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ABSTRACT

Stock price equilibrium theory and mathematical pro-
gramming formulation of the capital budgeting problem are
reviewed. These two areas are then combined into a unified
approach to the capital budgeting problem under uncertainty
and culminating with a specific formulation. This formula-
tion seeks to optimize the equilibrium stock price of the
company where capital assets are being chosen via mathemati-
cal programming. In so doing, the risks associated with
covariability with the market portfolio are accounted for
automatically. Furthermore, the risks associated with vari-
ability of the costs of projects undertaken are explicitly
incorporated into the model by computing the expected cost
of that variability in terms of its effect upon the equilibrium
stock price. The resulting formulation is a mixed integer
non-linear programming pribiem,

Solution procedures developed by Geoffrion as an
extension of Benders' earlier work on a decomposition algor-
ithm are discussed since modifications to the budgeting prob-
lem makes it a candidate for solution by Generalized Benders
Decomposition Algorithm. It is proved that a global optimum
may be found by these solutiomn procedures, and the requisite
modifications are specified.

Several test problems were constructed and solved by
computer using these procedures. The results of the test
problems are given and some conclusions are drawn concern-
ing the ability to solve larger problems. Some solution
strategies intended to decrease solution difficulties are
also discussed.

Sensitivity analysis procedures are specified with
some examples of their use and interpretation relative to
improving the overall capital budget by changing the ration-
ing of capital.

Finally, examples of alternative formulations that
still resemble closely the original specific problems are
developed out of changes in the framework of assumptions
under which the formulations are applicable to real problems.
This topic is then discussed in commection with several sug-
gestions for further research.
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CHAPTER I
INTRODUCTION

The capital budgeting problem referred to hereafter
is a generalization of the classic problem originally pro-
posed by Lorie and Savage [27]. It may be stated in gen-
eral terms as follows:

Management has developed a number of investment
opportunities which the firm may undertake providing it
possesses or can obtain sufficient resources to support the
undertaking. The capital budgeting problem consists of
selecting the best combination of investments that com-
prises some subset of all those available. This selection
process is subject to the constraint that the resources
required to undertake the selected combination of invest-
ments does not exceed those resources made available for
such purposes,

The word '"best" used to describe a combination of
investments is at best a rather obtuse description.: How-
ever, such a word is necessary in a general statement of a
problem to allow an individual formulating a means of solv-
ing such a problem the freedom to select his own appropri-

ate definition of '"the best combination of investments."
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For example, Weingartner [21] chooses to maximize the total
of the net present values for all the investments under-
taken. An alternative is to maximize the internal rate of
return earned on all invested funds, and if one wished to
consider the returns as uncertain then the maximum of the
total of the expected utilities for all the investments
undertaken might be the desired description of the '"best
combination of investments." This point will be illustrated
further in Chapters II and III where discussions of the
work done in the area of Portfolio Theoryl (32, 26, 40, 41]
and the applications of mathematical programming techniques
to the capital budgeting problem are found. Then in Chap-
ter IV one finds a synthesis of both these areas into a
unified approach to the capital budgeting problem under
uncertainty, particularly in the development of various

definitions of the '"best combination of investments."

Portfolio Analvsis and Capital Budgeting

In 1952, Harry Markovitz [32] suggested a means of
selecting a portfolio of securities that treated risk as a
variable to be contended with instead of ignoring it as
was commonly done at that time. His work launched two
decades of voluminous research into the problems of risk

measurement, portfolio selection and performance, market

1The central issues in portfolio theory are the
portfolio selection problem and market equilibrium theory,
both of which are discussed in Chapter II.
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behavior, and various extensions.

Ma jor contributions were made by William F. Sharpe
[42] when he used regression theory to reduce the computa-
tional effort required to select portfolios by the original
Markowitz model. In addition, Sharpe [%1], in 1964, and
Lintner [26], in 1965, introduced their versions of a
capital markets equilibrium theory. These two approaches
were later shown to be equivalent by Famé [11]. A summary
of these works is found in Chapter II with a discussion of
the implications of some of the empirical tests of these
theories. The relevance of these theories to the capital
budgeting problems of a firm will be fully developed in
later chapters, but for now it is sufficient to state that
equilibrium theory gives one a relationship between expected
return and a measure of risk. If a firm's management makes
capital budgeting decisions that somehow upset that rela-
tionship, then the market price of the shares of the firm
must automatically adjust. The objective, then, is to spe-
cify a model which translates a capital budgeting decision
into an indication of market pressure on share prices; man-
agement can then select assets that will cause the market

price of the firm's equity to behave in a desired manner.

Other Valuation Models and Their Exclusion

If one assumes that an investor analyzes financial
data concerning a firm in order to determine how much he

is willing to pay for a share of the equity of that firm,
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then there are two distinctively different approaches to
defining mathematical relationships in hopes of gaining
insight into how the investor arrives at his final decision
of price. Both approaches evolved almost simultaneously
over the last twenty years.

One approach makes no attempt to determine exactly
how this financial data is utilized or even which data is
relevant but merely assumes that somehow, based upon avail-
able information, the investor is able to formulate (for
each stock considered for investment) expectations concern-
ing end of period wealth relatives, variance of these rela-
tives, and covariance of the relatives for every pair of
stocks. He then makes his investment decisions based upon
his expectations and using one of the portfolio selection
models mentioned above. In general, the step of formulat-
ing expectations from financial data has been shown to be
unnecessary. For example, in a comprehensive empirical
test (by Cohen and Pogue [8]) of four portfolio selection
models, the performance of portfolios selected on the basis
of ex post price data were compared, on the basis of ex
ante data, to each other, to mutual funds, and to randomly
selected portfolios. It was not possible to distinguish between
the performance of the portfolios selected by the four
models, and these portfolios did as well or better than
mutual funds and significantly better than the random port-

folios. Hence, the basically technical approach which did
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not require formulation of ekpectations from financial
data appears to work at least as well as the supposedly
more fundamental approach of the mutual funds.

The alternative approach, on the other hand,
attempts to do exactly what the portfolio models do not
accomplish. That is, they seek to identify those financial
variables that have a significant effect on the value of
the equity of the firm or on its cost of capital and then
they attempt to specify a mathematical model which combines
those variables in the way investors do in order to evalu-
ate the equity (and/or cost of capital). A number of these
models have been developed by Modigliani and Miller [35],
Gordon [17], and Lerner and Carleton [24]. It would seem
that these models are most relevant to the capital budget-
ing problem since proforma balance sheets and income state-
ments could be constructed from the expected cash flows
generated by proposed capital investments. This provides
the necessary expected financial data (and perhaps esti-
mates of the variance of that data) which when applied to
one of the valuation models yields an evaluation of these
proposed capital expenditures in terms of a favorable or
unfavorable change in the equity evaluation or cost of
capital. Unfortunately, these equity valuation models
have not faired as well under the scrutiny of empirical
tests as the portfolio models have. Keenan [23] explained

this poor performance by citing a number of difficulties:
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1. Financial variables used are of necessity those
readily obtainable from company issued financial
statements. In particular, balance sheets and
income statements, which do not necessarily give
a true indication of the firm's actual state of
being nor even a state of being once in existence.

(23, p. 257]

2, Models are usually constructed so that model parame-
ters are estimatable by least-squares regression
techniques. This means that to prevent bias, firms
with anomalies in their data are normally excluded
from any samples, and that models may be specified
in a manner not representative of how investors
actually evaluate the financial data. [23, p. 258]
These problems have resulted in estimated coeffi-

cients of financial variables that (1) are not signifi-
cantly different than zero, or (2) are not stable from
sample to sample, or (3) are not stable over time [23,

p. 243]. Keenan concludes that aside from the theoretical
contributions of these models about all that can be shown
from the great volume of empirical research is that there
is some relationship between equity value and earnings,
dividends, retained earnings, growth parameters, capital

gain and size (of the firm) although the nature and magni-

tude of that relationship is as yet unknown [23, p. 244].

Mathematical Programming and Capital Budgeting
The relationship between the capital budgeting

problem and the value of a firm's equity has not been

explicitly incorporated into the current mathematical pro-
gramming formulations to solve the capital budgeting prob-
lem. By ignoring such a relationship there is an implicit

assumption that is common to all such formulations.
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That assumption is that management, acting as agents and
in the best interest of the firm's owners, is able to apply
their judgment and experience to determine the correct
rationing of resources so that when the capital budgeting
problem is solved, the resulting solution will satisfy the
owners. When risk is considered in the problem formulation
the assumption is extended to include assuming that manage-
ment's method of handling risk is a good surrogate for the
owner's attitudes towards risk. No attempt will be ‘made
to refute these assumptions, however, a formulation will
be given in Chapter IV which will deemphasize their neces~
sity. The remaining chapters discuss data requirements
for the formulation in Chapter IV, and report on the solu-
tion procedures developed and tested with the final chapter

mentioning possible extensions and further research.



CHAPTER II

PORTFOLIO AND EQUILIBRIUM THEORY

Portfolio Analysis

One may think of the capital budgeting problem as
a portfolio selection problem with some restrictions placed
upon the divisibility of assets. With this idea in mind,
the portfolio selection problem with infinite divisibility
of assets allowed shall be reviewed.

One may suppose that an investor has a total of H
dollars to invest in a portfolio of securities and/or gov-
efnment bonds or other risk-free assets, and that the
investor is a risk averter and is able to make a choice
between alternative portfolios based upon the expected one
period return and standard deviation of that return on
each alternative. There are some situations where a choice
is obvious for risk averters.l These situations are as
follows:

1. Expected return for two portfolios is the same, but
their standard deviations are different. A risk

averter would choose the portfolio with the smallest

lSee page 41 for the conditions under which the
choices are obvious.



standard deviation.

2. Expected returns are different, but standard deviations
are the same. A risk averter would choose the port-
folio with the larger expected return.

3. One portfolio has both a higher expected return and a
lower standard deviation than the other portfolio.

A risk averter would choose the portfolio with the
higher return.
The only instance in which a choice is not clear is

when one portfolio has both a higher expected return and a

higher standard deviation than the other portfolio. Knowl-

edge of the specific preference or utility function of the
risk averter is required to make the choice in this case.
For every possible portfolio, either there exists
another portfolio which is a clear or dominant choice over
it by virtue of the existence of one of the three situa-
tions listed above or no such dominating choice exists. If

a portfolio is such that no other portfolio dominates it,

then Markowitz [ 32, p. 81] would refer to this portfolio as

efficient and the entire set of efficient portfolios as

the efficient frontier. The portfolio selection problem,

then, consists of selecting the "best'" portfolio from the

efficient set of portfolios where "best" is determined by
the individual's preference function.
A graph of portfolios consisting of only risky

assets is illustrated by Figure 2-1. The heavy dark line
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represents the efficient frontier and proof of the convex-
ity of the region near the frontier is found in Sharpe

(40, p. 52].

Ep 4

;’ |
A

Figure 2-1. Portfolio set plotted on expected return (Ep)--

standard deviation (qp) coordinate system.

If one assumes that the investor can invest any
part of his capital in a risk-free venture returning rate
r

¢ Oor can borrow any amount at rate r_. and invest the bor-

£
rowed funds in a portfolio of risky assets, then the entire
set of possible portfolios will change to that illustrated
in Figure 2-2., The upper heavy line represents the new

efficient frontier. It can be shown that any point on the

new efficient frontier can be achieved by an investment in
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A
\
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r _ g
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O C§"

Figure 2-2. Portfolio set modified by inclusion of the risk-
free asset.

some linear combination of the risk-free asset and the port-

folio, A, found at the point of tangency of the old and.

new efficient frontiers. This new, linear efficient set

is really the only efficient frontier and any risk averter,

regardless of the degree of risk aversion, should choose

some point contained in this new efficient set. This means

that every investor should invest some part of his funds

in tangencial portfolio A in Figure 2-2, and the remaining

portion of his funds in the risk-free asset. The exact

proportions to be invested in each is determined by the

individual's preference function. This independence of
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the problems of selecting the portfolio of risky assets
and deciding how much to invest in the risky portfolio is
called the separation theorem [40, p. 70] and requires the
assumption of equal rates for borrowing and lending to be
true. Of course, only if investors completely agree with
each other about estimates of return and variance will the
tangencial portfolio A be exactly the same portfolio for

all investors.

Solving the Po.tfolio Selection Problem

If one is to select a portfolio for an individual
investor he must obt#in estimates of the expected return
for each security, estimates of the variances of the
returns, and estimates of the covariances of every pair of
returns. For simplicity, it is assumed that every risky
security must be held long if at all. x5 is defined as
the proportion of security i held, ;i the expected return
on security i and cij the covariance of r; and rj for
i # j and variance of r, when i = j. Then the expected

return on any portfolio p is given by:

— n —
ry = i§1 x,ry
where:
n -- the total number of securities.

The standard deviation of the portfolio is given by:
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v/ n n
o = T x.x0.. .
P i=1 =1 * 3 %J

An efficient portfolio for any level of return r,  may be

found by solving Problem (2.1) below:

min ©
X.
i

Sete r =2r

(2.1)
T x

I}
=

or

(2.2)

™
"
1]
=

(2.2) will find an efficient portfolio for any given level
‘of risk O, If the riskless asset is considered in either
of the above problems, say i = 1 is the riskless asset,
then clearly ry = Tgj °11 = 03 alj = 0 for all j. Since
borrowing is allowed then the riskless asset may be thought
of as shorted and x5 is unrestricted in the above two
problems. Solutions to either Problem (2.1) or Problem
(2.2), with the risk free asset included, will always

yield points on the linear efficient frontier in Figure 2.

Hence, for any Uo or r selected, the risky portfolio may
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be determined by:

x¥
x{ = —= for i = 2,3, eesy n
*
R
where:
xi = the proportions of those funds invested in risk§

assets that are invested in security i, and
x; = an element of the optimal solution to Problem (2.1)

or (2.2).

Portfolio Analysis and Capital Budgeting Problem

Portfolio analysis, looked upon as a rational tech-
nique for analyzing and selecting an optimal set of risky
investments seems a logical procedure for handling risk in
the capital budgeting problem. Those taking this approach
are Cord [ 9], VanHorne [ 48], Mao and Brewster [30], Levy
and Sarnat [25], Paine [37] and others.

Some modifications are required. For example, one
period rates of return are generally not applicable to the
capital budgeting problem, since periods are generally
short compared to the length of time a capital project may
effect the cash flows of the firm. Therefore, expected
internal rates of return and their variances and covari-
"ances are sometimes used while if some rate is known then
expected net present values and their variances and covari-
ances may be used to avoid the problem of multiple internal

rates of return on some projects. Since projects are often
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not infinitely divisible and cannot be undertaken in greater
quantity than their maximum level, then decision variables
are frequently restricted to integer values and even more
frequently binary O-1 variables. Funds generally cannot
be borrowed or lent in unlimited quantities nor at the same
rate and capital is usually rationed. All these differ-
ences combine to make the conceptually simple portfolio
approach a much more difficult problem. For example, lack
of divisibility and the restriction upon borrowing and
lending combine to destroy the separation theorem. This
means that no single portfolio of risky assets solves the
problem independently of preference functions as did port-
folio A in the previous section. Therefore, portfolio
analysis applied to capital budgeting requires knowledge
of someone's utility function. But who's? The president
of the company's? The capital budgeting committee's? An
aggregate utility function for all stockholders? One can
see some of the practical problems with this approach. If
one assumes that an appropriate utility function is known
and an indifference function for expected return and stan-
dard deviation constructed, then such functions are usually
nonlinear. The resulting mathematical programming problem
is nonlinear and integer and may require a number of solu-
ticns to determine the entire set of efficient portfolios
of ass:*s, Such a problem may not be easy to solve and

quite likely <ill be expensive to solve. Of course, the
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portfolio approach just discussed does not represent the
only means of handling risk in the capital budgeting prob-
lem, but further discussion of these techniques and others

will be deferred to the next chapter.

Equilibrium Theory

As mentioned earlier, under certain conditions a
single portfolio of risky assets is optimal for risk adverse
investors. If all investors agree about predicted expected
returns, variances and covariances, then all investors
seeking to place some funds in a risky portfolio will seek
to obtain the same portfolio. In particular, that portfolio
should be optimal, if the investor is rational, and is
portfolio A in Figure 2. Using the procedures discussed
earlier, A may be found given all estimated expected
returns, variances and covariances. However, a useful
technique is to apply some necessary and sufficient condi-
tions for optimality of some problem used to determine
portfolio A. This yields general relationships between
estimated parameters. These relationships must, of neces-
sity, hold in order for the market to be in equilibrium.

To clarify, if all investors place their money in risky
securities in the proportions suggested by the description
of some portfolio A, then the aggregate market value of
shares of any security would have the same ratio to the
total value of all shares of all securities that is sug-

gested by portfolio A. However, market values are determined



17
in the market place and not by the solution of some mathe-
matical programming problem. One may, therefore, define
the market portfolio as that portfolio where the proportion
of total portfolio value invested in security i .is equal
to the proportion of total market valﬁé of all securities
to the aggregate market value of security i. If this
portfolio does not satisfy the necessary conditions for
optimality based upon actual investor expectation (i.e.,
market portfolio is not equal to portfolio A), then the
rational investor would be expected to alter his holdings
of risky assets until optimality was indicated. Hence, as
long as the market portfolio is not equal to portfolio A,
alterations of holdings should be occurring which defines
a state of disequilibrium. Equilibrium, then, implies that
the market portfolio is optimal and necessary conditions
for optimality describe the apparent relationships between
expected returns, variances, and covariances. Naturaily,
if expenses are incurred by investors who adjust their
portfolios then an optimal policy might be to accept a:
slightly less optimal portfolio and avoid the expenses of
change. Hence, the foregoing explanations presume the
absence of transaction costs, taxes, and differences in bor-
rowing and lending rates in addition to the assumed agree-
ment among investors about future expectations already
stated.

Basically there are two equilibrium models which
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differ primarily by development. Lintner's model [26],
described below, is developed under the assumptions stated
above, as is Sharpe's model [40, 411, discussed later.
Lintner approaches the problem by letting @ be the slope
of a line determined by the points (O,rf) and (“B’;é)
where B is any feasible portfolio [26]. Clearly, if one
finds a portfolio B such that 6 is maximized then B = A
and is optimal. Lintner's equilibrium conditions are

derived from the necessary conditions for 8 maximum. Hence,

g

where:
X = average return on the portfolio in excess of the risk-

free rate.

Then for every portfolio with each security i making up a

proportion hi of the total portfolio value, 8 becomes:

T h,.x,
0 - iTi
VI Z hiho,
LN |
where:
;i = average excess return (over the risk-free rate) of
security i
Uij = cov(xi,xj) i #3j
o.. = var(x.)
ii i

If short sales are allowed (i.e., h; may be less than o),
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then hi may be considered unrestricted for further analy-

sis. Hence:

=1: I 1 -
5h; = T x; - Mhicii + T hJ.O‘iJ.) (2.3)
hvuloint R b B
i3]
where:
\ - &hx;
p2 hihjo'ij

Letting z; = Xhi, (2.3) Pecomes:

2,0,; * ? 2054 = ;i i = 1,2, eee, m (2.4)
when set to zero for each i.

Since the matrix (cij) is positive definite and 6 is
a homo geneous function of order zero in the'hi, then equa-
tions (2.4) are the necessary and sufficient conditions on the
relative valuesvof hi for a unique global maximum. Hence,
since the h; are to be proportions, T |hi | =1 is a
requirement. Let hi be such that % ]hi ] = 1 then

h,

Ah,
i i -
h! =W=W, but Ah; = z; and la.‘hi‘ = Ellhi‘
5 Xhi z;
for A = 0. Consequently, 5§?T1;—1— = ETT;T—T_ = hi.
i i

o T hi;i )2 hi':'c'i
Note that 8 = and \ = ETETTTTT?;——
vZ T h.h.o i j%4ij

ij7ig
then A\ < 08 < 0 which implies that no risky portfolio

achieves an expected return greater than the risk-free rate.
This case may clearly be ruled out.
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Therefore, the z; values may be obtained from system (2.4),
the hi values as indicated above, and A by its definition
and the hi values. However, for equilibrium theory actual
solutions are not required. According to the discussion
at the beginning of this section, the optimal portfolio
(or one that gives max 6) is known and is the market port-
folio under conditions of equilibrium. If one defines Voi
as the current aggregate market value of security inand T
as the total market value of all securities, then the opti-
mal and market portfolio contains a proportion of security

A\
i denoted hi, by the previous notation, where hi \ gl.

i

If one supposes that at the end of the period a dividend
of total value Di is paid and the aggregate value of secur-

ity i is V ;, then the total expected return on security i
R.

. . - . i
is given by V.. - V . + D.. The excess return x. is -
1i oi i i Voi

r_. and Uij becomes v

o. .* where oi.* is defined as
oi 0] J

£ 1J

cov(Ri,Rj) when i # j and as var(Ri) when i = j. Equation

(2.4) for security i becomes:

vV . 1 vV . o..* R, - r_V .
\ 2% o..* + \p 2L ij _ f oi
: T V_.V_ . “ii . T V_.V .
oi oi J oi oj oi
A
- = * ) Lo
or (R, - rpV .) = (o,,* + ?Gij ) §
R, - & (o..* + T o,.%)
i T “Yii 3 1J
Hence, V. =
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Letting Hi be the expected wealth relative for voi’ one

obtains H. = V.. + D, = R. + V_.
i i i o

1li i i
H, -V . -2 (0,.% + S o, ,*)
i oi T ii . 1J
and V. o= — L
f
or V .r .* +V = H., =- L-(c * + T g, .¥)
oi” f oi i T ii P ij

(2.5)

Lintner then concluded that the current market value of
security i is given by the present value (determined at

the risk~-free rate) of a certainty equivalent for the one
period expected wealth relative where the certainty equiv~-
alent is determined by reducing the expected wealth rela-
tive by an amount dependent upon its risk [(oii* + % Gij*)]

and the market cost of risk % which is common to all secur-

ities [26, pp. 26, 27].

Equilibrium Theory and_the Capital Budgeting Problem

In the same article in which Lintner developed his

equilibrium theory [26], he also applied the theory to the
corporate problem of selecting projects in which to invest.
But first, a number of simplifying assumptions were made.

In particular, all assumptions listed earlier in the devel-
opment of the equilibriﬁm theory terminating with equation

(2.5) continued in effect. In addition, Lintner assumed
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that the investment opportunities available to the company
in any time period was independent of the size and selection
of projects made in other periods; and that there was not
limited liability to corporate stock, nor any institutional
or legal restriction on the investment purview of any
investor; and that everyone expects the riskless rate re
to remain constant over time., With all of these restric-
tions Lintner claimed that:

These conditions make the present values of the cash

flows to any company from its real (and financial)

assets and operations equal to the total market value

of investors' claims to these flows, i.e., to the sum

of aggregate market value of its common (and preferred)

stock outstanding and its borrowings (debt). [26,

p. 28]
and that the assumptions made are sufficient to establish
the Modigliani and Miller Propositions I and II [26, p. 28].
This means the investors will be indifferent to the finan-
cing decisions necessary in selecting a set of projects,
and hence that capital rationing is not necessary. If,
then, a current capital budgeting decision is made that is
expected to change the risk-return characteristic of the
firm, the current equilibrium aggregate value of the firm's
stock should adjust to some new value resulting in a change
A.Voi given below by modification of equation (2.5).

AH, -2 A(0,.*+ Do, %)
i T ii ij

AVoi == 1+ r, (2.6)

To simplify this expression, Lintner made three additional
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assumptions:
1. The aggregate market value of all other stocks is
unaffected by the capital budgeting decisions of

the firm under consideration.
2, ©0..% is, for all j, invariant of the capital budget-

i;; decision of the it company.

3. The optimal portfolio of risky assets earns more

than the risk-free rate. [26, pp. 28-29]

Lintner justified assumption (3) as obviously
reasonable in a universe of risk adverse investors. He
claimed assumption (1) was merely a convenience that
involved ignoring (general’ly small) second-order feedback
effects and assumption (2), he said, was piausible as a
good first approximation [26, p. 29]. Note that Lintner
did indicate "approximation!" which implied that he did not
believe that assumption (2) reflected reality. In order
to determine just how good this approximation is one should
consider the terms eliminated by assumption 2. Those terms
were Z)Aoij*, or the sum of the changes in covariances
with all other companies resulting from the capital budget-
ing decision. Surely one would expect that the maénitude
of EAoiJ.* in relation to T cij* to be roughly comparable
to the magnitude of Aoii* in relation to oii?; However,
Fama [11, p. 36] indicated that there is some evidence that
Gii* is trivial relative to T oij*. It appears, then,
that Lintner, in making assumption 2, has discarded the
important part of his expression (2.6). The alternative
of retaining ¥ Ao, .* is, perhaps, even more troublesome in

1]
terms of solving a real problem. None the less, given
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Lintner's three assumptions as stated above, one obtains

from equation (2.6):

AV | = i T " id (2.6a)

where:

AI%_: change in the expected present value at the end of
the first period of cash inflows attributable to the
acquired assets.,

All present values are computed at the risk-free rate Tee

g..% was previously given as the variance of.Ri, but Hi =

ii
- * * 4 3

R, + V_ . so that Var(Hi) = 04" Ao, * is the change in
the variance of Hi induced by the new capital budget. It
is clear that any set of projects which, if accepted, are
such that AHi - %,-Acrii* > 0, then the current value of
the stock of the company is enhanced. Since capital need
not be rationed, the firm would continue to accept projects
until none are left that would increase the value of the
stock. Lintner formulates the problem as a nonlinear
optimization problem with bounded variables and applies
the Kuhn-Tucker conditions to obtain some general results.
However, in his own words,

Perhaps at this point the reader should be reminded
of the rather heroic set of simplifying assumptions
which were made at the beginning of this section. One
consequence of the unreality of these assumptions is,
clearly, that the results are not being presented as
directly applicable to practical decisions at this

stage. [26, p. 32]

Lintner has not ¢laimed a solution to practical capital
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budgeting problems under uncertainty. An approach has been
specified which is seemingly valid and yet still requires
development in the realm of reality. Lintner's work, then,
provides the motivation and point of departure for this

research and the resulting model presented in Chapter 1IV.

The Sharpe Equilibrium Model

Although the elegance of Lintner's develdpment of
his equilibrium model is certainly appealing, the simplicity
of Sharpe's model, which 1< usefw:l without making Lint-
ner's assumption 2, makes it the choice for further appli-
cation.

Sharpe's development [40]) is similar to Lintner's
in that he seeks to find a relationship that insures that
the market portfolio (same as defined earlier) is at the
point of tangency between a straight line through (O,rf)
and the efficient frontier of portfolios composed only of

risky securities. The resulting equilibrium relationship

is given by:

-— ;ﬁ - rf |
r, = re o+ cov(ri,rm) —EZT??—- (2.7)
m
where:
r. = the rate of return on the market portfolio.
r, = the rate of return on stock i, or portfolio i, and

expected values are denoted by a bar.
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Empirical Ewvidence

Empirical tests of equilibrium theory are not cur-
rently plentiful, but some of those tests published offer
encouragement with regard to equilibrium models reflecting
reality despite the lack of reality in the assumptions
required to develop it. For example, Irwin Friend and
Marshall Blume [13 ] reported on a series of tests of single
variable portfolio performance measures which combine
expected return and risk into a single unit via equilibrium
theory. Friend and Blume's study of one particular measure
developed by Jensen [21] to measure the performance of
mutual funds is pertinent to understanding the validity of
Sharpe's model. Jensen's measure is given by:

cov(ri,rm)

T).=rf—r. -+ 2 LY —rf]

cr
m

which is Equation (2.7) with the additional term ny added.
The index i is for the it portfolio or equivalent mutual
fund i whose assets consist of a portfolio that is con-
veniently designated as the it portfolio. Clearly, if
Sharpe's equilibrium model holds for individual securities,
then it will hold for portfolios and the expected value of
ni is zero. If, however, the market imperfections that
exist cause sufficient deviation from Sharpe's model, or a

portfolio manager is able to recognize investment oppor-

tunities from stocks being underpriced due to a state of
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disequilibrium or he is able to make better estimates of

;., cov(r, ,r ), T , and © 2 than the general investment
i i’"'m m r.

public; then E(ni) > 0 and significant for that particular
mutual fund. Jensen found that mutual funds were génerally
unable to produce significantly positive ni. However,
Friend and Blume's study conducted on Jensen's measure ni
which resulted in an indirect test of Sharpe's equilibrium
model is, as stated earlier, more important to this research.
Their test consisted of picking random portfolios and obtain-
ing a value ni which was then regressed on two measures of
risk. If ni is constant with respect to risk, then the
equilibrium model fully accounts for how investors regard
risk. The opposite was the case, for ni was found to vary

2 2)

inversely with both risk measures (cov(ri,rm)/o‘r 0.
m i

with the relationship being highly significant and linear
(13, p. 565]. Friend and Blume concluded that the only
discrepangy between reality and the assumptions used to
develop equilibrium theory that could account for the
bias they found was that borrowing and lending rates are
not actually the same [13, p. 569].

In addition to these empirical findings, some work
has been done on an assumption used by Sharpe (42], staple-
ton [44] and others that simplifies much of the computa-
tion with regard to portfolio analysis. This assumption
is basically that all securities are related to each other

only through each security's individual relationship with
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a common market effect, i.e., it is assumed that the rate

of return on the it security (ri) is given by:

Ty Tay * Byt e

where:
E(Gi) = 0
=0

cov(I,ei)

cov(ei,€j)= 0O i # j

and where I is an index value of the common market effect.
Hence, given this regression equation for each security i
simplifies the determination of three important parameters

for portfolio analysis. Specifically,

. 2
cov(ri,rj) = Biﬁon
2_ 2 2
var(ri) = Bl O +c€i
2 2 2 2
and var(rp) =B o + iEAxi osi

where rp is the return on a portfolio composed of propor-

tion X of security i and where

ﬁp = xlﬁl + xzﬁz ¥ ese + ?nﬁn

The result of such an assumption is that the covariances
implied by this assumption understate the actual covariances.
Tests by Cohen and Progue [ 8] indicated, however, that
efficient portfolios selected on the basis of expected

return, variances, and covariances estimated from ex post
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data were equally efficient regardless whether covariances
were direct estimates or implied estimates based upon the
common index assumption [8, p. 189].

It is not the purpose of this research to validate
equilibrium theories nor provide a comprehensive survey of
all such validation procedures published. Their mention
here has been a means of introducing equilibrium theory
which has an integral part in the problem formulation in
Chapter IV. The empirical studies serve to provide some
valuable information about, at least, Sharpe's equilibrium
model so that problems of its use in some practical endeavor
may be better understood. It appears that the greatest
practical difficulty is the bias of the Sharpe model but
which also appears linear and dependent upon risk and there-
fore correctable.

The next chapter summarizes the literature concerned
with the capital budgeting problem which, like the portfolio

problem, is an investment problem.



CHAPTER III

MATHEMATICAL PROGRAMMING OF THE CAPITAL

BUDGETING PROBLEM

The capital budgeting problem may be formulated as

a mathematical programming problem. Since a great deal of

effort has been directed at this process, it is convenient

to classify the many varied formulations. There are two

ma jor classifications:

l. Deterministic--those that do not explicitly handle
risk, but instead use parametric analysis to analyze
the budget's sensitivity to possible and varied occur-
rences, or employ special constraints to avoid risks.

2. Probabilistic-~-those that recognize risk and treat it
in some explicit manner.

Much of the work done under either classification certainly

provides useful techniques that can be applied to the devel-

opment of any new formulations, such as the one presented
in Chapter IV. For this reason, a review of selected works

in both classifications will be presented here.

lSee Figure 3 for a summary of those individuals
who have published work in the various areas of capital
budgeting.

30
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Deterministic Models

The deterministic problem may be written as follows:

max z_ = f(x)

subject to: gl(x) <0

gg(x) <0
gn(x) <0
x 20 (3.1)

n
where: X is an m-vector.

Problem subclassification may be determined by the
form of the functions f and g; or other restrictions placed
upon x. For example, if f is a linear function and each
g; is a linear function and each element of x is restricted
to values of O or 1, then the above is a very general state-
ment of Weingartner's {50] and Robertson's [39] formula-
tions. Lorie and Savage's [27] problem is similar except
that each component of x satisfies O < X, < 1. Reiter's
[38] formulation uses a quadratic form for f(x), does not
have constraints 85 and the variables are again binary,

0-1 variables. Another of Robertson's (39] formulations
uses a linear function f and linear functions g5 except for
some special nonlinear constraints designed to limit the

debt equity ratio. His variables are of the mixed-integer

2See Bernhardt [3] for a more specific general
formulation of the capital budgeting problem.
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type with integer variables used to accept or reject a
project and continuous variables or discrete approximating
variables used to determine the level of operation of each
project in each period. Robertson offered no solution
technique for his formulation which with 20 projects and
12 periods resulted in over 5000 variables and 3000 equa-
tions [39, p. 117].

Some formulations might be classified as dynamic
programming (D.P,) formulations; however, D.P. is more of a
solution technique than a unique formulation. D.P. formu-
lations by Weingartner [49]) and Robertson [39J are no more
than recastings of the general formulation given above.

One of the contributions of the deterministic mod-
els, particularly the integer problems, has been the devel-
opment of a rather standard set of project interrelation-
ship constraints which may be found in Weingartner's
prize-winning dissertation [50]. To exemplify these constraints
one may consider a formulation where each project is repre-
sented by a variable i: which takes on a value of zero if
the ith project is rejected and a value of one if the ith
project is accepted.s I J is a set of indices for a
mutually exclusive set of projects (i.e., only one project
may be selected from the set), then the constraint that
guarantees this mutual exclusion becomes:

.Y x, £ 1 if one and only one project from set (3.2)
i
ieJd J may be selected.
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or
Tx; =1 if one and only one project from set (3.3)
i€J J must be selected.

One may also define a set ki a8 the set of indices for
projects that are contingent upon the selection of project
i. For example, the selection of optional air conditioning,
power steering, and power brakes for a fleet of company
sedans would be contingent upon the purchase of the fleet.
The resulting constraint becomes:

Z x, Snx; if none of the projects in k; are (3.4)

je€k, Y . .
i mutually exclusive. n is the num-

ber of elements in ki'

or

r x., < x, if all of the projects in k. are (3.5)

jeki J * mutually exclusive. *
If some projects in ki are mutually exclusive and others
are independent, then constraints (3.2) and (3.4) are
required simultaneously. One special case of éhe contin=-
gent projects case is of interest. A projeqt may be imple-
mented at any one of n discrete levels. In this case, Xq
represents acceptance or rejection at level one, X, repre-
sents acceptance or rejection of the incremental investment
necessary to achieve level two, x; represents acceptance or
rejection of the incremental investment necessary to achieve
level i, etc. Clearly, one cannot accept level k unless

k-1 is accepted, hence the constraints:
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Due to the well-developed state of project interrelation-
ship constraints they will henceforth be referred to by
the abbreviation P.I.C. keeping in mind that they are appli-
cable for zero-one variables only.

Resource constraints represent a second major
class of constraints. Again, these were discussed by

Weingartner [50, p. 125] and take the following general

form:
jzlaidtxj SR, i=1, «c., (3.7)
where:
aijt = the quantity of resource i required by project j
in period t
Rit = the amount of resource i available in period t.

