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INTRODUCTION

The purpose of this paper is twofold: in Part I, to calculate the
rates at which linear and angular momentum are asymptotically radiated
from a spinning charged particle; in Part II, to use the calculated rad-
iation rates in the derivation of a linear and an angular equation of mo-
tion. The first of these objectives is accomplished by calculating the
electromagnetic energy-momentum temsor and integrating the appropriate
expressions involving this tensor, while the second objective involves
the generalization and extension of a method used by Cohn1 for the deri-
vation of the equation of motion for a non-spinning particle. As will be
seen, the extension of this method determines some, but not all, of the
terms in each of the equations of motion fof the spinning particle.

Calculations concerning the asymptotic radiation of a spinning parti-
cle have been made earlier by Kolsrud and Leerg However, their objective
was to calculate the total scalar intensity of the radiation rate, rather
than the vector and tensor forms calculated in this paper. The work of
Bhabha and Corben3 parallels this paper to some extent, beginning with some

of the same assumptions, but employing the Dirac "world-tube'" method to

1J. Cohn, "Derivation of the Equations of Motion of a Classical
Radiating Charge," American Journal of Physics, Vol. 35, No. 10 (1967),
pp. 949-950.

2M. Kolsrud and E. Leer, "Radiation From Moving Dipoles," Physica
Norvegica, Vol. 2, No. 3 (1967), pp. 181-188.

3H. J. Bhabha and H. C. Corben, "General Classical Theory of Spin-
ning Particles in a Maxwell Field," Proc. Roy. Soc. (London) A178, 273
(1941). :




derive the equations of motion. Nyborg1 summarizes and compares the results
cf Bhabha and Corben with conflicting results obtained by others using other
methods, concluding with a statement concerning the difficulty of feconciling
the conflicting,results.2 The equations developed in the present paper do not
agree exactly with any of the equations mentioned above, though extensi&e sim-
ilarities exist in some cases,

Throughouf this paper, ch;‘following conventions will be observed:
Roman indices should be assumed to run from 1 to 3, while Greek indices will

run from 1 to 4., The metric tensor guv has the elements (1,1,1,-1) on its

dxude/cz. The

]

main diagonal and zeroes elsewhere, so that dT2 - 848
following definitions will apply unless otherwise étated:
(1) c = velocity of light in vacuo
(2) %" = coordinates of retarded field poinﬁ (observer)
(3) z" = coordinates of source point (observer)
(4) RH = x" - z¥ = 4-vector from particle to observer
(3 p = distance (in 3-space) from source point to field point,
measured in momentary rest frame of particle
(6) v" = particle velocity = dz"/dt
(7 ab = particle acceleration = vV
(8) Muv = antisymmetric moment tensor of particle. The space-
space components of M"Y in the rest frame of the particle
are given by the vector 2mu/e, where u is the magnetic"
dipole moment of the particle, while the space~time com-

ponents are given by the vector 2mn/e, where 7 is the elec~

.

1P. Nyborg, "On Classical Theories of Spinning Particles,” Il Nuovo
Cimento, Vol. XXIII, No. 1 (1962), pp. 47-62.

2Ibid., p. 62.



tric dipole moment (which is assumed to be zero in the
rest frame),

(9) m = mass of the bare particle

(10) s¥W = spin-angular-momentum tensor of bare particle. In the
rest frame its space-space components are givén by the
three-vector Iw, whére I is the particle moment of in-
ertia and w is the angularAvelocity; the space-time com=-
ponents are zero in the rest frame.
Note: The particle is assumed to have a single dis=-

tinguishable axis. Therefore uis parallel to w, and

as a result the rest-frame expressions for MaB and SGB
are proportional,

(11) A= véctor 4-potential of particle

(12) P - field strength tensor of particle = aaA6 - aBA“

(13) e“B = symmetric electromagnetic energy-momentum tensor

ek B . 1 oB de
(F )*_"x + 3 ¢°%r, ¥%°) /4

For free radiation fields the following definitions are used for
linear momentum P* and angular momentum 3*B,

4

a U=ty

o  T= 7 e

where the surface integration is taken over any space~like surface. Given

these definitions, one may in turn define the radiated linear momentum

rate (observed at infinity) as



(17) dP= p'i;:o Ei‘j edpd"?

(Ac)

and the radiated angular momentum rate as

“PB_ |im 1 S P
(18) J\T - P-)oo Cc J. ald'g
~ (o)
wiiere in both cases Ac is a spacelike surface segment, dependent on dr,

that is infinitely far away from the location of the charge during dr.l
One other quantity can be defined at this point for the sake of no-
tational simplicity. Since R® is the vector from the source point to the
retarded field point, the interval RGRG from source point to retarded field
point is equal to zero. This means that the components of R in the rest
frame must be (R,p) since p is the magnitude of R. .Also, v* in the rest

frame has the components (0,c). Therefore if one defines the vector W as

A R
(19) u = R/P - VL

the reéult is that u” in the rest framé has space components forming a
unit vector pointing from the source point to the retarded field point and
a time component equal to zero. Alternately, = (E/P,O) in the rest
frame. This implies that vaua = 0, uQua = 1, and Raaa = pugaa, all ob~
tained by considering the appropriate rest-frame expressions for the
quantities involved. The expression uaaa occurs frequently enough in

the following calculations to warrant defining the shorthand notation

1Cf. definition of angular radiated momentum given by J. Cohn,
"Consideraticns on the Classical Spinning Electron," Journal of Math-
ematical Physics, vol. 10, no. 5 (1969), p. 803.




PART I, ASYMPTOTICALLY RADIATED MOMENTA FOR A
SPINNING RADIATING CHARGED PARTICLE



1. THE ELECTROMAGNETIC FIELD TENSOR

In the calculation made here, the vector potential is assumed to be

the sum of the potential A: resulting from the point charge and the po-

tential Ag

usedl’2 are:

resulting from the (magnetic) dipole moment. The expressions

(I-l-;) A'“: -£ v

and

(1.1.2) A:_-_- J:R“ua dalz_ ( MY &)

R* v,
ﬁvaluating Az, one obtains
my § Py $
1.1.3) A= = MR, -M " - (1 R"lﬂ( a‘)+ (1 R;)(vv{‘)
4™ 2m(Rv) v R ™
Several simplifications may be made at this point. First, the fact that

.the electric dipole moment is zero means that MP4 = 0, and in the rest

frame va'is,the only nonzero component of v*. Therefore Muvvv = M,ul*v4 = 0.
Also, since R4 = p in the rest frame, Ruva = -cp. Finally, also from the

M

rest frame expression for v, vava = —cz. When these simplifications are

incorporated into the expression for Ag, the result is

lKolsrud and Leer, '"Radiation From Moving Dipoles," p. 182.

2Unless otherwise specified, retarded field values are used throughout
this work..



Y My « mv
(I.1.4) A‘: = ZZPI:(/\/\ R, + /"\Pféu R a. " _/:\_PRv c)

Similarly simplified, A; becomes

(1.1.5) /Ajszz éi; lri‘

so that the entire potential AY can be written as

ps M o Y Ay o 4‘\)

The next step is to calculate F*Y = 3¥AY - 3VAY.  The following pre-

liminary calculations are helpful: If BM is any four-vector used here,

(;vl?l*__ 9 BA‘,_ ¢J B“g(t' =:£§Ab v

I.1.7 = =
( ‘ %y JdT dy

From Rohrlich1 (wifh corrective factor of 1/c),
. , Y v
v v, vt R
Ly ) = - +~.-=—'—-——-
(1.1.8) ' T (u £ )2

cp

so for the retarded case,

(1.1.9)  J)"p%= - B R

Also from Rohrlich,2

(1.1.10) '.9‘“'9 = u’+ a, R%.z

Now required derivatives of RP, vu, u“, and a" can be obtained:

@i IR P22 = g7 3% g ":R"
' c

lF. Rohrlich, Classical Charged Particles, (Reading, Mass.:
Addison-Wesley, 1965), p. 83.

2

Ibid., p. 84.



(1.1.12) = — = - - =
v s vpt 4 _ ) v a*y v_-R#AV
(I.1.13) o U = 9(’%—- E‘)— -%— +(Z-P'; o+ -F-‘?,)R —_f-—i_
< L) v
v Vv a* _ aunpY _ 4R
(I.1.14) 3 &= ZF- +(;? <P )R o3
Defining a uu o éu, one has
v 1 o v
(1.1.15) avau= % +(Z ~ )R E‘_%;.i‘.

