal modes that have been restricted to scientific and engineering problems." This evolution has been following two general types of models -- simulation and analytical. The simulation is the use of algorithms, usually on computers, to depict sequential time changes of events. This method produces estimations of situations at a projected time under control of specific decisions. The analytical models used explicit mathematical functions of design variables to predict efforts of time.

In the area of planning and resource management models, variations of linear and non-linear programing have been used extensively. Linear programing was used because of the unique min-max capability, and because if all functions can be reduced to a linear foremat, the solutions are usually simple. This is rarely the case, however, since most functions over time are non-linear, especially cost. When one forces linearity, the accuracy of his simulation is reduced. This has given rise to the use of non-linear programing. Since general non-linear solutions get extremely difficult, most work in this area has been with defined, such as concaved, non-linear functions. D. P. Loucks (2) used this method for the solutions of branching multi-stage river-reservoir problems.

John Dracup (3), using an algorithm of parametric linear programing, developed a model of the San Gabriel Valley in Southern California for surface and ground water. The study used five sources to meet three requirements

over the period from 1960 to 1990. This method is described as an effective guide for long-range optimum decision-making for water-resources systems.

S. C. Parikh (4) and R. C. Harboe (5) used dynamic programing in their respective models to solve problems on firm energy production. The Parikh model used two actual reservoirs in Northern California to validate the model and also to check the effect of non-covexity on the constraint set. Harboe used incremental dynamic programing techniques to solve an objective function for multiple purpose water systems expressed in physical terms. Both models optimize the use of interconnected water reservoir systems. In the area of resource allocation models, Reynolds and Conner (6) developed an economic allocation model, which is based on the assumption that the prevailing goal of society is strictly economic. Also, along this line of thinking, Guise and Flinm (7) used non-linear programing to maximize social payoffs for large scale water resource development. This model was then applied to the Nurumbidgee irrigation area of New Wales (8).

Supply and demand models, which are the major thrust of this research, were initiated at the University of Oklahoma by George W. Reid (9). The basic model uses demographic data and economic inputs to provide outputs for statistical areas. This research provides the basic input for the model that will be developed in the following chapters. Delucica and Rogers (10) used the North Atlantic Region (NAR) to develop a model that had a non-linear objective function and linear constraints. This model minimized efficiency costs and was based on a critical period analysis and selected risk levels.

The area of simulation has produced several applicable techniques of water system management. Beard and others (11) used simulation on a simplified version of a proposed Texas water system. The techniques, network analysis

and sequential search, are compared over a 17 year period under variations of inputs and demands.

Dracup and others (12) developed a model to predict available water supply using long term precipitation data to generate the runoff in a regional water basin. Dracup (13) then worked on the conjunctive use of ground water systems by maximizing benefits and minimizing cost. This process used linear and dynamic programing to study the capabilities of the system and then compared their effectiveness.

1.3 General Methodology

The model, which is discussed in detail through all phases by Reid and Alguire (14), was an extension of previous work done by Reid (9). This concept starts with three sectors -- Demographic, Industrial, and Agricultural. Each of these sectors are measured and evaluated within the framework of the existing political system. This evaluation becomes an information system which is projected into the future within the time frame of the study. The past, present and future sectors of the information system are applied to the water and sewer system in order to develop the "plan", as shown in Figure 1-1.

The information system is developed out of each sector. The demographic sector, which relates to population in the urban and rural areas, is measured on a per capita basis. This includes all categories of operation from the domestic, commercial, and public life styles. The industrial sector, on the other hand, is measured in terms of manufacturing uses of water. It is segregated into the Standard Industrial Classification (SIC) codes and is measured on a per employee basis for each two digit code. Agricultural sector is measured on a per acre basis and is that quantity of water used for

Figure 1-1. System Sector Relationship

irrigation of crops. This information system is derived from a procedure of data collection or inventories in each sector, and the water and sewer system. The procedure developed was designed to use data which is relatively easy to acquire and update. Data that has to be specifically developed for a study and for each new update is of questionable value. Data, if at all possible, should be acquired or derived from sources that are not only already available but which are also updated periodically by assignment. This creates a study which is not only comprehensive, but also has a built-in capability to be used continually at a minimum of cost.

After collection, the data is then projected through the time frame of the study, in this case twenty years (see Figure 1-2). This time frame can be any length of time that is divisible into five year increments from the base year. This five year increment was selected because it is the most realistic time frame in which projections can be made with a high degree of accuracy before updating the base data. This then requires the project to be self-continuing on a five year cycle. Therefore, it becomes the first built-in intervention step in the system.

This intervention is one of the primary goals that was established at the very outset of the study. It is the very heart of a practical system in planning. A system that is mathematically simulated through the time frame of the study and requires only the input data to produce "THE PLAN" out of the other end, has failed to be of practical use. Even if the answer produced is relatively accurate, the use of a plan that is not fully understood by its users and which locks them in on one solution cannot be fully justified. It is not realistic to plan that far in advance without approaching it on an incremental basis.

Figure 1-2. Operational Flow Chart

When one uses this incremental approach, he is forced to understand the system. Each step requires a review of how the previous alternatives changed the system and a decision as to which of these alternatives will be applied to the next time increment for evaluation. This then leads to the technique developed by Reid (9, 14) of projecting the data based on the use of goals. Reid set these goals as probable, practical and possible as shown in Figure 1-3 (14).

A possible world is one that a user would strive for. It might even be described as idealistic. These possible goals, although idealistic, must be tempered with judgment. The capability of a primary arterial street system to function, even during peak hours, in an uncongested state or adequate water even for peak summer loads on a continuous basis are the possible goals. It would take heavy dedication of resources that are also needed in other areas, but these goals are attainable.

The probable goals are those that are attainable if the system is allowed to "drift" into the next time increment using the non-systems approach -- an approach that is based on the political and socio-economical demands without strong requirements for realistic planning. This system usually lags behind growth and can be wasteful of resources.

The practical goals are the ones in which we are striving to identify with this process and they lie somewhere between the possible and the probable goals.

The identification and projection of these two latter goals established the boundaries of the envelope in which the practical solutions will lie.

This establishes in the mind of the user the constraints of the system.

As he looks at the alternatives open in that time increment, he can more

Figure 1-3. Planning Process.

realistically reach the practical goal for that time increment. This practical goal, or a selection of practical goals, becomes the data base for the next time increment.

After the information system has been identified and projected into the time frame of the study, the actual computerized system begins. A Cohort-Survival Population Model takes this data and "grows" the region into the future. The output of this program is extensive and gives most of the demographic information required for developing the system. It also has the greatest capability of gaming alternatives for future goals. One can look at the demographical consequences of what possible alternatives might bring. A decision to pursue heavy industry will bring jobs and economical rewards, but also heavy water and sewer requirements. Large amounts of people and socio-economical problems will also arise with this "boom" of prosperity. As one watches these decisions grow into the future, he becomes aware of the ramifications each alternative brings.

This is the beginning of intuitive planning -- a realization that practical goals are those that are not only obtainable, but ones that the total system can afford. Many possible goals can be acquired in a regional system, but if the user is not "growing" his comprehensive plan through the time frame, he may achieve a set of goals that cost the system more resources than it will ever have or be able to acquire -- a position that many of our larger metropolitan regions find themselves in today.

The demographic data is then allocated to an areal scheme for each increment. These schemes are based on the population projections of the alternatives that the user wanted to investigate. Again the user is asked to intervene and select alternatives for investigation. The selection of these schemes

has vast ramifications on the water and sewer system of the region, to say nothing of the other systems, such as transportation and education, inherent to this region. The user may wish to "game" alternatives to verify which are practical and warrant further investigation and those which do not.

These selections are then used as input to the demand model. This program computes the amount of water that each statistical area unit (SAU) needs and their discharges. These demand functions were derived from the information system and depict the demands in any of several areal formats. One can investigate the requirements of political boundaries, and the loadings on particular sources and treatment facilities. For each areal scheme these demands can be projected and evaluated before the selection of the alternative to be processed into the next phase.

The final program is a network model which evaluates the capacities and cost funtions of the system. It will take each of these alternatives and determine the system's capability to be expanded in order to service the alternatives that the user has inputed into the region. This gives the user the answers to evaluate each alternative in the "selection" of a plan; not a plan that a system of models says is the solution.

As the user progresses through this methodology, he should become aware that this system is a practical approach to a most complicated process. There is no single solution, but a step by step process, where one is trying to achieve a practical goal that best benefits his region. It is a process that requires constant evaluation of where the system is and where it is going. Only then can one hope to produce a systematic approach to a problem that changes as fast as our modern society.

CHAPTER II

DATA PREPARATION AND THE POPULATION MODEL

2.1 Introduction

This chapter is a review of the data collection procedures and the population model. This information is covered in detail by Reid and Alguire (14) if a more comprehensive explanation is desired. Many of these procedures were originally formulated by Reid (9) and later modified for this particular study. The study by Reid was originally done for a defined area and therefore required a certain amount of alterations for general use.

The principles of the population model are basically unchanged from the work done by Reid, although several of the subroutines were modified. Most of the modifications were done in the area of input data requirements. Subroutines were added to compute the intermittent cycle data points internally. This was done in order to reduce the large quantities of input data that this model requires. The population model was also altered in the procedures for handling migration. This was modified so that the model could be "gamed" through alternatives with little change in the input data. These changes are covered in detail in the report to OWRR and will not be covered in this study.

2.2 Sewer and Water System

The most demanding of the data collection is that of the water and

sewer system. A complete information file is required for this area of the study. The exact methodology required is again detailed in the OWRR Final Report and only the general requirements will be covered here.

A complete inventory of all resources, available and projected, is the first step. Each source is identified as to quantity, quality, and capability. This includes all projects existing and "in the mill", and gives the user an idea as to the region's capabilities, both immediate and in the near future. The next phase is the evaluation of the network that connects the sources with the treatment and distribution systems. Finally, the actual distribution system is inventoried.

The economic analysis of the water system is the next phase of the inventory and data collection. Each segment of this system, from source to distribution, is evaluated on a cost basis. The operating cost of all phases is determined and the debt structure is analyzed. This information includes the estimated life and expansion capabilities. The cost data is tabulated as fixed and variable. The variable data is computed on a million gallon per day basis. Upon completion, the user should have a complete understanding of the limitations and capabilities of the water system.

Basically, the same process is repeated for the sewer network. One of the main differences is an analysis of the capabilities of the receiving streams to handle the effluent. This can be a major control point and must be carefully evaluated. Again, the importance of the cost analysis cannot be overestimated, for on these cost figures all projection of practical goals rely. They determine the accuracy of the projected plan and its relationship to the real world. A plan that looks good but is

economically unachievable is an exercise in futility.

The next phase that must be accomplished is the determination of the demand function for each sector. This was done from the past records of water use and discharge for each category (see Chapter IV for listing). After this data was accumulated and categorized, it was projected using regression analysis. A linear equation was developed for each category. The industrial sector produced a large number of linear equations with zero slope. This can be expected when production is directly related to the number of employees and the production techniques are fixed. If some industries, especially significant users, do not fit into their category because of some unique manufacturing process, they can be inputed as special users and are handled separately in the demand model.

2.3 General Data

This portion of the data collection is the thing that makes this region unique. It calls for a review of all local, regional, and state statutory regulations and controls; the political boundaries and agencies that make up the region; and a review of their past cooperative projects, which will also prove beneficial for future recommendations. This section more or less establishes the rules and regulations under which this region is operating. It will allow the user to select more realistic alternatives for "gaming" the computer runs and to avoid any that are not practical or legal.

2.4 Population Model

The data requirements for this model are mainly available from the U.S. Census Reports and are augmented and verified by local and state data sources.

All of the input and projections are easily attainable or derived from these sources. The method used by Reid and Alguire (14) is by no means absolute but is discussed and verified in that report.

The model has a multiplicity of capabilities designed into it. The output can be for any arrangement of three disaggregated regions, usually United States, State and Region. The model will handle any size area from a city to a nation, and project the data in five year cycles from the base year to any projected year desired. The rapidity with which our society changes precludes the running of the model much past twenty to thirty years except for general information.

The model output (see Figures 2-1 through 2-5) gives the population by age, sex, and race for each area and five year period. This population projection is then further divided into areas of specific interest. The first area, using the same format as the base population projection, is the migration that has occurred within that area during the last five years. If the data is positive, the migration has come into the area.

The rest of the output gives a good chronographic profile of the area. It contains the income levels and distribution that occur during that time. The distribution that occurs at each income level is further categorized by the number of households and total labor force. This data is then summarized at the bottom of the output sheet (see Figure 2-4).

Finally, the information is displayed as to the population that exists in each category of occupation and industry. This will give the user a good demographic profile of the population at each time cycle. This data is used to project land use (see Chapter III).

When the population model is run for the period of the study, the user can quickly visualize the demographic profile of the region as it grows through time under a selected alternative or set of goals. It is this capability that makes this model unique. It has been used successfully for all types of areas and its full capability as a planning tool has yet to be realized.

18

1990 POPULATION PROJECTION

UNITED STATES - U.S. CENSUS SERIES C SCALE FACTOR =1000.

AGE	WHITE MALE	WHITE FEMALE	NON-W MALE	NON-VI FEMALE	TOTAL WHITE	TOTAL NON-W	TOTAL MALE	TOTAL FEMALE	TCTAL PCP.
.0- 4	10712.	10257.	2627.	2342.	20969.	4969.	13339.	12599.	25937.
5- 9	9992.	9650.	2613.	2225.	19642.	4838.	12605.	11875.	2448C.
10- 14	9023.	8754.	2444.	1999.	17778.	4443.	11467.	10753.	2222C.
15- 19	8142.	7919.	2214.	1698.	16061.	3912.	10356.	9617.	19973.
20- 24	7105.	6880.	1727.	1337.	13985.	3064.	8832.	8217.	17049.
25- 29	8419.	8210.	2146.	1555.	16629.	3701.	10565.	9766.	20330.
30- 34	8721.	8598.	2277.	1595.	17319.	3872.	10998.	10192.	21191.
35- 39	7969.	8020.	1947.	1389.	15989.	3336.	9916.	9409.	19325.
40- 44	6670.	7246.	1294.	1121.	13915.	2415.	7964.	8367.	16331.
45- 49	5607.	5843.	910.	875.	11451-	1785.	6517.	6718.	13235.
50- 54	4663.	4887.	705.	749.	9550.	1454.	5368.	5635.	11004.
55- 59	4380.	4698.	598.	686.	9078.	1285.	4979.	5384.	10363.
60- 64	4476.	5013.	543.	642.	9490.	1186.	5020.	5656.	10676.
65- 69	4137.	4964.	452.	536.	9102.	988.	4589.	5501.	10090.
70- 74	3313.	4299.	325.	411.	7612.	736.	3638.	4710.	8340.
75- 79	2430.	3499.	223.	307.	5929.	530.	2653.	3806.	6459.
80- 84	1557.	2569.	140.	214.	4126.	353.	1697.	2782.	4480.
85 +	1279.	2444.	135.	240.	3723.	375.	.1413.	2685.	4098.
TOTAL	108595.	113752.	23320.	19921.	222347.	43241.	131915.	133674.	2655&ĉ.
•									
PERCENT	40.9	42.8	8.8	7.5	83.7	16.3	49.7	50.3	1 CG. C
MEDIAN AGE	30.5	33.0	25.1	26.2	31.8	25.5	29.4	32.0	30.7
SEX RATIO					955.	1171			987.
OLD HALL	_			_	777.	1171.			707.

Figure 2-1.

UNITED STATES - U.S. CENSUS SERIES C

			NET MIGR	RATION(X1000.)	
		STIHW	NON-M	WHITE	<i>NON-W</i>	
AGE	GROUP	FEMALE	FEMALE	MALE	MALE	TOTAL
. 0	<u> </u>	135.	14.	186.	15.	350.
5	- 9	115.	13.	155.	18.	301.
10	- 14	77.	8.	116.	13.	214.
15	- 19	119.	9.	154.	11.	294.
20	- 24	191.	27.	181.	13.	412.
25	- 29	174.	27.	260.	21.	483.
. 30	- 34	118.	28.	221.	22.	390.
35	- 39	94.	18.	145.	15.	272.
40	- 44	46.	7.	48.	7.	109.
45	- 49	28.	4.	30.	4.	66.
50	- 54	24.	· 3.	13.	3.	43.
55	- 59	24.	3.	· 19.	3.	49.
60	- 64	17.	2.	14.	3.	37.
65	- 69	15.	1.	. 4.	3.	23.
· 70	- 74	8.	2.	3.	2.	14.
75	- 79	2.	0.	2.	0.	3.
80	- 84	2.	0.	0.	0.	2.
85	+	0.	0.	0.	0.	0.
10.	TAL	1189.	168.	1552.	152.	3061.

Figure 2-2.

FEMALE

MALE

Figure 2-3.

UNITED STATES - U.S. CENSUS SERIES C HOUSEHOLD AND INCOME CHARACTERISTICS

1990

INCOME	NUMBER OF HOUSEHOLDS	NUMBER IN LABOR FORCE
0 - 999	1086	2702
1000 - 1999	946	2354
2000 - 2999	963	2396
3000 - 3999	681	1694
4000 - 4999	800	1991
5000 - 5999	932	2319
6000 - 6999	1074	2673
7000 - 7999	1227	3053
8000 - 8999	1386	3449
9000 - 9999	1553	3865
10000 -10999	1723	4288
11000 -11999	1895	4716
12000 -12999	2067	5144
13000 -13999	2236	5565
14000 -14999	2400	5973
15000 -19999	14031	34921
20000 -24999	10529	26205
25000 -49999	28555	71069
50000 +	7434	18502
TOTAL HOUSEHOLDS MEDIAN INCOME AVERAGE INCOME AVERAGE FAMILY SIZE	22734 POP. IN 21885 AVE. LAB	TA INCOME 6717 GROUP OTRS. 7170 OR FORCE INCOME 3793 RSONAL INCOME 1784067.

UNITED STATES - U.S. CENSUS SERIES C POPULATION BY OCCUPATION 1990

OCCUPATION	POPULATION
PROFESSIONAL MANAGERS CLERICAL SALES FARMERS FARMLABORER SKILLED LBR OPERATORS HSEHOLD WKRS SERVICE WKRS LABORERS UNEMPLOYED NOT EMPLABLE ARMED FORCES	31170. 30049. 34475. 8143. 5911. 3739. 19122. 26475. 719. 20906. 6977. 8554. 62700. 6649.
TOTAL	265588.
% UNEMPLOYED	4.36

TOTAL LABOR FORCE BY INDUSTRY 1990

INDUSTRY	LABOR FORCE
AGRI CUL TURE	0.
MINING	13811.
CONSTRUCTION	21946.
MANUFACTURNG	47310.
TRANSPORTION	10172.
TRADE	14670.
FINANCE	3211.
SERVICES	38124.
GOVERNMENT	46498.
7.17.4	

TUTAL

196246.

CHAPTER III

LAND USE

3.1 Introduction

The development of a truly usable comprehensive land use model has eluded society, even with its modern technology and equipment. A model that could be used by most urban areas and one that would give realistic projections of future land use is obviously a very desirable goal, but this model constantly escapes the practical because of the complexities that exist in each new increment of time and the existence of complicated social, economical, and political ramifications that occur with each new change.

Most professionals in this area can give an extensive report on the problems of developing a land use plan for the future and then achieving that goal. Many planning agencies use the plan only as a "guide" that is subject to change at each commission or committee meeting, subject as it were to an unpredictable array of pressure groups. With each change a myriad of new requests and side-effects results that dominate the plan until it becomes worthless.

There have been many models that have been developed for a particular metropolitan area, but these models soon become so specialized and complex that they become "computer school exercise type games" or an exercise in sophisticated programing techniques. It then takes, even with highly qualified personnel, longer to set up, de-bug, run, and interpret the data than it does for the land use to change.

As noted by Fredrick Bair, "The planner who produces a working comprehensive plan for now and the short-range future has done a highly commendable job. Of course, it will fade off at the edges five or six years ahead -- and it should." (15) It is this type of thinking coupled with the fact that the urban system is already operating on networks that are outdated, inadequate, and/or already capacitated, that proves the fallacy of <u>detailed</u> long range land planning and models.

As discussed in a special study of "Downtown Idea Exchange" (16), the future roles of downtown, and hence the urban area in total, cannot be agreed upon. What part will each portion of the city play 20 years from now? Will the Central Business District (CBD) be the "heart" and be revitalized with tremendous capital investment, or will the urban region "disperse" into self-sustaining new towns, or will the CBD be left to die and change like a living "Donut"? These, and many similar, are very complicated questions, and "which one is right?", if any one really is, becomes a whole new problem.

Add to this already entangled problem the current financial problems, environmental pollution, and the ensuing energy crisis, then one can quickly realize not only the difficulty, but the requirement for long range planning. It is almost like saying that the problem cannot be solved on one hand, while saying that is has to be solved on the other.

"The art of planning" needs to take a more realistic look at the future.

The future plan should be developed to fit the "established goals" and, within the range of known or foreseeable trends, made to achieve this "desirable" world. It should not be allowed to "drift" to what could be construed to be a "probable" world.

The plan is developed knowing that the area will end up as what was described in Chapter 1, as the "practical" world. The planning agency must also realize that the "practical" world is not a fixed point in the future, but an identity that will not be known until it has been past, and the agency has had enough time to look back. To this end the author will identify these needs and the methods used to attain a portion of them.

3.2 Inventory Procedures

The current land use procedures are dependent on the specific metropolitan area under study. Most areas have a metropolitan planning agency
and an individual planning department. These agencies and departments should
have current land use descriptions for their respective areas.

The problem then becomes just a matter of coding this data into the structure of these models. This, of course, depends on how detailed their information is and how current. The information is placed into the SAU's as discussed in Chapter IV. The SAU's in the validation portion of this model were square miles or multiples of square miles for the rural country (1 to 6). This method fitted our coding system and allowed for easy adjustment for project land use changes. This was also the format used by ACOG, who furnished this data.

Assignment of population, institutional (general), and commercial, was accomplished using in this instance, ACOG's information and census data. It is important to check that the population assignment to all SAU's sums to the actual population of the area. The special land use data, such as hospitals, educational institutions and military installations, were acquired from the sources described in Appendix A (14).

A major portion of this effort should be spent allocating the employees

by SIC codes to each SAU. This information is also usually available at the planning agencies. It is obvious that this procedure is straightforward and can be accomplished by following the procedures outlined in Chapter II and Appendix A (14).

3.3 Land Use Projections

The projection of land use is a <u>key</u> input to any study. There are reasonable methods for projecting population, commercialization, industrialization, and life styles, but if it cannot be placed with any degree of accuracy, then the whole process has lost most of its value. One could depict the total needs of the area, but optimizing sources, networks, or facilities would be impossible. Therefore, one must expend his best efforts towards the accomplishment of this goal.

There appear to be several good and reasonable techniques used for the accomplishment of this goal. The methods we found most practical in our research are presented below. It must be remembered that the purpose of this step is to take the desired goals and life styles and project this area into the best "desired" world that can be visualized by the concerned agencies. This can and is being accomplished in many ways. Some agencies have even been accused of "playing God" or to the other extreme of building to enhance "vested interest". The best approach is, as always, to achieve the most good for the most people, while minimizing the inconvenience and maximizing the values.

3.3.1 Professional Planner Method

The projected land use and population distribution used in the validation of this model were acquired by the following method. The professional agency was the Association of Central Oklahoma Governments (ACOG) Planning Department.

The method basically is to provide the incremental population increases for the various life styles and allow the professional staff of the agency to allocate this population and its corresponding new and changed land uses to the study area. There are many advantages to this method, the greatest one being that the staff has "grown" with the area and is familiar with its trends and political nature. They also are well acquainted with the socioeconomic patterns and their ramifications.

This method should give a more realistic view of the future to the study area, since the areas that are more likely to develop are given the higher priorities. The desires of developers and political interest groups are clearer and can be better evaluated by this agency. The planners are also familiar with other networks and systems of the region (transportation, air pollution, housing, etc.) and have a "feel" for the effect that certain modifications of existing and developing land use patterns will have on them. These systems and networks also can, and usually do, provide real and uncontrollable constraints to the growth patterns.

The disadvantages of this method are also quite distinct and can, in many instances, exceed the advantages. The most obvious one is created by the very nature under which these planning agencies are usually organized. Many of the planning agencies, such as ACOG, were organized to fulfill federal requirements under the Office of Management and Budget Circular A-95, using the enabling statutes of the Public Authority Act and the Intergovernmental Cooperation Act. The enabling statutes allow the organization of the COG's (Coalition of Governments), but the Circular requires that federal aid applications for over one hundred federal assistance programs, and most federal development projects, must be submitted through the designated

metropolitan clearinghouses, ACOG in this case. Although it was the intent of this legislation to encourage intergovernmental cooperation for full utilization of local resources, the political results are not always idealistic in nature. Each political identity is forced to join in order to receive federal aid upon which it has become dependent. Each with its own "goals" and "desires", which are not always compatible, is required to form and support yet another political organization that will develop new goals and a "desired world" which is usally, to some degree anyway, in conflict with the individual member's views. The largest conflict is generally between the COG and the largest political jurisdiction of that group, who has the greatest needs and population.

It is this built-in political strife that leads a metropolitan planning agency to define its "desirable world" against those of member political jurisdictions which are incompatible. This is also true, only in reverse, if a large political jurisdiction and its own planning agency are developing a plan of their own.

When the COG's or the planning area and all of its members start pulling together, by gaming the alternatives, and start striving for a common "desired world," then, and only then, will this disadvantage be resolved.

There are other disadvantages, mainly from an analysis standpoint. In other words, without complete analysis, the future land use developed by the planners may not give optimum solutions to all of the other networks and systems of the area under study. This leads to yet other approaches for land use forecasting.

3.3.2 Analytical Methods

The approach used here is one in which an analyst looks at the logical

approach without any knowledge of the area. The methods used vary greatly from one analyst to another but are basically optimization in nature. The analyst may want to minimize transportation costs and/or adverse environmental effects. He may also have as a goal to maximize socio-economic mixing of minority groups with the study area.

The analyst will take an optimization technique to achieve the plan within the constraints of the given goals. The more comprehensive the goals are, the more complicated this approach becomes. When a water and sewer plan is the desired result of his work, the analyst may be working only with the maximium utilization of the resources and existing facilities and minimizing costs to provide the future requirements.

