THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

THE COMPLEAT PATRICIA

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

By
CARTER BAYS
Norman, Oklahoma

1974

THE COMPLEAT PATRICIA

DISSERTATION COMMITTEE

(Each copy of the dissertation must bear the signatures of a1l members
of the final oral examination committee.)

ACKNOWLEDGEMENTS

1 wish to thank the members of my committee for their helpful and
constructive comments, particularly as this dissertation was reaching
its final stages. Also, I wish to thank Lisa Tadlock for her typing
assistance during the early stages of the project, and Marie Reubiez
for her beautiful final copy. Intangible thanks go to Caroline, Ginny,

Janice Sue, JoAn, and Shirley.

TABLE OF CONTENTS

Kb

RH

Lis TG LY LON

Fekofuiipbiby

SEARCHILG FNKR KEYS

ExarPre b A STHUCTURE DESIGNEDL FUR FAST KEY REIRIEVAL
SOME CHARACTIERISHIGS UF ThHE ALGOKITHMS IN TH1S DISStKTATIUN
ALGURETNMS SEAKCLH FUR A ALY Iwn A TRIEL WMEMURY

Tt DIGLIAL TkEE

ALGUR L s ISt KT = SEARCH Fiik A wDDE IN A DIGUTAL TKEER
Tk bSobieTlals vk PAIRICLIA

ALGURE TR s sEAarCn FUR A NUDE IN A PATRICLIA TREL
CommbENTS G AL Gl inm 2el

ALLuk LTt THSERT A NEW NUDE INTO A PATRICIA TKEE
LlimtrEnTs Wit AlvbunlTnm 2.2

BLGERETHm:s L1sT ALL MATCHES In A PAIRICIA TKREE

Pir owell RALARCEY TG A PATRICLIA TREE?

CunCtusltms = SuviArY Ul CHRAPITLR Twid

ALTERLENG THE PAIRICIA TkEk = NUOLE DECETION

ALGUR] T DELETE A PATKICLA NOUE FrUw Tht IRLE
DETeryLLInG T, I, TI

ALGOIRLTRMES FLILD P Ty Fl1y 17

Sutsirbe PrutilnGg = DELETLIUN UF PHEFIXES

PebEPAKING Tk SThUCTUKE Fux SUBTREF DFLETLION
ALGURETHS S FREPakE THE STHUCTURE FUR SUBTREEL ODELETION
CorLiLuslun = pDELkTING NULES

DELET L 0k TEXT mATERLIAL

obLe TG LunTiGuuus TeEXd

CUNLERPTS tEMLInD BDELETING CORTIGUUUS TEX]

ALGur LTIHBS weLEIE CUuNTLLLUOUS TEXT

ALGUR LIRS DELETE A SPECLIFIC KEY FRUM Thk TEXT
ALGORTITHME JieskERT TLX]

CuntbLuslitis = ALTERING TEX|

ALTEruualt mETHUOOS FURK KEPKESENTING THE PATRICIA TREE

A kjonl TnkeApty FATRIGLIA TREL

ALGLORI T CheEATE A RIGHT THREALDED PATKICLA TREE

Alr Qb rum b AN AnD IMOBULIATE CONSEUUEWVCE = B IMINATING LTAG
Prbukobk GELUENTIAL REPRESERTAT[UN

PrEviRoE N SEURNTEAL PATRILTIA

ALbGuk]l iy Ixkave Hobk A PEUKLER SEwUb i TAL SERUCTURE IN POSTORDEKR

Cair Iab STwuCiunt BF b lL1Zue

ALGuk T ShanCey THE Pobimoob W SEot vl lal §IMULIURE FOR A KLY

PAGE
PAGEH
PALE
PaGt
PALL
PAGE
PAGE
PAaGt
PAGE
PAGE
PaGE
PAGE
PAGE
PAGE
PAGLE
PAGL
FAGEL
PAGL
PAGL
FPAGE
PAGE
PAGE
PAGE
PALL
PAGE
PAGLL
PAGL
PAGE
PAGE
PAGL
PaGt
PAGL
PALE
PAGE
PAGE
PAGE
FAGLE
PAGE
PAGL
Fabt

e o o
T
(S 2l &

LWL NN e T W= C T T & & &8 W

.
.
~ >

L]
.

> o o o o
.
NN =

L)
-

e e o o

—

P> P00 0CCITVSISVVUUVT VYT
e o o o

e o L]

N =

T XX >
L Y L[]
—

L]

e @
¢ o

[V SV A

J TG T

L U -l W
-~

-
-~
[
-

aooOoOoc
e ¢ o o o o

—
~

™~

Huw T nanopt MaD It ICATIUNS

ALLURITHIGE LUNVERTD A KRIGLGHT THREALED Twrbt T FREURDER SEQUENTIAL

CunvinTInG OVER THE Samt »EMURY SPALE

ALGURIThe e CUNVERT T PREURDER StuubRNTTAL FURM UVER THE SAME SPACL

A SLIvkILY DIFFEsET vEXSIUN UF FREUKULKE SEWOUENTIAL REPRLSENTATIUN
ALGuRLIIF e StarLh TokuboH SIrRULILKE wLIH COMSINED RLINR=LTAG
RLINVK=LIAG
ALGUKRETHe e <l l ThseADED T PRELDROER SEGUENTIAL CUMBLINING KEINK=LTAL

ALGURITRM: PUSTHRDE R TRAVERSAL GUF STRUCTURE wiT CUMBINEL

Flis b CllrPrESS LN
CunCLUSLUHE = AUVANTAGES oF Tdb CUMPREESOSED FuURM
PRACTLC AL APPLICATETINGS
A HykdInETILAL kR Ium=00ALE SYSTEM
poLE A P ERATLONS
Adulnekh Akl ICATION = CALL FUR ACTTUN
Suttk) LSERVL TKICARS LRVOLVING COMPFARISON STRINGS
APPR DT K Hlhkr ALLURTTHMS
ALGUKLIIAME bl A wUDE FRUM AN AVALLABLE LLESIT
ALGOrLTmits RETUG A KUDE U AN AVALIAKLE LIST
ALGURITHTS FUk A IuslY LINAED AVALLANSLE L1ST
ALGHUIRTITHO: GET A vk FRrRUM A DOUBLY LINMKEL AVATLAMLE LIST
AlludR L EHA: RETURN A woLE TU A oDUBLY LINKED avALLABLE LIS
ALGORLINMS PiIAT A IREE
AFFE X = THE TEST PhkuLbrA
Tor FaCLfLITIES GUF ThE FrUOLRAM
Kbaw TEXT AND CREATL A TRLE
ULISPLAY THE ITkrtt AND/UR TrE TEXI
SEARCH Flik A FEY ANMD LIST ALL IVS MATCHES
DELETE A Nk Pruir THE TRLE
rlett ke InSewriT TEXI
CurevERT T PHREUKUVUER SEUUENTIAL FURM
SAmPt L tralPul
AFPPEwWOLx = TImIhe CuUndIDERATTILNS
TIolive Fiile ink LDEARCH LubP UF ALGURITIM 241
Paimtiits Flabe A TRAVERSAL 1IERATION
Fleviats Fuinw Ofitbr ALULIK] Tit®S
APPLLULR = JHENKESD AND PRLUIES
AprPra)lx = GLIJSSAKY

sl lubLrapiny

[e n

T e e]

FPAGE
PAGLE
PAGL
PAGE
PAGE
PAGE
PAGL
PAGE
PAGE
PAaGE
PAGE
FAGL
PAGL
PAGLE
PAGE.
PAGL
PAGL
PALL
PALL
PAGE
PAGE
PAGE
PAGEH
PAGE
PALE
PALGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGL
PaGt.
PaGH
PAGE
At
At

92

948

94

94
101
101
101
102
103
10%
106
106
108
109
109
11y
114
114
115
115
lilo
116
119
119
119
12¢
121
121
121
12¢
13
142
142
142
148
14/
152
154
155

LIST OF ILLUSTRATIONS

FIGUKE C=1 TIMING FOR THE LOOP IN ALGORITHM 2.1 PAGE Y44
FIGURE C=2 TIMING FOR A TRAVERSAL LOOP USING ALGORITHM 2.3 PAGE 145
FIGUKE C=3 TIMING OF MOST PATRICIA ALGORITHMS . PAGE 146
FIGURE 1-1 A SAMPLE TRIE MEMORY PAGE]
FIGUKE 1=-¢2 A SORTED BINARY TREE PAGE 11
FIGURE 1=3 A DIGITAL TREE PAGE 14
FIGURE 1=4 THE NUMHBERS INSERTED IN DESCENDING ORDER PAGE 14
FIGURE 2=1 A SIMPLE PATRICIA TREE PAGE 16
FIGUKE 2=2 IF WE ADD A KEY TO THE TREE OF FIGURE 2=1 THE TREE 1S CHANGED PAGE 18
FIGUNRE 2=3 THE ACTUAL REPRESENTATION OF THE PATRICIA TREE OF FIGURE 2-1 PAGE 21
FIGUKE 2=4 A PATWICIA TREE BUILT BY ALGORITHMS 2.2 AND 2.1 PAGE 23
FIGURE 2=5 Tht BIT COMPAKISONS THAT ARE ACTUALLY MADE PAGE 24
FIGURE 3=1 NOTATION THAT WILL BE USED THROUGHOUT THE DISSERTATION PAGE 33
FIGURE 3=2 TYPE 1 NODE STRUCTUKRE. BACKWARD POINTERS ARE INDICATED PAGE 34
FIGURE 3=3 TYFE 2 NODE STRUCTURE PAGE 3Y
FILGUKRE 3=4 TYPE 2A NODE STRUCTURE PAGE 36
FIGUKRE 3=4% TYPE 2B PAGE 39
FIGURE 3-6 TYPE ¢C PAGE 490
FIGUKE 3=7 TYPE 20 PAGE 4]
FILGURE 3-4 TYPE ¢E PAGE 42
FIGUKRE 3=-9 TYPE CF PAGE 43
FIourt 3-10 GENERAL CONFIGURATION FOR A SUBTREE DELETION PAGE b6
FIGUKRE 3-11 SPECIAL CASE wHELKHE TFR=TA PAGE 57
FIount 3-12 SUHMTHRELE DELETION CORKRESPONDS TO A TYPE 2 DELETION ’ PAGE 58
F15UKL 4=1 A STHRANGE TKEE : PAGE 64
FIGURE 4=~-2 THE SPACE HAS BEEN ELIMINATED FROM THE TEXT OF FIGURE 64-] PAGE 65
FIGUFE 6=3 THE FOURTH A HAS BEEN ELIMINATED FROM THE TEXT PAGE 66
FIGUKE 4~-4 PFREORUER AND ENDORDEKR VISITS PAGE 71
FIGURE &-1 AN EXAMPLE OF A RIGHT THREADED PATRICIA TREE PAGE 78
FIOUkt 5=2 THE TWREFE OF FIGURE 5=]1 AS RUILT BY ALGOKITHM 2.2 PAGE 80
FIGURE 5-3 IF wk USE ALGURITHM 2.2 AND INSERT THE KEYS IN REVERSE ORDER PAGE 81
FIGUKE $=4 A BINARY TREE PAGE 87
FILGUKE S-S THE PREORDER SEQUENTIAL REFPHESENTATION PAGE 89
FIGURE 5=6 PFASS 1 CKEATES THIS FROM THE STRUCTURE OF FIGURE S5-1 FAGE 97
FIGUKe 5=7 THE SPECIAL SITUATION WHEKE LLINK(J) = 1 PAGE 98
FIounrt S5-8 Trt IMPORTANT LINK FIELDS DURING STEP 2 OF ALGOKRITHM 54367 PAGE 99
FIGUKE =9 AFTER STEP 2 OF ALGORITHM 543.7 PAGE 100
FIGURE 5-10 PREORUER SEQUENTIAL FORM wWITH LTAG AND RLINK COMBINEOD PAGE 1lua
FIGUKRE 6~1 SOME TEXT OF THE CALL FOR ACTION FILES PAGE 110
FIGURE 6=2 SOME OF THE OUTPUT PRODUCED FOR CALL FOR ACTION . PAGE 111

TABLE OF ALGORITHMS

Se3e5
#S.3.7
#85.161

k3
(9]

k-3
L] [] * 1 4
——N

2
.
—

-4
U NITNN=D>2DbWLFVEEI—=DD>WE »
v

e o o
o= N

-3
r

W S W= WwWwH IS =N

o & o e o o o ® & & o o ® ® & o & o L] L 4

® o o
—) e

3

ALGORITHM:
ALGURITHM:
ALGORI THM:
ALOGCRITHM:
ALGORTITHM:
ALGORITHM:
ALGURITHM:
ALGORITHM:
ALOGURITHMS
ALGOKRITHM:
ALGURETAM:
ALGOH]LTHMS
ALGORETHM:
ALGORITHM:
ALGOR I THM:
ALGURITHM:
ALGUN T THM:
ALGOKRI THM:
ALGURITHM4:
ALGUFITHM:
ALGORITHM:
ALGUKRITHM:
ALGOKRLITHM:
ALGORITHM:

CONVERT A KIGHT THREADED TREE TO PREORDER SEQUENTIAL
CONVERT TO PREORDER SEQUENTIAL FORM OVER THE SAME SPACE
CKEATE A RIGHT THREADED PATKRICIA TREE

DELETE A PATRICIA NODE FROM THE TREE

DELETE A SPECIFIC KEY FROM THE TEXT

DELETE CONTIGUOUS TEXT

FIND PDs TDe FTy TT

GET A NODE FROM A DOUBLY LINKED AVALIABLE LIST

GET A NOLDE FROM AN AVAILABLE LIST

INSERT = SEARCH FOR A NODE IN A DIGITAL TREE

INSERT A NtwW NODE INTO A PATRICIA TREE

INSERTY TEXT

LIST ALL MATCHES IN A PATRICIA TREE

POSTORLER TRAVERSAL OF STRUCTURE WITH COMBINED RLINK- LTAG

PREPAKRE THE STRUCTURE FOR SUBTREE DELETION

PRINT A TREE

RETURN A MODE TO A DOUBLY LINKED AVAILABLE LIST
RETURN A NODE TO AN AVAILABLE LIST

SEAKRCH FOKR A KEY IN A TRIE MEMORY

SEARCH FOR A NODE IN A PATKRICIA TREE

SEARCH THE PREURDER SEQUENTIAL STRUCTURE FOR A KEY
SEAKCH THROUGH STRUCTURE WwWITH COMBINED RLINK=LTAG

TRANSFOKRM RIGHT THREADED TO PREORDER SEQUENTIAL COMBINING RLINK=-LTAG

TRAVERSE A PREORDER SEQUENTIAL STRUCTURE IN POSTORDER

PAGE
PAGE
PAGE
FAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PACE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

93
94
B4
348

72
54
115
114
12
el
75
29
101
60
116
116
lla

25
vl
1ul
102
8y

1.0 Introduction

The effort to use computers to store and manage large amounts of
textual data continues to be one of the moﬁt formidable tasks confronting
the computer scientist, for it seems that information is being generated
at an ever increasing rate, almost in defiance of the attempt to contain
it. Part of the nroblem deals with human creativity and human articu-
lation, which cannot be computerized--at least not yet. Hence, we are
concerned here with that portion of the prdb]em that involves the manage-
ment of information and its rapid and efficient retrieval. In essence,
once information has been generated, we would 1ike to know how to struc-
ture it within the computer so that:

a). It is classified in some hierarchial or alphabetical manner.

b) It is stored as efficiently as possible within the confines
of the computer.

c) We can rapidly retrieve anything we want, with a minimal amount
of noise in the form of excess information.

d) We are free as much as possible from the restrictions imposed
upon us by computer manufacturers or--and more important--
inefficiently written programs.

It is toward this end that the author has chosen to further develop

PATRICIA], whose underlying concepts were discovered in 1968 by Dr. Donald

Morrison at Sandia Laboratories. PATRICIA is not "just another informa-

tion retrieval system." Rather, PATRICIA can be thcught of as a "corcept"

TPATRICIA is an acronym for "Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric.” PATRICIA is also the first name of Dr.
Morrison's wife.

which gives us a most natural and flexible means of classifying written
matter within a computer. The underlying idea involves a binary tree
search where individual bits of key words or phrases are used in deter-
mining the search path. But PATRICIA goes further than the ordinary bi-
narylsearch. The only bits that are looked at are those pertinent in
determining the search path. If a key word or phrase is identical to
the key being compared, all identical bits in the two keys are totally
ignored. Thus, if two sentences differ only in the last letter, then in
comparing these two sentences, PATRICIA would not bother with anything
except the last letter of each sentence, ignoring all the preceding
letters.