One of the obvious resources is capital, but since it is of
such importance to the capital budgeting problem and
treated in ways other than the general expression given by
(3.7), it will be considered separately from other
resources. In the Lorie and Savage model and in Weingart-
ner's [52, p. 17] integer version of their model the finan-
cial constraints take the form given by (3.7) where 25 5t is
the present value (PV) of the required capital outlay for
project j in period t and in this instance the it resource

referred to is capital. Rit is the PV of the total available
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capital for period t. In Weingartner's horizon model
[50, Pe 141], Robertson's extension of the horizon model
[39, p. 55] and in models by Quandt and Baumol [(1]; and
Moag, Joseph, and Lerner [34]; thé financial constraints
account for the net of all flows of capital for each pro-

ject. The horizon model financial constraints may be

stated:
Ealjxj + vy - W, S Dy (3.8a)
Zatjxj vy - (1+r)vt_l + (l+r)wt_1 - w, S Dy (3.8b)
t = 2, C..’ T
where:
atj = the net cash flows to project j in period t
Vi = the amount loaned at rate r
. W, = the amount borrowed at rate r
Dt = the funds generated by other activities of the firm
in period t, and
T = the last period in the planning horizon.

Robertson's modifications [39.] to these constraints con-
sisted of using different rates of interest for borrowing
and lending and letting Dt = O for all t 2 2 while Dl is
the total funds the firm is willing to commit to the capi-
tal budget. With these modifications the model determines

not only which projects but also the sizes of the investment

levels in each period by means of lending funds in one
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period so that they, plus their interest, becoﬁe afailable
in the next period. The forced carry forward of funds may
be accomplished by placing lower bounds on the amounts
loaned, Vt.
Quandt and Baumol's model (Q&B) [1] uses financial

constraints of the following form:

-Za; . x, +w, <M (3.9)
where:
aj¢ = the tt® period net _.ash flow for project i
w, = the funds withdrawn by the owners of the firm
Mt = the money available for use or withdrawal in period t

Moag, Joseph and Lerner (M, J & L) [34] modified the Q&B
model by assuming that the cash flows from each project in
any period is a non-linear function of the percentage of
project i that is undertaken (the percentage is denoted x;
and is one of the decision variables of the problem). To
obtain a computationally solvable problem, M,J&L approxi-
mate these nonlinear cash flows with segments of linear
functions and naturally conclude with constraints that are
quite different than that stated above in constraint (3.9).
Not all deterministic models seek to optimize the
same function, but in general the maximum of the net present
value of all projects undertaken is most popularly used.
The Lorie and Savage model and Weingartner's integer ver-

sion use such a criterion. However, Weingartner goes on
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to formulate his horizon model which seeks to maximize

Ta.x, + Vp = Vg (50, p. 162] (3.10)

j J J

where:

aj = the value of all cash flows occurring for project j
subsequent to the horizon period T and discounted to
the horizon at rate r, the rate at which funds may be
borrowed or lent.

Vp = the outstanding loans &t the horizon T

Wp = the outstanding debt for the same period

Hence, Weingartner's horizon model seeks to maximize equa-
tion (3.10) subject to expressions (3.8a) and (3.8b) and
any dependency constraints of form (3.2), (3.3), (3.4), or
(3.5) with x, restricted to values zero or one. He shows,
however, that for independent projects and assuming unlim-
ited amounts may be borrowed or lent at rate r, the horizon
model is equivalent to maximizing the net present value of
projects determined at rate r and, in fact, the optimal
solution will dictate the acceptance of all projects with
positive net present values. In effect, then, the horizon
model does not consider the capital budgeting problem in
the framework of capital rationing. Robertson's extension
of the horizon model only embraces capital rationing to the
extent forced by unequal borrowing and lending rates.
Robertson did go on to consider the effects of absolute

ceilings on borrowing.
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The objective function used by Quandt and Baumol
and again by Moag, Joseph, and Lerner, is the utility of
cash withdrawals from the firm by the owners. However,
given that an individual (owner) requires a certain rate
of. return a rational person might prefer a stream of cash
flows with a higher present value to a stream with lower
present value. In particular, then, the utility function
of these models could produce a present value for each
flow with the model maximizing the present value of all
funds withdrawn from the firm. Their model objective is
therefore a more general statement of the same basic con-
cept of maximizing present wvalue.

This discussion of deterministic models has not
been exhaustive nor detailed in the discussion of the rep-
resentative models. It is felt that the discussion is
sufficient, as there are already a number of works
that provide excellent and detailed descriptions of mathe-
matical programming models. In particular, and most obvi-
ous, are the works themselves. In addition, surveys by
Weingartner [ %9], Mao [28], and Bernhard [3], are available.
The purpose here has been to highlight some of the more
prominent models to provide some background pertinent to
the discussion of the probabilistic models. In addition,
before one provides yet another formulation for those who
come after him to review, some criticism of existing models

is needed to provide justification. In the case of the
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deterministic models, sufficient justification is provided
for a probabilistic model by the fact that deterministic
models are deterministic. However, some attempts to con-
trol risk have been made without going to a probabilistic
model. These attempts have culminated with the development
of two special constraints, so-called payback and liquidity
constraints.

The payback constraints require that the total net
present value of all projects undertaken exceeds some value
by some time period t' prior to the horizon. Hence, con-

straints of the form:

t' m i
L I o a; X, 2 b (3.11)
i=1 j=1 JJ

where:

aij = the net cash flows for project j in period i

@ = 1/(1+i) a discount factor

Management specifies t' and b. Clearly, a number of such
constraints could be employed with each using different
values for t' and b, thus giving management a degree of
control over a payback schedule for some specific time span.
Since the payback constraint was developed as a means of
controlling risk, it is appropriate to analyze constraint
(3.11) in terms of the kind of risk that it might control.
To this point, risk has been mostly thought of as a vari-

ability in return, and it is generally ‘accepted that
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projects that yield higher returns will also tend to be
more risky. One can construct many examples of realistic
patterns of cash flows that would seem to indicate that
projects with more rapid payback also tend to yield higher
return. Hence, inclusion of a payback constraint may
press a solution towards some of the riskier, more profit-
able projects. The risk associated with (3.11) must there-
fore be the uncertainty about what might be rather than
just what cash flows might be. For example, management may
wish to avoid committing all normally available funds
to a group of long-term projects because a far superior
opportunity may present itself in the near future. 1In a
sense, it insures financial flexibility to react to events
which are totally uncertain. Totally uncertain means that
these events cannot be anticipated much less their likeli-~-
hood determined. If maintaining this flexibility to react
to unknown events is a policy of management, then con-
straint (3.11) would be appropriate for any capital budget-
ing formulation regardless whether risk3 is given explicit

consideration or not.

3Weston [51] distinguishes between risk and uncer-
tainty by referring to varying degrees of knowledge about
the future. Risk applies when outcomes are known and prob-
abilities of outcomes can be assigned. Uncertainty applies
when outcomes are known but probabilities not known. Par-
tial ignorance is Weston's label that applies when neither
outcomes nor probabilities are known [ %1, p. 48]. In capi-
tal budgeting, only uncertainty and partial ignorance exist,
but through much effort in data analysis and assumptions
one can shift these up one degree. In this context (3.11)
actually protects against partial ignorance.
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Liquidity constraints require a commitment of cash,
equivalent liquid assets, or unused credit lines to be held
in reserve to prevent insolvancy in the event cash-flows
unexpectedly turn downward. This is a somewhat explicit
means of recognizing risk, but is inefficient in that the
same liquidity is maintained regardless whether projects
undertaken turn out to be highly risky or ultra conserva-
tive. Liquidity requirements usually take the form of
tighter rationing of capita., upper bounding of borrowings,
lower bounding of lending, increase in interest charges on
borrowing as a function of debt~equity ratio, or direct

limits on debt-equity ratios.

Probabilistic Models

Models that somehow treat risk in an explicit man-
ner may be further classified into two subclasses:
(1) portfolio models and (2) chance-constraint models. The
portfolio models have already been briefly discussed in the
preceding chapter; however, some elaboration is appropriate.
The usual approach is to assume the investment costs are
known with certainty and returns are random variables.
Additional assumptions are that either:
1. The random variables belong to the same family or dis-
tributions possessing two parameters that are independ-
ent functions of the mean and variance and the utility

function for the decision maker is concave [25,
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p. 37.% or,
2. The utility function is quadratic and the distribu-

tion parameter used for measuring risk is finite.
Either of these assumptions are sufficient to guarantee
that a clear choice between sets of projects is possible
given only their expected return and variance of that return.

The capital budgeting problem is then treated as a

portfolio selection problem with zZero-one variables. The
objective function used for the portfolio medel may reflect
the only real difference from the deterministic models. In
particular, the model given by Problem (3.1) is still valid

for a general formulation where:

£(x) = r(x) - ro 2(x) (3.12)

and where r(x) is the total expected return from projects
undertaken (denoted by vector x of 0-1 values) and crz(x)
is the variance of the total return and finally X\ is a
constant reflecting the degree of risk adversion possessed
by the individual or group making the investment decision.
For a specific case such as returns assumed to be multi-
variant normal, then:

m_
f(x) = Tr.x, ~-xZ Zo, (3.12a)

i7i 1'xix'
i=1 i=1 j=1 9+ J

4Levy and Sarndt reported this finding as a result
of an earlier work by Levy and Hanoch, "The Efficient Anal-
ysis of Choices Involving Risk," Review of Economic Studies
(July, 1969).
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where:
;; = the expected return from project i
Gij = the variance of the returns from project i when j=i

and is otherwise the covariance of the returns from

projects i and j.

Weingartnetr demonstrated tﬁat Reiter's heuristic solution
procedure for quadratic 0O-1] problems could be used on such
an objective function with some modification to handle
mutually exclusive and ci.tingent project relationships,
but multi-period financial and resource constraints cannot
be handled effectively by the procedure [49]. Most of the
literature seems to be more concerned with how to evaluate
and choose between two given combinations of assets than
it is with the problem of finding that particular combina-
tion of assets that maximize the chosen measure.5 One of
the more controversial areas is the question of how to
measure return and/or how to measure risk. Van Horne [48]
originally proposed the present value, calculated at the
risk-free rate, of the stream of expected net cash flows
or, more simply, the expected net present value as the
measure of expected return and the variance of the distri-
bution of all net present values as a measure of risk. To
choose the best combination of assets, Van Horne suggests

a slightly more complex form of equation (3.1l2a) where

5See, for example, Paine [47], Stapleton [44], Van
Horne [473, Hamada (18 s Levy and Sarnot [25].
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non—linear6 indifference curves between expected return and
risk are applied towards finding the combination of pro-
jects that are both efficient in the portfolio sense and
lie on the highest indifference curve. Levy and Sarnot
[25] analyzed the properties of the variance of net present
values under various assumptions of project dependence and
annual dependence between cash flows. They concluded that
the variance of net present value provided an acceptable
multiperiod analog to the mcasure of risk used in portfolio
analysis. However, they also concluded that the calcula-
tion of the variance rapidly becomes complex as the number
of problems and/or project durations is increased. Again,
possible computational shortcomings emerge even before con-
sideration was given to the mathematical programming problem
of selecting the best combinations of assets.

One alternative to incorporating a complex utility
function directly into a programming formulation is to use
a simpler programming formulation a number of times to
generate the entire efficient set or at least an important
segment of the efficient set. Approximate solutions may be

obtained by dropping the integer constraint. Hence, some

6Equation (3.12a) is nonlinear in the decision
variables but is a linear function of the two wvariables
(1) total expected return and (2) variance of total return.
Indifference curves reflect the complete set of all combi-
nations of variables, (1) and (2), that produce identical
utility for some given utility function. In effect, equa-
tions (3.12) and (3.12a) are linear indifference curves while
those constructed from most concave or quadratic utility
functions are non-linear in variables (1) and (2).
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important results may be computationally obtainable despite
the rather discouraging picture given above concerning the
solvability of problems arising from the portfolio approach.

At this point one should not be left with the impres-
sion that there is complete agreement that the correct
decision parameters are expected net present value and var-
iance of net present value. For example, Mao and Brewster
[30] have specified a programming model that generates an
efficient set defined in terms of expected net-present
value and the semi-variance of net present value. They
provide some constructed examples of distributions of cash
flows where according to the E-V criteria, management would
be indifferent between two projects yet using E-Sh7 cri-
teria manégement would prefer one project over the other.
In another article in which Mao surveys the theory and
practice of capital budgeting [28, 31 ] an-interview with
a number of corporate executives indicates their primary
concern for what is termed "downside risk." The mathe-
matical entity of semi-variance is conceptually more like
"downside risk" than is variance [31]. However, most of
these arguments supporting semi-variance are academic in
that no one has compared and published the actual outcomes

of decisions made by the E--Sh criteria to establish at

VE-V refers to expected value and variance which
according to most portfolio theory provides enough informa-
tion to decide between alternatives if preference functions
are known. E-Sh refers to expected value and semi-variance

or S, =.[h (x-h)zf(x)dx for the continuous density f(x).
-
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least enough benefit to justify the horrendous computational
effort inherent in the E---Sh model.

In another example, Fama [12, p. 404) cites some
empirical studies that support a proposition that rates of
return on securities are not normally distributed, but
instead have stable Paretian distributions without finite
variances. These distributions have four parameters:

(1) characteristic exponent, (2) skewedness parameter which
he assumes is zero (symmetric), (3) a location parameter
(comparable to mean), and (4) a dispersion parameter (some-
times comparable to variance). The normal distribution is

a stable Paretian distribution with characteristic exponent

2 and skewedness parameter zero. Fama then replaces the

E~V criteria for portfolio selection with a location parameter-
dispersion parameter criteria. Although the author has not
found a portfolio formulation for the capital budgeting prob-
lem that is comparable to Fama's securities portfolio model
with Paretian distributions, such a formulation could be
feasible and would bring yet another form 6f risk and

return measurement to the capital budgeting problem.

From the standpoint of this research, Stapleton's
work was of particular interest although it could not be

considered a programming approach [44].8 Stapleton contended

8Another work in this area is by R. S. Hamada,
"Portfolio Analysis, Market Equilibrium and Corporation
Finance," Journal of Finance (March, 1969), pp. 13~31, but
Hamada was mostly concerned with substantiating Miller and
Modigliani's propositions using equilibrium theory in place
of homogeneous risk classes.
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that a project should be selected if, and only if, acceptance
of it adds more to the stock value of the corporation than
it costs the shareholders to make the investment. Ciearly,
this work will rely upon a stock valuation model. In par-
ticular, Stapleton uses Sharpe's equilibrium model discussed
earlier and a dividend model.

Using Sharpe's equilibrium model given earlier, one may

- m f
Ty = Tt cov(rj,rng — (3.13)
(0}
r
m

assume that one has F dollars with which to purchase some
future stream of dividends which have a present value vj
computed at the riskless rate re by purchasing shares of
the jt stock or equivalently, ji portfolio. Then vj - F
is the excess dollar return earned above the risk-free
rate and has expectation E(vj-F) = E(vj) - F. Total

expected dollar return on investment of F dollars is then
E(vj) - F + r_F

E(vj) - F + r F with rate of return being T £,
_ E(v ) - F + rF
Similarly, r. = EL‘F , and from definition of

variance and covariance, one has,
g 2
v

m 1
or "~ T2 and cov(r,,r ) = 3 cov(Vj,Vm)

Making these substitutions into (3.13), simplifying and
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multiplying by F, one obtains9
E(vm) - F
E(vj) - F = —7;——5——— cov(vj,vm) (3.14)
v
m

where: index m has referred to the market portfolio in all

of the above.

The PV of total dividends paid by company or port-
folio j may be denoted by Dj with expectation E(Dj). Then
F dollars will purchase .. proportion of the aggregate stock
of company or portfolio j given by E(Vj)/E(Dj); therefore,

the aggregate value of outstanding stock is:

E(D.)
= = - o -
Poj F\R_V'J'LT E(D) SijDJ. (3.15)
where:
E(VM) - F
S = 5
v
M
cov(V.,Vm)
R. = =F g = correlation coefficient between j and
Jm V, V
J m

the market portfolio

Q
|

standard deviation of the PV of all div-

v,
"J- = -7—-1” Vj E(DJ.)

idends paid by j computed at rate Tee

9(3.14) is exactly Stapleton's equation (12) page
102 although obtained in a somewhat different manner.
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Equation (3.15) is a fundamental result of equili-
brium theory and the dividend valuation model from which
Stapleton develops his investment decision rules. After
making an assumption10 that allows the substitution of the
economic index for the market portfolio, Stapleton shows
that dividend policy is irrelevant to valuation given the
net cash flows of the company. He then provides a valua-

tion model developed from (3.15):

- T -
Poj = .\.)ij) soDVxJ_, (3.16)
where:
Dij = the discounted values of all future cash flows to
the firm
DVxﬂj = the expected value of the discounted cash flows

given a value for the index mentioned earlier.

Hence, DVx'j is a function of the index which is a random
variable, and DVx', is a random variable with standard dev-

iation @ Stapleton develops, then, a decision rule

Dvx!'. "®
J
of the form:

If P .*~-P . >x , then invest
oj oJ o

where Poj* is the market value of the firm with all

cash flows of the project proposal under consideration

loThe correlation coefficient between each firm and
the optimal market portfolio is approximately equal to the
correlation coefficient between each firm and some economic
index, such as Gross National Product.
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being included in the valuation model given by (3.16)

and Poj is the firm value without the project while X,

is the cost of the project.
This criteria is equivalent to requiring the net present
value of projects to be positive when discounted at the
appropriate risk adjusted discount rate except that Poj is
thought of as the certainty equivalent of the discounted
value of all future and uncertain cash flows where the dis-
count rate is not a risk adjusted rate, but instead, the
risk-free rate Tee Stapleton does go on to solve for risk
adjusted discount rates so that finding certainty equiva-
lents of discounted values is not necessary. However, the
risk adjusted rate is different for each different set of
assets held by the firm owing to the different risk posture
resulting from different investments. Hence, Stapleton's
risk adjusted di§count rate is analogous to the conven-
tional hurdle rates or MARR's, except that each project
would have its own, possibly unique, hurdle rate as a result
of its own, possibly unique, risk characteristics and of
how those characteristics correlate with all of the firm's
other investments. Stapleton's work then is similar to
Llintner's but a somewhat more practical development of
investment criteria than Lintner's original work [26] vased
upon his own equilibrium equations.

This completes the discussion of the portfolio

approach to the capital budgeting problem, but some
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particular points should be illuminated. It should be
noted that most of these portfolio models rely upon manage-
ment to make the decisions without regard to the external
world. This seems appropriate until one considers that
management may not necessarily be the owners.” If the firm
is owned by stockholders whose shares are traded in some
security market and who do not directly participate in
capital budgeting decisions, and if an objective of the
firm is stated, as it often is, to maximize the wealth of
the stockholders, then decisions should be made with par-
ticular regard for the external world. Stapleton, and
Lintner, took this approach and to do so requires a known
relationship between risk and expectations associated with
the financial parameters of the firm and risk and expecta-

tions associated with the shareholder's returns.

Chance Constrained Programming

‘Given any mathematical prograhming formulation such
as (3.1) discussed earlier one can conjecture that all of
the functions, or at least some of the functions, are ran-
dom variables with some joint distribution function. For
purposes of exposition one may suppose in formulation (3.1), all
functions are linearll and random variable coefficients
are assumed for functions f(x), and gi(x), i =1, eee, k.

gi(x), i = k+l, ..oy n are assumed deterministic,

11Little work can be found concerning chance con-
straints where the constraints are non-linear., '
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The approach of chance constraint programming under the
above assumptions would be to replace formulation (3.1)

with the following (3.la):

Max E(zo = f(x)) . (3.1a)
Sete Pr{gl(x) < 0} 2 o, én(x) < 0
Pr{gz(x) < 0} = o, x2 0

X an m-vector
Pr{g (x) £ 0} =«

gk+l(x. -~ 0

ai clearly denotes a probability which is to be specified
by management and is the minimum probability with which
management would like to have constraint i satisfied. 1In
order to obtain solutions12 it is usually hoped that one
may assume that the constraints are independent and that
the random variables for each constraint have a multi-
variant normal distribution. Under these assumptions and
the linearity of the functions one can express a function

in closed form for the following:

Elg,; (x))
Var(gi(x))
gi(x) - E(g,; (x))
vVar(g, (x))

One then knows that is a standard normal

1ZSee Charnes and Cooper, "Chance-Constrained Pro-

gramming," Management Science (Oct., 1959) and "Determin-
istic Equivalents for Optimizing and Satisfying under
Chance Constraints,'" Operations Research II (1963).
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random variable. Hence,

g; (x) - E(gi(x))
JVar(gi(X))

N
i
R

zl_a is obtained from a table of standard normal values.
i

Therefore, since it is desired that gi(x) < 0 occur with

probability greater than di, then by requiring that

Zl-ai VVar(gi(x)) + E(gi(x)) s 0 (3.17a)

one may assert that Pr{gi(x)‘s o} = txi and the appropri-

ate probability will be guaranteed, Hence, the i®% constraint
of (3.1la) is replaced by a nonlinear constraint of form
(3.17a) for each i = 1, ¢+, k, and the resulting non-

linear programming problem can be solved. Clearly, solu-
tion difficulty arises when each X is restricted to values
of O or 1 as is often the case with capital budgeting prob-~
lems.

Ndslund [367] first applied the chance constraint
technique to capital budgeting problems of the form used by
Weingartner [50]. He also developed methods for circum-
venting the problem of zero-one variables. Byrne, Charnes,
Cooper, and Kortanek (BCCK) [4] applied the technique to
a formulation using payback and liquidity constraints, and
their own horizon posture control constraints which Bern-

hard [3, p. 146] did not accept as being posture control
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constraints. BCCK solve an example problem with four pro-
Jects and three periods, which resulted in twelve variables
since their model also decided which period to begin each
project. Also, Robertson [39] applied the technique to
Weingartner's horizon model but experienced some difficulty
with declaring constraints independent. He made some
approximations but still found the¢xi to be conditional
probabilities which would be much harder, from an intuitive
standpoint, for management to specify in advance. Robert-
son also suggested chance constraint programming as a means
of handling risk in his own deterministic capital-budgeting-
operating level programming formulation, but such a sugges-
tion is completely untenable.

To understand the implications of a chance con-
straint, one may consider a simple example of chance con-
straint programming applied to a one-period problem con-

structed for the purpose of illustration:

Max NPV = EV}xi; VE = expected NPV13 of project i.
Sete 2'6i i < F3 Ei = expected cost of project i
0 < x; S 1 F = total funds budgeted

Formulated as a chance constraint problem with Ci being
normally distributed with means Ei and variances and covar-

iances cii and cij’ respectively, the problem becomes:

13NPV is used to denote net present value.
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n—
max NPV = T V.x.
. i™i
i=1
Sete [Pr z C.x. SF:J 2 o
iTi
+ other constrainté

0 x. <1
i

Let G be a random variable such that:

G =% Cixi'
Then G is normally distributed with expected wvalue:

E(G) = % C.x.

and variance:

n n
Var(G) = ¥ ¥ x.x.0..
i=1 j=1 * I I
and standard deviation:
STD(G) = n n
Y x.x.0..
i§1 j;l i*3%4 3

Hence,

G - E(G) _ ICix; - ZC;xy
SIS /ETxx 0

N R S

has a standard normal distribution. Suppose that the &

specified by management was .99, then it is known that

pr{gs—;,mﬁ’-é-‘)ﬁ < +2.326} = .99
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or Pr{G < STD(G)(2.326)}+ E(G) = .99
and letting STD(G)(2.326) + E(G) < F
then clearly Pr{G £ F} 2 .99 and the problem becomes

Max NPV = T V. x. (17)

Sete X Cixi < F - 2,326 /Y T xixjo'ij

0 < x. =1
i

This formulation is precisely the same as the original

formulation without a chance constraint except for the

term -2.326 VT T xixjoij' Remembering that in the discus-~
sion of deterministic models one means of controlling risk
was to make constraints, such as the above financial constraint
moyrg con stradinitng , thus forcimg the withholding of some cash
from investments to protect against the risk. The amount
withheld was based upon management's subjective opinion

of how much should be withheld without really knowing

the level of risk that will be present in the final set

of projects accepted. The chance constraint technique is
essentially the same procedure except that it offers a
refinement in that the amount withheld is clearly a

function of the risk (measured by standard deviation)

of the set of projects accepted. It is also a function of
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management's abhorrence for events that they consider bad,
such as exceeding budgetary limitations. That abhorrence is
measured by the specified probability & of the bad event
not coming true. However, for the above model, no control
is apparent for other risks. For example, projects with
very stable costs could also possess highly variable
returns so that the final set of projects accepted have
little chance of exceeding budgetary constraints but per-
haps a much higher chance of not generating enough earn-
ings to pay future expected dividends or support future
investment programs. Nidslund [36j avoids this problem by
applying the technique to a form of Weingartner's [50]
horizontal model in which all cash flows appear in each
constraint that is made a chance constraint. This limits
the probability of unusually low horizon values for the
firm. Byrne, Charnes, Cooper and Kornek [4] also handle
this problem in that one of their chance constraints is
applied to a payback constraint which includes all cash
flows for at least some initial period of the project
lives. Bernhard [3, p. 152] criticizes both of these
models on the basis that it would be difficult to specify
meaningful values for the @'s, and that in some cases the
violation of a financial constraint can be rectified by
engaging in short-term borrowing at some cost, the meaning
of which is not portrayed by a chance constrained financial

constraint. Bernhard also indicated that solutions,
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particularly integer solutions, are not easily obtained
(3, p. 154].

The application of chance constraints to deter-
ministic models certainly appears to be a viable approach
to controlling some of the risks involved in capital
investment decisions. The value of the technique in real
applications has not been substantiated since the model
formulations are either not entirely meaningful or are dif-
ficult to solve [3, p. 155]. One should neither rejdct the
scheme nor proclaim it unequivocally as the correct means

of handling risk.

Summary

The tree structured diagram in Figure 3-1 provides a
convenient means of reviewing the various classes of capi-
tal budgeting formulations presented in the chapter. Each
arc is labeled with its branch of the classification scheme
used and the nodes at the end of some chains of arcs give

examples of moﬁels identified by author's name and date.



Deterministic
Models

Lorie
1

& Savage
955

Lp

Charne
Cooper
Miller
1959

Integer

S Prog.

&

59

Chance

Constraint

Models

Naslund 1966
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Figure 3-1. Tree-structured classification system.

Note:

Expected
Earn.
Risk
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Model

Cord 1964

Van Horne 1966
Weingartner 1966
Mao & Brewster

1970

Probabilistic
Models

Port-
folio
Models

Equili-
brium
Deter-
mined
Stock
Price
Models

A

Lintner 1965
Stapleton
1971

The model presented in Chapter IV belongs under node

A of Figure 3-l.




CHAPTER IV
A MODEL FORMULATION

The ultimate goal of this research is to apply the
work done in capital budgeting and portfolio and equilibrium
theory to the construction of a mathematical programming
formulation that can be solved in a relatively efficient
manner.l In an effort to make this model more useful as
few unrealistic assumptions as possible are made. However,
too few assumptions are likely to result in a formulation
that is untenable from the standpoint of finding solutions
or perhaps more importantly from the standpoint of data
requirements.

The procedure for presenting the problem formula-
tion begins with the statement of general assumptions that
establish the framework and define the boundaries within
which the formulation will be operative. Next, one finds
a general development for the objective function with
specific objective functions given as examples, followed
by a rather specific development of the financial constraints

with a computation of the cost for violating a constraint.

1See Figure 3 to determine the exact category or
class of problem formulation that is being provided herein.

60
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Integrated with these developments, one finds the state-
ment of the specific assumptions required to support the
development. Certain assumptions are implicit and
remain unstated. For example, if the model uses a par-
ticular datum, then obviously it is assumed that it exists
and is obtainable.

The resultant programming problem formulation is
stated as genéral functions of pertinent variables defined
during the development. This allows management to specify
their own functions for replacement of the general ones
producing a specific problem formulation tailored to the
needs or beliefs of that particular management.

To validate the generality of the problem state-
ment an analysis of the objective function with exact func-
tions specified is provided as a parallel to Stapleton's
work, with identical results obtained. The work is then
extended into a programming problem context rather than the
simple decision rule Stapleton developed.

Finally, a number of specific assumptions are made
which allow a complete construction of an example problem
stated in specific terms instead of the general terms used
for the original formulation. It is this specific problem

that is solved in later chapters.

2See Chapter 1t for a summary of Stapleton's work
in this area.
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Assumptions

The general framework and boundaries of the prob-

lem are defined by the following assumptions.

1.

Management determines the budget size and means of
acquiring all funds required to support the budget, but
automatically relies upon short term borrowing when the
planned budget is exceeded. Surplus funds are auto-
matically invested (or loaned) at the risk free rate
while the rate the company must pay for borrowed funds
is higher, constant during each period, and specified
for the problem.

Capital markets are not assumed to be perfect.

Sharpe's equilibrium equation represents reality.

All random variables are normally distributed, but not
necessarily independent of each other, i.e., random
variables associated with individual projects are cor-
related with the random variables associated with other
companies. Further it is assumed that this correlation
may be fully represented by a common relationship with
some underlying economic factor. 1In fact, it is con-
venient to assume that all correlation between companies
is sufficiently approximated by this common relation~-
ship with the economic factor.

The company is widely held and its stock traded in the
security market.

Assumption 1 defines the boundaries of the problem.
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It is clear that the only decision left to the model is
to select the projects in which to invest and that, of
course, will also determine the timing of the use of funds
made available by management. This gives management a firm
control over the investment budget and allows them the flex-
ibility of exploring a wide variety of means of acquiring
funds for investment. Figure 4-ldepicts the problem with
its inputs and outputs where the inputs are the results of
independent (from the probiem) management financing decisions.
By parameterizing some of the inputs one may use the model
to evaluate the effects of various financing decisions

upon the selected projects and the objective function.

Inputs

Project Cost Estimates

Project Net Cash Flow Estimates
3

Investor Estimate Models

Cash Flows Resulting from Financing Plan
(For Example: Interest Payments, Bond
Flotation Costs)

Dividend Policy
MODEL

Outputs
List of Accepted Projects«

Objective Function Valuee«

Expected Cash Surplus (Invested at Risk Free Rate)*———J

Figure 4-1. Model inputs and outputs.

3Investor estimate models are defined on subsequent
pagese.
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Assumption 2 preserves the reality of the model.

The assumptions behind Sharpe's model that is
assumed realistic in assumption 3 are in direct conflict
with assumption 2. However, any model developed in a
purely theoretical framework may still represent reality
if the market imperfections caused by violated assumptions
are not too great. As mentioned in Chapter II, Sharpe's
model gives a consistently biased picture of reality, but
which can be corrected, thus eliminating the disparity
between assumptions 2 and 3.

Assumption 4 is both general and restrictive in
that it does not specify independent random variables but
does specify normality. Normality is not absolutely required
provided enough projects are accepted to invoke the Central
Limit Theorem. It is, however, convenient and is certainly
not uncommonly assumed. Furthermore, most random variables
in this research are cash flows and Hillier has indicated
that in many cases, one's best subjective probability dis-
tribution is one that resembles the normal distribution
[20, p. L446].

Since the modél selects projects based upon their
effects on the equilibrium value of the stock of the company
it is necessary to construct a situation which provides an
opportunity for the stock to seek an equilibrium price,
hence Assumption 5.

The remainder of this chapter is devoted to the
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development of the mathematical programming project
selection model within the environment established by these

five general assumptionse.

Objective Function Development

¢t is defined as a vector of financial parameters
of the firm at the end of period t. It is assumed that
investors predict the future price of the stock of the firm

by obtaining an estimate 2., of the vector By Therefore,

t
there exists some relaticaiship between estimated future
stock prices and‘at. Suppose one may estimate that rela-

tionship by

/ﬁ_t = f(at) + € t = 1,2, s e e ([*ol)

where ?t is the estimated aggregate value of all outstanding
shares at the end of period t, and € is a normally distrib-
uted error term f, = O and cov(e,gt) = 0.4 ‘8t is

assumed to be a random variable with the same distribution
as ¢t and with a mean and variance equal to thosé estimated
for ¢t' One should observe that (4.1) is a rather general
statement for an equity valuation model. For example, one
can consider a dividend model which estimates current price

(or value) as the present value of all future dividends:

¢t may represent either before tax or after tax

values. .If they are before tax values, then one must assume
that the tax situation of the firm is constant and will '
remain c%pstant after project selection. Under that assump-
tion, f£( t) should reflect whatever the tax situation hap-

pens to be. This gives consideration to tax in an approximate
manner,
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a a
p, - » Lk .3 . 3 Lk
T k=0 (1+r)k ¢ k=1 (1+r)k-l(l+r)
B
t+1
ﬁt = at * 1l+r
B - £, .2, )

Hence, the dividend model is exactly equation (4.1) under
the following conditions:
l. The model is assumed to always reflect investor esti-
mates exactly and therefore the error term ¢ is dropped.
2. The financial variables used are estimates of the divi-
dends paid at the end of period t and an end of
period t estimate of the end of period t+l price.
Equation (4.1) may henceforth be referred to as the
investor estimate model.
Invoking assumption three and four, thereby using
an economic index m as a surrogate for the market portfolio,

one obtains Sharpe's equilibrium model:

E(ﬁm)-R

E(®) = R, + cov(®,R ) -3 (4.2)

£ m 2
o (ﬁm)
where:

R = the one period return on stock held in the firm
R

the riskless rate . :i

r
ﬁm = the rate of change in index m
o 2(R ) = the variance of R
m m
E = the expected value operator
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Equation (4.2) may be referred to simply as the market
model. It is proposed that actual market value may be
relatively accurately determined by a mathematical combi-
nation of the investor estimate model and the market model
as a result of assumption 3. Thus, a relationship will
be determined between market price of the firm and its
financial variables which are affected by its investment
decisions.

Clearly, the rate of return for any period t+1,

given end of period value Pt’ is estimated by:

B -P, +D
ﬁ - t+1 t t+1 (lt.Za)
Pt

where:

ﬁt+l = the estimated dividends paid during the period.

The expected rate of return is:

E(B ) - P, + E(D )
E(R) = —ttd Pt t+l (k.2b)
t
and
B, _-p +D, _-E(B, )+P -E(D, .)
cov(ﬁ,ﬁm) - E t+l "t "t+1l Pt t+1 t t+1 ﬁm-E(ﬁm)

]

~ l ~ Pal ~
cov(R,Rm) 5 {cov(?t+l,Rm) + cov(Dt+14Rm)} (4.2¢)

t
Substituting (4.2b) and (4.2c) into (4.2) and letting
i E(Rm) - R
T g 2
o
(ﬁﬁ)

f

which is the market "price of risk" and is
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assumed constant over time, and solving for Pt one obtains:

~

IR )}

E(ﬁt+l)+E(DH_l)-k{cov(Pt+1 JE h.3)

t - 1+ Ry

~ ~
,Rm)+cov(Dt+

From (4.1) and the definition of covariance,

cov(ﬁt,ﬁ ) E{[ffat)+€—E(f(3t))][ﬁm-E(ﬁm)]1

cov(P R )

£ cov(ffat),ﬁm) + cov(e,ﬁm) (4.3a)

Substituting (4.3a) into (4.3), (4.3) becomes:

E(f(8t+l))+E(ﬁt+1)-x[°°v[fcat+1)’ﬁﬁ]}

t 1+Rf

x{cov(€ R )+cov(ﬁJc LW (k.b)

1+Rf

Thus, for any set of assets, all that is needed is thg divi-

dend policy and values for the estimated financial variables
8t for each period t, and the equilibrium price for the
end of each previous period may be determined by equation

(4.4). An alternate statement of (4.4) may be obtained if

one first defines Pt = ?t+1 - Pt’
A/\P +D
Then = —5—t
t
and
~
E(AP,)+E(D, ) A
t t+1° -~ 7Y o -~ :
F, = Ry + 7, {COV(A‘Pt’Rm)+COV(Dt+1’ﬁm)}
o
E(ébt) = PR, + A {cov(d?? R )+cov(ﬁt+l, )} - E(Dt+l)
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A o = gaN D R
o ::IN APt)-Xcov( A-’F’,l.lgl’-{m)’f{:E(Dt)'XGOV(Dt+l’Rm)‘-l (4.4a)

t Rf

Therefore, the current price may be explained as the cer-
tainty equivalent of all wealth accruing to the stockholder
during period t+1l, capitalized at the risk free rate.