The calculation of d'A" and B\kg can now proceed. Using the above expres-
sions, one obtains

e (_ &R _ v‘“/lv)

- V A —
(I.1.16) 9 AP = e <

The calculation of BYA& is considerably more involved. After lengthy ten~

sor manipulation, the following result is obtained:

MU’ - e LR .
ZZMCP lmcp lmcp

(I.1.17) d A = - - M

-~

Jeau M oL l _ ea.u /z'\“*u V_ e au ,ua:{ Rv
2”"“- oZm * mc“z
¢ <Pt ,

2 a v
ea “ Mo mv

;MCSP chapa ol QMCP
A " v
+ ea“ Ma R\)- Qe ' aL A 9- e MAR
Am c’,oz /v‘ * 2 n ca,o3 M R"‘>‘ 2mcsla, /V\ R
e QTR

+

2 m cap-z

~av



aR
Substituting u’ + uz =AY and combining A: and A:, one obtains
c
Ml’ [," v] 3 e [Vd M fva m]
(1.1.18) = A oo U u ; ; M u,‘R

mcp

n] f" t\"- M
....._..___3 /V\ u R .'ch,a"/v\ 3ea /\«

chap
3e(¢u) “1_ eau [V& ] ea.,
2MC M 2@:" R JMC d R
< fve Ve .«] 2 Y@
ea ey
-'-.'ch"'}:2 /V\ U.‘R 2mc3 Tm o M u e sPa

‘ (v JJJ fve a] 9 ag
2o M .'ch“ BM R u 3::;/\1 R

2m p’2
** fuy .n 2 e AV e ]
3 M c:.Pa m - """"‘c f a

v #]  ea [v,«]
e - u
i o U R

where the notation ALVBM = AVBM - a¥BY and M [”“AQB“] = M”“AaB“ - M"aAan.

Rearranging terms to place those with higher powers of p first,

. A e u]

e :[ 36(“««) M .28.::",:‘ u R - eo.::pam L«R”
M e au [ RJ Zeau ik’ ]

-'lmc’ 2 R Jmc 9-M R‘R

Alve “ e [v pad _ etu v pu]
JM c F-t a R ch; v R }



* _33_—3'?’;‘:“ u, R T "~ R R _ 3eaP w.;‘u,.]
amc’ q, 3z [""uda,# - leap u 2:2"3? M[uR“u,‘J

-—lmilpz M* _ 2%.,_ .U,f"u/*J

+- i M - g M

Defining each of the expressions appearing in the large square brackets

above as F?vl), F%vz), and F%23) respectively, one can write
e 2AV mnv AR Y
(1.1.20) + F
Foo=Fly *Fea

where the subsc?ipt of each term on the right side indicates the power
"of p contained by that term.

It may be noted in passing that (I.1.20) is in agreement with a theo-
rem proved by Goldberg and Kerr.L Accorxding to this theorem, F*¥ must have
the p-dependence indicated by (I.1.20), and in additiom F( l) = 0 and
R_ = AR" where A is scalar. Brief calculations using (I.1.19) show

n
Fi-®

that these two latter conditions are indeed satisfied.

lJ.-N-. Goldberg and R. P, Kerr, "Asymptotic Properties of the Elec~
tromagnetic Field," Journal of Mathematical Physics, Vol. 5, No. 2 (1964).

10
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2. THE SYMMETRIC ENERGY-MOMENTUM TENSOR

Before proceeding directly with the calculation of e““, it is well
to consider the objective of Part I, namely, to calculate the asymptotic~
ally radiated linear and angular momenta of a spinning chafged particle.
The validity of the definitions used for these momenta can be bolstered

by showing that the integrals

(2. gy S 0" d
(a<)
and

(1.2.2) lim Ky
p-—)co \T a(v‘q
are independent of the particular surface segment Ac chosen. To phrase the

conditions another way, consider the following drawing of the two light-

cones of a particle at points T and T + dt on its world line:




By Gauss' Law, the integrals

(1.2.3) eMvo( -,
(AS)

and

(1.2.4) S N

(as)

where AS is the surface composed of the surfaces Aol, Aoz, Acl, and Acz,
should equal zero; in other words, the radiation entering the volume
enclosed by AS must equal the radiation leaving it, since AS encloses no
sources. Therefore if it can be shown that the radiation crossing the
light cones is zero in the limit p-«, then the radiation through Aol must

equal that through Ao, in the limit p+», Since Ao, and Ac, are arbi-
2 2

1
trarily chosen, this would mean the definitionms are independent of the sur-
face chosen. As the surface differential on the light cone is Radw where

do is the differential of (thrze-space) solid angle, the definitions are

independent of the surface chosen if

(1.2.5) ;._::og 0“"Ryduw = O

and

I LyIsy —
(1.2.6) P:”w""’g‘T M R.‘ofw =0
The proof of (I.2.5) can be done immediately. (I.1.20) shows that

the expression for F*V contains terms depending on p-l, p—2’ and p-3.

Since 6"V is quadratic in Fuv, the highest power of p that can appear in
=2

any term of o'V is p ~. This means that the expression in (I.2.5) approaches

12



zero as p-l, and therefore that (I.2.5) is proved and the definition for p¥
is independent of the surface segment Ac chosen. The proof of (I.2.6) re-
quires additional calculations and is deferred until Séction 3.

The expressions for the radiated momenta can be tran;formed in such a
way as to make them somewhat easier to calculate. Applying Gauss' Law to

the following diagram,

t
Ds
b‘“"

&=

T

v
-~

and remembering that (as has been shown in the linear case, and will be shown
in Section 3 for the angular case) the radiation crossing the light cone is
zero, one can see that the radiation crossing the spacelike segment of sur-
face Aos must equal that crossing the timelike surface segment Aot. Since

1

dca = uap2 dQ ¢ dt~, the definitions of the radiated momenta may be rewrit-

ten as follows:

lRohriich, p. 110.

13
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2. P, = —;‘:,.5 6w, pdar dx
and

r.2.8) ATy =" i,‘.',"..SJ"‘"” YA dr

Consider in particular the last integral. Rewritten to show its ex-

plicit dependence on e““, it becomes

r.2.9) dJT5Y = ;,'.,’“o,S(GV "= 6% ) u, Pzalcﬂ:al’t

Since |x | + @ as p -+ ®, any term of L which contains a power of p
which is less than -3 will not contribute to the integral in the limit

p + =, When the integrals
; Apmy I ¥ XY M o Y
and

.21 o P g = “f’,'.;"oose alJLa(t

are considered, it becomes apparent that any term of 6"V which contains
a power of p which is less than -2 will not contribute in the limit.
In the previous subsection F*V was written as the sum of three

parts F%Xl)’ F%v 2)? and F( -3)° with the subscript denoting the power to



which p appears in each part. Then

ay Yy v
(.2.14) 9 [( F. y ¥ Fc ay ¥ Fc-s) (F« (~1) +F-2) "'Fav(-:)

+2‘;’(F N Fon * Rl R Foen o6 ("’)}

Multiplying and regrouping terms to put those with highest p-dependence

first, one obtains

“ o v “v
(1.2. 15) e ‘)‘77 (F(~1) F"‘(—i) + .E"f.—. F(-i) -(P(-i)) (F( 1) (‘2)

PILS v
+ Fc-z) Et(-l) 11- (JF-J) %p( .1.)))

+ lower order terms in P]

MY

AV
(-2) + e(_3) + lower ovder terws in P

where

‘ 1 o v
(I.2. 16) e( 2) =_7-r[F::.l) F"‘('l) * zq-- F('l) 4 ('1)]

and

PR 1 A v “ “9
(1.2.17) 96"3) =,;;’T[F(.1) Fx(-;) + F( 2) F“ (-1) +‘-__ F( ~1) “P(-z)]

In view of the foregoing observations about the nature of the integrals,
one need not be concerned with calculating the terms of 0"V whose order

in p is lower than -3. Thus in place of the full expression for elW’

15



the quantity

s v

"
(x.2.18) 6, = 6, * 6

may be employed in the calculation of dJ“v, and the quaﬁtity B%Yz) alone
may be used in the calculation of dp" as well as in showing that the def-

inition of angular momentum is valid.

16



3. VALIDITY OF THE ANGULAR MOMENTUM DEFINITION

As has already been demonstrated, the validity of the definition
of linear radiated momentum can Be seen without additional calculation.
However, the proof of validity for the definition of radiated angular

momentum requires the calculation of the integrand

(Io3.1) (97_”3)14&- " a) % ) R ol w

which in the previous section was shown to be equivalent in the limit

to the integrand JauvRadw. The calculation of e% -2) requires the eval-

uation of the tensor products F%gl)Fa¥—l) and F( 1) aB(-1)° which eval-
uations are routine but lengthy and are therefore not reproduced here.
As
G ) Oi'

- e Fas e i

the result for e% 2) reduces to

id 1 ea _ ec'tu 3 (a“) ®
(1.3.3) 9(—:.) ‘f'ﬂ[(zmc" Ame? ;m )M /V\ RR

_6(;“1;..3&.‘ 3e(a.) )ea.u M M RR

me 2mc dme ch"

lrnc

_3c<ea" _cay _3ela, )ea,. 2fas
. Ay QMCF Ame 4 2m ¥ M /Vl’ R**RS

1
 Dipoles," p. 184.

A similar result is noted by Kolsrud and Leer, "Radiation from Moving

17
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9e (a ) ea, .
Ll SR R, + S (52 R R,

e (S AR R, - (352,

+6f2(§,..a:)M u‘Q +-—#(e au)

| MV
+asp () i*h, «a,.)-a)]ﬁ—,,z"-

Note that 9% -2) consists of a scalar quantity times the direct-product

tensor R"RY. If this scalar quantity is defined as W, the integrand
becomes W(R"‘R\’x"l - RaRuxv)Radw = W(R\)xu - Rux\,))RaRadw. Since the pro-
duct RaRa = 0, the integrand equals zero; therefore the limit of the
integral is zero and the definition of radiated angular momentum is

valid, as is the definition of radiated linear momentum.