PATRICIA can search for key words or phrases of arbitrary length
and almost arbitrary format. It defines a structure that automatically
orders information both hierarchically and alphabetically. Moreover, the
actual information is not rearranged or altered in any way, and yet the
search for a desired piece of information is accomplished very quickly.
As a practical example, consider the problem of locating an individual
income tax return that exists somewhere on file containing 100,000,000
other tax returns. PATRICIA could find it in 1ess~than one second on
a medium sized 360 system. Moreover, only two or three accesses to the
file would be required. |

So why are there not more computerized retrieval systems using PATRICIA?
The apparent problems are given below.

1) It is quite difficult to alter the complex PATRICIA data

structures without rebuilding them, and the rebuilding
process is of necessity quite lengthy.

2) Space restrictions are imposed upon PATRICIA by its data
structure.

3) There exists very little published material on PATRICIA be-
sides the work of Knuth and Morrison.

This dissertation attempts to solve all three of these problems.
The first problem is solved by including a group of heretofore unpublished
algorithms that will perform any type of structural alteration that a
practical application might require. These algorithms allow us to alter
both the PATRICIA structure and the textual information from which the
structure is built. The space restriction of_the second problem is al-
leviated by showing how we can reduce the structure to about 40% of the
size of currently used PATRICIA structures. The third problem is attacked
by presenting a complete and logically organized set of algorithms. Per-
formance is evaluated and operating times are given for a typical medium
scale computer system.

The following sections of this chapter are concerned with structures
that have certain characteristics in common with PATRICIA, but are more
elementary. A knowledge of these structures will be of assistance in
understanding the more complex PATRICIA structure.

Readers already familiar with PATRICIA may wish to skip to Chapter
Two, which gives the essential algorithms required to build a PATRICIA
structure, search for a particular entry, and list out all occurrences
of the entry.

Chapters Three, Four, and Five constitute the heart of the disserta-
tion, with Chapter Three being the first chapter dealing with unpublished
algorithms. The important PATRICIA node deletion algorithms are thoroughly
described, and their use is extended to deletions of entire substructures
within a PATRICIA structure.

Chapter Four then uses the algorithns developed in Chapter Three
as part of a package that allows portions of an existing body of infor-

mation to be altered. At this point the set of algorithms is complete

from the standpoint of any user who might be working with material that
is frequently altered.

In Chapter Five we propose and implement a standard structure for
PATRICIA, which then leads itself to further reduction. In fact, four
of the six individual elements of the PATRICIA data structure are elimi-
nated, resulting in a great saving of space.

.Chapter Six gives several practical examples, including the example
afforded by the table of contents and index to this dissertation. More-
over, some additional dirty tricks are discussed which cculd be employed
in the campaign tb optimize further the PATRICIA structure.

Several appendices are provided. For quick reference Appendix E
reproduces the description of the data stru;ture terms given in the next
section. Appendix A contains some peripheral algorithms, and Appendix B
explains how thz test program operates. (The test program checks all
the algorithms of chapters two through five.) Appendix C gives timing
estimates for most of the algorithms and shows specific times for a
360/50. Appendix D develops and proves several important theorems, and

proves the validity of some of the original algorithms.

1.1. Terminology

This section describes terminology that is used throughout the
dissertation. Most terms are commonly encountered in the study of Data
Structures, and are described further in Knuth (1968) Chapter Two. For
convenience this section is reproduced in Appendix E.

AVAILABLE LIST--A 1ist of empty nodes. (A process which re-
quires space for a new node can always get one by picking the top or

bottom node from an available list.)

AVAIL LIST--Identical to an available list.

ANCESTOR--Within a tree, an ancestor of node X is on a path
between node X and the root of the tree.

BACKWARD POINTER--A 1link field in a PATRICIA node, X, that points
to X or to some ancestor of X.

BINARY TREE--A data structure in which each node has no more
than two nodes hanging from it. These two nodes are commonly called
"ROOTS of LEFT and RIGHT SUBTREES."

. EBCDIC--A specific internal code where 8 bits represent one
character within the computer. For example, the EBCDIC value of
of "A" 1is binary "11000001."

ENDORDER TRAVERSAL--A method of Tooking at all the nodes of a
binary tree in which we first look at all the nodes in the left subtree
of a node, then all the nodes in the right subtree of the node, and
finally, the node itself. Each node is "looked at" exactly once, al-
though the algorithm for effecting an endorder traversal may actually
pass by the node more than once.

FIELD--The smallest entity of information contained in a node.
A field may be one or more binary bits in size.

KEY--A contiguous string of characters constituting a word or
phrase that we wish to search for and, hence, use in some comparison
“scheme.

LAMBDA ("A")--See NULL POINTER.

LERT LINK--In a binary tree, the link field pointing to the left
subtree of the node.

LINK--The specific field of a node that points to the next node
in a 1ist. (Actually, a given node can point to more than one node:
for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random,
but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more
fields. (An example--a node could be likened to a single 1ibrary
catalogue card, and a field to an individual entry on the card, such
as the author's name.)

NULL POINTER--(Sometimes called "LAMBDA" or "A"). A specifically
valued link field that indicates the last node in a 1ist. Vhen any link
field points to no other node, it is given a value called "X (frequently
zero). le sometimes say that this Tink "points to XA."

POINTER--Has the same function as a link, except sometimes a
pointer is not contained in any node.

POSTORDER TRAVERSAL--A method of looking at all the nodes of a
binary tree in which we first look at all the nodes in the left subtree
of a given node; then we look at the node; then we look at all the nodes
in the right subtree of the node.

PREORDER TRAVERSAL--Still another method of looking at all the
nodes in a binary tree, in which we first look at the node, then the
nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field pointing to the left
subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right
links of terminal nodes point to the next node that would be visited
if we were traversing the tree in postorder.

ROOT--In a’ tree, the node from which all other nodes
hang. (Thus, computer trees are usually upsidedown.)

SUBTREE--A branch of a tree. Pick any node in a tree--it is the
root of a subtree.

TERMINAL NODE--A node in a binary tree that has no left and/or
right subtree. In a PATRICIA tree, the affected right or left 1ink then
becomes a '-ickward pointer.

THREAD--The same as a backward pointer.

VISIT--A term for what we do when we "look at" a node during a
preorder, postorder, or endorder traversal. Usually a visit involves
performing an algorithm, or printing out information.

1.2 Searching for Keys

In every information retrieval system, the main concern after we
have stored the information is how to get it back out. Usually we will
only be interested in a small fraction of the total amount of information
stored, such as a particular student's record in a university student
information system, or a list of constituents in voting district three,
or all articles about "Computers and Chemistry" in a library. Moreover,
in many situations the speed of retrieval is quite important--such as
in an airline reservation system. In all cases we may reduce the problem

to: "What is the best way of finding all keys that match a given key?"

A "key'

security number, a subject topic--in fact any contiqguous string of symbols

as used in this dissertation could be a student name, a social

that is supposed to occur one or more times within the main body of

information.
For background purposes let us examine two methods of searching

for matches to keys; these methods are predecessors to PATRICIA and are

in widespread use today.

1.3. Example of a Structure that is Designed for Fast Key Retrijeval

This data structure, which was described by Fredkin (1960), looks
at every letter of a key, starting from the left, until it can be deter-
mined where the key is located in the main.body of information. The
structure commonly goes by the name "TRIE" memory (where "TRIE" apparently
‘refers to reTRIEval) and should not be confused with a "tree," which is
an entirely different structure.

"TRIE" memory is laid out in table form as shown in figure 1-1.
Each vertical column corresponds to a "node" (in later sections, a node
will refer to a much smaller entity--a "node" in a binary tree). The
scheme used to look for a key is rather simple. Let us assume we are
searching through the TRIE memory of figure 1-1 for the key "THEN."
Initially, we go to the "T" row of the fifst node. The "3" means that
we continue our search by going to node 3 and looking at the second
letter, "H." The "H" row of node 3 contains a value of "4", which means
thatvwe go to the 4th node when we look at the 3rd letter, which is an
"E." Similiarly, we arrive at the 5th node and go to the appropriate row,

which is "N." The entry "(THEN)" means that we have found a key, and

much now check to see if it is the correct one. If it is not, our key

(A) (THE)
Al 2 (TAR)
B
C
D
E 5
F
G
H 4
1 (TIP)
J
K
L
M
N (AN) (THEN)
0 (TOP)
P
Q
R
S
T 3 o

Figure 1-1. A sample TRIE memory. Each vertical column corresponds
to a node. The keys inserted were, in this order:
THE, AN, A, TAR, THEN, TIP, TQP,

is not in the TRIE memory.

The above example illustrates the type of search that will be
under discussion throughout the dissertation. The search involves looking
at the first letter (or digit) then going on to the next letter, repeating

the process until a match to the key is found.

1.3.1 Some Characteristics of the Algorithms in this Dissertation

The informal discussion just giveh should aid in the analysis of
the more formal algorithm given below, which is typical of those through-
out this dissertation and closely follows the style of Knuth. For the
most part, certain variable naming conventions have been followed. P,

Q, and R always refer to pointer variables, as do (usually) I, J, X, Y,
and Z. The letter "K" frequently refers té a character string or key
which we are searching for. Individual fié]ds of nodes are always given
variable names with at least three letters. In later chapters, we will
introduce "ATOP" which points to the top node of an available Tist.
Algorithms with one or more "#" in the margin next to their number merit

special attention.

1.3.2 Algorithm: Search for a Key in a TRIE Memory (Knuth 1973)

In a TRIE alphabet, we allow N characters--normally all the letters,
digits, and special symbols. Assume that if the characters are coded in,
say, EBCDIC code, they will be translated so that they have integer values
between 1 and N. Let each node consist of a vector of N subnodes (a sub-
node is a single rectangle in figure 1-1). Each subnode has two fields:

a PTR field and a one bit TAG field. The PTR field can either be empty

(indicated by PTR=0) or it can point to another node (indicated by TAG=1)

10

or it can point to the target key (indicated by TAG=0). For simplicity
a key is assumed to be a single word, terminated by a blank. In the
following algorithm, P is a node pointer and Q is a subnode pointer.

Note that 1 < Q < N.

Input: Key we are searching for.
Output: Location of the matching key.
1) Set P <« 1 (P points initially to the first node), I « 0,

K « key we are searching for, (K will be followed by a blank.)

2) Set I «I+1, Q «Ith character of K. (Initially, look in the
first node at the Qth row. If Q=blank, then K has been com-
pletely scanned, and we will end up in step 3 or step 5.)

3) If PTR (P,Q)=0 (i.e., the subnode is empty), then ¥ is not in
the TRIE memory. (Ve may insert K by setting PTR (P,Q) <«
the location of K, TAG(P,Q) <« 0)

4) If TAG (P,Q)=1 (i.e., the subnode points to another node),
set P «<PTR(P,Q). Go to step 2. (Go to the proper node and
compare to the next character in the key.)

5) We know that PTR (P,Q) points to a key. If we are sure that

.K is in the table, then PTR (P,0) gives its location; other-
wise, compare K with the key at PTR (P,Q).
END (End of Algorithm)
Although this example is inefficient insofar as five nodes are
required for seven keys, most TRIE memories are much more efficiently
organized, since the subnodes fill up as more keys are introduced. (See

Knuth (1973) page 482 where 12 nodes are used to represeant 31 keys.)

1.4 The Digital Tree

The digital tree is somewhat similar in concept to the ordinary
lexicographically ordered binary tree, an example of which is shown in

figure 1-2.

Figure 1-2.

11

CAT
BEANS Doq\\\\
ANTS BUGS PICNIC
MESSY

A lexicographically ordered binary tree. Since "BEANS"

is in the left subtree of "CAT", we know that "BEANS"
alphabetically precedes "CAT". Since "MESSY" is in the
right subtree of "CAT", we know that "MESSY" alphabetically
follows "CAT". A postorder traversal Tlists the keys in
alphabetic order.

12

The difference is that the key insertion process is based on
whether a particular bit positionis a binary "1" or "0", rather than
whether one key is alphabetically "less" or "greater" than another key.
Bits are scanned one at a time to determine the position that a key is
to occupy in a Digital tree. The advantage this tree has over the tree
in figure 1-2 is that the Digital tree is relatively balanced, regard-
less of the order of insertion. (It is well known that a lexicographi-
cally sorted tree can be very badly out of balance, depending upon the
order of key insertion. Note Qhat happens when we build the tree of
figure 1-2 by inserting the keys in the order: ANTS, BEANS, BUGS, CAT,
DOG, MESSY, PICNIC.)

1.4.1 Algorithm: Insert--Search for a Node in a Digital Tree

Let KEY be the key we are inserting or are looking for. Let each
tree node be composed of a LLINK field, a RLINK field, and an INFO field
(which will point to or contain a key),. Initially, TOP points to the
root of the tree. AVAIL is a pointer to an available node, and "A" de-

notes the null link.

Input: KEY

Output: The location of the match, or the updated tree if we
are inserting a new key.

1) Set X « TOP, K « KEY. If X=X, then, to insert the key, set
Z « AVAIL, LLINK (Z) « X, RLINK (Z) « A, TOP « Z,
INFO (Z) « KEY, and exit the algorithm.
Otherwise (X#)) proceed to step 2.

2) If KEY = INFO(X), we have a match, else set B = first bit
of K, shift K lTeft 1 bit.

3) If B =0 then go to step 4; else to to step 5.

13

4) If LLINK (X) # A, then set X « LLINK (X) and go to step 2;
"else go to step 6.

57 If RLINK (X) # X then set X « RLINK (X) and go to step 2.

6) (We had no match--insertion is done here.)
Set Z « AVAIL, LLINK (Z) +A, RLINK (Z) <A , INFO (Z) +« KEY.
If B = 0 then set LLINK (X) « Z; else set RLINK (X) « Z. Exit
the algorithm. (If the bit we are locking at is a 0, the key
is inserted at the left; if it is a 1, we insert to the right.
Nothing is sacred about this scheme--it could easily have been
reversed.) '

END (End of Algorithm)

The algorithm was used to create a tree of the binary numbers 000
through 111, inserted in ascending order. That tree is shown in figure
1-3. If the numbers had been inserted in descending order, the result
would have been the tree in figure 1-4.

It should be noted that the maximum depth, or level, is 3, which
happens to correspond to the number of bits in the key. This is the worst
case. For longer keys (coded, for example, in EBCDIC) the maximum level
will be much smaller than the number of bits in the key. Unfortunately,
even though the digital tree is relatively balanced, it does not pre-

serve lexicographic order. Thus, when we traverse the tree of figure

1-3 in postorder, we get the nodes out in the following sequence:

001 010 011 000 101 .100 110 111

14

oo(//OOQ\\\\\
NN

Oi10 {o] 110

N ~.

oll i1

Figure 1-3. A Digital Tree
The numbers 000-111 were inserted in ascending order.

/ \
otl "o
////’ \\S\\i() ////
OOl Ke]
~ -

000 100

Figure 1-4. The numbers have been inserted in descending order.

15

2.0 The Essentials of PATRICIA

We are now ready to discuss the essential workings of PATRICIA, and
to describe the basic algorithms for building the structure and searching
through it. It is of some assistance to noiice the similarities between
PATRICIA and the structures described in Chapter One. As does the digital
tree, PATRICIA uses individual bits to search for a key. However, when two
keys have identical bit patterns for, say, N bits, these bits are skipped
over. This eliminates the unnecessary comparisons of TRIE memory (for
example, the letters "THE" of keys "THE" and "THEN"--see figure 1-1);
moreover, unlike the digital tree, PATRICIA preserves lexicographic order
in the manner of figure 1-2, and is not sensitive to the order in which
keys are inserted.

An example of a PATRICIA tree is given in figure 2-1. Let us assume
that our text is a string of binary "1"s and "0"s. Suppose we are search-
ing for a key that starts with "10100." (PATRICIA only finds keys that
§§gg£_with'a given pattern, but the pattern may be of arbitrary length.)
We begin our search at the top of the PATRICIA tree, where we immediately
advance 3 bits before making any comparison. This is a result of the fact
that all keys in this particular structure start with the same two bits,
although we do not see the value of these bits when we are searching. Hence
they and other skipped bits are indicated by "X"s. The 3rd bit of our key
js a "1"; thus we go to the right. (A "0" would have caused us to go to
the left.) At this point we know that our key, in fact all keys in the
right subtree, start with "XX1 - -." U4e advance two more bits and
compare again. This time, our input key of "10100" produces

“a "0" (3+2= 5th bit position). Hence, we know that our

start here

/A

advance 3

bits compafed so far xx0 xx1 bits compared so far

advance 3 advance 2

xx0xx0
actual
keys 100100 - - - 100101 - - - 10100 - - - ’10101 - - -
! :' :
' ! t '/’
! ’ ' P dotted
; . : L, arrows give
. ' . L, actual location in
\ ' ' .7 . text of keys
\ f o L7
\ ! IR
‘ ‘ |
\V »’/ L”’ \I(
Text: 1 60601 001 01 01 0011 01

(starting positions of keys are underlined)

Figure 2-1. A simple PATRICIA tree. To search for a particular key, start at
the top (node "A") and go to the left (node "B") where we advance
3 bits. Ifthe third bit of our key is a zero go to the left (node
"C"); otherwise go to the right (node "D"). Eventually we get to
a dotted arrow, which tells us where to make the comparison with

the text. We must go to the text to see if our key is actually
present.