Even when using the best intentions and current knowledge about land use planning, the analyst rarely achieves a plan that is acceptable to the entire area. He has no way of knowing the full ramifications of "his plan". An analyst can fall into the trap of "playing God" for the fulfillment of the optimal goal of dollars and cents. This happened with the transportation systems when freeways were allowed to divide, displace, and otherwise create severe hardships on people for the rapid movement of automobiles.

The socio-economic and long-term effects of this technique were slow in being realized. However, it has become increasingly clear that this technique does not produce a comprehensive plan without "local knowledge" being one of the inputs. The analyst who usually comes into the area for this job only does not have to produce a plan that he is then required to defend daily or to "live with".

It also becomes difficult for the existing local agencies to update or alter this plan. The techniques used are usually highly technical and complicated. The staffs of these local agencies do not always have the qualified

personnel to carry these techniques forward in time.

3.3.3 Analyst - Planner Approach

It has become obvious that of the first two approaches presented, a combination of the two will produce better results than either one individually. Ideally, the planning agency would have as an integral part of its staff an analyst and the tools that he would need to do his job. Then the optimization can be achieved where the "knowledge of the area" can be used as one of the constraints.

This method is basically a "gaming technique". The analyst will establish jointly with the planner the goals and constraints to be used and then develop a plan toward their fulfillment. The planner and analyst will then look at this plan and its resultant effects on the study area, and then to the best of their ability derive a solution by gaming several alternatives for the achievement of a solution that will serve the area and its desired goals.

The advantage of this approach is the emphasis of both the "inside" and "outside" inputs to the plan, which, ideally, should produce a more comprehensive achievement of the "desired world".

3.3.4 "Hard-Core" Mathematical Modeling

Land use forecasting by this technique is being used in many of the metropolitan areas. The models are usually developed by the agencies themselves. This is a major decision when the planning agency starts to develop its own land use model, since the personnel and computer hardware required are significant budget items.

There are many different models in use at the present time. Most, such as the one developed for the San Francisco area, are very sophisticated in scope (17). They not only account for every parcel of land in the study area, but have wide and varied assortments of algorithms for evaluating each piece of land and its future use. The actual runs are both time consuming and expensive. Models of this nature, although they do have a specific purpose, are not good general planning models.

They create tremendous requirements in data accumulations and management, since the data must be kept updated and edited. If a metropolitan area decides on a particular model, then it dictates what data are to be accumulated, which in turn limits the modeling capabilities.

There are other disadvantages to using detailed land use models. One is that these models are so expensive to run and interpret that budget allowances may restrict the number of runs that can be made by the agency. It could then become "stuck" with one or two alternatives and be forced to use one of them without being able to investigate any of the other future worlds it would like to.

Another disadvantage of this technique is that very few of the people that make the decisions can comprehend the inter-workings of these models and are required to wait for interpretations by highly skilled personnel. If they have a specific question about a land use change, they sometimes need to wait days for an answer.

What is really needed is a general mathematical model that has very short turn around (15 minutes or less), limited data requirements, and can easily be interpreted. A model that the user agencies could use to "game" alternatives and quickly evaluate the results would be an asset to them.

A model of this type is currently under investigation at the University of Oklahoma. This model uses the neighborhood as the basic land parcel. It divides the city into existing neighborhoods of different classifications. It then takes these neighborhoods and forecasts them into the future by five year increments. These neighborhoods, with their land uses, have been altered by the algorithms developed for each classification.

The population model has been programmed to file in a matrix the delta increases in population for each increment. These delta increases are partially allocated to the changes in the old neighborhoods. The remainder are divided by their socio-economical characteristics into new neighborhood requirements which have to be developed. The planner then can place these neighborhoods in several alternative arrangements. He can then determine by "gaming techniques" the "desired world".

The data that all these different modeling techniques develop can be used in this particular model. Since this portion of the model is so critical, the assorted techniques and their inherent qualities are explained below.

3.4 Land Use Validation

This area of forecasting cannot be validated except by time. The true purpose of land use forecasting is to take the goals and desired life styles and place them into a land use scheme that will produce this "desired world". It is the establishment of the world we would like to achieve. It must be obtainable under optimum conditions. The "realistic world", the one which will actually be reached by compromise, is the one that will be achieved. By minimizing the difference, we validate the plan.

The validation of a process is in a sense possible, or at least implied, by virtue of a scheme, such as the one we have presented. Several approaches, as in Section 3.3, are used, and by starting with different assumptions, we can arrive at common or "practical obtainable goals".

3.5 Data Level Theory

The land use assignments outlined in Chapter III can be summarized in terms of four levels.

- I Available analysts and data which can be acquired through available literature.
- II The analyst, working with professional literature, attempting to get better or more realistic values.
- III Shifting the data control to that of the planner from that of the analyst.
 - IV Finally, using econometric models to develop data.

In this project, interstitial modeling, or gaming brings these four levels into an interactional operation.

CHAPTER IV

DEMAND MODEL

4.1 Introduction

This chapter deals with the development of the Demand Sub-Model. Taking the current and projected data that were accumulated (Chapters II and III), this model calculates the actual water demands and sewage output for the study region by selected areas and topics.

The model uses selected technical coefficients that were developed (Chapter II) or acquired from other studies (see References 18, 19, 20). These coefficients are then applied to the data files to acquire the water and sewer outputs. The model is one of the final steps toward the development of the water and sewer plan for the region. It gives not only the future requirements of the study area, but also the incremental increases these areas have. This allows the user to see the actual increase that the existing system can handle or the amount at which the system will be over capacitated if it is already at or near capacity. Applying this model, the user can gain an adequate perspective of the water and sewer network.

4.2 Model Description

The demand sub-model portion of this study is the most demanding of all the programs. Although the program is not extremely complicated, the data requirements are rather tedious. The greatest portion of the inventory and analysis chapter (Chapter II) was directed to acquiring the data and projected data for running this particular program.

This program, as in the previous sub-models, has a great deal of flexibility built into the routines. The development of programs that give the user this degree of flexibility is time consuming but extremely rewarding. The fact that a planning agency can easily explore all facets of the possible world without going through great data changes or even reprograming, and still have a comprehensive model is advantageous.

The model will not only give the water and sewage requirements for any particular study year, but, by using the sub-model DELTA, a new data file can be created that will give an incremental change in the requirements from one study period to another. This, coupled with good editing sub-routines, gives the agency the capability of looking at any size or particular area by study years and/or incremental changes.

4.2.1 Model Concept

The demand sub-model is an application of technical coefficients to derive the water and sewage requirements and the accounting of these requirements to the different study areas for output. This is an over simplification, of course, but it is the basic concept behind the model.

The data is supplied to the model for each statistical analysis unit (SAU). These SAU's were selected as one square mile areas. This is made possible by the methods of surveying used in this state, but the model does not require that these areas be one square mile. Any system can be used that will require six numerical digits and account for all the areas in the study region. The SAU's need to be kept in the size that approximates a square mile, but not more than two or three square miles. The SAU's can be as small as needed for the type of detail wanted.

The rural areas can be larger, but if development is a possibility

within the time frame of the study, they should be reduced to the size that they will be after development. The time spent by a planning agency coding the SAU's in their study area will be worthwhile, if it is compatible with all other boundary areas used in this program (i.e. political jurisdiction, watershed, etc.). It is suggested that a map be used that has the other boundaries on it (including census tracts, although they have a bad habit of not being conducive to any other study but their own) and SAU's be made using these boundaries as much as possible. This will allow better analysis of the output results.

The coding of the other areas is accomplished much in the same fashion.

The other areas are as follows:

- 1. Political jurisdistion
- 2. Watershed
- 3. Water treatment plant
- 4. Storage system
- 5. Waste treatment plant
- 6. Receiving stream
- 7. Water source

It is suggested that all areas except watershed and receiving stream be coded numerically in sequence. In other words, start with one and numerically allocate each succeeding number of each area till they are all accounted for. Each new plant or jurisdiction will be assigned the next number in its area. These numbers of the area members are needed to set the "Do Loops" within the model. This will also prevent the program from handling large matrices that have many zeros in their structure.

The coding of the streams and watersheds can best be accomplished by

using the following scheme:

Figure 4-1. The Coding of Streams and Watersheds

This would be watershed 1 and the plant is on receiving stream 13.

The demand sub-model also has the capability of looking at several special areas made up of selected SAU's independently or with the general study. This allows the user to game several alternatives at one time to see which special area is more suited for certain goals or objectives.

The sub-model also has the capability of handling special users of water. These are the users that fit in one of the 29 assignment areas (such as SIC 24), but does not have water usage that fits the linear equation for computing it. These areas can be handled individually and this will relieve the model of complicated functions for water usage or sewage return flow.

These are the basic sub-model concepts and their general application.

The use of this model will greatly reduce the process of computing water

and sewage demands for large metropolitan areas. It also allows the user a large degree of freedom for exploring the alternatives for the future worlds.

4.2.2 Model Methodology

The demand sub-model is run for each time increment wanted by the study. For each run a data file of all the information described in Section 4.5 is needed. These data files are duplicated as far as the area codings are concerned. The base year (1970 for this study) contains the inventory data collected in Chapter II.

The data files for the future years are developed from the projected data. These files have to be built using the same areas that existed in the previous files, but can have new SAU's in addition to the old ones.

The model with all of its subroutines is shown in Tables 4-1 through
4-5. The model can easily be followed by using these diagrams and the program listings in Section 4.5.2. The outputs are by the following categories:

- A. Water requirements by:
 - 1. Political jurisdiction
 - 2. Source of supply
 - 3. Water treatment plant
 - 4. Water storage system
 - 5. Special area
- B. Sewage loads by:
 - 1. Political jurisdiction
 - 2. Watershed
 - 3. Sewage treatment plant
 - 4. Receiving stream
 - 5. Special area

With each category broken down by:

- 1. Domestic
- 2. Institutional (including hospitals, schools and military bases)
- 3. Commercial
- 4. Industrial by SIC code and special user irrigation

The outputs from the above categories can be selected by using Card 6 of the input data.

Table 4-1 MAIN (DEMAND)

TABLE 4-1 MAIN (DEMAND) Cont.

TABLE 4-2. SUBROUTINE WATOUT (KTYP, KKK)

Start LL = 1 LM = 8 Multiply Bout(JL, JK) By 1000.0 c LM-KL yes yes DO KK = LL,LM Print = (JJ, JJ == LL, LM) Set Bout(KK; JK)=0 DO KK>LM JK = 1,28JK > 28 JL = LL,LM +0 LM - KL Divide Bout (JL, JK) By 1000. LL = LL + 8 LM 2LM + 8 JL>FW yes Print Labels and Bout (JL, JK) Return DO JL LL,LM End

TABLE 4-3. SUBROUTINE WRITE (KH, KL)

TABLE 4-4. SUBROUTINE (KTYP, KKK)

TABLE 4-5. SUBROUTINE SWSOUT (KKK)

4.3 Data Requirements

The demand model is written in Fortran IV for the General Electric

Time-Sharing System. The data from this system were stored in files; therefore, the program would have to have minor alteration for other systems.

The data requirements for this system are quite extensive and require good data management to keep it in proper order. The data used in this model was not the correct data from the ACOG area. Specific data about industries by the SIC's code were not available without extensive survey work which was not funded and could not be accomplished in the framework of this study.

Some industrial data were added for verification of the model and its sub-routines.

The source and development of the data for this model are explained in Section 4.3.1 of this chapter.

4.3.1 Input

All of the following cards must be presented in the order shown. This data is shown in the listing of the data file in Section 4.4. The sources and formats of the various cards are described as follows:

Card 1, WATER SLOPE-INTERCEPT CARDS

There are 28 of these cards, one for each category of user, except "domestic", which is built into the program. The categories and factors used are listed at the end of this sub-section. The sequence of input by the categories must be maintained throughout the input. Therefore, it starts with institutional and ends with SIC 10-17, 40-50.

Col. 1 - 6 Slope

Col. 7 - 8 Blank

Col. 9 - 14 Intercept

Right justified in field or include decimal point. This input feeds a linear equation of the form

$$y = a \cdot t + b$$

where "b" is the intercept in gallons per unit of input (acre, employee, hospital bed, etc.), and "a" is the slope in gallons per year. The slope provides a rate of change in water use for future years and "t" is the years into the future from the base year (t=0). Source was the Bartone State Water Model (23).

Card 2, SEWAGE FLOW FACTORS

There are 29 of these cards, one for each category in proper sequence. This is the percent of water used by each category that is returned as sewage. It is expressed as the decimal equivalent (99% = 0.99). Source was same as Card 1.

Col. 1 - 6 Flow (decimal)

Card 3, LABELS

These are the labels for each row of output for each specific study. It is in the same sequence order as the previous cards with a few exceptions. The labels are as follows:

- 1. Domestic
- 2. Institutional (including sequence order 2,5,6,7)
- 3. Commercial
- 4. Irrigated land
- 5. SIC 19
- 26. SIC 39
- 27. Total all SIC's
- 28. Total all users

There are a total of 28 cards with the labels centered in columns 1-16.

Card 4, HEADINGS

There are eleven headings, one card each, centered in columns 1-40. The headings are the titles for each type of output. The headings are as follows:

- 1. Water by SAU
- 2. Water by political jurisdiction
- 3. Water by source of supply
- 4. Water by water treatment plant
- 5. Water by storage system
- 6. Sewage by SAU
- 7. Sewage by political jurisdiction
- 8. Sewage by treatment plant
- 9. Sewage by receiving stream
- 10. Sewage by watershed
- 11. Thousand of gallons per day

Card eleven is the way the model is geared for output.

Card 5, YEAR AND TYPE OF STUDY

- Col. 1 4 Year of study
- Col. 5 Blank
- Col. 6 Type, where type is: "1" for special areas only "2" for general study "3" for both studies
- Col. 7 Blank
- Col. 8 11 Year of earlier study if the data file is a "difference" or incremental file. That is, as shown in Section 4.6 (1990-1970), these columns are left blank if only a one year study is being run.

Card 6, OUTPUT CONTROL CARD

This card controls the output by the labels as given in Card

4. By placing a "1" in the proper output column, the program will

print this output for that label. A "0" in that column deletes

that output. The data is right justified.

SAMPLE LISTING

Sequence No	Category	Water Use	Sewage Factor *
1	Domestic	(32 + .01 pop) + 1/2 gal/yr	.70
. 2	Institutional (general)	1000 gal/acre/day	.70
3	Commercial	1680 gal/acre/day	.70
4	Irrigated land	870 gal/acre/day	.00
5	College	95 gal/student/day + 1 gal/yr	.70
6	Hospital	192 gal/bed/day + 1/2 gal/yr	.70
7	Military	151 gal/cap/day + 1/2 gal/yr	.70
\ 8	SIC 19	204 gal/employee/day	.94
9	SIC 20	1400 g/e/d	.91
10	SIC 21	168 g/e/d	.67
11	SIC 22	644 g/e/d	.91
12	SIC 23	60 g/e/d	.94
13	SIC 24	904 g/e/d	.82
14	SIC 25	79 g/e/d	.94
15	SIC 26	9762 g/e/d	.94
16	SIC 27	260 g/e/d	.94
17	SIC 28	14584 g/e/d	.94
18	SIC 29	25157 g/e/d	.94
19	SIC 30	1130 g/e/d	.95
20	SIC 31	215 g/e/d	.94
21	SIC 32	1434 g/e/d	.88
22	SIC 33	11196 g/e/d	.94
23	SIC 34	249 g/e/d	.93
24	SIC 35	421 g/e/d	.95
25	SIC 36	264 g/e/d	.87
26	SIC 37	551 g/e/d	.95

SAMPLE LISTING (Continued)

Sequence

SIC 38	363 g/e/d	.90
SIC 39	175 g/e/d	.93
SIC 10-17,40-50	60 g/e/d	.94
	SIC 39	SIC 39 175 g/e/d

^{*} These sewage factors will not be constant. The new EPA standards will probably cause a reduction in these factors. A program can be developed to predict these factors over time.

- Col. 1 2 for the water by political jurisdiction output
- Col. 3 4 for the water by source of supply output
- Col. 5 6 for the water by water treatment plant output
- Col. 7 8 for the water by water storage system output
- Col. 9 -10 for the sewage by political jurisdiction output
- Col. 11-12 for the sewage by watershed output
- Col. 13-14 for the sewage by sewage treatment plant output
- Col. 15-16 for the sewage by receiving stream output

Card 7, AREA SIZE CONTROL CARD

This card has the same format as Card 6 and is the maximum number of areas entered for each output as listed in Card 6 (for example, if one had 12 water treatment plants, coded 01 through 12, he would enter 12 in columns 5 and 6). The maximum areas for any output are limited to 77.

Card 8, SPECIAL AREA CONTROL CARD

This card is used only if a "1" or "3" is placed in column 6 of Card 5. When special areas are to be used, the card is filled out.

- Col. 1 3 Number of special areas to be run.
- Col. 4 5 The maximum number of SAU's that is in any of the special areas. This controls the "Do" loops and the highest number of SAU's that is any one special area is used.

Card 9, SAU'S IN SPECIAL AREAS

This card is used only when Card 8 is present. The cards are stacked in the order of the special areas.

Col. 1 - 6 SAU: The SAU's for the first special area are stacked, one SAU to a card, until all SAU's for that special area are entered. Then the deck is padded with blank cards till the total number of cards is equal to the maximum number entered in column 4-5 of Card 8. Then the SAU's for the next special area are added and padded until all special areas are loaded.

Card 10, DATA OR PREDICTION CARDS FOR EACH SAU

This series of cards is the actual data that were derived from Chapter IV of this study. There can be up to three cards for each SAU, depending on the presence of industry within the SAU. If there is no industry, then there will be only one card per SAU.

Card "A". This card will exist for each SAU.

- Col. 1 6 SAU
 - 7 Blank
 - 8 9 Political jurisdiction code
 - 10-12 Watershed code
 - 13-18 Blank
 - 19-20 Water treatment plant code
 - 21-22 Storage system plant code
 - 23-24 Waste treatment plant code
 - 25-26 Receiving stream code
 - 27-28 Water source code
 - 29-34 Blank
 - 35-39 Population in SAU
 - 40-44 Institutional land use in acres (general)
 - 45-49 Commercial land use in acres
 - 50-54 Blank
 - 55-59 Irrigated land in acres
 - 60-64 College in number of students
 - 65-69 Hospital in number of beds
 - 70-74 Military in number of persons
 - 75-76 Blank
 - 77 Code "O" if no industry in SIC's, "l" if using SIC's

Card "B". The number of employees are entered in the column for that SIC that exist in this SAU.

Col. 1 - 5 SIC 19

6 -10 SIC 20

11-15 SIC 21

```
16-20 SIC 22
21-25 SIC 23
26-30 SIC 24
31-35 SIC 25
36-40 SIC 26
41-45 SIC 27
46-50 SIC 28
51-55 SIC 29
56-60 SIC 30
61-65 SIC 31
66-70 SIC 32
71-75 SIC 33
76-80 SIC 34
```

Card "C". This card is for the remaining SIC's and is always present when Card "B" is used.

```
Col. 1 - 5 SIC 35
6 -10 SIC 36
11-15 SIC 37
16-20 SIC 38
21-25 SIC 39
25-30 SIC 10-17 and 40-50
```

All data is right-hand justified.

Card 11, GENERAL STUDY TERMINATION CARD

This card is used after all the SAU's have been entered for the general study.

Col. 6 "0"

Card 12, SPECIAL USER CARDS

These cards are added if there exists special water users that do not fit the generalized equations used in the rest of the model. These users have to be specially assigned and are usually the larger industrial complexes.

```
Col. 1 - 6 SAU
7 Blank
8 - 9 Political jurisdiction code
10-12 Watershed code
13-18 Blank
19-20 Water treatment plant code
```

- 21-22 Storage system plant code
- 23-24 Waste treatment plant code
- 25-26 Receiving stream code
- 27-28 Water source code
- 29 Blank
- 30-31 Type of assignment code (1 through 29)
- 32-36 Water prediction (gallons per day)
- 37-41 Sewage prediction (gallons per day)

Card 13, TERMINATION CARD

This card ends program.

Col. 6 "0"

4.4 Data Arrangement

The proper card order is shown in Figure 4-2, "Demand Data Deck Set-Up", on the following page. This card order is for the "general study" and matches the listing of data in Section 4.5.1

4.5 Model Format

The format for the 1970 portion of the validation run is presented in this section. The data format is illustrated in Section 4.4 of this chapter. The actual run is made using 1970 data and 1990 data. Then by deleting all data from the file for the future data above Card 10 and using program DELTA and a data file for a selected base year, a data file for the incremental change in water and sewage is created. This file can then be run with the demand model and the output is the incremental change between the two time periods. An example of the incremental change output is shown in Section 4.6 for the time period 1970-1990.

This added capability will greatly increase the users gaming options to determine how changes increase the actual demands on systems above their

DATA DECK SET-UP FOR GENERAL SOLUTIONS TO DEMAND MODEL

Figure 4-2. Demand Data Deck Set-Up

present operation. The use of equipment with good editing capabilities is mandatory if good use of alternative runs is to be made. This capability gives the user full gaming, capabilities of looking at all future alternatives for all areas.