These certainty equivalences are determined by deducting
from expected accrued wealth a penalty for relevant risk5
(measured.by covariance with the economic index) where the
amount of that penalty i determined in the capital markets
and is sometimes referred to as the "price of risk" [40,

p. 34]. Equation (4.4a) may be further modified by recog-

nizing that ’13t+ P, = £(3

1~Py +l)-f(at) from whence one gets:

t

E[f(3t+1)]-E[f(at)]-l{covﬁfat+l))-cov(ffat))}+E(ﬁt+l)
t - = )

£

A ~
-kcov(Dt+1,Rm)

Re

(k.b4')

There is clearly a problem with equations (4.4)
and (4.4') and their compatability with the original assump-

tion that all random variables are normally distributed.

5Relevant risk is not simply variance of return
since by diversifying, investors can eliminate most, if
not all, variation in returns except that accounted for by
covariances with other stocks. Due to the assumption that
all covariances are explained by covariances with the
economy, hence, the only relevant risk is measured by covar-
iance with the economic index m.
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Since dividends tend to be a matter of policy with many

corporations attempting to maintain dividends despite lower

earnings and then if forced to cut dividends there is a

preponderance to hesitate increasing the dividend payout.

Thus, dividends will hardly exhibit a normal distribution.

Several means of handling this problem are available.

1.

Forusome firms, an exact dividend policy may be estab-
lished at a conservative enough level that no one would
expect any deviation from that policy. For example,
some companies do not pay any dividends and have no
plans to ever do so. Under this situation a good
approximation is achieved by replacing the random vari-

able D by a deterministic constant Dt and eliminate

t

the covariance term involving Dt'

One may assume the existence of an investor estimate

model based upon financial variables much as was done

in the price estimation model for investors. Thus,

ﬁt becomes a random variable representing estimated
dividends (by investors). Ideally, one should specify
some general model such as d(at) + €, however, since
dividend policiessare executed by firms and investors
become aware of such policies, they are likely to influ-
ence the estimation model. Realizing that a general
model can always be used but would result in a redundant

exercise, two specific candidate models are presented.

One may assume that investors believe the company uses
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a fixed percent times cash flows to determine dividends.

Thus , D, = agt where @ is the fixed percent and @t is

t
the estimated cash flow for period t, and may be assumed
normally distributed.

4, Perhaps a better model is to assume the company attempts
to maintain a relatively constant dividend pattern and
achieve, on the average, some target fixed percent .

Then, a reasonable model for investors to use to esti-

mate dividends is to find a perpetuity equivalent to

T a(8.)

the fixed percent times cash flows. Hence, ﬁ:Rf > (TR 3
j=0!1+Re

T is the planning horizon and D is now independent of

time. One should observe that with this model, E(B) =

T aE(Z.) R . Tacov(gj,ﬁm)
R, T ——J1— and the covariance, cov(D,ﬁm)=Rf z 3
j=0(1+Rf)J j=0 (1+Rf)

are relatively simple to compute. In general, this

fourth method of handling the dividend problem will be

used.

The construction of an objective function using

stock prices is difficult. The reason for this, as Mao
points out, is that very little research has been done in
an effort to distinguish between a ''good" or '"bad" plot or
graph of stock prices [28]. Equation (4.%4) or (4.4') pro-
vides a means of determining a whole series of stock prices
given financial parameters, but as just mentioned the process

of determining which series is preferable has not yet
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been developed. Therefore, the intent here will not be to
state one objective function and declare it valid, but a
number of obvious choices will be presented for possible
use. The cases presented will also exemplify the latitude

available for other possible formulations.

Case 1:
One may assume it is desirable to maximize the
equilibrium price at some horizon T. Then the objective

function is:

Max P

where Pp is given by (4.4).
3 T+1

T

The shortcoming of this objective function is obvious since

it ignores most occurrences prior to T.

Case 2:

One may assume that it is desirable to maximize the
present value of the periodic certainty equivalent stock
price changes. Clearly, a certainty equivalent price change

should equal R..P, which is given by (4.4'). The objective

function is:

T prt

,gax b
- t+1
¢ t=1 (1+Rf)

Vit

Case 3:

One may assume that it is desirable to maximize the
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present value of all marginally and periodically acquired
capital obtained through the sale of stock. Then the
objective function is:
T P

Max X L I
31-, t=0 (1+Rf)

vt
Clearly, this objective function accomplishes about the

same thing as the one in Case 2.

Case 4:

One may assume that it is desirable to accomplish
some very specific objective. Two examples of this are:
(1) The firm already plans to raise large amounts of capi-
tal by selling stock at the end of the third and fifth
periods of the current planning horizon. Furthermore,
twice as much capital will be raised in the fifth period
as the third and management would like to cause as little

dilution as possible. Their objective might be:

32?§6 P3 + 2P5 where P3 and P5 are given by (4.4)

Of course, an objective function such as this ignores most
events in all other periods. This may be a dangerous
practice. One might compensate by giving at least nominal
consideration to prices in other periods with the following

objectives:
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T
Max P, + 2P_. + 96 PO + 6P1 + 5P2 + GP4 + 0P

3, all t 3 > t=6 ¢

where 0 is some chosen parameter between zero and one.
(2) In the second example management has established a
target growth rate for the equity value of the firm and
seeks a consistent price change that is as close to that
growth rate as possible. Suppose the target growth rate
is Rg’ then the objective function is:
in 3§ l1sR B P,
Fove con | e ToT
or adternatelwy!.:
Min ; [(1+Rp)tP°-Pt]2.
tvt t=1
The second objective function places a higher penalty on

large deviations from the target prices.

Case 5:

This case is based upon the assumption that invest-
ors estimate prices by using information about financial
variables in all future periods instead of just the period
for which the price is being estimated. This is accomplished
by defining f as a recursion function where one of the finan-~
cial variables is an estimated future price as was the case
in the dividend model example given earlier. Under these

circumstances an appropriate objective function is:
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Max Po
3tvt

where P_ is determined by (4.4) and the financial variables

resulting from the capital budget under consideration.

The purpose in this section has been to present a
generalized framework basic to the comstruction of various
objective functions. The intent has not been to state one
objective function and declare it appropriate for all pos-
sible considerations, but instead, one fundamental result of
equilibrium theory has been proposed (equation (4.4)) with
the hope that it will be the only necessary ingredient in

the development of at least a class of objective functions.

Financial Constraints

It is assumed that budgeting controls utilized
by the model only apply to funds expected to acquire cap-
ital assets. Cash flows resulting from operating expenses
are not considered in the financial constraints but do
appear in the net cash flows computed for each project.
Nat#rally, these cash flows are considered random vari-
ables. Funds not used in any period may be carried forward
to later periods, but the interest earmed on the funds car-

ried forward is not allowed to serve to increase the
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total size of the capital budget. Any increase in the
total amount of capital assets acquired is the direct
result of a conscious decision by management and not an
automatic spinoff of the problem formulation.6 One may define
E&t as the expected cost of project i during period t, and
X, as a zero-one decision variable indicating acceptance
or rejection of project i. Mt is the amount of funds that

management is willing to commit in period t to the current

set of opportunitiées. Then the constraints are as follows:

m
ii;lci}xi + 85, =M (4.5)
m — —
- = = ' .
1231 i%xi Sy_q * Sy =M, t=23, .0, T (4.5a)

Since equations (4.5) and (4.5a) are expressed in terms of
expected values, they do not take into account any risk due
to variability of costs. Hewewer, considering the same

equations expressed in terms of random variables one obtains:

m
T C. .x. +8, =M (4.5')
i=1 1} i 1 1
m~ ~
and ;Zlcitxi -8, ¢ §t = M, (4.5a"')

At least for the moment i% is assumed that the budget sizes

6In Weingartner's horizon model, the financial con-
straints automatically committed all cash flows to the pur-
chase of capital assets and operating budgets for those
projects currently under consideration. The attempt here is
to formulate a model that would not take any decisions away
from management except the decision of which projects to
select.
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Mt are fixed and that since the costs 6il are random
variables representing, for example, startup costs, con-
struction costs, and design costs, much of. their varia-
bility is likely to be camsed by acts of God, or technical
problems and are therefore considered uncorrelated with

the economic index. One may consequently assume cov(gt,ﬁm) =
0. However, the expected contribution of umuwsed funds §t

to the expected cash flo.s of the firm are not as easily
dispensed with since by previous assumption gt is

invested in the riskless asset paying Rf per period if

it is positive and is borrowed at rate Rbt per period

if it is negative.7 From (r.5') and (4.5a') one obtains:

wR
1]
 w K2t

t % .
- I C.,x.
o1 B ey gy KT

it

which implies from assumption 4 that §t is normally dis-

tributed with mean Hg given by:
t

7Rbt may instead bp considered a per period cost
of a budget overrun regardless how the extra funds are
actually acquired.
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t m __
1Mk - kfl tficikxi (4.6)

= 3
1"
4 o

t k

i

and using the following notation: Var(Cik) = 04Kk

cov(C..,C. ) cov(C.. ,C. ) =00y 45 3 cov(éik,é.) =

ik ik’ " 0'ijkk; ik’ Tis Jt
= _ 2 2 .
O3 jki and Var(bt) = Ust one can compute Gst by:
o t m t m k.7)
o = % T T To, X. X, (4.7
St =1 j=1 k=1 i-1 ‘Jk2& "3173

Since, all planned borro -iag is a management decision out-
side the programming model a restriction that is coupled

with (4.5) and (4.5a) is that S, = 0} t. Notice that

S Clearly, the contribution of unused funds to cash

= M
t St
flows is given by the function g(St) below:

R, if §t >

g(5y) = oo
Rbt if St <0

h(§t) is defined as the normal density function for §t with

mean Mg and variance Og 2 given above. Then the expected
t t

contribution of unused funds to cash flows is given by:

: o ©
Els(5,0+8,] = [ s(5)8,n(5,)a8, + [ "s(5,)8,n(5, )45,

-0

0o ® K
R ~f_m S;h(5,)d8, + R, l; §.h(5,)dS,

2 2
| (Rfbe)asf -“st /20st
= e +Bg Ro-lg ( R JH(0) (4,8)
Ve t
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where H(0) is the normal distribution function. It is obvi-
ous that at least one of the financial variables in the veec-
tor"at is net cash flows, and equation (4.8) provides a
means of determining the expected net cash flows resulting

from slack funds.

The Complete Formulation

In order to keep the statement of the objective-
function general, it will continue to be stated as simply
a function Q of at’ t=0,1, .., Te Keeping the problem
statement in this gemeral form allows flexibility for use
of various objective functions such as those specified in
cases 1 through 5. This is not meant to imply that solution
procedures presented in later chapters for the final formu-
lation will solve the problem for any function Q. For that
matter, the same is true of the function ffat). In order
to utilize all relationships developed thus far it is assumed
that one of the financial variables is total predicted cash
flows from all accepted projects. The vector a't represents
the original vector at with cash flows removed and handled
separately. It is also assumed that there exists vector
valued functions of the acceptance-rejection variables X5
i=1, eeey m or other related variables that defines the
financial vector'B't. These functions are denoted by at.

The complete and general formulation may be expressed
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as f0110Ws:8

%ax Q(ao,al, ese at) (409)
t
t=1,e0.,T
Sete: a't = st t = l, ooo; T (4.98.)
m— ~
E‘t = i}:‘leitxi+E[St.g(gt)]
t = 1, e ey T (4.91'))
m— ——
izzjlclxi + 8, =M (4.9c)
m— — —
iflcltxl * 8 = Sp =My

t = 2’ eeo oy T (4¢9d)

+ other deterministic resource

constraints (4.9e)9
+ P,I. constraints (4-9f)10
xi = 0 or 1 is= 1,2, seeqy I (4093)

The variable@ represents the net cash flow in period t

t

and is a component of‘?t, hence‘3t may be written

£

. ®&.'s are the anticipated net cash flows in period t
a; it

owing to project i and g(§t) is as defined before. Con-

straints (4.9a) and (4.9b) are definitional constraints and

8A specific example is given later.

9Such as those found in Weingartner [50].

105uch as those found in Weingartner [ 50].
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are required only so that the objective function may be writ-
ten as a general function of a%'s while the actual decision
variables are the xi's. In specific problems, these defini-
tional constraints may not be needed, but for convenience in

obtaining solutions other definitional constraints may be needed.

A Specific Model

One test of a general model consists of making specific
definitions for the general function in an effort to obtain
results identical to those found in the literature. In par-
ticular, this is accompli~}k:d for Stapleton's model with an
analysis included to demonstrate some of the consequences of his
assumptions. For this development assumption 2 is discarded:

Again @ is a dividend fixed percentage defined as div-
idends per net cash flow, and 3{ is a random variable repre-—
senting estimated cash flows to the firm (for all investments)
in period t and treated as an end of period t value. %t has

mean e
t

It is assumed that an exact investor estimation model is known

and covariance with the economy denoted by cov(@t,ﬁm).

and it is a dividend model based upon all estimated dividends

through the horizon T. Then,

o~ (A o~ ﬁ ) % ﬁt+i
P = f D ,D ’ eo e g = Y
t t+1’7t+2 t+T j=1 (1+Rf)J
T T,.. T cov(D, B )
—Ist = E '-'—t-"-“l— & cOV(?t,ﬁm) = E t+‘]. m
=1 (1+r )Y j=1  (14R.)Y

From the above and equation (4.4) one can obtain:

— ~

T-1 D . T-1 cov(D LR
t+1l+ - t+l+3' m
B (1:§;%3 + DpypA EL TR + cov(Dy . R))
p . d= =

t - J
(1+Rf)
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T D, . T cov(’ﬁt LR )
P = E —-—t—-‘:‘]—'—' - h E +) .m
vty (1+R )" i=1 (+r)?
T - = .
P, = 321 (1+4R.)™Y (D, —Acov(ﬁt+j,Rm)} (4.10)

Two investor dividend estimation models will be considered.

Case 1:
Bt = a@t then (4.10) becomes

T iy L
P, = 03§1(1+Rf) {;t+j —),LJV(et+j,Rm)} and in particular
when t = 0 the above becomes:

T j

- ~nN =~

P = 0351(1+Rf) fgj - Acov(ej,Rm)} (4.11)

If the dividend policy is to pay out all net cash
flows then o = 1 and equation (4.11) yields an identical
equation for Po with that obtained by Stapleton for the

same dividend policy.ll

Case 2:
Management attempts to stabilize dividends causing
(1+Rf)TRf T a@,
T r —l=
(1+R.) =1 j=1 (1+R_)J

investors to estimate dividends by D =

which is an annuity equivalent to the present value of cash
flows accruing for the purpose of paying dividends. Then

equation (4.10) becomes:

11See Stapleton's equation (30a) 44, p. 108 .
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— A o~ T ._j
P, = {D - lcov(D,Rm)} T (1+R,)
Jj=1
Defining earnings in a manner similar to Stapleton,
(1+R)TR, T Q.

Y = 3 T £ ¥ —1— 50 that D = of one may evaluate
(1+R.) -1 j=1 (1+R.)Y

the policy of allowing all earnings to be paid out by
lebtingn = 1. This gives:

T Ci — .
P =a 2 (1+R)"IH ¥ - dcov(®,8 )} with x = 1 (4.12)

o . f m

Jj=1
Equation (4.12) is again a result identical to Stapleton's.12
Stapleton argued that equations (4.11) and (4.12) are
identical and concluded that dividend policy has no effect
upon stock evaluation. However, using his definition of

T €.

¥ = R Y ——id—— which is a perpetuity and not a finite

j=1 (1+R.)Y
annuity as was defined above,.equality of (4.10) and (4.11)
cannot be shown unless the horizon T is infinite. Using
the annuity definition of ?, equality can be shown for any
horizon T. It appears from equations (4.11) and (4.12) that
the value of the equity of the firm may be arbitrarily
increased or decreased by increasing or decreasing ®. This
is contrary to financial theory under perfect capital mar-

kets. However, the net cash flows Qj is a function of %

125, Stapleton's equation (32a) [4%, p. 108].



84

such that a decrease in @ results in an increase in @j
and an increase in @ results in a decrease in Sj given
the investment plan of the firm. Furthermore, under per-
fect capital markets there is no risk associated with that
change in @j sinée it is the direct result of interest
paid or not paid as a result of retaining less or more
funds respectively, and that interest is computdd at the
risk free rate R.. Therefore, equations (4.11) and (4.12)
do not necessarily contradict financial theory.

In the context of the problem formulation (4.9)-
(4.9g) and under the assumed investor prediction model
given above and assuming perfect capital markets, then it is
clear that the correct approach is to assume management
has already established dividend policy which investors
observe as a historical average ¢, It is therefore suffi-

T .

cient to consider only j§1(1+Rf)-J[2j - Xcov(gj{ﬁm)] and
the firm should continue accepting projects so long as the
present value of the certainty equivalent of net cash flows
is positive. Lintner and Stapleton would both certainly
agree with this conclusion [44, p. 110], [26, pp. 29-33].
The formulation would therefore have no financial constraints
under assumed perfect capital markets.

Under the assumption of imperfect capital markets
there is clear motivation for management to exercise a

policy of capital rationing. Mao also found capital
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rationing to be widely practiced [28). Given the dividend
policy the problem becomes one of selecting that combina-
tion of assets, subject to the financial constraints, that
will produce cash flows Gj such that
; s, - (2,8 ))
j§1(1+Rf) e A cov e Ry
is maximized. Evaluation of change in dividend policy may
only be accomplished by solving the problem for each policy

and comparing the total results,

A Specific Formulation

Assumptions and definitions:

1. Assumptions 1, 2, 4, and 5 stated earlier hold.

2. The bias of the Sharpe model is a linear function of
covariance with the market and is corrected by an
empirically determined adjustment to A resulting in a
new value A'.

3. Management engages in a dividend stabilizing policy
causing investors to estimate dividends by a perpetuity
equivalent to a ratio of all cash flows for an invest-

R N T O
ment horizon T. Hence, Dt =D = Rf po .
j=1 (1+R.)Y
4, 1Investors estimate equity value by a linear function

of T periods of retained cash flows.13 Hence,

13Retained cash flowa are net cash flows minus
dividends, so that taxes are taken out of retained cash
flows, but, of course, taxes are determined before dividends.
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10.

11.

12.

13.
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P = pl{el-ﬁ] + ﬁ%f@z-ﬁ} cee ﬁr{GT-ﬁ} + €,

The corporate tax situation is constant over time and
new investments are not expected to affect it.

elt are net cash flows in period t resulting from cur-
rent investment commitments.

e., are net cash flows in period t resulting from

it
project i, i = 2,3, seey, nN.

g(gtL§£Aare net cash flows in period t resulting from

slack funds.

eit are costs incurred in the acquisition of the capi-
tal assets required for project i, i = 1,2, ¢y, n and
t = 1,2, eeey T' where T' is the last period requiring
capital investment for this particular budget.

There is no autocorrelation between investment costs
nor any correlation between investment costs and the
economic index used to establish ﬁm'

The decision variables are X, i =1,2, evey n with X,
restricted to values of zero or one., Clearly, X has
an additional restriction x, 2 1.

The funds allocated to this project are fixed at Ml’
Mz, coey MT"

Management, having already decided upon the means of
supporting the dividend policy and the investment

schedule in 12, has determined that sufficient short

term borrowing is available at rates Rbt for t=1l,..0,T.
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Under these conditions, the problem becomes:

T Py T e .
Eﬁk{k-aR T —J—— + (er T ——
M p - k=1 3=1 (1+Rge)d =1 ‘1*5i13
eax o (1+R, )
t
t=ly,eee,T |
x, T , 5 ) T cov(e ,ﬁ )
i=1, 000, -2 T cov(e _,R_ ) - aR, T
;t " k:lﬁk k' m fi=1 (1+Rf)J
tzl,ooo,T' (1+Rf) *
T cov(@ ,ﬁ ﬂk
-2 "¢cov(e, R J+aR_ T
j=1 (1+R )J
- (1+R ) (4.13)
Subject to
— n— _~
e, = .zaeitxi + B(8 -g(8.)) t=1,2,...,7 (k.13a)
i=
cov(@t,ﬁm) = E cov(e, t’R )x t=1,2,000,T (4.13b)
i=1
2 2
(R.-R _,)o -ug /204
E(8,-g(8,)) = £ Tty o ot ot .
ven
" _ o _
SR ust(Rf Rbt)H(O) (4.13c)
t=1,2,ooo,T'-l
(Ro-Ryri)o b2 2
£ T’ 0s - /a8
E(8,-8(8,)) = Lo ST TSI 4y
t t V2T Spi
B, ,(R_.- YH(0) (4.134d)
+ ugT'Rf - syt E Ryp
t=T"'
E(§£-g(§£)) -0 t=z T (4.134') .



t n :
Mk - )" E C. X. t=l,2,o..,T' (lfolBe)

St k=1 i=1 j=1 173
j#i
t n 5
r z Var(éik)xi t=1,2,000,T! (4.13fF)
k=1 i=1

?._
1;1Cilxi * 08y = My (k.13g)

% — . .

‘ - = i = ! -
L CoeX; + Sy =i = M i=2,040,T (4.13n)
+ other deterministic resource constraints (4o134i)
+ P,I1.C. (4.133)
x; =0or 1 i=1,2,ee0,2 and 0sxs y (4.13k)

i'-'_" Jo”'l, ® 0 09 n
xl2 1 (4.131)
s 2 O (4.13m)

One may observe that E; in equation (4.13g) and (4.13h)
equals J&st given in equation (4.13e); therefore, (4.13e)
may be dropped provided ust in equation (4.13c) and (4.13d)
are replaced by E;, Also, the objective function is a
linear function of Z; and cov(@t,ﬁm) which are in turn
linear functions of X, The only nonlinear equations are
constraints (4.13c), (4.13d) and (4.13f) with (4.13f) being

the only non-linear equation involving the integer variables

X. o
1
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In order to get a better understanding of the
problem form, the following is a simplification and restate-
ment of problem (4.13)14divorced from the special notation

of the capital budgeting problem:

- k —532/2232
= ' ’ . . L . S .- S. . . .
Eaf _ P = A'X « jZ;_ bJ[d e ZJ+Rstj stJH(O’SJ’ZJ)]
X,Z,S /'2—1.‘1
' (k.14)
s.t. zJ.z - X7 X §=1,2,.00,k  (k.1ka)
Cf,X+sl = M (4.14b)
Cj'x+sj-sj-l = Mj j=29¢.o,k (4011*0)
G X< q } Resource and P.I. Constraints (4.144d)
X an n-veéctor of zero-one variables .and/pr (4.1ke)
variables simply bound by zero and one
S 2 0 and a k vector (4.14F)
Z =20 and a k vector (k.14g)

where: A is an n~vector of constanatstis

. is an nxn matrix of constants for each j

al
[&X]

ol
<.

is an n-vector of cons tants for each j

is an nxm matrix of constaatmts

ol

is an m-vector of constants: =

Q|

b.,d.,e,R_ are ‘all constants

J'd £
and H(O;.‘sj,zi) is:

ll*Appendix C establishes this fact.
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0 —(t—s.)z/ZZ.2
1 J J
I e dt
/2t )
Summarx

The primary effort in this chapter has been directed
towards the formulation of a mathematical programming model
for the capital budgeting problem under conditions of uncer-
tainty. In so doing, knowledge about the deterministic
capital budgeting problem and about portfolio investment and
equilibrium t heory have been synthesized into a unified and
generalized model. Its generalized nature has been tested
and validated by an analysis of a specific problem structure
that produced results identical to those found in the lit-
erature. Finally, a specific problem formulation was pre-
sented which complies with the general model and some line-
arity assumptions. It is this specific model whose data
requirements and solution procedures have been investigated
and presented in the remaining chapters with some specific

extensions mentioned in the final chapter.



CHAPTER V
DATA REQUIREMENTS

Before proceeding with the solution techniques for a
model one should reflect upon the data requiremepts and how
they may be met. No new and exotic techmniques of data esti-
mation are presented herein but rather an attempt is made tb
identify those techniques that are already available and that
will provide the necessary data for the model described by
Equations 4.14 through 4.1kg. At first glance it appears
that those parameters that must be estimated are o (percent
of cash flows paid in dividends), Bj (coefficients of the
linear investor estimate model), A' (the empirically deter-
mined "market price of risk'") as well as the various project
parameters such as expected costs, covariances of costs,
expected net cash flows, and the covariance of these cash
flows with a market index. However, the linear investor
estimate model produces an equilibrium stock price objective
function that is linear with respect to expected cash flows
and covariances; therefore, one will find it convenient to
estimate the bj coefficients directly instead of indirectly
via the estimation of «, Bj, and A'. Hence, only five spe-~

cific types of data are required: (1) bj (a coefficient
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that weights each period's cash flows), (2) expected costs
for each project, (3) expected cash flows for each project,
(4) covariances of costs, and (5) covariance of cash flows
with a market index.

Two of these, Ifems (2) and (3), are typically
required by deterministic capital budget programming formu-
lation, while chance constraint models also require Item (4).
The portfolio approach to the capital budgeting problems
generally requires Items (2), (3), and a complete covariance
matrix for cash flows which is considerably more data than
Item (5), and yet does not consider the risks that are han-
dled by chance constraint models and by Formulation (4.14).
One may conclude that the only data requirement for Formula-
tion (4.14) that is out of the ordinary is Item (1), the bj
coefficients. The sections that follow discuss ways of meet-
ing the data requirements with particular emphasis on bj

coefficients.

Item (1) bj

It can be shown under the assumption that led to
Formulation (4.14) that the objective function may be writ-

ten in the following form:1

lsee Equations C-1 through C-4 of Appendix C.
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n T
P = % b.(e.. = A e..,R .
o 2 jEl J(elJ A cov(ela, m)) x;
T .E(E.g(5.)) + =A cov(e,E ) (5.1)
+ jflbjE Sj°g Sj + iﬁ; cov(€, ' 5.1

(5.1) is an equation which gives the equilibrium aggregate
stock value when investments, expected cash flows, covariance
of cash flows with the market portfolio, and expected cash
flows from slack funds are known. The Xy variables are

there simply to facilitate tle calculation of equilibrium
values for various combinations of investments. However,

past investments are known so that (5.1) may be reduced to

the following:

P = j%lbj(z%—X' cov(gj,ﬁm)) + ii%i cov(e,ﬁm) (5.2)

where:

3j = net cash flows in period j from all of the investments
including slack (~ denotes a random variable)

E% = expected value of Ej.

Finally (5.2) may be reduced to an ordinary multiple
regression equation as follows:

P = b, + byy; + by, + eee + bpyp + € (5.3)

where:

-)! ~
b_ is taken to be A cov(e,R ), a constant
o l+Rf m

yj is a coded random variable equal to ES-A' cov(gj,ﬁm), and
may be described as a certainty equivalent of cash

flows.
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There are basically two ways of estimating the coef-
ficients (bj)’ (1) subjective estimates of each or (2) mathe-
matical estimations from past data. Subjective estimates
are perhaps the least desirable but subjective control over
the form of the mathematical estimates should be exercised.
For example, it is shown in later chapters that a global
optimum to formulation 4.14 can be obtained only when the

b b,, are non-negative. Furthermore,

1 T2 tttr P

since the Yj variables are certainty equivalents of cash

coefficients b

flows, the restriction that their coefficients be non-negative
is both logical and realistic. Hence, if least squares tech-
niques are applied to (5.3), then they should incorporate

the added constraints that bj 2 0 for j=1,2, ..., Ta It is
also logical that those certainty equivalents of cash flows
occurring in the least distant future with respect to the
timing of Po would have the greater effect upon the equilibrium
price. This concept may be incorporated by adding constraints

of the form b, = b j=1,2, ee., T-1, to the least squares

j+1’
minimization problem.
The intent here has been to suggest a means of estab-
lishing numerical values for the coefficients, bj’ that can~
not be rejected on logical or theoretical grounds. Statis-—
tically, the numerical estimates for each bj obtained by the
above method possesses many difficulties. The most important

of these is that the data canmot be obtained in such a manner

that it would meet the definition of a random sample,
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particularly for large T. All this means is that, confidence
intervals, or tests of significance, cannot be validly
employed. However, one must recognize three facts that keep
the above estimation procedures in the proper perspective.
(1) Equation (5.3) is the result of equilibrium theory and
concepts which produced the formulation in Chapter IV.

(2) The intent is not to provide a statistical validation of
equilibrium theoryz but to provide numerical values for the
bj's that (a) comply with theory and logic, and that (b) best
fit what has actually happened in the past. (3) Management's
confidence in the correctness of the values of bj’ j= 0,1,
essy T, provides the ultimate determination of the usefulness

and application of the solutions obtained from the formulation

(4.14).3

Items (3) and (5) Data

Items (3) and (5) are values that must be estimated
for all projects under consideration. Hertz (19) and Smith
(43) have each suggested Monte Carlo type simulation tech-
niques as a means of generating distribution of rates of
return or present values of projects being simulated affer
each component cash flow's distribution parameters have been

estimated. Generally, it is better to estimate values for

2This type of research, though incomplete, has
already been undertaken by many, see ref. 8, 13, 21, 40, 4l1.

3The effects of various types of incorrect values of
bj Vj upon solutions obtained for (4.14) are discussed in

Chapter VIII.
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each component cash flow and then combine the estimates to
obtain total cash flows than it is to estimate the total
flows directly (see Chapter XIV, ref. 46). The reasons for
this are clear: (1) Estimation errors made on component
estimates may tend to cancel each other when combined to
provide a total estimate, and (2) although a project may be
totally new so that management has no experience with it, it
will still possess component parts with which management has
a great deal of experience and can bring that experience to
bear on producing more accurate estimates of those component
parts. The components relevant to items (3) and (5) are
those that comprise revenues and operating costs. Invest-
ment cost data, or items (2) and (4), could also be generated
via a simulation routine, but an alternmate scheme is also pre-
sented in the next section.

The specific simulation schemes presented by Hertz
and Smith will not provide the exact data required for the
formulation in Chapter IV; however, one must recognize that
simulation is a methodology that may easily be adapted to
specific needs. It is sufficient, then, to note that accepta-
ble technology does exist that may be used to satisfy the

data requirements described by items (3) and (5).

Items (2) and (4) Data

The procedures presented here for obtaining data to'
satisfy requirements described by items (2) and (&) are

combinations of subjective estimation and a use of past data.
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They are actually an adaptation of simplifying procedures
for handling means, variances, and covariances of stock
returns used by Sharpe in a portfolio selection model (see
40, Ch. 7). It is assumed that the expected costs and vari-
ances of costs required to implement a project have already
been estimated for each period either subjectively or by a
simulation routine. The covariances are virtually impossi-
ble to estimate subjectively since it is difficult for omne
to make these estimates in such a way as to guarantee that
the covariance matrix will be positive definite. It is
possible to generate the covariances in a simulation routine,
but does greatly complicate the routine and ultimately must
rely upon the same kind of model presented below.

The basic concept is to assume that the deYiation of
the actual cost of a project from the expected.cost is at
least partially the responsibility of the management team
who specified the estimates, fixed the budgets, and strove
to implement the projects within the assigned budgets.
Hence, a linear relationship is assumed.

Cij =0y Biji * €5 (5.4)

where:

~ denotes random variables

éij = cost of project i in period j and whose mean and
variance (Gg ) is given
ij
o = a constant whose value is not needed

ij
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Bij = a constant whose value is estimated subjectively
€.. - an error term with mean O and variance()‘2
ij Eij
I = an index given by the ratio of actual project costs to

estimated expected costs. This is, in effect, an index

of management performance and its mean and variance,

g2
I

all known costs for projects previously undertaken by

may be estimated from historical data concerning

the management team.
Equation (5.4) implies (5.5), a relationship between vari-
ances.
02 -p2.0% .42 (5.5)
ij ij

Since Og and.oi are known, then a subjective estimate for
ij

either Bi. or 02 allows the one not estimated to be com-

J € .
puted. This subgictive estimate may be easier to determine
than one might anticipate. To illustrate this, one may con-
sider two extreme examples. In the first example the project
is to purchase a tractor and trailor and place it into ser-
vice. In this case estimated costs have been achieved by
contacting prospective sellers. In the event actual costs
deviate from estimated costs either positively or negatively
it is difficult to imagine how that deviation could have
been caused by the efforts of management. Therefore, one

might conclude that of = 90% to 100% of 65 . In other

ij ij
words, this states that 90% to 100% of the variation of costs
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is independent of the effects of management. B:ij can now be
computed. In the second example the project is a completely
new production facility based on some new technology. With
construction costs, plant layout costs, and potentially
heavy start up costs, it is easy to see that the management
function would be deep involvement in all phases. This might
lead one to conclude that management would be responsible
for 80% to 90% of actual cost deviations from estimated
costs, or alternatively that 10% to 20% of cost deviations
are independent of managerial efforts.

In either of these examples, equation (5.5), together
with previous estimates of the overall variance of costs
allows one to determine Bij' The computational savings
achieved by this linear representation are the result of the
standard assumption of regression analysis, specifically
that the error terms are independent of the index I, and by
Sharpe's additional proposed assumption that all covariabil-
ity between the dependent random variable of the various
regression equations is fully explained by their common rela-
tionship with the index I. Under these assumptions it can
be shown that the covariance between any two project costs
for a period j is given by Cov(eij,aki) = Bijﬁkjoi' " (5.6)

One additional convenience of the approach given
above occurs when one decides to drop the assumption, made
in Chapter IV, that there is no covariance between costs in

different periods. In that case the relevant covariances may
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be computed without making additional estimates. The formu-

las are given by:

~ ~ p)
Cov (cij,cii) = ﬁijﬁil I (5.7a)
- o~ 2
and Cov (cij,ckl) = ﬁij'gklcl (5.7b)

All covariance matrices constructed by the methods
just described will automatically be positive definite; how-
ever, as Cohen and Pogue (8) have shown, a defect in Sharpe's
assumption will mean that actual covariances are always greater
than those computed by (5.6), (5.7a), and (5.7b). This ten-
dency to underestimate the degree of dependence between pro—
ject costs will result in covariance matrices that tend to
underestimate the variance of the total costs associated
with any particular combination of projects in the optimiza-
tion model presented in Chapter IV and solved in later
chapters. The consistent bias might be corrected via the
use of an appropriate multiplier or more properly by extend-
ing the regression model (5.4) to some multiple regression
model based on more than one index. A two index model was
used for the purpose of constructing covariance matrices for

some of the test problems discussed later.

Conclusion

It appears that the formulation in Chapter IV requires
parameter values which are obtainable by techniques that are
known to exist and that have been used. For every parameter,

except those dealing with the investor estimate model, there
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exists another accepted capital budgeting formulation that

also requires that parameter. Those parameters dealing with

the investor estimate model (i.e., bj and A') are in a sense

also required by Stapleton's decision model (see ref. 4k)

but his assumption of a dividend valuation model is more

restrictive than the proposed linear investor estimate model.
It is hereforth assumed for the remaining chapters

that the data requirements for the formulation in Chapter IV

can be achieved.



CHAPTER VI
SOLUTION PROCEDURES

In Chapter V methods were discussed for meeting the
data requirements for a specific form of the problem formu-
lated in Chapter IV. This chapter contains the general solu-
tion procedures that can be used after some modifications
and transformations have been applied to the problem. Appen—
dix A provides the description of the possible modifications
and transformations while Appendix B provides the proofs of
the conditions required for these applications. A final
form of the problem is then presented in such a state that
numerical values méy be added and the solution procedures
begun directly. Chapter VII presents the results of direct
application of these procedures to a number of sample prob-

lems.