4. THE ASYMPTOTICALLY RADTATED LINEAR MOMENTUM

The asymptotic rate of radiation of linear momentum can now be cal-

culated, According to (I.2.7), it may be written as
M . AV a .
(r.4.1) dP =—/’,‘_;",,§9 uyp ddide

It has been observed that 0%1)2) as expressed in Equation (I.3.3) has

the form WRP‘RV, where W is a scalar function. Rewriting the above ex-

pression, one has

AP“_ lim MY 2
(1.4.2) T T WR R, p ddl

=~ lim S\A/R“R\YR\,/F - v/C)de‘-nJ

p=>

lim SWR R'v, £ dw

p>ee

S (wreprda

Substituting for W from Equation (I.3.3),

(I.4.3) _o_(_’_).“:__ lim 2 [(ea" ~_e»_a'nu 3e (au)

dT preo ‘f‘"f’a 2me® Amct 2imc® )M Mp R R

2me? Zme® /Ame

. 2 e
- é(lmc - eay - 38(4‘{))&““7* quMpSR*RS
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- Besla - s - 22 e,

.2mc

‘fe(au)Mdp RR+ 47MM RR

“f 0§ _ afae’a’ .Zea.) «A
‘fm c:6 M M R R P\Imc? Zmce U2y

bpe‘a, m*P 2pe’ fap
+ -P——-lmc‘ M U, 2, + 755 M Ry

e i v S8 (o) =) [ RN

Since the integration with dQ involves integfating over all possible
orientations of the space components of the unit vector ua, the substi-

.tution R® = p(ua + va/c) must be made befofe the integration can be

carried out. Making this substitutidn.in (1.4.3), factoring out some

coﬂstants, and remembering that the integral of a direct~-product tensor

formed from an odd number of u®-factors is zero over 41 steradians of .

solid angle (see Appendix A), one obtains
Ak 2 2
lim _€ aa, |, 3aulad) ), »
(I.4.4) AP = - f[ ( 4 2oulTul
AT preottme® Tt T Tmiet /U

+( (&) 3«."'(4.4) + a.uz 7(4..))‘0' }M pMpsu‘us

Fmiet  Amig? o3 GmEc

+{(.3.4_&.+ Tla )u .;.3«,.4“ V}M M u.¢ 5

2mict lm"c" 2 m? P



2m

£ S

- “ ct._p R ]
o - e )t g PMTM, w,

U
+{ Ay _ (B(a..)“ za ) }M /"\ ‘u «Us
[

+ zau) PP e Ll i
Ymict
+ ‘{(au) /V\ /v\, AT RV +%Ma%:u.‘us e
+23ma,. M /V\ fu v +23““ M Mp"“sv
:z o fe WA b A,

L N I T L L “
+—-1-;;3M AMF UgVv 1+ m M Mp VsV
m

ah A
m /"\uau +““ Mw“a’»’*?a“M“aPV
C

v ap M

L Senp M
+P%M U %y U -f-"‘;:‘?’M Via,v

ot B el '
+ 2 My v+ (@t = o) v [d L
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Grouping the factors of W together in each term and leaving only these

factors within the integration signs yields the expression

a5y dPT_ _fim £ 2dd “ Ll
Ar " Teeewnd | 2. Ue Unlly U

3a°2%22 2 s
t AT M /v\p &’ 7“ Ugu O(JL
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Substituting the expressions for the integrals given in Appendix A and

simplifying, one has
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An additional result obtainable from (I.4.6) is the particle's energy
radiation rate, which is just the fourth component of (I.4.6) multiplied by

a factor of c. Using the rest-frame identities

¢ 2
(I.4.7) AC =

oy .'MV
(1.4.8) C/V\ S -'/V\ v,

(1.4.9) C Muq’ = MAV

4 M4

and the fact that in the rest frame a' = M" = 0, one obtains
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in the particle's rest frame.

Calculation of the radiation from a magnetic dipole (without charge)
has been done by Kolsrud and Leer.1 Even when the charge-dependent terms
are removed from (I.4.10), fhe result differs from the Kolsrud and Leer
result. (1.4.10)'contains equivalents of all the Kolsrud and Leer terms

(although some coefficients differ) plus other terms.

1Kolsrud and Leer, p. 187,



5, THE ASYMPTOTICALLY RADIATED ANGULAR MOMENTUM

Using procedures analogous to those used in Section 4, one can now
calculate the asymptotic radiation rate of angular momentum. The def-

inition of the angular momentum radiation rate is

| MY y G [-)
@50 AT oy, < (65 6™ de

Since dod =-pr2dn ¢ dt has a p2 dependence, and x™ depends on p,
only those terms of 6" which depend on at least p-3 will contribute
to the asymptotic limit. The integral can therefore be written as

follows:

v MY A av
(:52)43‘ (67X =Gy Aa-“+cj(e(_3,x Gax Vo

where the second integral varies as po and the first seems to vary as

pl. These two integrals will be treated separately, with the first one

represented as dJ%:S and the second as dJ%;S
The apparent plndependence of dJ%a) raises the possibility of

divergence in the asymptotic limit; however, it may be shown that di-

vergence does not occur. Using the identity =’ + zu, one has

v

“ “ oV
(I.5.3) g(J‘(’: J(Q(_Z)R + “2);_. R 6(:; )clc;

't *V M oy .u. v
where the first of the above integrals depends on p1 and the second de-

pends on po. However, as demonstrated in Equation (I.3.3), G%Y;) ha

the form R*RW whera W is a scalar. This means the first of the above

28



29

integrands is equal to W(RQRVRP - RQRPRv), which is identically zero.
Therefore, the term depending on p1 vanishes, and dJ%Z) is actually’

dependent only on pO:
v - oy AL LYY
(1.5.4) dJ’f;,:é-J(e(__,_,z — 6.2 Ju pddhcdr

The possibility of divergence in the limit p—» is therefore removed;

and evaluation of the integral for dJ%:) may begin with the above

expression.

Rewriting 9%:’2) as WRaRV, one has
v : v
(1.5.5) a(J'(M) =- IJW R“(sz'u-[(”z )u“f)"a(d\a ca(?:
or, using the identity Ra'u = p and combining constants,
A
(1-5-6) —J—'L]_;ﬂ = jw (R “ v) Pad'ﬂ-’
dT

Substituting for W from Equation (I.3.3),
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In order to make use of the integrals developed in Appendix A, R must

be replaced in the above integral with the identity
A M 'U"«
s Ri=p(u + X)

Performing this substitution, integrating by means of the formulas

from Appendix A, and simplifying, one obtains
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From the foregoing it can be seen thﬁt éhe asymptotic angular momen-
tum radiation depends upon the position z" of the source particle. Al-
though this may seem strange since any finite ' would be negligible at
asymptotic observer distances, it can be shown by the following proof
(suggested by Cohn§ that this dependence exists as longvas any energy is
asymptotically rédiated by the particle. Assumé that the asymptotic
radiation is unaffected by a change in Z'. The change in 2P is equiv-

W

alent to some change in x“, say from x to * + xx, so that the pre-~

ceding sentence may be expressed as

(1.5.10) ;lm g(e (% + xA e (x +X ))A F’_"mwj(em;/t‘e’f/‘zv)olq

This can also be written as

(50 1o (6% - 650 des = O

For convenience assume x% = (1,0,0,0), and let p = 1 and vy = 4, Then

cne obtains
(r.5.12) ;7 59 o =0
But this is proportional to the 4-component of the definition of radiated

linear momentum for the particle, which is not zero. Having reached a

contradiction, one must accept the fact that the asymptotic angular momen-

1J. Cohn, personal letter.



‘tun radiation does depend on the source's position.