4.5.1 Input Data

The data listed on the following pages are for the 1970 run of the demand model and are listed in the sequence as described in Section 4.4.

```
0.9400
             1000.
  0.
  0.
             1680.
                                      0.9400
  0.
              870.
                                      0.9400
                95.
  1.0
                                      0.9500
0.9400
0.8800
0.9400
              192.
  0.5
  0.5
               151.
  0.
              204.
             1400.
  ٥.
                                      0.9300
  0.
               168.
                                      0.9500
  0.
               644.
                                      0.8700
  ٥.
                60.
                                      0.9500
              904.
79.
  0.
                                      0.9000
0.9300
0.9400
  0.
  0.
             9762.
  0.
               260.
                                      DOMESTIC
٠0.
           14584.
                                   INSTITUTIONAL COMMERCIAL
. 0.
           25157.
   0.
             1130.
                                   IRRIGATED LAND
             215.
1434.
  0.
  Ò.
                                        SIC 19
                                       SIC 20
SIC 21
SIC 22
SIC 23
SIC 24
SIC 25
  0.
            11196.
              249.
421.
  0.
  0.
  0.
              264.
   0.
               551.
  Ò.
               363.
                                        SIC 26
SIC 27
  ٥.
               175.
0.
0.7000
0.7000
0.7000
0.0000
0.7000
0.7000
                60.
                                        SIC 26
SIC 29
SIC 30
SIC 31
                                        SIC
                                              32
                                        SIC 33
SIC 34
SIC 35
0.7000
0.9400
0.9100
0.6700
                                        SIC 36
SIC 37
SIC 38
0.9100
                                        SIC 39
0.8200
0.9400
                                      SIC OTHER
                                   TOTAL ALL SIC'S
TOTAL ALL USER
```

```
62
```

```
WATER BY SAU
   WATER BY POLITICAL JURISDICTOION
      WATER BY SOURCE OF SUPPLY
    WATER BY WATER TREATMENT PLANT
    WATER BY WATER STORAGE SYSTEM
            SENAGE BY SAU
   SEHAGE BY POLITICAL JURISDICTION
   SELAGE BY SELAGE TREATMENT PLANT
     SEMAGE BY RECEIVING STREAM
       SEWAGE BY WATERSHED
   THOUSANDS OF GALLUNS PER DAY
1970 2
11111111
3630 à 536304013
C6225C 2 1
                  11111
 22. 22. 22. 22. 22. 22.
                               22. 22.
                                         22.
                                              22.
                                                  22. 222.
                                                            22.
                                                                 22.
 22. 22. 22.
                22. 22. 662.
                11111
072350 1 1
                                                       0. 494.
                                              1.
072320 1 1
                  11111
                                    1.
                                         0.
                                              1.
                                                       0.
                                                            0.
                                                                31.
                                                                      C. 1
                              15. 15.
 15. 15. 15.
                15. 15. 15.
                                        15.
                                             15.
                                                 15.
                                                       15.
                                                           15.
                                                                15.
                                                                      15. 15.
 15. 15. 15.
                15. 15. 315.
                  6 1 9 220
112210 20 20
                                   20.
112220 20 20
                  6 1 9 220
                                             1.
                                   20_
                                         0.
                                                       0.
                                                            C.
                                                                 C.
                                                                      ٥.
112230 20 20
                  6 1 9 220
                                   20.
                                            10.
                                                            0_
                                                                 C.
112246 26 20
                  6 1 9 220
                                   10.
                                         0.
                                             1.
                                                            0.
                                                                 0.
                                                                      C.
                  6 1 9 220
112250 20 20
                                   10.
                                         0.
                                                            0.
                                             1.
                                                                 0_
112260 20 20
                  6 1 9 220
                                   10.
                                         0.
                                            10.
                                                            0.
                                                                 0_
                                                                      C.
112110 20 20
                                         C.
                  6 1 9 220
                                   1.
                                             7.
                                                                          0
                                                            0.
                                                                 0.
                                                                      C.
112120 20 20
                  6 1 9 220
                                 5049.
                                         0.
                                             20.
                                                       0.
                                                             0.
                                                                 C.
 15. 15. 15.
                15. 61. 32.
                               15. 15.
                                        15.
                                            15.
                                                  15.
                                                       15.
                                                            15.
                                                                 15.
                                                                      15. 15.
 15. 15. 15. 15. 15. 37d.
                  6 1 9 220
112130 20 20
                                 1000.
                                         0. 25.
                                                       0.
                                                                      G. G
                                                                 0.
112140 20 20
                  6 1 9 220
                                   30.
                                                       ٥.
                                         0.
                                                             0.
                                                                 C.
                                                                      0. 1
                                            1.
 21. 21. 21. 21. 186.
                               21. 21.
                                         21. 21.
                                                  21.
                                                            21.
                                                                 21.
                                                                      21. 21.
 21. 21. 21. 21. 21. 579.
                  6 1 9 220
                                                                 G.
112150 20 20
                                1000.
                                         0:
                                              ö.
                 8. 34. 71.
  8.
       ΰ.
            8.
                                8. 8.
                                         8. %.
                                                   8.
                                                             8.
  8.
       â.
            8.
                 8.
                    8. 257.
```

```
112160 20 20
                      6 1 9 220
                                                                                   C.
                                         50.
                                                                       0.
                                                                             0.
                                                      .3.
                      6 1 9 220
112010 26 20
                                         16.
                                                0.
                                                      1.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                                                       C
                      6 1 9 220
112020 20 20
                                         13.
                                                0.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                                                       C
                                                      ١.
                      6 1 9 220
112030 20 20
                                                                                   0.
                                          4.
                                                0.
                                                      1.
                                                                  0_
                                                                       0.
                                                                             0.
                                                                                       C
112040 25 20
                      7 1 1 225
                                          2.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                0.
                                                      1.
                                                                  0.
                                                                                       0
                      7 1 9 220
112050 20 20
                                       1000.
                                                0.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                                       C
112060 25 20
                      7 1 9 225
                                          1.
                                                                       ٥.
                                                                             0.
                                                                                   0.
                                                                                       Û
                                                0.
                                                      1.
                                                                  ٥.
11171G 3C 10
                     1 110 230
                                        240.
                                                0_
                                                      1.
                                                                  0.
                                                                       0.
                                                                             C.
                                                                                   C.
                                                                                       0
111720 30 20
                      1 110 230
                                         32.
                                                0.
                                                                                       1
                                                      1.
                                                                       ٥.
                                                                             0.
                                                                                   0.
                                                                  0.
                                    21. 21.
  21. 21. 21.
                   21. 21. 186.
                                                21.
                                                      21.
                                                            21.
                                                                 21.
                                                                       21.
                                                                             21.
                                                                                   21.
                                                                                        21.
  21.
       21. 21.
                   21. 21. 579.
111730 30 20
                     1 110 230
                                        645.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                                                       C
111740 30 10
                      1 110 130
                                         54.
                                                0.
                                                      1.
                                                                  0.
                                                                             0.
                                                                                   C.
                                                                                       G
                                                                       0.
111750 30 10
                     1 110 130
                                         10.
                                                0_
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                                       C
                                                      1.
                                                                  0.
111760 30 10
                     1 110 130
                                         13.
                                                                       0.
                                                                                   0.
                                                                                       G
                                                0.
                                                      1.
                                                                  0.
                                                                             0.
122410 25 30
                      4 131 725
                                        170.
                                                0.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                                       C
122420 25 30
                                                      2.
                     4 131 725
                                        113.
                                                0.
                                                                             0.
                                                                                   0.
                                                                  0.
                                                                       0.
                                                                                       C
                                          5.
122430 25 30
                      4 131 725
                                                C.
                                                      1.
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                  0.
122440 25 30
                     4 131 725
                                          5.
                                                                                   Ū.
                                                Ū.
                                                      3.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                       Û
122450 25 30
                     4 111 725
                                         14.
                                                0.
                                                      3.
                                                                             C.
                                                                                   0.
                                                                                       e
                                                                  0.
                                                                       0.
122460 25 30
                                         24.
                                                      1.
                     4 131 725
                                                ٥.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                                                       C
                                                                  0.
122010 25 20
                     4 111 225
                                         15.
                                                0.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   C.
                                                                                       1
                                                 0.
                                                                        0.
   0.
       0.
                          0. 233.
                                           0.
                    0.
                                                             0.
                                                                   0.
                                                                              0.
   0.
         0.
               0.
                    0.
                          0. 233.
122020 25 20
                                                     1.
                     4 111 225
                                                                       0.
                                                                             С.
                                                                                   C.
                                                                                    ō.
   0.
        0. 41.
                                                 0.
                    0. 190. 156.
                                      0.
                                           0.
                                                                              0.
   0.
        0.
                    0. 0. 387
4 111 225
               0.
                          0. 387.
122030 25 20
                                         22.
                                                0.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                                       0
122040 25 20
                     4 111 225
                                                ٥.
                                         36.
                                                      1.
                                                                             0.
                                                                                   G.
                                                                  0.
                                                                       0.
                   10. 10. 110.
  10. 10. 10.
                                    10.
                                         10.
                                                10.
                                                      10.
                                                            10.
                                                                 10.
                                                                       10.
                                                                             10.
                                                                                   10.
  10. 10. 10.
                   10. 10. 300.
122050 25 20
                                        189.
                     4 111 225
                                                0.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   C.
122060 25 20
                     4 111 225
                                          4.
                                                0.
                                                      1.
                                                                       0.
                                                                             C.
                                                                                   0.
                                                                                       C
                                                                  0.
121710 30 20
                     1 110 230
                                        636.
                                                0.
                                                      1.
                                                                  ٥.
                                                                       0.
                                                                             0.
                                                                                   ٥.
                                                                                       C
121720 30 20
                     1 110 230
                                         92.
                                                0.
                                                      1.
                                                                  0.
                                                                       0.
                                                                             0.
                                                                                   0.
                                                                                       C
121730 30 20
                     1 110 230
                                        328.
                                                0.
                                                                       0.
                                                                             С.
                                                      1.
                                                                  0.
                                                                                   G.
                                                                                       1
  21. 21. 21.
                                    21. 21.
                                                21.
                                                      21.
                                                                       21.
                                                                             21.
                                                                                        21.
                   21. 21. 180.
                                                                 21.
                                                                                   21.
                                                            21.
       21. 21. 21. 21. 579.
```

continued

4.5.2 Main Demand Model

The following is a listing of the main program and the subroutines used in the Demand Model. Also shown is the program used to obtain the delta-change file. These programs are described in Section 4.2 of this chapter.

```
100
          OPTION LOAD
105
          INTEGER CREST
          DIMENSION CREST(77, 30), PRED(29), SEFF(29), GUNIT(29),
110
120
         &SLOPE(29), SEPT(29)
130
          COMMON LABEL(28), LABEL3(28), LABEL1(28),
         & HATER(5,77,29), SEWAGE(4,77,29), SKSS(77,29), BOUT(77,29),
140
150
         8HEAD(11,10), IYEAR, LABEL2(23)
160
          FILENAGE KRD
170
          HIPUT. KRO
160
        ~ DG 1 1 = 2,29
          READ(KRD, 102)SLOPE(N), SEPT(N)
190 1
200
          READ(KRD, 103)(SEFF(N), N=1,29)
210
          READ(KRD, 1031)(LABEL(K), LABEL1(K), LABEL2(K), LAGEL3(K), K=1,28)
220
          READ(KRD, 108)((HEAD(JH, JK), JK=1, 10), JH=1, 11)
230 5
          READ(KRD, 100, END=1000) IYEAR, JPROC, IYEAR1
240
          IT=1YEAR-1969
250
          DO 1111 N=2,29
260 1111 GUNIT(N)=SLOPE(N)*IT+SEPT(N)
270
          READ(KRD, 101) JPOL, JSOS, JWTP, JWSTS, JSPOL, JWS, JSTP, JRS
280
          PEAD(KRD, 101)KPOL, KSOS, KWTP, KWSTS, KSPOL, KWS, KSTP, KRS
290
          DD 2 K=1.4
          DO 2 L=1,77
300
310
          DC 2 J=1.29
32C
          WATER(K,L,J)=0.0
330
          WATER(K+1,L,J)=0.0
340 2
          SEWAGE(K.L.J)=0.0
350
          DO 3 K=1.77
          DO 3 J=1,29
360
370
          BOUT(K.J)=0.0
380 3
          SKSS(K,J)=0.0
390
          GO TO (50,60,70), JPROC
400 50
          READ(KRD, 104)NCLASS, NREST
          READ(KRD, 105)((CREST(JC, JR), JR=1, NREST), JC=1, NCLASS)
410
420 58
          READ(KRD, 106) ISAU, IPOLJ, IWS, IWTP, IWST, ISTP, IRS, ISCS,
430
         &(PRED(I), I=1,7), INDY
435
          KK=7
```

```
IF(INDY-1)40,30,40
44C
45C 3C
          READ(KRD, 110)(PRED(I), I=8,23)
460
          READ(KRD, 111)(PRED(1), I=24, 29)
465
          KK=29
47C 40
          IF(ISAU)51,52,51
46C 51
          DO 53 K=1, NCLASS
49C
          00 53 L=1,NREST
500
          IF(1SAU-CREST(K,L))54,55,54
51C 55
          ニニベ
520
          GC TO 56
          CCHTINUE
530 54
540 53
          CONTINUE
550
          GO TO 53
560 56
          GUNIT(1)=.5*IT+32.0+.01*PRED(1)
57C
          CO 57 1=1,KK
580
          DEMAND=GUNIT(M)*PRED(M)
590
          HATER(1,N,M)=DEMAND+WATER(1,N,M)
600 57
          SEWAGE(1,N,M)=SEFF(M) DEMAND+SEWAGE(1,N,M)
610
          GO TO 58
620 52
          READ(KRD, 107) ISAU, IPOLJ, IWS, IWTP, IWST, ISTP, IRS, ISOS, KM,
63C
         &WPRED, SPRED
640
          IF(ISAU)59,590,59
650 59
          CONTINUE
660
          WPRED=1000.0#WPRED
670
          SPRED=SPRED*1000.0
680
          DO 500 K=1.NCLASS
690
          DO 500 L=1,NREST
          IF(ISAU-CREST(K,L))504,505,504
700
710 505
          N=K
720
          G0 T0 506
730 504
          CONTINUE
740 500
          CONTINUE
750
          GG TO 52
760 506
          WATER(1,N,KM)=WATER(1,N,KM)+WPRED
770
          SEWAGE(1,N,KH)=SEWAGE(1,N,KM)+SPRED
760
          GO TO 52
790 590
          CALL WATOUT(1, NCLASS)
          PRINT 109, (HEAD(1, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
```

```
DO 591 J=1,NCLASS
320 591
          PRINT 1031, J. (CREST(J.M), N=1, NREST)
           CALL WRITE(1, NCLASS)
ა́ 3℃
34C
           CALL SEMOUT(1, i.CLASS)
シラご
           PRINT 109, (HEAD(6, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
           DC 592 J=1, ECLASS
370 592
           PRINT 1031, J, (CREST(J, N), K=1, KREST)
           CALL WRITE(6, NCLASS)
õõG
        ~ GO TO 5
690
900
          READ(KRD, 106) I SAU, IPOLJ, INS, INTP, INST, ISTP, IRS, ISGS,
          &(PRED(I), I=1,7), INDY
910
915
           KK=7
920
           IF(INDY-1)45,35,45
930
           READ(KRD, 110)(PRED(I), I=8,23)
940
           READ(KRD, 111)(PRED(1), I=24, 29)
945
           KK=29
950 45
           IF(ISAU)62,63,62
           GUNIT(1)=.5*IT+32.0+.01*PRED(1)
960 62
97C
           DC 61 II=1,KK
975
           JJ=II
976
           IF(JJ.GT.7) JJ=JJ+4
930
           DEMAND=GUHIT(II) *PRED(II)
990
           WATER(2, IPOLJ, II) = WATER(2, IPOLJ, II) + DEMAND
1000
            WATER(3,1SOS, II)=WATER(3, ISOS, II)+DEMAND
1610
            WATER(4, INTP, II) = WATER(4, INTP, II) + DEMAND
1020
            WATER(5,1WST,11)=WATER(5,1WST,11)+DEMAND
1030
            SEWAGE(2, IPOLJ, II) = SEWAGE(2, IPOLJ, II) + DEMAND * SEFF(II)
1040
            SEWAGE(3.ISTP.II)=SEWAGE(3.ISTP.II)+DEMAND*SEFF(II)
1050
            SEWAGE(4, IRS, II) = SEWAGE(4, IRS, II) + DEMAND * SEFF(II)
1060
            SWSS(INS.II)=SWSS(IWS.II)+DEMAND*SEFF(II)
1070
            GO TC 60
1060
     63
           READ(KRD, 107) I SAU, IPOLJ, IWS, IWTP, IWST, ISTP, IRS, ISOS, KM,
1090
           &NPRED, SPRED
            IF(ISAU)69,690,69
1100
1110 69
            CONTINUE
1120
            WPRED=1000.0*WPRED
1130
            SPRED=1000.0*SPRED
```

```
1140
           WATER(2, IPOLJ, KM)=WATER(2, IPOLJ, KM)+WPRED
115G
           WATER(3, ISOS, KM)=WATER(3, ISOS, KM)+WPRED
1160
           WATER (4.1WTP, KM) = WATER (4.1WTP, KM) + WPRED
1170
           WATER(5, IWST, KM)=WATER(5, IWST, KM)+WPRED
1150
            SEHAGE(2, IPOLJ, KH) = SEHAGE(2, IPOLJ, KH) + SPRED
1190
            SEMAGE(3.1STP.KII)=SEMAGE(3.1STP.KM)+SPRED
1200
            SENAGE(4, IRS, KM)=SENAGE(4, IRS, KM)+SPRED
1210
            SWSS(IWS,KM)=SWSS(IWS,KM)+SPRED
           GD TO 63
1226
1236 696
            IF(JPOL)611,610,611
1240 611
           PRINT 109, (HEAD(2, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR 1
1250
           CALL WATOUT (2.KPOL)
1260
           CALL WRITE(2,KPOL)
1270 610
           IF(JSOS)613,612,613
           PRINT 105, (HEAD(3, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
1280 613
129C
           CALL MATOUT(3,KSOS)
1300
           CALL WRITE(3,KSOS)
1310 612
           IF(JWTP)615,614,615
1320 615
          PRINT 109, (HEAD(4, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
1330
           CALL WATOUT(4.KWTP)
1340
           CALL WRITE(4,KWTP)
1350 614
           IF (JUSTS) 617, 616, 617
1360 617
           PRINT 109, (HEAD(5, JK), JK=1,10), (HEAD(11, JK), JK=1,10), IYEAR, IYEAR1
137C
           CALL WATGUT(5,KWSTS)
1380
           CALL WRITE(5,KWSTS)
1390 616
           IF(JSPGL)619,618,619
1400 619
           PRINT 109, (HEAD(7, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
141C
           CALL SEWGUT(2,KSPOL)
1420
           CALL WRITE (7,KSPOL)
143G 613
           IF(JSTP)621,620,621
1440 621
           PRINT 169, (HEAD(8, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
1450
           CALL SEWOUT(3,KSTP)
1460
           CALL WRITE(8,KSTP)
           IF(JRS)623,622,623
1470 620
1480 623
           PRINT 109, (HEAD(9, JK), JK=1,10), (HEAD(11, JK), JK=1,10), IYEAR, IYEAR1
1490
           CALL SEMOUT(4,KRS)
1500
           CALL WRITE(9,KRS)
```

```
151C 622
           IF(JKS)625,624,625
152C 625
           PRINT 109, (HEAD(10, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1 '
153C
           CALL SWSOUT(KWS)
154C
           CALL WRITE(10.KWS)
155C 624
           CONTINUE
           GO TO 5
156C
1570 70
            READ(KRD, 104)NCLASS, NREST
           READ(KRD, 105)((CREST(JC, JR), JR=1, NREST), JC=1, HCLASS)
1580
1590 78
           READ(KRD, 106) I SAU, IPOLJ, INS, IWTP, IWST, ISTP, IRS, ISOS,
1600
          &(PRED(I), I=1, 7), INDY
1601
           KK=7
1652
           IF(INDY-1)81,82,81
1603 82
           READ(KRD, 110)(PRED(I), I=8, 23)
           READ(KRD, 111)(PRED(1), 1=24,29)
1604
1605
           KK=29
1610
        81 IF(ISAU)71,72,71
1620 71
           DO 73 K=1, NCLASS
1630
           DO 73 L=1, NREST
1640
           IF(ISAU-CREST(K,L))74,75,74
165C 75
           X=i1
1660
           GO TO 76
1670 74
           CONTINUE
168C 73
           CONTINUE
1690
           GO TO 780
1700 76
           GUNIT(1)=.5*IT+32.0+.01*PRED(1)
1710
           00 77 11=1,KK
172G
           DEMAND=GUNIT(II) *PRED(II)
1730
           WATER(1,N,II)=WATER(1,N,II)+DEMAND
174C
           WATER(2, IPOLJ, II)=WATER(2, IPOLJ, II)+DEMAND
1750
           SEWAGE(1,N,II)=SEWAGE(1,N,II)+DEMAND*SEFF(II)
1760
           WATER(3, ISOS, II) = WATER(3, ISOS, II) + DEMAND
1770
           WATER(4, IWTP, II)=WATER(4, IWTP, II)+DEMAND
1730
           WATER(5, IWST, II)=WATER(5, IWST, II)+DEMAND
1790
           SEWAGE(2, IPOLJ, II) = SEWAGE(2, IPOLJ, II) + DEMAND * SEFF(II)
1800
           SENAGE(3,1STP,11)=SENAGE(3,1STP,11)+DEMAND*SEFF(11)
181C
           SEWAGE(4.IRS.II)=SEWAGE(4.IRS.II)+DEMAND*SEFF(II)
1820 77
           SWSS(IWS, II)=SWSS(IWS, II)+DEMAND*SEFF(II)
1830
           GO TC 78
```

```
1040 750
            GUNIT(1)=.5*IT+32.0+.01*PRED(1)
1850
            DO 777 II=1,KK
            DEMALD=GULIT(II) +PRED(II)
luóc
1870
            WATER(2.IPOLJ.II)=WATER(2.IPOLJ.II)+DEMAND
165C
            WATER(3,1SOS,11)=WATER(3,1SOS,11)+DEMAND
1390
            HATER(4,1HTP, II)=MATER(4,1NTP, II)+DEMAND
1900
            WATER(5, IWST, 11) = WATER(5, IWST, 11) + DEMAND
1910
            SERAGE(2, IPCLJ, II) = SERAGE(2, IPOLJ, II) + DERIAND * SEFF(II)
1920
            SEWAGE(3, ISTP, II) = SEWAGE(3, ISTP, II) + DEMAND * SEFF(II)
1930
            SEWAGE(4, IRS, II)=SEWAGE(4, IRS, II)+DEMAKD*SEFF(II)
1940 777 _ SWSS(IWS, II)=SWSS(IWS, II)+DEMAND*SEFF(II).
1950
            GO TC 78
1960 72
            READ(KRC, 107)[SAU, IPOLJ, INS, IWTP, IWST, ISTP, IRS, ISOS, KM,
197C
           &MPRED. SPRED
1980
            IF(ISAU)79.790.79
1990 79
            CONTINUE
20CC
            KPRED=KPRED+1000.0
201G
            SPRED=SPRED+1000.0
2020
            DO 700 K=1.NCLASS
2030
            DO 700 L=1.NREST
2040
            IF(ISAU-CREST(K,L))704,705,704
2050 705
            N=K
2060
            GU TO 706
2070 704
            CONTINUE
202G 700
            CONTINUE
2090
            GO TO 770
2100 706
            WATER(1,11,KI)=WATER(1,N,KI)+WPRED
211C
            SEWAGE(1.N.KM)=SEWAGE(1.N.KM)+SPRED .
2120 770
            WATER(2, IPOLJ, KM)=WATER(2, IPOLJ, KM)+WPRED
213C
            WATER(3, ISOS, KM)=WATER(3, ISOS, KM)+WPRED
214C
            WATER(4,1MTP,KM)=WATER(4,1MTP,KM)+MPRED
2150
            WATER (5, IWST, KM) = WATER (5, IWST, KM) + WPRED
2160
            SEMAGE(2,1POLJ,KH)=SEMAGE(2,1POLJ,KH)+SPRED
2170
            SEWAGE(3, ISTP, KM)=SEWAGE(3, ISTP, KM)+SPRED
2160
            SENAGE(4, IRS, KM) = SEWAGE(4, IRS, KM) + SPRED
2190
            SWSS(IWS,KM)=SWSS(IWS,KM)+SPRED
2200
        - GO TO 72
```

REACY

```
2216 790
           CALL WATGUT(1.NCLASS)
           PRINT 109, (HEAD(1, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
222C
2230
           50 791 J=1,11CLASS
2240 791
           PRINT 1081, J, (CREST(J, M), M=1, NREST)
2250
           CALL WRITE(1, NCLASS)
226C
           CALL SENGUT(1.NCLASS)
227C
         - PRINT 109, (HEAD(6, JK), JK=1, 10), (HEAD(11, JK), JK=1, 10), IYEAR, IYEAR1
2260
           DO 792 J=1.NCLASS
2290 792
           PRINT 1081, J, (CREST(J,N), M=1, NREST)
23GG
           CALL WRITE(6, NCLASS)
2310
           GO TO 690
232C 100
           FORMAT(14,1X,11,15)
2330 1Ci
           FORMAT(812)
2340 102
           FORMAT(F6.0,2X,F6.0)
235C 103
           FORMAT(F6.0)
2360 104
           FORMAT(13,12)
2370 105
           FORMAT(16)
2380 1031
           FORMAT(4A4)
2390 106
           FORHAT
                      (16,1X,12,13,6X,512,6X,3F5.0,5X,4F5.0,2X,11)
24CG 107
           FORMAT(16,1X,12,13,6X,512,1X,12,2F5.0)
           FORMAT(1HO, "CLASS", 2X, 13, 6X, 10(16, 3X)/10(16, 3X)/10(16, 3X))
2410 1031
242G 108
           FORMAT(10A4)
           FORMAT(15(/), 20A4, 5X, 4HYEAR, 2X, 14, "=", 14)
2430 109
2440 110
           FORMAT(16F5.0)
2450 111
           FORMAT(6F5.0)
2460 1000 STOP
~2470
            END
```

```
100
          SUBROUTINE SEWOUT(KTYP,KKK)
          CONTON LABEL (28), LABEL 3(28), LABEL 1(28),
115
         & WATER(5,77,29), SEWAGE(4,77,29), SWSS(77,29), BOUT(77,29),
120
130
         &HEAD(11,10), IYEAR, LABEL2(23)
14C
          DC 901 KOUT=1.KKK
150
          BOUT(KUUT, 27)=0.0
160
          BOUT(KOUT, 28)=0.0
          BOUT (KUUT, 1) = SEWAGE (KTYP, KOUT, 1)
170
180
          BCUT(KOUT, 2)=SENAGE(KTYP, KOUT, 2)+SENAGE(KTYP, KOUT, 5)+
190
         &SEWAGE(KTYP, KOUT, 6)+SEWAGE(KTYP, KOUT, 7)
200
          DO 905 K4=3.26
210
          K5=K4+3
220
      905 BOUT(KOUT,K4)=SEWAGE(KTYP,KOUT,K5)
          DO 904 K1=8,29
230
      904 DOUT(KUUT,27)=BOUT(KOUT,27) + SEWAGE(KTYP,KOUT,K1)
240
250
          DO 903 K1=8,9
260
          K2=K1-3
270
      903 BOUT(KOUT, K2)=SEHAGE(KTYP, KOUT, K1)
280
          DO 902 K3=1.26
      902 BOUT(KOUT, 28) = BOUT(KOUT, 28) + BOUT(KOUT, K3)
285
290
      901 CONTINUE
360
          RETURN
310
          ENO
```

```
100
          SUBROUTINE WATOUT(KTYP.KKK)
          COMMON LACEL(28), LABEL3(28), LABEL1(28),
115
120
         & WATER(5,77,29), SEWAGE(4,77,29), SWSS(77,29), BOUT(77,29),
130
         &HEAG(11,10), IYEAR, LABEL2(28)
140
          DO 901 KOUT=1.KKK
150
          BOUT(KUUT, 27)=0.0
          BCUT(KOUT, 28)=0.0
160
          BOUT (KOUT, 1)=HATER(KTYP, KOUT, 1)
170
180
          BOUT (KOUT, 2) = WATER (KTYP, KOUT, 2) + WATER (KTYP, KOUT, 5) +
190
         SWATER(KTYP, KOUT, 6) + WATER(KTYP, KOUT, 7)
          00 905 K4=3,26
200
210
          K5=K4+3
220
      9C5 BOUT(KOUT,K4)=WATER(KTYP,KOUT,K5)
230
          DO 904 K1=8,29
      904 BOUT(KOUT, 27) = BOUT(KOUT, 27) + WATER(KTYP, KOUT, K1)
240
250
          DO 903 K1=8.9
260
          K2=K1-3
      903 BOUT (KOUT, K2) = WATER (KTYP, KOUT, K1)
270
          DD 902 K3=1.26
230
235
      902 BOUT(KOUT, 28)=BOUT(KOUT, 28)+BOUT(KOUT, K3)
290
      901 CONTINUE
300
          RETURN
310
          END
```

```
EDI LIS
100
           SUBROUTINE SWSOUT(KKK)
          COMMON LABEL(28), LABEL3(28), LABEL1(28),
& WATER(5,77,29), SEWAGE(4,77,29), SWSS(77,29), BOUT(77,29),
115
120
130
          SHEAD(11,10), IYEAR, LABEL2(23)
140
           00 901 KOUT=1,KKK ...
150
           BOUT(KOUT, 27)=0.0
160
           BOUT(KOUT, 28)=0.0
170
           BGUT(KGUT, 1)=SWSS(KOUT, 1)
180
           BOUT(KGUT, 2)=SWSS(KOUT, 2)+SWSS(KOUT, 5)+
190
          &SWSS(KOUT, 6)+SWSS(KOUT, 7)
200
           DO 905 K4=3,26
210
           K5=K4+3
220
      905 BOUT(KOUT, K4)=SWSS(KOUT, K5)
230
           00 904 K1=8.29
240
      904 BOUT(KOUT, 27) = BOUT(KOUT, 27) + SWSS(KOUT, K1)
250
           DO 903 K1=8.9
260
           K2 = K1 - 3
270
      903 BOUT(KOUT, K2)=SWSS(KOUT, K1)
280
           DO 902 K3=1,26
285
      902 BOUT(KOUT, 28) = BOUT(KOUT, 28) + BOUT(KOUT, K3)
290
      901 CONTINUE
300
           RETURN
310
           END
```

```
100
            SUBROUTINE WRITE(KH,KL)
          COMMON LABEL(28), LABEL3(28), LABEL1(28), & MATER(5,77,29), SEWAGE(4,77,29), SWSS(77,29), BOUT(77,29), & MEAD(11,10), IYEAR, LABEL2(28)
120
130
140
           LL=1
150
           LIEB
160 090
           PRINT 100
           IF(LK-KL) 304,804,806
170 391
100 506
           L:EKL
           PRINT 101, (JJ, JJ=LL, LM)
190 804
           DO 302 JK=1,28
200
           DD 997 JL=LL,LM
210
220
           SCUT(JL,JK) = BOUT(JL,JK) / 1000.
     997
230
           PRINT 102, LABEL(JK), LABEL1(JK), LABEL2(JK), LABEL3(JK), (BOUT(JL, JK), JL=LL, LM)
           00 996 JL=LL,LM
240
250
     996 SGUT(JL,JK) = BOUT(JL,JK) * 1000.
2éC
           DO 802 KK=LL,LM
270 862
           BOUT(KK, JK)=0.0
260
           IF(LM-KL) 807,808,808
290 807
           LL=LL+8
300
           LIELI:+8
310 394
           CCHTINUE
32C
            GC TC 890
330 000
           RETURN
           FORMAT(1HO)
340 100
           FORMAT(1H ,26X,8(13,8X))
FORMAT(1H ,4A4,4X,8( F9.1,2X))
350 101
360 102
370
           END
```

```
DIMENSION SLOPE(29), SEPT(29), PRED(29), SEFF(29), LABEL2(28), HEAD(11,10)
120
         8, LABEL (26), LABEL 1 (28), LABEL 3 (28), LX (9), JX (9), TRED (29)
125
130
          FILEHAME KRO.KRK.KTP
140
          IMPUT, KRD
145
          INPUT, KRK
           INPUT, KTP
150
          DO 1 K=2,29
160
170 1
          READ(KAD, 102)SLOPE(K), SEPT(K)
130 102 FORMAT(F6.0,2X,F6.0)
185 1021 FORMAT(F6.0,2X,F6.2) .
190
           DO 2 K=2,29
200
          WRITE(KTP, 1021)SLCPE(K), SEPT(K)
210
          READ(KRD, 103)(SEFF(N), N=1.29)
220
     103 FCRMAT(F6.0)
          WRITE(KTP, 1032)(SEFF(N), N=1, 29)
230
235 1032 FURMAT(F6.2)
240
           READ(KRC, 1031)(LABEL(K), LABEL1(K), LABEL2(K), LABEL3(K), K=1,28)
250 1031 FORMAT(4A4)
260
          WRITE(KTP, 1031)(LABEL(K), LABEL1(K), LABEL2(K), LABEL3(K), K=1,28)
270
          READ(KRD, 108)((HEAD(JH, JK), JK=1, 10), JH=1, 11)
280
     108 FORMAT(10A4)
290
          WRITE(KTP, 108)((HEAD(JH, JK), JK=1, 10), JH=1, 11)
3.00
          READ(KRD, 100) I YEAR, JPROC
305
          IYEAR=IYEAR+20
310
     100 FORMAT(14,1X,11)
320
          WRITE(KTP, 100) I YEAR, JPROC
325
          DO 65 JJ=1.2
330
          READ(KRD, 101) JPOL, JSOS, JWTP, JWSTS, JSPOL, JWS, JSTP, JRS
340 101 FORMAT(812)
350
          WRITE(KTP, 101) JPOL, JSOS, JWTP, JWSTS, JSPOL, JWS, JSTP, JRS
355
      65 CONTINUE
360 60
         READ(KRD, 106)(IJK(I), I=1,8), (PRED(I), I=1,7), INDY
```

```
370 READ(KRK.106)(JKI(I),I=1,8),(TRED(I),I=1,7),IIIIZZ
380 KKK=7
400 35 READ(KRC.110)(PRED(I),I=8,23)
410 READ(KRC.110)(PRED(I),I=24,29)
420 READ(KRC.111)(PRED(I),I=24,29)
420 KKK=29
420 KKK=29
420 KKK=29
440 KKK=29
440 KKK=29
45 IF(IJK(I),EQ.0) GO TO 63
460 DO 50 I=1,KK

460 DO 50 I=1,KK

475 PRED(I)=PKEI
480 WRITE(KRP.106)(IJK(I),I=1,8),(PRED(I),I=1,7),INDY
475 SO PRED(I)=PKEI
480 WRITE(KRP.106)(IJK(I),I=1,8),(PRED(I),I=1,7),INDY
475 SO PRED(I)=PKEI
480 WRITE(KRP.106)(IJK(I),I=1,8),(PRED(I),I=1,7),INDY
475 SO PRED(I)=PKEI
480 WRITE(KRP.100)(PRED(I),I=24,29)
520 SI GO TO 61
521 TO FORMATIG(6,1X,12,13,6X,512,1X,12,2F5.0)
522 TO FORMATIG(6,1X,12,13,6X,512,1X,12,2F5.0)
523 GI TO 60
524 TO FORMATIG(6,1X,12,13,6X,512,1X,12,2F5.0)
525 FORMATIG(6,1X,12,13,6X,512,1X,12,2F5.0)
526 WREAD(KRK,107)(JK(I),I=1,8),KN,WPRED,SPRED
530 GI TO 61 TO 71
550 WREDE:
5
```