Generalized Benders

In 1962 J. F. Benders presented a procedure for par-
titioning semilinear programming problems (2). Although the
problem in Chapter IV may be classified as semilinear and
therefore of the type that Benders proposed to solve, his
technique is not applicable due to the mixed integer nature

of the sub-problem derived by his partitioning. However,
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in 1969, Geoffrion applied some results in nonlinear duality
theory (16) that allowed him to generalize Benders' decompo-
sition (or partitioning) procedures, making them applicable
to a larger class of problems. For this work, it is not
important that a larger class of problems may be solved, but
what is important is that the sub-problem need no longer be
a linear problem although the subproblem variables must still
be continuous. This allows the problem to be decomposed in
a reverse manner to that prescribed by Benders resulting in
a nonlinear, but continuous, subproblem and a mixed integer,
but linear, master problem; Such a problem can be solved by
Geoffrion's Generalized Benders provided solution techniques
exist for both the subproblem and the master problem and so
long as optimal dual variables can be obtained for the sub-~
problem as well as the total problem exhibiting Geoffrion's
"Property P."

Because of the integral part that Generalized Benders
procedures have in the solution to the problem in Chapter IV,
it is completely described below rather than requiring omne
to refer directly to the original papers. The following
description is taken directly from Geoffrion's works (14, 15)
but with some notational changes to comply more closely with
preceding chapters.

Given the problem:

Max £(X,Y) (6.1)

M
=l

s.t.: G(X,T)=2 o
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»l

€ X

€X

w1

where:

£(X,Y) is a scalar valued function and

G(X,Y) is a vector valued function and

X and Y are sets that further constrain the feasible values
of the variables. Typically X and Y are used to indi-
cate restraints that may not be or need not be func-

tually stated. For cxample,

X = {X|X is an n-vector and X = 0}

X = {X|X is an n-vector and O s X s 1 and the first
k elements of X are integer}

Y={Y|Y ¢rR"}.

The concept of "partitioning" is to project problem
(6.1) into either x-space of y-space. In this case it will
be appropriate to project into x-space. The projected prob-

lem is as follows:

Max v(X) Subject to X e XMV (6.2)
X
where
v(X)  Supremum f(X,Y) - (6.3)
Y
s.t. G(X,¥Y)= o
Ye X
and
Vv={X]|a(X,Y) 20 for some Y ¢ X} (6.4)

It is clear that for each value of X that one wishes



105

to evaluate the objective function in (6.2) one must solve a
maximization problem in Y given by (6.3) (frequently referred
to as the subproblem) and that the set V simply insures that
one does not attempt to evaluate the objective function in
(6.2) at a value for X for which a corresponding feasible
solution for the problem indicated by (6.3) daes not exist.
Intuitively, one can see that (6.2) is equivalent to (6.1);
however, Geoffrion has formally shown the equivalence of the
projected problem to the original problem. Even so a solu-
tion technique certainly does not appear evident from (6.2),
(6.3), and (6.4). The major difficulties being the determi-
nation and or representation of the set V and the function
v(X) in a computationally useful manmner. It is to this pur-
pose that Geoffrion states and proves two theorems which are
restated, without proof, below and in a notation that is
partially Geoffrion's and partially specialized to fit with
the notation in other chapters.

V Representation Theorem: Assume that Y is a non-

empty convex set and that G is concave on Y for each fixed
X € X. Assume further that the set z,= {Z ¢r" |a(X,)T) 2
Z for some Y ¢ Y} is closed for each fixed X ¢ X. Then a
point X €X is also in the set V iff X satisfies the (infi-

nite) system:

[ supremum ftG(X-,Y)] z2 0, all1 X €\
€ X

where A={XeR'|X 20+ Z2
i=1

i=l}.
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v Representation Theorem: Assume that Y is a nonempty

convex set and that f and G are concave on Y for each fixed
X € X. Assume further that, for each fixed e XNV, at
least one of the following three conditions holds:

(a) v(¥¥) is finite and the problem indicated by (6.3)
(i.e., the subproblem) possesses an optimal multi-
plier vector;

(b) v(X¥) is finite, G(fk;T) and f(ik{?) are, continuous
on Y, Y is closed, and the ¢ —optimal solution set of
the subproblem is nonempty and bounded for some
€ =2 03

(c) v(T) = 4o .

Then the optimal value of the subproblem equals that of its
dual on X ﬂV, that is

v(X) = Infimum [Sugremum(f(f,?) + 'ﬁ'ta('}'c',Tr))]
U220 €Y

for all X € XﬂV.
One should recognize that the only important parts of these
two theorems are the results and not the assumptions required
to prove those results for particular cases. What this means
specifically is that any particular problem may not meet the
assumptions of the v Representative Theorm and yet the results
of that theorem may be true for that problem. Therefore, in
making applications in specific instances one needs to check
only the results of this theorem for wvalidity by whatever
means available and not simply by varifying the assumption

of the theorem. Furthermore, the V Representative Theorem
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is not even necessary so long as one has a useful means of
being able to represent the set V as defined earlier. 'The
theorem merely suggests one such means that is known to
work under the coﬁditions specified in the theorem.
Remembering that problem (6.2) was

Maximize v(X)
Xexnv

and assuming the results of the v Representation Theorem to
be true one has the following:

Maximize[ Infimum[ Supremum(~/X,Y) + ﬁtG(f,i‘-)) 1] (6.5)
XEENV  Tz20 YeX

or, using infinum as the greatest lower bound,
Maximize r (6.6)
XexNV

r

Subject to:

r < Supremum{f(X,Y) + TJtG(_i,T) }, for all Tz O
Y€ XY

and if the V Representation Theorem is true one obtains:

Maximize r (6.7)
X€ X (6.7a)
r

s.t.: TrSs Sy_premum{f(-f,?) + TJ'tG('i,?)} , for all U 20 (6.7b)

Ye X
Sgpremm{xtﬁ(-f,'?)] 2 0, for all A e\ (6.7¢)
Y €Y

One might also note at this point that if some particular
constraint, gi('J_{,'f) 2 0, is actually of the form gi(f) 20,
(i.e., independent of Y) then for any A €/\ the following

is true:
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Supremum {Aigi (-}E)} = Aigi(-]_c')
YeX
and since }Li 2 0, the ith element in the system (6.7c) may
be reduced to gi(-f) > 0, the original constraint.

The problem fxrm given by (6.7a), (6.7b), and (6.7c)
is very close to a form that can be solved by a relaxation
technique. Actually, the only step remaining is to be able
to express the right sides of the system (6.7b) and the left
sides of the system (6.7c) as some mathematical function of
the variable vector X. Thi. is possible providing the origi-
nal problem (6.1) exhibits a property which Geoffrion has
called "Property P," stated below:

Property P: For every TS 0, the supremum of £(X,Y) +
'fft(i(-f,?) over Y can be taken essentially independently

of X, and for every A €/\ , the supremum of rtG(-f,_T_.’)
over Y can be taken essentially independently of X.

As long as the problem exhibits "Property P'" then any
algorithm which finds the optimal Y and U for the subproblem
and its dual may be used and the right sides of system (6.7b)
and left side of system (6.7c) are generally expressable in
a functional form of X. One notable example of this is the
semilinear programming problem which, because all functions
of X and Y are linearly separable, always possess '"Property
P." Furthermore, if Tk, ﬁk are optimal primal and dual vari-
ables of the subproblem for some fixed ik, then the right
side of one constraint in system.(6.?b) is given by

£(X,T) + (T)%(E, T (6.7b")

which is strictly a function of X and is in the proper form.
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If no feasible solution exists for the subproblem when X is

fixed at a specific value ik then at least one comnstraint in

k

the system (6.7¢c) is violated by X  so that optimal multipli-

ers'-):k and optimal values Tk are needed. The left side of
the constraint in system (6.7c) then becomes
(**)ta(X,7%)

which again is a function of i'ahd is in a useful form. Geof-
frion uses the term L/dual adequate to refer to algorithms
which can solve the subproblem in such a way as to produce
primal and dual variables and that will also produce func-
tional forms for the right and left sides of the system (6.7b)
and (6.7c). The L refers to the existence of the appropriate
functional form which is guaranteed when "Property P" is
present and a dual—-adequate algorithm exists. One may note
that the L may also properly refer to the Lagrangean of the
subproblem.

One may now suppbse that all conditions are met that
allow one to express problem (6.7) such that (6.7b) is a
system of ordinary mathematical constraints (one for each iij
2 Q) and (6.7c) is a system of ordinary mathematical constraints
(one for each A e /\). Clearly, such a supposition is not help-
ful since there are conceivably infinitely many U2 0 and
infinitely many A ¢/\. This means that problem (6.7) may
have infinitely many constraints. Relaxation appears to
be the only means of solving such a formidable problem. To
investigate this further one may assume that he has found a
value for the vector i} call it ik, and a value for r, call

it rk, which he feels is a candidate solution to problem (6.7).
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Exactly one of two possibilities is true:
1. 37 €Y 56D 20
or 2. Y €Y 3G(X,Y) 20
If 1. is true then the entire system (infinite or mot (6.7c)
is satisfied by definition. Furthermore, the entire system

(6.7b) is also satisfied unless 3T 2 O 3 r® > Supremum
Ye X

{f(ik,Y) + ﬁtﬁ(ik§)} and such a U = O exists if and only if

Infimum SuRremum{f(?{,.f) + ﬁtﬁ(ik,§)} < r¥. (6.8)
U 20 Y €X

But this implies under the hypothesis of the v Representative

Theorem that one need only to solve the subproblem:

Max z = £(%X%,T) (6.9)
YEY

s.t.: G(X,T) = 0
and compare the optimal value z* with rk. If z* 2 rk then
no U =2 0 exists for which a constraint in the system (6.7b)
is violated and (ik,rk) is an optimal solution to (6.7).
If z* < rk then for at least the optimal dual variables of
(6.9) a constraint in (6.7b) is violated and may therefore
be added to problem (6.7). ‘

If 2. is true then that fact becomes evident while
attempting to solve (6.9). If the algorithm used to solve
(6.9) is a Two Phase method then hopefully at the end of
Phase I multipliers ) €/\ may be obtained and the constraint
in system (6.7c) that is violated by (E#,rk) may be generated

and added to problem (6.7). One should recognize that
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continuous repetition of the process being described is a
relaxation procedure which will increase the size of problem
(6.7) by one constraint each time.one of the many constraints
not included is violated. The specific solution steps are

found in Appendix A and again in Chapter VII.

Application of Generalized Benders

Under the assumptions in Chapter IV a specific capi-~
tal budgeting formulation was derived and expressed primarily
in matrix form in problem {”.14). The problem is restated
below with the following notational simplification: (5,2

denotes vectors)

—S?/ZZ% o 5 o
_ d.e J J 1 —(=s.)%/22°
£(5,2) = Tob[—L 2z +Ros =s.d.[ —=—e J Jat 1
j=1 ¥ /20 J J JJ fz_ﬁzj

-

where from the discussion of Chapter V one concludes that bj’

dj’ and Rf are all known and constant quantities. Problem
(4.14) then becomes
Maximize P = AX + £(S,Z) (6.10)
X,Z,5 ©
s.t.: z; = 'Xt—ji j=l, .ee, k (6.10a)
TX+s, =M (6.10b)
'EEX t8y = sy g = Mj J=2, eeey k (6.10c¢)
GX<s7q (6.104d)
S =20 (6.10e)
Z 20 (6.10f)
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0 < X <1 (mixed integer vector) (6.10g)
By applying the conjugate matrix transformations dis-
cussed in Appendix A to the system of constraints (6.10a)

one may replace that system with the following expanded sys—

tem:
_t_—
z. = Y.D.Y. j = 1121 L3I ] k (6.10&')
J J J
Y. - % §=1,2, couy Kk (6.10a")

J J
Clearly all zj in f(§:7) may be replaced by funétions of yij
which are, themselves, linear functions of X. Furthermore,
5y successive substitution the system (6.10b) and (6.10c)
becomes:

It

sy = ifiM. - TCX j=1, «eey k (6.10bc)
Therefore, £(5,Z) is a function of linear functions of X as
required for the manipulations and substitutions in Appendix
A.

Moreover, a slightly different linear transformation
than the one used in (6.10a") may be used to simplify (6.10a').

1
Since the expression Tgijj may be written

Tyr.d...= % (/d4,.. v..
jo1 1J i i=1 iij 74§
— - -] = n
and since Yj = E P X may be written yij = kEleiijk,

where e, . is the i,kth element of the square matrix E 31,

1 Jdiij will always be real since-a covariance matrix
is always a positive definite matrix and a conjugate matrix
transformation will always produce positive diagonal elements
when applied to a positive definite matrix.
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n
then it is clear that defining y' = /4 &

=vd... T e.,.
ij iij7ij" iij k=lelkak

t—‘ n , 2
simplifies (6.10a') to z. = (Y Y. = VZuvy.. .
J ij
i=1

simplify notation the (') will be dropped and (6.10a') and

(6.10a'") are restated in their final forms:

s .
z, = YJ.YJ. J=1,2, eee, Kk (6.10a''')
p— — ]
¥, = E’:‘;x = 1,2, eeu, k (6.10a )

where Ej is redefined as the appropriate linear transformation
matrix as described in the preceding discussions.

In Appendix B it is proved that f(S,Z) is a monotonic
decreasing function of each zj therefore making it possible

to replace (6.10a''') with the following:

z. = V T'F, (6.10a")

J J J
without any loss in generality.

This leads to the final form of the problem to be

solved given below by (6.10').

Maximize P_ = A'X + £(5,7) (6.10')
XY 1Z,S
-
n 2 v
. -3
Setes ¥ ‘g Yij (6.10a")
w— — — >j=l csee k
T -%F 1 vese (6.10a'")
j j
5 . ium - Lotz 6
= 3 - . .100)
boi=1 v =1t
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GX=<q (6.10d)
S2 0 (6.10e)
7 2 0 (actually unnecessary) (6.101)
0 <x <1 (mixed integer) (6.10g)

This formulation is sufficiently general to apply
generalized Benders without making the additional manipula-
tions suggested in Appendix A. One may observe also that all
functions of X are linearly separable from functions of 'T', 'Z-,
and S. This means that if ore wishes to partition between
these two sets of variables then the problem will exhibit
"Property P." With respect to the problem of V representa-
tion, Geoffrion's theorem is not really needed since for every
X there exists feasible Tj and zj, j=1, ..., k and so long
as X is selected to satisfy the following

J
M -

1 .

J
i:l 1=

X =20 G =1, eeey K (6.11)
1

which does not unrealistically restrict f, then there will
always exist a feasible S. Therefore, in the master problem
for this specific problem, the infinite system of constraints
(6.7c) may be replaced by the finite and well defined system

(6.11) thus eliminating the need for relaxation procedures on

2
that portion of the problem.

2Geoffrion (15) indicated possible computational dif-
ficulties arising from relaxation of the system (6.7c) whose
purpose is to keep the algorithm feasible while system (6.7b)
works towards optimality. That potential problem is elimi~
nated by the fortunate circumstances allowing the use of
(6.11) to replace (6.7c).
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The subproblem which is the original problem except
that X is fixed to a particular value X' may be written down

as follows:

Subproblem:
- o= f -
Maximize P_ = A"X + £(S,Z) (6.10' sub)
Y,Z,S
N
o 2
S.'t.: ., - . . o
zJ iglyla 2
Y. - —E‘ -:l -th = O > j=1,2)-..,k
J J
J J
s, - DM + zcle_o
J i=1 i=1
Sz 0 .
Z=20

All other comstraints involve X only and are there-—
fore eliminated from the subproblem. One will find in Appen-
dix B a proof that the hypothesis of the v~Representation
Theorem is true for (6.10' sub). That fact, together with
linear separability and "Property P" allows one to express
the right side of any constraint in system (6.7b) of the
master problem in the usual manner given by (6.7b'). Hence,

using the following notation:

uj denotes the dual multiplier for constraints

/2 2
Z. -~ yy.. =0
J i=1 1]

75 denotes the dual multiplier vectors for the con-

straints Tj - 'Ej'-l ')_(l =0
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Wj denotes the dual multiplier for the constraints

J J o
s, ~ ¥ M + EE’:.X'Q'::

i=1

o

the master problem may be written down thusly:

Master Problem:

Maximize r (6.10' master)
r,X
k n
s.t.: r< A °%X + f(§l,zl) + D ut|zd- [T (yf.)z
jop 93 Wiy Tdd
o 4 (o
+ Z ToviAdyst. - Ze. .x)
i=1 j=1 iJ "1 p=1 ipJ p
J J i
+ L wk(st - EM + & sz) 2=1,2,...
j=1 9 i=1 i=1
GXsq
J i J
Ecixs EMi j=1, ...,k
i=1 i=1
0 sXs 1

This problem is simply a mixed integer linear pro-
gramming problem for which solutions are obtainable by
existing techniques.,

It is this master problem that is solved by relaxa-
tion where the constraint set restraining r is initially
dropped. This constraint set is rebuilt one constraint at a
time by a process that successively solves, in turn, the

relaxed master problem and the subproblem.
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Summarx

In Chapter IV a rather general formulation of the
capital budgeting problem was given. Certain restrictive
assumptions were made which allowed a much more specific model
to be stated. In a later chapter one will find that differ-
ent assumptions will cause a somewhat different specific
model to be derived from the general formulation. In fact,

a whole family of specific models can be generated by sys—
tematic alteration of assumplions. 1In this chapter a rela-
tively new sclution technique for nonlinear programming prob-
lems was explained and together with the modifications, trans—
formations, and conditions developed in the appendices it was
shown that the solution technique can be applied to the first
specific model. Indeed, the real value of the technique is
that it is applicable to an entire family of such problems.3

The next chapter reports on computational experience
derived from the solution of several sample problems after

decomposition of the problem as described above.

3Although the technique is applicable as a systematic
means of obtaining solutions to the entire family, the global
optimality achieved with specific formulation (4.14) has been
proved only for (4.14).



CHAPTER VII
SOLUTIONS TO SAMPLE PROBLEMS

In order to obtain some idea of the computational
efficiency of the generalized Benders' solution techniques
and to determine if solutions of the formulation in Chapter
IV conform logically with investment theory, a computer pro-
gram was developed and run with three basic problem struc-
tures whose parameters were varied to produce the results
cited herein. Two important terms are used to describe these
results. These terms are defined as follows:

1. Project contribution--~each project contributes, in a
linear manner, to the size of the objective function
and the amount of the contribution is measured by its
coefficient in the vector A which appears in the objec-
tive function of the original problem and as part of the
technological coefficients in the Benders constraints of
the master problem.

2. Slack contribution-~since funds not spent for projects
are automatically invested at the risk free rate, they
will contribute to the size of the objective function.
Furthermore, negative slack funds will have a negative

contribution since it is assumed that these funds must be

118
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borrowed at some rate higher than the risk free rate.
The net contribution of slack funds, then, is the expected
contribution of these invested or borrowed slack amounts
and is computed by the nonlinear term in the objective
function of the original problem and therefore by the
Lagrangean of the subproblem.

The gemneral solution procedures may be stated in a

stepwise fashion as follows:

l. Determine a set of integer feasible projects.

2. Optimize the subproblem over all variables except pro-
ject variables which are held fixed to the values just
det ermined. Optimizafion must determine both primal and
dual variables.

3. Construct a Benders constraint from the Lagrangean of the
subproblem and add that constraint to the master problem.

L., Optimize the master problem for a new set of projects
using all previously generated Benders constraints.

5. If the current objective function value has not changed
from the value obtained in the previous iteration, stop.
Otherwise, return to step 2.

The actual solution procedure steps utilized were
modifications of the above listing and are fully discussed

with rationale for their use given in the next section.

Solution Code

The subproblem is solved analytically using the Kuhm-

Tucker conditions; therefore, the mathematical expressions
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giving these solutions were programmed directly into several

subroutines to be used by the main computer program.

The master problem is a mixed integer (0-1) linear
programming problem for which a number of solution procedures
may be applicable. Among these are:

1. Gomory cutting plane algorithms,

2. Benders type cutting plane algorithms.

3. Branch and bound or Balas type partial enumeration
algorithms.

4k, Group theoretic algorithms.

Of these the Gomory cutting plane algorithm using the
stronger Gomory cuts as given in Taha (45) was selected for
the following reasons:

1. The Gomory cutting plane algorithm is easy to program.

2. The final solution yields an optimal simplex tableau which
lends itself to more thorough interpretation.

3. Since the Gomory cutting plane algorithm is a relaxation
procedure it is more compatible with the overall relaxa-
tion procedures specified in the introduction. Further-
more, it was hoped that those Gomory cuts added at each
iteration of the Benders procedures (i.e., those added
between the addition of Benders cuts) would be relevant
after the addition of more Benders cuts and would tend
to hold the master problem at or near integer feasible
solutions, thus minimizing the need for additiomnal

Gomory cuts.
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k, It was felt that since the integer variables could take
on only two values (o or 1) then pathological cases

experienced with Gomory's algorithm were unlikely, par-

ticularly with the relatively small problem sizes attempted.

The pathological problems often encountered are ineffi-
ciency due to the necessity of a large number of cuts

or due to errors created by cumulating truncation errors
which may lead to a large number of cuts and/or solutions
that are actually infeasible or nonoptimal.

Although Benders solution procedures generally call
for complete solution of the master problem before generating
a new constraint by solving the subproblem, a modification
which consists of solving the total problem completely with~
out any integer requirements being incorporated (i.e., the
problem is further relaxed by eliminating temporarily all
integer requirements) was utilized. The integer requirements
were then implemented via the addition of Gomory cuts and if
necessary, more Benders cuts. The reasons for employing this
strategy were:

1. Recent research (McDaniel, 33) indicates that when Benders
algorithm is applied to mixed-integer linear programming
problems some computational improvement is achieved by
employing the strategy of relaxing the integer require-
ments until an initial solution is obtained. This causes
several Benders constraints to be added to the master

problem before an integer solution is attempted. The
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ma jor savings comes from solving fewer integer problems.
Although, the problem in Chapter IV is not linear, it was
hoped that similar computational efficiencies could be
obtained by employing the same strategy.

By obtaining a complete solution to the original problem
without regard for the integer requirements, one obtains
valuable marginal slack and project contribution values.
These values are useful in comparing solutions of the
formulation with the results expected from established
investment theory. Once integer requirements are imple-
mented, these marginal values change and their interpre-
tation is no longer clear.

With this solution strategy applied to the five steps

stated earlier one obtains the modified procedures listed

below.

1.

Obtain any set of feasiblel projects (i.e., a value for
the vector X).

Optimize the subproblem over all variables (Y,Z,S)

except project variables (X) which are held fixed to the
values just determined. Optimization must determine both
primal (Y,Z,5) and dual (U,V,W) variables.

Construct a Benders constraint from the Lagrangean of

the subproblem and add that constraint to the master

problem. Such a constraint is of the form

1Feasible refers to solutions that satisfy constraints

while integer feasible refers to solutions that satisfy con-
straints and all integer requirements. :
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r < L(X,Y*,z*,S*,0*,V*,W*) where the notation (*) indi-
cates the values that optimized the subproblem, and L
is the Lagrangean.

4, Optimize the master problem for a new set of projects
(X) and objective function variable (r) using all pre-
viously generated Benders constraints.

5. If r has not changed from the value obtained in the pre-
vious iteration, go to step 6. Otherwise, go to step 2.

6. If the solution satisfies all integer requirements, stop.
Otherwise, go to step 7.

7. Generate a Gomory cut and add it to the master problem.

8. Optimize the master problem using all previously gener-—
ated Benders constraints and Gomory cuts.

9. If the solution satisfies all integer requirements, go
to step 2. Otherwise, go to step 7.

A flowchart of these procedures is given in Figure

7-1. To shorten the description of these operations the

terms Benders iterations, Gomory iterations, and cycles will

henceforth refer to the performance of steps two through 5,

7 through 9, and two through 9, respectively. Hence, each

time a Benders constraint is added and an LP solution

obtained that is a Benders iteration, each time a Gomory cut
is added and an LP solution obtained that is a Gomory itera-
tion, and each time both types of iterations have been per-
formed leading to an integer and feasible solution,2 then that

is a cycle.

2Not necessarily feasible with respect to Benders
constraints not yet added.
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Figure 7-1. Flowchart.
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Comput er Code

Since the subproblem may be optimized analytically,
the only numerical optimization procedures required are those
for an ordinary linear programming problem. However, the
primal simplex method is required once while the dual simplex
method is needed each time a Benders constraint or Gomory cut
is added to the previously optimal tableau. Furthermore,
since the project decisiqn variables are bounded by one, then
either a bounded variables routine or several additional con-
straints are necessary. In an effort to keep the simplex
tableau as small as possible the bounded variables routine
was chosen. The basic optimization program may therefore be
described as a primal and dual, bounded variable simplex
algorithm. This algorithm was written as subroutines for a
main program which read in all data and then called these
subroutines in the sequence necessary to accomplish the pro-
cedures depicted in the flowchart of Figure 7-1.

Additional subroutines required were those used to
compute the subproblem primal and dual variables according
to the formulas determined by the analytical solution to the
subproblem (see formulas pagel}-6L Subroutines were also
needed to compute the new technological coefficients for all
Benders constraints and Gomory cuts as well as a subroutine
to integrate numerically the term

-s./z.
J/ J

2
1 e—t /2

- vall

dt
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for each period j and each set of values sj and zj. Simpson's
Tropezoidal Rule was used for this purpose with -o replaced
by =10.0 with virtually no loss in accuracy.

One may observe that the master problem without any
Benders constraints added takes the form,

Max r
X,r

— J
X < EM- j = 1,2, es oy k(# Of periods)

so that the addition of a surrogate constraint, such as

rs Kbi-+bh where M is a very large number, makes the mas-—
ter problem suitable for generating a good initial set of
projects as required by step 1 of the procedure described
earlier. This was precisely the method used to accomplish
step 1.

The pathological difficulties mentioned earlier did,
unfortunately, arise in some of the test problems. For the
most part, the difficulties became serious as a result of
cumulating truncation errors which became more serious when
ineffective Gomory cuts were being generated in some of the
test problems. To minimize these problems all simplex oper-
ations were converted to a double precision mode of opera-
tion. This meant that the 17th digit was truncated instead
of the 9th digit. The increased accuracy was obtained at
the expense of storage and computation time but did elimi-

nate most problems arising from cumulation of truncation errors.
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The difficulty with ineffective Gomory cuts is unavoidable
and something one must tolerate when it occurs.3 It should
be noted that no difficulties occurred as a result of Benders
constraints; only Gomory cuts caused significant problems.
For large scale capital budgeting problems (i.e., number

of projects > 50) one of the other aforementioned mixed
integer solution techniques may be applicable with greater
computational efficiency than the Gomory Cut Algorithm used

to produce the example results reported in this chapter.

Fedder Program

One feeder program was utilized to construct the co-
variance matrix for costs for each period and then to compute
the conjugate vectors matrix and invert that matrix to provide
data for the optimization program. This was used for prob-
lems 2 and 3 while the covariance matrix for problem 1 was
found in an article by Mao and Brewster (see ref. 30). The
method used to construct the covariance matrix for problems
2 and 3 isAessentially the method used by Cohens and Pogue
(see ref. 8) and is similar to the technique described in
Chapter V.

The regression equation used for this purpose was as
follows:

.. = o. . . .. €
i = 055 * BlJil + 71332 + &

31f one cannot tolerate this problem then some alter-
native solution technique should be used in place of the
Gomory cutting plane method.
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where ilandib are two management performance
indices with correlation coefficient plz, and variance 012,
and 022. 'Eij is the cost of project i in period j. It was
assumed that all covariance between project costs could be
explained by their common relationship with the two indices.
The values for &, 8, ¥y, 062’ 0'12, 022, andp12 were selected
largely at random except with respect to a single objective
of creating variety. This means that an attempt was made to
insure that some costs had high variability while others had
low variability, and some were highly correlated with other
projects while others were largely independent of other
project costs.

The procedures for constructing conjugate vectors
were found in Zangwill (see ref. 52, Ch. 6) and a simplex
type pivot operation was used for matrix inversion.

All of these operations; covariance generation, con-
jugate matrix construction, and matrix inversion, required

very little computation time and would not create a computa—

tional burden for relatively large problems.

Test Problems

As mentioned earlier there were three basic test
problems used. The first of these, called problem 1, may be
described as an eight project two period problem in which all
eight projects were treated by (0-1) integer variables. The
second, called problem 2, consisted of 12 (0-1) integer pro-

jects and three periods. The third, called problem 3, consisted



129

of 16 (0-1) integer projects and three periods. All three
problem types had some mutually exclusive and contingent
project sets. Problems are henceforth designated with num-
bers and letters. The number indicating which of the three
basic forms it fits and the letter distinguishing similar
problems with differing parameters. The pertinent data for
all of the problems may be found in the tables of Appendix D.
All parameters were initially affixed to randomly chosen val-
ues within reasonable ranges with some parameters systematic-
ally altered to produce new problems designed to test the
computational performance of the solution procedures and

compliance of the formulation to investment theory.

Computation Results

Solution times by computer are often stated as an
indication of efficiency. That practice will not be executed
here because of the large variations of these times that can
be caused by differences in computer equipment, differences
in programming technique, and differences in the amount of
intermediate output. Furthermore, since no results on
solutions to similar formulations exist, there is nothing
to compare these results with. However, since most of the
test problems did not require excessive computer time, one
may conclude that relatively large problems (50-60 projects
and virtually any number of periods) may be solved. Perhaps
more indicative of actual efficiency (or lack of it) is the

number of constraints and integer solutions required at
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intermediate steps before a global optimum is found, but even
these values are drastically affected by stopping at epsilon-
optimal solutions rather than adding Benders constraints that
have very small effects upon the objective function values.
However, the number of Benders and Gomory iterations and num—
ber of cycles are reported with some general comments about
various solution strategies that were applied to modify the
theoretical solution procedures.

The results, as measured by number of cycles and
number of Benders and Gomory iterations, are given in Table
7-1. Problems 3¢, 3d, 3e, and 3f are the only problems that
required more than one complete cycle to obtain the solution.
However, employing a stopping rule whereby an epsilon opti-
mal solution was acceptable with € = 2.54 eliminated all but
the first cycle for 3d, 3e, and 3f and limited 3¢ to two cycles.
The values of epsilon given in the table are closer to the
true values because the above stopping rule was only applied
at the end of cycles so that much better solutions than
required were obtained between successive applications of
the stopping rule.

There are four general conclusions that may be drawn
from the experience of solving the 17 test problems.

l. It is as easy or easier to obtain integer solutions via

the addition of Gomory cuts after the addition of Benders

b

With ¢ = 2.5 the maximum possible discrepancy between
the solution and the optimum is less than 5/100 of 1% of the
objective function value.



TABLE 7-1
NUMBER OF REQUIRED CONSTRAINTS AND CYCLES

Partial
Cycle 1 Cycle 2 Cycle 3 Total
Problem Benders Gomory Benders Gomory Benders
No. Constraints* Cuts* Constraints* Cuts* Constraints* B G All
la 2 0 €e=0 — — 2 o 2
1b NA 2 NA NA NA NA 2 2
lc 3 0 = —_ - 3 0 3
1d NA 13 NA NA NA NA 13 13
2a 2 1 1 () € =0 3 1 4
2b NA 15 NA NA NA NA 15 15
2¢c 7 b €=0 - - 7 b 11
2d 2 (0] €=0 - — 2 (0] 2
2e 2 1 1 (o] € =0 3 1 L
2f 2 1 1 4] e =0 3 1 L
2¢g 2 1 1 o e =0 3 1 4
3a 2 (0] €=0 — - 2 (0] 2
3b 9 L €=0 —_— —_ 9 4 13
3¢ 9 21 L 20 e = .03236 13 b 54
3d 8 20 € - 1.51002 —_ — 8 20 28
3e b4 7 € - .20630 _ _ L 2 11
3f 10 3 € - .26367 - - 10 3 13

TE€T

Note: Completion of the solution procedures is indicated by citing a value for €. If
€is equal to zero this indicates the procedures were operated until an absolute
optimum was found. If € is not zero then an epsilon-optimum was found and the
max. value for € is indicated.

* Or iterations
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constraints than it is before their addition.

2. Once an integer solution is found one cannot expect the
Gomory cuts to hold a solution at or near integer values
during the subsequent addition of Benders constraints.

3. For risk free rates in the neighborhood of 6% and the
rate of short term borrowing in the neighborhood of 10%,
the integer solution at the end of the first cycle will
probably be the global optimum with subsequent cycles
accomplishing nothing more than adjustments to the objec-
tive function value.

4, Practical solution procedures for the formulation in
Chapter IV are readily available.

The discussion of the specific experience that leads
one to these four conclusions follows:

Conclusion 1. Problems 1lb, 1ld, and 2b utilized the
same input data as la, lc, and 2a, respectively; however,

1b, 1d, and 2b sought to obtain an integer solution to only

the linear parts of the formulation. Although la and 1b

required the same total number of constraints (2) to obtain
an integer solution, lc required 10 fewer than 1d and 2a
required 11 fewer than 2b. Furthermore, original attempts at
solving problems 3c through 3f met with difficulty because

of a large number of cycles. However, all solution modifica-

tions that reduced the number of Benders constraints that

wefe added prior to the addition of any Gomory cuts resulted
in complete failure because in each case over 70 Gomory cuts

were added, exceeding both time and storage limitations and
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still not obtaining the first integer solution. The results
finally obtained and reported in Table 7-1 were achieved by
employing the epsilon optimal stopping rule at the end of
each cycle.

Conclusion 2. At the beginning of this chapter it
was stated that Gomory cut solution procedures were chosen
for a number of reasons. One of those reasons was that it
was hoped that Gomory cuts already added to the tableau would
tend to hold variables to integer values during subsequent
Benders iterations. Such a hope was justified for problems
la through 3b, but failure of that hope was the root of all
of the computational difficulties experienced with problems
3c, 3d, 3e and 3f. In each case the optimal integer solu-
tion was found at the end of one cycle but was not held inte-
ger during subsequent cycles. Table 7-2 shows the specific
results obtained with an early attempt to solve ﬁroblem 3c.

It was these results that led to the use of the epsilon
stopping rule mentioned previously.

Conclusion 3. The integer solution found at the end
of the first cycle was indeed the global optimum for all prob-
lems attempted. Furthermore, this particular result has been
reported by McDaniel (33) in his solutions to mixed integer
linear programming problems. Of course, these test problems
are not linear by virtue of the fact that the marginal contri-
bution of slack is not constant for all values of slack, nof

for all combinations of projects. The degree of nonlinearity



TABLE 7-2

ATTEMPTED SOLUTIONS TO PROBLEM 3c

No. of | No. of Solutions
ICycle Bend. Gom. Projects ]0bjective
No. Iter. Iter. 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 |[Function

1 9 - o 1 11 1 0 O 1 1 .08 .31 1 1 O 1 0} 7242.10
1 - 21 0O 1 01 1 0O O 1 1 4} 1 1 1 o o 0] 7239.85%*
2 L —_ 0 1.211 1 0o 0 1 1 .21 .79 1 1 o o o] 7239.84
2 - 20 0o 1 01 1 0 0 1 1 (0] 1 1 1 O 0 0] 7238.84%
3 5 - o 1 01 1 0 0 1 1 0 1 1 1 0 .002 O] 7238.82
3 — L 0 1 01 1 0 O 1 1 4} i1 1 1 O 0 o} 7238.816%*
L 1 — O 1.031 1 0 O 1 1 0 .97 1 1 O .03 0] 7238.81
4 — 6 No solution ——time and storage limitations exceeded].
L 19 51 Totals

*Denotes identical solutions

HET
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is restricted by the fact that although the marginal contri-
bution of slack is not constant, it is bounded above and
below with its range being less than one half of the differ-
ence between the risk free rate and the rate of borrowing.
For two and three period models this turns out to be a small
range in relation to the midrange magnitude of the marginal
contribution. Therefore, one would not expect the required
number of integer solutions to differ significantly from
those found in the solution of mixed integer linear problems.