9t

17

key starts with "XX1X0 - - -." Since we have reached the end of the
tree (and thus the search path) we now go to the text Where directed

and pick up the string "10100 - - - - ", which we compare with our key.
In this case, they match. But suppose our pattern had been "11110 - - -"?
The PATRICIA search would lead to the same place, but obviously the keys
do not match. The mismatch is not noticed because of the bits we skipped
over in our search down the tree. Hence we must always check the input
key against the text that PATRICIA points fo--this is the only way of
verifying the existence cof the key in the text. The great advantage of
PATRICIA, however, is that we only do this once--namely at the end of a
search. Moreover, we know that if our input key doesn't match the text
starting in the position indicated by PATRICIA, ther it does not occur

in the text at all as a key (although the bit pattern might actually
occur in the text as a non-key).

Suppose, for example, we wish to insert in the PATRICIA tree a
key starting with the bit pattern "1110010 - - - -." This would require
a comparison at a bit position, going from left to right, where this key
first differs from all others in the tree. In this case, the key first
differs from "10100" at bit position 2. But the tree of figure 2-1 has
no comparison at this bit position. Hence, our tree would need a com-
parison at bit position 2, which would préduce the structure shown in
figure 2-2.

A very important property of the PATRICIA tree is that it can be
thought of as a "free form" hierarchial structure. Thus, in figure 2-2
all keys starting with "10" are contained in the subtree at "B"; hence,
if our input key were "10". we would find an entire subtree of matching

keys--namely "100100 - - -", "190101 - - -", "10100 - - -", and "10101 - - -",

actual
keys

advance 3

x00xx0

100100 -

Figure 2-2.

start

advance 2

x0 x1 Dbits compared

advance 1 4

advance 2

x01x0

x00xx1 x01x1

- - 100101 - - - 10100 - - - 10101

If we add a key that starts with "11 - - -" to the tree
of figure 2-1, then that tree is changed into the one
shown above. Note that the left subtree of node "E"

is identical to the subtree of node "A" in figure 2-1,
except the "advance 3" of node "B" is changed to "advance
1". This is because node "E" advances 2.

8l

19

The actual data structure of a PATRICIA node is shown below. We
will be working with this data structure throughout the remainder of this

dissertation.

R
L'N

| RIC,
PTRISKIP A1 TING "IN

G

Here: PTR points to the starting position of a key in the text.

SKIP gives the number of bits to advance before making the next
comparison.

LLINK, RLINK are pointers to left or right subtrees (in figure
2-1, represented by lines ending with arrows) or are pointers
to PTR fields where we make a comparison with a key in the
text (in figure 2-1, represented by lines ending with
asterisks).

LTAG, RTAG are one bit fields indicating whether LLINK, RLINK
points to a key. LTAG, RTAG may, when convenient, be repre-
sented by the sign bits of LLINK, RLINK.

A PATRICIA node actually contains two separate pieces of infor-
mation. Assume we are given a node, X. Then during a search, SKIP(X)
tells which bit in our input key to look at next, going to the left sub-
tree of X if this bit is a "0" and to the right subtree of X if the bit
is a "1". PTR(X) points to the start of a specific key in the text. How-
ever, PTR(X) is not looked at when we pass by node X in a search down the
PATRICIA tree. When we reach the end of a search path, a backward pointer
(some LLINK or RLINK where LTAG or RTAG = "1" - solid curved lines in
figures 2-3 amd 2-4) points to node X, meaning we go to the text position
at PTR(X) to get the key which our search path led us to. Each PATRICIA
node will be pointed to by exactly one such backward pointer. Moreover,

PATRICIA is constructed so that this backward pointer (or thread) always

originates either in node X or in some descendant of node X. MNothing is

20

sacred about this; in fact the PTR fields need not be stored in the
PATRICIA tree at all. Moreover, we could have the LLINK or RLINK fields
point directly to the text. Unfortunately, this would be quite wasteful,
for usually there are far fewer keys (hence nodes) than there are cha-
racter positions in the text. Thus several extra bits would be required
for a link field to represent a textual character position; these bits
would be wasted whenever the LLINK and RLINK fields were used as links.

An actual example of a PATRICIA data structure (hereafter called
a PATRICIA tree) corresponding té the example of figure 2-1, is given
in figure 2-3. The SKIP fields, which correspond to the "advance" fields
of figure 2-1, are indicated by the numbers above the parentheses. The
curved lines are RLINK, LLINK fields in nodes whose RTAG or LTAG fields
are "1". These curved lines correspond to those lines in figure 2-1
which end with asterisks and point to specific PTR fields. The PTR fields,
which give the text position for starts of keys, are enclosed within
parentheses. The dotted lines emanatiné from the PTR fields show where
in the text the PTR fields refer to. They perform the same function as
the dotted lines of fiqure 2-1. However, in figure 2-1 they are not
specifically associated with any node. Note that the node at START has
no RLINK or SKIP fields. This node serves mainly as an initializing
structure (a PATRICIA tree with only one key) and a place to hold a PTR
field.

The text is considered to be one contiguous character or bit string,
each character position (including blanks) being numbered consecutively.
Depending upon context, any character position may be indicated as the
starting point for a key and thus be entered in a PTR field.

Perhaps the most distinctive feature about the PATRICIA tree is

the fact that a given key has no fixed size and is unique. Keys are of

O

)
.,
LA
54..‘....‘.
-

bit position in text:

Figure 2-3.

3
(1)
‘:B
1 00 1 01001101 ----
1 2 3

9 10 11 12 13 14 15 16 17

The actual representation of the PATRICIA tree of figure 2-1.
The SKIP fields, which correspond to the "advance" fields of
figure 2-1, are indicated by the numbers above the parentheses.
The curved lines are RLINK, LLINK fields in nodes whose RTAG

or LTAG fields are "1". These curved lines correspond to those
Tines in figure 2-1 which end with asterisks and point to
specific PTR fields. The PTR fields, which give the text posi-
tion for starts of keys, are enclosed within parentheses. The
dotted lines emanating from the PTR fields show where in the
text the PTR fields refer to. They perform the same function
as the dotted lines of figure 2-1. However, in figure 2-1

they are not specifically associated with any node. Note that
the node at START has no RLINK or SKIP fields. This node serves
mainly as an initializing structure (a PATRICIA tree with only
one key) and a place to hold a PTR field.

L2

22

arbitrary length, each starting at a position indicated by a PTR field
and continuing to the end of the entire character string, or text. In
actuality, we will not be looking for equality between textual keys and
some specific argument key; rather, PATRICIA will find all keys in the

text that begin with a specific key (Knuth, 1973). Consider, for example,

the sentence:
THIS IS THE HOUSE THAT JACK BUILT.

Then if we wish to indicate the start of every word as a key, the
PATRICIA keys would actually be:
THIS IS THE HOUSE THAT JACK BUILT.
IS THE HOUSE THAT JACK BUILT.
THE HOUSE THAT JACK BUILT.
HOUSE THAT JACK BUILT.
THAT JACK BUILT.
JACK BUILT.
BUILT.
Of course, not every word need be a key; for example, if we wanted
keys only at the start of the words BUILT, HOUSE, and JACK, we would have:
BUILT.
HOUSE THAT JACK BUILT:
JACK BUILT.
The problem of what to call a "key" actually falls upon the user,
and Wi]] vary depending upon the application. For example, to produce
a concordance, we would want every word to be the start of a key, whereas
we would only want pertinent words if we were creating an index to a

technical report. If a variable length field is used as a descriptor,

H E H O U S§ E T H A T J A C K B U I L T
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

w0 -

(1)
3 /
(6)
“ \
1 18
(24)\.3 (9)
1 I/////’ 1
(29) (19)

2
\\\\\3 Example: (19) corresponds to the
(13) key "THAT JACK BUILT".

C

Figure 2-4. A PATRICIA tree built by algorithms 2.2 and 2.1.
Every word in the sentence is the start of a key. The
PTR field is parenthesized. The SKIP field is directly
above the PTR field. LLINK, RLINK fields are indicated
by the lines. Curved 1ines mean that LTAG or RTAG = 1.
Note that the top node has no SKIP or RLINK. EBCDIC internal
code is used.

€

Start
(skip zero)

3
Xy\
1 18 . :
\ \ T H 1
XX00 XX01 XX1X XXXX XXXX XXXX XXXX 1

JACK - - - THIS IS - - -
3 1 XX1X XXXX XXXX XXXX XXXX 0

T H . E
XX00 0/ XX00 1 XX1X XXXX XXXX XXXX XXXX 01
BUILT THE HOUSE - - -
T H A
3 XX1X XXXX XXXX XXXX XXXX 00
THAT JACK - - -
\ XX00 1XX1

XX00 1XXO0 IS THE - - -

HOUSE THAT - - -
Figure 2-5. The bit comparisons that are actually

made. An "X" indicates that the bit
is skipped. EBCDIC code was used.

H2?

#

we would flag it as a key. Thus, in a student information system the
start of the name field (in addition, probably, to the ID number field)
would be flagged as a key. In all of the above cases, the crfteria for
determining keys are applied to the fext during the PATRICIA tree building
phase, which is the one time when the text is completely scanned. The
text, "THIS IS THE HOUSE THAT JACK BUILT," where every word indicates the
start of a key, was used by algorithms 2.1 and 2.2 to build the PATRICIA
tree of figures 2-4 and 2-5. Since the insertion algorithm requires the
use of the search algorithm, the search algorithm is presented first. It
does not refer to the text until the time has come to determine whether
the key being. searched for is present. This is very important, since the
text is probably quite lengthy and tnus is relegated to secondary storage,
such as a disk or a drum. An access to such storage is extremely slow com-

pared to an access to main memory, which holds the PATRICIA tree.

2.1 Algorithm: Search for a Node in a PATRICIA Tree (Knuth, 1973)

This algorithm will search a PATRICIA tree for a specific key, K.
Assume the pointer TOP points to the root of the tree. In subsequent
chapters wé will develop several algorithms where LTAG and RTAG are re-
placed by signed LLINK and RLINK fields. For this reason, steps in
square brackets may be substituted if we w{sh to represent LTAG or RTAG =1
by a negative LLINK or RLINK. Throughout the remainder of this dis-
sertation, P and Q Wi11 refer to specific pointer variables that are

used by this algorithm.

Input: K, and the number of bits in K.

Output: P (which points to a subtree containing all the matches of K).

1) Set P <« TOP, J <~ 0, N « number of bits in K,
(See section 2.1.1 for comments about this algorithm.)

2)

3)

4)
5)

6)

Set Q « P, P« LLINK(P). If LTAG(Q) =1, go to step 6.
[Set Q < P, PP « LLINK(P), P < |PP|. If LLINK(Q) <0, go to
step 6].

Set J « 3 + SKIP(P). If J >N, go to step 6.

If the Jth bit of K=0, go to step 2, else go to step 5.

Set Q « P, P <« RLINK(P). If RTAG(Q) = 0, go to step 3.
[Set Q <« P, PP « RLINK(P), P « |PP| if RLINK(Q) >0, go to
step 3.] :

Compare K to the key in the text pointed to by PTR(P). If
they do not match, then K is not in the text. Assume that if
they do not match, the first mismatch occurs in the L + 1st bit.

END (End of Algorithm)

2.1.1. Comments on Algorithm 2.1.

'Step 1.
Step 2.

Step 3.

Step 4.
Step 5.

J is the current bit comparison pointer.

Moves to the left subtree. Initially (for the first comparison)
this is always done. Subsequently, it is done whenever a "Q"
bit i1s encountered in K. An LTAG or RTAG equal to "1" indicates
that LLINK or RLINK points to a node whose PTR field gives the
starting character position of a key in the text.

Skips over bits that are identicg] for all entries in the
subtree at P. So far, our search has gotten us through the
first J bits of the key. If J>N, then at this point all com-
parison bits will have been checked, and we will have (poten-
tially) a subtree of matching keys.

Determines whether to go to the left or to the right.

Similar to step 2, except we are moving to the right.

27

Step 6. Since we have checked all comparison bits, we know that if K
matches any key, it matches the key at PTR(P). If we compare
these two keys and they do not match, we compute a value for L,
where L+1 is the first bit (going from left to right) that is
different for the two keys. L is used by algorithm 2.2 if an
insertion is to be made. If the keys do match, we may wish to
invoke algorithm 2.3, which wi]]lfind all matches. Multiple
matches are indicated if PP is greater than zero,

which results when going to step 6 by way of step 3 when J>N.

2.2 Algorithm: Insert a New Node Into a PATRICIA Tree (Knuth 1973)

The insertion algorithm, which calls the search algorithm, is
given below. It requires only two references to the text. Again, steps
in square brackets are substituted when we‘are using signed LLINK and
RLINK fields instead of LTAG and RTAG. T is a temporary variable and
P, Q, and L are values returned by algorithm 2.1. (L+1 is the first bit
encountered, going from left to right, where twe keys are different.)

(See section 2.2.1 for comments about this algorithm.)

Input: The key we wish to insert in the PATRICIA tree.
Output: The undated tree.

1) Set K <« key we wish to enter into the PATRICIA tree.
R « AVAIL, PTR(R) <« key position in text.

2) Perform algorithm 2.1. It will terminate unsuccessfully,
since presumably K is not present, and will return values for
L, P, and Q.

3) If L <dset N« L (L+1 is the position of the first non-
matching bit), perform algorithm 2.1 again, but exit before
executing step 6. It will return values for P and Q.

4) If LLINK(Q) = P, set LLINK(Q) « R, T < LTAG(Q), LTAG(Q) « 0
else set RLINK(Q) « R, T « RTAG(Q), RTAG(Q) « 0. [IfILLINK(Q)|=
P set T « LLINK(Q), LLINK(Q) « R, else set T « RLINK(Q),
RLINK(Q) « R.]

2.2.1

5)

6)

28

If the L + Tst bit of K = 0, set LTAG(R) « 1,
LLINK(R) <« R, RTAG(R) < T, RLINK(R) « P, else set RTAG(R) « 1,
RLINK(R) <« R, LTAG(R) « T, LLINK(R) « P. [If the L + 1st bit
of K =0, set LLINK(R) « -R, RLINK(R) « P * SIGN(T), else set
RLINK(R) <« -R, LLINK(R) « P * SIGN(T)].

If T=1 [if T<C] set SKIP(R) « 1 + L - J. OQtherwise. set
SKIP(R) « 1 + L - J + SKIP(P), SKIP(P) «J - L - 1.

END

Comments on Algorithm 2.2

Step 1.

Step 2.

Step 3.

Step 4.

Algorithm 2.1 will determine N, the number of bits in K.
(Normally, we will set N to an arbitrarily large value.)

We obtain a node from an AVAIL lfst and store the PTR field.
0f course, the text has been looked at in order to obtain

the key. This is the first of two text references.

The second text reference occurs at step 6 of algorithm 2.1.
Presumably, if the key had been found, an error message would
be printed, because the key cannot already be present in the
PATRICIA tree.

L is found in step 6 of algorithm 2.1. If L<J, then somewhere
before we reached a terminal node, there was a mismatch. We
already know the search path through the PATRICIA tree, we
just don't know how far down this path we must go. For this
case, the new node is inserted within the tree rather than as
a terminal node. The SKIP fields on the path to this node will
add up to a value equal to L+1, which is the first point at
which this key differs from those already encountered on the
path.

The new node is inserted to the left or right, depending upon

the last successful bit comparison.

Step 5. The new PTR field will be to the left if the L + 1st bit
of K is 0 (recall that the L + 1st bit is the first non-
matching bit), and to the right if the L + 1st bit of K is 1.

Step 6. If T =1 [or is < 0], the node is terminal, and we need only
find the proper value for its SKIP field. Otherwise, the new
node is internal to the tree, and the SKIP field of the fol-
lowing node must also be adjusted. In any case, the sum of
the SKIP fields leading to the new node gives the first bit
position of a misﬁatch (i.e. L+1).

2.3 Algorithm: List all Matches in a PATRICIA tree (suggested by
Knuth, 1973, page 501 #14).

If more than one match for a key exists, this algorithm is used to
1ist all occurrences in aiphaBetica] order--for example, if the key were
"T", then we would find a]i vords starting with "T". Note that the al-
gorithm also may be invoked for the case- of exactly one match.

Let PP point to the root of the subtree containing all the key matches.
PP is returned by a call to algorithm 2.1, and may already point to a
PTR field, indicating a single match. For this algorithm, sign bits have
been used in place of LTAG and RTAG, which means that a similar version
of algorithm 2.1 must be employed. Also, for this and subsequent traversal

algorithms, "A" is a sequential stack.

Input: PP (as returned by algorithm 2.1)

Output: A Tist of all keys in the subtree pointed to by |PP|.
or in the single PTR field pointed to by |PP|.