To calculate
V| oY CYTIRY
one needs only to calculate
MV 1 ALY ol AL
.5.18) d Ty = ) (GyR =~ G5 R )de;

since when ®’ is replaced by ¥ + 2" and the limit p—~» is taken, the terms

containing z" approach zero as 1/p. From (I.2.17), one has

. e { sk o V ALk oV “v o «p
(I.5.15) 9(_,) ’-’;}'(F(-ﬂ Fd(-z\ +Fc-z)E'~(-1) * i;i" F(.-1) E‘ﬁ(—.z))

The quantity ﬂ%?l)qmﬁ(-Z)’ when calculated, has a.value of zero, leaving

PR L Y
(1.5.16) Q‘ 257 (F( aFen * FronFacen )

When the quantity F“al) 0 (-2) F%%Z)Fag-l) is calculated, the following
result is obtained:
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To calculate dJ%;B, one ﬁust use (I.5.17) in (I.5.16) to obtain 6%23), and
av - WV 2 .0

then calculate (9(_3)xu 9(_3)x )uqu dit dr in terms of ﬁx' Performing

these calculations, and integrating by means of the integration formulas

developed in Appendix A, one obtains
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6. SOME SPECIAL CASES

The expressions developed in the preceding sections are so lengthy
as to render their use impractical in many situations. However, if cer-
tain approximations and special cases are considered, the length of the
expressions decreases significantly. Two special cases are of interest
here: the case in which the particle is not spinning at all, and the
case in which the spin is sufficiently small so that all second or higher
order terms in the spin or its derivatives can be neglected.

For the caée of no spin, one obtains the expressions

- 2 2
(1.6.1) (fl_f_.) — le ax 'U"M

dt s 3

' d J*" 22 [ VI 2 [ ]
(1.6.2) (&Y | =% a
( O(T /. 3C3 a v -+ CZ'V -3

where the ns notation refers to no spin. Note that the right side of
(1.6.2) contains a term depending on the particle's position. The posi-
tion dependence follows from the fact that an arbitrary origin has been
used in the coordinate system. Had the particle position been chosen as .
origin (equivalent to setting 2% =0 here), the position dependence would
have vanished from (1.6.2), although it would be inherent in the choice of
origin.

In the case of small spin, one obtains (after simplifications)



41

the expressions

dP*Y et [al per _ 1 pimr wom g
(1.6.3) ( =3 -”-‘-:,M g~ mM a 2p mc*M va,v +2¢v)
5 ‘

T

AT _ vl p v “op v]
(I.6.4) (:‘—T—)r—- (MczM a‘g m “,9 mc"'M Vpu2p V
5

[va J
~24 "J) ( zM a,‘v -—‘!M VVM

+_£_ M[u-x #-J_Lf [\l .u.]_'_______ ""“’)

Imct Ay & —j- Im

Expressions (I.6.3) and (I.6.4), as well as other expressions derived from

them, will be used extensively in the work of Part II.
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7. SAMPLE APPLICATION: A ""CENTER OF RADIATED ENERGY" THEOREM

As pointed out by Cohn,l the fact that a particle may emit angular
momentum even 1f it is not spinning facilitates the development of a
theorem concerning the location of the "center of radiated energy" of

the (non-spinning) charge. The "center of radiated energy" is defined

T
Sx*e A%
‘._ ‘im /2y o
¢ pre Y 3
( 0*4%
Ao

Of the two integrals in the above expression, the one in the denominator

as

(1.7.1) R

is given by

(1.7.2) ;;mwje z = "a(W

where dW is the energy radiated by the charge during dt, and the one in the .
numerator appears as part of the expression for dJ41 for a non-spinning

particle:

Jj—‘f.('. i ._j (Q‘i'i i ‘fl'z'/)olgdl

(1.7.3) (no spin) = prec

im 4% L 43 z* 4i
- pru 2 el - 2 fos]

lJ. Cohn, "Considerations on the Classical Spinning Electron,
Journal of Mathematical Physics, Vol. 10, No. 5 (1969), p. 803.

2A11 quantities in this section are evaluated in the particle
rest system,



The last integral in the above line is given by

. 3 <
(1.7.4) lim SQ#"J:‘ = ~c dP =.0

py

since dPi = 0 in the rest frame. Therefore

. i 44
(1.7.5) "'“Se"“x w=cdl’

pre° (no spin)

Substitution may now be made for the integrals in the definition

2 - e dT¥ AT e

c” Aw T dW/dr

of R: as follows:

(£.7.6)

%-dW/dr is merely the fourth component of radiated linear momentum for

a non-spinning particle; from (I.6.1), one has

a.7.1y d W _ 2e%

————
o~

AT 3c?
dJai/dr is obtainable from (I1.6.2):

dr - 3% 37
1l

"y, ‘
AT 202 % 4] 2,2 [y 200 2 g
(1.7.8) 2e 4 L e z[vJ :ze(aJ.z)

One then obtains

' . - lf*‘ . 2 ]
(1.7.9) R: =-c_"%= 5“?{;4*,

so that the "center of radiated energy" depends only on the acceleration

of the particle and on its positionm.

l(I.7.9) agrees with Cohn's result except for a factor of two, a
sign, and the presence of the position-dependent term. The factor of
two was missing from Cohn's result because of a multiplication error;
the sign was omitted from his definition of angular momentum density;
the position dependence appears because in this work ar arbitrary ori-
gin was used in the calculation of angular momentum emission, while in
Cohn's work the particle location was used as origin, effectively making
the position vector equal to zero.
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PART II, EQUATION OF MOTION FOR A PARTICLE WITH SMALL SPIN -



1. METHOD OF DERIVATION

The method used in this paper to derive equations of motion for a
spinning charged particle is similar to the one used by Cohn1 for a non-
spinning charged particle., It is used here to derive both the linear
and the angular equations of motion.

The equations of motion for a charged particle may be written in
the forms

(II.1.1) - m a-M= F:).(i' - Pa.l:m + D“

lin

(I1.1.2) S"”,-_- T — j""'" +D“""

ext asm ang
‘where "V is the rate of change of mechanical angular momentum, Fth and
TV are the external force and torque, P* and J*V_ are the asymptotic
ext _ asm asm

radiation rates for linear and angular momentum, and D;in and D::g are

terms which are defined such that the respective equations are true. The

u and DNV

problem, then, is to calculate expressions for D1in ang

Consider the particle as being located at a point Py in vu-, au-,

éu—, Suv—, éuv—, and §uv—space. Now suppose that the particle is moved
around an arbitrary path in this gpace and back to its initial point,
designated as Py* Thz assumption is made at this point that the initial

and final fields differ exactly by the radiated momenta; that is,

1
Charge," pp. 949-950.

Cohn, "Derivation of the Equations of Motion of a Classical Radiating
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2 f
(11.1.3) L a
ext AT = P‘"ﬂ AT
P [
ke r
(I1.1.4) »v )
-rext AT - ‘Tarm JT

Ps Pe
A special problem, involving choice of coordinate origin, arises

at this point in connection with the angular equation. s*V and szt

v
asm was developed using an

are defined at the particle location;
arbitrary origin. It is a simple ﬁatter to move the origin used in
determining jz:m to the particle; however, the particle must be able to
to move in an arbitrary manner about the closed path described ear-
lier. This means, of course, that the.particle will move away from
the origin.

This problem may be resolved by replacing the single coordin-
ate frame used in (II.1.2) and (IX.l.4) by a series of consecutive frames,
" separated by infinitesimal intervals, with origins located on the path
followed by the particle. These frames are all at rest with respect
to each other, and corresponding axes are parallel. This arrange-
ment allows the integration in (II.l.4) to be carried out using only
quantities defined in a coordinate frame using the particle posi-
JHY

tion as origin.. Therefore, from this point forward, asm will be con~

u

sidered to have z= set to zero, thus eliminating all zu;dependence

from J*Y .
asm
It may be noted in passing that this is equivalent to removing

from j;:m all terms which arise from 32:) as defined in Section I-5,



leaving only those which come from J(b) This can also be seen in

H H

another way: wusing the definition x" = z" + Ru, one can write

MY im « «
(11.1.5) J’a’m = ,C{')“S(e vx.«-_ 9 ﬂ-xv) Jo;

= lim Y tm '

(11.1.6) = P””S( e eﬂzv)ala- +;,.,w5( R~ )o(o;
- A %4 - v N &4 lim X & &,

(11.1.7) = (Z asm Z ¢fM) P.)&S(Q VR 9 /‘Rv) JO:(

As is demonstrated in section I-2, the only parts of 6"V which will
contribute in the asymptotic limit to jz:m are those defined as 6( 2)
and e% 3" Furthermore, 6%23) will not contribute in the asymptotic
limit to the first integral on the right of (II.l1l.6); as 6% 2) has
the form WRuRv, it will not contribute to the second integral on the

right of (II.1.6). Therefore (II.1.6) may be written as

lim v u u/l v lim xV M Y
araw 5= (e o e+ SR e
The first integral on the right of (II.1.8) is seen to be j?:) by
comparison with (I.5.4); the second is seen to be J(b) by comparison

with (I.5.14). Finally, the second integral on the right of (II.1.7),

which is equal to the second integral of (II.1.6) and therefore to

UV
J(b

origin is taken at the particle.

y? is just the radiated angular momentum when the coordinate
Thus for the purpose of determining the equation of angular motion,