Conclusion 4, It is shown in Appendix B that the
procedures in Chapter VI produce a global optimum. The only
issue then is the practicality of those procedures. The test
problems showed that computational difficulties can certainly
be encountered, but in every case those difficulties were the
direct result of the algorithm used to obtain the mixed inte-
ger solutions to the master problem. Indeed, the hopes
expressed earlier with regard to the use of Gomory's cutting
Plane algorithm were justified for most test problems, but
not all. This lack of reliability is not good emnough, for
when these hopes failed practical solutions became impossi-
ble for even small problems. Although it was possible to
salvage all of the test problems by using double precision
in the computer program and employing an effective epsilon
optimal stopping rule, the possible inability of Gomory's
cutting plane algorithm to obtain even the first mixed

integer solution does not predict a bright future for the
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solution of larger problems. However, the encouraging points
are that (a) the Benders constraints appear strong and pre-
dictable, (b) the strategy of relaxing the integer require-
ments to build several Benders constraints appears to limit
the need of obtaining more than one mixed integer solution.

Consequently, conclusion 4 is contingent upon the
existence of a practical m;xed integer linear programming
code and some supportive evidence of point (a) above. With
respect to the code, there are such codes that have been
applied to rather large problems with success5 although
research is continuing to develop procedures that are even
more practical.6 Point (a) may be investigated by observing
the performance of the algorithm during the Benders itera-
tions of each cycle for the test problems. Some problems
were such that the marginal project contribution was, for
each project, either above or below every possible value
for marginal slack contribution. In these cases no more
than two Benders constraints were required in the first cycle
and one constraint in the second cycle which did not change
the previous integer solution. The more interesting problems
are those that have at least one project whose marginal
contribution is within the range of all marginal slack con-

tribution values. These were, specifically, problems l¢, 2¢,

5Principally, branch and bound and Balas type partial
enumeration algorithms, '

6Much work is being directed at Benders type parti-
tioning algors.



137

3¢, 3d, 3e, and 3f and required the greatest number of Benders
constraints.

One may recall that each time a Benders constraint
is added to the master problem, a new solution is found which
is feasible although not necessarily feasible for unadded
constraints since all relevant Benders constraints may not
have been added. However, after each new constraiﬁszis
added to the tableau, the right hand side of that constraint
(before the dual pivots are initiated) has an absolute value
that is equal to the maximum difference between the current
solution and the optimal solution. This may be stated mathe-
matically when RHS is the right hand side of the constraint
just added and is negative, ro is the current value of the
objective function and io is the optimal but unknown value
of the objective function. Such a statement follows:

r 4+ RHS S r < r
c o c

It is clear then that for the process to work properly RHS
must converge to zero as Benders constraints are added and
that RHS must converge to zero quickly if the process is to
be efficient. Figure 7-2 is a graph of the percent change

in RHS plotted as a function of the Benders constraint num-
ber. Only those problems that required more than two Benders
constraints are displayed in the figure. Since the first
solution to the master problem (before any constraints have
been added) always yields an objective function value greater

than M where M is the arbitrarily large number in the surrogate
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constraint discussed earlier, then the first Benders constraint
always cuts the objective function value to some value greater
than but in the neighborhood of the optimum. The percent
change in this case may be made arbitrarily close to -100% by
starting with an arbitrarily large value of M. Therefore,
the change is not graphed for the first Benders constraint.
The termination point for each problem has been labeled with
the problem number and indexed with the cycle number if appli-
cable.

One may observe that one of the most rapid convergences
occurred with problem 3e while one of the slowest was problem
3d. These two problems differed only by the amount of avail-
able funds, leading one to conclude that the rate of converg-
ence is more parameter sensitive than it is problem sensitive
since all other convergence patterns, regardless of which
problem, fell between these two patterns. One may also note
the three anomalies where the next to the last constraint in

the sequence for 3c 3b, and 3f produced an increase in the

09
RHS rather than the expected decrease. However, in each case
the RHS was less than .00l in magnitude so that the increase
may be assumed to be the result of the accumulation of trunca-
tion errors that had occurred in previous iterations, rather
than an indication that the process does not converge.

The average percent change in RHS for all Benders

constraints displayed in Figure 7-2 was 64% while an average

of 77% was obtained when the three anomalies were excluded.
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This means that the RHS may be cut to %% of its original

size by the addition of from fewer than 8 to 11 Benders con-
straints. These numbers are certainly not excessive. This
fact, coupled with a high probability of mnot needing more than
one cycle indicates that if an efficient mixed integer
algorithm is used to complete a cycle after Benders constraints
have been added, then practical solutions to the formulation

in Chapter IV are possible.

Compliarze with Theory

Basic theory implies that optimality occurs when the
marginal contributions of competing alternatives are equal.
Problems 2a, 2c, and 2d were constructed to test specifically
compliance with this theory. When the competing alternatives
are projects, compliance is automatic since linear program-
ming techniques are used for their selection. However, in
the formulation in Chapter IV, there is also competition
between projects and slack funds. Problems 2a, 2c and 2d
were constructed to isolate that competition between project
9 and the slack funds. As discussed earlier the marginal
contribution of slack is bounded above and below. Therefore,
problem 2a was constructed so that the marginal contribution
of each project was greater than the upper bound for the
corresponding marginal contribution of slack. Problem 2c¢
was identical to 2a except that the contribution of project 9
was adjusted so that its marginal contribution was within the

range for the corresponding marginal contribution of slack.
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Problem 2d was again identical to 2a except that the marginal
contribution of Project 9 was lowered still further so that
it was below the lower bound for the corresponding marginal
contribution of slack. Project 9 was selected for this pur-
pose because these changes in its objective function coeffi-
cient did not affect its ability to compete with other projects.

If the theory is complied with, then one would expect
the selection of projects that comprise the optimal solution
to the master problem before and after the addition of Bend-
ers constraints to exhibit the following:

2a. The before and after selections should be identical
since there can never be an improvement by substitut-
ing slack for projects.

2c. The slack should be substituted for portions of
project 9 until their marginal contributions are
equal. This assumes X > 0 in the initial solution.

2d. The slack should be substituted for all of project 9
since its maréinal contribution can never be as large
as the marginal contribution of slack. Again this
assumes x9:> 0 in the initial solution.

Table 7-3 gives the results of the appropriate non-
integer solutions.

It remains to verify that the marginal contributions
are equal after the addition of the 7 Benders constraints in
problem 2c. To make these calculations one may consider a
small change Ax9 = ,01l. From Appendix D it may be seen

that a change in x, of .0l results in a change of the objec-~

9
tive function of .01(16600) = 166.00 and a change in the

slack for each period of .01(7000) = 70.00 for period 1,
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TABLE 7-3

SOLUTIONS TO VARIATIONS OF PROBLEM 2a

Initial Solution Solution Solution
Solution After 2 After 7 After 2
Pro ject for Prob- BC Added BC Added BC Added
lems 2a, Problem Problem Problem
2¢c, 2d 2a 2c 2d
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0
4 1.0 1.0 1.0 1.0
5 0.0 0.0 0.0 0.0
6 1.0 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0
9 0.57949 0.57949 0.31904 0.0
10 1.0 1.0 1.0 1.0
11 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0

.01(7000+6500) = 135.00 for period 2 and, .01(7000+6500+6000)

= 195.00 for period 3. From Appendix B one finds that the

derivative of the objective function with respect to the

slack of each period is given by

-S./%.
J/ J

1 e-t2/2
Vv all

dt)

-

(7.1)
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From problem 2c¢ and the second solution given in Table 7-3

for problem 2c¢ the following values are known:

bl = 91 Rfl = .06 dl = -,04 Sl = 4866.72 Zl = 2895.50
b2 = .83 sz = .06 d2 = -,04 s, = 11192.96 z, = 2998.95
b3 = .75 Rf3 =1,06 d3 = —-.04 Sy = 5078.72 Zq = 3085.64

Therefore, the three marginal values given by (7.1)
are .05629 for period 1, .04980 for period 2, and .7965 for
pPeriod 3. The marginal contribution of slack corresponding
to a change of .01 in projeét 9 may be computed

.05629(70) + .04980(135) + .7965(195) = 165.98
Although, 165.98 is not exactly equal to 166.00 the differ-
ence is less than 2/100 of one percent and easily accounted
for by truncation error rather than a defect in the compli-

ance with investment theory.

Conclusion

This chapter has presented evidence that the General-

ized Benders solution procedures, modified in particular ways

for the formulation presented in Chapter IV, provide a viable

solution technique whose efficiency is both predictable and
encouraging. In addition, analysis was provided to verify

the logic and compliance with theory for the formulation in

Chapter IV, The next chapter is devoted entirely to the sub-

ject of sensitivity analysis based upon the solution tech-

niques presented in this and the preceding chapter.



CHAPTER VIII
SENSITIVITY ANALYSIS

An important exercise that follows the solution of
a mathematical programming problem is the sensitivity analysis.
Two motivations for performing this analysis may be stated:
l. To determine the effect upon the overall problem solu-
tion of a problem parameter that may be poorly‘estimated.
2. Decisions external to the problem formulation may have
been made which fixed problem parameters to certain
values. Sensitivity analysis can determiné the effect
of those decisions and perhaps the marginal improvement
achieved by relaxing them.
The basic parameters of the problem in Chapter IV
may be listed:
1. Project costs
2. Project cash flows
3. A', the market price of risk

4, R the risk free rate for period t

ft’
5 Rbt’ the borrowing rate for period t

6. b weighting factor for each period's cash flows

t!

7. M

40 funds available in period t

As seen in Appendix C items two through six determine

144
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specifically the value for a, the objective function coeffi-
cient for project i in formulation (4.14). Sensitivity analy-
sis with respect to these values will be discussed relative

to parametric changes in the ai's. Sensitivity analysis with
respect to item 1 is handled identically to the methods used
for changes in the ai's so that items 1 through 6 are essen-
tially covered together. Perhaps the most important parameter
is item (7), the available funds, whose sensitivity analysis

is discussed in the next section.

Sensitivity Analysis with Respect to N%

The most important aspects of sensitivity analysis
are those dealing with changes in the funds made available
for investment in eéch period of the planning horizon. There
are basically two possible results that may occur as a result
of changes in available funds,

1. A different combination of projects than the previous
optimal combination becomes optimal along with the
attendant changes in slack funds for each.period.

2. The optimal combination of projects remains optimal
but slack funds change for each period that available
funds change.

In the second case, the objective function changes
only as a result of a change in the contribution of slack
which is a function of the expected slack. Sensitivity
analysis in this case is simply a direct application of the

dual multipliers for the subproblem that corresponds to the
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optimal solution. These multipliers are denoted by wj. One
should also observe that if Mj is changed by an amount‘Aj and
the optimal combination of projects is not altered, then the
slack in period j and each period thereafter is also changed
by Aj since slack funds are passed on from period to period.
Therefore, change in the contribution of slack to the objec-
tive function value as a result of changes in allocated
funds with the optimal projects held constant may be com=-
puted directly for small A1. as follows:

k

J
E'wj I A; = Objective Function Change (8.1)
j=1 i

i=1
This may be illustrated with test problems 2a, 2e, 2f, and 2g
where the problems are identical except as indicated in

Table 8-1.

TABLE 8-1

SOLUTIONS OF VARIATIONS OF PROBLEM 2a

M
Objective Change

. Predicted
Problem M M M Function From
1 2 3 Value* 2a Change**
2a 50000 20000 5000 78742.87
2e 50010 20000 5000 78751.88 9,01 8.996
2f 50000 20010 5000 78751.32 8.45 8.448
2g 50000 20000 5010 78750.82 7.95 7.950

*Obtained by independent solution of each problem.

**Obtained by application of (8.1) where w, is obtained
from the optimal solution of problem 2a. J
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It should be clear that the only advantage of small
increases of funds available in any given period is that it
lowers the probability of needing to borrow on a short term
basis and increases the expected amount loaned at the risk
free rate thereby increasing the total expected contribution
of the slack funds. If some specific alternative source of
additional funds is available, such as long term debt, then
it is of interest to note that one may compute how much these
funds can cost so that obtaining them is preferable to not
obtaining them. Omne may suppose that R is such a rate for long
term debt, then if $1 is obtained via long term debt a megative
cash flow of $1.R will result in each period thereafter. The
effect upon the objective function will be as follows for $1
borrowed at the beginmning of period j:

.

$1-R T b, (8.2)

i=j

Equating this to (8.1) one obtains

T k
$1°R 'E. b, = $1 E. Wy
1i=J 1=J
k
Z w
or R = :t—;"]-—— (8.3)
Z b,
i=j 1

Therefore, if long term debt can be acquired in the capital
markets for a rate less than R (given by 8.3), then it should
be acquired for the purpose of providing protection against

the risk of forced borrowing at higher rates.
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Perhaps a more relevant question than the one above
is: Given the rate at which long term debt can be obtained,
how much should be obtained? This can be answered by fixing
R in equation (8.3) and solving for the amount of slack that
produces equality. (One should recognize that w, is a
function of the amount of slack involved in period £.) This
procedure represents the application of the concept that
marginal costs should equal marginal returns at the optimum.
In Appendix B the relationship between w, and s, is given as

follows:

2
_ 4 1 -to/2

g 3 - /o

W = p,_(Rfl dt)
so that for problem 2a with R = .096, management would like
to know how much long term debt to acquire in period 1, then

the following equation may be solved to answer that ques-—

7100+& o
2016. 1 -t“/2

.91(.06+.04J”- —_— dt)

2Tl

tion:

.096 = =5
_ 15500+ A
5001, 91 9
.83(.06+.04J~ L /2 g)
+ = vall
10
11300+ A
--—QL-TR; 2
.75(1.06+.04f 2973.88 1 -t%/2 4,
+ ) 21
10

Solving the equation for A gives A = -12500 which indicates

that, if possible, management should eliminate 12500 of
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preViously acquired debt if the company is paying 9.6%. This
indication that long term debt should be paid off in this
problem occurs for every rate greater than 9%. The reason
seems to be that the company has, after making all invest-
ments, a great deal of excess cash in each period upon which
it can only earn 6%.

Another example is problem 1ld. Although this problem
was solved without regard for the nonlinear term in the
objective function and its related subproblem, the subprob-
lem may still be used to determine how much long term debt
might be acquired profitably to protect against cost over-
runs. In this particular problem b, = .9383, b, = .8554,

Ebi = 12.2 and at the optimum s, = 700, s, = 230, and

1 2

= 2348.67, z, = 2366.87. Also, Rf = .05, Rb = .10 for

2 2

1
every period.

Therefore, if R = 8%, then the equation becomes

700+ A

2
.9383(.05+.05J”-23;8'67 L tT/244)
08 - - \/ Zn
° - 12.2
_ 230+ A 5
.8554(1.05+.05 2366.87 _1_ ~t%/2 4,
+ = V2l .
l12.2
Solving the equation for A gives A = 500. In this case the

borrowed funds would decrease the objective function by 488
while the additional slack increases it by 494.35 from 5800.19

to 6294.53. Assuming the 500 is obtained, then the total
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objective function value becomes 5806.54 when all cash flows
are considered. Again this analysis is under the assumption
that project selections do not change as a result of the
increased funds. |

The more difficult sensitivity problem comes when
the optimal integer solution changes as a result of changing
the parameter being analyzed. However, it may be possible to
incorporate the external decisions into the original model.
Should this fail, then enumeration of possible parametric
values and subsequent soliution of each problem would give
the desired information. An example of incorporating outside
decisions is provided by sample problem 3f, while enumerated
values are exemplified by problems 3¢, 3d, and 3e.

In problem 3f there were 13 projects that could be
selected within a total financial comnstraint of 7500 in funds
provided in the first period only. However, an additional
1000 in funds could be obtained in any one of the three
periods by way of a debt issue costing 9% per period. Since
1000 in face value of a debt issue may bring more or less
than 1000, then the revenues from the three possible debt
issues were treated as probabilistic values, and the nega-~
tive cash flows they generate (9%(1000)) were treated as
certain. By using the formulation in Chapter IV, incorporat-
ing these "outside'" variables, particularly with respect to

financing decisions, is easily accomplished by treating
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them as ''megative projects"l in the manner exemplified by
problem 3f. The specific parameter values for these three
"megative projects" used in problem 3f, are given in Appen-
dix D. The optimal solution to 3f indicated that the 1000
units of funds should be obtained in period 3 so that an
additional project could be afforded with the given financial
constraints. As problem 3f exemplifies, the need for sen-~
sitivity analysis was alleviated by being able to incorporate
the "outside!" decision variable directly into the problem.
The current alternative to this method is to enumerate vari-
ous pertinent values of the parameter being analyzed and to
then solve the mathematical programming problem for each of
these values. As stated earlier this technique is exempli-
fied by problems 3¢, 3d, and 3e. In each of these problems
the only funds available were those made available in the
first period. For 3c, that amount was 7500 units; for 3d,
it was 8500 units; and for 3e, it was 9500 units. Clearly,
if the only funds the company actually have available is
7500 units, then the extra 1000 or 2000 units would have to
be acquired through the capital markets. If debt is con-
sidered, then the sensitivity amnalysis is not necessary as the
debt instruments may be treated as negative projects as

described above. However, if the sale of stock is being

1The objective function contribution is negative
while ordinary projects are positive and project costs per
period are negative while ordinary project costs are positive
costs.
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considered, then the enumerative sensitivity analysis pro-
vides relevant information. The use of this information is
best demonstrated by an example. For this example it is as-
sumed that there are 1000 shares outstanding, which, if the
budget obtained in problem 3c is accepted, will have an
equilibrium price per share of $7238.82/1000, or $7.24
where the monetary units are taken to be dollars and the
$7238.82 is the objective function value for problem 3c.
The question is: If enough additional shares are sold to
obtain $1000 in new capital, what is the minimum price that
should be obtained for each share? To answer this question
one may let x be that minimum price. Therefore, to obtain
an additional $1000 an additional $1000/x shares must be
sold. If that is done, then the budget in the solution to
problem 3d can be accepted and the aggregate equilibrium
price becomes 3d's objective function, or $8160.96. Hence,

the equation
8160.96
1000 + 1000

7.24 =

which, if satisfied, will insure no change in the equilibrium
price per share as a result of the stock sale. In this case
the solution is x = $7.861. Clearly, if the stock were sold
for more than $7.861 the equilibrium price per share would
increase above $7.24 and if sold for less than $7.861 the
equilibrium price per share would decrease below $7.24;
therefore, management must receive,as a minimum, $7.861

per share.
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If an additional $2000 in new capital is sought,

then the results of problem 3c and 3e are used in a similar
equation given by

9083.39

7.24 =
1000 + 2‘-0—30:2

which produces a minimum price x = $7.855.

A second case for the use of information obtained
from an enumerative analysis is when the company actually
has $9500 available and is considering cutting the budget to
either $8500 or $7500. 1In the event either action is taken
then something must be done with the extra $1000 or $2000
that would be made available. If it is being considered to
use those funds to purchase stocks, bonds, government
securities, or even to retire some debt, these are just
ordinary investments that can and should be incorporated
directly into the model by adding some appropriate decision
variables. However, if these additiomnal funds are used to
declare an extra dividend, then again the enumerative type
of sensitivity analysis provided by sample problems 3c, 3d,
and 3e provides the necessary information. Again, an example
is used to illustrate this process. Presumably, the hope is
to maximize the equilibrium value of stock holder equity
plus any other wealth stockholders accrue as a result of
stock ownership.

For this example it is assumed that the average

stockholder must pay 15% income tax on all dividends. The
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three alternatives are:
1. Keep $9500 and invest it according to the solution to 3e.
2. Keep #8500 and invest it according to the solution to 3d
and declare an additional dividend of $1000.
3. Keep $7500 and invest it according to the solution to 3c
and declare an additional dividend of $2000.
The respective benefits to the stockholders of these

three alternatives are:

1. 9083.39
2. 8160.96 + 1000(1-.15) = 9010.96
3. 7238.82 + 2000(1-.15) = 8938.82

In this case, alternative 1. is the preferable alternative.
In the event one wishes to deal with the possible
uncertainty surrounding the financial parameter Mj’ then
rather that use sensitivity analysis, the appropriate tech-
nique would be to estimate the mean and variance of the
parameter and integrate its uncertainty into the formulation
explicitly. This is easy to accomplish by minor modification
of the formulation in Chapter IV and for which the solution

technique stated in Chapter VI is still applicable.

Sensitivity Analysis with Respect to Project

Parameters (a. ,c. .)
i?’7ij

At the completion of the solution procedures described
in Chapter VI an optimal simplex tableau is obtained for the
master problem. Although that tableau was produced via

relaxation procedures and only after the addition of many
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constraints that were not originally there, it does represent
the solution of one original problem that could have been
solved without relaxation procedures if the Benders and
Gomory constraints that were ultimately added had been

known in advance. The form of that problem, assuming all
subsequently added constraints are known and included may

be written as follows:

Maximize r (8.4)
r,.X
i=1 straints
AL n L
ry Zz cy Xy < ZM, 4 =1,2,...,T} Financial (8.4b)
j=1 i=1 J j=1 J constraints
n
.2 15 S q k =1,2,000,s5} Gomo:g‘y con- (8.4c)
i=1 straints
n . Project inter-
R hyx. < d k = 1,2,...,u} relationship (8.4d)
i=1 constraints
0 s xi s l i = 1,2,.-.,1‘1} BOllndS (8.46)

where 1. N is a constant function of the a; coefficients
defined earlier and of cij cost coefficients and
of dual multipliers obtained from the subproblem
2. all other values except x4 and r are constant.
Considering the problem of form (8.4) any change in
the values of parameters a; and cij will result only in a
calculable change in the technological coefficients @l and
c,. found in systems (8.ka) and (8.4b). Furthermore, if

1)
these changes in technological coefficients occur for an i
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such that X is nonbasic in the optimal solution to (8.4),

and that change is small enough that x, remains nonbasic then:

l. The current basic solution remains optimal and it will
continue to satisfy the integer requirements that forced
the introduction of the system of Gomory constraints
(8.4c)

2. The current basic solution remains optimal for the
non-linear problem (i.e., no more than the p Benders
constraints can be added).

If the change in technological coefficients is large
enough that the optimality condition indicates that x; should
become a basic variable, and if X5 is made basic, then the
new solution will probably not Satisfy the integer require-
ments and more Gormory constraints will be needed. If the
addition of these Gomory constraintsyields a new mixed inte-
ger solution, then additional Benders constraints may also
be needed. It is possible, however, that the addition of
the Gomory cuts will force the solution back to the same
integer solution as before thereby not actually changing to
a new solution as a result of the changes in the technologi-
cal coefficients.

The important point is that standard parametric
analysis techniques2 concerning changes in techmnological
coefficients of nombasic variables for linear programming

problems is indirectly applicable to the nonlinear formulation

25ee Taha, Chapters 4 and 9 (45).
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of Chapter IV via direct application to the linear master
problem created by a Generalized Benders Decomposition.
Specifically, what can be determined by the application of
those standard techniques is a minimum range for the changes
in these technological coefficients over which no change in
the solution will occur. At each end of these ranges are

so called critical values which in ordinary LP problems are
values that if exceeded a change in the solution will occur.
However, in a mixed integer program these critical values may
force the addition of more Gomory cuts and may not actually
cause a change in the mixed integer solution. The only way
to determine that is to actually change the technological
coefficients to something exceeding their critical values,
reoptimize the last tableau and then restart the Gomory

and Benders algorithms described in Chapter VI,



CHAPTER IX
EXTENSIONS AND FURTHER RESEARCH

An appropriate direction for future research.into the
particular problem area of capital budgeting under uncertainty
is provided by the general formulation in Chapter IV, the
data generation techniques discussed in Chapter V, and the
solution procedures presented in Chapter VI and applied in
Chapter VII. It is anticipated that any new formulation
derived from the general formulation in Chapter IV but
exhibiting differences from the specific formulation (4.1%4)
iﬁ Chapter IV as a result of different assumptions may, in
general, be decomposed in a manner described in Chapter VI
and Appendix A. However, whether the generalized Benders
solution procedures produce a global optimum for any spe-
cific case will depend upon whether the resultant subprob-
lems have the required properties. Any proof of such proper—
ties should follow closely the method of proof developed and
presented in Appendix B.

To exemplify the process of developing refined models
via the alteration or refinement of the assumptions made in
Chapter IV some example cases are discussed in the next sec-

tion. The final sections are devoted to an outline and

158
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classification of further research efforts, and some general

conclusions are drawn.

Extensions

When one formulates a mathematical programming model
the usual preparatory steps are to specify the assumptions
under which the model is to be valid. When one applies the
model to a real problem it must be determined that the assump-
tions are true or that those assumptions that are violated
are not violated by an amount significant enough to cause
difficulties if they are ignored. If the deviation from én
assumption is significant, then the assumption must be changed
and the model also changed to reflect the new assumption.
Hence, a formulation may be expanded into a family of related
formulations via a systematic relaxation, generalization or
modification of the original assumptions. When this occurs
in such a way as to extend the applicability of a basic formu-
lation to not only those problems that fit the original assump-
tions, but to a larger set of problems as well, then one has
accomplished an extension. In this section, three original
assumptions that are the most vulnerable with respect to
criticism of their realism are considered together with the
attendant changes in the specific formulation. These three
assumptions are:

1. That unlimited short term borrowing is available at some
constant rate above the risk free rate (see Assumption 13

for models 4.13 and 4.14 in Chapter IV)
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2. That all random variables are normally distributed.
(See Assumption 1 for the general model in Chapter IV)

3. That there is no autocorrelation between investment
costs nor any correlation between those costs and the
economic index used to establish ﬁm' (See Assumption
10 for specific models 4.13 and 4.14)

Case 1l: One may wish to assume that the rate of
interest that must be paid on short term borrowings is a
piecewise linear and constant but increasing function of the
amount borrowed, rather than a simple constant function as
implied by 1. above. Hence, the company may borrow from O
to some amount a, at rate RbOt in period t, or from a, to

1 1

some amount a2 at rate Rblt’ or from a‘j to some amount aj+l
at rate ijt where Rb(j+1)t 2 ijt v J and t. For computa—~
tional reasons it should also be assumed that 3 Rbkt such
that the supply of capital at that rate is unlimited. In
this case the resulting change to the formulation is easy to
carry out since all that is required is a change in the way
the expected cash flows from slack funds are computed.

One may recall from Chapter IV that under the origi-

nal assumptions the expected cash flows from slack funds in

period t were given by:

0 -(q~u )2/20 2
- q s s
2ilo
-0 St
2 2
® qut -(q—p,st) /20‘st
+ e dq (9.1)
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These terms may be replaced by:

2 2
~a -(g-pu_ )°/20
& V(T K aRpxt S¢ S¢
E(S,-g(8,)) = —_——— e dq
/2o
2 2
. -(q~p_ )/
. k-1 J qu’t . Sy St aq
j=1 -a \/2n0's
Jj+1l t
2 2
o -(q- )°/20
Ry ot ust St
+ — dq
-a, \/21'10st
o ~(q-p_ )2/25_ 2
ARy St St
+ —_— dq (9.2)
(o] znost

The remaining parts of the model are unchanged.

Case 2: The assumption that all random variables
are normally distributed affects the formulation only with
respect to the calculation of the expected return from slack
funds. Making such an assumption implies that the slacks
are also normally distributed since they are linear combina-
tions of normally distributed project costs and the constant
Mj (available funds in period j). The purpose of the assump—
tion was to allow the determination of the slack's distribu-
tion. However, if a large number of projects are invested
in, an assumption that the slacks are normally distributed
may be valid even when the distribution of individual project
costs are not normal. In this case the original assumption

is replaced by the new assumption and no change in the
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formulation occurs. Actually, it is sufficient to assume

some approximate distribution for slacks and make no assump-—

tions about individual project cost distributions.
Two specific generalizations may occur in this situ-

ation. .

l. Slack funds will, regardless which projects are selected,
exhibit some probability distribution which is fully
defined by its two parameters, mean and variance. Hence,
slack funds have density functions f(q;ust,cst)

This assumption affects only a change in the way the contribu-

tions of slack funds are computed. That change is from the

form reviewed by equation (9.1) to (9.3)

. ° @©
E(gt-g(gt)) = f qutf(q;u s ost)dq+ qkftf(q;pst,ast)dq (9.3)
- ‘ o

2. Slack funds will, regardless which projects are selected,
exhibit some probability distribution which is defined
by k parameters olt’ 62t’ ceny th. Hence, slack funds
have density function f(q; blt’ 62t’ ceey bkt)

This assumption again causes a change in the way the

contributions of slack funds are computed, thus yielding

o
E(§t-g(§t)) = f qutf(qgolt,bzt, .o ,th)dq

@®

@
+-}F qutf(qgalt,ozt,...,akt)dq (9.4)
o

An additional change also occurs in that the resultant

formulation does not necessarily possess the specific
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constraints in formulation (4.13) given by (4.13e) and (4.13f)
but do certain constraints of a general form as given by,

= h, (x
i

Gi_t l,xz,..',xn;cll’clz’...,clt;czl,czz’...,czt;...;

cnt;Ml,Mz,...,Mt),
where hi is some function that relates the individual project
costs and available funds to the ith parameter of the distri-
bution for the slack in period t.
In either of these two generalizations the parts of
formulation (4.13) not mentioned specifically remain unchanged.
Case 3: The assumption of no autocorrelation between
investment costs may be eliminated with no change in the formu-
lation. The only change is in the way input data are pre-
pared (see Chapter VI). However, to assume correlation between
project costs and the economic index or more directly to assume
correlation between the slack and the economic index causes a
change in the formulation. The change is derived from the
fact that with the original assumption one could ignore the
covariance between the return on slack funds and the market
index. Under the generalized assumption the covariance must
be treated explicitly. Specifically, this means an addition
of two more systems of equality constraints to formulation
(4.13) which serve to calculate the required covariance.
This covariance term may then be incorporated into the objec-—
tive function in the usual manner. Returning to the normality
assumption yields a joint bivariant normal distribution for

§£ and ﬁm with parameters p_ , ¢

. , R_, o and cov(§t,ﬁm).

S m

t
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Denoting the distribution by f(q,r;ust,ast,ﬁﬁﬁym,cov(gt,ﬁm))
allows the immediate specification of the first additional

system as follows:

© O
cov(§t~g(§t),ﬁm) = kjh E}r (qut—E(gt'g(gt))(r"ﬁﬁ)‘

f(q,r, u o R ,0 ,cov(8 R )) dq ar
S¢

vfﬁ vfﬂ (qut~E(S g(g ))(r—R )e

f(q, sosta m,O'myCOV(S ﬁ ))dq dr (9.4)

The second required system states a relationship between
project cost covariances with the market portfolio and slack
covariance with the market portfolio. In effect it serves
to define cov(S ﬁ ). Hence,

cov(St,ﬁm) ==X ¥ cov(C

ﬁ )x. t=l’2,.c.,T'-
k=1 i=1 o

ik’
This system is linear and causes no additional solution prob-
lems; however, the system (9.4) causes a good deal more non-
linearity in the overall formulation. The advantage of this
generalization is that it makes a further generalization
that allows available funds to be random variables with a.
covariance with ﬁm easy to incorporate into the formulation.
The three cases stated above provide a basis for
demonstrating the flexibility of the Chapter IV formulations.

Any number of different specific formulations may be generated
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by altering the framework of assumptions with which each
formulation must comply. For at least the three cases stated
above, the solution procedures applied in Chapter VII appear
to be the only possible means of solving the modified formu-
lations. What remains is to accomplish the researgh required
to demonstrate the applicability of those procedures. The

next section is devoted to precisely that matter.

Further Research

The research reported in the preceding chapﬁers has
opened a number of opportunities for continued research.
These opportunities may be categorized according to the
special interests of the researcher,

For those whose interest is in the translation of
theory into application there is the review and validation of
the assumptions used to construct the framework within which
the formulation (4.14) was spawned. If the framework proves
inadequate for application to a particular real problem, then
new formulations may be developed as exemplified by the three
cases described earlier in this chapter.

For those whose interest is mathematical programming
there is the determination of the ability of the procedures
in Chapter VI to obtain a global optimum for formulations
that may be produced by altering the framework of assumptions.
Much of this work may be patterned after the developments
and proofs in Appendix A and B.

For those interested in efficiency of mathematical
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programming algorithms the obvious course is to integrate a
more efficient means of solving the mixed integer master
problem in Chapter VI than by the Gomory Cutting Plane method.

For those interested in statistics and specifically
estimation, whether subjective or not, there is the determi-
nation of error associated with data estimation procedures
given in Chapter V and the investigation into ways of improv-
ing the estimates.

For those interested in any problem where the risk
of violating a constraint is real, one may consider adding,
to the objective function, a term which calculates the
expected cost of violating a constraint. This particular
approach appears to result in a solvable formulation and

offers a new alternative to chance constraint programming.

General Conclusions

Although formulation (4.14) was developed under a
restrictive set of assumptions, it encompasses more realism
than those formulations developed under assumed certainty,
single interest rates, or thoée formilations that considerxr
only one of the two basic risks, (1) variability of income, '
or (2) variability of costs. In addition, it offers an alter-
native to chance constrained programming techniques in the
way the risk of the variability of costs are incorporated
into the problem. Including all of these things mecessitated
a formulation that is not straight forward. However, despite

this and the mixed integer nature of the problem, the solution
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techniques are relatively straight forward, workable, and as
the computational experience showed, efficient enough for
one to expect to be able to solve larger problems. The data
requirements, though considerable, are not excessive, and
are basically the same kinds of data that one might generate
for any 1arge.project regardless what means of project analy-
sis are used. Finally, sensitivity analysis of solutions
to formulation (4.14) provides valuable information to assist
corporate managers with the long term financing decisions.
Now that the formulation has been specified, solution
procedures developed along with proofs that those procedures
will produce a global optimum, tests of the performance of
these procedures have been performed, and methods of employ-~
ing sensitivity analysis to broaden the applicability of the
formulation have been specified; then one may conclude that
the work presented in previoué chapters is at least of aca-
demic interest. The ultimate question is: Can it be applied
to real problems? At this point, any answer to this question
is only a matter of opinion. The final answer can come only
after attempts at implementation have been made and if success-
ful, then only after several years of use can its total value
be specified. It is hoped that the management of some corpor-—
ations will see enough value in this work to seek to find the

answer to the ultimate questionm.
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APPENDIX A

The Problem

The solution procedures presented in this appendix
are the result of a direct application of Generalized Benders
Decomposition Algorithm developed by Geoffrion (14,15) and
applied to a class of problems of which the problem in Chap-
ter IV is a member.

Given the problem

Max  q'X + £(L, (%), Ly (D), ..., L (D)

0sX<1
s.ete: AX < B
X vector of mixed integer variables (VMIV) (A.1)
where £ is a function that is monotonic1 in each of its var-
iables and Li(i) is a linear function of X. By introducing
a variable vector Y where y; = Li(f), problem (A.l) may be
rewritten:

Max TE + £(T)

%Monotonacity over the entire range is slightly

. stronger than necessary. The weaker requirements are stated
in preliminary developments to the statement of equation
(A.3b) appearing later.