1) (Set stack empty, prepare to traverse the subtree at |PP|)
Set ATOP < 0, set X « PP

2) If X >0, go to step 5.

3) "Visit" the key pointed to by pTR (]X])-. .
(X is a backward pointer, and hence is negative.)

4) If ATOP = 0 exit, else go to step 6.
(If the stack is empty, exit.)

5) (Stack node X --we shall visit it later)
< Set ATOP « ATOP + 1. Set A(ATOP) « X. Set X « LLINK(X),
go to step 2.

6) (Get a node from the stack)
Set X <« A(ATOP), ATOP <« ATOP - 1, X <« RLINK(X), go to step 2.

END
This algorithm is a variant of a postorder traversal (Knuth, 1968).
By "visit," we mean "1list the key in whatever form desired." If it is
only necessary to indicate where the matches occur, we do not need to
refer to the text; we simply Tist the PTR fields. If we wish to see the
first several characters of the key, or the sentence containing the key,

then we must refer to the text once for each key visited.

2.4 How Well Balanced is a PATRICIA Tree ?

In éubsequent chapters, we shall see that PATRICIA,as Knuth puts
it, "is a little tricky and requires close scrutiny before all her beauties
are revealed." One of her more useful beauties is the fact that a PATRICIA
tree is usually well balanced. In fact, the only way to create an un-
balanced tree is to specify a series of keys whose starting characters
are not only similar, but propogate this similarity. Thus, consider the
text:
HIS DOG SAID, "BOW WOW." HARRY'S DOG THEN SAID, "BOW WOW BOW WOW."
THEN JOHN'S DOG SAID, "BOW WOW BOW WOW BOW WOW." MARTHA'S PARROT
SUPRISED US WHEN IT SAID, "BOM WOW BOW YOW BOW WOW BOW WOW."

If every word in the above text is the start of a key, the PATRICIA

J1

tree will be relatively balanced, except for projecting braches of

"SAID BOW WOW" (See Appendix B.2)

2.5 Conclusions - Summary of Chapter Two

In this chapter, we have discussed the basic concept of PATRICIA
and given the data structure which will be used throughout this disser-
tation. We have presented three important algorithms for:

a) Searching through a PATRICIA tree (algorithm 2.1).

b) Building a PATRICIA tree (algorithm 2.2).

c) Listing all matches t» a given key (algorithm 2.3)

Moreover, we have explained that:

1) Upon building a tree, PATRICIA arranges nodes so that a post-

order traversal lists keys alphabetically.

2) A PATRICIA tree is usually well balanced due to the nature of
most keys.

3) It is the user's responsibility to decide upon the criteria
for determining his keys; during the PATRICIA tree building
phase, these keys are added to the tree by scanning the text
and picking them out. This is the only time that the text as

a whole is referenced.

32

3.0 Altering the PATRICIA tree - Node Deletion

The preceding chapter explains how to build a PATRICIA tree and search
through it for a particular key. Unfortunately, many real applications
require that the structure be subsequently A]tered--for example, we might
want to eliminate from a certain PATRICIA tree the specific key "CHOCOLATE
PUDDING - - - - - ", or the subtree containing all keys starting with
"CHOCOLATE". Without algorithms to accomplish the above types <f altera-
tions, the practical applications of PATRICIA are limited. However, if
we can discover algorithms to perform such alterations, then PATRICIA
becomes a powerful method for handling and updating large files containing
variable Tength keys. The node deletion algorithms presented in the nex:
few sections accomplish such alterations to a PATRICIA tree; moreover the
algorithms are of additional importance in that they are used by thz text
alteration algorithms of Chapter Four.

Consider the problem of deleting a singlekey, The key is pointed to
by some PTﬁ field in some node, X. To delete the key we must remove this
PTR field. Moreover, node X is pointed to by some backward pointer originat-
ing either in node X or in some successor to node X--namely the node at the
end of the search path to our key. The final comparison in this search path
must also be deleted--this involves eliminating an entire node.

Let us examine the different substructures that can occur within
a PATRICIA tree. We start with two types, illustrated in figures 3-2
through 3-4. Figure 3-1 explains the special names associated with the

nodes contained in the substructures.

33

TD -- Node containing the thread
we wish to delete. Note that
D always points to PD.

PD-- Node containing the PTR
field we wish togdel:fe.

FT-- Father of TD.

TT-- Node containing the thread
that points to TD.

Figure 3-1 Notation that will be used throughout
the dissertation.

34

FT

PD

Figure 3-2 Type 1 Node Structure
Backward pointers are indicated by
curved lines.

35

Figure 3-3 Type 2 Node Structure

36

Figure 3-4 Type 2a Node Structure

T

37

Note the ambidexterity of the structures: in all three cases,
pointers emanating to or coming from the right (left) could just as easily
have been oriented left (right). The process of deletion for the dif-

ferent types is given below.

Type 1

Here we wish to delete the backward pointer that orginates from
PD and points back to itself. Since the other backward pointer repre-
sents a key that is still active; it must be preserved. Motz that the
skip followed by the comparison at node PD is no longer necessary. Hence,
we can simply remove the node, and replace the LINK field of FT which
points to PD, with the backward thread of PD.

Type 2

We wish to delete the PTR field of PD {i.e. that ficld which points
to the textual information which we no longer wish to consider as a key).
However, we must preserve the comparisoﬁ at PD, for the PTR field at X
represents an active key; and the comparison at PD must still be made in
order to differentiate between X and Y. The comparison that we are
actually eliminating is at node TD. Hence we can e]iminate the skip
field and the node at 1D, relocate PTR (D) in PTR (PD), since PTR (PD)
is no longer needed; and then adjust the backward thread in node TT
that points to TD so that it now points to PD.

Type 2a

This seemingly distinct type is actually treated in a manner
identical to Type 2. The only field of PD which we need to alter is
the PTR field; the SKIP field and backward thread &t TD are the other
fields being eliniinated, and their deletion is handied in the manner

described in Type 2.

38

If we explore the deletion types a bit further, we find that the
Type 2 structure has several special cases, all of which are given in
figures 3-5 through 3-8. In every case the proper nodes for Pb, 1D, FT,
TT have been indicated, even when some are identical.

Notice that Type 1 can be described as a special case of type 2;
all we need to do is supply the proper values of TT and TD. This is done
in figure 3-9, where type 1 has also been renamed type 2f.

It can easily be shown that no other fypes exist (see Appendix D);
thus we need only to discover an algorithm that will properly delete a

node from each of.the above configurations.

3.1 Algorithm: Delete a PATRICIA Node from the Tree

The algorithm given here works for all the different types de-
scribed in section 3.0, VW is a pointer variable used for temporary storage.
It is assumed that we have been given the key we wish to delete, determined
the value for TD, and then found TT, PD, and FT. (How to do this is

discussed in the next section.)

Input: TD, PD, FT, and TT
Output: PTR (PD) is deleted; the comparison at node TD is eliminated.
1) Set PTR(PD) « PTR(TD)
2) If [LLINK(TT)| =TD, set LLINK(TT) « -PD else set RLINK(TT) «
-PD (Note that this algorithm, as well as all others in
Chapters 3 and 4, uses signed LLINK, RLINK fields instead of
LTAG, RTAG.)
3) If |LLINK(TD)| = PD, set W <« RLINK(TD), else set W < LLINK(TD)
4) If W>0 set SKIP(W) <« SKIP(W)+ SKIP(TD)
5) If LLINK(FT) = TD, set LLIMNK(FT) « W, else set RLINK(FT) « W

Node TD may now be returned to free storage

END

39

Figure 3-5. Type 2b

40

Figure 3-6. Type 2c

41

Figure 3-7. Type 24

42

/FT\\

PD=TD=TT

AN

Figure 3-8. Type 2¢

43

FT

/N

PDIDTT

Figure 3-9. Type 2f

44

Type 2.
a) After step 1) let X = node pointed to by
RLINK(TD)
PD PTR(PD) < PTR(TD)

\\\

1T

b) step 2 sets LLINK(TT)=PD as a thread

c) step 3 sets W=RLINK(TD), T=0
After step 4

55
)
0

SKIP(TD)

+

X
(X)

TT

46

d) After step 5.

Node TD may now be returned to free storage.

47

Type 2c.

z) after step 2.

/
/

PD_ PTR(PD)«PTR(TD

48

b) step 3 sets W=PD.
c) step 4 has no effect, since W is a backward pointer (H<0)

d) after step 5

Node TD may now be returned to free storage.

49

Type 2d.
a) After step 2.

/

FT:PD PTR(PD)<«PTR(TD)

50

b) step 3 sets W=PD.
c) step 4 has no effect

d) after step 5

FT=PD

N
ode TD may now be returned to free storage

51

Type 2e.
a) Steps 1 and 2 do not change the structure.
b) Step 3 sets W = LLINK(TD).
c) Step 4 alters the SKIP field of the son of node TD
(It is called node "X" below)

d) after step 5

X

X) <

%‘él‘?f(x) +SKIP(TD)

Node TD may now be returned to free storage

52

As an aid to understanding the deletion algorithm, each step has
been traced through for Types 2, 2c, 2d, and 2e. The diagrams give the
state of the particular structure immediately after the indicated step of
the algorithm has been executed. (The initial LLINK - RLINK values are

as illustrated in figures 3-2 through 3-9.)

3.2 Determining 7D, FT, TT

As was stated earlier, initially we are given only the key we wish
to delete. It is assumed that this key exists in the text somewhere
. (multiple occurrences are considered in the next section). By applying
the search algorithm (algorithm 2.1) to this key we will be led auto-
matically to node PD, which is the final value of P in the search algorithm.
The final value of Q gives us node TD; morecver the value of Q just prier
to this gives us node FT. The proper value for TT may be obtained in two
or three ways. If both 1ink fields of TD point backward, we know that
ene of theﬁ points to TD and originates at TD. The node called TT is the
node that points to TD. Hence, in this case TT and TD are the same.
This corresponds to the situation where LLINK(TD) and RLINK(TD) are less
than zero; but since at least one of RLINK(TD), LLINK(TD) must he less
than zero (i.e., 7D has at least one backward pointer) then it is suf-
ficient to test whether the product of RLINK(TD) and LLINK(TD) is greater
than zero, If this is true, then they must both be less than zero; and
hence, TT = TD.

Another special case where we can quickly determine the value for
TT is when PD = TD (this arises in types 2e and 2f). In this case, the
thread pointing to PD is also the thread pointing to TT, thus if TD = PD
then TD = TT.

For types 2, 2a, and 2b, we must employan alternative method to

find TT. One way of doing this is to traverse the subtree hanging from

53

TD until we come to the thread which points back to node TD. This thread,
of course, emanates from node 7.

We can obtain an estimate of the average size of the sdbtree at
TD. To make things easy, assume we have a balanced tree of 2M-1 nodes,
and thus n levels of search paths, including threads. Thus the total size
of all the subtrees is given by the sum of the sizes of all subtrees at
every level, or:
2n=1 4 2(2n-1.1) + 4(2n-2-1) + .. #2012 (n-1))
2n-1 4 202 + 2M-4 + ., 42n-20-]

(n-1)2" - (1 + 2+ 4++2n-1)

(n-1)2" - (2N-1)

(n-2)2" + 1
and the average size is obtained by dividing the above expression by the
total number of subtrees, which equals the total number of nodes. Hence,

the average subtree size is given by:

-~ (n-2)2"
2" 2n

Since node TT can occur anywhere in the subtree with equal pro-

bability the average search path length is half this, or 2%3_

]Another more straightforward method employs the search algorithm.
In this case, we retrieve the key from the text which starts at position
PTR(TD), then search for it. Of course, this method is slower since it
requires a reference to the text; nevertheless, it is the method included
in the algorithm presented below, because it was included in the test
program of Appendix B.

54

3.2.1 Algorithm: Find PD, TD, FT, TT

This algorithm finds the values for PD, TD, FT, and TT. After the
algorithm has been executed, algorithm 3.1 is used to complete the de-
letion. Assume that the search algorithm (Algorithm 2.1) has been modified
in steps 2 and 5 to read:

Step 2: set FT« Q, Q<+« P, P +-LLiNK(P), etc.

Step 5: set FT « Q, Q « P, P « RLINK(P), etc.

Recali that in algorithm 2.1 P ends up pointing to the PTR field
of the matching key, which in this case is contained by node PD, and Q
ends up trailing one node behind P. The above modification thus effec-

tively locates FT as the node just behind the node pointing to PD.
Input: The key we wish to delete, P (as returned by algorithm

Output: 7D, PD, FT, TT (all of these are defined in figure 3-1)

1) .Set KEY <« the key we wish to delete, N < number of bits in this
key.

2) Call algorithm 2.1. The search will be successful. Set PD < P,
TD « Q. FT will have been automatically determined if the search
algorithm is modified as shown above.

3) If LLINK(TD) * RLINK(TD) > O or TD=PD, then set TT <« TD, go to
algorithm 3.1, step 1.

4) Set N « =, KEY < Key at text position PTR(TD). Call algorithm 2.1
again. The search will be successful, and upon existing algorithm

2.1, set TT < Q, go to algorithm 3.1, step 1 to complete the
deletion.

END

3.3 Subtree Pruning - Deletion of Prefixes

We may wish to delete an entire group of nodes at one time; for

example, all keys with a particular prefix, or all keys that start with

55

a certain word. This amounts to deleting an entire subtree. In figure
2-4, for example, to delete all words starting with "T," we delete the
subtree whose root is at (9). Unfortunately, the backward pointers com-
plicate matters, for in reality, we are deleting not the nodes of the
subtree, but the PTR fields pointed to by all the backward threads in
the subtree. Notice, however, that all the pointers except one are con-
tained within the subtree. This means that we only need to fuss with
oné backward pointer during deletion--namely the one pointer to the
ancestor of the subtree. Since fhe other pointers are all contained
within the subtree, the subtree may be lopped off at its root and re-
turned to free storage. The essential structure is given in figure 3-10,
vhere R is the root of the subtree; and FR is the father of the root.
TFR contains the thread pointing back to FR, and TA contains the thread
pointing back to A, which is the one ancestor that contains a PTR field
we need to delete. Note that TFR cannot be contained within the subtree,
for a subtree must contain a backward péinter to an ancestor. The excep-
tion would be if FR and A were the same node. Then TFR and TA would also
be the same node, which leads to the structure shown in figure 3-11.

Note that when we delete the subtree at R, the comparison at FR
is no longer necessary. This means thét ncde FR may be deleted. We must,
hovever, save the PTR field of FR somewﬁere, and adjust TFR so that it
points to the newly located PTR field. Since the PTR field of A is
being deleted, we can save PTR(FR) in PTR(A). Thus, once we have saved
PTR(FR) in PTR(A) we adjust TFR so that it points to A, and delete node
FR in addition to the subtree at R. Luckily, this corresponds to a type

2 deletion! We need simply to insure that the proper structure is

presented to the deletion algorithm. First, let's redraw the subtree

56

deleie
this
subiree

TFR

Figure 3-10 General Configuration for a Subtree Deletion
R is the root of the subtree being deleted.
TA contains the backward pointer that points
to an ancestor, A, of the subtree.

57

TA=TFR

Figure 3-11. Special Case where TFR=TA

58

PD=A

TT=TFR

Figure 3-12 Subtree deletion corresponds to a type 2 deletion if
the structure is properly set up. The subtree being
deleted has its root at R. Once RLINK(TD) has been
pointed to PD, we can run through the deletion algorithm.
The nodes contained in the subtree and node 1D are re-
turned to free storage.

structure, putting TD, FT, TT, PD where they are required (figure 3-12).
In doing this, we have changed the RLINK field of TD into a backward

pointer to node A. The usual deletion process may now take place.

3.3.1 Preparing the structure for Subtree Deletion

If the search algorithm indicates that an entire subtree matches
our key (see Algorithm 2.1, step three) then upon exit, P will point to
the root of the subtree, Q will bevat FR (note that for this case FR=TD,
the node containing the thread wé are going to delete). If algorithm 2.1
has been modified to find FT (section 3.2.1), we will have the proper
value for FT also. Thus we need only locate TT (or TFR) and PD (or A--
see figure 3-12). Locating TT is easy. We simply search for the key
starting in the text at PTR(TD); upon exit from the search algorithm this
time, Q will point to TT. (Again, we could avoid a text reference by
traversing the subtree at TD until we find the thread that points to TD.)

Finding the node TA is, unfortunéte]y, not quite so easy. All
we know is that TA is in the subtree at R, and A is an ancestor of R
and thus is along the search path to R. Hence, we can locate A only
by looking at every thread in the subtree at R and seeing if it points
to a node along the search path to R. .One'way of effecting this is
given below: |

1) Set KEY <« the key leading us to the subtree at R

2) Traverse the subtree at R. At each "visit," do the following:

a) Note the node pointed to by the thread we are visiting.
Call this node "A" (i.e. an ancestor of the subtree at R.

b) Call algorithm a.1 and search for KEY. (The search will
be successful and will end at R, the root of the subtree.)