(II.1.9) L sy _‘ aiaalkd
: \];Lffn B 'jr;b)
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Further simplification of 32:m will take place in Section II-2,
Integrating both sides of both equations of motion and applying the

above assumptions, one obtains

P, no " "
y7s “ ># ‘
(11.1.10) ma dT = Fext"(T = E,,..o(‘r + D:,AT
P 0 " "
[ fo Pe
AR
> [)hn511-=1 Pv\af:11'==rhlf = C)
2 MY ¥
(II.1.11) S dr = ext a;m”(T + D“"f

e

?éu dr = §s o= 5[ = 0

Fo

lin

certain vector and tensor quantities C;in and szg' If the latter two

quantities can be calculated, D, and Dz:g are obtainable b& simple dif-

The above results imply that D*. and Dz:g are the time derivatives of

lin
ferentiation.
c!. and c*V may depend on terms involving the quantities z4, v*
lin ang ’ ’

au, a! ’ M“v, ﬁuv, and ﬁpv’ either singly or in combination. Thus they

may be represented by expressions of the following type:

(11.1.12) C;: =f,vVi+f v+ LV £ v,

1.1 “v “ “v d “v
(119 Cany"% O, + 4.0, * 930, +7’49‘f ...

i énd q are scalar functions, the V: are linearly independent

vectors, and the egv are linearly independent tensors.

where the £



The term "linearly independent" is used in a special way here. The

Vg and e:v are "linearly independent" vectors and tensors only because these

equations must be true for arbitrary motion. Typical examples of the Vu,
for instance, would be a" and é"; for any given motionm, a" and a" would
of course be related by the eduations of motion and would therefcre not

be independent._ It is only in Ehe case of arbitrary motion, where any a"

and any a" must be allowed, that these quantities become independent.

u

In order to obtain expressions for C!, and ¢!V  which are as gen-
lin ang

eral as possible, it is desirable to eliminate from the final expression

any reference to the forms of FZ and Tzit. In the method of solution

Xt

used here, this is accomplished by contracting the linear equation with

vu and the angular equation with an, which is proportional to Suv' As

stated by Cohn,l the nature of D, allows one to choose either ng or

“1in t
4

D1in (but not both) arbitrarily, and in this case Fth is defined so that

u - HV . . . .
Fextvp 0. As for Togt? the torque on a magnetic dipole is proportional

(in three-space) to p x B. Since y is parallel to w, the triple product
w E.x § is zero. This means that thé part of ngtMpv resulting from the

space-space components of Tzv

and M’ must be zero. Since the space-
Xt UV

time components of M are zero in the rest frame, the rest of ™V M must
HV ext uv

UV =
also be zero, giving the result that TextMuv 0.

The assumption of constant spin magnitude also implies that the con-

traction éuvMuv is zero. 1If g?

is constant, then w and é_must be perpen-
dicular. This means that the space-space contribution to éuvsuv must be
zero, The space-time contribution is zero because Su4 and S4v are zero

in the rest frame; therefore épvspv and éuvMuv are both zero.

1Cohn, "Derivation of the Equations of Motion of a Classical Radiating
Charge," p. 949.
‘ -
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Using these results and the fact that auvu = 0, one obtains by the

contractions of the equations on vu and M

UV
. + C?»
(II.1.14) 0 = 0 - Pamv'-‘ L
II1.1.15 O—O—"‘"M + COM
(I1.1.15) - \Lm v ang ! ‘pv
or,
. # DM
11.1.16 - -
( ) Clinl/,; Fa’,m]f,‘ O
sk )
II.1.17 - =
¢ ) Canj M,uu J;um Mﬂ-l’ O
Both é;in and ézs are linear combinations of linearly independent vectors;

égzg and jz:m are linear combinations of linearly independent second-rank

tensors. The above equations may therefore be written as follows:

m AL
(1I.1.18) ,.;; b; éi— v, = 0]

: . o
. rV
II.1l.1 =
( 1.19) Zek'Ak' an O
k=1
For some of the ¢" and Auv, ¢¥v .= 0 and AYVm =0 respectively, In other
i k> "ju k v

cases, certain of the @?vu may be expressed as linear combinations of other

o¥v , and certain of the AuvMuv may be expressed as linear combinations of -

k
other AtvM v However, it is possible to rewrite the above sums as
m
t qaM&
(11.1.20) Z b @ v, = O
1 f Sl AR}
,,:
I n v
, 1 Al
(11.1.21) g_: e\, M,«u =0

in which the ¢'3‘ and A'l‘:\’ are linear combinations of the ¢§ and A{:v..respec-
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tively, the b! and e! are linear combinations of the b, and e, respectively,

the by and & 3
and -none of the ¢'"v or A'YM  are zero.
ju k uv
At this point it is desirable to assert that the b; and eé must all

be zero for (II.1.20) and (IX.l.21) to hold, thus yielding.a set of first~

order differential equations in the f, ard 9 which make up the b! and ei.

i 3

However, this assertion cannot be made without additional statements about

the fi and qy- As an example, suppose that in (II.1.20), é'i = v" and

o'" = 2%, Part of the sum on the left of (II.1.20) would then consist of

2
[ 12U _12_12 1;2 |=_2
the terms blv vu + bza vp, or blc bza . If bl a” and b2 c,
1

for example, this part of the sum would be zero even though neither bl

nor bé are Zero.

To avoid the difficulty mentioned above, the convention is adopted
that any kinematic dependence is lumped into the Vz and egv, leaving the
fi and q constant. This convention in itself places no limitation on the
types of terms that may be present in Cgin and szg’ although it greatly
increases the number of terms which would havg to be included if every

possible term is to be considered. For example, not only v¥ but asz,

o’ JH

Lava vy (az)zvu, etc., would have to be included in C As will be seen

1]
1in°®
in the next section, the inclusion of every possible term in an actual
solution attempt is an impractical task, and simplifying assumptions and
approximations will be reqqiréd; however, at this point no such approx-
imations have been made.

The procedure from this point, therefore, is to select possible terms

u
for Clin
(I1.1.20) and (II.1.21); and write out the equations of motion, including

and ngg; develo§ and solve equations for the fi and qy from

the terms of éu

.uv
1in and Cang with their coefficients.



2. APPROXIMATIONS AND ASSUMPTIONS

In the method of derivation discussed in the previous section,
consideration of all possible independent combinations of the quanti-
ties zu, v‘ﬁ a‘ﬂ a¥ s Mu“ MP“, and Mu would give rise to a great many
terms (in fact, an infinite number of terms). Assumptions must there=-
fore be made which drastiqally reduce the number of termé to be con-
sidered., The first such assumption made here is the assumption of small
spin; the particle's spin (and its derivatives) will be assumed to be
sufficiently small so that all terms of quadratic or higher &egree in

Mlv, ﬁpv’ and/or ﬁ"“ are negligible when compared with the first-degree

terms in these variables. This assumption greatly reduces the complex-

3L LY u W, 3w -
ity of Pasm and Jas as well as C1i and Cang Pasm becomes the expres

sion given for P:s in (I.6.3), and J;:m becomes the expression given for
3:: in (I.6.4) with the zlLdependent terms removed:

L'vo( [W‘ '“]
(1102.1) arm = lc ( ‘ mcz

1 [vda  w] 4 v Ml 2 jMv
..3-:.”—‘:;/\/\ a,a +—50. v -3*;M )

Even with the assumption of small spin, several problems remain in the

construction of C;i and C;ﬁg' First, an infinite number of terms would

still have to be included in order to exhaust every possibility; further
limitations are needed to reduce the problem to a manageable level.
Further problems arise because of the contraction of C1in and ¢*

ang

with v" and MM respectively in equations (II.1.16) and (II1.1.17). Onme

52
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cannot rule out the possibility, for example, of the existence of terms in

(call them Cli (1)’ lin(Z)’ ces clin(n))’ such that C1i WV

u
Clin(Z)vu+ vee ¥ Clin(n) i

belonging to these terms will be homogeneous; these fi can therefore be

determined only to within an arbitrary proportionality constant. In other

= 0. In this case the equations in the f

words, equation (II.1.16) would be satisfied regardless of whether or not

these terms were included in CY Also, there is the problem of terms

lin

such as M‘“a in C{} » whose derivatives contracted with vllare zero, and

whose coefficients are therefore not calculable by this method even in terms
of other coefficients. Analogous difficulties occur in the angular case.
From the above considerations it is evident that some terms can neither

be included in nor excluded from C;;n or C;ﬁg by the method of solution des-

cribed in this paper. Certain relatively simple terms, however, are required

lin

s U TW
terms introduced by Pasmv1land JasmMuv must be canceled out by terms in

C{; v_and Clng . Since these are the terms whose coefficients are deter-

minable by the method described in this paper, consideration will be restric-

in c* and C;zg if (II.1.16) and (II.1.17) are to be satisfied, since the

ted to these terms in the determination of coefficients for the terms in
the equafions of motion,

In order to frame an assumption to select candida&es for these terms,
one considers each term to be divided into two parts: a part carrying the
free index or indices, and a part consisting of various scalar products, as

in this example from the linear case:

(11.2.2) (é.") (adé-x) (apzp) /V\M 87-"6‘
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Terms with like tensor or vector parts (the parts carrying the free indices)

are then grouped together so that the expression for CI;n or C;ﬁg consists
of a sum of unique vector or tensor parts, each multiplied by a scalar part

consisting of a sum of scalar products, as in the following example:

ares [k (a?) + k, (@) @) ¢k 67 ] 7%

The assumption is now made that for each vector or tensor part, the simplest
possible scalar part (consistent with satisfying (II.1.16) or (II.1l.17) )

is the one to be selected. This is equivalent to saying that one assumes C{%n

1 It will be seen that in the

and C;ﬁg to have the simplest possible form.
equations for linear and angular motion to be developed in the next two
sections, constant scalar parts, as defined above, will suffice in all
cases. (Actually, since each term is already multiplied by a constant
scalar coefficient, this merely means that both the coefficient and the
scalar part, and hence their product, will be constant, leaving all var-
iation to the vector or tensor part.)