A-1



Sete: Yy = Ll(')'(-)
Yy = L2(3(~)
Y, = Ln(X)
AX<Db
X (VMIV) (A.2)

If £(Y) is monotonic increasing in its i® variable for all
values of that variable and since in the total problem, y;
has no effect upon Y (i £ j), then the following replace-

ment is possible without materially affecting the problem:
Y; = Li(X) replaced by y; < Li(X) (A.3)

If the above condition holds except that £(Y) is monotonic

decreasing in its it variable then:
- ) i > X
y; = Li(X) is replaced by y; Z Li(X) (A.3a)

If £f(Y) is monotonic decreasing in its it variable for all

values of Y5 2 a and monotonic increasing for ¥ < a and is

symmetric about "a" in the f(—Y-)-yi plane, then:

y; = Li(f) is replaced by:
y; —az= ILi(f) - a] or equivalently
y; - a_>_Li(3(-) - a and y; -aZ-Li(f) + a
or y; 2 Li(X) and y, = 2a - Li(X) (A.3Db)

If £(Y) is monotonic increasing for y; 2 a and monotonic

decreasing for v < a then the problem cannot be handled



by these techniques.

The following substitutions and manipulations are
accomplished in order to generalize the statement of the
problem to be decomposed by the Generalized Benders technigue:
1. For all i for which (A.3a) replacement is appropriate

one may use an equivalent form -y, < -Li(.i) and re-

La by - L. (X
place y. by -y .. Then y, < Li(X).

2. Let a—i be a row vector d either Li('}-(-) = -czi'i or -Li(f) =
Eiic' dependent upon whether substitution 1. above has

taken place. Then, one may define a matrix Q where

L -
3. Where replacement (A.3b) applies, a manipulation similar

to 1l. above caﬁ be accomplished yielding

y; < -Li(}-{') and y; < Li(i-(') - 2a
The first of these constraints is used to help con-
struct the matrix Q in 2., and the second constraint
is used to construct a similar matrix Q' as follows:
-:i'i' is a row vector 2 Li(f) = Ei“}_{'
if replacement (A.3b) occurred for i or

q;' is a row vector of zeros if (A.3b)

did not occur for i. Then



A=k

Q' = |

e o

4, d is a vector composed of elements a,; where a; is the
value denoted by "a" in (A.3b) or a; = large negative
value -M if (A.3b) does not apply for i.

Problem (A.2) may now be stated as a result of all
necessary replacements (A.3), (A.3a), or (A.3b) and substi-
tutions and manipulations 1, 2, 3, and 4 given above.

Max at§-+ £(Y)
X,Y

S.te: Y< QX

< Q'X - 2d

]

X<bv

>|

(VMIV) (A.L)

ol

Generalized Benders Decomposition

X is defined as the "complicating variables" (15,
p. 1). One should observe that all functions of X and Y
are linearly separable which insures compliance with
Geoffrion's '"property pn2 (15, p. 11). The sub-problem
obtained by a Benders decomposition is essentially problem

(A.4) except that the variable X is fixed at constant values

2Property "P" states in essence that the supremum
over Y of the > _Lagrangean of the problem may be found inde-
pendently of X for given dual multipliers.
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ik and the problem is solved for optimal Y. Hence, the sub-
problem:
Max £(Y)
Y
s.te: Y= QX
TS QX°- 2d (A.4a)

Geoffrion requires that the subproblem be solved in such a
way that a global optimum is obtained and optimal dual multi-
pliers are also obtained. Since the constraints of this
problem are simple bounds on the variables ¥ (half of these
bounds are redundant) and since the bounds were constructed

a certain way dependent upon the monotonacity of f, then the
solution to this problem is trivial. Furthermore, simple.
bound constraints will always satisfy the "constraint quali-
fications" (52, p. 39) so that optimal dual multipliers are

3

easily obtained from the Kuhn-Tucker conditions” providing
the Lagrangean of problem (A.ka) possesses a saddle-point.

If one defines Tk as the optimal Y obtained from the subprob-
lem constructed with assumed values fk; and ﬁk, Vk as the
corresponding optimal vectors of dual multipliers, then the

master problem may be stated.

ng r

r,X

sete:  r STX + £(F) - (TOEFE-T D - T)EF-T Te2D)
k=1,2, e.., P

3If the problem does not exhibit the conditions
required to replace '"'=" constraints by '"<" constraints, then
unique optimal dual multipliers may not be obtainable.
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AX<Db

X (VMIV) (A.4b)

where P is the number of different feasible fk for which a
corresponding subproblem has been solved. There are two

important points that one should observe.

1. Problem (A.L4b) is a mixed-integer linear programming
probleﬁ in X and r.

2. 3 a feasible solution Y to problem (A.4a) for every x*
that is feasible in problem (A.4b). This situation
precludes the necessity of using some of the con-
straints described by Geoffrion, and prevents some of
the potential computational difficulty reported by him.

(15, p. 8, Eq. 10b; p. 17)

Example Problem

The problem decomposed here will be the classic
quadradic programming problem. The resulting technique for
solving such a problem is new and is applicable regardless

whether the variables X are continuous, integer or mixed

integer. Initially, it is assumed that X is continuous.

The problem:

Max q'X - X°F X
X
S.te: AX<D (A.5)

where F is a positive definite or semidefinite symetric

matrixe.
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A linear transformation is required and is developed as

follows:

3 a matrix E of F-conjugate vectors 3

-E-)t'f"- E=D (a diagonal matrix of non-negative elements)

Introducting new variables Y3 7Y = E-1X

then TP Y = X(EDHLHEFX - TELEFEEX

Applying these results to problem (A.5) one obtains (A.6):

Max X + £(Y)
X,Y
S.t.: ? = .E-)-'l-i
AX<d (A.6)
= —t= = 2 :
where £(Y) = =YD Y = -Zyi d;; and 4,, 2 0 V i.

Clearly, f(Y) is a monotonic increasing function of y; for
Y < 0 and monotonic decreasing function of v, for v = 0.4
Therefore, one may apply replacement (A.3b) and obtain the

problem (A.7) below.

Max a°X + £(T)
X,Y

s.t.: T2 EIX

Tz BX
AX<hb (A.7)

By performing manipulation l. on the greater than

ﬂNote that f(Y) is also symmetric about 0 in the
f(Y)-y plane.
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or equal to constraints the problem becomes

Max ?3(- + £(Y)
X,

Y
s.t.: Y<EX
T< -E 3%

AX<b (A.8)

This problem is in the same form as (A.4) with d = 0, and

therefore decomposes into the subproblem:

Max -2y, 24. .
Y i Tdii

. k k k . _
set.: v < ;1% t* &ioXy e + €, X i =1, eosy n

k k k .
Yy S -ey1¥X < €49 in¥ 1,

LAC LN n

"
1
[ ]
[ ]
L]
i
o
=
it

where ik is fixed, and the master problem:

sete: r < QX - 202, - @ HTETD-TOHTHED
k=1, .o0y, P
AX<hb .
The master problem is linear in X and r so that any
additional requirements necessary (such as X being integer
or mixed integer) may be added without causing an inability

to solve the problem.

As indicated earlier the subproblem is trivial so

that given .}-{k the global maximum is clearly,
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k. + e,.X k
2 e Iln"n

(A.9)

y.*¥* = - |le x

+ e
i u'l

12¥

which will exactly satisfy one of the bounds on each ¥ and
amply satisfy the 6ther bound since it is redundant. From
the Kuhn-Tucker conditions one has the following

1. Y* is clearly feasible

1, o e 09 n

- *
2. Zdiiyi u.

* - v,*¥* =0 i
1 1

k
* * - =
3. uy (yi ;eijxj ) =0
J i=1,2’.00,n
k
* * —
v, (yi + geijxj ) =0 (A.10)
J
From (A.9) one sees that if Se, .x.® < O, then y.* = Ze, .x.°
3 ij™d ’ i ij73
. Ee..x.k #Z 0 so that by K-T condition 3., v.* = O
i PRER AN ' i
k
* o o * * 3
hence u,* = -2d,,v.%. Clearly, u, > 0. Also, if ?eijxj
> 0 then y.* = -Xe. .x k ’ y.* - Ze, .x k # 0, hence from
i 1% 0 e YT T %N P
3., ui* = 0 and from 2, vi* = -2diiyi*. Clearly, Vi* = 0.

The stepwise solufion.procedures may now be stated:

l. r = +0, k = 1,find any ikal' _}-C'k < b and -}-{.k satisfies
whatever integer requirements there are.

2. Use (A.9) and (A.10) to determine Y*, U* and V*. Index
the values with k.

3., Construct a constraint for the master problem and add
that constraint to the master problem.

4, Solve the master problem for optimal X*, r*. Set k =

k + 1 and index f*, and r* with k.
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If Irk - rkﬁ1'|> € return to step 2. Otherwise stop
because the current solution is € ~optimal for the origi-

nal problem.

Conclusions

The solution technique presented in this appendix

was chosen to be applied to the problem developed in Chapter

IV for the following reasons:

1.

It can be shown that the problem in Chapter IV possesses
the correct monotonacity characteristics and is recep-
tive to the type of linear transformation discussed
herein so that the technique will succeed. Furthermore,
these are the only known solution procedures for a mixed
integer problem with the type and degree of nonlinearity
possessed by this problem.

Some of the assumptions used to formulate the problem
may be relaxed producing more complex but more realistic
formulations. However, these problems will possess
essentially the same characteristics and may be solvable
using the same procedures.,

A certain amount of sensitivity analysis may be performed
in a direct manner from the solutions obtained by these

procedures.



APPENDIX B

This appendix contains the proof of the property of
problem (4.14) and (6.10) that is required to apply the sub-
stitutions and transformations in Appendix A. The proof of
the hypothesis of the v Representation Theorem for the sub-
problem (6.10'sub) is also contained herein.

Property I: The function,
2 2
~-s8. [2=z,
S e o -(t-s)%22 7
£(8,Z) = zbj[—ﬂ-— »  Z4R.S.~S.d. 2 at ]

j=1 V21l J J JJ \/2an.

-0

where: bj =20 V k
da, 0 j
j < v J

>
Rf 0

.20 j
S 2 v J
Z.20 y Jjj; is a monotonic decreasing function of Zj'

J
Proof: The proof consists of showing that the partial
derivative of f with respect to zJ. is less than or equal to

zero for every 5 5 and z; 2 0, Taking this derivative is

somewhat simpler if the term

(] 2 2
-(t=s. 2z .
1 e( J) / z,

o V2T,

dt

t-s,
is modified by a change of variables to q = ——ail thus producing
zj _

B-1



-S.
/zJ
1 -q /2
e dq. Hence,
- ‘/2n
2 2
- 2
5.3 d. e sj/zzj 2 -sz/2z§ s —s./2z‘j
E%}%AZl = b, { —d— + d.=z (—%) 2 - s d.(—%) <
J RNCE| z VA JJ F 2
2 2
-s“/22 2,, 2 _ 2
doe 90 g2 msjlezyt o4 g2 -sh/ez
= b. —l + L e R N | e
3] vem 2,2 Vel z,2 Ve
—s.2/2z.2
b.de Y J
SN N I
V21
ince b. = 0; d. s O; —532/223'2 > 0, then 2£(5:2) .
since 3 2> O j < 0; e ) -——31;;—
VzJ. and sj, in particular Vv zj and sj 2 0.
Property II: For the problem
Maximize P = 2t Xt e 25, (B.1)
Y,S,Z
T
o 2
S.t.: Z bt z y . z O
J i=1 1J
- =1 _
Y. — E. x = 0 .=l 2 s eoe k
j 3 F J 14 ’
J J —
s, - L M + zcitxl_o
Joi=1 i=1 2
S=0

— *
Z 2 0; The optimal value Po equals that of

1Derivative under an integral may be found in Kaplan
(page 220) (22).
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the dual for every value of -f'n' that satisfies the system

12 0. j=1,.oo’k (de)

M

M, -
i .

J
i=1 i=

Tt x
11

Proof: Any point (sl,sz,...,sk,zl,zz,...,zk,yll,ylz,

)t . En.k+2k
-.Q,ylk, y211y22’0..’y2k,...,ynl’yn2,...’ynk ln

(n.k+2k dimensional Real Euclidean Space) may be a candidate

for solution to problem (B.1l) but since'fﬂ' must satisfy

system (B.2) in the master problem and, all y.. are real then

iJ
no generality is lost by restricting the solution to (B.1l) to
a convex subset of En'k+2k. In particular, the subset,

called F, is defined as follows:

n.k+2k

F={X €E

, 2
|}ciZ O’ 1=l’2,-o.’2k}

the problem that will be proved to exhibit dual equality is

given by:
Maximize P_ = A'X* 4+ £(5,7) (B.3)
S,Z,YeEF
g 2
S.t.- V4 bl 2 y . = 0
J i=1 1J
-f. - E.-l -il = O j=l,2,...,k
J o d
J J o
S, = M. + CitX‘a' = 0
b1t o

The proof will consist of finding a solution to (B.3)

and finding dual multipliers such that the solution to (B.3)

®Notice that the only values restricted by this defi-
nition are those values for s. and z. where the values for vy, .
remain unrestricted. J J 1J
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maximizes the Lagrangean function over F., First, further

modification must be made to (B.3).

Since il

is a constant

each time the subproblem is solved all functions containing

fj'may be evaluated, and replaced, by a constant value thus

simplifying notation. Furthermore, the equality constraints

may be replaced by two inequality constraints.

cations yield the following form of problem (B.3).

Maximize P_ = c_.  + £(S,Z)
(S,Z2,Y)€F
2
S-t. Z. - Ey.. z
J i=1
Y.-C H
Jd J
Y. -C,
J J s
S, - C_. P
J oJ
sJ - ch s

wherelaj are constant vectors with elements cij

Scalars fOI‘ j=0,l,2,o.o,k-
The Lagragean is,

L(8,Z,Y, 0,V , vV, W' ,W) = ¢

k n

r I vt

j=1 i=1
k n
T ZIv;
j=1i=1 1%

k

5 owe (sj-c

j=1 Y

o

0

1

J

j-_-l,z,.-o,k

j=1,2’-0-1k
j-_—'l,z’---,k
j=l,2’-oo’k

j'—-l,z,-o-,k

k

+ £(S,Z) + z uj(zj—

Jj=1

(yij'cij)

(yij—cij) +

oj)

These modifi-

(B.3")

Dual
Variables

and c_.
oJ

n
oYy

i=1

are

2y

iJ

(B.4)
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It is obvious that the optimal primal solution to (B.3') is

given by (B.5).

Sj = coj J=1,'2, K] ,k (B-5)
* . -
yij = cij 1=1,2,...,n; J=1,2,.lo,k
* n *
zZ . = E (yi- )2 j=l,2-,-..,k
J i=1 J

Applying the XKuhn-Tucker conditions provides the following

K~T Condition 1. (The proposed primal solution must be
feasible.)

Solution (B.5) clearly satisfies this con~
dition.

K~T Condition 2. ( Jnon-negative dual multipliers such that
the product of the dual multipliers and
their corresponding constraint function must
equal zero at the proposed primal solution.)
Solution (B.5) satisfies all constraints
exactly which means the constraint function's
values at that solution are all zero and
hence any set of dual non-negative multipli-
ers will satisfy this condition.

K~T Condition 3. (The gradient of the Lagrangean evaluated
at the proposed solution must be equal to
zero. ).

This condition is used to determine values for the

dual multipliers and the resulting equations may be summarized



as follows:

3 — ¥
£(s ;Z ) rug s o J=l,e..,k (B.6a)
J
— ¥
3 £(S szz ) WJ_+ _ wj— -0 =L, eee,k (B.6b)
J
v, ¥
-u. L) +v.. T -av.. T =0 i=l,e..yn (B.6c)
J 1] 1J .
E G
i=1 I
Therefore,
n
-c .2/2.2 c. .2
o -b.d.e ©°J 1=1713
J LR A

The non-negativity of uj* is guaranteed by Property

I stated earlier. Also,

i./ .2

J i Tij o

(w+)*_(w')* - - af(E*,Ef) = 1 e—q /2d
J J 53 Vol

< 0,3

and one may assume that (w;)* = 0 which guarantees that (w})*

2 0, , satisfying the non-negativity requirement.

3 d.z. —s%)Zz% -S . -sj/zj 2
3£(5,7) - b. i, J I —LV 4R ~q. e—d /2 dg
9s. iL /M z 2 f j —_—
] 3 = JVZT
2 2 -s./z. 2
s.d, -s%/22" "7y ~d/R
- =l J J(_-l-)]=b.Rf—d. 4
Vvl 2z J Yo vzl

since bj 2 O;Isz 0; dj < 0; and probability is =2 O then

§%§§u§l 20 V s. and z..
s . J J

J
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Finally n
* -cg'/z El 132
: . C.. b.d
(VT.)* - (vT.)*= U5 Cij o - 393%i4°
ij ~ - -
L cy 2l 2 ¢y
i=1 1] i=1 ij
ok
and if c.. 2 O then (v,.) =0
13 ij

1)
satisfy the non-negative requirement of K-T condition 2.

. + * + %* - %* .
or if i < O then (vij) = 0, then (Vij) and (v, .) will

It will now be shown that

- K K * o ¥
L(3 ,Z ,Y ,0 ,(F) ,(F) ,(F) ,(W)) =
— e e il ¥ ok k
Maximum L(3,Z,Y,0,F), )W), %))
(%3,Z,Y)eF
and to simplify notation the symbol for the Lagrangean will
— — —f &
be written L(X,\) so that the above may be written L(X ,X )

——*
Max L(X,X ). The function whose maximum over F is to be
X¢F

found is given by (B.6)

LN ) = e + £(5,2) (B.6)

Lo | R 1 972 ( )
- b. -d, d =C s
I\ f U, N © 1 *%7%3

One may observe that the terms containing sj or Zj are
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linearly separable from those c:onta.:i.ning.:sr:i_.j so that their
maximums may be determined independently. In addition, some
terms in (B.6) are constant with respect to S50 24 and Y

and, of course, need not be considered while locating an

optimum. Hence, (B.6) simplifies to,

2 2 L2
-c”./28c’. -c_ .//Zc .
_ k b.d.e °J 1 x +0J +J e-&?@
£(5,2) ~ yp=isl- | 5. ~ Zs;b.|R.~d. — d
j=1 V2T J j=1 94 Vi van
(B.6a)
and
n
2 n
b.d S y..o .2 3 2
g 3351780 megy/2,%0

n o n 5
X bjdjiflcuyij %o /ziz—_-lcij
- Z e (B.6b)
j=1 n o
21T c. .
i=1 1Jd

Again it may be noted that in (B.6a), 55 and z; are contained
in terms that are linearly separable from all terms contain-
ing s, and z, so long as | Z j. Therefore, to maximize
(B.6a) over all s:j and Zj’ one needs only to maximize the

terms containing sj and zj for each i or to maximize (B.6aj).
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—s%/2z% -s./z.
b.de 9 I J . —a/2
—l + z;+ bR, b.d.s. e dgq
/2Tl J R NI /5T
./2%c
b.d.e
SRR J . z
vall J
A
~-c_.MNZc .
oj ij 2/
-q“/2 .
- s.b.[R_~d. a d B.6a
I B —_ 1 ( 3)
- VoW

Because fumnctions of yij

j #1 then (B.6b) may also be maximized for each j inde-

and y., are linearly separable for
ik

pendently so that (B.6b) becomes (B.6bj)

/ z Y (B.6bj)
i=1
/ E o::lJ

b.d, -co.z/zzbi.2
where A= —ld e J J and A< O.
van

To maximize (B.6aj) one may hold s fixed and investigate

the properties of the partial with respect to zj.

-s?/Zz? 5 -s?/Zz?
B(B 6aJ) bjdje S. . b.d,le
°2; W 22| J/EI

J
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2 2
/2Zch
b.d. —52/2z2. sz. b.d.e ©°J 1J
- m—ald o J _.% — —deal
val Zj Va1
2 2
3 (g 6ai ) b.d. (e-coj/ZEcij . -s“ /2zJ)
% vzl :
.d. -b.d.
Since =—s—4 < 0 then —J—=l > 0 so that it becomes
V21l V21l

clear that when

2 2 2 2 3(B.6aj)
—Coy /2Te;; > -s;7/22,7 then ““TFESJ"> 0

2 2 2 2 3(B.6aj)
and when o3 /22°ij < -5 /2zJ. then S y <0
and when -c .2/220. .2 = =9 .2/2z.2 then ________J_KB.Ga ) = 0.
oJj ij J J 0 Z

These three conditions lead to the following conclusions:

S. .
i /. 2 3(B.6aj)
1. When zJ. < CQJ' zcij , azj > 0

2. When z; > —J—\/ jz iﬁfiﬁ&ﬂL—< 0

_J_ / Q(B 6a]
3. When zJ. J.

Since coj > 0 and since in order for X ¢ F then sJ. 2 O0;

therefore, for every sJ. > 03X ¢eF sJ. is a component of X

and such that X satisfies condition 3. Therefore, for given

s?].' 2 0 (B.6aj) may be maximized over z, by
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1

1 _ 5% /3 2 =1 7l ¥
z, = =l Y c.. with the certainty that (57,27,Y) € F.
. ij

J coj i=1

s . n
Substitution of the expression zy = EJ—' z ci.2 into (B.6aj)
ojVvi=1l

and maximization over sj 2 0 will complete the maximization

of part of the Lagrangean over F. Hence, (B.6aj) becomes:

n
-s.2c0.2/25.2 ) ci.2
b.d.e 9 J J i1 s, n
B A /. 2
van coj i=1 *J
-s.c_./s. 2 2
J 03 IV %1% ; 1 —q2/2
- bjdjsJ —_— ¢ dq
SN Ve
-c°.2/22ci.2
b.d.e J J S.
c .

~-c .A/Ec..z -
oV =i o
1 o—q /2

V2Tl

+ b.d.s. d
3%3%; 9.

-0
which simplifies exactly to zero. Therefore, no matter
what non-negative value for s‘j is chosen there exists a non-~
negative value for zj such that all terms containing sj and

zj are maximized and reduced to zero at the same time. In
E 3

: 1 * 1 _ 5 2 _ Soj 2
particular, when s.” = s, then z. = Ze,.” = Zc., .
J J B ij o3
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One may now consider (B.6bj) and its maximum over

all Yij It suffices to prove that (B.6bj) < 0.4

Suppose (B.6bj) > 0, then

A/Yy..” - A~———> 0; or since A< 0,
Y 7ij
i z 2
,/ ‘¢, .
i ij
n
T S5 Yy
- J° 13 n
then =1 - z y..2 >0
. ij
n 5 i=1
P c; 4
i=1 *J
| n 2 2
and c..vVv.. = . . e B.
z 15Yi3 i:‘}‘lc” 121 (B.7)

If the left side of (B.7) is less than or equal to
zero then clearly (B.7) canmnot be true. Suppose then, the
left side is positive, thereby making it possible to square

both sides without affecting the inequality (B.7) becomes:

n n
2
(z )2 >(x 2)(zy )
=1 RERAER i=1 i=1
n n
2 2 2
or Zc.. Z}y - (Zec..y..)° <0
i=1 13 50173 j=1 I
c.. o band e oY o o . .<O B.8
. 5 15& R T R EEEMELT (8-8)
4

If (B.6bj) < 0, then obviously, its maximum is O
which is easily achieved when Y .. Hence, y,..zc..=y..¥
will maximize (B.6bj). 1§73 td 13 "1
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P

For every pair of integers s and t each between 1 and
n and not equal, there are four terms in (B.8). Specifically,

these terms are:

cz.yz. - Cc .Y .C,L.¥,. = C,.V,.C_.Y_ . + 2 y2. (B.9)
sj tyJ sj"sj ti'ty t3j"ti sj’sg tj’sJ

2.2 _ 2 .2 _ 2 5
= Cg3Ytj T 255Vt %3Ysi t St3Ysj = (csjytj ctjysj) 0.

When s = t one obhtains two terms:

2 .2 2 .2 2 2 2 2
cti¥t5 = ti¥tj °F ®si¥sj ~ Csi¥sj = 0. (B.10)

Since the left side of (B.8) is equal to the sum of all
possible terms of form (B.9) plus those of form (B.10),
then it is clear that (B.8) has been contradicted, which
proves that (B.6bj) £ 0.

To summarize what has been found and shown, the
following items are listed:

1. A vector i* = (gﬁ,if,?x) was found and is given by equa-—
tion (B.5). It was shown that X ¢ F and X was feasi-~
ble for problem (B.3').

2, Dual multiplier vector Xﬁ = (T?,V+*,V-*,iﬁ*,wh*) was
found and is given by equation (B.6a), (B.6b), and
(B.6c). It was shown that X’ 2 0 and that the product
of each multiplier vector component and its respective
primal constraint is zero.

.k —
3. It was shown that L(X ,A ) = max L(X,) ).
XeF

Lemma 1:5 For any broblem

5This lemma is an adaptation of Lemma 2.17 and Theorem
2.19 found in Zangwill (52).
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max £(X)
S.t. gi(ic') 2 0 i=1,00.,m
XeF

Given:

1 1

1. 3 X773 X T is feasible for the problem.
. . ~1 1 1 =1
2. J multiplier vector XA~ = {Xi} 3 }\i gi(x ) = 0 and
Ai 2 0Y i.
3, L(-fl,fl) = max L(f,xl).

XEF
Then a saddlepoint exists.
Proof: Since X* is feasible, then min L(X',X) = £(XV),

A20
and from parts 2. and 3. one has

m
£(F) = 2@ + 5 Aje, (XD = LEX,A) = pax LT,
i=1 XEF

Therefore, min L(X},X) = L(XL,X1) - max L(-}E,-xl) which is the
X=0 Xe F

definition of a saddlepoint.

Application of this lemma to the preceding develop-
ments summarized above indicates that a saddlepoint does
exist and is easy to find. This, of course, implies dual
equality for the subproblem which in this particular case
guarantees a global optimum can be found for the problem in

Chapter IV by the application of Generalized Benders Algorithm.



APPENDIX C

This appendix contains the exact relationships between
the variables of the specific model developed in Chapter IV
and the matrix representation of the same formulation. Formu-
lation (4.13-4.13m) was written in a manner that retained the
notation and equations of previous developments in Chapter 1IV.
However, simplification is both possible and desirable in
order to more clearly understand the mathematical structure
of the problem, One may first of all note that ust is exactly
the same as §¥. This is easily shown by solving the system
(4.13g) and (4.13h) for the individual S_ and then noting

t

that they are equivalent to the (4.13e) definition of pst.

Hence, the first simplification consists of eliminating

the redundant equations (4.13e) and replacing the notation

ust by'gé in equations (4.13c) and (4.13d). Secondly, the

system (4,13a) and (4.13b) may be eliminated by direct sub-
stitution into the objective function (4.13) thus producing

the following:



n
$8. 5% 8, .g(8,))-ar_ 2 B ot P58,
B S e.,x. +E(S, . g( )-aR = -
k-1 ¥ |i-p KLk Tk £i-1 (1+R,)Y
Po = (TR,
n — Cad
p Z einl+E(S -g(S.))
i=1
aR, =
j=1 (1+R)?
* (T+R[)
n
T n T 21°OV(e13’R )xi
-AM¢ 8 5 cov(@, ,B )x.-aR, I ==
k=1 k i=1 k 1 £ J= (1+Rf)J
+ (I+Rf)

i=1 ij’m
~\ covie,R ) +aR. T =
j=1 (1+r )Y
* (1+R,)

Rearranging terms and changing the order of summation the

above equation becomes:

n
R T/3 _ [ T T T
p_ - iz TB8.e. - ®R.| T8 —1] r —3d
° " (1+ry) | k=1 k"ik flg & i=1 (1+R,)I
n
(‘)uizlxi.) T ( ) T 5 \ T Cov(g, ,R )
+ | —2==—|{ £ g, Cov(5E,, , -0 R [E -ﬂ T——a=
1+R k=131; ik' “m £l K jo1 (1+Rf)‘]

1 T -
* (1+R) kElBkE(sk.g(gk))_

T T E(’S'j-s('S"J.))
"‘Rfl:kE Bk-l:\ R 3
=1 J=1 (1+R))

P

+ (1+Rf)cov (e,ﬁm)
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And this equation may be further simplified to:

T
, =n» |7T YR iz_l‘k"l) _ e
P = b)) T [B.- = - e. .~x'cov(e, .,R X.
o 1+Re 7y Jyor | I (1+R.)Y +J g m
T
a -
1 3 (s Rf(kffk]) B(S,¢(8.)) (""') (e,8 )
+ 8.- - 2 g(S, + |==—=—]cov(e,
1+Re o1\ d (1+R_)Y J J 1+Rg m

(c-1)

A change of variable name from 0 g to z, and substitution of
t

equations (4.13c), (4.13d) and (4.13d') into the above equa-

tion produces

T OlRf(EBk—l)
T (,3 - . )(e - XCov(e, .,R ))
P, = iflxi (1+Rf)
T
aR.(Z B,~1)
ﬁ-" k=1 i — 5
T J (1+R_)Y R~R, . =-S59/22% _
+ Z £ fR.b‘Jz.e J J+S.R
551 (TR,) /zm J 3t
-sj(Rf—ij)H(o,sj,zJ.)
T
ar_( T B, -1)
B _ £ k=1 k
T (1+Rf)T' - A ~
+ TR . ST' + (m—-) cov( G,Rm).
f f

. o o 2 R ' -
Since 53, » Re, ij, e; COV(eij’Rm)’ and A' are all comn
stants, then the following notation for known constants may

be defined:



T
@R T B-1)

B _ k=1

J (1+Rf)J
bj = 1+Rf J = l, oo oy T (C-Z)
d. = R. - R, . which is always less than zero (c-3)
J £ bJ .

J = 1, e e oy T‘
T
— o - 31 S o] T -

a; = jElbj(eij A COV(eij’Rm)) i =1, eoe, n (c-4)

Throughout most of Chapter IV and this appendix a
bar (—) notation over a symbol has represented an expected
value. Since a conversion to matrix notation is desirable,
a change in notation is necessary. Henceforth, all bar (—)
notations are used to represent vectors or matrices as it is
no longer necessary (from a mathematical point of view) to
distinguish between variable names that are ordinary vari-
ables, expected values, random variables, or standard devia-
tions as there will always be a mathematical expression which
defines them correctly. Furthermore, the number of periods
over which the budget is planned is henceforth designated k
instead of the previous T'. Finally, one term may be elimi-
nated by indexing Rf so that the following is true: Rfj =
Rf for j =1, veey k=1 and Rfk = 1+Rf.
One may now define the vectors A = { a;} an n-dimen-
sional vector, X also an n~-vector, S a k-vector of slacks,

Z a k-vector of standard deviation. Therefore, Po is a

function of X, S, and 2 and may be written
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2 2
. k —Sj/ZZJ
P = A X+ b.(d.z.e Vol + R..s.~s.d H(0,s.,z.))+const
o ;21 NI BN / £373 T30 T3
- 1! ~
where const = l+§ cov(€,Rm) which may be dropped for purposes
f

of.optimization since it is constant with respect to the var-
iables. With the const term dropped this expression for Po
is precisely objective function (4.14). One should remember
that substitution into (4.13) allowed the elimination of
(4.13a), (4.13b), (4.13c), (4.13d), (4.13d'), and (4.13e);
therefore, no equivalent e#pressions appear in formulation
(4.14). Equation (4.13f) are clearly the quadratic products
of the decision vector X with some covariance matrix for

each period = k. If each of those covariance matrices is

written E& and remembering that og 2 _ zJ.2 then (4.13f) may
J
be written
ZzZ. = i‘%-.-—x- j=l, -.o,k

which is exactly how (4.lk4a) is expressed. Systems (4.14b),

(4.14¢), (4.14d), (b.1ke), (4.14f), and (h.1lhg) are clearly

just matrix representations of (4.13g through 4.13m).
Therefore, the equivalency of formulations (4.13)

and (4.14) is established.



APPENDIX D

The three basic problem types are distinguished by
their sizes:

Type 1: Eight project, two period model. (Summarized in
Table D-1)

Type 2: Twelve project, three period model. (Summarized in
Table D-2)

Type 3: Sixteen project, three period model. (Summarized
in Table D-3)

All problems of each size utilized the same covari-
ance matrices for the project costs. However, a different
covariance matrix was used for each period within any given
problem. All projects were represented by 0O-1 integer vari-
ables.

Table D-4 gives the solutions to all test problems.
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TABLE D-1

PROBLEMS OF TYPE 1

la:

Mutually
Objective Cost Cost Exclusive Sets Contingent
Project Coefficient Pd 1 Pd 2 1 2 Projects
1 367 700 65 *
2 641 1000 120 *
3 547 900 80
b 1389 1500 800 *
5 797 1100 100 *
6 733 1200 200 *
7 377 600 4o
8 Loz 500 25 *
Periods Funds Available bj Coefficient Rf Rb
1 5500 .94 .05 .10
2 700 .86 .05 .10

T
Y b, = 12.2
j=1

1b: Same as la except that an integer solution to only the
master problem was obtained.

lc and 1ld are similar to la and 1lb respectively with the
only change being the objective function coefficient for
each project. These values were changed to the follow-
ing:

Project Coefficient

725
1100
900
2200
1150
1200
525
601

CO~J OV 0 O
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TABLE D-2

PROBLEMS OF TYPE 2

2a:

Objective Cost
Project Coeffic. Pd 1

Mutually

Exclusive
Cost Cost Sets Contingent
Pa 2 Pd 3 1 2 3 Projects

1 8000 5000 500 0
2 8000 5500 600 o *
3 7900 5750 700 o * *
4 7500 5900 800 100
5 7000 5000 800 200 *
6 7500 6200 800 200 *
7 8100 6300 900 900
8 9500 6500 1000 1000
Q 17000 7000 6500 6000 %
10 20000 7500 7000 7000 *
11 25000 8500 8000 8000 *
12 29800 10000 10000 10000 *

Periods Funds Available bj Coefficient Rf Rb
1 50000 .91 .06 .10
2 20000 .83 .06 .10
3 5000 .75 1.06 1.10

T
Eb. = 10,0
j=1 9

Same as 2a except that an integer solution to only the
master problem was obtained.

Same as 2a except
cient for project

Same as 2a except
cient for project

Same as 2a except
Same as 2a except

Same as 2a except

that
9 is

that
9 is

that
that

that

the objective function coeffi-
16600.

the objective function coeffi-
16300.

the funds in period 1 are 50010.
the funds in period 1 are 20010.

the funds in period 3 are 5010.
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TABLE D-3

PROBLEMS OF TYPE 3

Ja: Mutually
Exclusive Contingent
Objective Cost Cost Cost Sets Sets
Project Coeffic. Pd 1 Pa 2 Pd 3 1 2 1 2
1 460 500 0 0 *
2 540 600 0] 0 *
3 600 650 0] 0] *
4 675 700 ) 0
5 700 750 (0] 0
6 1250 650 800 0
7 1300 700 700 0 *
8 1000 900 100 0 *
9 990 1000 50 0 *
10 1100 250 1000 0 *
11 1480 250 500 1000 '
12 525 100 200 300
13 1100 900 50 50
14 1100 500 500 4oo
15 435 0 500 0 *
16 402 0 0 600 *
Periods Funds Available bj Coefficient Rf Rb
1 8500 .91 .06 .10
2 3100 .83 .06 .10
3 900 — .75 1.06 1.10
T
2 b. = 10.0
j=1 9
3b: Same as 3a except that available funds are 6100, 3100
3c: Same as 3a except that available funds are 7500, O, and
0.
3d: Same as 3a except that available funds are 8500, 0, and
0.
'3e: Same as 3a except that available funds are 9500, O, and
0.
3f: Same as 3¢ except that projects 1, 15, and 16 are

replaced by the options of acquiring additiomal funds
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through long term debt at 9% interest rate. Each option
will represent the acquisition of 1000 units of funds,
but in different periods. Since cash flows will be
-9%(1000) in all periods following the acquisition then
the objective coefficients may be computed by
T

~9%(1000) T b, where p is the period of acquisition.

i=p+l

Thus, the parameters for these projects become:
Objective Cost Cost Cost

Project Coeffic. Pd 1l Pd 2 Pd 3
1 ~-8106 -1000 0 4]

15 ~743 0 -=1000 0
17 -676 0 0 -=1000

The mutual exclusive constraint for these three alter-
natives was retained to reflect an assumed management
desire to approach the capital markets only once during
the three periods in the planning horizon. It was fur-
ther assumed that the actual amount of funds acquired
are subject to some variability so that the covariance
matrices for problem 3¢ were retained.