While going through the search, note whether we encounter

60

node "A". This requires a modification to algorithm 2.1.
(The modification is given explicitly below.)
3) As soon as we encounter node "A" we may terminate the traversal;
otherwise continue with the traversal.
We may combine the search for A or PD, with the search for TFR, or

TT. This is done in the algorithm given below, which completes the pre-

paration of the structure.

3.3.2 Algorithm: Prepare the Structure for Subtree Deletion

(Assume that we have just exited from the search algorithm and

have determined that a subtree of matching keys exists.)

Input: P, Q, W (output by a modified version of algorithm 2.1.
where W follows Q down the search path, and Q follows P.)

Qutput: PD, FT, TD, then exit to algorithm 3.2.1 step 3.
1) Set ™+« Q, FT <« W, R+« P, PD« 0 (Again, algorithm 2.1 is

modified--this time so that W is always set to the previous

value of Q as Q and P are going down the tree. R is the root
of the subtree we are deleting.)

2) Employ algorithm 2.3 to traverse the subtree at P. At each
visit to node X set A « X; then call a variant of algorithm
2.1 which, in addition to the introduction of pointer W, has
been modified as shown below.
add to steps 2 and 5:
If P=A, set A « 0.
(Recall that X is always a backward pointer to a node visited by
algorithm 2.3, step 3. If node X is on the search path between the root
of PATRICIA and R, the root of the subtree being deleted, then the modified“

version of algorithm 2.1 will set A« 0.)

3) If A # 0, repeat step 2 for the next node visited. Other-
wise, set PD« X. (If A=0 we have found the pointer to
the node outside the subtree.)

4) If RLINK(TD).= R set RLINK(TD)<« - PD, else set LLINK(TD)+« - PD.
(This forces the configuration of figure 3-12; the minus
sign indicates that the RLINK or LLINK is changed to a back-
ward pointer.)

61

5) Return the subtree at R to free storage. Then call algorithm
3,2.1 at step 3 to find TT and then delete node TD.

END
Note that the special modifications to the search algorithm,
algorithm 2.1, do not in any way interfere with its operation except for
the additional time involved. The same can be said about the modifi-

cation suggested in section 3.2.1.

3.4 Conclusion - Deleting Nodes

The algorithms of Chapter Two have been supplemented with original
algorithms that allow us to delete a particular node from a PATRICIA
tree. Moreover, if an entire group of similar keys is no longer needed,
then a subtree of nodes may be deleted. Thus, PATRICIA has been ex-
panded into a much more flexibie information retrieval system. To
complete this expansion, we must still find a technique for deleting
information from or inserting information into the main body of text.

This is accomplished in the next chapter.

4.0 Deletion of Text Material

The processes of deleting textual information can be broken down
into three specific classes.

a) Deletion of a specific key préfix which starts at exactly one

point in the text.

b) Deletion of contiguous text that contains zero or more keys.

c) Deletion of a‘specific key which occurs at several points

in the text. -

Processes (a) and (b) can be combined since (a) is actually a
subset of (b). The major difference is one'of specification: process
(a) involves specifying a particular key and having it searched for.
Process (b) requires that we give the starting and ending points of the
area we wish to delete; thus any starting points of keys that are con-
tained within this area will cause the appropriate keys to be deleted

from the structure. Consider the text in figure 2-4; namely:
THIS IS THE HOUSE THAT JAéK BUILT

Process (a) implies that we may request, for example, that the
key "HOUSE" be deleted. This would cause "HOUSE" to be squeezed from
the text, and the thread pointing to the pointer to "HOUSE" to be deleted.
If we had chosen to delete "HOUSE THAT J" then we would have deleted

"HOUSE THAT J" from the text, and eliminated the keys:

63

"HOUSE THAT JACK BUILT."
"THAT JACK BUILT."
"JACK BUILT."

Process (b) is different only in that we give "coordinates" of
starting and ending points to be deleted. The above example could be
handled using process (b) by specifying that we wanted to delete the text
over positions (13-24). The one important_difference is that we could
use process (b) to specify a single, non-key deletion, or a multipie-key
deletion that in itself was not a key. Thus, we could specify that we
shall delete (11-24), but if we invoked process (a) and searched for the
key "E HOUSE THAT J" we would not succeed.

Process (c) may be accomplished by 1bcating the duplicate keys
and then re-applying process (b) until they have all been deleted. ience,
‘although process (c) is not a subset of prdcess (b), it requires little
more than a subtree traversal, where each "visit" means that a parti-
cular text. position (containing the key of interest) is deleted. With
the above in mind, we shall attack process (b), realizing that only

minor modifications are required to effect processes (a) and (c).

4.1 Deleting Contiguous Text

Before getting into the text deletion process, it should be pointed
out that the process is rather involved; in that sense, the examples of
the previous section may have been misleading. To illustrate just how
drasfica]]y a simple text deletion can alter the PATRICIA structure, con-
sider the example given in figures 4-1, 4-2, and 4-3, where every oc-
currence of A, K, or Z is flagged as the start of a key. In figure 4-2,
we have deleted the space. In figure 4-3, the fourth "A" has been de-

leted. (An explanation of how to interpret the minutiae of the printed

64

P A B e e e a e r e (.~ B B DD e B BB R e e .S @ WD P T P P e g P e W = P W P B e S

he 10e Ise RV R ALY 1ue 1%s afa alde L TAR ase “"9. [] YO L bl ace L1] nYe 8 1738
B D b e b T L T T L L L L DR L T T P
3
1 d¢ ARZAKAK? AR/ 2Ax ?og t
cemcanecsmernmea. . vemw—-

D e D T L L Tk L b L R

s te Je {1\

L

L

L .. Jees 2D, - wa

L . e e 119

L R L

L R L

L8 s 1 e (AL RL TSI P

L 4 L . ~e ‘e 114

L] L R L

L " L 2 [

t o L 2 e TesePAvV I\ P, -
L [[N a e 11e Ve §T

[N <] L 2 e 1A PANTAK? AF LN AK TPy o =m=a-
|8 L] L £

L 3 L Q

L « e t1ae 218 (C4

L Q se Jasee2aw) (¥ ZAL TAV "D, -

t [

[N]

t e 17 Ae 190

L e | TesaT AKZAKTAK IO, —

L ”

| 8 1M

L - 3 2¢ 113

L ? L

L s L

(8 13 L se Qesel 20, -

L 3 o e« oae 3¢ 133

L & L 2 L

L » L R L

L 3 v F . «w Remwy Pty D, ————
L € L e [0 . ve Te 115

L s L < [2 [

L = L < L 2 I

L 3 T [o B . ELE DA PR ETE TN ————
L 4 t £ t € s 1l= D1e 172

L L} | 9 ° L Q e 112 e PN PAK! AKZAK AKX I N ge w e~
L & L Ll L €

1 8 < L e L 2

L E L ° * 1% 2« 177

[N [L e e [VepavTAr T ACAN AT, -

L 2 L 8

L F L -

L | L * 1he 12 133

L P [N e lAswer? AKIAXZIAWID, -— -

| 8 r [R

L & L Q

L R & 2¢ 1= 112

8 2 t

L £ L

(W [% s% Trevax O, ———

L 2 t . O e 117

| 8 Lo L 4 L

L F L & L

L 2 L ° L s LaerAyAvID, -
[R [e | N * & s 114

L 4 L 4 L Lo L

L 2 L 2 |8 » t

[R w o [N n e Jeselrra A, - ——
L 1] L r L L] * 13« “te 101

[N 3 L 3 (% o Be [NACCANZAV *AN) AKX IAKTIEN IO ww—m—
L L [2 8 o4

L E] (&] [o

[N f t L * e 21% 174

[[|8 (4 S8 (D868 8r A Av AV IAVID, -cem-

L 2 L %

L 4 8 L

L e ¢ 1ne D1 17

(N 3] e lrewrAN] LRTJANPAV)D, -———

L o

L fn

* 1 1 1172

®e tJees AP AK 7AC 7, —eme

Figure 4-1. A strange tree. Every character in the text is a key.

65

N e - R h M s B e Y B RN fm .S RE e AN SR P RN LS E e e e m e e . ® f N, m e am- -

-
va 10e 1 Y4 3 0e dre - T4, “lhm -re EHEY XY *Je s Tde | XY “)e ane Qe Yhe 102
e e e . A e — L Em A S .. . A . e = e " . = s e e e m e
-}
132 AR AR AN TAKSAK TAK 2V, 4
e e e e et e . T e e e e m . .- - = = = - - — - m. e mN A mAATAeEEAANSEeRT e taE ...

s 1% qas 171

L
L
[N ce Qeesld, -
[v Q8 9e 18
L X L
[N Q L
L R S8 Eeselik 70, ——aa
L F |] Aw 24% 1%
L Q L
L & [N
L R 4 IMem2AK2AK 20, ce—-
t 2 v 10% Z3e¢ 1°3
L [4 L
(N ~ t
L 2 s 1lecezaKIax IMID, . meme
L R ® 12= 2&¢ 109 ’
L R L
L B 1N
L n ek [heee AN TAKZANZAK 2D, ————
L n * 154 23 195
L Q St fUSRaV/N AR ZAR ZAKDAKING mme—=
L n
L ©
¢ I 2 32
L
| 8
[(3] LIZ L NS - -——
L ¢ 8= 1Ke 117
L L (9
L P Lt .
L R e Crse KAV, P
L Q * Se Das 113
1 R t
L R L
L 2 L PEta? TN D, —_———
L R * 118 P2 122
8 14 L
[B t
1. Q LR 15 IRV AV TAY D, - -
L R v 12e 200 129
L R t
L L L
£ 8 2 St (e sIN 2L AR TN FLy IS, - -
s R ¢ 1% 2ar 105
T] 08 (1L OSV JAKI AV AN 2AV.IAYID, eaaa
L R
. L R
. 2 1¢ 111
v
[
se 7ee0sav 7D, ———
« 7% 2ae 11/
L
t
. Atwedv 7axr 70, = N
* A& 24+ 111
L .
t
B JIVNOAY JAr I A], -
e 13s Dae 112
L
T
ta laesthyPavI2x AL ID, -——
® J4aw Dax (07
L
t
e JTeve iy Ol PACIAY T AV Py ——
e j7e 23 {94
o JACPNV Iy PAS P P A P P g

Figure 4-2. The space has been eliminated from the text of figure 4-1.

66

Se 10e 15s REVE] e jne LN 3 ags 4%a SYALY JRt) 7, e r. 7.0 7. HYe TN 1. RETSLINE Sl
..6 =
109 AN2AK 24K Ix 2An 24K 2D, .,
¢ 1s 23s 301
L
L
L e | Tees PP, -
1 8 s 178 26 117
L LYY Oese s 2Ax T Aw PNy -———
t R
L]
|8 ® Qe Qs 105
L ” |8
L 2 Lt
t R L s¢ Jaseazaxzo, -
L R L ¢ 1aes Ds 14
v R L e Aeee2AKZKIAKTAKID, ———
t e . E]
i. F t o
L R ® 6* J4&e 10K
L Q [N
[N e L
t aQ e (1eeuwTAKTAK JO, —-
t ? ¢ J1e 270 111
L R " TEP QAN PAL I PAK P AT, PR
L n
L 3
4 3s Qs 103
|8
t
1§ e {Fedax20, -——
L * 164 D 114
L e Qeee K7 KZAKTAKZP, ———
L 53
L o
L L L LA N
L R L
|8 1 L
L R L ok I Imaaer TSy P, -———
L R L = 1 Je 117
L R |8 e CEPICTEV I T IKTAN I, -
L £ L "
- R 15 -
L [* ¢ Dasr |00
i e L
[Q L
L] s JOESITACTAV I, -——
L L * 12¢ 4e 115
L Q LA Y CONTAR IV IV IAY AV /DY, ———
L Q
[& (-]
s 2 1e 1¢2
L
L
L = ‘5."‘Kln. -
L ¢ l5e D¢ 11°
L . Teeein 2y PAX 2w IO, ———
L F
L L]
* 7¢ 24¢ 107 4
L
Lt
L ae (oe00Av2arv - -
L * 12% D2 112
L [X As Yo v AV Y IAY JAV D, ————
L L2
L -
e aAe V3. tfia
€C L el PAVINS TS PRV T e a

Figure 4-3. The fourth "A" has been eliminated from the text

structure is given in Appendix B.) Most deletions will not cause such
serious structural changes, but the reader should at least be aware of
what could happen. | |

The reason that the text deletion process can cause such structural
changes is that when we delete text, we also alter the bit comparison pat-
tern for any key or keys that happen to extend over the deleted area.
That is, any key not within the deleted area whose search path (as a
result of successive skips) leads it into the deleted area, must be re-
evaluated. Moreover, there is no way of predicting where the newly
evaluated key will be positiored in the PATRICIA tree without actually
re-evaluatfng the key. An example should help to illustrate this. Con-

sider the rather contrived text of a figureb4-2:
AKZAKZAKZAKIAKZAKZ

where every letter is the start of a key. Notice that, in scanning from
left to right (which is exactly what the search algorithm does), the

first difference between the keys

AKZAKZAKZAKZAKZAKZP
and

AKZAKZAKZAKZAKZP

occurs at the comparison between "P" of the second key and the last "A"
of the first. However, when we have the text shown in figure 4-3 (i.e.,
the fourth "A" has been deleted) then the same comparison would now be

made between the keys

AKZAKZAKZKZAKZAKZP

and

AKZAKZKZAKZAKZP

Here the first difference occurs at the third "A" of the first key.

One may easily verify that all keys starting with "A", "K", or
"Z" which originate ahead of the deleted "A" will be similarly affected!
This amounts to an entire restructuring of the search path, which is
obviously reflected in the vast difference between the PATRICIA trees
of figures 4-2 and 4-3.

4.1.1 Concepts Behind Deleting Contiguous Text

Let START and END be pointers'that point to character positions
in the text. Assume that we are going to delete all text which occurs
between (and including) the characters whose positions are given by START
and END-1 (i.e., up to but not including END). We must look at every
node in the PATRICIA tree and do the following. (Assume the node we are
looking at is pointed to by X.)

1). Recalculate the proper address for the PTR field in the case

where the PTR field points to text that was moved in order
to fill in the space left by the deleted text. If X points
to a node which requires such modificaticn, then no other
modification is required for the node. The recalculation is

handled quite asily by the step:

If PTR(X) > END, set
PTR(X) « PTR(X) - (START - END)

2) Delete any PTR field that points to a key which starts within
the deleted area. This is done by the deletion algorithm,

setting PD + X. (Note that in addition to PD, the deletion

69
algorithm must also find TD, FT, and TT.) The step to

detect such a node is, quite simply:

If START < PTR(X) < END, then set PD <« X, call

the deletion algorithm at the appropriate entry point.

Since step 1 checked for PTR(X) > END, we can eliminate that

part of the "if" statement and write simply:
if PTR(X) > START, then etc.

Note that such a node requires no further attention, i.e.,
once we have deleted it, we are done with it.

3) Fix any node whose search path has been altered as a result
of the text deletion. This is done by deleting the old node,
looking at the new bit pattern given by the new key, and re-
inserting the new key. The step is given in simplified form as:

if PTR(X) + I SKIP fields leading to PTR(X)
number of bits per character

is > START, delete PTR(X); then reinsert into the tree
the key which starts at PTR(X) in the text. (Remember,
the text has already been concatenated.)

The vest of the nodes fall in the class where:

PTR(X) + I SKIP fields leading to PTR(X) < START
number of bits per character

and which are therefore unaffected by the text that was deleted.

It would be nice if we could simply traverse the PATRICIA tree in
endorder, altering, deleting, and reinserting nodes all with just one
pass over the structure. Unfortunately, this is difficult to do, for

several processes are taking place which are capable of dynamically

70

altering the tree in a manner that would either cause any traversal
algorithm to fail, or would change the structure in such a way that the
deletion algorithm wouldn't be able to function during the traversal
process. For example, it is possible for the deletion algorithm to move
a PTR field from a node to its ancestor. If this PTR field is one which
must be modified to point to its proper text position, which was shifted
by the textual concatenation (i.e., PTR > END), then we must take care
that the modification does not occur twice.

If we make the above modification during the "visit" of a preorder -
traversal, then we can perform deletions without worrying about acciden-
tally altering a PTR field twice, for a preorder traversal visits all
ancestors of a node before it visits the node. If any deletions to be
made are made at this same visit, then any PTR fields being moved will
ba moved into areas already visited, and hence will not be molested any
further. Unfortunately, other problems preclude making the necessary
deletions during a preorder traversal.