4.6 Model Validation

The output of the model is shown in this section for the year 1970.

Also shown is the output from the data file developed by subtracting the 1970 data file from the 1990 data file. This output is the change in water requirements and sewage output over this time period. This output is extremely valuable in examining the delta change in the specific study areas.

It should be noted that this output is <u>not meant</u> to be used for planning in the ACOG area, since some of the data were unavailable and were added from unreliable sources for explanatory and demonstrative purposes.

•	J
. 1	
٧	0

		,							
				·	•			•	
				-			•		
	WATER BY POLITICAL	L JURISDICTO	olen -	THOUSALDS OF	F GALLONS	PER DAY	YEA	n 1970-	2
70	DOMESTIC INSTITUTIONAL CONTERCIAL IRRIGATED LAND SIC 19 SIC 20 SIC 21 SIC 22 SIC 23 SIC 24 SIC 25 SIC 26 SIC 27 SIC 26 SIC 27 SIC 28 SIC 29 SIC 30 SIC 31 SIC 32 SIC 32 SIC 33 SIC 34 SIC 35 SIC 35 SIC 36 SIC 37 SIC 38 SIC 39 SIC OTHER TOTAL ALL SICTS TOTAL ALL USER	1 11.8 200.5 33.3 -0. 3.1 21.0 2.5 9.7 0.9 13.6 1.2 146.4 3.9 218.8 377.4 17.0 3.2 21.5 167.9 3.7 6.3 4.0 3.9	2 109.4 10.4 0.5 44.8 20.6 1.9 28.9 312.4 312.3 466.7 805.0 262.2 45.3 13.5 13.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11	3 3555.8 2262.6 391.2 0.1 42.0 5.0 19.3 1.8 27.1 292.9 437.5 754.7 33.9 43.0 335.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10	1399.3 23.0 11.9 0. 4.1 28.0 3.4 12.9 1.2 18.1 195.2 291.7 503.1 22.6 4.3 28.7 223.9 5.0 8.4 5.3 11.0 3.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	53.9 403.6 53.9 20.1 20.0 3.4 12.9 1.6 195.2 291.7 503.1 22.6 3.4 1.6 195.2 291.7 503.1 22.6 3.4 1.0 1.0 291.7 503.1 20.0 3.4 1.0 20.0 3.4 1.0 20.0 3.4 1.0 20.0 3.4 1.0 20.0 3.4 1.0 20.0 3.4 1.0 20.0 3.6 3.7 20.0 3.6 3.7 20.0 3.6 3.6 3.7 20.0 3.6 3.7 20.0 3.6 3.6 3.7 20.0 3.6 3.7 20.0 3.6 3.7 20.0 3.6 3.7 20.0 3.6 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 20.0 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	6 870.9 0.0.4 12.0 4.1 20.4 12.9 13.1 195.2 291.7 503.1 28.7 223.9 8.4 31.0 3.5 24.3 25.2 291.7 223.9 14.9 28.9 11.0 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9	7 17.0 0. 0. 10.2 70.0 8.4 32.2 3.0 45.2 45.2 45.2 45.2 1257.9 56.5 10.7 71.7 559.3 12.5 21.0 13.2 21.5 21.0 3.4 3.5 4 3.5 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	70.8 70.8 0.00.2 10.4 20.4 20.4 20.4 20.2 400.2

∞			
•	1		и
	4		٠
		•	

WATER BY S	GURCE OF SUPPLY	` 1	THOUSANDS O	F GALLONS PE	ER DAY	YEA	R 1970- ()
	1	2	3	4	5	6	7	ઠ
CG::ESTIC	0.2	G.	0.	7.9	0.	0.	0.	0.
INSTITUTIONAL	210.9	0.	C.	0.	0.	0.	G.	o.
COMMERCIAL	43.7	0.	0.	0.	O.	o.	o.	o.
IRRIGATED LAND	0.	O.	0.	0.	o.	C.	o.	o.
SIC 19	7.5	C.	0.	2.0	0.	0.	0.	ō.
SIC 2C	51.3	0.	0.	14.0	o.	o.	o.	o.
SIC 21	6.2	0.	0.	1.7	o.	o.	0.	ō.
SIC 22	23.8	0.	0.	6.4	0.	o.	0.	Ğ.
SIC 23	2.2	0.	0.	0.6	o.	Ö.	Ö.	ō.
SIC 24	33.4	0.	0.	9.0	o.	o.	Ğ.	o.
SIC 25	2.9	0.	0.	0.8	0.	o.	0.	0.
SIC 26	361.2	0.	0.	97.6	o.	o.	O.	o.
SIC 27	9.6	0.	0.	2.6	ō.	o.	G.	ō.
SIC 28	539.6	0.	0.	145.8	0.	0.	ō.	ō.
SIC 29	930.8	0.	0.	251.6	o.	o.	Ö.	ō.
SIC 30	267.3	0.	0.	11.3	Ō.	Ö.	o.	o.
SIC 31	8.0	υ.	0.	2.2	0.	o.	Ö.	0.
SIC 32	53.1	0.	0.	14.3	Ö.	o.	Ö.	ŏ.
SIC 33	414.3	C.	0.	112.0	o.	Ö.	o.	õ.
SIC 34	9.2	0.	0.	2.5	o.	~ O.	ö.	o.
SIC 35	15.6	0.	0.	4.2	o.	o.	Ö.	õ.
SIC 36	9.8	0_	0.	2.6	o.	o.	o.	ō.
SIC 37	20.4	٥.	0.	5.5	o.	Ö.	o.	o.
SIC 33	13.4	0.	0.	3.6	o.	o.	0.	ő.
SIC 39	6.5	G.	0.	1.7	Ğ.	Ċ.	o.	ő.
SIC OTHER	53.6	o.	o.	12.6	ŏ.	Ğ.	0.	o.
TOTAL ALL SIC'S	2845.3	o.	0.	704.8	ő.	ŏ.	č.	ő.
TOTAL ALL USER	3100.6	0.	ô.	712.7	ŏ.	o.	ő.	o.

•

•

1	ı		۲	
۹	ı	,	ı	P

DDDESTIC 1									•	
Display Disp		MATER ON HATER	705.7							
DÜNESTIC 9767.3 3456.0 1834.8 19736.1 0.9 510.7 6536.2 1851TUTIGNAL 3731.2 1656.1 0. 1313.6 0. 0. 433.8 CONTENCIAL 544.8 53.9 0. 717.4 0. 0. 169.2 1RRIGATED LANG 0. 1252.5 0. 0. 0. 0. 0. 0. 0. 0. SIC 19 36.7 12.0 4.1 16.3 2.0 9.0 2.0 SIC 20 252.0 82.6 28.0 112.1 14.0 61.6 14.0 SIC 21 30.2 9.9 3.4 20.3 1.7 7.4 1.7 SIC 22 115.9 33.0 12.9 51.6 6.4 28.3 6.4 28.3 1.7 7.4 1.7 SIC 22 115.9 33.0 12.9 51.6 6.4 28.3 6.4 28.3 SIC 23 56.0 3.5 1.2 234.8 0.6 7.0 0.6 SIC 24 2400.1 15487.3 16.1 7589.1 9.0 255.8 9.0 SIC 25 14.2 4.7 1.6 6.3 0.8 3.5 0.8 SIC 25 14.2 4.7 1.6 6.3 0.8 3.5 0.8 SIC 26 1757.2 576.0 195.2 781.9 97.6 429.5 97.6 51.0 2.0 SIC 25 46.8 15.3 5.2 20.6 2.6 11.4 2.6 SIC 29 4528.3 1484.3 503.1 2015.1 251.6 1106.9 251.6 SIC 30 429.4 66.7 22.6 90.5 11.3 49.7 11.3 SIC 31 30.7 12.7 4.3 17.2 2.2 9.5 2.2 SIC 32 250.1 84.6 28.7 114.9 14.3 63.1 14.3 SIC 33 SIC 33 2015.3 660.6 223.9 896.8 112.0 492.6 112.0 SIC 35 75.8 24.8 8.4 33.7 4.2 18.5 4.2 SIC 36 47.5 15.6 5.3 21.1 2.6 11.6 2.6 SIC 37 99.2 32.5 11.0 44.1 5.5 24.2 5.5 SIC 30 65.3 21.4 7.5 11.0 44.1 5.5 24.2 5.5 SIC 30 65.3 21.4 7.3 29.1 3.6 16.0 3.6		MAIER OF MAIER	IREAINENT PL	ANI	HOUSANDS	OF GALLONS P	ER DAY	YE	AR 1970-	0
SIC 39 31.5 10.3 3.5 14.0 1.7 7.7 1.7 SIC OTHER 419.1 1098.7 25.2 332.9 12.6 72.8 12.6 TOTAL ALL SIC'S 15387.3 20616.7 1409.6 14131.0 704.8 3338.9 704.3 TOTAL ALL USER 29430.6 27035.1 3244.4 35898.1 705.7 3849.6 7844.6	81	INSTITUTIONAL CONTERCIAL IRRIGATED LAND SIC 19 SIC 20 SIC 21 SIC 22 SIC 23 SIC 24 SIC 25 SIC 25 SIC 26 SIC 27 SIC 25 SIC 29 SIC 30 SIC 31 SIC 32 SIC 34 SIC 35 SIC 37 SIC 36 SIC 39 SIC 39 SIC 39 SIC 37	3751.2 544.8 0. 36.7 252.0 30.2 115.9 560.1 14.2 1757.2 46.8 2625.1 4528.3 429.4 30.7 253.1 2015.3 44.8 75.5 99.2 65.3 31.5 419.1 15387.3	3456.0 1656.1 53.9 1252.5 12.0 82.6 9.9 33.0 5.5 15487.3 7576.0 15.3 860.5 1484.3 66.7 12.7 84.6 660.6 14.7 24.8 15.6 32.5 10.5 10.98.7 20616.7	0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1513.6 717.4 0. 16.3 112.1 20.3 51.6 238.1 758.3 781.9 20.5 1168.2 2015.1 90.5 17.2 114.9 896.8 19.9 33.7 21.1 44.1 29.1 14.0 332.9	0.9 0. 0. 14.0 1.7 6.4 0.6 9.8 97.6 145.8 251.6 11.3 2.5 14.3 112.0 5.6 5.6 7.6	510.7 0. 0. 9.0 61.6 7.4 28.3 7.0 255.8 3.5 429.5 11.4 641.7 1106.9 49.7 63.1 492.6 11.0 18.5 11.6 24.2 16.0 7.7 72.3	433. ¿ 169. 2 2. 0 14. 0 7. 6. 6 97. 6 145. 6 145. 6 112. 5 14. 3 112. 5 112. 6 113. 6	2676.5 2676.7 23.0 476.5 276.5 276.5 276.5 276.5 277.5 277.7 2

.

·

HAIEL BY HATER	STCRAGE SYSTE	K	THOUSALDS OF	GALLONS	PER DAY
F5.45.5.5	1	2	3	4	5
<u> </u>	30445.2	1465.9	2377.5	1657.4	72.5
CCHESTIC INSTITUTIONAL	6332.9	23.0	313.5	o.	0.
いい。これにはんし	1327.9	11.9	169.2	o.	o.
IRRIGATED LAND	~ 1252.5	0.	0.	o.	0.
SIC 19	120.2	2.0	.5.1	12.2	12.4
SIC 2G	824.7	14.0	35.0	84.C	85.4
SIC 21	165.9	1.7	4.2	10.1	
SIC 22	379.4	6.4	16.1		10.2
SIC 23	314.3	0.6	1.5	38.6	39.3
SIC 24	25936.7	9.0	22.6	3.6	3.7
SIC 25	46.5	0.8	2.0	54.2	55.1
SIC 25	5750.3	97.6		4.7	4.8
SIC 27	153.2	2.6	244.0	585.7	595.5
SIC 26	8591.4		6.5	15.6	15.9
SIC 29	14820.0	145.8	364.6	875.0	889.6
SIC 35	391.7	251.6	628.9	1509.4	1534.6
SIC 31	126.7	11.3	28.2	67.8	63.9
SIC 32		2.2	.5.4	12.9	13.1
SIC 33	844.8	14.3	35.8	36.0	87 . 5
SIC 34	6595.6	112.0	279.9.	671.8	6ä3.0
SIC 35	146.7	2.5	6.2	14.9	15.2
SIC 36	243.0	4.2	10.5	25.3	25.7
SIC 37	155.5	2.6	6.6	15.8	16.1
SIC 35	324.6	5.5	13.8	33.1	33.6
	213.6	3.6	9.1	21.ö	22.1
SIC 35	104.7	1.7	4.4	10.5	12.2
SIC OTHER	2708.9	12.6	31.5	75.6	77.4
TOTAL ALL SICTS	69464.4	704. 8	1762.0	4228.8	4301.4
TOTAL ALL USER	117262.9	2205.6	5122.3	5886.2	4373.9

YEAR 1970- 0

•	1	г	
•		٠	
ı	'n	٠,	

•

ľ	e	ľ	7
1	Ē	i	
٠	ŀ		۰

•		•								
>	•						•			
		SENAGE BY SENAGE	TREATMENT PLA	TM	THOUSANDS O	F GALLONS P	ER DAY	YEAR	1970- 0	
•	·		1	2 76.9	3 2489.1	4 989.9	5 172.7	6	7	ε
	I	DOMESTIC NSTITUTIONAL COMERCIAL	34.8 - 147.7 - 30.6	0.	1583.8 273.8	16.1 8.4	0. 0.	0. 0. 0.	0. 0. 0.	0. 0. 0.
	1	RRIGATED LAND SIC 19	0. 11.9	0. 1.9	0. .5.8	0. 3.8	0. 5.8	0. 0.	0. 0.	o. o.
		SIC 20 SIC 21	79.0 7.0	12.7 1.1	38.2 3.4	25.5 2.3	38.2 3.4	0. 0.	0. 0.	0. 0.
		SIC 22 SIC 23	36.3 3.5	5.9 0.6	17.6 1.7 22.2	11.7 1.1	17.6 9.0 379.5	0. 0.	0. 0.	0. 0.
		SIC 24 SIC 25	46.0 4.6	7.4 0.7	2.2	14.8	2.2	0. 0.	0. 0.	0. 0.
	. i	SIC 26 SIC 27 SIC 28	568.9 15.2 850.0	91.8 2.4	275.3 7.3 411.3	183.5 4.9	275.3 7.3	0. 0.	0. 0.	0. 0. 0.
		SIC 29 SIC 30	1466.1 231.3	137.1 236.5 10.7	709.4 32.2	274.2 473.0 21.5	411.3 709.4 32.2	0. 0. 0.	0. 0. 0.	0. 0.
		SIC 31 SIC 32	12.5 78.2	2.0 · 12.6	6.1 37.9	4.0 25.2	6.1 37.9	0. 0.	0. 0.	0. 0.
		SIC 33 SIC 34	652.5 14.4	105.2 2.3	315.7 6.9	210.5 4.6	315.7 6.9	0. 0.	0. 0.	0. G.
	•	SIC 36	24.8 14.2	4.0 2.3	12.0 6.9	8.0 4.6	12.0 6.9	0. 0.	0. 0.	0. 0.
	,	SIC 37 SIC 38	32.5 20.3	5.2 3.3	15.7 .9.8	10.5 6.5	15.7 9.8	0. 0.	0. 0.	0. 0.
	T	SIC 39 SIC OTHER OTAL ALL SIC ⁻ S	10.1 34.7 4313.9 4526.9	1.6 11.8	'4.9 35.5 1978 0	3.3 23.7 1318.7	4.9 70.0	0. 0.	0. 0.	0 0. 0.
	Ť	OTAL ALL USER	4313.9 4526.9	659.3 736.3	1978.0 6324.7	2333.0	2377.2 2549.9	0. 0.	0. 0.	0.

						•			
	SEHAGE BY RECE	EIVING STREAM	1	THOUSALDS O	OF GALLONS F	PER DAY	· YEA	R 1970-	0
·	DOMESTIC INSTITUTIONAL COMMERCIAL IRRIGATED LAND SIC 19 SIC 26 SIC 21 SIC 22 SIC 23 SIC 24 SIC 25 SIC 25 SIC 26 SIC 27 SIC 26 SIC 27 SIC 26 SIC 27 SIC 26 SIC 27 SIC 28 SIC 30 SIC 31 SIC 32 SIC 33 SIC 34 SIC 35 SIC 36 SIC 37 SIC 38 SIC 39 SIC OTHER TOTAL ALL SIC	1 2607.1 1751.5 304.4 0. 23.4 155.4 13.7 71.5 14.2 447.7 9.1 1119.5 2885.0 345.7 24.7 154.0 1284.0 28.3 48.0 63.9 39.9 190.3 8669.0 13392.0	2 17076.2 1898.0 409.6 876.7 77.9 517.2 50.3 237.9 251.3 17704.7 3725.6 99.2 5565.0 9600.9 435.8 82.1 512.3 4272.8 94.0 162.4 93.3 212.5 67.5 2030.7 45957.3 66217.8	3 871.0 108.9 13.5 0.9 19.1 8.8 158.6 1.7 8.9 158.7 16.1 13.6 354.7 16.0 18.9 157.9 157.9 26.8 1147.6 2141.0	4058.5 84.5 0. 0. 20.1 133.8 61.5 11.4 521.9 963.57 1483.0 1483.7 24.3 1105.0 24.1 55.0 34.3 161.9 7411.6 11554.2	5 1374.5 171.2 8.4 0.1 40.8 3.6 15.8 1.8 37.1 293.6 7.8 438.7 756.7 34.4 6.5 40.4 336.8 7.4 12.8 7.3 16.5 10.5 38.2 2123.6 3677.7		7 8.3 215.6 215.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2022.5 0. 0. 3.5 22.9 2.0 10.5 13.1 1349.5 165.2 4.4 246.6 425.7 189.4 4.2 7.2 19.3 22.7 189.4 22.7 189.4 23.9 171.5 24.0 25.7 189.5 27.7 27.7

.

٥	o
=	_
0	n

	SEHAGE BY HA	THOUSANDS OF GALLONS PER DAY				YEAR 1970- 0			
		1	2	3	4	5	6	7	
	DOMESTIC	0.2	0.	0.	0.	0.	0.	0.	
•	institutional	147.7	G.	0.	G.	ō.	Ö.	Ğ.	
	COMMERCIAL	30.6	6.	Ċ.	o.	o.	o.	ċ.	
	IRRIGATED LAND	~ O.	Ö.	Ö.	õ.	o.	_		
	SIC 19	7.1	ŏ.	o.		-	0.	0.	
	SIC 20	47.1			0.	0.	0.	0.	
	· SIC 21		0.	0.	0.	0.	0.	0.	
	SIC 22	4.2	0.	0.	0.	0.	0.	0.	
		21.7	0.	C.	0.	0.	0.	0.	
	SIC 23	2.1	· 0.	0.	0.	0.	0.	0.	
	SIC 24	27.4	0.	0.	0.	0.	0.	0.	
	SIC 25	2.7	0.	0.	0.	o.	o.	ō.	
	SIC 26	339.5	0.	0.	0.	õ.	o.	Ö.	
86	SIC 27	9.0 507.2	0.	o.	o.	ő.	o.	0.	
	SIC 23	507-2	Ö.	o.	ŏ.	ő.	o.	_	
	SIC 29	875.0	o.	o.	o.	_ ·		0.	
	SIC 30	254.4	Ğ.	o.		0.	0.	0.	
•	SIC 31	7.5	ŏ.		0.	0.	ů.	0.	
	SIC 32	46.7		0.	0.	0.	0.	0.	
	SIC 33		G.	0.	0.	o.	0.	0.	
٠	SIC 34	389.4	0.	0.	0.	0.	٥.	0.	
	SIC 35	3.6	0.	0. :	0.	0.	0.	G.	
		14.8	Ç.	' O	0.	0.	0.	0.	
	SIC 36	8.5	0.	0.	0.	0.	0.	G.	
	SIC 37	19.4	٥.	0.	0.	0.	С.	0.	
	SIC 30	12.1	0.	0.	0.	0.	0.	O.	
	SIC 39	6.0	0.	0.	0.	0.	C.	ō.	
	SIC CTHER	55.1	C.	0.	o.	ō.	o.	Ğ.	
	TOTAL ALL SIC'S	2665.5	O.	o.	o.	ő.	Ğ.	č.	
	TOTAL ALL USER	2843.9	o.	ŏ.	o.	0.	o.	0.	

•

CHAPTER V

WATER NETWORK MODEL

5.1 Introduction

The previous chapters of this report have been concerned with the development of needs, and exploring the alternate worlds, and creating the data for the analysis of these worlds. It is the purpose of Chapters V and VI to detail the procedures for the elimination of the unfeasible, the simplification of the decisions and models that are needed to analyze the area, and finally the tying of these needs to the supplies by an optimal network.

It is always a great temptation at this point for a systems analyst to create yet another model of the complete network and facilities which requires a tremendous computer capability that is not available to most areas, mainly because of finances, that would, without intervention, run to the optimum solution. This is not necessary and is detrimental to the process. Actual experience by the author has shown that the network alternatives to examine for the future are rather limited by comparison. The feasible solutions are bounded due to the physical, political, and socio-economic nature of the study area and the previously built systems. Many of the so called "possible" solutions are in reality unfeasible and are not available for evaluation. These must be identified and removed from the area of consideration.