TABLE D-4

SOLUTIONS TO TEST PROBLEMS

Prob- Projects Expected Slack Funds Slack Std Dev
lem
No. Period Period Period|Period Period Period |Objective
1234567891011 12 13 14 15 16 1 2 3 1 2 3 Function®**
la 5500 6200 4} 0 5826.68
1b * * * = = 700 215 2310.12 2323.25 3730.94
lc . 3000 2780 1038.80 1046.04 5937.57
1d hd bl - . 700 230 23h8.67 21366.87 5800.25
2a L . % . 7100 15500 11300 }2816.80 2901.91 2973.88178742.87
2b . = L * » * 6600 9100 100 12953.17 3201.32 3415.98]77868.10
2c * - . * s =% * 7100 15500 11300 {2816.80 2901.91 2973.88]787h2.87
2d . » . * * b 7100 15500 11300 |2816.80 2901.91 2973.88}1787h12.87
2e * * * * s » * 7110 15510 11310 {2816.80 2903..91 2973.88}178751.88
2f - hd i * 7100 15510 11310 {2816.80 2901.91 2973.88}78751.32
Fgg . » * . . * e 7100 15500 11310 |2816.80 2901.91 2973.88]78750.82
3a TR s e s 0 s o x * 2500 3100 2650 596.0h 656.79 700.75]11537.17
3b * % ox 2 % = * » * 0 700 0 596.0% 656.79 700.75} 9161.20
3c * * » e - * % = 2300 11566 50 508.98 525.60 579.57| 7238.82
3d * * x = * * * % * 2650 750 400 571.62 620.76 623,26} 8160.96
3e * ko2 L L 3400 1500 150 596.04 638.75 683.87] 9083.39
3f * 40 . * x *| 1650 750 4500 524.42 540,57 609.11} 7375.93
Notes: * Indicates which projects are accepted in the final budget.
** 1. Objective function values computed in the course of finding a solution were subjoct to
a cumulation of truncation errors. These errors nover excceded 1/100 of 1% of the total
objcctive function value; however, the values reported are correctod values.
2. Epsilon optimal solutions exceecded 1/100 of 1% error in the objective function value,
but never oxceeded 1/10% error. These values have likewisé been correctod.
3. Problems 1b, 1ld, and 2b wore maximized only with respect to project contribution; how~
cver, the roported objective function value includes the contribution of slack.

9-a
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APPENDIX E

Ma jor Program Documentation

A.

Title: Generalized Benders Algorithm

Programmer: C, A, Mount-Campbell

Advisor: R. P, Lutz

Date Completed: March 1974

Machine Used: IBM 360

Language Used: FORTRAN IV

Compiler Used: GCL

Compilation Time: 102 seconds

Computation Time: Variable

Lines of Output: Variable

Approx Core Required: 190K Bites

Purpose: This program was written to obtain solu-
tions to test problems of the form given in the
last section of Chapter VI. It may be made to
output optimal simnlex tableaus after the end of
each Benders or Gomory iteration. It may also be
made to output supproblem optimal primal and dual
variables. The linear programming algorithm may
be either primal or dual and will accommodate the

use of bounded variables.

E-1
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Restrictions: (The restrictions may be circumvented

by changing the variable dimensions.)

1.

The maximum allowed number of periods in the
capital budget planning horizon ié five (5).
The simplex Tableau for the master problem is
restricted to 75 rows (including the X Tow,
original constraints, and Benders and Gomory
constraints added during execution). It is
also restricted to 150 columns (including the
"right-hand side," and all slack variables)

The maximum allowed number of project variables
is 20. Any number of them may be continuous

or integer.

List of Subroutines and Their Function:

1.

MAIN--This routine reads the input data and
directs the major sequence of operations as
given in the figure 7-1 of Chapter VII.
LABEL~--~-When this subroutine is called it is
directed to print a specific label that will
identify subsequently printed output.
SETBAK-~-The last Benders iteration always adds
a Benders constraint that is satisfied by the
previous solution; therefore, the subroutine
is called to eliminate the constraint and its
slack variable from the simplex tableau.

RESET--~The Gomory algorithm is designed to
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terminate when it has obtained near integer

solutions (max error is .00001) whereupon this

subroutine is called to roundoff the appropriate

"pright-hand-side" -to the nearest exact integer

value,

GOMORY=--This subroutine directs a group of sub-

routines to accomplish the Gomory iterations.

a.

FINCK-~In order to prevent long computer
times as a result of pathological difficul-
ties a criteria that if any set of integer
variables were basic and remain basic dur-
ing 5 successive Gomory iterations then
termination would occur. This subroutine
reviews a set of indexing values to deter-
mine if 1. any remaining basic integer
variables are currently non integer or if
2. the above criteria has been violated.
It also maintains the aforementioned set of

indices.,.

CKINT--Identifies the basic integer variable

whose value is the most distant from an
integer value, and assists in maintaining
the indexing system reviewed by FINCK,

A Gomory cut will be generated from the row
corresponding to the variable identified

by this subroutine.
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11.
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c. INTCST--Generates the required Gomory cut
and creates an additional row and column
for it in the simplex tableau.

REBASE-<Any constraint newly added to an opti-

mal tableau must be brought current by substi-

tuting the current values of the basic variables.,

This subroutine accomplishes that function.

CALRHS--Given the solution to the subproblem

this routine calculates the right-hand-side of

a Benders constraint.

BLDCST--Given the solution to the subproblem,

this subroutine builds a Benders constraint

(in conjunction with CALRHS) and adds it to

the previously obtained optimal tableau.

SUBPPV--This subroutine uses the formulas given

in Appendix B and calculates the optimal primal

variable values for the subproblem.

SUBPDV--This subroutine uses the formulas given

in Appendix B and calculates the optimal dual

variable values for the subproblem.

PRIALG-~This subroutine directs a group of sub-

routines to perform the bounded variable, primal

simplex algorithm procedures.

a. PNEGCK-~Identifies the column which has the
most negative value in the objective func-
tion row of the tableau. (Optimality Cri=-

teria)
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13.

14,

15.
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b. PFEAS--Identifies the row in which a pivot
should occur to satisfy the feasibility cri-
teria.

DUALG-~This subroutine directs a group of sub-

routines to perform the bounded variable, dual

simplex algorithm procedures.

a, DUBCK--Determines which row corresponds
to the most infeasible variable.

b. .DENTCK--Determines which column corres-
ponds to the variable that will enter the
basis,

PIV.-Given the indices for any row and any

column, this subroutine will perform a simplex

type pivot operation on the element lying at
the intersection of the given row and column.

PSUB~-In a bounded variable algorithm it is

often necessary to fix a variable to its upper

bound and replace it in the problem with an
expression as follows: x; = (UPPER BOUND FOR

xi) - x,;'. This operation removes x, from the

problem and replaces it with a ficticious vari-

able xi'. If xi' then becomes positive x, will
automatically be prevented from exceeding its
upper bound. This subroutine accomplishes the
required substitution.

TRACE--This subroutine traces through an optimal
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tableau and determines the solution value for
each variable in the problem.

16. OUTPUT--This subroutine is called to output
any single precision array from one to three
dimensions. The arrays are outputted in blocks
to facilitate reading.

17. DUTPUT-~This subroutine has the same purpose as
16 except it was designed for double precision
arrays.

18. PROB--This subroutine determines the probabil-
ity under the standard normal curve from =-Q0
to any specific value A = 0. This is accom=-
plished via a combination of table look-up and
application of Simpson's rule for numerical
integration.

E. List of undimensioned variables
1. M--number of rows in simplex tableau
2. Ne—number of columns in simplex tableau
3. KSP--number of periods in the budget planning
horizon

4, NSP--number of projects under consideration

5. IST--unused variable name

6, ISLAK--index for the first column in which a
slack variable appears corresponding to the
first financial constraint

7. IPRIT--option variable that controls amount of
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intermediate output. O implies minimum output
and 1 implies maximum output.
8. 121 parameters that specify dimensioning sizes
9. 1I30 gfor use by subroutines OUTPUT, DUTPUT.
10. TI20 | Although values for these parameters are

11. 1I5 read in from cards they should always have
—

the following values unless dimensions are

changed within the program.

I21 = 75 = max number of tableau rows.

I30 = 150 = max number of tableau columns.
I20 = 20 = max number of projects.

I5 = 5 = max number of periods.

12, IBET--execution option variable with options as
follows:
1 causes integer solutions to the total problem
2 causes integer solutions to the master problem
(i.e., no Benders iterations)
3 causes continuous solutions to the total problem
4 causes continuous solutions to the master prob-
lem (i.e., no Benders or Gomory iterations)

13. CLOSE--the value of epsilon when epsilon opti-
mal solutions are desirable.

14, SATIN--used to save the previously obtained
optimal solution.

FFe List of dimensiond variables

1. LABLE(10,15)--used to store alphameric data
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inputted on cards and printed during execution
in order to label output. The exact input for
this array is given later,
TABLE(75,150)~-~the simplex tableau with 75
rows (the first of which is the X row) and
150 columns (the first of which is the right
hand side of all constraints).
IBAS(75)~=array of indices of basic variables.
IUP(150) = O if the column indicated by the
index value of IUP has not been altered in the
manner described by paragraph D.l4 above.
= 1 if such an alteration has taken

place.
UPPER(150)~~array of upper bounds of the vari-
ables corresponding to the columns of the
tableau (lower bounds are assumed to be zero).
INTEG(150) = O if the variable indicated by the
index value of INTEG corresponds to a variable
that is not required to be integer.

= 1 if the corresponding variable
is integer.

= 2 if the corresponding variable
is integer by nature rather than by requirement;
this is often true of slacks when all projects
are integer.

S(5)~~corresponds to S 5 (slack funds) in the
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11.

12.

13-

14,

15.

16.

17.

18.
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notations of other chapters.
Z(5)--corresponds to zj (standard deviation of
slack funds) in the notation of other chapters.
B(5)--corresponds to bj in the notation of
other chapters (see Appendix C).
D(5)--corresponds to dj = Rfj - ij in the
notation of other chapters.
U(5)-=-dual variables for constraints of the

2 ?ﬁ Y found in the notation of

other chapters (see 6.10' sub).

form z .
J

W(5)=--dual variables for the financial con-
straints (see 6.10' sub).

Y(20,5)~-corresponds to Yij in the notation of
other chapters (see 6.10' sub).

V(20,5)-~dual variables for the constraints
that relate variables yij to the variables x;
(see 6.10' sub).

A(20)--corresponds to the matrix A of project
contributions.

E(20,20,5)--linear transformation matrix
between X and Y which is constructed via con-
Jugate directions and inputted to this program,
RHSM(5)~-corresponds to the available funds
(Mj).

C(20,5)=--corresponds to 55 (expected cost for

project i in period j).
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X(150)-~decision variables including all slacks

for the master problem.

G. Organization of input data

1.

The first READ statement exactly requires the
following data cards:
CARD # COLUMN 1

ARE
ARE
ARE
ARE
ARE

VALUES OF
VALUES OF
VALUES OF
VALUES OF
VALUES OF
VALUES OF ARE

VALUES OF ARE

OPTIMAL SIMPLEX TABLEAU
RAW DATA

10 SIMPLEX TABLEAU FROM GOMORY
11 BENDERS CUT IN TABLEAU IS
12 ORIGINAL BENDERS CUT IS

1 THE GOMORY CUT IS

1 (BLANK CARD)
15 THE STARTING TABLEAU

The second READ statement requires one card

O O~ W\l WM
A NW0 MM

with values as listed in listing that follows
documentation.
The third READ statement reads in the starting
simplex tableau for the master problem. The
master problem begins with the form given on
page 126 and includes the surrogate comnstraint
mentioned on that page. It must then be placed
in the standard form and arranged as follows.
Row l--Objective function row (data should
include sign change)

Row 2--surrogate constraint
Row 3==first interrelationship constraint
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Row M-KSP last interrelationship constraint
Row M~KSP+1 financial constraint for period 1

Row M-~financial constraint for period KSP

The first value in each row should be the value
for the right hand side of the respective con-
straint.

The second value in each row should be the
value for the coefficients of the variable r.
The third through NSP+2 value in each row are
the coefficients for the NSP projects.,

The NSP+3 through N wvalue in each row are the
coefficients for the glack variables used to
form the standard form.

The fourth READ statement reads in the upper
bounds for the variables corresponding to tab-
leau columns 2 through N.

The fifth READ statement reads in the integer
requirement code for the variables correspond-
ing to tableau columns 1 through N. Since
column 1 is a right hand side of a constraint
thé first integer fequirement code is meaning-
less and may be left blank.

The sixth READ statement reads in the KSP val-
ues for bj’ j=1, ..., KSP. Remember that these
values are 2 0,

The seventh READ .statement reads in the KSP
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values for dj’ j=1, ..., KSP. Remember that
these values are s O,

8. The eighth READ statement reads in the KSP
values for Rfj’ j=1, ..., KSP, These are the
risk free rates of return.

9. Remember that Ej was a transformation such that

YD, 7. =X'T, Xwhere Y, =E,"" X and D, a
J J J J J J J

diagonal matrix. The ninth READ statement
reads one diagonal element of 35 while the
tenth READ statement reads the corresponding
row of Ej-l. These two statements are repeated
in like order until all diagonal elements of
Bj and all rows of Ej-l are read, and the pro-
cess is then repeated for a different j. J
stands for the planning period number and the
card blocks should be arranged in ascending
order by period number. The modification dis-
cussed on pages 112 and 113 is automatically
accomplished by the program.

Example input deck: (The 15 label cards are deleted

from this example)

The example is taken from problem 2f and has the

following form for the master problem:

Max r
st r-~-8000x,-8000x,~7900x._~7500x surrogate
1 2 3 4 .
constraint
-7000x5-7500x6-8100x7-9500x8 with large M
= 75000

(constraint continued)
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-17000x9-20000x10-25000xll-29800x12
< 75000
- s
xl xlo O'T
X, * Xq s 1 Project interrelationship
< .
x5 + x6 1 constraints
<

x10+ xll + xl2 1 ]
Financial [5000x; + 5500x, + 5750x, + 5900x, + 6000x,
Const. Per- + 6200x, + 6300x7 + 6500xg + 7000x,
3 <
iod 1 i + 7500% 4 + 8500x11 + 10000x, , 50000
Financial 'EsoOxl + 6100x, + 6450x3 + 6700x, + 6800x5
Const. Per- + 7000x; + 7200x7 + 7500xg + 13500x9
: s
iod 2 i + 14500x10 + 16500x11 + 20000xlz 70010
Financial 35003:l + 6100x, + 6450;:3 + 6800;:11t + 7000x5
Const. Per- + 7200x; + 8100x7 + 8500x8 + 19500x9
3 <
iod 3 i + 21500x,, + 24500;:ll + 30000x,, = 75010

For an example of how

this problem was coded refer

to Figures E-1 through E-7.



CARD COLUMN NUMBER

- 111111111122222222223333333333444444444455555555556666 6666677 777777778
123456789012345678901234/56789012[345678901.234567890123456[789012345678901234567890
9 22 3 12 20 1 75| 150 1 20 5 <«—|PARAMETER CODE
TABLEAU DATA: .

o -1. o 0 0 (o 0 o 0 o
o o 0 O (4, o 0 o (6, o

O] o
75000. 1.| -8000.| -8000.| -7900.| -7500.f -7000.] -7500.| -8100.] -9500.
-17000. -20000a -25000.| -29800. 1. o 0 o 0 o

o

0 0 1. 0 0 o 0 0 0 0
o) -1. o, 0 0 1. 0 o o o
1. 0 0 1. 1. o o) 0 (0 4]
o o O 0 o o 1. 0 o o

4] o
1. ol 0 (o) 0 0 1. 1. o 0
4} O 0 0 o 0 o) 1. o 4}

0 0
1. 0 4] 0 0 o 0 0 (o 0
(o} 1. 1. 1. 0 0 0 o 1. o

o 0
50000. 0 5000. 5500. 5750. 5900. 6000. 6200. 6300. 6300.
7000. 7500. 8500.! 10000. 0 0 o) 0 o 1.

(TABLEAU| CONTINUED ON NEKT PAGE)

Figure E

-1.

¥1-4



CARD COLUMN NUMBER

1111111011122222222223331333333340444404044555555555566666/66666777177777778
1234567890123456/7890123456789012(345678901234567890123456{789012345678901234567890
70010, 4, 5500. 6100. 6450. 6700. 6800. 7000. 7200. 7500.
13500.| 14500.; 16500.| 20000. 0 0 O o o (o}
1. o
75010. O 5500. 6100. 6450. 6800. 7000. 7200. 8100. 8500.
19500.] 21500.| 24500.] 30000. 0 0 o, (0 0 o
o 1.
UPPER [BOUND DA[TA:
1000000. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. . 1. 1.{1000000.{1000000./[1000000.{1000000./1000000./1000000.{1000000.
1000000.[1000000.
INTEGER CODE DATA:
(4] 0 1 1 1 1 1 1 1 1 1 1 1 1 o 2
2 2 2 2 2 2
b. DATA:
J Lo1 .83 .75
d. DATA:
J_.ok - .0k -.0k
Rf. DA[TA:
J.06 .06 1.06

Figure E-2,

S1-d



CARD ' COLUMN NUMBER

8L11111111112222222222333333333344444444445555555 55666666666677777777778
1234567890123456{789012345678901234567890[1234567890123456[789012345678901234567890
DIAGONAL ELEMENTS OF D|. ARE ALTERNATED| WITH ROMS oF BT
DATA FOR PERIOp j=1: P J
146575.
1.00000 1.0822( 1.1651 2.3716{ 0.8596] 0.7737/ 0.6670{ 0.6017( 0.4951] 0.4298
0.3646] 0.2993
2810.
0.0 1.0000 1.8902{ 4.2434] 2.1860{ 1.9674 1.5173| 1.5302 1.0801| 1.0930
1.1058 1.1187
616.
0.0 0.0 1.0000{ 1.7378] 0.9541] 0.8589 0.6508 0.6678 0.4599| 0.4770
0.4941] 0.5111
654, :
0.0 0.0 0.0 1.0000{ 0.5184 0.4670 0.3519| 0.3634] 0.2481] 0.2595
0.2705| 0.2817
100.
0.0 0.0 0.0 0.0 1.0000, 0.2182] 0.1469{ 0.1713| 0.1000{ 0.1231
0.1480 0.1710
215.
0.0 0.0 0.0 0.0 0.0 1.0000, 0.0468| 0.0546] 0.0316] 0.0389
0.0465 0.0536
25007.
0.0 0.0 0.0 0.0 0.0 0.0 1.0000{ 0.0003] 0.0002| 0.0002
0.0002| 0.0003
| 100008.

Figure E-

3.

9T~d
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CARD COLUMN NUMBER

111111101122222122222333[333333348444444405555555655666666666677777777778
1234567890123456/78901234/5678901234567890[1234567890123456[7890123456789012|34567890
5000416.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0000
DATA FOR PERIOD| j=3:
147744, '
1.0000, 1.0804 1.1621] 2.3586] 0.8580 0.7749] 0.6686] 0.6033] 0.5168 0.4470
0.3772] 0.3074
3052.
0.0 1.0000, 1.7981 4.0746] 2.0514 1.8302| 1.4105| 1.4206] 0.8440, 0.8903
0.9366] 0.9830
1176.
0.0 0.0 1.0000 1.7338] 0.9291 0.8273] 0.6254 0.6417 0.3543] 0.3905
0.4266! 0.4628
2583.
0.0 0.0 0.0 1.0000, 0.2819| 0.1194 0.1527] 0.1493| -0.8757 -0.6391
-0.4027| -0.1662
7670
0.0 0.0 0.0 0.0 1.0000, 0.8616] 0.9632| 0.9525 2.5363] 2.1737
1.8109, 1.4481
1029.
0.0 0.0 0.0 0.0 0.0 1.0000{ 0.4468 o0.4524 0.8048) 0.7334
0.6620 0.5906
33430.
0.0 0.0 0.0 0.0 0.0 0.0 1.0000| 0.0203 0.0245 0.0246
Figure E-6,

. 6T~4a



CARD COLUMN NUMBER

4911111111112222 222233333333334444444404L5555555555666666666677777777778

1234567890123456[7890123456789012(3456789012345678901234567890123456789012)34567890
0.0246! 0.0246
108625,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0000, 0.0065] 0.0066
0.0067] 0.0068

3005117.|
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0000, 0.0013
0.0010, 0.0006

1203247.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0020 0.0014

2701921.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0000, 0.0005

7501142,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0000

Figure E-7.
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Flow Charts
For the basic flow charts refer to Figures E-8
through E-10. |

Program Listing

The program listing follows Figure E-10.



( START )

READ
LABELS

INITIALIZE .
ALL DATA
ARRAYS

READ
SIMPLEX

TAB-
LEAU

PRINT SET VALUES
SIMPLEX | FOR RHSM,
TAB- C AND A

LEAU

4
READ DATA

IBET=1

Figure E-B.




CALL PRIALG
TO FIND LP
OPTIMUM TO

»MASTER
PROBLEM

CALL TRACE
TO INTERPRET
TABLEAU

L

PRINT

CALL SUBPPV
TO DETERMINE
SUBPROBLEM
SOLUTION

TO OBTAIN
" INTEGRR
SOLUTION

CALL GOMORY.

CALL BLDCST
TO ADD BEN-
DERS CON-

STRAINT TO
L_TABLEAU

FIN=-
ISHED?

Figure E«9,




E~24

CALL
PRIALG

|

CALL
TRACE

CALL
SUBPPV

CALL
GOMORY

STOP “

CALL
PRTIALG

l

CALL
. TRACE

CALL
PRIALG

1

CALL
TRACE

CALL
SUBPPV

Figure E=10.




_ DUUsLE PRECISION TABLE

. 102 FUAMATILOAG)

. E-25
MAIN DATE = 74099

D)Ly PRECISION SATIN

CUMAUN TAGLE(754150) g IBASITS) y IUPLLISO) UPPEF {150), INTEG(150)
_COMMIIN My Ny KSPiisPy ISTyISLAKyIPRIT,121,130
CLUEMLET SED)a2tu) euld)y U(J)vU())vh())th(5)v (70;D)pA(ZU) e v
CCUMAUN 2(20,2U,5 Yo bHSMIS )y CLZ095) 4 X(15 OloLA‘lF(IOy]5)9¥(2095' T
10N =1

ITw=2

Rt4s(5,102) LABLE

D e

4l REAU(5,100) My, KSV NSP lST.lSLAK'lPQIT,IZI 130 IBFT 120, 15|CLOSE
100 FL)‘\4/‘T(1~.130"10.0,

JIFIMeEDe2200) GO TO 42
WREITE(6,200)

200 FURMAT(LIXg5( Rttt usxtNEW PHROBLEMA%m%%0) )

C__THE FULL3WIAG DESCRIBES THE cFFECT CF VAKIOUS_VALUES UF IBET
1= InTeGer SCLUTICHS TO THE TGTAL PROBLEM

110 EtJrKy 1100

12u TasLe(d, 1= Ve

121 1645(1)=04

_S‘ 1 ) _=__00 ..
L 2tny=0. L
L8th=0. .

INTEGEA SOLUTIONS T THE MASTER PROBLEM o
CCONTINJUS SOGLUTIONS TC THE MASTSK PROBLEM
" CONTIHUDUS SOLUTICNS TO THE TOTAL PROBLEM
DU 110 1=1,KSP

DI11=0. -
HISRELN
Wll)=0.
kKF(1)=0,
kHSI"( l )=0. Lo
DU 110 J=1,NSP
ClJry1)=0,
Y(J,1)=0,

ViJd: 1) =0
DU 110 K=1lsNSP

P2 120 1=1,130

1uPt1)=0.
UPPER (1121100004
INTcG(1)=0,

DO 120 J=1,121

DY 121 1=1,121

DO 10 1=1,M"

10 READ(5,101) (TASLE(I4J)«J=14yN)

101

- v e -

T RHSMUT=JtFel)=TABLE(fo 00

TR0 CULICOSTY I=JET #2 ) =TABLETT,JCUST42)

_LTDIM=1212%]30
TCALL DUTPUTITASLTE yMyNyIINEy 121,130, LTDOIM,LABLE(L 22500
FUR4AT(LUF840)

JEF=]1SLAK=NSP=1]

" JES=JEF+KSP-1 .

SuMP=Q
D0 <0 I=JEF,JES

DO 40 JCNST=1,NSP

RELD(59101) LUPPER(J) 9J=2 ¢N)
NOP=NSP+2
00 311=3,NOP o . Lo

e iwanm 4 e o



. E-
| MAIN 36 VATE = 74099,

C31 A(1-2)=~TAUBLE(2,1)_
Iuzh=M
DO 20 1=1,4
30 IeAs(l)=1Q+]
Ioas(l)=1
REAE9 103 LINVEG(I) gI=1,N)

+ e eyt e o S e L e e S e < ee e mam avi s e e emcmmy et leems = veamn

RLADES 101D E5L3) ,1-1,ksp) 0 T oo T T
REAU(S,LOLI ({1 ) gD=1,KSP)
LREADES P 1OV (R 0T ) g 1= g KSPY oo

DU 25 1=1yKSP
DU 235 K=l,.NSP .
KEAD(Sy101) DIA e
READIHHICLI(={Kydy 1) yJd=1,NSP)
DIA=SuKT(DI1A)
. DU 35 JRlyNSP
35 Uk JyDI=OIARE(K Iy )
25 CUNTINUE
_LTDIM= KSP*]ﬂNr“ I(.r'\lf:______
CAalL uUTPUT(rH)“,&SPyIUdFvIUF:oKSP ION_QLID!WyLﬁdLE(I 9)'
CALL LUTPUT (Y st RSPy TONE g IUNE o KSPoIINEYLTDIM,LABLE(1,9))
e CALL OUTPUT(O___ gKSPyTONE g TONE gROPy JINE W LTDIM,LABLE 90
_ CALL UUTPUTI(RF lKSP,IONE'IUh:’KSP,IUN59LTD1M’LA%LF(l,q,) e e
L L¥0IM=T20%1S U A
T CALL GUTPUTIC 14SP gKSP o IONE, 120515 o LTOIM,LABLE(L,9))
LTOIM=12C=]120%1%
ALL SUTPUTLE 1NEPNSP yKEP,120,12CLTDIN,LABLEIL,91?
e U TU 1,520,187
1 CUMTINU:,

2 CALL PRIALG
.3 LTDIM-X21*130*IQI\F
33 LTOIM=121%*]30

INITT=1
o SATIN=TABLE(1,1)
) i CQLL JUTPUT(THOLF My Ny [ONC[ 141yl30,LTDIM'LABLE(1:8,’
.. 34 CALL TRACH
LTDIM=N*IONE#TUNE S
"CALL QUTPUT(XsN, IONE, IONE,N, IUN:.LTDIM LABLE(I mn
kSAVE=X(1)

e CALL susPPV

T LTOINM=KSP3]DME®IUNE
CCALL OUTPUT(S.  yKSPyIONE,IGNE ¢KSPyIUNEyLTCIMyLARLE (2,20 )
_ CALL UUTPUTIZ _  ¢KSPoIONEsLUNE ¢KSPe 1ONEsLTDIM,LABLE(143))
TLTDIM=120%15
CALL JUTPUT{Y,NSP, rsp.la NEe 120,41 ¢LTDIV.LABLE!1o4))
CALL SuspPOvV _ _
T LTUI M=KS PELUNESTUNE .
CALL UUTPUT(U yKSP,IONE, IUNE yKSP,1UNE»LTDIM,LABLE(1,5))
LTUIM=120715
"CALL GUTPUT(VsNSP,KSP,TONEy 120,15, LTOIMsLABLE(T, 60)
h LTDIM=KSP¥*JONE*IUNC
: CALL_ OUTPUTIW_ .nsp,xqva.Lgna,KsaLLgigLLJubeLAgLftJ 1))
~ GO TU (11412015,110,1BET
‘11 CALL BLDCST
16AS(M) =N
IFIMeGT.121) STOP "
j CALL LASEL(LABLE(1I,11)}
| 300 FUKMAT(20(//suXy8Fl4e5)) - e e

T s

esesens 1ione sbrme

e TR




MAIN v DATE = 74099

WelTELH 3000 ITABLI UMy IKE Ny IRE=LgND
10 FuipaAT(¥10,504)
GJ THELIS1 41920, INITT
IS IFUTALLEIMGL)Y) 3Y,17,17
157 TF(TACLT(My1)+CLUSE) BQ 17,17
.39 CALL bwusle
Gu TO 33
17 Catl SCTeaK
LTHIM=121%130
e LALL DUTPUTUITASLE )My Ny IONE, 121 (130, LT0IM,LAELE(] ,8))
. GG YO (129120239 )30g0bCY
12 CALL GUMORY o _
Inifie2 . ' e
CALL RESET | ' I -
IF(TAGLEC(L+Y)eZ0QeSATIN) GU TO 41
_SATIUN=TABLELL, L)
GI TU 34
18 CONTINUE
13 U 19 &
42 WRITE(DH,201)
201 FURMAT(LX o (P *xxukuxEND JF RUN¥sEdx&se))
0P
CENDL

LABEL DATE 74099

1]

CSUBRLUTINE LABELILAY
DIMENSTION LAL1O)
wiTel(6oLA)

RETURN___ .
LRD o

SETBAK ' DATE = 74099
SUBRGUTINE SETUBAK
DIUBLE PRESCISION TﬁPLE
CUuMMUN ‘ADLF‘791150’110A>(7b)o]UP(lbO‘ UHPER (150, INTEG(150)
COWWUN MeNsKSP,yNSP,IST, [SLAK, IPRIT 121,130 e

CuadiuM 5(5)'7(5’10(“)’D(J,’U(5)|h(5)1hr(5’)V‘)O’5,'A(gO)
COMMUN E(20,20, S)ehHSM{H)C (20952 X(150) LAPLL(IQII",Y(ZO[S,
WRITE(H,100)
DY 10 1=1,M

10 TABLE(I,N)=0

D) 201=bleN .

- - - re s . a e becamm te we o s lem s e o e e #m— s

"20 TABLLIM,1)=0 e e e v e
M=M=
M=i-1 N .. . e e — - e e mms

" 100 FURMAT(® THE LAST BENDERS CUT IS BEING DROPPED DUE TO REDUNDANCY?)
RETURN
END
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RESET DATE = 74099

SUBKOUTIHE RESET

1
10

1

- g s o

T 300

TTUALL DUTPUT(TASLE (Mg ig JUNF9 1211309 10N o LABLE(], 100)
CIF(IPKITWERe997) STUP,

T2
100

_CUMMUIL MyN,KSP, NaP LST, ISLAK, [PRIT 1214130

—RETURN
END

——— o —— 4 Nt Shm N g o ——. A W b i et Gmimie 6 Semmte e sers s

DUULTE PanlSldM "TABLE
COMAUN TAILE(T3150) 9 18ASIT5) s LUPII50) UPPEF (1500, INTEG(150)

e L L S ———

CUMMUN S(‘a),[(')), hU(ﬁhU(:).t-l‘\l,ll"(‘)hV(ZOv'S),A(
COMMAON c(ZOvZOyD),rHSM(J)yC(¢095loX(150),LAPLE(IO,IS) Y(2095) N
D 1\)1‘-1-'
J=loasS(l)
KGEU=INTEG(J ) ¢

GU TU (10,1,10),KQEC
Jo=TAoLz(ly1)¢s5
TanLe(l,1)=1IB
CUnTINUE
RETURN .

END

GOMORY DATE = 74099

- SUBRUUJT INF GOIMORY "
UUU}L" PRECISIUN TABLE
DIMENSTUN LCK{L1D0)

o COMMUN TA\LE(’D'I5O)'IRA5(75)9lUP(lSO’,UPPFF(150)1|NTFG(150’
CUAMIN MgV gk SPyHSP I STy ISLAKy IPRIT 12249130 e o
CCOMMUH 5(5)01(3)'3(5,v0(b)1U(5)vW(J)lVF(5)yV(2°v5,l'(?0’ o e o
TCUNAIN EL20920455) pAHSMIS 'C(ZU,J)o((150)’LAPLg(IOvIJ)pY(?O,“’ e
Tuli=121#130

1UNe=1
ICk(1)=1_ __
ICrte)=2 et s e+ s+ <
CALL FINCRUICK) s o
CALL CKINT(I,ICK) =~~~ B
CALL FINCK{ICK)

JF(leGELLIVUND) GO TO 2

TECILKI11.5G4190)_G0_TO 2

CALL IWNTLSTU(T) e e e e e sontni smrois ot s 10— et sussimenne e
Call LABEL(LABLE(Yl,130)

FUF"’AT(Z\)(//"’X,’)Fl“o‘i))
WRITE(G69320)(TABLE(M, lKE)leE le)
CALL DUALG

_ AFLIPRITeCRen) GO T0O 1

e i et § i P ONe o —aAme e = wee b s s+ e emetdmts  EE———— - ;- —— i S——

6I TO 1 Ll
WRITE(64100) 1,1CK(1)
FurMAaTl? MASTEKR PkUBLEM IS WCW INTEGER/OPTIMELY, 2110)
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-

FINCK DATE = 74099

SULAGUTTIN:D FINCROTLK)

DMLt PeCllbl i Thell

3 SASHNLE S I B OF A (5 A

LUMALE Tadle iy Luu) o LLASLTS _-—Cvanwcv-cavnma 50) 2 INTEGLYSO) . .
Cudaun ..:Z_t.uv NSP unﬂo_vﬁ\zﬁo—v—.-.—omrﬂ 130
NJd «Vl=1

:.;:\,_A—_.o_r._..,or: 60 TC 20

A=ICRE1)

GU TU 2
20 CONTINUE . _ e
ILkt)=100 e
RETURN . . i
T2 DJ 30 J=li . i . —

IF(ICKIJ).E0,0) 6O TO 30
IF(ICK{J)eEQe 1A} GU TO 20
60 TO 40 .
39 noz-:Cn T
e 2t xﬂla—.cm-b . .. .. . mme

40 DO 50 I=1,150
50 ICK{I})=0

L etuer deaeabes < ebiene ests be seeRReseRI 4 L EL 4 baskesNe re AeRIS TI vevs i biiar wies weie Se merves o v

RETURN
...END
CKINT " DATE = 74099
i SUBROUTINE qx~24._m=<,._nxps:-::e:;s: R . _
_ DJUbLE PECTISION TadL

OISy 1CKEL59)
I..ann..gCZ.._.b.ufraNwavaln:ubmaﬂm;~::vammovucvvnr—mwo-NEI._.NO—.HMIO~

o COMMUN Ty Ny KSP e NSPy STy ISLAR, I PRIT 121,130
o CUMMURN S ) s ZUod a3y 05 )5 ULD ) g WISH) 1k F(5),VI(2005),A4(20) .
CuMMIN 212092095 s e HSMI5)4C (2040519 XL15U )y LABLELL D wv—-<~woowv R
IF{IPRITLC3,0) GU TO 99 .
WA Teloyludg) MyN .
2100 FORAAT(Y CXINT?,2120)

..... 199 15AVE=13C4
TEST=400001 . s ) e e
o wbooao r=2e LT
J=13as5(1) -

KQLIA=1HTEG(J)¢)
e 60D TU (1U91410)y KQEQ
1 1B=TAUBLE(I,1) e e e e e e e e e e e e
ICREI)=1CKEIN®Y - _— ) .