For example, if we use algorithm 3.2.1 and encounter a type 2a
deletion, node TT will not have been processed yet. The algorithm, which
searches for the node by looking at the text, will not find it if node TT
is a node being deleted or altered. The only way to insure that this
situation will not occur is to visit all descendants first, which requires
an endorder traversal. Hence, if we make our necessary deletions during
the visit of an endorder traversal, and modify the necessary PTR fields
during the visit of a simultaneous preorder traversal, we will avoid at
least the difficulties indicated above. The traversals may be simul-
taneous since an endorder traversal visits a given node at either the

same time or later, as illustrated in figure 4-4.

Node Access Interval
Preorder Visit

Endorder Visit

Figure 4-4.

71

Preorder and endorder visits.
A preorder visit always occurs
at the same time or before an
endorder visit.

72

Some problems still remain, however. Any node whose search
path was altered may, of course, be deleted during the traversal. How-
ever, we must be careful when we reinsert the node, since it could wind
up anywhere in the structure. This obviously could be undesirable; if
the node were inserted in a place that had not been visited, then it
would be deleted and reinserted again! There is an easy way of avoiding
this problem. We can make a list of all the nodes being altered, 1linking
them up by their LLINK or RLINK fields as we delete them. Then, after
the traversal has been completed, we can réinsert the nodes by looking
at the PTR fields of the nodes we put in our list. These pointer fields
give the starting text positions for the keys whose search paths must be

recomputed.

4.1.2 Algorithm: Delete Contiquous Text

The compi. .e algorithm for deleting text is now presented. It is
broken up -into three subalgorithms. Initially, set pointer TOPLIST <« A;
SHIFT « END - START. Assume that the text between START and END - 1 has

been deleted, the remainder having been concatenated.

Subalgorithm T.0 Traversal

This subalgorithm traverses the tree in preorder and endorder.
If both visits occur at the same time, the preorder visit will be done

first. The algorithm uses a stack, A.

Input: START, END, SHIFT.
Output: The updated PATRICIA tree.
1) Set £ SKIP « 0, ATOP « 0, X « pointer to root of PATRICIA tree.

2) Set I SKIP « I SKIP + SKIP(X)
ATOP « ATOP + 1, A(ATOP <« X
| (Preorder visit) Preform subalgorithm T.1.

3) IF LLINK(X) is not a thread, (i.e.: > 0)
- set X « LLINK(X); go to step 2

4) Set X < A(ATOP), ATOP « ATOP-1

5) If X > 0, set ATOP <« ATOP+1,
A(ATOP) « -X go to step 7, else set X « - X

6) (Endorder visit). Perform subalgorithm T.2, then set
% SKIP <« £ SKIP-SKIP(X)
(even though node X may have been deleted, its SKIP field
is still intact); go to step 4.

7) If X=1 (if we are back at the root), exit.

8) If RLINK(X) is not a thread, set X <« RLINK(X), go to
step 2, else go to step 4

Subalgorithm T.1

This subalgorithm adjusts PTR fields when they point beyond the
area of text that has been deleted. It also marks those PTR fields
which are to be completely deleted. (Tﬁe actual deletion must take place

later.)

Input: X, START, END, SHIFT

Output: PTR(X) adjusted, or set to zero if node X is to be deleted
1) If PTR(X) > END, set PTR(X) -« PTR(X) - SHIFT, exit T.1

2) If PTR(X) > START, set PTR(X) « 0, exit T.1

Subalgorithm T.2

This subalgorithm deletes nodes marked by T.1. It also deletes
those nodes whose search path must be recomputed, and saves them in a
1list. If a deletion is to occur, the algorithm calls on the node deletion

algorithm (3.2.1); it will not call the node deletion algorithm twice for the

74

same node, as this could foul up the traversal process. If a node con-
tains 2 threads, and both are to be deleted, then the second deletion
will occur at the visit to the parent of X (which will contain the other

unwanted thread after the deletion of the first thread).

Input: X, START, END, SHIFT.

Output: The node at X is deleted, or the search path of its
key is recomputed, or node X is left alone.

1) (The subalgorithm uses a flag, FINISHED, to force an exit
after LLINK and RLINK are checked.)
Set FINISHED « O
If LLINK(X) is a thread, set PD <« [LLINK(X)|, go to step 4.

2) If FINISHED = 1 exit T.2, else set FINISHED = 1
(exit if we have looked at both link fields)

3) If RLINK(X) is a thread, set PD <«|(RLINK(X)| go to step 4,
otherwise exit T.2. ‘

4) (PD gives the pointer we might want to delete. First we
must check it.)
If PTR (PD) > START, go to step 2
(no modification necessary, since the key lies beyond the
affected area)

5) If PTR(PD) =0, set TD « X, FT « |A(ATOP)]|
(the top node of the stack is the father of the node being
visited in endorder) call the node deletion algorithm at
step 3 of algorithm 3.2.1. Then exit T.2

6) IF PTR(PD) + I SKIP :
number of bits per character
is < START, ge to step 2 (the text deletion did not affect
the search path to node X)

7) Set FT < |A(ATOP)| , TD <« X,
call the deletion algorithm at step 3, algorithm 3.2.1 but
instead of returning node X to free storage, save it (to be
reinserted) by:
8) LLINK(X) <« TOPLIST, TOPLIST « X. Then exit T.a.
After exiting from subalgorithm 7.0 we merely reinsert all the nodes
vhose search path was altered; namely the nodes in the list pointed to
by TOPLIST.

END

75

4.1.3 Algorithm: Delete a specific key from the text

The algorithms presented in the previous section may be used to
perform a variety of functions. For example, to effect a'"process (a)"
text deletion (i.e., the key is given) we employ the brief algorithm

below.

Input: The key we wish to delete.
Output: An occurrence of the key is deleted from the text.

1) Set K « key, N < number of bits in K, call algorithm 2.1.
There will be a match at node P.

2) Set START <« PTR(P), END < START + number of characters in K.
3) Concatenate the text by bringing together locations

START - 1 and END (effectively deleting positions START
through END - 1) ~

4) Set SHIFT <« END-START.
5) Call algorithm 4.1.2 T.0.
6) Use algorithm 2.2 to reinsert the keys whose PTR fields are

given in the list created by algorithm 4.1.2 T.2 step 8.
END
A'process (b)'deletion is even easier, since we are already given

START and END - simply enter algorithm 4.1.3 at step 3.

4.2 Algorithm: Insert Text

The process of inserting new text is practically identical to the
process of text deletion. Keys whose search paths are changed must
have their search paths recomputed, and PTR fields pointing to text which
has been shifted (in this case to make room for the new text) must be
altered. The only difference is that no old keys are deleted, for no
text is deleted. The text insertion process is given below. Assume we

are given the information TEXT, which we want to add, along with START,

76
the position at which the next text is to be inserted.

Input: START, TEXT, number of characters in TEXT

Output: The updated PATRICIA tree, the updated text, exit
to algorithm 4.1.3, step 5.

1) Set END « START (this guarantees that subalgorithm T.1
will not delete any keys.

2) Break apart the text at position START-1 and insert TEXT.
3) Set SHIFT (« the number of characters in TEXT)
(The net result will that subalgorithm T.1 will add SHIFT
to all PTR fields that point beyond and including position
START)

Now, simply enter algorithm 4.1.3 at step 5.
END |

4.3 Conclusions - Altering Text

The user now has a complete set of working algorithms that enable
him to update or alter either the PATRICIA tree or the text. The
algorithms.presented in Chapter Four can:

a) Delete any area of the text (algorithm 4.1.2).

b) Delete any specific key from the text (algorithm 4.1.3).

c) Insert new text anywhere (algorithm 4.2).

77

5.0 Alternate Methods for Representing the PATRICIA Tree - Compressing
the Structure.

In the previous two chapters, we developed the algorithms necessary
to effect most of the operations that a user might encounter when working
on an interactive basis with PATRICIA. This section will be concerned
with alternate methods of prepresenting the PAfRICIA tree which will re-
sult in more efficient use of memory, or more rapid retrieval of infor-

nation, or both.

5.1 A Right Threaded PATRICIA Tree

The backward 1inks of the PATRICIA tree do not resemble ordinary
"threads" (as explained in Knuth 1968, p. 320) in that they do not neces-
sarily point to nodes which are postorder predecessors or successors.

If we could build a PATRICIA tree in a way such that the backward pointers
were "threaded," then we could compress the structure and thereby save
considerable storage space. Let us focus our attention on the possibility
of building a right threaded PATRICIA tree, where such a structure is

defined below.

Definition 5-1.

A right threaded PATRICIA tree is a PATRICIA tree in which the back-

ward-pointing left 1inks point to themselves, and the backward pointing
right links point to their postorder successors. An example of such a

structure is given in figure’g;l, where the tree is made up of keys that

78

THS STRUCTURE IS RIGHT-THZSADRED

S* 10% 15% 20% 26% 30% 36% 4Ck 48k S0k (<= @0% Ak 70%
) e ———— e e ———————— -
100 THE CJTCK BROWN FAX JUMPED OVFR THE LAZY DNGes

¥ 1% (0% 101

L
L
L #%k Yk ETHE QUICK EFTWN FOX =———-
L * 7% 34x 133
L % TEXRTHE LAZY DNGeS —_————
L R '
L =
* 2% 3% 105
L
L
L k% 2xEkQUTICK CROWN FOX JUMP———w—
L x 5% 1% 128
L R ' L
L R L
L R k% SAAEAVER THE [A7Y D3Ge & —~—=
L R * AX 1w 137
L R L.
L R L
L R %3 AENRLAZY NOGGF —————
L R * 8% 1x 121
L R ¥% BEREXJYADID OVTT THE LAZ Y= ——
L P)
L R
* 3% 1% 117
L
L
L Rk BEERFOX JUADPTEID OVER THF ——e-—
L * 9% 1% 142
L ¥ GEx%XDOGe B ———
L R
L R
% 4 % 2% 111
%% 4%kRXBRANWN FOX JUMDED DVEmee—

Figure 5-1. An example of a Right Threaded PATRICIA tree. Every
LLINK thread points to the originating node and every
RLINK thread points to the postorder successor (the node

on the line above).

79
begin at every word of the sentence:
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Note that a thread always points to the first node encountered,
moving up the page. The usual, or "non-right threaded" structure,
which is built by inserting keys in the order in which they are scanned
(going from left to right), is shown in fiéure 5-2.

Observe that when we build the structure with algorithm 2.2, the
positioning of the backward pointers is determined by the order in which
we insert the keys; thus, we could have attained our right threaded

structure by inserting the keys in the order:

THE QUICK . . .
THE LAZY . .
QUICK . . .
OVER . . .

LAZY .

JUMPFD . . .
FOX . . .

DoG . . .

BROWN . . .

which is simply reverse lexicographic order. Figure 5-3 shows the struc-
ture which results when the keys are inserted in the order given above,
using'algorithm 2.2.

Unfortunately, we cannot always insert the keys in reverse lexi-
cographic order; in fact, we practically never can efficiently. Thus,
what we need is a new node insertion algorithm which will insure that

when we insert a new node, the "right-thread" property will be preserved.

S* 10% 15% 20% 28 30* 36% LO% atix GO S ax
0
100 THE GQUICK RROWN FOX JUMPED OVER THE LAZY DTG

* 1% 0% 101

T3l ol o ol o

2%

Figure 5-2.

80

x% &%k THE QUICK BROWN FOX —=—=
* 7% 34% 133
% 7R AxTHE (LAZY DCGlf ———
3% 105

2%%xQFICK EROWN FOX JUMP==—=-
i 1% 121
L

*

L
ok S5X%X(WVER THFE LAZY DDG.E
* B% 1 128

L

L

Tk BrEXLAZY NG 6
3% 1% 177

xS JUMDITD NV ES

xrreeefeeCfrrerrECrC % 00 R

W
3
—

111

X%k 4K%%X%FOX JUUMPED VTR THE
® Ox 1% 147
¥k CxAA[NGe b
R
F
4% 2% 117
% 3xRHAFOWN FOX JUMPED NVYEm—an

I Sl S el el I N o B ¢ s B s MO B o R e B o IS, Bs i ¢ TR - S

The tree of figure 5-1 as built by algorithm 2.2.

e e ——
Ok £Rx 7%
e e e m

-~ —

THE L A7Ym=m——

- —

D > D —— ——— > " - ——— - G G > GO0 —> T - ——— " — — " — " - A" o ——— ——— " —n- — > W -~ s . ———

5% 10% 1% 20% 25% 30% 3I6% &Ox 45k S50% §Ex AQ0%x HGu TN
o
109 IHE QUICK IHT LAZY QUICK QVIR LAZY JUMPTD ECX DCG FOCWRG

POl ol ol ol ol

Figure 5-3.

A% 1% %%THEZ QUICK THE LAZY Q-=-—-
% 2% 34% 111
*% 2% ¥xTHE LAZY QUICK OVER ==—=-

R
=]
3%« 3% 120
L
L
L % ¢ 3xxxkQUICK OVFP LAZY JUMNP=w—-
L 4% 1% 126
L R L
L R L
L R % xk GXXXQAVER LAZY JUMPED FOX=——-—
L R ¥ 5% 1% 131
L R L
L R L.
L R &K S=#3_ AZY JUuMPT FOX CCG ===
L R ¥, 6% 1% 136
L R % 7 Ok ek JUNMDPTD FAOX DNG AT D K=~ -~
L R
L R
* 7%® 1%k 143
L
L
L ¥ ¥ TxXxEEFOAOX DG SROWIN -
L * 8% 1% 147
| 58 *o A AuxkDCG IICWNE ———
L R
L o
¥ 9% 2% 1451 .
* % Gx k& BPCWNE . - ——

If we use algorithm 2.2 and insert the keys in reverse
lexicographic order we get a Right Threaded tree. The
keys have been underlined in the text.

82

If we look at algorithm 2.2, we see that the point where the
threads are created occurs at step 5. If we insert a node, X, whose L+1st
bit is zero, into a right threaded structure, then this step wfl] cause
the LLINK fiecld to point back to X. The value of the RLINK field will
depend upon ch type of structure the node belongs to. The four types
(where the I . .t bit = 0) are given below. Let the father of X be de-
noted by FX.

Type 1. X hangs from the left 1ink of FX, and has no

right subtree.

Type 2. X hangs from the right 1ink of FX, and has no
right subtree.

Type 3. X hangs from the left 1ink of FX, and has a
right subtree.

Type 4. X hangs from the right]1nk of FX, and has a
right subtree.
(Remember, for all these types, the LLINK field of X points back te N
itself.) After making an insertion, the following structural changes will
have taken place.

For type 1, RLINK(X) will point to the same place that LLINK(FX)
previously pointed to, namely FX itself. Thus, RLINK(X) will point back
to FX, which is the postorder successor of X.

For type 2, RLINK(X) will point to the same place that RLINK(FX)
previously pointed to, namely its postorder successor. But now, FX's
postorder successor has become X 's postorder successor (X having been
inserted to the right of FX).

For types 3 and 4, RLINK(X) will point to the root of X's subtree,
and the "rightmost" node of this subtree (the last node traversed in
postorder) will still point to its postorder successor, even after we
have inserted node X (which is actually the postorder predecessor to

the subtree).

Hence, types 1-4 are correctly handled automatically by algorithm
2.2 (assuming, of course, that the structure is right threaded before X
is inserted). The real problem occurs when the L+lst bit of X is "1",
and hence algorithm 2.2 would try to set RLINK(X) = X, which is forbidden.
Again, we have four types of structures to be concerned about.
Type 5. X hangs from the left link of FX, and has no left
subtree.

Type 6. X hangs from the right link of FX, and has no left
subtree.

Type 7. X hangs from the left 1ink of FX, and has a left
subtrece. ,

Type 8. X hangs from the right 1ink of FX, and has a left
subtree. , .

For type 5, step 5 of algorithm 2.2 would cause LLINK(X) to point
to FX, and RLINK(X) to point to X. What ve actualiy want is the re-
verse of this, namely, RLINK(X) should point to FX and LLINK(X) should
point to X. Ve may alter the LLINK-RLINK fields in this manner, but
then we must swap the PTR fields of X and FX.

Type 6 is handied just 1like type 5, except that RLINK(X) should
point to the node that RLINK(FX) pointed to. Again this requires that
the PTR fields of X and of the node pointed to by RLINK(FX) must be
swapped. |

For types 7 and 8, we must search for the ncde in the subtree
which points to the postorder successor of the subtree. For type 7,
thisbpostorder successor would be FX, and for type 8, it would be some
ancestor of FX. At any rate, this search is easily and rapidly ac-
complished by going down the RLINK fields of the subtree until a back-
ward thread is encountered. Again, PTR fields must be swapped; this

time between X and either FX (type 7) or the ancestor we found (type 8).

fi#

84

Moreover, the backward thread which we found must be altered so that it
points to X, which has become the postorder successor to its subtree.
The average number of searches required to find the poﬁtorder
successor of the subtree in types 7 and 8 is easily estimated for a
balanced tree of P=2" - 1 nodes. (A "search" in this case means simply
an inspection of the node to see if it has a backward RLINK.) For such a
tree, the average number of searches required to access any node is well
known to be approximately logyP - 1 (Sa]ﬁon, 1968, p. 72). But the max-
imum search path length, which is also the path length to all terminal
nodes, is log,P. Hence, the average remaining number of searches is
the same as the remaining path length, or TogyP - 1) = 1. Since we are
only performing this extra search when a node has an L+1st bit equal to
"1", then the average number of extra searcﬁes required to build a Right

Threaded PATRICIA tree is approximately:

number of nodzs in the tree
2

which is obviously an insignificant additional cost. (This figure has

been veritifed for several cases where n = 9 and 10.)