The rest of this chapter is devoted to the process of identifying the "real" networks (actually, most water source systems are simply additive) based on these future demands. All of the concerned agencies must evaluate

the existing network and that which has already been programmed and identify which of these options are available. In other words, is a source, treatment plant, or pipeline that is not at capacity, available for other users? If it is available, for how long and at what cost? This then becomes another primary node for operational gaming intervention in this interstitial process. The group must reduce the network to a feasible condition.

After the network has been reduced to this "workable state", the group then decides what alternatives are to be analyzed. These alternatives are evaluated by a cost model. This process is done for each five year interval until the study period has been evaluated. This once through process becomes the "plan" for the area over that time interval. This process is extremely fiexible for impact analysis. Most of the alternatives have already been evaluated, and very little effort and time has to be expended to update the plan.

5.2 Network Formulation

The network that will be formulated is a regional network. This network will vary greatly with each region but will be structured by political and corporate jurisdictions, sources, pipelines, treatment plants, storage facilities, etc. The region will be composed of several communities and metropolitan areas. Many of these political jurisdictions will have independent networks and some, mainly the metropolitan areas, will probably have an interconnected water system with several sources and treatment plants.

The object will be to formulate these varied networks into one system for the whole region. This does not imply that the whole region should be made into one interconnected network, although this usually is a desirable goal. It does imply that the whole region has to be formulated as one

problem and evaluated as a complete system.

The network consists, therefore, of all sources that are available to the region, although some of these may be some distance from this region. It also includes the necessary raw and fresh water storage facilities, treatment plants and the connecting lines that provide the transportation links for this water. It does not include the local networks, those inside of the corporate limits, that distribute the water to the user. These are evaluated using the procedures outlined in Appendix C, Water, Sewer, and Storm Drainage Micro Area Requirements (14). The formulation is for a system like that shown in Figures 5-1 and 5-2.

The first step is to formulate the current network out of the inventory data. This network is evaluated against the projected demand for the next five year interval. Next, the requirements are compared to the existing and programmed capabilities. This determines the actual network that will be under consideration. This is accomplished by the procedure detailed in the following paragraphs.

The existing facilities were evaluated in the inventory and analysis phase of the study. The forms used are shown in Appendix B (14). These forms were originally developed for the Indian Nations Council of Governments (INCOG). This data, plus the inventory of the sources and major pipelines both existing and those that are programmed within this five year time interval, provide the existing network, see Figure 5-1.

As can be seen from this figure, the sources, treatment plants, and pipelines for the existing and programmed network are identified. Each political jurisdiction that receives its water supply from a particular source is noted, and if it is from separate sources, the political juris-

PJ - Political Jurisdictions

S - Water Source Surface

W - Water Source Sub-surface

SA - Special Area of Political Jurisdiction

TP - Treatment Plant

* - Programmed for Expansion

** - Programmed New Facility

Figure 5 -1. Existing Metropolitan Study Area.

diction is divided into special areas.

The capabilities, cost, and liabilities of each portion of the existing network have been identified. This established the existing network. The demand model is run with this existing network data to validate the model to this metropolitan area. If it is off for any area, the technical coefficients and equations should be revalidated.

At this point in the study procedure, the existing network has been evaluated and identified. It was then used to validate the coefficients in the demand model. This now allows the user agency to evaluate the first five year time interval for the study area.

The demand model is set for the network by coding each SAU to its proper group (political jurisdiction, sources, special area, treatment plant, etc.) that coincides to the existing network. The demand model is run for the next five-year interval for each alternative under consideration. The future land use of the existing area is coded into the same land use procedure as the current land use. The land use to be developed is added to the existing scheme as visualized by the user agency. It is also entered as a special area. This is done to preclude having to revaluate this area if it becomes incompatible with the existing network and needs to be supplied by an addition to the network. This is done for each of the future alternatives that the user agency wishes to explore. The option that the demand model has to evaluate the delta increase in water demand should also be run. This gives the increases and the new requirements as a separate output which makes evaluation of these networks easier.

After the run of the demand model and the inventory, the using agency now has enough data to evaluate the existing and programmed networks for time equal to plus five years.

The first step is to examine each source of water by each of the user codes. Can the existing and programmed sources take care of their respective users? The sources that can are noted and their excesses in capacity are evaluated. The sources that cannot take care of their future requirements are examined next, and the reason for the deficiency is evaluated. Has it reached full capacity because of growth of the old users alone or because of growth and new development? If it is because of new development then this new area is examined as a special area requiring a new source. The old area is then checked to see if it can be handled by the old source. The deficiency or excess is noted and recorded.

The source data is then compiled for the study area. The excess of water by each source is evaluated first. The controlling agency is contacted to determine if the excess is available for use in other areas. If it is being held in reserve and is not available, then it is removed from the excess roles. If it is available, then the cost per million gallons, amount available, and duration of the availability are determined. The above procedure includes those sources which have already been programmed for completion prior to the end of this five-year interval.

The second step is to evaluate the treatment facilities and their capabilities. The procedure is very much the same as that of the sources as far as identifying the excesses and deficiencies. The exceptions to the above procedures are the evaluations of the treatment plants themselves. Each plant that has a deficiency has to be examined individually. Can the plant be expanded to a capability that would take care of the needed water supply? This decision is based on the current condition of that facility. We must carefully examine the expansion of a facility versus the construction of a new one.

The final step is the evaluation of the pumping and pipeline facilities that interconnect the sources, treatment plants and the user networks. Again these facilities are evaluated for their excesses, deficiencies, and availabilities. The procedure is the same as that described above for the sources and treatment plants. The completion of this phase concludes the information needed for the network formulation.

The next phase of the network formulation is to set this data down on a map or a tabulation that can be easily understood (see Figure 5-2). This then gives the planning agency its first real look at the future requirements. Above all else, it has reduced the problem to the actual network that needs to be evaluated. Rather than a maze of plants, pipelines, pumping stations, etc., the user agency now has a mapping of the actual problem with which the agency is faced. This rather simplified version of the problem can be easily visualized and explained to all other concerned agencies.

As shown in Figure 5-2, the study area, this being one of the future alternatives under consideration, has the new political jurisdiction and special area boundaries shown for the inclusion of the projected growth. The special areas, old and new, and political jurisdictions that have deficiencies have been identified and their deficiencies noted. The facilities that do not have adequate capacity are also shown. This then becomes the requirements for the time interval under study.

The process is repeated for each new increment of time until the complete study period has been evaluated. This procedure gives the user agency an incremental analysis of the excesses and deficiencies of the study area for the "desired" alternative. The accumulation of the future data for the formulation of this desired network is now complete. If there is more than

Excesses

- Source 3 1.3 mgd
 TP (SA-1A) 1.5 mgd*
 TP (SA-1B) 0.9 mgd*

Deficiencies

- 1. TP (PJ-4) 0.5 mgd 2. SA-16 0.4 mgd

* Available for PJ-1 only

New Special Area

Figure 5-2. Future Requirements.

one "desired world" that is to be analyzed, then the process is repeated for each alternative in turn.

It was at this point that, for each "desired world", the author found it beneficial to group this data into individual categories. This made it easier to present to the Council of Governments for selection of the network alternatives that will be modeled for the final plan selection. It was determined that for each political jurisdiction, source, treatment plant, and storage facility, an individual data sheet for these categorical increments gave a much clearer picture of the excesses and deficiencies, expecially when accompanied by each individual mapping of category (See page 96). (Norman is used as an example, since it is one political jurisdiction in ACOG and is currently one of the independent networks within the system.)

It can easily be seen from this data sheet that Norman's water supply is adequate until the period 1985-1990. Since Norman is blessed with an adequate groundwater supply of exceptional quality, this requirement can easily be met by the development of approximately six new wells. The treatment plant, on the other hand, will be at full capacity shortly before 1985. The treatment plant at Norman is new and has the built-in capability to be easily expanded to double its present capacity of 6. MGD.

Since the groundwater supply requires no treatment and is added directly to the water network and Thunderbird's capacity is only 8.55 MGD, then the actual needed capacity for treatment is 2.55 MGD. This can be accomplished by increasing the capacity of the plant by only 50%. This procedure gives a good picture of the water requirements and possible solutions for the political jurisdiction of Norman. The process is repeated for all other groupings to be analyzed.

WATER - EXCESSES AND DEFICIENCIES FOR NORMAN									
	Time Intervals								
	1970	1975	1980	1985	1990				
POPULATION	52,117	59,500	68,000	76,500	87,000				
Water Usage-GPCD***	118	120	124	129	137				
Water Usage-MGD	6.1 5	7.14	8.43	9.87	11.92				
Industrial Water Usage-MGD	1.45	7.42	3.81	5.47	7.12				
Total USAGE MGD	7.80	9.56	12.24	25.34	19.04				
SOURCE									
Thunderbird Lake AVG-MGD	8.55	8.5 5	8.55	8.55	8.55				
Ground supply* AVG-MGD	30 wells** 9.00	30 wells 9.00	30 wells 9.00	30 wells 9.00	30 wells 9.00				
Total MGD	17.55	17.55	17.55	17,55	17.55				
Excess/Deficiency MGD	9.7 5	7.99	5.31	2.21	-1.49				
Treatment plant-MGD	6.0	6.0	6.0	6.0	6.0				
Excess/Deficiency-MGD	up to 6.0	up to 5.44	up to 2.76	-6.34	-2.55				

^{*} Ground supply requires no treatment other than chlorization.

** Avg. yield = 0.30 MGD/well

^{***} Maximum Daily Demand

It must be pointed out that many of the water networks in a metropolitan area are independent and are not interconnected. The interconnection of all the networks into a regional system that serves the metropolitan area is a desirable goal and greatly helps the study area in meeting future water needs, as well as providing for emergency flows. This goal is usually difficult to meet due to the political and socio-economical nature of the system.

This fact allows the using agency to develop a future plan for much, if not all, of the networks based on a simple cost analysis of the few alternatives of each network without using any computerized network model. Due to the nature of these network models, as much of the analysis of the future alternatives should be accomplished by this procedure as possible.

This concludes the section on network formulation. After this procedure has been carried out for the study area, the user agency should have a complete understanding of the networks, their requirements, and the alternatives that are feasible. The agency also will have reduced the problem to the simplest version possible and will now be ready to present it to the committee of concerned agencies for final selection of the alternatives that are to be finalized.

5.3 Model Description

Using the term "model" for the next phase of this study is, in a sense, a misnomer. The step is actually made up of a set of alternatives based upon the network under consideration. The "model" may be as simple as applying derived cost functions or the use of a computerized model for the determination of the useful permutations of the network. These permutations are then used with the cost functions to derive the possible networks. A review of literature

has failed to reveal any model that can effectively handle this phase of the problem on a general basis. It does not seem possible that a general "model" can be developed for the user agencies. One that can be easily understood, run, and not require larger computer capabilities than are generally available is desirable.

There are available a wide assortment of linear programs for a network analysis. The one that has had the greatest success with our requirements is the Fulkerson's out-of-kilter algorithm and several of its variations (21, 22). These variations will be covered later in this section along with their capabilities and restrictions.

After the completion of the model intervention by the committee of concerned agencies, which has resolved the networks down to the alternatives that they wish to consider, the process of network analysis is begun. The first step is to identify all of the independent networks and their alternatives. These are simple in nature and require analysis by standard engineering procedures. As used in Section 4.2, Norman, Oklahoma, is such a system.

This network is independent of the metropolitan area and has the capability, within the time frame of this study, of fulfilling its future requirements without the creation of new sources or new treatment plants. Although, when the demand reaches 24.5 MGD, new sources will have to be located somewhere between years 1995 and 2000. Depending upon the quality and type of source, a treatment plant will also be needed.

All networks that fall into this category are analyzed using a procedure that applies the derived cost functions to each of the possible alternatives. The cost functions used in this portion were derived by C. R. Bartone (20). The application of these cost functions on the independent networks constitutes the "model" for this portion of the study.

The "model" consists of the employment of the different types of cost functions that are incurred in the development of water supplies. Basically they can be categorized into four components:

- Water source costs for either surface or groundwater which include costs for reservoirs, stream diversions and well fields.
- Transmission costs which include costs for pumping stations and pipelines used to convey the water from its source to the area of use.
- 3. Treatment costs which include costs for raw water storage, treatment plants and pumping plants.
- 4. Distribution costs, which include costs for pumping stations, storage tanks and water mains.

In this study each of these costs has been analyzed and estimated. In general the costs are broken down into capital expenditures and operation and maintenance costs. Capital expenditures include costs for engineering design, land and right-of-way, water rights, construction, administration and financing. Operation and maintenance costs include labor, materials administration and overheads, chemicals and power. In some cases chemical and/or power costs are shown separately.

Capital costs are presented as equivalent annual costs using an interest rate of 6 per cent and a period of 25 years. Operation and maintenance costs are presented as annual costs. Both costs are presented in 1970 dollars.

Adjustment to a new base year is accomplished by use of the Engineering

News-Record Building Cost Index 5 for the Southwest region (Dallas) (24).

The cost data was obtained from previous studies of generalized costs for water supply systems by the Tulsa Metropolitan Area Planning Commission (25), Black and Veatch (26), and Dawes (27).

It should be recognized that the cost estimating procedures provided here are only valid for making preliminary comparisons and serve only to measure costs to a degree which will assist in evaluating planning alternatives. Cost estimates derived by these procedures should not be used in actual facilities design since they should not take the place of detailed engineering estimates for specific projects. Cost equations are valid for facilities based on use rates from 0.1 to 100 million gallons per day. For use rates in excess of 100 MGD proportionate increases in cost estimates are suggested (26).

The cost estimating procedures applicable to this model are described below. Note that all costs given are unit annual costs and to arrive at the total annual costs it is necessary to multiply by a design capacity variable. Design capacities of future facilities are always intended to be the capacities required based on water requirements at the end of the design period, i.e., the long range forecasts.

5.3.1 Water Source Costs

Unit capital costs for impounding reservoirs, including intake and pumping station, are given by

$$C_R = 74.2 \, X_R^{-.38}$$
 (26)

where, C_R ** annual unit costs of impounding reservoirs in thousands of dollars per billion gallons.

 X_{R} = design capacity of reservoir in billion gallons.

The minimum design capacity of future reservoirs will be that capacity capable of supplying the total average daily water requirements for all users

of the reservoir.

For well development the equivalent annual costs are \$2,780 per MGD capacity (26). This figure includes the development of the entire well field and should be equal to the maximum daily requirement of the user.

Natural supplies, such as lakes and rivers, require only an intake and pumping station. The capital costs for these facilities are given by

$$C_R = 3.95 \text{ X}_S^{-.178}$$
 (26)

where, C_R = equivalent annual unit cost in thousand of dollars per MGD.

 $X_c = design capacity in MGD.$

The design capacity is based on the maximum daily water requirement of the user.

Operation and maintenance costs, exclusive of pumping power, are \$7.75 per million gallons produced (26) regardless of source. To arrive at an annual production multiply the average daily use by 365. Power costs are \$5.24 per million gallons produced per 100 feet of head (26). Head requirements for wells are taken at 400 feet, and for surface supplies 100 feet of head is required. Again, a multiplier of 365 should be used to get annual production.

Finally, associated with each individual source there may be a water rights cost. This cost should be ascertained separately by a review of legal agreements and local practices. The cost will generally be expressed in dollars per million gallons used where the amount of total use is 365 times the average daily use.

5.3.2 Transmission Costs

Equivalent annual cost for capital investment in pipelines is given by

$$C_p = 41.3 X_p^{-.49}$$
 (25)

where, C_p = equivalent annual cost for pipelines in thousands of dollars per mile per MGD.

 X_p = pipeline design capacity in MGD.

Pipeline design capacity is based on the maximum daily water requirement of the user. Note that the use of this cost equation for estimating pipeline costs requires an estimate of pipeline distance in miles. This is generally taken as the straight line distance between source intake point and the water treatment plant or discharge point.

Not included in the above capital costs is the cost of right-of-way for pipelines. An average cost figure for right-of-way is \$3200 per mile (26). Amortizing this and reducing it to an equivalent annual cost yields \$247 per mile per year. This is a fixed cost, and it should not be included in this equation since it is independent of design capacity.

Annual operation and maintenance costs for pipelines can be expressed as

$$A_{p} = 1.32 \, X_{p}^{*-.49} \tag{25}$$

where, A = annual operation and maintenance cost in thousands of dollars per mile per MGD of flow.

 X_p^{\dagger} = pipeline utilization level in MGD.

Note that the annual operating level and not the design capacity determines costs in this instance. These will be different except at the end of the design period.

Pumping station costs are dependent upon the number of pumping stations located along the pipeline. To arrive at this number both the available head and friction losses must be taken into account. Friction losses are assumed to be 4 feet per 1,000 feet of pipe. Available head is the difference in elevation between the intake and discharge points. Positive head, by convention, will mean that the intake is higher than the discharge point. Letting

h_f = elevation difference between intake and discharge
points in feet.

d = distance between intake and discharge points in thousand feet.

Then if h_f -4d ≥ 0 , there is enough head available to overcome friction losses and gravity flow will suffice (i.e. no pumping stations are needed). If h_f -4d ≤ 0 the number of pumping stations required is

$$n = \frac{h_f - 4d}{400}$$

rounded to the next higher whole number.

The unit capital cost for each pumping station is given by

$$C_n = 6.65 \text{ X}_p^{-.314}$$
 (26)

where, C = equivalent annual unit cost of pumping stations in thousands dollars per station per MGD.

 $X_p = design capacity of pipeline.$

Annual operation and maintenance costs for pumping stations are given by

$$A_n = 2.12 \, X_p'^{-.314}$$
 (26)

where, A_n = annual operation and maintenance cost in thousands of dollars per station per MGD of flow.

 $X_p' = pipeline flow level in MGD.$

In addition to the operation and maintenance costs, the cost of pumping power must be included. As already stated pumping power is priced at \$5.37 per million gallons of flow per hundred feet of head. The head requirements will be $\begin{vmatrix} h_f - 4d \end{vmatrix}$ as defined above where $h_f - 4d < 0$. The annual flow is 365 X_D^* .

5.3.3 Treatment Costs

To assure a reliable supply of water, raw water storage at the discharge end of the pipeline may be provided.

The capital cost for raw water storage is

$$C_{rs} = 1.55 X_{rs}^{-.201}$$
 (26)

where, C = equivalent annual unit costs for raw water storage in thousands of dollars per million gallons.

X = Raw water storage design capacity in million gallons.

The design capacity for reliable supply should be ten times the average daily requirement. For pipelines of less than 5 miles length this capacity can be reduced proportionately.

The operation and maintenance costs for raw water storage are

$$A_{rs} = 0.10 X_{rs}^{-.201}$$
 (26)

where, A = annual operation and maintenance cost in thousands of dollars per million gallons.

Treatment plant costs include the costs of the treatment plant and treated water pumping plant. Unit capital costs are given by

$$C_{T} = 25.6 X_{T}^{-.257}$$
 (25)

where, C_T = equivalent annual unit cost of treatment plant in thousands of dollars per MGD.

 $X_{_{\mathbf{T}}}$ = design capacity of treatment plant in MGD.

The design capacity is based on the maximum daily water requirement of the user.

Operation and maintenance costs of the treatment plant, exclusive of chemical and power costs, are given by

$$A_{T} = 7.25 X_{T}^{*}.257$$
 (25)

where, A_T = annual operation and maintenance of treatment plant in thousands of dollars per MGD.

 X_{T}^{\prime} = operating level of plant in MGD.

The operating level of the treatment plant is based on the average daily requirements for the year of operation.

Chemical costs vary widely depending on the quality of the source water. Therefore, these costs should be determined individually for each source. This can most easily be done by preparing a schedule showing costs versus water quality by type of use. These costs should be given in dollars per million gallons treated where the total amount of treated water will be $365 \ X_T^{\prime}$.

5.3.4 Distribution Costs

Treated water storage requires a capital investment of

$$C_{ts} = 14.3 X_{ts}^{-.274}$$
 (26)

where, Cts = equivalent annual unit cost for treated water storage in thousands of dollars per million gallons.

X_{ts} = design capacity of treated water storage facilities
 in million gallons.

The design capacity is estimated as 25 per cent of the maximum daily use.

Operation and maintenance costs for treated water storage are given by

$$A_{ts} = 1.80 X_{ts}^{-.274}$$

where, A = annual operation and maintenance costs in thousands of dollars per million gallons

The distribution system network costs can be estimated at \$800,000 to \$1,000,000 per square mile of development. Distribution pumping power requirements assume a head of 250 feet, thus the power costs are \$14.50 per million gallons of flow, and the total flow is 365 times the average daily flow.

5.3.5 Total Costs

Using the above cost data, the annual total of any water supply systems for any use can be estimated in 1970 dollars. It should be recognized that each system will have its own special requirements, so that no generalized total cost equations will be attempted. For example, one town may develop a surface supply requiring treatment while an industry may develop its own well water sources requiring no treatment. For each identifiable future

water use an individual total annual cost can be developed by the abovedescribed procedures.

The cost data shown here demonstrate the effect of economies of scale on water system development. As the size of the system increases, the level of service is improved, and the unit cost of providing that service is reduced - a fact verified by the negative exponents on design capacity terms in the various unit cost equations. Water systems have long lives and require large capital investments, two factors that make consideration of scale economies imperative.

With the total costs of each alternative in the independent networks now derived, the decision as to the best alternative can now be made by the committee of concerned agencies. This then concludes the "model" of independent networks.

The next step is much more complicated by comparison (see flow charts at the end of this section). This is the examination of the networks that are interconnected form multiple sources and treatment plants. The formulation of a model to accomplish this task was derived from the basic description of the out-of-kilter algorithm by Fulkerson (26). This method was then developed into a program by R. J. Clasen (29). The basic description of this model can be reviewed in these publications if a detailed analysis is required.

This model was then altered so that it can handle both sewer and water networks. The model is the same for both networks and will be used again in Chapter VI for the analysis of sewer networks. This was done to simplify the modeling requirements of this study and has proved to be adequate for planning purposes. It was also done when studies revealed that true cost

functions are not linear. In fact, they are usually functions, if they can truly be derived, that are of a high order. It was then determined that the cost functions be disaggregated and simplified to linear functions that would give good approximations. This would allow a program to be run that was relatively simple and would derive the feasible permutations which could be analyzed in detail.

The model starts with a "super source", which is basically the environment, and feeds the water sources that supply the network. These sources are the first series of nodes. Since each node can be interconnected with one or more arcs, the cost functions can be disaggregated by the user. This is accomplished by determining the fixed cost, the cost incurred by the using agency no matter whether the facility is used or not, and assigning a flow of 1 MGD to this arc.

In other words, the fixed costs of a link in the network are assigned to an arc that connects the two nodes which denote the entrance and exit of that facility. Then a flow of 1 MGD is assigned as the upper and lower limits.

These "1 MGD fake flows" have to be added to the "super source" link for each arc of fixed costs that are assigned to the network. They must also be balanced in the network starting with the "super sink" and working backwards to the "super source".

The variable costs, which are linear in this model, are then assigned to another arc that describes the facility and the proper upper and lower bounds are also designated. By using this technique, the cost functions can be closely approximated for each link.

The network is made up of a system of nodes and arcs that are interconnected by arcs. Each node represents an intake or exhaust of some facilities. Depending on the degree of accuracy needed, computer capabilities
and available cost data, this network can be as detailed as needed. An arcnode grouping can represent a complete treatment plant or each of the steps

through the plant. The usual procedure is to simplify the network as much as possible, depending primarily on cost data, for the initial runs. When flows have been determined, then unfeasible or undesirable permutations of the network can be removed and new networks in detail can be derived and run.

By following this basic procedure, a very good flow and costing analysis can be run on any type of network. This procedure may even be enhanced by using some new techniques like those developed by H. A. Reeder and Dr. P. A. Jensen, who developed a version that uses a convex cost function in the program (30). The capabilities of this technique are only limited by the versatility and imagination of the user. The flow charts are presented in Tables 5-1 through 5-15.

TABLES-1. MAIN Main Start Call SOLVE (KE) Initialize KI=5 KQ(2)=10 KO=6 KQ(5)=500 KQ(3)=9 KQ(4)=1000 INFW=2147423647 LER>0 KQ(0)=0 KQ(7)=0 KAT=0 No Call OUTPUT (KE) Call PRELIM Write "No ARC (KS,L) Data in this Yes KS>40 LER=4 No KAT=0 Call ARCRD (L) Write: Error Yes Type LER≥4 No L=Lookup (KA(1,1)) Yes L=0 Yes [=1,4,6,7 Z or 15 No Call NODERD No Read= Yes KA(1,1) No Call POSTRD

TABLE 5-2. SUBROUTINE PRELIM

TABLE 5-2. SUBROUTINE PRELIM (Cont.)

TABLE 5-3. SUBROUTINE CUTOFF

TABLE 5-4. SUBROUTINE ARCRD START INITIALIZE IL(I+1)= MM=M=N=LL N+1 =0 Н I>M READ KA(I, 1) =1,3 fix(!), I=1,4 M>KQ(5) yes В L=LOOKUP KA(1,1)) Yes MM7M K=16 No LER= MAXO(LER, 1) Yes K=8 DO 1=1,M No Yes K=17 NP(I)=0 LL=2 I>M yes DO I=MM,M RETURN I>MM Yes N=N+1 Print Words Yes Where no N>KR(4) ARCS Begin No

TABLE 5.5. SUBROUTINE NODERD

TABLE 5-6. SUBROUTINE POSTRD

TABLE 5-6. SUBROUTINE POSTRD (Cont.) LI=IL (NL) L2=12(N1+1) LC (L)=1 L2<4 No LL≕L1,L2 DO KQ(7)=0 Yes JA(LL)+N2 No No IX(1)=IX(1)-1IX(1)<1 Yes Yes IX(1)=1 IX(1)=0 KC(LL)=IX(2) No KU(LL)=IX(3) Print= KA(I,1)I=1,3 LW(LL)=1X(4) IX(I), I-1,5 RX(LL)=KK(LL) No LL>L2 IX(5) NI=NODENO Yes (KA(2,1))N2=NODENO (KA(3,1))L=NODENO N1, LE, M Ond N2, LE, M Yes (KA(2,1))F Yes L>M Print Undefined No **ARC** KAT=L LER-MAXO (LER,3)

TABLE 5-6. SUBROUTINE POSTRD (Cont.)