The above assumptions leave‘the following vectors as possible vector

parts to be included in the expression for Ci&n:

anz.4)  2“ vooa” a“

Ad o yTRYA S .
M E,{_ M a'o( M a‘(

o ALk ) AL s Aol
M7z, a, M e,
oo tet 2op M oL s

ifd_ ' ‘z¢ /V\ CZ“

1A similar assumption (preferring simple solutions over more complex
solutions) is made by Bhabha and Corben, p. 291.
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The number of possible linearly independent tensors to be considered for

the tensor parts of C::g remains quite large, even with the foregoing as-
sumptions; further reduction in this number is made when the angular equa-
tion of motion is considered. ‘Also, from this point on, it should be re-
membered that ﬁ;;m and jJZm have been re-defined to include only those terms
considered sigqificant under t@e.smallwspin assumption, and in the case of
3;Zm, to include only those terms which remain after the Section II-1 re-
definition of the coordinate frames to be used in (II.1,.2) and (II.1.4).
These terms are the ones included in the expressions (I.6.3) and (iI.Z.l).

Contracting these with vlland M;»’ one obtains

'M e: .'dp 2 2/ 2
- e a
(I1.2.5) stmn"”'ch Yap —

33

' ALY - 61' 'Y B ez o uv
(I1.2.6) J- M}w- "5;—;;'-/\/\ /V\,, a#ap - }—;—C; M M,“y

a5 m

Tne next two sections are devoted to setting up and solving the systems of

equations for the coefficients used in the expressions for C;;n and C;: .

g



3. THE LINEAR EQUATION OF MOTION

To investigate the linear equation of motion, one must ultimately
A , . . . AN
construct Clinvu and equate coefficients of like terms in Clinvu and
éuvh. This is equivalent to setting up the equations resulting from
setting the b3 and ei from (II.1.15) and (II.1.16) to zero. Some of

the terms in C¥, will be removed by contraction with vu and will there-

lin
fore remain undetermined by this method; however, the majority of the

coefficients will be determined. For the linear case:

: p | )

aran (h=f 2t hv e fat o f, 0"
mP “p ap

+F5 Z, + .FG M aﬁ + 'F'; M a'-p

' P . o Mp -,«.f‘

+£, M 2, A++‘1 M a, +f,M &,

»v-P et ot
H:uM Zp "'ﬁ,.M 2, +]t”/v\ ‘.‘p

The term MPBVB, as previously stated, is zero because of the lack of
an electric dipole moment; the terms #By  and #8y_ are expressible

B 8
as - M"’BaB and - 2fdJ'BaB - 14"‘85

respectively., Continuing,

B

™ ..Abﬁ
3.2 o=+ £ +f,a" +f a5+ Mg,

-
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+ Fs (/U\M’Zp - #Z‘p) +Fc (/‘.’\“fz, +M&g’ﬁ)

£, (75, +A0%) #F, (MG, +M7E,)

t (MM% * Mﬁi"ﬁ) e (Mﬂz‘p i MM%P)

HE (o) w8, (75, + A5

* U

mp

(11.3.3) Cmv;‘= _ﬂ - ﬁ at +-FLf 5“1,.“ = FsM a, 2,
» v pif ot - ap

+F3M V2 +‘F11. M V:"ZP--F7M Ve ®y

L comp . mp

+ ('FLo--’-fu) M V.ap ({Lz’fio) 2up

) """F . #P .
'+’CUM Vi 2y +{13M V. Qg

Equating coefficients of like terms with expression (II1.2,5), one obtains

. the following set of equations:

n
o

(II.3.4) fl

(r.3.5)  f, = 2e 33



From equations (II.3.11) and (II.3.12) one can

£12

£15

yet

(I1.3.6)

(I1.3.7)

(1I1.3.8)

(I1.3.9)

(I1.3.10)

(I1.3.11)

(I1.3.12)

(I1.3.13)

= 0.

=f _.=0; f

13

undetermined.

(I1.3.14)

3

u
Clin

£,=0
£,=0
'ngo

;=0
f,=—¢/3mec
fom2f,=0
fia=fio=0

t3=0

To summarize these results:

= 2e2/3c3 s f. =

7

C =

lin

I3me

f

1

= f

- e2/3mc

4
5

quickly deduce that £

=f5=1£5=1£

3 fz, f6’ and £

may now be written as follows:

2 F .
-5 M“ c'lp + ‘F, M“Pap

9

10

fa =

are as

v+ 250" f M
aVv 33 P ‘lﬁ

I
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The linear equation of motion therefore may be written as

2 M

(I1.3.15) m aM = FG:; - Parn + Chn

wp .
ext 3¢ (MC‘M a'p m a’ m: M V. a, v

+2ay) _Fa_ +3 3& +<F(.”P #Pép)

3,,,CM ap ~ ;,.,c M d ""F( .#p )

The term f2au in the above expression may be transferred to the left side
of the equation, giving a left side of (m - fz)au, where £, is a constant.
Since m is the bare particle mass, the constant (-fé) can be interpreted
as the mass of Fhe field, and the sum m + (-f2) as the observable mass
of the particle.

If the above transfer is made, the 1inear equation of motion
becomeé

“ u GME 2 me
310 m, a =f,, - ('"c M % ~ g mctll Ygu

2 y AL
+-2a11/7+32f'3‘&#+ﬂ( AF MF )

M PS‘mc ”’?.p_l_ﬁ(mﬂﬁ M )

where f6 and f9 are undetermined constants.
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%4, THE ANGULAR EQUATION OF MOTION

The investigation of the angular equation of motion follows the
same procedure in principle as that of the linear equation: however,
the additional complexity of the expressions involved makes it expedient
to exercise more discrimination in the selection of terms for szg.,

As was the case in the linear equation, there is a class of possible
terms of Cang whose coefficients cannot be determined by contracting

u

with M and equating coefficients of like terms with J¥VM s
ang uv uv

that is, those terms whose derivatives yield zero when contracted with
Muv' Two terms that appear in this class are qoa[uvVJ and qlMPv.

Taking the derivatives and contracting with Muv’ one obtains

(I1.4.1)

. L v] o[ v
g, a”vIM,, + g, a0 IM, = 0

42 g, MUM,, +a, MM, = 2, MM,

Thus if the second expressioﬁ is to be zero, q, must be a constant; how-
ever, no such restriction need be placed on 99° This would seem to vio-
late the earlier assumption that all the q; are constants. That assump-
tion was made in order to be able to solve the set of equations resulting
from setting the eé in (II.1.16) to zero, Which is equivalent to equating
like terms Fn juvMuv and é:XgMuv' However, since qo.will not appear in

those equations, there is no mathematical need for it to be restricted by

this assumption. (Physically, one would expect qy to be constant if the
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" assumption that the other q are constant is to be physically plausible.)
Certain cohcepts and definitions are useful in further restricting

. These terms will be composed

the terms used in the expression for sz

ng
of factors of z" and/or its derivatives, and possibly cne kactor of MMV

or one of its derivatives. One can define the "degree," in z" and/or its
derivatives, of such a term as the number of factors of z* and/or its der-
ivatives contained in that term. Similarly, one can define the "order" of

a term as the total number of time derivatives performed on its factors, con-
sidering M"Y and z! to be of zero "order." Thus the.term ﬁuaaazv would

have an "order" of three (one from ﬁpa’ two from a , none from zv) and a
"degree" of one in M"Y and two in zY.

In most cases, taking the time derivative of a term produces one or more
terms which have the same ''degree" and one higher "order" than the original
term. In some cases, such as those involving a factor va;a, this does not
hold true, since d(vaza)/dr = a“za - cz. These terms are excluded from con-
sideration because the factor vaza would appear in the term's "scalar part"
as discussed in Section II-?, and the assumption was made in Section II-2
. that the simplest possible scalar parts would be used. It will be demon-
strated that constant scalar parts are sufficient to obtain a solution for
the angular equation; therefore terms containing vazd are not considered.