5.1.1 Algorithm: Create a Right Threaded PATRICIA Tree

The brief algorithm given below will accomplish the threading

process. It is inserted in place of step 5 of algorithm 2.2.

Input: See algorithm 2.2.
Qutput: The updated Right Threaded PATRICIA tree
Step 5. If the L+ist bit of K = 0, set LLINK(R) « - R,

RLINK(R) <« P*SIGM(T), go to step 6, otherwise
set Y « P*SIGN(1), Z <« R.

85

5-1 If Y >0 thenset Z « Y, Y « RLINK(Y),
repeat; otherwise, swap PTR(|Y|) and PTR(R),
then set RLINK(Z) <« -R.

5-2 Set RLINK(R) « Y, then if T>0 set LLINK(R) « P,
otherwise set LLINK(R) « -R.

Step 6. Etc.
END
The algorithm is quite short, and since the additional cost is so

slight, g_PATRICIA tree should always be Right Threaded. For one thing

the Right Threaded structure is a standardized structure. More importantly,

however, is that it allows us to compress the PATRICIA structure con-

siderably, as is seen in the following sections.

5.1.2 An Important and Immediate Consequence - Eliminating LTAG

Algorithm 5.1.1 is used with the version of Algorithm 2.2 that
represents LTAG, RTAG by the sign bit of LLIKK, RLINX. It would have
been just as easy to construct a version that could be used with the
LTAG-RTAG version of algorithm 2.2. Note however that if the tree is
Right Threaded, we may immediately elliminate the LTAG field (or the
sign bit of LLINK); for, if we are given a pointer, X, that points to

a node in a Right Threaded PATRICIA tree, then the test

If LTAG(X) =1

Becomes simply

if LLINK(X) = X

in which case, we know LLINK(X) is a thread.
On the other hand, we could just as easily have eliminated the

LLINK field whenever LLINK is a thread. In this case, we let LTAG(X) =1

86

indicate that LLINK(X) = X; and when LTAG(X) = 0, then LLINK(X) points
to a descendent. The real importance, however, of the right threaded

structure, will be seen in the next section.

5.2 Preoder Sequential Representation

Consider the tree illustrated in figure 5-4. If we write out the

nodes in preorder, we get:
ABCDEFGHI

Now, let's associate with each node a RLINK field whose value is A if
the node has no right subtree, and otherwise points to the right sub-

tree of the node. We indicate this field with arrows and "A"s below.

RLINK A A

INFO. AoB C D E F G H I

To complete the representation, note that if a node has a left
subtree, its root is immediately to the right of its parent node. O0Ob-
viously, every node (except the last) has another node to its right.
Hence, we must differentiate between nodes with left subtrees and those
without. To do this, we use the LTAG field; if LTAG(X) = 0, then X+1
points to the left subtree of X and if LTAG(X) = 1, then ¥ has no left
subtree. The complete representation, which is called Preorder Sequential
form (Knuth, 1968), is shown below (the “A"s have been omitted, and non-

null RLINKS are indicated by arrows.)

RLINK l I]_—_1 l l

INFO AAB C D E F G H I
LTAG o 0 0 1 1 0 O

87

Figure 5-4. A Binary Tree

I

88

5.3 Preorder Sequential PATRICIA

The technique just illustrated may be utilized to construct a
very compact yet efficient PATRICIA structure. If we assume that the
tree is Right Threaded, then we may create the Preorder Sequential
representation, in which an LTAG field of 1 means that the node has a
left thread which, of course, must point to the node itself. Now, the
problem remains: how do we indicate a right thread? Ve could introduce
an RTAG field, and 1et"RTAG(X) =-1" mean that RLINK(X) was a thread.
This is unnecessary, however. Recall that a preorder traversal will visit
all ancestors of a given node before the ndde itself is visited. Hence,
a right thread of node X, which always points to an ancestor of X, has
the property:

RLINK(X) < X

/

that is, it is numerically lower than the address of node X. Thus, if

RLINK(X) > X, then RLINK(X) points to the right subtree of X; otherwise

RLINK(X) s a backward thread which points to the postorder successor of X.
The tree of figure 5.1 (which incidentally is identical in form

to the tree of figure 5-{) has been converted to preorder sequential

representation in figure 5-5. Note that the root (node #1) never has

a right subtree; this is always indicated by setting RLINK(1) = 0.

5.3.1 Algorithm: Traverse a Preorder Sequential Structure in Postorder

In order to effect many of the PATRICIA algorithms, particularly
to find all occurrences of a given key, it is necessary to traverse a
portion of the tree in postorder. The algorithm below accomplishes
this for a Preorder Sequential structure. Assume that we wish to traverse

the subtree at X.

Physical Node Location SKIP

by PTR)

1

Figure 5-5.

34

PTR LTAG RLINK TEXT (indicated

101 0 0 THE QUICK BROWN

105 0 9 QUICK BROWN FOX

117 0 6 | FOX JUMPED OVER

111 1 5 BROWN FOX JUMPED - - -
142 1 3 DOG

128 0 2 OVER THE LAZY -

137 0 6 LAZ& DOG

121 1 ‘ 7 JUMPED OVER THE

133 1 1 | THE LAZY DOG

The Preorder Sequential representation for the PATRICIA

tree of figure 5-1.

leading blanks.

Note that the text contains 100

68

90

Input: X (a pointer to the root of the subtree we wish to

traverse).

Output: A postorder visit to all nodes in the subtree whose

1)
2)

3)
4)
5)

root is at X.
Set Y + X

(Traverse left) if LTAG(Y) = 0, set Y « Y+1,
go to step 2, else go to step 3.

Visit node Y.
Set Z <« RLINK(Y).If Z<X, exit (we are done).

If <Y, set Y « Z, go to step 3, otherwise
set Y « Z, go to step 2.

END

This algorithm has several nice properties. For one thing, it

done not require the use of a stack. Moreover, the algorithm may be

used to find the postorder successor of any node. Simply set Y « location

of the ncde, X « 1, and enter the aTgorithm at step 4; the first visit

is the postorder successor to node Y.

The algorithm was applied to the structure in figure 5-5; the

PTR fields of the nodes in the order they were visited arz given below.

(Initially, set X« 1 since we are traversing the entire structure.)

Physical location PTR field
4 : 111
5 142
3 117
8 121
7 137
6 128
2 105
9 133

1 101

91

5.3.2 Can the Structure be Utilized?

The apparent advantage gained by squeezing away the LLINK and
RTAG fields is merely academic unless we can utilize the structure.
Unfortunate]y,‘it is extremely difficult to build or alter a tree in
Preorder Sequential form, for whenever we insert (or delete) a node,
we must linearly shift part of the structure up (or down) and then pass
over the entire structure in order to fix up the RLINK fields that refer
to the shifted area.

On .the other hand, postorder traversal is, as we have seen, quite
nicely hand]ed. Moreover--and much more iﬁportantly--we can effectively
perform a PATRICIA search through the structure by altering algorithm 2.1.
This has been done in the algorithm presented below, which is slightly
faster than algorithm 2.1 since the LLINK subscript has been eliniinated.
If we can then find a way of efficfently handling alterations to the
structure, we will have established its .practicality. This process is

discussed in section 5.3.4. First we present the search algorithm.

5.3.3 Algorithm: Search a Preorder Sequential Structure for a Given Key

This algorithm very closely resembles algorithm 2.1. The same

explanatory remarks apply (section 2.1.1).

Input: K, the number of bits in K (see algorithm 2.1).

Output: P (a pointer to the root of a subtree containing all
matches to K).

1) Set P« 1, J+« 0, N« number of bits in K.
2) Set Q <« P. If LTAG(P) = 1, go to step 6
else set P < P+1 (the left subtree of
P is the next sequential node)

3) Set J <« J#SKIP(P). If J > i, go to step 6,

92

4) If the J+lst bit of K=0, go to step 2.

5) Set Q< P, P+« RLINK(P). If P>Q go to
step 3 (otherwise, RLINK(Q) is a thread).

6) Compare K to the key in the text pointed to
by PTR(P).

END

5.3.4 How to Handle Modifications

As has been pointed out, altering a Preorder Sequential structure
requires at least one pass over fhe structure for each alteration, and
hence, would be rather slow if we had several changes to make. A
violent example is shown by the process of deleting the "A" from the
structure illustrated in figure 4-2, thus getting the structure shown
in figure 4-3. Practically every node had to be deleted and reinserted;
if this were done with the Preorder Sequential form, then each node
deletion could require a pass over the entire structure, the reinsertion
would require another pass, and this wouid be repeated for every node we
had to delete and reinsert--clearly an inefficient process.

A better solution is not to do any aitering at all. Instead, make
all alterations to the full blown Right Threaded structure; then when all
alterations have been made, make one pass over the Right Threaded struc-
ture to convert it to the Preorder Sequeﬁtia] structure. This can be
easily accomplished if we have an area in main memory large encugh to
hold both structures. We simply traverse the large structure in pre-
order and as we visit the nodes, we place them scquentially into the new

structure. The algorithm below will do this.

93

5.3.5 Alqgorithm: Convert a Right Threaded PATRICIA Tree to a Preorder

Sequential PATRICIA Structure

Assume storage space is available for both structures. We shall

differentiate between the two with a single quote mark (') thus, LLINK(X)

refers to a node in the Right Threaded tree, and LLINK'(X) refers

to a different node, occupying different memory, in the Preorder Se-

quential structure. The algorithm does not alter the Right Threaded

structure,

and uses an auxillary stack.

Input: A Right Threaded PATRICIA tree whose root is at

Tocation one.

Qutput: A Preorder Sequential structure.

1)

3)

Set 1 « 0, stack the number zero,

set RLINK(T1) « 1. Traverse the right

threaded structure in preorder and postorder.
At each preorder visit to X, perform step 2
and at each postorder visit (which, of course,
comes later) perform step 3. After completing
the traversal, exit.

(Preorder visit)

set I « I+1, SKIP'(I) <« SKIP(X)
PTR'(I) <« PTR(X), stack I.

iT LLINK(X) = X, set LTAG'(I) « 1,
else set LTAG'(I) « 0.

(Postorder visit)

pop stack into J. if RTAG(X) =1,
set RLINK'(J) « value X
currently on top of stack, else,
set RLINK'(J) = I+1

END

5.3.6 Converting Over the Same Memory Space

The above algorithm works well enough; unfortunately, it is not

very practical. For it we had plenty of memory, we wouldn't need to

use the more compact Preorder Sequentical form to start with. Probably

the right threaded PATRICIA tree will take up all available memory;

94

hence, if we are going to convert to Preorder Sequential form, then
the conversion must be done directly over the threaded structure, which
of course is then sacrificed. Unfortunately, the conversion cannot be
done in one pass, for as we move a node to its sequential location we
must swap it with the node formerly contained in the sequential location,
and we have no idea where the father of this node is. (We must locate
the father so that we can fix up the approbriate RLINK or LLINK field).
We can, however, effect the conversion in 2 passes. The first
pass forms a doubly linked 1ist of the nodes in preorder and uses the
LTAG and RTAG fields to indicate whether-a node has a left or right
subtree.! The second pass then recreates the proper value for the RLINK
field, and swaps nodes when they are out of physical sequence. The
rationale behind using the doubly Tlinked structure is that it allows us
‘to move nodes around with no difficulty. |

5.3.7 Algorithm: Convert to Preorder Sequential form over the Same
Memory Space.

The two passes of the algorithm are presented below. Both use
a stack, A, and pointers, I, J, W, X, Y, Z, ATOP, and B. This is the

only storage requirement outside of the threaded structure.

Input: A Right Threaded PATRICIA tree whose rocot is at location one.

Output: A Preorder Sequential PATRICIA structure starting at
location one.

]This is a linked version of the linear representation given in
Knuth (1968) p. 359, exercise 2. It is perhaps the most compact form
possible, since both RLINK and LLINK are eliminated. linfortunately,
except for the additional space saved, this form has ! t:ilc practical
value nere, for it cannot be searched efficicntly. 1t might be useful
for storing extremely compressed structurcs, if auxilary bulk storaqe
were at a premimum. Usualty, however, this is not the case.

85

Pass One
1) Set ATOP <~ 0, B« 0, X < 1.
2) If RTAG(X) =1 (If X has no right subtree)
go to step 3, otherwise
set ATOP <« ATOP+1,
A(ATOP) < RLINK(X) (stack the right subtree of X)

3) Set RLINK(X) « B, B « X (RLINK(X) now
points to thepreorder predecessor)

4) If LLINK(X) # X (If X has a left subtree)
set LTAG(X) <« 0, X <« LLINK(X)
Go to step 2.
5) Set LTAG(X) < 1 (Now get the preorder successor,
if there is one, and point LLINK(X) to it)
If ATOP = 0 then set LLINK(X) <1, RLINK(1) <X,
exit. Otherwise set Z « A(ATOP), ATOP <« ATOP-1, LLINK(X) <« Z,
X+« 2, go to step 2.

END

If we apply the above algorithm to the tree of figure 5-1 we will
get the structure shown in figure 5-6. The nodes are more easily recog-
nized by the first few letters of the key pointed to by the PTR field,
and the LLINK-RLINK fields are indicated by arrous.

We now make the second pass over the structure with the algorithm
given below. It will recreate the proper RLINK field at the same time

it is forming the preorder Sequential representation.
Pass 2

1) (initialize)
Set I+<1, ATOP<«1, A(ATOP)«0 Got to Step 3
2) (Linearize and go to next node)
Set J«LLINK(I), I«I+1. If qu
go to step 3, else
set RLINK(LLIMK(I))«J
LLINK(RLINK)I))«d

swap all fields of nodes I and J

3) If LTAG(I) #1, set ATOP ATOP+1,

A(ATOP)«I (stack the node and continue down the left
subtree) go to step 2.

4) Set J«I (We are going to find the proper value for RLINK(J)

5) If RTAG(J)#1, go to step 7.

6) (RLINK(J) is a thread)

Set W<A(ATOP), ATOP<ATOP-1,
RLINK(J)<H, J<# (RLINK(W) might also be a thread)
if ATOP=0, exit else go to step 5.
7) (RLINK(J) points to a right subtree, which is the next node
to be visited) Set RLINK(J)«I+1, go to step 2.
END

Step 2 is deceptive. It "lineerizes" the coubly linked 1ist in
vhat, at first glance, seems to be an obvious manner. Upon further cxam-
ination one will find that step 2 doesn't actually interchange nodes--it
garbages up the LINK fields in many cases (for example when LLINK(J)=1).
However, observe that step 2 does in fact work, as is illustrated in
figures 5-7 through 5-9. One shbu]d note that the only permanently gar-
baged up fields are LLINK and RLINK fié]ds of nodes\which are to be
encountered next; and these fields are nbt needed anyway. Also note that the
algorithm requires the tree to be "dense" in that it occupies a contiguous
physical area. This will always be the case unless some deletions have
been made, which causes nodes to be returned to free storage. Thus,
the algorithms for finding space and freeing space, GETNODE and FREENODE,
use a doubly linked Tist as explained in Appendix A.2.

After exiting from the second pass of algorithm 5.3.7, the struc-

ture of figure 5-6 will.have been converted to the structure of figure

97

Physical Location LTAG,RTAG,PTR, SKIP TEXT (indicated
of Node by PTR)
1 0,1,101,0 THE QUICK - - -
2 0,0,105,3 QUICK - - -
3 0,0,117,1 FOX - - -
4 1,0,111,2 BROWN - - -
9 1,1,142,1 DOG
I
5 0,1,128,1 OVER - - -
6 0,1,137,1 LAZY - - -
8 1,1,121,1 JUMPED - - -
7 1,1,133,34 THE LAZY - - -

Figure 5-6. Pass 1 creates this from the structure of figure 5-1.
The LLINK and RLINK fields are used to form the
doubly Tinked 1list.

98

old i

Figure 5-7.

The special situation where LLINK(j) = 1.

The contents of the nodes are indicated by the
letters Q, R, S, and T. Their physical locations
are given by the letters i, j, and x. The LLINK
fields emanate from the lower right side of the
nodes.

99

h\ /4

Figure 5-8. The important link fields during step 2 of
algorithm 5.3.7, pass 2, just before "Swap
all fields of nodes i and j." Note that node J
seems to be hopelessly disoriented.