TABLE 5-7. SUBROUTINE SOLVE

TABLE 5-7. SUBROUTINE SOLVE (Cont.) Yes No KE≠1 J∑IL(I+1) I No Yes IX(8)=K IX(9)=I **|**=|+1 K=JA(J) No KU(J)=KU(J)+LW(J K>N KX(J)=KX(J)+LW(J)KC(J)=KC(J)-Yes NP(I)+NP(K) LER=MIND (1,KE) No N<L Yes KE=0 Yes No Return K=1X(8) Н L=JA(K) Call KILTER Print Outflow Message No KLE-0 Yes LER=-2 KLE=1 L=JA(K) |=1 Print Time DO 🔫 Limit Error

TABLE 5-8. SUBROUTINE KILTER

TABLE 5-9. SUBROUTINE BREAKT (Cont.)

TABLE 5-11. SUBROUTINE OUTPUT

TABLE5-11. SUBROUTINE OUTPUT (Cont.)

٠., TABLE 5-12. SUBROUTINE LABEL Start KBR=0 NL(J)=L NUP-NUP+1 IJ(NUP)=J No IJ(1)=0 Yes Yes ⊫KTER NUP=1 No. L=L+1 NU=1 |J(1)=K| Н L2=JL(J+1) L=JL(I) (UN)LI=I J2=1L(I+1) D L=IL(I) Yes L2<L Ε Yes 12< L No (L)ال≖ر , No J-JA(L) Yes F NL(J)+0 Yes NL(J)=0 , No KR=IB(L) No KC(L)>0 Yes KC(KR)≥0 В No No KX(L) > Yes Yes KX(KR)≤ F KU(KR) No , No Yes KX(L)≥0

No

TABLE 5-12. SUBROUTINE LABEL (Cont.) KX(KR)<0 NL(J)=KR NUP=NUP+1 IJ(NUP)=J J=KTER No U=L+1 **ทบ>ุทบค** No NU=NU+1 IC(3)=IC(3) KBR=1 Return

135

START

Yes

No

RETURN

TABLE 5-13. FUNCTION NODENO

START

Yes

NODENO

RETURN

START

LOOKUP=20

P19

No

RETURN

RETURN

TABLES -14. FUNCTION LOOKUP

TABLE 515. LOGICAL FUNCTION EQUAL

5.4 Data Requirements

The basic objective of this model is to determine how the desired level of network service can be most efficiently provided to the metropolitan area at the least cost. In the accomplishment of this objective, there are certain primary considerations that have to be made. First the selection of sources and treatment plants can be modified depending on quality and treatment required. The selection of sources and the required treatment can be modified in part to fit the network.

Secondly, the cost indebtedness of existing facilities is fully considered as is the obsolescence of these same facilities.

Thirdly, if alternatives are to be considered, then the feasible locations for these facilities, within the network, must be known prior to a model run. By establishing the minimum flow, certain constraints on the network can be exercised on the network when considering proposed and existing facilities. The use of a zero minimum flow is used to explore the feasibility of proposed links. Since the solution may indicate a zero flow on a proposed link, which means that it is not economically feasible, the determination of obsolescence or feasibility of each link can be determined. Also, by establishing a set minimum, political jurisdictions can be held to providing a certain level of service within the network. The reverse is also available when one wishes to examine the economics of relaxing one or more political constraints in favor of metropolitan source and treatment plants.

Finally, the maximum flow or capacity can also be used to explore alternatives and constraint resources. The maximum flow of each link can be set at the existing capacity of each link or that capacity after a planned expansion. The maximum flow can also be used to control the desired loading

of a natural resource without exceeding its capabilities.

The data requirements for the running of the model are fed into the model by each arc. The arcs are also grouped for each pair of nodes within the network. This procedure gives the model a high gaming capability when alternatives are being explored.

The first step in the establishment of the data requirements of this model is to set the nodes of the network. The nodes are established for each facility within the network. The facilities, primarily pipelines, can be broken apart to fit SAU, political jurisdictions, or basins if desired for complete analysis. It must be remembered that a detailed network is built using successive runs, and the network should be kept as simple as possible with each step (see Figure 5-3).

A super source and super sink are provided and connected, at no cost to ensure continuity of flow, or in other words, the flow into and out of a node has to be accounted for. An arc is established for each of the inputs and exhausts for each node. The capacity of that node is thereby established by the summation of the minimums by the upper and lower bounds of the input and exhaust arc groups for each node. Care must be exercised in the establishment of the network so that it is representative of the existing network.

The data requirements for the source and sink nodes with their connecting links will have now been satisfied. The next step is the assignment of the upper and lower bounds for the flow in each link. The bounds can be set anywhere from zero to 9999 million gallons per day (MGD). If zero is used, the solution will be equal to or greater than zero. When establishing a fixed cost or when it is desired that a plant be used at least to its debt

Figure 5-3. Example Flow Net.

limit, a minimum flow can be set. If a specific flow is desired, then the upper and lower bounds are both set equal to that flow.

Since there are no limits to the number of links entering or departing a node, although each node must have at least one link entering and one link departing, a full range of possibilities are available for each of the facilities. The fixed cost is set by assigning 1 MGD to both the upper and lower bounds of one of the links. This MGD is then added to all the fixed source links that feed it so that it does not affect the actual flow. This network is referred to as "fake flows". The variable flows can be assigned a cost \$/MGD, and the minimum and upper bounds assigned from 0 to 9999 MGD. The only constraint is that the upper limit must be greater than or equal to the lower bounds. Zero cost arcs can be added to provide continuity and/or a certain disaggregation of arcs.

After the capacities have been assigned, the remaining data requirements are added to each of the links. This is the cost of that link in dollars per million gallons per day (\$/MGD). This cost data should be the actual cost data in all cases possible. If the actual cost data is not available, then it should be estimated using standardized procedures. If the variable cost is a linear function that depends on the size of the facility, as in treatment plants, then an estimate has to be made initially as to the size needed. A family of curves is developed based on the cost per flow (see Figure 5-4). The upper and lower limits are set to the capacity range of the estimated plant size. The slope of that particular curve is entered as the cost for that link. After the run, the link results are examined. If the results show that the plant is being used to full capacity, then the link is desirable and a larger facility curve is used. If it is not being used, then a smaller

Figure 5-4. Linear Cost Functions.

facility curve can be tried.

One approach that has proven effective is to take the largest facility curve and minimum cost and set the lower bounds equal to zero. After the first run, set the link cost equal to the facility curve slope that the results dictate. Then run the model again to verify the results.

Future cost data can be acquired applying the Engineering News-Record Building Cost Index to the actual and derived cost data (24). There are other methods used for deriving and projecting cost data. No attempt will be made to suggest that one method is better than another in this report. The methods best understood and used by the using agency should be applied. The method used here is the one currently being used by the author.

5.5 Data Arrangement

The data are arranged in groups of links or arcs for each pair of nodes.

One card is used for each arc using the following format:

- Col. 1 6 Blank
- Col. 7 -12 Name of source node i. All different combinations of characters including blanks for each name.
- Col. 13-18 Name of sink node j. Same character availability as source node i.
- Col. 19-20 Blank
- Col. 21-30 Unit cost of sending flow from source i to sink j along this link, \$/MGD.
- Col. 31-40 Upper bounds of flow for this link, MGD.
- Col. 41-50 Lower bounds of flow for this link, MGD.
- Col. 51-60 Input flow for this link, usually set to zero. It is used only if a single input to the node has been established.

All fields are right hand justified. A listing of the input used to verify the model for the Oklahoma City Political Jurisdiction is shown on the next page.

BEGII.			
OKC AUA 2			
ARCS	_		
SS 1 AS 2	0	159	159
AS 2 ATUKA3	3031	1	1
AS 2 ATOKA3	45	50	50
AS 2 DRAP 4	2000	1	ļ
AS 2 DRAP 4	22	5 1 ·	5
AS 2 HUGU 3	5205	. •	30
AS 2 HUGU 3	27	30 1	30
AS 2 FTSY10 AS 2 FTSY10	142 2	9	9
AS 2 F13110 AS 2 CAI; 12	407	1	. 1
AS 2 CAI: 12	2	16	16
AS 2 UVH 13	609	ĭ	ĭ
AS 2 UVH 13	4	20	20
AS 2 101 15	447	ī	1
AS 2 18/ 15 AS 2 18/ 15	7	22	22
ATUKABUKAP 4	1512	1	1
ATUKABUKAP 4	3	60	O
ATCKA3ASSK20	O	60	0
ekap 40kap 5	1	2	2 0
LRAP 4AIL 22	1	30	0
LKAP 4AH 22	Ö	ĊŌ	9
AL 22LLAP 5	0	90	0
1.UGO OLTPE 9	1472	1	1
HUGO OLTPE 9	4	30	Ö
FTSY10CAL 12	3 1	1	1
FTSY10CAL 12 FTSY10AS 11	5	9	U O
CAI. 120VI: 13	2	9 1	1
CMI. 12041, 13	4	•	•

CA:. 120VII 13	1	25	0
CAN 12AS 11	G	25	Ü
LVH 13UTP 16	1	ī	1
UVH 130TP 16	i	26	Ö
UVH 13HEF 14	ż	ĩ	ĭ
UVI: 13HEF 14	2 1	25	15
LVI: 13AS 11	Ö	15	. 0
HEF 14HTP 18	1	·. 5	ĭ
	;	1.2	
	0.21	42	Ö
1.11 150TP 16	234	1	1
137 150TP 16	11	22	0
1.11 15ASSK20	0	22	0
DRAP 5DRAP 6	294	2	2
CRAP SDKAP 6	2	60	0
DTPE 9DRAP 6	120	1	1
DTPE 9DRAP 6	2	30	0
AS 11ASSK20	0	69	0
UTP 160TP 17	270	2	· 2
UTP 160TP 17	2	30	ō
HTP 18HTP 19	212	ĩ	· 2 0 1
HTP 18HTP 19	3	42	
LRAP 60KC 7	274	`ã	0 3 0 2
	1	уó	ก์
LRAP 60KC 7 LTP 17UKC 7	239	2	2
UTP 170KC 7	1		Õ
	•	30	
	307	1	•1
HTP 190KC 7	1	30	0
LKC 7ASSK20	Ç	94	94
ASSK20SSK 21	0	159	159
SSK 21SS 1	U	159	159

EKL

SOLVE QUI I REMUY

5.6 Model Format

The listing of the model is shown on the following pages.

EDI LIS NETWORKI 100 OPTION LOAD 110C MAIN ROUTINE OF RS OKF3 OUT OF KILTER METWORK ROUTINE 120 FILENAUE NN 122 FILERAME KA 130 CUANGE RE(500), EP(500), IL(501), JL(501), IJ(500), EL(500), & J[(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LK(1000), 140 & LC(6),KA(12.2),KQ(9),IX(9),H,N,LER,KAT,KUR,KTER,HINE, IFIH,KI,KU,K 150 160 FILERAME KOR. KU 170 IMPUT, KCK 140 INPUT, KU MAXIBUL MODES-RODMAX- OTHERSIGN OF AN NP IJ NE-- +1 FOR IL JE 190C KQ(5) = 50020C 210C "MAXIMUN ARCS-ARCHAX- DIMERSION OF JI KC KU KX JA IB LW 220 KQ(4) = 1000230C INFIGITY 240 1F1H = 2147483647250C ERROR NUMBERS (IN LER) 260C 1 TRIVIAL (TRANSPORTATION PROBLEM) 27CC CARD PURCHING ERRUR WHICH MAY BE RECOVERABLE ERROR NOT RECOVERABLE, BUT CARD READING MAY CONTINUE 23CC 2900 CATASTROPHIC ERRUR- RUN RUST DE SKIPPED -1 (AFTER SOLVE) PROULEM INFEASALLE 300C 31 CC -2 KICKED OFF BY THE LIMITATION 32GC -3 OVERFLOW IN NUDE PAICES 330 KQ(6)=0340 KQ(9)=0 350 KAT=0 360 100 L=1 370 101 CALL PRELIM(KS,L) 380 IF (KS.NE.O) GO TO 1 390 200 CALL ARCRD(L) IF (LER.GE.4) GO TO 88 400 IF (L.EQ.0) GO TO 1 410 420 3 CALL NUDERD 430 1 IF (KAT.EQ. U. UR. N. EQ. 0) GO TO 87 440 CALL POSTRU 450 CALL SULVE(KE) 460 IF (LER.GT.O) GU TO 88 470 199 CALL OUTPUT (KE) 430 GO TU 100 87 LKITE(KD, 59) 490 500 LER=4 510 88 KAT=0 HRITE(KU.58) 520 LER 530 89 L = LOUKUP(KA(1,1)) IF(L.EQ.1.UK.L.EO.4.OR.L.EQ.6.OR.L.EQ.7.OR.L.EQ.15) GO TO 101 540 550 READ (KUR, 51)KA(1,1) 560 GU TU 39 57u 51 FURITAT (AG) 560 58 FURLAT (SHOTYPE, 16, 24H EKKUK, SKIP TO NEXT RUN) 59 FURLIAT (3011 **** IL ALC DATA II. THIS KUN) 590 600

Eiit

EDI LIS PRELIMI 100 SUBROUTINE PRELIMIKS, L) 110C READ PRELIMINARY CONTROL CARDS 126 FILEHAME IN 122 FILEI:ANE KA CONTAIN NI (500), IP (500), IL (501), JL (501), IJ (500), RL (500), 130 & JI(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LL(1000), 140 150 & LC(6),KA(12,2),KQ(9),IX(9),H,N,LER,KAT,KOR,KTER,MINE,IFIH,KI,KO,K 155 FILEHAME KUR, KU 160 LEK=0 170 KS=0 190 KQ3=KQ(3) 200 1.RITE(KO. 96) 210 CALL CUTGFF (LL) 220 IF(LL.!:E.1) GO TO 20 23C 11 KRITE (KO.97) 24CC ENG JUB 180 IF (KQ(6).EQ.0) GO TO 182 25G 260 181 K2=KQ(2) 270 URITE (KO. 98) 260 GO TO 183 290 182 WRITE (KO, 99) 300 183 STOP . 310C READ A CONTRUL CARD 320 21 READ (KOK, 90)(KA(1,1), I=1,12) 33C WRITE (KO, 91)(KA(I, 1), I=1, 12)340 L=LOUKUP(KA(1,1)) 350 20 IF(L.EQ.15) GO TO 180 IF (L.EQ.17) GO TO 21 360 370 IF (L.GT.7) GO TO 110 380 GO TG (21,50,110,6,110,6,60),L 390C TITLE 4 GG 110 00 112 1=1,12 410 KA(1,2)=KA(1,1) 112 GO TO 21 420 43CC SAVE 440 50 KS=1 450 RETUKN 460C ARCS 470 60 KAT=1 480 RETURN 490C SKIP 500 6 IF (KQ(9).NE.0) GO TO 7 510 2 KQ(9)=1530 7 IF (L.HE.4) GU TU 13 550 GU TU 21 560C SKIP 57C 13 KEAD (KQ3,92)KA(1,1) 560 IF (LUCKUP(KA(1.1)).1:E.16) GO TO 13 590 GU TU 21 600 90 FURHAT (12A6) 610 91 FURILIT(12A6) 620 92 FURITAT(A6) 630 96 FURIAT(////////) 97 FURIVIT(241: THE LIBIT EXCEEDED 64L 650 93 FORDAT (31HOGESERVED TAPE HAS BEEN ASITTEL///1HO) .660 99 FORDAT (34HORU RESERVED TAPE HAS LICH WRITTER) úīU Litte

```
610
          1L(I#:)=#:
        9 K=NUDENO (KA(3.1))
IF (K.GT.H) M=H+1
620
630
640
          NH(K)=KA(3,1)
650
          JA(IUI) = K
660
          GU TU 06
       ARCS OUT OF ORDER. SLIDE THEM DOWN
670C
650
       10 WRITE (KD, 91) KA(2,1), KA(3,1)
690
          LER = I:AXO(LEK,2)
700
          KK=K+1
710
          DO 101 I=KK,131
720
             1L(1)=1L(1)+1
      101 CONTILIUE
730
740
          KK= IL(K+1)
750
          CO 1G2 JJ=KK.N
760
             J = 1i - JJ + KK
770
             KC(J)=KC(J-1)
760
             KX(J)=KX(J-1)
790
             KU(J)=KU(J-1)
800
             LH(J)=LH(J-1)
             JA(J)=JA(J-1)
810
820
      102 CONTINUE
830
          1:H=KK-1
840
          KC(NI:)=1X(1)
850
          KU(NI;)=1X(2)
860
          LH(N)=1X(3)
870
          KX(III:)=IX(4)
880
          GO TO 9
890C
        ERROR L'ESSAGES
        4 NM=N+1
900
          WRITE (KO,921NM
WRITE (KO,93) (KA(1,1),1=1,3),(IX(1),1=1,4)
910
920
          LER = IIAXO(LER,3)
930
          IF (K.NE.20) RETURN
940
950
          GD TU 6
960
       20 MRITE (KO.89)
970
       25 LER= 4
980
          RETURN
990
       23 HRITE (KG, 88) 11,KQ(5)
           GO TU 25
1000
1010
        88 FORMAT(5H ****, 16, 30H NODES IN THIS RUN MAXIMUM IS, 16)
        89 FURNAT(30HOTUG MARLY ARCS IN THIS RUP ****)
1020
1030
        90 FOX:AT(3A6,2%,4110)
        91 FORMAT(36H **SOURCE NODES NOT AUJACENT IN ARC A6,1X,A6)
1040
        92 FURNAT(29H ***FIELD ERRUR IN ARC NUMBER. 16)
1050
1060
        93 FORIAT( 1X, 3A6, 2X, 4110/1X)
1070
        94 FUNIAT (24H *NU AKC DEGINS AT NUBE AG)
1080
            END
```

REALY

```
EDI LIS NODERDI
          SUBROUTINE NODERO
     NODE READ. READ NUCE DATA CARDS
110C
115
          FILEHANE KOR, KO
120
          FILERAGE NK.KA
          CONTAIN NH ( 500), NP ( 500), IL ( 501), JL ( 501), IJ ( 500), NL ( 500),
130
         & JI(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LL(1000),
146
         & LC(a),KA(12,2),KQ(9),IX(9),II,N,LER,KAT,KOR,KTER,IIINE, IFIN,KI,KO,K
15G
160
          1 = 0
170
       03 I = 1+1
          READ (KUR, 90) KA(1,1), KA(2,1), IX(1)
160
          KEYH=LUOKUP(KA(1,1))
196
200
           IF ( KEYILEQ. 16) RETURN
           IF(KEYM.NE.17) GO TO 2
216
220
           K=HODENG(KA(2,1))
230
           IF (K.GT.H) GO TO 6
240
        5 LP(X)=[X(1)
25G
           GO TU 03
260
        6 LikiTE (KG, 91) KA(2,1)
270
       10 LER= MAXO(LER,1)
280
          GU TU 03
        2 GRITE (KO, 92)1, KA(1,1), KA(2,1), IX(1)
290
30C
          LER = MAXO(LER,2)
           IF (KEYN. NE. 20) GO TO 99
310
           GG TU 10
320
330
        99 RETURN
340
       90 FORMAT(2A6,8X,110)
       91 FORMAT (7H . HUDE , A6, 12H NOT IN ARCS )
350
       92 FORMAT(34H **FIELD ERROR IN NODE CARD NUMBER, 16/1H 2A6, 8X, 110)
360
370
          END
READY
```

EDI LIS NUDENDI

```
100
          FUNCTION NODENO(11)
110C
      FIND NODE NUMBER OF NODE GIVEN
120
          REAL II
125
          FILEHAME UN. KA
130
          CONTIGH NAC 500), APC 500), ILC 501), JLC 501), IJC 500), NLC 500),
140
         & J1(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LL(1000),
150
         & LC(E),KA(12,2),KQ(9),IX(9),H,N,LER,KAT,KUB,KTER,MINE,IFIN,KI,KU,K
160
          LOGICAL EQUAL
170
          IF (M.EC.O) GU TU 3
180
          CO 1 A=1./1
190
            IF (EQUAL(::::(1), 11)) GO TO 2
200
        1 CONTINUE
210
        3 NODENG=N+1
220
          KETUKK
230
        2 NODEL:0=1
240
          KETURK
250
          E1:D
```

EDI LIS POSTRDI

```
SUBROUTINE PUSTRD
100
110C
      READ POST-DATA CONTROL CARDS
120
          FILENALE NN.KA
125
          FILE:ANE KOR. KU
          CONTION NIN( 500), NP( 500), IL( 501), JL( 501), IJ( 500), NL( 500),
130
         & J[(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LL(1000),
140
         & LC(a),KA(12,2),KQ(9),IX(9),N,N,LER,KAT,KUR,KTER,NINE,IFIN,KI,KO,K
150
160C
       OUTPUT FLAGS
170
          DO 19 I=1.8
120
            FC(1)=0
190
       19 CONTINUE
200
          KQ(7)=1
210
          KQ(8)=0
       20 READ (KOR, 95)(KA(1,1), I=1,3), (IX(1), I=1,5)
220
230
          L = LOOKUP(KA(1,1))
240
          IF (L.EQ.18.OR.L.EQ.17) GO TO 140
          ERITE (KO, 86)KA(1,1),KA(2,1),KA(3,1)
250
260
          IF (L.EQ.9) GO TU 121
          IF (L.EQ.14.UR.L.EQ.5.OR.L.EQ.13) GO TO 111
270
          IF (L.EQ.3) GU TU 300
260
          GO TÚ 200
290
                COLPUTE
300C
      111 LRITE (KO, 93)K, I:
316
          IF (L.EQ. 14) KQ(8)=1
320
330
          IF (L.EQ.13) KQ(8)=2
340
      999 KETURII
350C
                SET OUTPUT CONTROL
360
      121 L = LOOKUP(KA(2,1)) -9
370
          IF (L.EQ.10) GO TO 82
          IF (L.LE.O.UR.L.GT.3) GO TU 200
360
390
       81 LC(L) = 1
400
          GO TU 20
       82 KQ(7) =0
410
          GU TU 20
420
430C
                      ALTER
440
      140 IF (1x(1).LT.1) 1x(1)=1
450
      142 TRITE (KU, 91)(KA(1, 1), I=1, 3), (IX(I), I=1, 5)
460
          RI=RUDERU(KA(2,1))
470
          N2=NODENO(KA(3,1))
480
          IF (H1.LE.H .AHD. N2.LE.H) GO TO 145
490
      144 GRITE (KU.92)
500
          LER=MAXO(LER.3)
```

```
510
          GO TO 20
520
      145 L1 = IL(N1)
530
          L2 = IL(H1+1) -1
540
          IF (L2.LT.L1)GO TO 144
550
      146 00 147 LL=L1.L2
560
          IF (J(LL).HE.1:2) GO TO 147
570
            1x(1)=1x(1)-1
580
             IF (IX(1).EQ.0) GO TO 149
     147 CONTINUE
590
600
          GO TO 144
610
      149 KC(LL)=[X(2)
620
          KU(LL)=1X(3)
630
          LH(LL)=1X(4)
640
          KX(LL)=KX(LL)+IX(5)
650
          GD TU 20
660C
670
      REFNOD
      300 L=NODENO(KA(2.1))
1F (L.GT.M) GU TU 301
680
690
          KAT=L
700
          GO TU 20
710
      301 HRITE(KO,94)
                          KA(2,1)
720
          LER= HAXO(LER, 1).
730
          GO TO 20
740C
      CARD PUNCHING ERROR
750
      200 LER=IAXO(LER,3)
760
          WRITE (KU, 87)KA(1,1),KA(2,1),KA(3,1)
770
          IF (L.HE.20) RETURN
760
          GU TO 20
790
800
       87 FORNAT(18H ***ILLEGAL CARD =3A6)
       88 FURNAT(1x, 3A6)
810
       91 FORMAT( 1x, 3AG, 12, 5110)
820
       92 FORMAT(4211 *** ARC ON ABOVE ALTER CARD NOT DEFINED )
830
       93 FORMAT(12H NO UF AKCS=15, 13H NO OF NODES=15)
840
       94 FURNAT(911 ** NODE A6, 12H NOT IN ARCS )
850
       95 FUPIAT (3A6, 12, 5110)
860
          END
```

READY

```
EDI LIS SOLVEI

100 SUBROTINE SOLVE (KE)

110 SET UR RARAY'S AUG CALL THE NETHURK SOLVING KOUTINES

1110 FILELAME KNR, KO

1120 COLUND, KMC (500), MC (500),
```

REALY

```
2 CONTINUE
600
61 OC
      HESSAGE FOR NON ZERO CIRCULATION
620
         DU 5 1=1.H
63G
            IF (LL(1).HE.O) HRITE(KU,90) NH(1) ,HL(1)
            IF (LL(1).E.O) LER=HAXO(LER.1)
640
650
        5 CONTINUE
660
          KE=0
670
          IF (LER.GT.KQ(8)) RETURN
          KLE=0
6â0
690
          1=1
700C
       TRY TO ERING ALL ARCS INTO KILTER
710
          LO 26 K=1,1
720
            IF (K.GE.IL(1+1)) 1=1+1
730
            CALL CUTOFF (KFX)
740
            IF (KFX.EQ.I) GO TO 16
750
            CALL KILTER (1)
            IF (LER.EQ. (-3)) GU TD 24
760
770
            IF (LER.NE.O) KE=KE+1
780
            IF (KE.NE.1) GO TO 26
790
            1x(3)=K
800
            1x(9)=1
810
       26 COLITILUE
820C
      COMPLETEL CHECKING ALL ARCS
830
          LER=-HI!!0(1.KE)
       99 IF (KE.EQ.O) GO TO 100
840
850
          K=IX(8)
860
          CALL KILTER(IX(9))
870C
       RESTORE KC, KX, KU
      100 IF (KLE.LE.O) LER = -2
880
890
          1=1
900
          UO 101 J=1.N
            IF (J.GE.IL(1+1)) I=I+1
910
920
            K=JA(J)
930
            KU(J)=KU(J)+LW(J)
940
            KX(J)=KX(J)+LH(J)
950
            KC(J)=KC(J)-NP(I)+tiP(K)
960
      101 CONTILUE
970
          KETUiJi
980
       16 KLE=1
990
          L=JA(X)
1000
           WRITE (KU,53) NJ.(1),KN(L)
1010
           GU TU 99
1020
        24 L=JA(K)
1030
           1817E (KO.54) DE(1).EH(L)
1040
           GU 10 100
        51 FURLAT(711 **ARC AG, 1X, AG, 36H HAS LULER DUUNL GREATER THAN UPPER )
1050
        53 FUNIAT (33110JUB CUTUFF BY TILE LILIT UN ALC A6.1X.A6)
1060
        54 FUNDAT (33HOUVERFLUM IN FOLE PARICES UN TAIC MO. IX. AC)
1070
        90 FURIATION *HOLE AG, 28H HUR-CORSERVATIVE, HET FLUH=112)
1000
        91 FORLAT (221: MIG THE THES AT LULT .AC)
1090
1160
           cul.
```