If any terms besides,qoé[qu] and qlMuv are to appear in C;:g’ their
derivatives contracted with Muv must match either some term in ji:mguv or
some other term in ég:gMuv’ This implies limitations on the "order" and
"degree" (as defined above) of these terms. All terms of j::m which

survive in jg: M can be grouped in two classes: those with "degree" 2

m uv

in z" and "order" 4, and those with "degree" 0 in z" and "order" 2.
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(All have "degree" 1 in MPV.) Therefore those terms of ég:g which sur-
vive in éz:gMuv must fall into one of these two classes if they are to
have nonzefo coefficients. This in turn implies that those terms in

c*V  vwhich give rise to the nonzero terms in é:nguv must f£all into one

of the following two classes:

U

(A) "degree" 2 in z", "order" 3

(B) "degree" 0 in zV%, "order" 1

Combining all possible terms from classes (A) and (B) above, the

initial expression for ngg may be written

Py

(11.4.3) C‘“’

ang +7_2’M‘“"+%?/v\ z, Q

Lp vl
= %w a ,zrv + 2{!/4

Taking the derivative, contracting with Muv’ and grouping similar terms,

one obtains

PTRV I re oV
(I1.4.4) Canj Mﬂ.v = %.7. M Mﬂv

+ 2 (g.; + 7_6)/‘.’\“‘2,‘&"/‘1#,,

+ 2 (Z.? + %;)/\/\“uz"a:v "



+ Ulgy = g,) MTald M,
+ l(Z.;"" %7) M‘“‘&,‘ ZVM,;.V

+ l'(g_é +(F7_8) Mudz‘ a M.y

/X s v
+ 1?7/\4 a‘z' my

Equating coefficients of like terms with j:.\s)mMuv’ one obtains the follow-

ing equations:

el

(11.4.5) : %.7. = _3mc3

(11.4.6) %: + e = 0

(I1.4.7) 3 + G5 = 0

2

(11.4.8) 1(%9-7_6)-.-.-

Ime’

(II.4.9) Gs *t Gy = 0

|
Q

(I1.4.10) %6 + %8 -

(I1.4.11) 1?7 =0
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The solutions are: 93 " 95 " 9 = 47 = qg = 0; q, = ~e2/3mc3;

9 = e2/6mc5. With substitution, differentiation, and simplificationm,

this gives the following expression for é:xg:

(II.4.12) C::y = ?o af/ﬂvv] ‘g a[#v tg, /.Q\p.u

2, 2

" any [
Ry S i

- p—

3me’

+ e’- Luw l‘]
émcr a“a.

The angular equation of motion (for small spin) can then be written as

(II.4.13) SN: TM - ‘]"“" + C“"

ext asm ang

o 3mc

v 2 e luw v] 2 L V]
=E:i_"‘e"rM “ e “g“fM#d&dlf

2 v .
"‘(g‘-, + 28 ) g +2, a'“v-]+7,lMM

with jg:m being obtained from (II.2.1).
The term ql M"Y in the above equation of motion is subject to special

interpretation, much as was the term f 2 in the linear equation of mo-

2
tion. Since S*Y and M*V are proportional, sV and qlﬁ”v are also pro-

portional. gHv gives only the rate of change of angular momentum in the

bare particle; if -qlﬁ"v is interpreted as the rate of change of the field

angular momentum, the term alMPV may be moved to the left side of the equa~

tion and this left side rewritten as Sub = §HY + (*qlﬁuv) where ézxs is

S
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the total observed angular momentum change rate of the particle with its
field. ‘

The coefficient q,, like the coefficients f, and £y in the equation
of linear motion, remains undetermined. It is, however, consistent with the
assumptions made in this derivation to regard qy as a constant. If this is
done, and the renormalization mentioned in the previous paragraph is carried

out, the equation of angular motion becomes

wy I 1 (e
(II.4.14) Yo - ~ I e |
Sab; Text 3me® M G, v

2
+ 3;2_‘:%_ a[/-tv_v] + 2, a[ﬂvvl



5. COMPARISON WITH OTHER EQUATIONS OF MOTION

Some interesting comparisons can be made between the equations of
motion developed in this paper and those developed by other methods. Con-
sider first the case of a non-spinning particle. Equation (IT.3.16) then

becomes

“# % _2dat %, 2e .
(I1.5.1) M, a —Eu Epc 38“

which is identical with the équation for a non-spinning particle obtained
by Dirac.1

When small spin is allowed, comparisons may be made with the results
obtained by Bhabha and Corben.2 In the linear case, in contravariant form
and using the small spin assumption, the Bhabha and Corben equation3 is

(I1.5.2) ma +—-{IS v, — LS, F,, — 9 S“Q_FWV}

J in p

1P. A..M, Dirac, Proc. Roy. Soc. (London) Al67, 148 (1938).

ZH. J. Bhabha and H. C. Corben -

3bid., pp. 298, 310, 313.
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where 3 is the particle charge and g, is the particle dipole moment.

Four terms in (II.5.2) are seen to involve an external field Fg;. The

term glFu v_ represents the Lorentz force on the charged particle. The

- _9 noB
term involving saBquFin

a non-homogeneous field. The term involving E%_{VusuBFi } denotes the

represents the force exerted on the dipole by

contribution made by the change of the potential energy of the dipole
in the external field because of the rotation of the dipolel. Finally,

the term cont:aining-—-—-—{su v,} is not explicitly discussed in the

a in B
paper by Bhabha and Corben; however, an equation for linear motion of

a chargéd particle developed by Weyssenhof and Raabe2 contains a sim~
ilar terma, which seems to arise from coupling to the space-time com-
ponents of the torque tensor used in that paper.

These terms have no direct counterpart in the present work because
of a fundamental difference in the view taken of external influences on
the particle.” In the papers mentioned above4 the external influence
was regarded strictly as a Maxwell-Lorentz field; this external field
and the field of the particle were considered together. 1In the present

.paper, the external influence'is viewved simply as a force, szt’ which
may originate from a Maxwell-Lorentz field or from some other source.
The only specification made about FM in the present paper is that
one can define it in such a way that Fu v. = 0, This is then used to

ext u
eliminate F:xt at the beginning of the calculations, thus separating

1Bhabha and Corben, p. 290.

2J. Weyssenhof and A. Raabe, "Relativistic Dynamics of Spin~Fluids
and Spin-Particles," Acta Physica Polonica, Vol., IX, Fasc. 1(1947), pp.
7-18 .

3Ibid., p. 18.

4Bhabha and Corben, Weyssenhof and Raabe.
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the consideration of external force from the consideration of particle
self-effects.
If the four terms discussed above are taken as szt for the Bhabha

and Corben equation, one obtains for ng v. the result

tu
a : p 2 «p
(11.5.3) Fext‘u;c = %—:t'( S.‘p Fd + S,gp F" )
g, $* F 28 v 3 F
Ju$ «F iy~ 5,v.9

Obviously the condition Fthvu = 0 is not generally true for the Bhabha
and Corben equation. Therefore, with the exception of the Lorentz-force
term glezva, the Bhabha and Corben equation differs from the equation
developed in the fresent paper when a general field is applied.

Rewriting (II.S.Z) with no external field and using the notation
of the present paper (but keeping a system of units in which c = 1},

one has

(I1.5.4)

- c( . " __lelal “
ma” + {1 v} = 282y

2 LI % B
+f—2—3§—a + %—M‘pavv
2 2 2 oo
e Pl - € ML
* 3 m M 3 m M Ve
2 ‘ue N

- e - “w o,
w My, ;“;M Ao



Rearranging terms and making liberal use of the identities of Appendix B as

well as the similar identity'ﬁgevaas = ﬁasé&vs, one obtains

(11.5.5) L (1) (2)

AR

ma = "

AL

m /\\ v, CZP

(3) (%)
+ .Ze;a}.u.”" + otge d“
(5)
+I( S"u« a" + S#« c.lo‘)‘
(© o

‘Qel “ .0( e AL "ﬂ
t5a Mea +52M i

The linear equation of motion developed in this paper can be rewritten

‘(also for zero external force) as
(11.5.6) ' (1) (1)
A ezaz ap
W'olasa : = Timd M ( +-F )
(z) (3)

2et - lga. -

(#) (5)

3 o #t
+ 255" o ( a,+/"\ d,)
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Ignoring the powers of ¢ in the denominators in (I1.5.6), one may ob-
serﬁe that terms (1), (2), and (4) in (II.5.5) match the corresponding
terms in (IX.5.6); terms (3) and (7) of (II.5.5) differ from their
counterparts in (II.5.6) only by sign; and terms (1'), (5), and (6) in
(II.5.6) contain arbitrary constants.

Term (1').in (I1.5.6) has‘nd counterpart in (II.5.5). If f9 =
-e2/3mc5, term (1') vanishes from (II.5.6). This value for f9 causes
term (6) in (II1.5.6) to differ from term (6) in (II.5.5) only by sign.
Also, if f6 is chosen so that f6Mus = IS”B, terms (5) in both equations
agree.