L TAB=TASLE(T41) e

TL=ABS(I3~-TAB) :
T2=A05(18B-TAS+1) .
IF(T1e6TaT2) Fl=T2 ___
:...: :. TEST) GJ TO 10

..... . d - o areeaioesserseiisens ton tbesisiine sereeiionyberm ovsoes o

et e

.--;z.qqunqy,
10 CUNT INUE
IF(IPRIT . EQ,D) LETURN
_WRITE(0,190) [SAVE
CRETURN e
e BND o ) . - —




INTCST DATE = 74099

CSUBKOUTING AIMTCSTORY e
DAIUSLE PaCCISIJN TABLE :
DUUALE PUCLISTUN PR, FKY
CUMMUI TABLE(T59150) ¢ LBASITS ), IUPL150),UPPEK (150 0y INTEGIL50)_ . ___

COMHUl

_ 100
9¢

CUMADN gN g KSP ot 15K 1 STy I SLAK [PRIT 121,130
SIS 2(5) yBUS ) DIB)aULD ) WIL) Wk F(5),V(20,5),A4(20) .
CuMAZl Z02092005) o kBHSMED YL {2095) 9 X(150) 4 LABLE(LO,IY ’9Y(?095' .

IFCiNLITe20e.0) GO TU S9

WeITE(O,100) T9MyN

FutAT (" IHTCSTY 3 3110) R . - .
Po=TABLE(L 1) .. B e o o
FK=18B . e e e S+ e £ A o
FR=TABLE(L 1)=FK__ : ¢ e e e e

TABLE(Y+]ly1)==FK
TuAs (At ) =N+l

DU 10 J= 2'|\| . .
IF(TAsLEC]100eCke00) GO TO L0 . o e oo o e i
!F(lduSCI).tQ.J) Gb IC 10

IFITABLE(I yJ)elTa OooAhD.INTEG(Jl.:U.O.) TAbLE(t+1pJ)=-(Fh/(FK-1.))

12TAcLE(L,J)

o KGED=INTEG(J)*Y

GLU TO (10+1) 4Kued

1 JB=TASLE(I,J) _
L lF(TAuLc(I.J).LT o ) JE=JB=1
" FKJ=JB
FRI=TABLE(1,yJ)=FKJ
lF(FKJ.LE.bK) TABLE(M414J)==FKJ
B 1F(FKJeLTeFK) TAuL:(M+1,J)—-(FK*(1.-FKJ))/(lo-FK) e
] 10 CUNT INUE L
L TABL:(M+1,M41D =1,
M=M+1
N=N+1
‘ RETURN
jo BN D ettt et st R 15115811 8558 12 R 11 .1 1 AR S S
FEBASE DATE = 74099
" SULROUTIHE REBASE e

100
99

 MM=M-1

10

. CUM..UN L(?UtdO.
TAFUIPRITei2e00)

20 !

DIUBLE PRFECISILN Table
COMMUN TAsLELTHy15C) o 1EAS(TSD),, IUF(15D) yUPPET
_CUMMUN MyNoKSPaNSPy I ST 1SLAK, IPRIT'1213130 .
CumM4un S(“'ol("”!P‘(")v’(")ob(b)n(b)'Fflq)pV(’ﬁo'ﬂtﬁ(ZO)

Dy hHSMI51yC (204509 X 01500 yLABLE(L10,150,Y(20,5) ..
Gn ang - . - ke v .

(12} INTEG(150)

ARITE(G91C)) My N
FURMAT(® FESASE®,2110)
CUNTINVE . __

DU 201=2,M T R -
OU 201=2,0 " T R
TulE My 1) =TASLE(M)1 )=UPPEF (]} %TABLE (M, 1)
TBLLEA, [ ) ==TAULE(My 1)
CINT INUE_

DJ Lo 1= MM ———_——
a0 e
RETURN 2

END

recoresreromiasone




E=31
CALRHS DATE = 74099

- SUBROJT LE CALRHSEVALUE ) o o e e
DOUSLE P-=CISTIOUN TABLE
Cotvlie TASLE(TS 100 2 IHASITS ) TUP(IS50)2UPPEF (150 )y INTEG(150)
LU MgN G KSP ISP 1 ST ISLAR, TPRIT,121,130 o
(W PR R S(5).l()).P(a).Dl;),U(D\,ulﬁ)'nF(5),V(20pbl,A(20) o
COUMIALHy L(ZU!&U,’),"‘Hbf"(J)’C(‘Uy.))rX(lbU)1LABLC(10115)1Y(20'5),,,_“
IF(IPIFITe9e0e) GO TU 99
WRITZ(5Hy103) KSH,NSP
100 FORAAT( * CALPHS 92110}
.9 cuntTlhuE o -
SU=LORT(2.%3,1415927)
SUM=0 ) o
DO 10J4=1,KSP
Bu=S(J)/z2(J)
CALL Pr3B(EB,PAD)
__bid==(BB%x%x2)/2. _ ___
TSUM=(U(JI%EXPLe 30 /5R y22(J)
TSUA=TSUN+RF(JIXS(J)
ToUA=T5UM=5{J)=D1J)*PRO
T 10 SUM=SU4+B(J)%TSUM
VALUr SUM ’
SU‘
- Du ZOJ =1, KSP
DO LOI lvﬂSP

VuLUc VuLUE*SUM
SiM=0,
DU 33J=1,KSP

— (RPN

T30 SuUM=SuM- n(Jl‘-‘(n!-iSM.‘,(J,),-;S,(“J)'

~VALUE=vALUE+SU4
L wAITE(b 101) VALUE
1017 FORNATUY CALRES2'9E16e7)

RETUKN

END




E-32
BLOCST " OATE = 74099

o SUBRRUT IR BLODUST L e e et e
UUBLE PRECTISTIUN TABLE
CUMMUN TAMLI( 79,150 3 ILASETS)  IULPCLSO0Y,UPPER(LSC ), INTEG(150)
LMD My 4 WSPINS?y ESTy ISLAK, IPRIT 1210130
CunMAn Aa.-ngv..:-m~.:~u-cgvv.f—v..1ﬂ. u.<avo-uv.>.VO-
CUMMULY (2092095 ) 9nHISMIS) 9L (2 YoX(150) gLABLE(L1Oy1S -<—N0qm—
[F(IPRITecdade) G132 TO 99
r:.vm—‘m L.M.VD- mA—L.nJ._.MV-.A 7.
100 FORMAT(Y HLOCST',4110)
99 CONTINUE

s (I R ) - B

22|2+H
i CTABLE(N,2)=1, . .
TABLE(MMytIN) =1,
1345 (it =NN
. D] 10LZ1,SP
SUM= Oe . .
DI 20J4=1,KSP
o TSUM=0e
DO 301=1,MNSP
30 TSUM=TSUMeE(T gLy JIFV(I9J) ' 4 S
20_SUM=SUM+TSUM=W{J)%C(LyJ) : : -
10 TABLelid~,L+2)=SUM=A(L) S : a
CALL CALFHS(VALUE)
T TABLE(MM,1)=VALUE -
M=MM
h=NM
_CALL tA3: r.rbarmam-umw.
......... WRITECo 30 (TalLEL IKE )W IKE=19i¥)
woo moxlbﬁ_mon\\¢bx4mvwbow-v —
CALL REUWASE
RETURN

END

e & b sees sass Sesbess sesspsresniace vets 4oR sersatesseis o1t SSbiesirsieeseesees SHES sSberssrs as e b L e s e e Ceemnee o e oonaa:

P T ———



100
99

W

40
30

5y

.. 5V,

_ SUBRUUTINE SUGPOV

CUMﬂUN_M'NQKSP'NSPJLSIL[SLAK'(RKITlelpIJO‘WVV"_

C CUKMIN fIZOnZU.S)'thN(S).L(cdynlyx(l)U) LABLE(IO 151,Y12045)...

100

9 CUNTINUE __

T J=KSPe1-1Y

FUORMAT(Y SUBPPVY ,2110)

2L91=SEETISUN)
CRETURN

_TZRM==(TER+%2)/ 24
ULJI==u(J)eD () =EXPITERMI/VALUE. 777

RIS TR IET IR IER 28 PRI YZAR])

E«33
SUBPPV DATE = T%099

SURKQUTIHE SUBPPY
DUUSLL PRELISIUN TAELE
COMA0Y TARLE(TS, 150) o IBASETS), TUR(15I),UPPLE (150 )y INTEG(250)
_CUMHON MM KSPyMSPy FST o ISLAKy IPRIT, 121,130 .

C. MM S(J)'Z())pU( JaDUS5) s ULS ) an{S) yinF(5) V(’d.b)'A(ZO)
CUMMUN E(209209 2o hHSMI5)9C(2095) o x(190) sLABLE(L0915),Y(2005%) . .
KY=]SLAK . o
IT({P«ITecJde0e) CC TC 99
WFITE(D010U) KSPyNSP

-t arems e Gm s @i e e % e Sl te Se @ e et e 4 & iemes twe fe memme b mmbess dmetel mes

CuRTInue S
N3 10J=14KSP
S(I)=X(KR=1¢J)
DJ 301=1,HNSP
DY 390J=1yKSP
SUM=0e _ __ .
TDO 4UK=1,HSP S POV
SUMA=SUAA T (1 )Kyd) =X (K+2)

Y{led)=5U4
DO 50J=14KSP
SUN=0,

DO 601=14NSP_
SUM=SUMeY (], J)xx2

END

SUBPDYV DATE = 74099

mmtm il e s ot g el o S e R e te e S rs te W vmw . ian S s —- ———— ot r—

DOUBLL PRECISION TABLE
COMYMGN TARLF (75, 150) 9y IB2S(75), IUP(150),UPPEF (1560, INTFG(150)

COMSON S5 205)ybU5) U5 UL )y ilb) KF(5),VI20,5),A0200
lr(lPFlrn-J.OQ) bq Tb 9° .
l“‘!TL(b 1')9) KSP'-\QP
FURAAT (' SUBPDV®,2110)

Uu 101d= ngSP

TekU=8(J)77(J)
CALL PRUdlerMcVALUE)
Wl ==B (I =(KFLJ)=D(J)*VALUE)

VALlUc=5InT(2,%3,1415%27)

DU 10 TI=1,NSP

RETURN -
END
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PRIALG DATE = 74099
SUBFOUTIHL PRIALG

"OUUBLE PRECISION TABLE
COAMUN TARLE U THy 150) s TBASITS ), TURLIS0 ) UPPEFR (1500, INTEGL150)

- e ¢ % §Or - aatt— -+ A ——_ | 415 G oo Mot M e M s aet 4t ek eemee s omt levemm—ee  =oon

O3y MyN KSP o NSP L ST 1S5LLK, lPle112};130 —_—

100
97
5

2
3.

" CALL PSUB(ISAVE)

1

6

T CALL PFEAS(I LY

lF(lPtho*OOOQ) cCO 70 g9
WRITE(6,100) MyN o
r.)"4u7(' PKI-\L‘:_.Z]IO, ————
CunTLiiuz

Cal.L PNEGCK(J)
IFtJeuTaii}l GO TO 6

IF(1,EQelU00) GU YO X
TF(TAOLE(T0 ) 1'2'&

‘CALL PIV(1,4)
GU TO 5
ISAVE=1BAS(I)

CALL PIVIIL N

63 TaS
“cAlL Psuaidd
G0 TO 5
RETURN

END..

TWRITE(6,100) i

100
99

lF(]AbLF(!oJ).U‘.TEST) GO TG 10

40

PNEGCK ' DATE = 74099

SUYBROUT ING PNEGCK ()
DOUSLE PrcCISION TABLE

DJU3LE PRECISION TEST

__CUMMUN TAGLE(T72,150), lBAS(7b)'lUP(l)D)pUPPEF(150)LINTEG(150’__,___-
TTCUMMUON NG KSPyHSP, I<T9lSLﬁK,lPKlT 121,130

IF(lPI\ITQCUQOo) GU 10_90

FAOSYAT(Y PMEGCK',110)
CUNTIHNUZ
TEST=90900000
JSAvVE= IJUO

TEST=TASLE(1,J)
JHAVE=sJ

CONTINUE

NELTSY L
CIF (TESTLTe04) J=JSAVE
CHRITE(6,100) J

""RETURN

END




__SUBROUTINE PFEASIT W)Y
DUUSLE PrECISIUN TADLLE

E=35
PFEAS DATE = 74099

0 —— =t o e & e S

DOUSBLE PrIZISTY! A»THETA

_CUMMON _TABLECT3,150) y 1BASLTS) 4 IUP(L50) ,UPPER (150 ), INTEG(LY50)

- — -

_WRITE(6,100) 1

100
Q9

_ THETA=UPPEX (J)
JASAVESLOOU.

P
5

e JHET A=A

.

10

_ SUBRGJTINE DUALG

CURMUN MyNyKSP o8 SHy [SToTSLAK, IPRIT 121,130
CAFCIPRITocde Oe) GO TO 99 i s e s e
TWRITC(6,190) JyMyh
FORMAT (Y PFEASY,3[10)
COwTTNUE

D) 101=24M

IF(TAoLECT 1)) 1910'2
A= TAbLE(T, 1) /TasLE(L,d)
IF{AeGE. THPTA) 0 TO 10

15AVE=]
GU TU 10 . s oot o
A*(TAdLE(l 1)-UPP R(lBAS(l))l/TAPL:(IcJ)

G0 TO 5

CONTINUE

KETURN

- DUALG DATE = 74099

DIUSLE PRECISIUN TABRLE T T
COMMLN TABLF(T75,150) 4 13AS{75), IUP(150)4UPPEF (160 ), INTEGL150)
COMMAIN Y Mg NgKSP o lSPyIST, ISLAR IPKIT 122,130

. IF(1PITeZde0,) GU TO 99

“101
99
4

WRITE(ovl0l) MyN |
Fuk4aT(Y DUALGY, 21100
cCONTIIIE

CALL uscxklil)

_IF(1.GTei4) GO TO 7

— LALL DENTCK(14d)

CIF(TABL=(Is1)eGka0a) GC TO 5
IFCITABLENT 1)/ TABLECT, ) )= UPPER(JIN 17103

1
3
5

- .®
100
14

IF(Je571020) GU TO 6

CALL PIV(IyJ)

60 T &

CALL PSUSTJY ,

GU TJ 4
1Saves I-%AS(I)_____W_

CALL PIV(IJ)

CaLll PSUB(ISAVE)

el TO 4

JJJd=1BAS(I) - 1‘ .

WRITEL6,100) JJJ s

_FORMAATI(LX, 'X'oqu TCANNDT bE MADE FEAS,_L&I_._E___(DUALC)'D
1PRIT=939

RETUJUKRN

END

T ——— — " = s ¢ - S & G —————————
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DUBCK ' DATE = 74099

o _OSUBRGUT LiN: LUBLK (T e e e e e
DJU‘il.L PAECTISTI N Tl\bLE
DUYBLE PRECTISIMTN Ay THETA
L COMMU TAALECT5, 1500 s IBASETS)y IUPLL50),UPPFE (15 ), INTEG(150)
CUNﬂUN “oNyKSP,NS9plSTOISLAK'IPRIT.IZleBO
k"lTL(b.-‘JO) M
100 FilriAT(? n'JJCK"llO,
99 (UNTINUE
o THETA=90000000 - e e e
C1SAVE=1UVO
D) 101=2,¥ T
o IF(TASLECL 1)) 141002
1 A=TABLE(],41)
15 IFlAeuvETHETA) GC TO 10
__THETA=A
TT1ShVEe=1
GU TJ 10
_.2 =uPP: k([SAS(I)"TABLL(X l)
Gu TO 15
10 CUNTINUE

+ semr s ra e -

TF(THETACLToe 000 I=ISAVE
o WRITE(69209) 1

T RETURM
END

DENTCK DATE = 740099,

| SUBRDUTINEG DENTCY(1,J) _
] DOUBLE PFECISIUN TABLE

. DUUBLE PAECISICN R, TEST, N

. _CUMMON_TAsLO(T73, 2500, 1EASLTS), 1UPLLE0) UPPEF(IHO).lﬂTﬂG( S0y .

CIMMON 4N KSP it 5P o 18Ty ISLAR 1PRIT 121y 130
CLFUIPRITekbwede) GU TO 99
o WRITE(Oy10U0) Tyl .
100 FURMATI(®' OCNTCA'3110)
99 CUNTINUE
_A=1
TIFGTRSLEC 100Gt aQe) AS=L
TeST=900C0000 . . ..
JSAVE=1000 _
00 10J=24N
IF(IBAS{1)eE0Qed) GC TO 10 )
IF(A*TAJL&:(I'J).M oUe) 6O T0_10
TTREDABSITARLE (L o J )/ (L5TABLE(19 ) 1 )
IF(BeGESTEST) 0 Tu_10 o o
U TESTag . o
JSAVE=J
10 CONTINUE
e J3JSAVE
" WRITEL6, 1991 9 T - -
RETURN . ' PR N
END : '

- tm——

e tomn
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Plv 37 DATE = 74099

. SUsRUUT LE PIVOEIY .
DIUSLE PRECISIUN TABLE
NUUBLE PRLCISION A
___CuMMON TASLENT5,150), JBASITY ), [UP(150) 4UPPLF (1500, INTEG(150)
TTTEUMMON Ay 4 RSP MSP, TST, ISLAKy 1PkIT 1214130
IFUIPRITLTWe 06} GO TO 99 .
wWelTE(L100) [adsMyN

.100 FARMAT(Y BIVY 41100 e et v e o e e e ieae -
99 LunT IHUE
_ = T/ABL[(!:J’ ,,,,, _ e e

10 TAusLEL 1 PR STABLE ULy K A e
SO0 20L=1.M e
IF(LeEQe L) (_30 10 0
A==TABLE(L,J)
IF(A)Y 214520421
TZ21 DO 3UK=1,N e s 1 st eserns s o
. .30 TABLE(LK) = T»\‘SLE(L'K)+A*TABLL(IQK)
20 CONTINUE
DD 50K=1yM
50 TABLE{K,J)=0
_TABLE(1,J121,0000000
IBastly=d
RtTUR»J

.......................... D -
PSuBs DATE = ™099
SUBROUTINE PSUH () e

DUUBLE PRECISION TARLE
CUMMON TABLE(T50150) ) IBAS{75), IUP(150) yUPPEE 1150 ), INTEGL150)
_COHAUN My NoKSPeNSPy 1STy1SUAKy EPRIT 1219130 _

1F(IPRITeEG.Os) GG TO 99 |

o WRITEL64100) JoMylN | A
“Y00 FORMAT(Y PSUB® 3 110) —— e Sttt et et st <tsnts ssarane
99 CuiiT INUE e e e ae e e e e eee -

DU 10[=1,M

TAULE(T y IV ==TA3LEl(T, )

,,,,, 10 TabLi(lyl)=T udLL(l.lhuPPu(J)*r,.uL:(hJ, T -
3 l Up ( J ’ = 1 |,p ( J ) + 1 o o e #4RTSSILIGs es tes SeriAIs 48 MesRAisalterneie ie atiiesaine seeeis o teiesasseeeeretbseesatere bebs
RETURN -— _
EnD .
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UOUsLE PRECISTIUN TASLE
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VATE =

TRACE 74099

TeACE

COMMON TASLECTS, 1500y LEASITS), 1P 11520, UPPEF (150 ), INTEG(150)

[SYRIZALT H P J'KSP,“QP lcT lSUK,!"MI,l&l,IBO e e
TTTTTTE M4 SUB ), Z(Jluh(q)vb(ﬂ)'U(“)vn())okFl“),V(’O,S).A(ZO)

Cukiidbi 020020050 0t 115415 ) C (2095 ¢ XL150) yLAGLE(L10915),Y (20450 .

IF(IPRLITe: De0e) GO TR 99 ) o

WEITE (6,y101)
101 FORMAT(!
_ 99 CuNTINUE,

Myl
TRACE', 2110)

DO 200200 e i o s+ st et e
20 X(1)=0. o
© . DI 101=1,1 e e e
T 1A=1BAS(I)
IF(1MebTeMe2 IMaLEsO) GU TO 11
e XE1M)=TABLE(IND)
Gu TO 10 e e e e e+ e
11 WRITE(6,100) 14
100 FURMAT(Y SEXOK_ N TRACE' 4 IT)
STGP
10 CONTINUE
__ DU 301=1,N_
IF(IUP(I))

£ mem mceie tienne s et e et ——

32¢30,31 ..

e 30 CUNTINU:
RETURN
END

CUTPUT DATE = 74099

SUBRDUTINE OUTPUTIO,H] N2

__________ 'f\ier\l NN?,NI‘\ 'LA)
CINNG)

DIMENS TN Tt
DIMERSTN LAC10)
N3=iida/ (NNLeYN2 )
T ONU=(N2-11/8
_ NUsNU#3+1
IF(N1aGTel) WRITE
DO 50K=1,N3
D0 501=1¢NQ0y8
e TFU1e6TWN2) GO TO_10.
C 100 FugMaT(r v) "
11=1+7 _
IF(1LeCTeN2)
WRITZ(6,LA)
IF(NN3GTel) WRITE(O,105) K
.dUS FORMAT(ILIXy*MATAIA NOe®y12)
1F(iNCe3Tel) WRITE(60106) (KJeKd=1s11) e et e s
(106 FuRAATI3X, ¢ 1300 0Xe 129 7012%0 0200 o T .
) WRITZ(8,107)
T107 FURMAT(2X9 010 1X, 116 110D
DU 50 J=1,N1
102 FuR#aT(2X)
11

(6,100)

II-NZ

_ WRITE(09103) J  y(OUJI*(KI=1)SHNL+{K=1)#NIT*RN2) g KI=1511)
s Fuh4~r(1x.lz.-|-.sr14.5) R
.60 CUNTINUE
2 WRITE(6,102)
50 COUNTINYE
10 RETURN.
TEND

(IR
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LUTPUT ' DATE = 74099

SUSRUJITTIES HUTeDT Ry N2y M3y NNT N2 o INN4yLA)

put L Pe CISIUN O

el LS ativie)

PR NEPRR VY LA(’.\)’ e
Nid3=NLA /7 0IN1%%02)

a=iN2=1)/8

TS R KD | .

IF{vieuTel) WniTul6,y100)

DU DOR=1,4N3

D) w0l =1,40,8 R o

C ———— a—n 1 St o = i e e

1FLieGTaN2) G3 TO 10
100 FURHAT(® )
11=1+7

IF(11eGTeN2) I1=N2
WRITE (oyLA)
CLF(4i1345Tel) WRITE(69105) K

105 Foi 14T (1Xe *M\TIX NOey12)

IE(N1ZeGTel) WaITEC6,106) (KJyRI=T 02y 7077707 00 o T

106 FOR AT U Xy V10 96y T2, 712Xy 12))

WRITC{0,107)
107 FURAATI2X " 1% 9 iX»116(1H_))
JU U J=49ill

¢ e——— N

702 FORAAT(2X)

11 A5ITc(6,193) 3 (D0JIKO=T )% NNL# (K= 1) #NNLENNZ) o KI=T9 1) 7

S 10T FURAAT(IXg1Z 9% 1% y8F14e5) _

60 CUNTIIUE
2 WRITL{64102)
___50_ CUNT FRUE
10 RETURN o

CENDL i




oot e e

——— s et =

v

i0:

PkOB

SHbe ST IHE
?J“-ll..(ftpls).‘t.’ "

Fiip 20T PR, F 204100
00 ConTlnul

E-ko

DATE = 74096

Paiops (ae5U%) L

IV (el Tals) Az"A.
CALYZ .04

SM=U, . — .

IF{Ahel%e0a) G TC 4

IF(AeGTa%e) LU TO 2

TSU 1"." )‘1)1}"7 . e —m e . . e e m et e+ o o ——————
IF(AebTe4e5) GO TU 3 - -
TSU42,449997 o

IF{VaGTe4s) GU TC .3 e e e e e e e e e = et e s ot 2 e oo e = o e s e e <
TSUA=e 49971

IF(1eGTs2 .3) GJ TO 3

TSUN=443805

TF1AGTe34) 6J 10 2

 TSUM=e4 7379 o o
o TF(heuTeleB) Gu TG 3
TSUN=44T7725
ACQ=.01
L 1F(AeGTa240) GL TO_2_ -

TOUAZ e 43319 | | s i - . -
ACQ=,004 e e o s -
1F(AeisTele5) GJ TO 3 -

TSUNi=e3413+

TELA,CT. 2c0) G2 TOG 2
_Tbu =al')]’06

lF(\.UT..S) GL] T 3

ACQL=401

................

TbU 4=0,

3 I (Q”lo.)/?.
Q=1%5
U=UTel

IF(deGLo A, \J Q-.S .
N=((A=0)/ACC)+65
N=2%N

CIFINeLES2) N=4
H=N
H= (a"'-”/H

M= =N-1

‘bo 101= 1,N92 -

XoOeHep

Y= X%2)/2%
10 SUM=SUM#4XEXPLY)

DO 2V1=294y2

U X=Uene] e
C¥=-(X=22)/2, ]

20 SUM= 35U+ 2 *[XP(Y’

A== (U%22)/2,
Ye=(A%%2}/2,
L _SUM=SUM+EXP(X)+EXP(Y]

SU—(?.‘A.IQI‘W’H**.S

T SUM=(H/(2,%5Q) ) ®SUM

SUM= SUM+T5UM

4 SUM=450uG0000=SUM
2 CONT INUE
uerc(o.loz) SUM
ChelusN
tND

e e e
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Feeder Program Documentation

A,

Title: Conjugate Matrix Generation

Programmer: C. A, Mount-Campbell

Advisor: R. P, Lutz

Date Completed: Jan. 1974

Machine Used: IBM 360

Language Used: FORTRAN IV

Compiler Used: WAT FIVE

Compilation Time: 3.76 seconds

Computation Time: Variable with problem size

Lines of Output: Variable with problem size
Approx Core Required: 15K Bites

Purpose: This program was written to generate a co-
variance matrix for the computation of variance of
slack funds for each period under the assumption of
no autocorrelation. These covariances matrices are
then used to generate a matrix of conjugate vectors
with the first vector being (1,0,0,...,0)t in all
cases. The quality of results are checked by multi=-
plying the original covariance matrix first by the
transpose of the conjugate matrix and then by the
original conjugate matrix. Finally the conjugate
matrix is inverted with the result being output on
cards in the format required by the previous pro-
gram. The diagonal elements of the resulting

diagonal matrix are also output on cards,
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Restrictions: Current dimensions limit the program

to the generation of 25 x 25 covariance matrices.

List of subroutines and their function:

1.

7

MAIN--This routine reads the input data and
directs the major calling sequence of the other
subroutines to accomplish the stated purfose.
PIV-~This subroutine is the same as the one
used in the first program but is used for matrix
inversion in this program.

CONJ~=This subroﬁtine generates the matrix of
conjugate vectors,

CHECK--This subroutine performs the matrix
multiplication.

OUTPUT=--This subroutine is used for printing
matrices,

OUTPUN--This subroutine is used for punching
matrices,

INPT~-This subroutine reads the data for the
linear relationship given on page 127 and gen-

erates the equivalent covariance matrices.

List of undimensioned variables:

1.

N--number of projects (i.e., covariance matrix

iSNXN)o

SIGl= Ui for equation on page 127.
1

SIG2= 0% for same equation.
2

SIG12= Cov(Il,Ia) for the same equation.
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List of dimensioned variables:

1.

2.

10.

11.

A(25)~-used to store project variances.
SAVE(25,25)~-used for temporary storage of a
matrix.

LA(10,10)--used to store formats and labels

for controlling and identifying output.
B(25,25)--used for temporary storage of cor-
relation matrix, covariance matrix, and conju-~
gate matrix.,

TABLE(25,50)--used for matrix inversion.
E(25)--used to store diagonal elements of
diagonal matrix.

DUM(25,25)~~summary matrix ﬁsed for temporary
storage during the calculation of conjugate
vectors, and during matrix multiplication.
BETA(25)--equivalent to Bij of the equation on
page 127 for fixed j.

GAMMA (25)--equivalent to yij of the equation on
page 127 for fixed j.

EP(25)--equivalent to the error variance for the
equation on page 127 for fixed j.
COV(25,25)~-matrix of project covariance

generated by subroutine INPT,

NOTE: Other dimensioned variable names were used

by subroutines but appear in COMMON statements with

those listed above. Therefore, their description

is also given above.
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Organization of Input:

1.

The first READ statement exactly requires the
following data cards:

Card # Column #1

il N
1 (' MATRIX TO BE DIAGONALIZED')
2 (' RESULTING DIAGONAL ELEMENTS')
3 (' DIAGONALIZED MATRIX')
b (' INVERSE OF CONJUGATE DIR. MATRIX!')
5 (' MATRIX OF CONJUGATE DIRECTIONS')
6 (10r8.0)
7 (10F8.1)
8 (10F8.2)
9 (10F8.3)
10 (10F8.4)

The next group of input cards is repeated for

each period in the planning horizon. These

groups are read by the second READ statement

and by subroutine IN?T.

a. First card should hold a value for N in
the first two columms.

b. Second card should hold the following
starting in column 1: (' COV GENERATE')

c. The next N cards should hold the value for

B

0% where i represents the pro-
i3
ject and j the period. These data appear

1j° Tij

respectively in columns 1-10, 11-20, 21-30,.
Decimal points should be punched.

d. The last card for a period should hold
- 2 2
values for qll, oia, and Cov(I,,I,) using

the same format as c.
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Flow Chart:
For the basic flowchart refer to Figure E-~11l.
Program Listing:

The program listing follows Figure E-~11.
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( START >

KEAD
LABELS
AND
N

CALL INPT TO
READ DATA & PRINT
GEN. COVARI- RESULTS
ANCE MATRIX

CALL CONJ TO
GENERATE CON-
JUGATE MATRIX

l

PRINT
RESULTS

CALL CHECK TO e

VERIFY RESULTS
RESULTS

INVERT CONJU-
GATE MATRIX
USING PIV

YES PUNCH PRINT
RESULTS RESULTS

Figure E-11.
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BINi) WV P2 1T -~120,#UNCH,AGES=100

-

LTS U al o)y AV 29325 LAL10,10)
_w’.‘CHM”Hd PAPS9 D) o TARLIIZ25950) 5 (25':Dbh(25'25,N~-M

REALTS,LL2) LA
102 terpaliLonrg)

REAGUS, LCG) N
10C FOR*ATLL2)

TP 5 =N
LES_J=1,N

75 LavE(1,01=0.0
1C=1

I ¥ {2F3:)
115:25

136=%0
_333 CONvINge

CALL INPTIN, ApnT
_Er_101=1,%

LD 10J=1,8
1C TARLELT9J)=0(1,4)

CC 27 1=1,1
LU 20 J=1eN

TA[“. ("J, YI!.L"([
_____ SAVELT,90= smv.(l.J)+1nBLg§1.J:

20 TASLE{1490=SAVE( 14 D)
i2= IIP*I[P

r ALY l»bT&'l!i{SAVEvN,:’, 14, Py ll)’ IIO' [Z'LA( ie s 11}
_CALL CONJUN)

i bbbt

12=110={Q

CALL CUTPUTICa N 1,10, 110,10, 1250ATL,21)
K=1G

O 110 1=1,4N
IF(E{1)aGTe999.9999)

[}
O

TTICIE( 1) . 5Y L9939, 999)
IELEt1)aBT.79999.99)

x® n =
w'n
O = 0

TR (1) eGTL999397.9)
110 CONTINUE

12= l!“ell“

TEALL CUTPUTIBYY oNe 1IN, LI0, 1105,1Z,LALY,51)
CALL CHECK()

CALL CUTPUT(DUMyNeNs IO, 110, II0,1Z¢LAC1430)
3 LOH 40I=1N

i aCI=140

40 TARLE(Tsd)=R148)
RC 25 E=1,H8
DT 2% J=1,N

“K=N+1
TARLE(I9 K)=0C

IF(T.F0ad) TARLC(J,K)=120
__25 CONTINUE

M=28N
_DO_30T1=1,N

T30 CALL PIV(‘vl'“'H’
IK=132=N

12=115+1K

CALL ‘UT“ur(T\?LF(1.V¢II.H.N.IO.IIS.IK.IZ.LAII.AI)
Cﬂll CUT#UV(IALLL(lv?'l)'Nthxnv!1501h0120LA‘1110’)
G TC 333 .

sTCP
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TOSURRMITING PIVEI.d MpN) 77777 7 7 e e e e e
_ CUMFUN P25, 7%), TABLE(25,50),F(25),DUME25,28Y
A=TABLI L [od)
LD 10<=1,N

U TARL L KT AR (1,K)7A
L0 20L=1,M

IF{L.FCal) GOTO 20
A==TARLE(LsS)

CO 3CK={,N
30 TARLLI,K)=TABLI (L K)+A*TABLE(I,K)

“2¢ CONTIHUE
L SO0d=1,M

B0 TABLEIKeJY=0
qprrr—utku =1.00000C0

TRETUR
END

SURRPUTINE CUNI(N) .

TCCVMON N(2%5,25)6125950)DADI25) ,ET(25,25)
LC 10I=14N

10 6(Y1,1)=0
rf{1,11=1.0

TG 2CKE1LA
NeCik1=0

LC 301=1,1
rauoXaIO

Hoﬁ: rop\!u M..~“
49 ﬁmWPWP:WFFPMWMhmhPWWWnghu—

30 DALTR ) =0T TR+ (LK I*NTT,K)
ﬂﬂaw\;.ﬂ. IvA‘ CD u‘o NQ )

DG OS5CGI=1eN
Syp=2

£e603=1,X
60 SUM=SUA+(E(K+1,31/DINLJ))#D(144)

1=0.C
IF(1.E0.K*+1) 2=1.

SO CULeK+ L1=Z-SUN
20 CONTINUE

mc SROUT INE CHECK(N) o . L
T CORMUN DI25,25)9U125950)5EL125),0UM{25,25)
____bIvV=1.

TR0 20I=1GN
N0 203=14N

TUM( 1, J)=0
LG 30K=1eN .

30 acz._.u.na:x._.u.+c.x.~.*o_z.g.

20 mmuwnz:n
NU 401=1¢N
2N 50J=1,N
£1J)=0

_ [0 S0K=14N

SC LEDI=L (N e r (T K)*D (Ko )

it 40J=14N

———————— - ee e,

40 GUA( e I =" TIYSTIV
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R¥ TURN

END

T SURRADTINE NUTHUTINe Ny N22N3oNNLgINN2 o NN4LA)
LIMENS IO DEMY4)

T oImMeasoNLAtLeY T
NN3=NYA7 (NN LEAN2)

l l"l ‘0_—‘)"
Nz (M2=~1)/0

T NU=sUETED
KRITEChy 100)

T seK=1,N3
LI S0I=1,N0,E

T I (i.nTJNEY G0 YO 10
160 _FORrAT(®1%)

11=447
fF(I1.5T.02Z) Il=

T RRITAC( G, LAY
IR ENN346TL. 1) WRRETE(6510%) K

TI05 FURNAT (1K VAT I N0 12)
_IH(aM2.5Te 1) W2AITE(65106) (KIgKI=I411)
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