EDI LIS KILTERI

```
SUBROUTINE KILTER (1)
100
       BRING AKC K INTO KILTER
1100
120
          FILENALE IN KA
125
          FILERAME KOR, KO
130
          COISION NI( 500), IP( 500), IL( 501), JL( 501), IJ( 500), IL( 500),
140
         & JI(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),EB(1000),
         & LC(8),KA(12,2),KQ(9),IX(9),II,H,LEK,KAT,KUR,KTER,MIKE,IFIK,KI,KU,K
150
160
        1 IF (IJ(1).EQ.0) GU TU 70
170
          IJ(1) = 0
180
        2 50 69 J=1,H
190
       69 KL(J)=0
200
       70 LER=0
210
        5 IF (KC(K)) 10,20,30
220
       10 IF(KX(K)-KU(K)) 50,40,60
       30 IF(KX(K)) 50.40.60
230
       20 IF(KX(K).LT.0) GO TO 50
240
250
          IF (KX(K).GT.KU(K)) GO TO 60
260
       40 RETUKH
270
       50 \text{ KI} = JA(K)
280
          KTER=I
290
          I:L(KI)=+K
300
          GO TO 65
310
       60 KI=1
320
          KTER = JA(K)
330
          KL(KI)=-K
340
       65 CALL LABEL (KBR)
350
          IF (KBR.EQ.O) GO TO 68
360
370
       67 CALL BREAKT
          GO TO 5
380
       68 CALL RAISE
390
       39 IF (LER) 40.5.40
400
           END
```

REAUY

EDI LIS CUTOFFI

```
EDI LIS RAISET
100
           SUBROUTINE RAISE
110C
       RAISE NODE PRICES OF UNLABELED NODES RELATIVE TO LABELED
120
          FILERANE NN.KA
125
          FILENAHE KOR, KO
          COMMEN NIK ( 500), NP ( 500), IL ( 501), JL ( 501), IJ ( 500), NL ( 500),
130
140
         & JI(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LK(1000),
         8 LC(8), KA(12,2), KQ(9), 1X(9), H.N.LER, KAT, KUR, KTER, HINE, IF IH, KI, KU, K
150
160
          LC(6) = LC(6) + 3
170
          NDELTA = IFII
180
          I=1
190
          00 24 L =1,K
200
            IF (L.GE.IL(I+1)) I=I+1
210
            J = JA(L)
220
            IF (NL(1).EQ.0) GO TO 20
230
            IF (NL(J).NE.O) GO TO 24
240
            IF (KX(L).GE.KU(L)) GU TO 24
250
            GO TO 23
260
            IF (NE.(J).EQ.0) GO TO 24
270
            IF (KX(L).LE.0) GO TO 24
            NDELTA = MINO(MDELTA, LABS(KC(L)))
280
290
       24 CONTINUE
300
          NOP = NDELTA
          IF (NDELTA. HE. IFIN) GO TO 31
310
320
          IF (KC(K).Eq.0.OR.ISIGN(1,KL(KI)).Eq.ISIGN(1,KC(K))) GO TO 51
330
          HDELTA = IABS(KC(K))
340
       31 I=1
          DO 47 L=1.N
350
            IF (L.GE.IL(1+1)) 1=1+1
360
            J=JA(L)
370
380
            IF (NL(1).KE.O) GO TO 41
390
            IF (NL(J).NE.O) KC(L)=KC(L)+NDELTA
400
            GO TO 47
410
           IF (RL(J).EQ.O) KC(L)=KC(L)-NDELTA
420
       47 CUNTINUE
430
          IF (NL(KAT).EQ.0) GO TO 50
440C
       REFERENCE HUDE LABELED, ADD NOELTA TO UNLABELED NODES
450.
          DO 49 1=1,N
460
            IF (NL(I).EQ.O) NP(I)=IP(I)+NDELTA
470
       49 CONTINUE
480
          GO TU 60
490
       50 DU 55 1=1, ii
500
            IF (KL(1).KE.O) NP(1)=NP(1)-NOELTA
510
       55 CONTINUE
       60 CUNTINUE
520
530C
       TEST FOR OVERFLUN OF NULE PLACES HERE WHEN PUSSIBLE
540C
       SET LER = -3 IF NODE PRICES OVERFLOW
55C
          IF(KLP.EO.HDELTA.GR.KX(K).EQ.O.GR.KX(K).EG.KU(K)) RETURN
560
       51 LER = -1
570
          KETUKK
580
          END
```

REACY

EDI LIS BREAKTI SUBROUTINE BREAKT LABELS BROKE THROUGH, INCREMENT FLOW 1100 120 FILENAIE NN.KA 125 FILENAIE KOR, KO 136 COIZION NN(500), NP(500), IL(501), JL(501), IJ(500), NL(500), 146 & JI(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LK(1000), & LC(8),KA(12,2),KQ(9),IX(9),H,K,LER,KAT,KOR,KTER,HINE,IFIL,KI,KO,K 150 16G LC(5) = LC(5) +1 17GC FIND FLOW INCREMENT. SET UP CIRCLE LIST IN IJ 180 HINE=IFIR 190 KT - KTER 60 30 J =1,H 206 210 KP = HL(KT)220 KK=IABS(KP) 230 IF (KP.GT.0) GG TO 22 240 KT=JA(KK) 250 IF (KC(KK).GE.G) GO TO 19 260 MINE = MINO(MINE,KX(KK)-KU(KK))270 280 MINE = MINO(NINE,KX(KX))290 GO TO 28 30C KRP=JL(KT) 310 DO 23 KR=KRP,N 320 330 IF (IB(KR).EQ.KK) GO TO 24 CUNTINUE 340 350 24 KT=JI(KR) IF (KC(KK).GT.0) GO TO 26 360 MIKE = MINO(MINE,KU(KK)-KX(KK))370 380 GO TO 28 MINE = MINO(MINE,-KX(KK)) 390 IJ(J) = KP28 400 IF (KT.EQ.KTER) GO TO 40 410 30 CONTINUE 420 40 JJ=J 430 LC(7) = LC(7) + JJ440C INCREMENT CYCLE BY "MINE". 450 DO 43 J = 1,JJ 460 KK = IJ(J)470 IF (KK.GT.O) GO TO 42 480 KK = IABS(KK)490 KX(KK) = KX(KK) - MINEGO TU 43 500 510 KX(KK) = KX(KK) + HINE520 43 CONTINUE 530 DO 45 J=1.11 540 NL(J) = 0550 45 CUNTINUE 56C IJ(1) = c570 RETUKK 580 END

```
FILEMATE KN, KA
FILENATE KOR, KO
FILENATE KZ, STORE
COHECH NN( 500).PF( 500),1L( 501),1J( 500),RL( 500),
& JI(1000).KC(1000),KU(1000),XX(1000),JA(1000),IB(1000),LK(1000),
& LC(8).KA(12.2).KQ(9),IX(9),H,NLER,KAT,KOR,KTER,HINE,IFIN.KI,KO,K
REAL A1.A2.A3
DATA HWQ1/AHX /.HWQ2/4H /.HWQ3/4HN /.HWQ4/4HCUI /.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LLC=KC(J)+NP(I)-NP(K)
IF(KX(J).LT.LW(J).GR.KX(J).GT.KU(J).OR.KX(J).LT.KU(J).AND.
LLC.LI.O.OR.KX(J).GT.LM(J).AND.LLC.GT.O) HX=W:Q3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HRITE (KZ, 93):IK(I), IK(K), KC(J), KU(J), LK(J), KX(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F(KL(1), HE, 0, 4HD, HL(K), EQ, 0) HY=FLQS
F(KL(1), EQ, 0, AND, KL(K), NE, 0) HY=FLQ4
(LC(1), EQ, 6) GD TO 51
                                                                                                                                                                                                                                 IF (LER.NE.0) HZ=HNO2
IF (KZ.NE.0) WRITE(KO.99) KZ
CALL CUFOFF(KFX)
IF(KFX.EQ.1.AND.LC(2).NE.0) LC(1)=1
                                                                                                                                                                                                                                                                                                             FUI. STORE
(LC(3).EQ.0) GD TU 12
(ITE(STORE,90)(KA(1,2),1=1,12)
(ITE (KU,89)
F (LC(1).EQ.0) GD TU 41
F (KQ(6).NE.0) GD TO 24
                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE (K2,90)(KA(1,2),1=1,12)
WRITE (K0,88)
                                                                                                                                                                    LATA HNO1/4HK /, H102/4H

$ M405/4HCUT*/, H106/4H* /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 J=1,N
|F (J,GE,IL(I+1)) | I=1+1
|K=JA(J)
                                SUBROUTINE OUTPUT (KZ)
PROBLEH OUTPUT
EDI LIS OUTPUTI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           16 1F
                                                                                                                                                                                                                                                                                                                                                                                                                                     7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                7
```

READY

```
51 IF (KQ(7).EQ.0) GO TU 56
            IF (LINE.EQ.O) WRITE (KO,91)(KA(II,2),II=1,12)
550
560
            LINE=LINE+1
570C
       PRINT 50 LIKES/PAGE
586
             IF (LIKE.EQ.50) LIKE=0
          WRITE (KO,94)IN(1), IN(K), KC(J), KU(J), LW(J), KX(J), LLC, HX, HY
590
60G
       56 IF (LC(3).EQ.0) GO TO 3
610
          RITE(STORE, 93)MI(I), MI(K), KC(J), KU(J), LN(J), KX(J)
620
        3 CONTINUE
630
          IF (KQ(7).NE.O) LRITE(KO,198)
640
          IF (LC(1).11E.0) \(\text{LRITE}(\text{X2,96})\)
650
          IF ~LC(3).NE.O) LKITE(STUKE,96)
660
          DO 200 I=1.H
670
            HY=IL:Q2
680
             IF (KZ.NE.O.AND.NL(1).NE.O) MY=1WQ6
690
            IF (LC(1).HE.O) WRITE(K2,95) KK(I).NP(I)
            IF (KQ(7).NE.O) HRITE(KU,199) HH(1),NP(1),MY
700
            IF (LC(3).NE.O.AND.NP(1).NE.O) WRITE(STUKE, 95)NN(1),NP(1)
710
720
      200 COUTINUE
          IF(LC(1).NE.D) WRITE(K2,97)
730
740
          IF (KQ(7).NE.O) 121TE(KO,98)
          IF (LC(3).HE.O) INITE(STORE, 97)
750
760
          WRITE (KO, 92) LC(5), LC(6), LC(7), LC(8)
770
          KRITE (KO, 999) A3
780
          RETURN
       88 FORMAT(27HOTHIS RUN UUTPUT TO FILE K2 )
790
       89 FORMAT (30HOTHIS RUN UNTPUT TO FILE STORE)
       90 FORMAT(12A6/4HARCS22X,4HCOST5X,5HUPPER5X,5HLOWER6X,4HFLOW,12X)
810
       91 FORMAT (1H112AG/5H ARCS16X, 4HCUST6X, SHUPPER6X, SHLUHER7X, 4HFLOH7X.
820
830
         & 4HCBAR/1X)
       92 FORMAT(18HONO OF BREAKTHRUS=112.22H, NO OF NONBREAKTHRUS=112.18H,
840
         AND OF X CHANGES=112./42H NO OF NUDES FROM WHICH LABELING WAS DOKE
850
860
870
       93 FORMAT(6x, 2A6, 2x, 4110)
880
       94 FORNAT(2(1x,A6),5111,1x,2A4)
890
       95 FORMAT(6X, A6, 6X, 112)
900
       96 FURNAT (GHNODES ,54X)
910
       97 FORMAT(SHEND, 27X)
       98 FORHAT (4HOEHD)
920
930
      99 FORMAT(1HO15, 23H ARCS ARE OUT OF KILTER)
      193 FORMAT(12HINGDE PRICES/1X)
940
950
     199 FORILAT(1X, AG, 113, A4)
      999 FORMAT(16HOSUN OF PRODUCTS, 1PD20.12)
960
970
           END
```

EDI LIS LABELI

```
SUBROUTINE LABEL (KBR)
1100
       LABEL NODES
120
          FILENAME NN,KA
125
          FILENAME KOR, KO
          CONTIGN NIC 500), NP ( 500), IL ( 501), JL ( 501), IJ ( 500), NL ( 500),
130
        & J[(1000),KC(1000),KU(1000),KX(1000),JA(1000),IB(1000),LH(1000),
140
         & LC(8),KA(12,2),KQ(9),IX(9),I,H,LER,KAT,KOR,KTER,MINE,IFIN,KI,KO,K
150
160C
     JI FIRST NODE OF ARC IN SECOND NODE LIST
170C KC CUST
180C KU UPPER BOUND
190C KX FLOW .
200C JA SECOND NODE OF ARC IN NORMAL URDER
210C IB ARC NUMBER OF ARC IN SECOND HODE LIST
220C LW LUHER BOND
230C IN RODE NAME
240C HP NODE PRICE
250C IL FIRST ARC OF GIVEN NODE IN LIST OF ARCS ARRANGED NORMALLY
     JL FIRST ARC OF GIVEN NODE IN LIST OF ARCS ARRANGED IN SECOND NODE ORD
270C
     IJ SCAN LIST (CIRCLE LIST IN "BREAKT")
     I'L NODE LABEL, SIGNED NUMBER OF ARC WHICH LABELED IT
280C
290C
     NU PRESENT LOCATION IN SCAN LIST OF NODE BEING SCANNED
300C
310
         KBR = 0
320
          IF (IJ(1).EA.0) NUP=1
330
          1J(1)=KI
340
         KU = 1
350
       14 I=1J(NU)
     SEARCH FORWARD ARCS
360C
370
         L2 = IL(I+1)
380
         L = IL(I)
390
       16 IF (L2.LE.L) GO TO 28
400
          J = JA(L)
410
          IF (IL(J).NE,0) GO TO 27
420
          IF (KC(L).GT.0) GU TO 21
430
          IF (KX(L).GE.KU(L)) GO TO 27
440
          GO TU 22
```

```
450
       21 IF (KX(L).GE.0) GO TO 27
460
       22 HL(J) = L
470
          HUP = NUP + 1
          L = (QUN)LI
480
490
       27 EF=(U+EQ.KTER) GO TO 47
510
           GO TO 16
520C
      SEARCH BACKHARD ARCS
530
       28 L2 = JL(I+1)
          L = JL(I)
540
550
       31 IF (L2.LE.L) GO TO 43
560
           J = JI(L)
570
580
           IF (IL(J).NE.0) GU TO 42
          KR = IB(L)
590
           IF (KC(KR).GE.O) GO TO 36
600
           IF (KX(KR).LE.KU(KR)) GO TO 42
610
          GO TU 37
       36 IF (KX(KK).LE.0) GO TO 42
620
       37 \text{ NL(J)} = -\text{KR}
630
640
          I:UP = I:UP + 1
650
          IJ(RUP) = J
       1F (J.EQ.KTER) GO TU 47
42 L = L+1
660
670
680
          GU TG 31
       GO TO NEXT NODE IN SCAN LIST
690C
700
       43 IF (NU.GE.NUP) GO TO 48
710
          1:0 = 1:0 + 1
          GU TU 14
720
730C
740
         BREAK-THRU
       47 KBR = 1
750
       48 LC(5) = LC(6) +NU
760
770
          RETURN
          EIID
```

READY

EDI LIS LOOKUPI FUNCTION LOOKUP(K) 100 1100 LOOK UP CONTROL NAI:E 120 LOGICAL EQUAL 130 REAL K 135 FILEHAME KEY 140 DIHERSION KEY(19) 150 DATA KEY(1)/GIBEGIN /, KEY(2)/6HSAVE /, KEY(3)/6HREFNOD/, & KEY(4)/GIITAPE /.KEY(5)/GIIGU /, KEY(6)/GHSKIP /, 160 & KEY(7)/6HARCS /, KEY(8)/6HHUDES /, KEY(9)/6HOUTPUT/, 170 & KEY(10)/611 TAPE /, KEY(11)/611 IF CU/, KEY(12)/6H PUNCIL/, 180 190 8 KEY(13)/6HSOLVE /, KEY(14)/GHGOGU /, KEY(15)/6HQUIT /, 200 8 KEY(16)/6HEND /.KEY(17)/6H /.KEY(13)/6HALTER / 210 DATA KEY(19)/6H IO SY/ 220 LUOKUP = 20 230 0011 = 1,19240 IF(EQUAL(KEY(1),K))GU TO 2 250 1 CONTINUE 260 RETURN 270 2 LOOKUP = I 280 RETURN 290 END PEADY

EDI LIS EQUALI

READY

```
100
          LOGICAL FUNCTION EQUAL(J,K)
1100
       SYSTEM GE KUUTINE
120C
       TRICK SYSTEM/GE INTO COMPARING 6 BYTE HORDS
130
          DIMENSION J(2).K(2)
140
          EQUAL=.FALSE.
          IF (J(1).RE.K(1)) RETURN
150
             TRUMCATION ON GE VALID UNLY FOR PUSITIVE NUMBERS
160C
170
          JJ=J(2)/65536
1 80
          IF(65536*JJ:GT.J(2).ALD.J(2).LT.O) JJ=JJ-1
190
          KK=K(2)/65536
200
          1F(65536*KK.GT.K(2).AND.K(2).LT.G) KK=KK-1
210
          IF (JJ.EG.KK) EQUAL=. TRUE.
220
          KETUKA
230
          EI:U
```

5.7 Model Validation

The model was validated against the existing Oklahoma City network (see Figure 5-5). The output for this run is shown on the next page. The runs for future networks are not shown because the data used to formulate them was not obtained from actual land use projections and was used only to validate the gaming capabilities.

Figure 5-5. Average Daily Flow Net (1980)

BEGIN OKC RUN 2	•				
ARCS					
SOLVE					
NO OF ARCS=	58 NO OF NO	DES= 22			
1 GKC RUN 2	,				
ARCS	COST	UPPER	LOWER	FLOW	CBAR
SS 1 AS 2	0	159	159	159	7 K
AS 2 ATUK		1	_1	1	3030 K
AS 2 ATUK		50	50	50	44 K
AS 2 DRAP		1	1	1	2796 K
AS 2 DRAP		5 1	5 1	5 1	18 K 5205 K
AS 2 HUGO AS 2 HUGO		30	30	30	27 K
AS 2 FTSY		1	1	1	141 K
AS 2 FISY		ġ	ģ	9	171 K
AS 2 CAN	· ·	í	í	í	405 K
	12 2	16	16	16	· OK
	13 608	1	ī	ī	605 K
AS 2 OVH	13 4	20	20	20	1 K
AS 2 WH	15 447	1	1	1	446 K
	15 7	22	22	22	6 K
ATOKA3 DRAP		1	1	1	1509 K
ATOKA3 DRAP		60	0	16	0 K
ATUKA3 ASSK		60	0	34	0 K
DRAP 4 DRAP		2	2	2	1 K
	22 1 22 0	. 30	0	0 21	1 K 0 K
AN 22 DRAP		· 60 90	ŏ	21	0 K
HUGO & OTPE		1	1	1	1468 K
HUGO & DTPE	9 4	30	ò	30	0 K
FTSY10 CAN	12 3	ĩ	ĭ	ĩ	2 K
	12 1	ġ	ò	ò	ŌΚ
FTSYIO AS	11 0	9	Ō	9	0 K
	13 2	i	1	i	1 K
CAN 12 OVH	13 1	25	0	. 17	0 K
CAN 12 AS	11 0	25	0	0	1 K
OVH 13 OTP	16 1	1	· 1	1	0 K
· OVH 13 OTP	16 1	26	0	2 2	0 K
OVH 13 HEF	14 2	1	1	1	3 K
	14 1	25	15	15	2 K
OVH 13 AS	11 0	45	0	0	2 K
	18 . 1	1	1	1	0 K
HEF 14 HTP	18 1	42	0	15	0 K
	16 234	1	1	1	· 231 K
	16 11	22	0	0 22	8 K 0 K
	- -	22 2	0 2	22	292 K
DKAP 5 DKAP DRAP 5 DKAP	6 294 6 2	60 60	č	21	0 K
UNAF 3 UNAF	0 2	90	·	21	UK

```
168
```

```
118 K
 OTPE 9 DRAP 6
                       120
 DTPE 9 DRAP 6
                                                           30
                                                                       0 K
                        2 ·
                                   30
                                                                       0 K
                                   69
 AS 11 ASSK20
                         0
                                                           2
                                                                     268 K
 OTP 16 UTP 17
                                    2
                       270
 OTP 16 OTP 17
                                                           22
                                                                       0 K
                        2
                                   30
                                                                     209 K
HTP 16 HTP 19
                                    1
                                                           1
                       212
                                                                     .0 K
                                   42
                                                           15
 HTP 16 HTP 19
                       3
                                                                     273 K
 DRAP 6 OKC
                       274
                                    3
                                                           3
DRAP 6 OKC
OTP 17 OKC
                                                                      0 K
                                   90
                                                0
                                                           51
                                                           2
                                                                     288 K
                       289
                                    2
                                                           22
                                                                       0 K
 OTP 17 OKC
                                                0
                       1
                                                                     306 K
                       307
                                    1
                                                           1
 HTP 19 OKC
                                                                      0 K
                                                          15
HTP 15 UKC
                                   30
                                                0
                        1
                                                                       6 K
                                               94
                                                          94
 OKC 7 ASSK20
                         0
                                   94
                                                                      -6 K
                                                          159
                                  159
                                              159
 ASSK20 SSK 21
                                                                       0 K
 SSK 21 SS 1
                                  159
                                              159
                                                          159
INULE PRICES
 SS 1
 AS 2
ATGKA3
 DRAP 4
 AN 22
 HUGO 8
 FTSY10
 CAN 12
 OVH 13
 HEF 14
 Mi 15
 DRAP 5
 DTPE 9
 AS 11
 OTP 16
 HTP 18
 DRAP 6
 OTP 17
 HTP 19
 OKC 7
 ASSK20
 SSK 21
OEND
                                                                                               162
                             25. NO OF NONBREAKTHRUS=
                                                                 12. NO OF X CHANGES=
ONG OF BREAKTHRUS=
NO OF NODES FROM WHICH LABELING WAS DONE=
OSUH OF PRODUCTS 2.3006000000000+04
```

CHAPTER VI

SEWER NETWORK MODEL

6.1 Introduction

Since the same procedures and network models are used for both water and sewerage systems, the general discussion of the technical process was presented in Chapter V, Water Network Model. Consequently, one should review and refer to Chapter V prior to the reading of this chapter. This was done because the procedures were lengthy and would have been redundant if presented again. The only thing that will be discussed in this chapter is the philosophical and technical differences that the sewerage network creates in the application of the preceeding presentation.

The flow charts, data arrangement, and model listings are identical to those in Chapter V and will only be referenced in this chapter. The remainder of this chapter will be devoted to the explanation of the techniques used to operate the "model" as a sewerage network model.

As previously discussed, the first phase is the isolation of the feasible independent networks and the reduction of the problem to its simplest form. The first step is to reduce the network to the "real" network by identifying the unfeasible alternatives and eliminating them from the network. This is a course screening done by the best qualified people. The independent networks are then evaluated using engineering cost data analysis.

The interconnected networks or the alternate solutions that interconnect independent solutions are evaluated by loading the system onto the computer and evaluating them with the network model. The flexibility that was built

into the model for the water network analysis is preserved for the evaluation of the sewer system.

6.2 Network Formulation

The sewerage network varies from the water network in that it is primarily a gravity flow system. The use of pumps, pressurized lines and lift stations are normally avoided and are only implemented when absolutely necessary.

The sewerage network begins within each small basin with a collector system. These grid or block by block collector networks are sized by using the technique described in Appendix C (14), Water, Sewer, and Storm Drainage Micro Area Requirements. The sewage then flows from the collector systems into the sewer mains. These mains are also designed using the technique described in Appendix C (14). It is not the purpose of this study to design and plan for this portion of the sewerage network, although a procedure was given in Appendix C (14).

The design of the collector systems that serve these smaller basins is the responsibility of the political jurisdictions involved. The portion of the system that this study does deal with is the collection of the sewage from these smaller basins and political jurisdictions, its transportation to a system of treatment plants, and finally the discharge of the effluent into a receiving stream.

It is also not the purpose of this study to develop a stream recovery model that examines in detail the effect that the effluent will have on the receiving streams. The way that the network model does take this into consideration is by limiting the upper bounds of the arc that connects the outfall of a treatment plant to the receiving stream to a value of effluent that the stream can handle. This value is obtained by using methods Appendix D.

Water Quality (14). By controlling the amount of effluent based on a specified level of treatment for the study area, in this case secondary, that can be discharged at different points, the quality of the receiving streams can be maintained. This can even be made seasonal by changing these values based in the seasonal flows and characteristics of each receiving stream.

The sewerage model examines all of these feasible alternatives for the region and optimizes them into a regional sewer network. It is also possible, if not probable, as in ACOG, that the region is made up of several major basins of different characteristics that are not connected within the study area (see Figure 6-1). These basins may be analyzed separately, or, as in the example for the study area, be analyzed by interconnecting two or more of the basins.

There is also the capability of the using agency to evaluate the alternatives of having one major treatment plant or any combination of smaller treatment plants. The portion of the study that was selected as an illustrative example combines all of the above possibilities. The example problem looks at the feasibility of connecting two major basins, the Deep Fork and the North Canadian Rivers, by a lift station to one metro-treatment plant or by serving each basin by a selection of smaller treatment plants. The problem is illustrated in sections 6.4, 6.5, and 6.6.