This leaves terms (3), (6), and (7) differing in sign between the
two equations. The sign difference is accounted for by the fact that
Bhabha and Corben used a metric with diagonal (-1,-i,-1,l) while in the
present paper the metric has a diagonal of (1,1,1,-1). Because of this,
every term in (II.5.5) in which an odd number of complete contractions
'of indices occur should have the opposite éign from the corresponding
term in.(II.5.6). This condition holdé true for (3), (6), and (7) of
(Ii.5.5). Thus, if external fields and forces are excluded, the equa-
tion developed in Section II-3 can, by proper choices for f6 and f9, be
brought into exact agreement with the equation for linear motion pro-
duced by Bhabha and Corben.

A quite different situation prevails in the case of the equations

for angular motion. Bhabha and Corben's equation,l in contravariant

form and with the small spin assumption (but again in units such that

lH. J. Bhabha and H. C. Corben, p. 298.



c =1), is

S av L v] I oV «® v]
(I1.5.7) IS —IS'“a.‘v =9 S#.((F- J"‘E,,pvpv )

- K ]

This equation, as in the equation for linear motion, was developed by con-
sidering an external field togéther with the particle's own field: however,
the expression on the right side of (II.5.7) is compatible with a torque

such as the TZ; used in the present paper. Analysis of the right side of

t
(11.5.7) reveals that its space-space cémponents in the particle rest frame
consist of gz(gfg), while the space-time components are zero. Since-g_and
w are parallel in the type of particle under consideration here, and the
particle hés ro electric dipole moment, this tensor is equivalent to the
commonly defined torque tensor {uxB:mxE} in the "six-vector" notatiom.
Furthermore, if the right side of (II.5.7) is identified with Tz:t’ the
relation TZ;tMuv_= 0 holds true; since Muv is proportional to Suv’ the

contraction Tz:tMuv 1s proportional to the tfiple product (wxB)-.w, which
is zero. Thus there is no conflict between.the Bhabha and Corben equation
for anguiar,motion and that. of the présént paper concerning the terms
which represent external torque.

Conflict does arise, however, in the comparison of the force-free
tefms of the two equations. Aside from the term Iéuv, the only force-
free term found in the Bhabha and Corben angular equation is the term
gzs[uaaavvd. This type of term is not to be found in the angular equa-
tion of the present paper, although terms equivalent to the term

.82 E%—{S[uaaa}vvq are to be found. In addition, terms containiﬁg a[“v“]

and ébﬂﬁﬂ occur in the present paper's equation but not in the Bhabha



and Corben equation,

Similar or greater conflicts occur when the equations of the pres-
ent paper are compared with other equations, such as those of Weyssenhof
and Raabe1 mentioned earlier. It may be noted in passing ihat the
Weyssenhof 'and Raabe equation for linear motion does not reduce, in the
non-spinning case, to the Dirac equation. The conflicts mentioned and
demonstrated in this section would seem to lend yet greater weight to

the comment by Nyborg2 mentioned in the Introduction.

1J. Weyssenhof and A. Raabe, pp. 17, 18.

2Nyborg, p. 62,
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APPENDIX A. INTEGRALS INVOLVING u®

Since u* = R%/p - v*/c, in the particle rest frame v* = (R/p,0).

Therefore any integral of the form

« 1)
(A.1) Su u’.,.. u OUL

is zero in the rest frame if any of the indices equal 4, and attention

can be restricted to the spacelike components. One may define

@2 U,

sin 6 co:¢

A.3) Uy

i

sin B sin

(A.8) U, = cos O

and write
T AW :
el ‘ P
(A.5) Su“u’.. . uso(:.f\a = S sin' V" cos' 0 c.os'(p sm"¢o(¢ale
6s0 g=0
- ar
." 1 . . .
--j sin 79 coskeolGScos‘¢ SMJ¢ d¢
0 0

where i, j, and k are the respective numbers of U.s uy, and u, factors

present,

Now assume that i is odd., Then the second integral factor in the

product above may be written

(A.6) S c_os;ﬁ svinJ¢ d g =5 (1'“"13¢)
0 0

2

si,ujﬁ cos B AL
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2T 2w

=:S'P(:os‘¢at¢ ="(2

. ) Ao
where P and Q are both polynomials in sin ¢. Since sin 0 = sin 2m, the

integral is zero. By a similar argument the integral can be shown to be

zero if j is odd, and by another similar argument the integral
T _

i+jel
(A.7) S siV\HJ* e cas& o de
A )

can be shown to be zero if i and j are even and k is odd. Therefore,

the integral

(A.8) 5 u‘up.,, $Cd

is zero unless there are an even number of factors u_, an even number of
factors uy’ and an even number of factors u, in the integral.

The four versions of this integral needed for the purposes of this
paper are evaluated on the following pages. Frequent use is made of the
tensor g"V + vuvv/cz, which‘haslelements (1,1,1,0) down the main diagomnal
and zeroes elsewhere (in the rest frame). This tensor is therefore definéd
(in this appendix only) as T™VY. 1In an analogous manner, Tuvaﬁ and 'I.‘*"'\":"BY6
are defined to have the value 1 for those components whose indices are all
equal, but not equal to 4, and the value 0 for all other components. Al- |
though this definition does not in itself insure that T"8 gnq TwW0BYS
are tensors, this does not matter since they do not appear anywhere in the

final results,

Version 1: S ddi = S:Si" 64953v¢ y



] Versic;n 2: Su“up o(JL =0 f ot#ﬂ or if a=p=¢
ar amw

if «=Ff#4, Suau,o(JL =5cos’”9 sinSJeja(‘f:

0

i

50,

Version 3: S
ceston 3+ 0w w1, U
Case 1 for non-zero: 2 different pairs exist, no indices = &

R 2
5“,; UP U, uS O(tn: =4(Sih;e cos'zea(ej6052¢o{¢ = ifl
( °

Case 2 for non-zero: all indices equal, # &
v "
Sl/(,‘u,uyu a{JL=5co;“‘9n'n9Je 59‘¢ = iﬂ'
§ 0 A 5

So in general,

Su. Us Uy “5 ( Tvs +IrT;s+-Es T;r)
(&5‘" (Lf)) T;pvs

’%r((gd, + ’%-ﬂ)(yu* Lias )

Vi Vi Vv, V; Vi Vg
*(5#* “’;:{'i“r)(?ﬁs i s) "(9*5* ?“‘) for
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Version 4:‘ gu‘u"urugueugd‘ﬂ‘

Case 1 for non-zero: 3 different pairs exist, no indices = 4
i ar

su*uﬁuVus ué ug JL{L 55‘” 9 Cos 6519 ,"‘ ¢CO$ ¢J¢- lo;’

Case 2 for non-zero: one pair, one group of four, none = 4
@~ 2n

Su-‘“a Uy Ug Uty ddl = S‘,"'"ge"“*e"le So"‘”z‘ﬁ"w = %’t

Case 3 for non-zero: all indices equal, # &4 .
1r ™

= 0 si = tm
Su"uﬁ Ue g Ueugo(LﬂJ~S°cos O sinode S°4¢ =5
So in general,

§ i uy g g L = 3;’}[7;,,(1;‘ T * T Too+ T )

(T Ty + Tl # T o)

Tl Tog # T Ty # T Toe)

T T * T T+ T Toe)
(

+

1
ng EYTSG+E5Tre+E‘L‘)]
+ lf"r‘j(l.o?)) T;p T;'se?.'. YL“-"
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+ T;S.T,rsg + —lr;e Tﬂrsk
+ Tay T/rsé + .l;r Tusé‘,’
+Tps Tavey + Tre Tarey
+-,;g T.«.Yse + Tvs qug
+ e Tugsy + -l;r Terse
*Toe Tapry + Ty Topre

ToTgrs |

+ (?-1#(%)*“(%))]:9“6!

v, Y Y U Yy U Vs Y

+ (5re+ ?'s)(?sgf f?g).*(g"’*#?(q‘e.*%"-&)}
oL U, VT U Uy

'.F(ﬂn*”??' {(W‘éfi)(yef*%’ )

g‘g+w)+(gg+%‘?)(7“* 7_’5‘}_’2_)}

cz
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APPENDIX B, IDENTITIES

20

Numerous identities are used in this work, many of them stemming from

the identity M!‘Wvv =

0, which is true because the dipole moment under con-

sideration is purely magnetic. Some of the more commonly used identities

are presented below.

v
@.1) My, =0

(B.2) f%-(Mw"i«)'—' M“"a,+/‘7\“vv; =0

* w \ v, Y o 4V
(8.3) L—,(M VB)‘/V\ a, +2M a,+M =0

, ‘-c“
(B.4) A—Ez( ) /V\ 5, +3M7%,+3Ma, +M

Y 3 e . s o _®
PM aa +3M e, a, +M“a

v=0

=0
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