The procedure for formulating the sewer network is identical to that described in Section 5.2 of the preceding chapter. The first step is to established the current network from the inventory data. The procedures and firms used are the same as before. The only difference between this phase, which is for the sewer networks, and those for water is that the flow is

reversed. The use of special areas, mainly basins, within each political area is greatly increased. This allows the demand portion of the model to work within the framework of gravity flow across corporate boundaries.

The identification of the real network and its shortages and capabilities is handled in the same manner as water. It is also advanced into the "desirable" worlds and evaluated as to their incremental capabilities, deficiencies, and availabilities using those techniques described in Section 5.2.

At the conclusion of this procedure, the using agency will have a complete understanding of the sewer networks, their requirements, and feasible alternatives for the region under study. The problem will have again been reduced to its simplest form and be ready for presentation to the committee of concerned agencies for final selection of the alternatives that they may wish to analyze further. Each choice will then be modeled for the selection of the best alternatives which will then be incorporated into the final plan.

6.3 Model Description

The model again varies with the type of network under consideration. If it is a simple independent network, the use of derived cost functions are used, but if it is a complicated independent or interconnected network, then the computer model is employed.

When the computer model is run, it is used in the same manner as that of the water network. The same model is employed by both networks. The network is again made up of nodes and arcs. Each facility is represented by a node for the inlet and another node for outlet. If a fixed cost is encountered in this facility, it is represented by an arc with a fixed "fake flow", usually one MGD. If the conservation of flow changes this fake flow to another

value, then the fixed cost is reduced proportionately. Another arc is used to represent that portion of the cost, above fixed cost, that which varies linearly with flow. A system of cost lines are developed for each type of facility as shown in Figure 5-3. These arcs and nodes with their derived cost functions can be used to depict accurately any type of facility (see page 178). The use of these dual nodes and multi-arcs is limited only by the users abilities to depict each facility by its proper combination of arcs.

If the network under consideration is a simple independent network, it can be handled using cost functions similar, in many cases identical, to those used in the water network. The equations for transmission, pipeline, and right-of-way costs are the same. The remainder of the costs for the system as acquired form the same sources as those for the computer model data requirements (see Section 6.4).

It can be seen that this modeling technique has a tremendous advantage in that it is not only highly flexible, but can be used for both water and sewer networks. This study group is also working with it in transportation and stream recovery modeling. Flow charts are shown in Section 5.3.

6.4 Data Requirements

The data requirements for this model are the same as those required for the water network. The only difference is in the cost curves and functions used to provide the actual costs. It is obvious that these cost data are available from many sources and those that are used here are not considered as absolute. The user agency should use those functions that it feels are most accurate. The functions that the author uses are obtained from those

listed in the Bibliography (31, 32, 33, 34, and 35).

6.5 Data Arrangement

The data are arranged in groups of links or arcs for each pair of nodes. All links from each source node must be listed in groups. The format is the same as that shown in Section 5.5. A listing for the runs used to compare the utilization of a single metro-plant for two river basins, versus several treatment plants in each basin is shown in Section 6.7.

6.6 Model Format

The model listing is the same as that shown in Section 5.6.

6.7 Model Validation

There were many runs made of different arrangements for the network. The run selected is shown in Figure 6.2. The output, which follows, shows that the metro-plant is a more economical solution to the problem than the multi-plant alternative. This example is not a true representation of the problem due to the lack of accurate cost data for the actual system. This could be accurately determined under the conditions and funding of a full study of the region.

The true validation of this model has been accomplished, and its full usefulness is only limited by the skill of the using agency in depicting the system and alternatives in modeling nomenclature. Once a proper set of cost functions for their systems have been developed and projected (this study used the ENR cost index), the optimization of the network will be obtained.

BEGI	11		
OKO	SE	MAC	E

ARCS	SS 1 All 2	0	66	0
	AN 2 NOF824	0	26	26
	AI: 2 IFPI1 4	0	40	40
	All 2 CHIC 3	0	40	0
	NDFU24PTP 25	212	26	Ō
	NOFE24PLS 27	40	1	_1
	HOFU24PLS 27	9	25	25
	PTP 25PTP026	2180	1	0
	PTP 25PTP026	86	25	0
	PTPU26DFR 10	0	26	C
	DER TOUCH 8	0	26	0
	PLS 270FPii 5	380	.1	0
	PLS 270FPII 5	20	25	G
	IFPI: 40FPM 5	638 173	6 34	Ö
	IFPH 40FPH 5			0
	OFPI: 5PJI:P 6 OFPI: 5PJI:P 6	0	7 5 9	0
		769	7	ő
	PJMP 6PJPG 7 PJMP 6PJPG 7	45	59	0
	PJPG 7DFR 10	247	1	ő
	PJP0 70FR 10	8	25	ő
	PJPO 7HCR 8	Ö	6	ő
	PJPU 7HCR 8	Ö	34	Ö
	CHIC 3JYOK11	Ö	5	ő
	Chilc 3111:US12	ŏ	2	ŏ
	Chilic 3NLOK13	ŏ	2	Ö
	CNIIC 3SSP 14	ŏ	2 2 26	Õ
	CNIIC 3SIIUK 15	Ŏ	2	Ö
	CNIC 3DELCI6	Ö	3	
	JY0K11 OF 17	2180	1	0
	JY0K11 OF 17	240	4	0
	NMUS12 OF 18	183	. 1	0
	NMUS12 OF 18	458	1	Û
	NWOK13 OF 19	183	1	0
	NHOK13 OF 19	453	1	0
	SSP 14 UF 20	2180	1	Ō
	SSP 14 UF 20	36	25	Q
	SWOK 15 OF 21	183	1	0
	SWOK15 OF 21	458	-1	0
	DELC16 UF 22	2180	1	. 0
	DELC16 UF 22	458	2	. 0
	UF 17 AN 23 UF 18 AN 23	0	2	0
		Ö	2	Ö
	OF 19 AH 23 OF 20 AH 23	ő	2 5 2 2 26	Ö
	OF 21 AH 23	ő	20	ŭ
	UF 22 AN 23	ŏ	3	ŏ
	Al: 23HCR 8	ŏ	40	Ö
	NCR 8 SSK 9	Ŏ	66	U
	SSK 9 SS 1	ŏ	66	66

END . SOL VE QUI T

READY

BEGIN			
OKC SEHAGE			
ARCS			
SS 1 AN 2	. 0	66	0
AN 2 HDFB24	0	26	26
All 2 IFPH 4	0	40	0
AN 2 CNNC 3	0	40	40
NDFB24PTP 25 NDFB24PLS 27	212	26	26
NDFB24PLS 27	40 9	1 25	0
PTP 25PTP026	2180	1	0
PTP 25PTP026	86	25	ő
PTPU26DFR 10	0	26	ŏ
DFR 10NCR 8	ŏ	26	ŏ
PLS 270FPH 5	380	ī	ŏ
PLS 270FPH 5	20	25	ŏ
IFPIL 40FPIL 5	638	6	Ŏ
IFPN 40FPN 5	173	34	Ö
OFPH SPJMP 6	0.	7	0
OFPN 5PJNP 6	0	59 7	0
PJNP 6PJPO 7	769	7	0
PJMP 6PJPO 7	45	59	0
PJPD 70FR 10	247	1	0
PJP0 70FR 10	8	25	0
PJPU 7NCR 8	0	_6	0
PJPU 7NCR 8	0	34	0
CNNC 3JYOK11 CNNC 3NIUS12	0	5 2	0
CNNC 3NHUS12 CNNC 3NWOK13	0 0	2	0
CNNC 3SSP 14	Ö	2 26	Ö
CHIC 35HUK15	Õ	20	ő
CHIC 3DELC16	. 0	2 3 1	ŏ
JY0K11 OF 17	2180	í	ŏ
JY0K11 OF 17	240	4	ŏ
NMUS12 OF 18	183	i	ŏ
NIUS12 OF 18	458	1	0
NWOK13 OF 19	183	1	0
NWUK13 OF 19	458	1	0
SSP 14 OF 20	2180	1	0
SSP 14 OF 20	86	25	0
SWOK 15 OF 21	183	. 1	0
SWOK15 OF 21	458	!	C
DELC16 OF 22 DELC16 UF 22	2180 458	1	0 0
OF 17 AN 23	0	2	Ö
OF 18 All 23	ŏ	2 5 2 2 2 26	ŏ
OF 18 AN 23 UF 19 AN 23	ŏ	2	ŏ
UF 20 AN 23	Õ	26	ŏ
OF 21 AN 23	0	2 3 40	O
OF 22 AN 23	0	3	0
AH 23NCR &	Ō	40	0
NCR 8 SSK 9	0	66	0
SSK 9 SS 1	0	66	66

END SULVE QUIT

READY

Figure 6.2. North Canadian River Basin (Plant Selection)

CHIC 3 MIUS12 0 2 0 2 -1722 K CHIC 3 MIUK13 0 2 0 2 -1722 K CHIC 3 SSP 14 0 26 0 26 0 K CHIC 3 SUOK15 0 2 0 2 -1722 K CHIC 3 SUOK15 0 2 0 2 -1722 K CHIC 3 UELC16 0 3 0 3 0 K JYOK11 OF 17 2180 1 0 K JYOK11 OF 17 240 4 0 4 -1940 K	BEGIN GKC SENAGE ARCS SOLVE NO UF ARCS= CKC SENAGE ARCS	50 NO OF NODES=	27 UPPER	LOWER	FLOX	CBAR
180 1	AII 2 ILFB24 AII 2 IFPII 4 AII 2 CANC 3 RDFG24 PTP 25 RDFG24 PLS 27 PTP 25 PTP026 PTP 25 PTP026 PTP026 DFR 10 GFR 10 LCR 8 PLS 27 OFPM 5 PLS 27 OFPM 5 IFPII 4 OFPM 5 IFPII 4 OFPM 5 IFPII 5 PJIIP 6 OFPII 5 PJIIP 6 OFPII 5 PJIIP 6 PJIP 6 PJPO 7 PJIP 6 PJPO 7 PJIP 6 PJPO 7 PJIP 6 PJPO 7 PJPO 7 DFR 10 PJPO 7 NCR 8 PJPO 7 NCR 10 PJPO 7 NCR	0 0 0 212 40 9 2180 86 0 380 638 173 0 638 173 0 769 247 80 0 0 0 0 0 183 453 453 453 453 2186 183 2186 183 2186 186 186 186 186 186 186 186 186 186	26 40 40 26 27 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	26 0 40 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 40 40 15 20 00 00 00 00 00 00 00 00 22 22 23 14 11 11 21 21 21 21 21 21 21 21 21 21 21	86 K 2192 K 2192 K 2318 K 2094 K 360 K 4695 K 695 K 695 K 695 K 695 K 695 K 695 K 697 C 697 C

CELC16 CF 22

READY

2180

```
4
```

```
GELC16 UF 22
                             458
                                                                                    -1722 K
  OF 17 All 23
LF 10 All 23
                                                                                         0 K
                               0
                                              2
                                                                                         0 K
  GF 19
           Al: 23
                                             2
                                                                                         0 K
                                                            0
 GF 20 Ali 23
GF 21 Ali 23
GF 22 All 23
Ali 25 LCR 8
LCR 6 SSK 9
                                                                         26
2
3
                                                            0
                                                                                         0 K
                                              2
                                                                                         0 K
                                                            0
                                                                                         0 K
                                            40
                                                                         40
                                                                                         0 K
                                             66
                                                            0
                                                                         66
                                                                                      -12 K
SSK 9 SS 1
                                                                                         0 K
                                                           66
   SS 1
  A: 2
 1:GF624
                      -86
 PTP 25
                    -2192
 PTP026
                      -12
 CFR 10
                      -12
 PLS 27
                      - 77
 IFP:: 4
                      0
 LFPI: 5
                      -57
                      -57
-12
 PJ#P 6
 PJPG 7
C::l:C 3
                   -2192
 JYOKII
                   -2192
 1.1:US12
                    -470
 1:1:0%13
                    -470
 SSP 14
                   -2192
 S::OK15
                    -470
 CELC16
                   -2192
  GF 17
                      -12
  OF 18
                      -12
  OF 19
                      -12
  OF 20
                      -12
  CF 21
                      -12
  OF 22
                      -12
 All 23
IICR 6
                      -12
                      -12
  SSK 9
                         0
0:130
ONO OF BREAKTHRUS= 20, NO OF NONBREAKTHRUS= 40 OSUN OF PRODUCTS 2.23310000000000+04
                                                                                11, NO OF X CHARGES=
                                                                                                                       167
                                                                  402
```

0 K

BEGIN UKC SEWAGE					
ARCS					
SOLVE NO OF ARCS=	50 NO OF NODES	= 27			
1 UKC SENAGE					
ARCS	COST	UPPER	LOWER	FLOW	CBAR
SS 1 All 2	0	66	0	66	0 K
All 2 ILFB24	0	26	26	26	298 K
AH 2 IFPH 4	0	40	40	40	1654 K
Ali 2 Cl.KC 3	0	40	O	U	0 K
NOFB24 PTP 25	212	26	0	0	0 K
1:0F624 PLS 27	40	1	_ 1_	1	1138 K
HDFB24 PLS 27	9	25	25	25 .	1107 K
PTP 25 PTP026	2180	j	0	Q	2094 K
PTP 25 PTPO26	86	25	0	0	0 K
PTP026 DFR 10	0	26	. 0	0	0 K
DFR 10 NCR 8	0	26	Q	26	οĸ
PLS 27 OFPH 5	380	1	0	1	0 К
PLS 27 0FPH 5	20	25	0	25	-360 K
IFPH 4 OFPH 5	638	_6	0	6	0 K
IFPN 4 OFPM 5	173	34	0	34	-465 K
OFPI 5 PJIP 6	Q	7	0	.7	0 K
CFPM 5 PJMP 6	0	59	0	59	0 K
PJIP 6 PJPO 7	769	7	0	7	0 K
PJIP 6 PJPO 7	45	59	0	59	-724 K
PJPO 7 DFR 10	247	_1	0	1	• 0 K
PJPO 7 DFR 10	8	25	0	25	-239 K
PJPO 7 KCR 8	0	.6	0	_6	-247 K
PJPO 7 IICR 8	0.	34	0	34	-247 K
CIRIC 3 JYOK11	0	5.	. 0	0	0 K
CINC 3 KIUS12	0	2	0	0	0 K
CHIIC 3 INOK13	0	2	0	0	0 K
Chii:C 3 SSP 14	0	26	0	0	0 K
CINC 3 SHOK15	. 0	2	0	G	0 K 0 K
CIBIC 3 DELCI6	0	3 1	0 0	0 0	2180 K
JY0K11 CF 17	2180	i.	0	0	2180 K
JY0K11 UF 17	240	4		_	183 K
1110S12 UF 16	183	ļ	0	0	
INIUS12 CF 13	458	i	Ü	0 0	450 K 183 K
1810K13 CF 19	183	•		_	
1330K13 UF 19	458 3130	1 1	O 1	0	450 K 2100 K
SSP 14 LF 20	2180	25		Ü	2100 K
SSP 14 LF 20	. 86	25 1	0	Ü	
SHOK15 CF 21	183	1	0 0	0	
SHUK15 CF 21	450	i		<u>()</u>	450 K 2100 K
05LC16 LF 22	2130	2	O C	C G	2100 K 458 K
LELCIÓ LF 22	458	2	U		420 1

```
18
```

AN 23

REAGY HEL 0073.44

U#=

CRU

0003.34 TCII

0121.85 KC

```
0 K
  0F 18
           All 23
  OF 19
           All 23
                                                                                          0 K
  GF 20
          AI; 23
                                                                                          0 K
                                                                                          0 %
  OF 21 Al! 23
                                                             0
  CF 22 Ali 23
Ali 23 ECR o
                                                             0
                                                                                          OΚ
                                0
                                0
                                             40
                                                            0
                                                                           0
                                                                                          0 X
 NCR U SSK 9
                                             66
                                                                          66
                                                                                          0 K
SSK 9 SS 1
1HODE PRICES
                                                                          66
                                                                                          0 K
  SS 1
  Ail 2
 1:DFG24
                    -298
                      -86
 PTP 25
 PTP026
GFR 10
                         0
 PLS 27
                   -1396
 IFPII 4
                   -1654
 CFPI; 5
PJI:P 6
                   -1016
                   -1016
 PJPO 7
CIJIC 3
                    -247
 JYOK 11
 HHUS12
NHOK13
 SSP 14
 SI:0X15
 DELC16
  OF 17
  OF 18
OF 19
  OF 20
  OF 21
  OF 22
  AN 23
 NCR &
  SSK 9
OE::D
ONO OF BREAKTHRUS=
1:0 OF NODES FROM WHICH LABELING WAS DONE=
1:0 OSUN OF PRODUCTS 1.9340000000000+04
                                                                                 11, NO OF X CHARGES=
                                                                                                                         78
```

0 K

CHAPTER VII

DEVELOPMENT OF THE WATER AND SEWER PLAN

7.1 <u>Introduction</u>

It was the prime objective of this research project to provide the average planning group with a usable model for Regional water and sewerage planning networks. We feel this objective has been accomplished. The model we have developed fulfills all of the originally stated objectives.

All models developed are operational and are presented in their true configurations. Examples of the input and output for each stage have been presented for validation when being loaded on other hardware. It is the authors' opinion that any planning agency can use this system with very little effort and without the addition of new technical personnel.

The model starts with the required inventories and then lists the procedures for establishing this data into usable information systems. It then asks the planning group to intervene by establishing the growth parameters in the population model. This allows the using agency to tell the model for what goals the region would like to strive. The population model then provides the planner several population profile alternatives in five year increments for each of these alternatives (see Figure 7-1).

Again the planner is required to made additional input into the model by allocating the population profile for each alternative into an areal scheme. In other words, the planner develops a land use plan or plans for each set of goals and analytical alternatives under consideration.

Figure 7 -1. Final Procedure Outline.

After the land use has been allocated to the SAU's the user group sets up and runs the demand model. This model takes the population and land use that were developed by the planner and computes the water requirements and sewage outputs for several adjustable configurations, such as political jurisdiction, basin, special area, etc.

The appropriate planning group is then asked to made another intervention. He is required to take the output from the demand model and the inventory of the existing and proposed facilities and create the networks for each time increment that is to be evaluated further. He is required, by a given procedure, to reduce this problem to its simplest form before evaluation by the network models.

The alternatives for both water and sewage which are to be run on the network model are then depicted by a link-node process. The alternatives are then loaded onto the network model and reevaluated. The result is the optimization of flow at the least cost.

At this point the model has completed all necessary information for the development of the final plan. There only remains to be done that portion which takes the cost of all the desirable alternatives and incrementally evaluates them against the financial structure of the region. The final step is to establish the priorities for the development of the alternatives that were selected for implementation.

7.2 Analysis of Alternatives

The process of financial analysis of these alternatives is a relatively simple procedure that follows the standard techniques used in economics. A profile of the financial structure including bond debt limits and future

financial resources is developed. This analysis is done on an incremental basis using the same steps as the models. The cost of each of the alternatives is then evaluated against the financial profile, and priorities are set by the committee of concerned agencies. The net result is the capital investment profile of the region to obtain the selected goals.

The process, as described in this report leads to a comprehensive and continuing planning model. The output can be easily developed into a plan that will maximize the use of our natural resources, help protect our environment and preserve the quality of life that is desired.

7.3 Limitations and Future Research Needed

The primary limitation to this model, as well as most others, is the availability of data, particularly cost functions. It is possible to develop the simplest link-node configuration for each type of equipment or facility in the system. After the configuration is complete, then cost functions can be developed for each type and common manufacturer of the equipment. These packages can then be placed into the input-like building blocks. This would greatly facilitate the use of the network model for gaming alternatives.

The fact that research has shown that non-linear cost functions of any order can be represented, the full capabilities of this model have not been reached. This model can very easily be expanded to include solid waste, stream control, air pollution, or transportation, to name but a few. The full potential should be developed, because the use of a single technique for so many functions of urban planning is invaluable.

The only other limitation is, as always, the development of a usable and general land use model, one that would bridge the tedious step from the

population model to the demand model. What is needed is a model that evaluates old neighborhoods on an incremental basis and allocates the proper portion of the population model to them. It should also take the difference and compute the new neighborhoods and industrial areas needed to support this growth. The planner would then only have to intervene by allocating the different types of neighborhoods to the land before proceeding to the demand model.

The development of these areas would then give the using agency a model that could be used to depict completely the urban development of the region using a minimum of computerized models---a most desirable goal.

Bibliography

- 1. Dorfman, Robert, "Formal Models in the Design of Water Resource System, Water Resource Research, Vol. 1, No. 3, 1965.
- 2. Loucks, D. P., "A Comment on Optimization Methods for Branching Multistage Water Resource Systems." Water Resource Research, Vol. 4, No. 2, April, 1968.
- 3. Dracup, J. A., "The Optimum Use of A Groundwater and Surfacewater System: A Parametric Linear Programming Approach." <u>University of California Water Resources Center Contribution</u>, No. 107, July, 1966.
- 4. Parikh, S. C., "Linear Dynamic Decomposition Programming of Optimal Long Range Operation of a Multiple Multi-purpose Reservoir System." University of California, Berkeley, Sept., 1966.
- 5. Harboe, R. C., "Optimization Models for the Analysis of Water Resources System." U. C. L. A. Ph.D. Thesis, 1970.
- 6. Reynolds, J. E., and Connor, J. R., "An Allocation Model to Determine Agriculture's Ability to Compete for Water, " Florida Agriculture Expt. Station Journal, 1971.
- 7. Guise, J. W. B., and Flinn, J. C., "The Allocation and Pricing of Water in a River Basin." American Journal of Agri. Economics, Vol. 52, No. 3, August, 1970.
- 8. Flinn, J. C., and Guise, J. W. B., "An Application of Spatial Equilibrium Analysis to Water Resource Allocation." <u>Water Resources Research</u>, Vol. 6, No. 2, April, 1970.
- 9. Reid, G. W., "A Multistructural Demand Model for Water Requirement Forecasting (Final Report)." Final Report to Office of Water Resources Research, January, 1970.
- 10. Delucia, R. J., and Rogers, P., "North Altantic Regional Supply Model." Water Resources Research, Vol. 8, No. 3, June, 1972.
- 11. Beard, L. R., Weiss, A. O., and Austin, T. A., "Alternative Approaches to Water Resource System Simulation." <u>Proc. Interational Symposium on Modelling Techniques in Water Resources Systems</u>, Vol. 2, May 1972.
- 12. Dracup, J. A., Grant, S. G., Cardenas, M. A., and Fogarty, T. J., "A Generalized Probabilistic Approach to Regional Water Supply Assessment." Environmental Dynamics, Inc., L. A. Calif., Dec., 1970.

- 13. Dracup, J. A., "The State of the Art in Optimal Conjuctive Use of Ground and Surface Water Systems." U. C. L. A. Department of Engineering Systems, 1971.
- 14. Reid, G. W. and Alguire, R. T., "Systems Approach to Metropolitan and Regional Area Water and Sewer Planning." Final Report to Office of Water Resources Research, May, 1973.
- 15. Bair, Fredrick H., Jr., "Planning Cities: Selected Writings on Principles and Practices," American Society of Planning Officials, Chicago, Illinois, 1970.
- 16. "The Real Future of Downtown," <u>Downtown Idea Exchange</u>, Vol. 19, No. 22, November 15, 1972.
- 17. "Jobs, People and Land," <u>Center for Real Estate and Urban Economics</u>, University of California, Berkeley, California, 1968.
- 18. Reid, George W., <u>Unit Water Consumption Projections-Oklahoma Manufacturing</u>
 and <u>Mining Industries</u>, <u>United States Department of Interior</u>, <u>Bureau of</u>
 Reclamation, October, 1964, page 15.
- 19. Reid, George W., Report on Water Resource Mathematical Modeling, Economic System Corporation AVCO, October, 1968, page 63.
- 20. Bartone, Carl R., A State Planning Model for Water Resources Development, Ph.D. Dissertation, University of Oklahoma, Norman, Oklahoma, 1970.
- 21. Ford, L. R., Jr., and D. R. Fulkerson, "Flows in Networks", Princeton University Press, Princeton, N. J., 1962.
- 22. Fulkerson, D. R., "Increasing the Capacity of a Network, the Parametric Budget Problem:, Man. Sci. 5(4), July, 1959.
- 23. Reeder, Hugh A., "An Out-of-Kilter Algorithm for Minimal-Cost Flow Problems with Convex Cost Functions", paper presented at the SIAM/SIGNUM Fall Meeting, Austin, Texas, 1972.
- 24. "Third Quarterly Cost Report", Engineering News Record, Vol. 183, No. 12, Sept. 18, 1969, pp. 106-172.
- 25. Comparative Cost Factors for Water Supply Systems, Tulsa Metropolitan Planning Commission, WSS VII, Tulsa, 1968.
- 26. Standardized Procedure for Estimating the Costs of Conventional Water Supplies, Black and Veatch, Kansas City, 1963.

- 27. Dawes, J. H., Tools for Water Resource Study, ASCE, Preprint 1074, Chicago, October, 1969.
- 28. Fulkerson, D. R., "An Out-of-Kilter Method for Minimal-Cost Flow Problems", Journal SIAM, Vol. 9, No. 1, March 1961, pp. 18-27.
- 29. Clasen, R. J., "Out-of-Kilter Program", Write-up for IBM 7044, RS OKF3, SDA, No. 3536.
- 30. Reeder, H. A. and Jensen, Dr. P. A., "An Out-of-Kilter Algorithm for Minimal-Cost Flow Problems with Cost Functions", Paper presented at SIAM/SIGNUM Meeting, Fall, Austin, Texas, 1972.
- 31. Shah, Kanti L., "Techniques for Estimating Costs of Waste Treatment Plants," Ph.D. Dissertation, University of Oklahoma, Norman, Oklahoma, 1969.
- 32. Smith, Robert, "Cost of Conventional and Advanced Treatment of Wastewaters," U. S. Department of Interior, Cincinnati Water Research Laboratory, Cincinnati, Ohio, July, 1968.
- 33. Standardized Procedure for Estimating Costs of Conventional Water Supplies, Black and Veatch, Kansas City, 1963.
- 34. Study of Needs for Sewage Works, Greeley and Hansen, New York, 1962.
- 35. Reid, George W., "Interdisciplinary Modeling Techniques", Unpublished Working Papers, January 1971.