100

Figure 5-9. After step 2 of algorithm 5.3.7 has been
completed, node i contains the proper information
and LLINK(j) correctly points to node x.
A1l other link fields are irrelevant.

101

5-5. The RTAG and LLINK fields are no longer needed and may be used

for other purposes.

5.4 A slightly Different Version of the Preorder Sequential Representation

We may find it more convenient to represent LTAG and RLINK simply
as a single signed LINK field, particularly if we were using signed
RLINK-LLINK fields to start with. In this case, we may easily rewrite
the search and traversal algorithms; however algorithm 5.3.7 is a little

more difficult to alter. The converted algorithms are given below.

5.4.1 Algorithm: Search Through Sfructure with Combined RLINK-LTAG

This is a converted form of a]goritﬁm 5.3.3.

Input: K, number of bits in K.

Qutput: P (a pointer to the root of a subtree containing all
matches to K).

1)-Set P« 1, J « 0, N number of bits in K.

2) Set Q <« P. If LINK(P)< 0, go to step 6, else set P « P+].
3) Set J <« J+SKIP(P) if J> N, go to step 6.

4) If the J+lst bit of K is 0, go to step 2.

5) Set Q « P, P <|LINK(P)| . If P > g0 to step 3.

6) etc. (same as algorithm 2.1)
END

5.4.2 Algorithm: Postorder Traversal of Structure with Combined RLINK-LTAG

This is a converted form of algorithm 5.3.1.

Input: X
Output: Visit all nodes in the subtree whose root is at X.

1) Set Y « X.

102

2) If LINK (Y) > 0set Y « Y+ 1 repeat step 2.

3) Visit node Y.

4) Set Z « LINK (Y) if Z < X exit.

5) If Z <Yset Y+« Zgo tostep 3, else set Y « Z go to step 2.
END

5.4.3 Algorithm: Transform Right Threaded Structure to Preorder
Sequential Form with Combined RLINK - LTAG

This is a converted form of algorithm 5.3.7. Note that we must
be careful not to destroy the sign bit of the RLINK - LLINK fields while
the doubly linked structure is being linearized (step 7). Also, Pass One
and Pass Two have been combined into a single rather long algorithm.
The RLINK field is the field which eventually becomes the LINK field,
and the LLINK field is freed. Initially, assume (as before) that a neg-
ative LLINK or RLINK field indicates a thread.

Input: A Right Threaded PATRICIA tree whose root is at location 1.

(See algorithm 5.3.7)

Qutput: A Preorder Sequential PATRICIA structure starting at
location 1

1) (Pass one) set ATOP < 0O, B <0, X « 1.

2) If RLINK(X)< O go to step 3, else set
ATOP « ATOP + 1, A{ATOP) « |RLINK(X)|.

3) Set RLINK(X) « B*SIGN(RLINK(X)), B <« X.
4) If |LLINK(X)| # X, set X « LLINK(X), go to step 2.

5) If ATOP =0, then set LLINK(X)« -1, RLINK(1) « -X,
go to step 6, else set Z « A(ATOP), ATOP « ATOP - 1,
LLINK(X) « -Z, X « Z, go to step 2.

6) (Pass two) Set I « 1, ATOP « 1, A(ATOP) « 0, go to step 8.

+ 1.

7) Set J « |LLINK(I)|, I « I
e set RLINK (LLINK(I)I) «
; (1)) <

If I>J go to step 8, e
J*SIGN(RLINK(|LLINK(I)
J*STGN(LLINK(|RLINK(T)

, set LLINK (|RLINK

1
l . Swap all fields of nodes I and J.

S
)
)

103

8) If LLINK(I) >0 set ATOP <« ATOP + 1, A(ATOP) « I, go to step 7.
9) Set J <« I.
10) If RLINK(J) >0 go to step 12.

11) Set K< A(ATOP), ATOP < ATOP - 1, RLINK(J) <« K*SIGN{LLINK(J)),
J<« K. If ATOP = 0 exit, else go to step 10.

12) Set RLINK(J) « (I+1)*SIGN(LLINK(J)), go to step 7.
END
The above algorithm will transform the tree of figure 5-1 into the

structure of figure 5-10 instead of the structure of figure 5-5.

5.5 Further Compression

At the expense of an additional disk access when ve are looking
at a specific position in the text, we may eliminate the PTR field from
the node and place a table of PTR fields on disk along with the text.
If the table gives the PTR fields in the order corresponding to the
location of the nodes, it is then a simple matter to use the address of
a node to access the proper PTR field; then, the PTR field is utilized
in the usual manner to pick up the proper text from the disk. Moreover,
note that 511 the nodes of a subtree follow immediately below the root.
For example, the node in location 3 (Text = F0X...) is the root of the
subtree containing the nodes in locations 4, 5, and 6.

Thus, if we have a match with several keys, and have a buffer
area large enough to hold, say, N PTR fields from disk, then we may
access the disk once to pick up the PTR fields, and as long as the sub-
tree contains no more than N nodes, we only need to access the disk
whenever we pick up the actual text. Hence, if we have N matches for
a key, we need only access the disk M+l times. (The usual method would

have required N accesses).

Physical Node Location SKIP PTR LINK TEXT

1

2

Figure 5-10.

0 101 . 0 THE QUICK -
3 105 9 QUICK BROWN
1 o117 6 FOX JUMPED -
2 111 -5 BROWN FOX -
1 142 -3 DOG

1 128 2 OVER THE - -
1 137 6 LAZY DOG

1 121 -7 JUMPED OVER
34 133 -1 THE LAZY - -

Preorder Sequential form with LTAG and RLINK combined.

oL

105

5.6 Conclusions - Advantages of the Compressed Form

The main points of this chapter are summarized below.

1) We have reduced the PATRICIA node in size from the following

structure:

L
A
(5

Ly
PTR|SKIP IN

K

R
]
|

O&>—-I:c

to this one:

SKIP HLINK

lle have speeded up the search process by eliminating one of

the subscripts.

e have notsignificantly slowed down the text accessing process,

-particularly when thereexist multiple matches to the same key.

106

6.0 Practical Applications

Some real and potential applications are now given which employ
the algorithms presented in the previous chapters. Note that the table
of contents for this dissertation, as well as the list of illustrations,
list of algorithms, and index, wére all prepared using PATRICIA: spec-
ifically algorithms 2.1, 2.2, 2.3, 3.1, 3.2.1, and 3.3.2. First, a deck
of cards was punched where each card contained either a chapter or sub-
chapter heading, or a fiqure caption, along with the page number con-
taining the particular heading or figure. Selected words were flagged
as keys; for example every chapter or subchapter number, every occurrence
of the word "ALGORITHM" in algorithm subheadings, every occurrence of
words such as "TREE", “NODE", "LTAG", etc. To create the 1list of il-
lustrations, the key "FIGURE" was searched for. The table of contents
was listed by searching for fhe keys "1.", "2.", etc. Then the subtrees
containing the keys "FIGURE", "1.", "2.", etc. were deleted from the
structure, and a search was made for the null key, which caused all
remaining keys to be listed. This formé the index, which does not
duplicate chapter and subchapter headings, or the lists of figures and

algorithms.

6.1 A Hypothetical Medium - Scale System

Let us assume that we have a file of 20,000 documents, where each
document represents an abstract, a dossier, a student record, or some

similar thing. Let us .further assuine that each document contains up to

107

500 words of about 10 characters each, and contains an average of 5 keys.
Thus, our structure would consist of a text of 100,000,000 characters,
(which will be stored on bulk storage devices such as IBM 2314 disks),

and a PATRICIA tree of 100,000 nodes. The individual node in the PATRICIA

tree would have the following bit requirements:

PTR field 27 bits (PTR < 100,000,000)

LLINK field 17 bits (LLINK < 100,000)

RLINK field

17 bits (RLINK < 100,000)

LTAG, RTAG 2 bits

SKIP field 12 bits (assume a string of no more than
500 identical characters in any two
keys, or 4000 bits)

This amounts to 75 bits, or 10 bytes (rounded to the next byte),
or one million bytes for the PATRICIA tree. The node for the Preorder

Sequential form of section 5.5 would have the bit requirements given below:

LINK field - 18 bits (JLINK| < 100,000)
SKIP field - 12 bits

which is 30 bits, or 4 bytes, or 400K bytes for the entire Preorder
Sequential structure. In addition, the PTR field would require 27 bits,
or 4 bytes, or 400K bytes of disk storage for the entire PTR table.

Thus, PATRICIA would use (400 + 300 + 1000)K bytes of disk storage
which amounts to 1.7% of the entire file. Building the PATRICIA struc-
tures would require an amount of time not much greater than 2:100,000-X,
where X represents the average access time to the disk (see Appendix C).
Two disk accesses are reguired for each key inserted into the tree. If
we assume that X = 75 milliseconds {the average access time for a 2314

disk), we note that none of the algorithms involved in the building

108

process (2.1, 2.2, 5.1.1, 5.4.3) require an amount of time per key

that is anywhere near the time used by disk accesses. Thus, the PATRICIA
structures would be built in about 72-2-100000 milliseconds =‘15,000
seconds or about 4 1/2 hours.

The user would run in either "update" mode or “"query" mode. In
update mode, alterations are made to the PATRICIA tree or to the actual
text. After all alterations have been completed, the new version of
the Preorder Sequential form is built; this structure, along with the
tree, is then written out on the disk. In query mode the user works
with the Preorder Sequential structure, which could run in a multi-

progranming environment since it requires so much less space than the

tree.

6.1.1 Boclean Operations

For most applications the user wants the capability of asking fof
specific combinations of keys; for example, he might want to find all
keys that start with "ANT" except "ANTLER" and "ANTECEDENT." Or he might
want to retrieve all documents that contain both of the keys "CHEMISTRY"
and "CRYSTAL."

The construction of a particular Boolean query editor is easily
accomplished for PATRICIA, since we can quickly find all the subtrees
for the keys contained within a Boolean expression. For example, if we
wish to eliminate "ANTLER" and "ANTECEDENT" from our query for "ANT",
we simply traverse the subtree of keys that start with "ANT", but we
do not visit either of the subtrees of keys starting with "ANTLER" or
"ANTECEDENT", which are both contained in the larger subtree for "ANT."
To find only those documents containing both of the keys "CHEMISTRY" and

"CRYSTAL" we Took at the PTR fields of nodes in the two subtrees, and

109

only keep entries which point to documents that are present in both.

6.2 Another Application - CALL FOR ACTION

The text program of Appendix B was used to create a key word index
to referral files for the Oklahoma branch of CALL FOR ACTION, which is
based in Oklahoma City at television station KWTV, channel 9. The data
was gathered by a graduate student in Library Science at the University of
Oklahoma, who prepared the cards in a rather unrestrictive format that
was most comfortable for her. She tagged key words with asterisks, and
indicated the end of a particular "abstract" by punching a "1"; then
she continued immediately with the next record (on the same card if she
wished). At the time of this app]ication,fthe program maintained all
text in core, which imposed a 32767 character restriction. Hevertheless,
this was sufficient to permit the run. wa runs were made, each con-
sisting of about 1000 kevs and 25000 characters of text. In the process
of preparing the data, a mistake in one of the texts was corrected by
punching a text alteration card, which was entered after the entire
structure had been built.

To 1ist all the keys, a search was made for the null key. The
entire run took about seven minutes on a 360/50, with 15 copies of the
printout being produced. Some of the outﬁut is illustrated in figures

6-1 and 6-2.

6.3 - Some Useful Dirty Tricks Involving Comparison Strings

We can guarantee that the number of identical characters in a
comparison between two keys is held tc a reasonable 1imit. The usual
way to do this is to give each document a unique terminating symbol in

the form of some catalogue code number. This insures that the maximum

THE COMDLETFE TEXY IS LISTED DBFLOW B

107
20"
139
40N
“an
6o
ron
Ao
a9

100>
119
1300
173
1410
1507
1102
1700
1409
1999

2001
2100
220D
215930
2407
2509
2092
2?00
2399
29nn

L6 108 1G5 208 D256 30 354 A0® 4Se 50 5% 60e 45 70¢ 7Se BOe 105¢ Q0¢ 95 100

JAGRICULTURE = OKLAHO
SACMTATL DEOAD e T O =~ ANIMAL THOUASTIY OIVISIGN | AGRICULTURE ~ OKLAHOMA EMOLOYMENT SECURITY CIMMl
AATEN = T ANIUA AR LAROT REBART (1970) | AGRICULTIME — Oxt Aunua CTATE (NIVERSITY — CNOPERATIVE EX
TINGIO L S VT CE | ALCOTOL IS = ALCONTLICS ANCNYMNOUS. INCe | ALCOHILISY — CONTRAL OKLAMOMA ALCGHOL TR
FATA4eNT COMTEY | ALS N (S = CAP (CUMNUNITY ACTION PPOGRAM GF 0L AHOMA CITY AND CUUNTY, INC.) | ALC

CrRN Y = CFNTRAL STATL RIFe N MTHORTAL MBI TAL. KNORMAN, ORLAMOMA | ALCORHNLISM = COYNE CAMPRLLL HN

Sl rAaL VALCOIOLIGY = G MNIRAL INFIRYMATION = AMENICAN MIDIZAL ASSOCIATION | ALCOHALISM — [INRDIAN DEVIL
. 12 150 REIL 25 R R 35 A0 A5« S0* ubhe CO» (22 4 70+ 75¢ /0 05 L 0e Q5% 100w

- COTE 4y (e ACCIHVOL TSI = MAIN ARTER (. [NCey CREANIYA CITY | ALCOFDLISY — OQRLAMOVA CITY CGi
WOTL P ALl = KA] ALCOHEOL IGY = CLAMYNA ODEIPADTWINT OF SN TAL HEALTh = DIVISION OF ALCOLHOLLS
t

AL ACC T T = GUNTIIAR A0NT AND TAVILY SERVICE = 0<C | ALCOHCLIGSM = TREATYEMT = DIRCCTGRY G- W 50U
KCu Y 02 FWATHONT OF AL OIS IN GKLAMIMA = OKXKLAFDIA STATC DEPARTMENT 0OF HEALTH | ALCOMOLLISY - V.,
Ae 4INDL LAl T p Sl = VULITKRANSG | AMTHALS = ANANDONMENT OF - LAWSe STATUTES. E
T — 10t Aitvin 3Py C097 | ANINMALS — COUNTRAL DF GGCEG] ANIVALS = GONTREL DF = CAFS | ANIMALS = CONTR
NLNE = (ITY AaiNc eS| | ANIMALS — CONTROL GF - DOGS -

PZUATT AN LY G, POUND | ANTMALS — CONTHOL UOF = GOGH ~ DLUAHDMA CITY ANIMAL WELFARE DIVISION | ANL
MAL L, = TS)Y DARIEL] ARIVALS = CONTel OF = RATS] ANIMALS - CONTROL OF = LXUIKS | ANIMALS - C

INT AL = SNAE SERUMOARD PULSON CONTIROL | ANTAALS = DISPL3AL OFF = LAWS, STATUTESs ETCe =~ OKLAKHNMA
ye 1) 1t e wna RO £) I ane ans s0e DHE 6O €5 TC* 76% 804 85 ¢ 20% 95 (00
Cirvw oy, | S TTALS = DISPAOSAL Y = KL AHLVYN TTENGEIING aDURS I ANIMALS = OCKLAMIMA STATE DUPARTMENTY

A2 TOvE = ANTARL IMDOSTRY DIVISIIN | ACINMALS - PEaTLOTION OF — ANIMAL PROTCCTINN LEAGUE AND H
o CIY] aEALS = PROCTECTION OF — VOLJNMT IR Fiv ANTYAL WELFARKE o INCe | ANIMALS — VI TECRINATIRA
Fing AL USE] AR TMALS = VETEWINAQIANS — STATC VETHHRINARIANG ASSOCIATION | ANIMALS - Wl
TOATLGEUYAT PIN = OKLANIYA CITY /) | ANTTIAL - Wl 1 CONCSIEVATION = CKLAHONMA STATHE DEPARTMEN
ATLOLTEE NN AVATION | AR D FOPCES = SILFCTIVE SEavIcr INFORWAT ION AND DR AR
T oA b B Lo VSIS = VP TEDANS = AMIRICAN NATIOvAL oD Ce1SS | ARMAED FORCES = VETERANS = E£700L0YN
CNT] 2 v) E NG = VEVTERANSG = FEOVOAL QENEFLIVTS R VETE2 ANS AND DUPERDENTS = VETEIANS ADMINMISTIATT
D0 YDA T T 2 VICE | ATMID B ORCES = VETEDANG = VaoAl. #DGRITAL = HMEALTH SERVICES | ARMLD FODICELS -

VETURANS = VETHRAIS ADAINISGTRATICN OFF ICT = GUONIRAL] AMMID FORCES = VETERANS = VLVLRANS R

L tns 15¢ 20¢ 2h¢ 392 J5e 40¢ A58 S50« 55¢ Guk. 65% T0% 754 850& 85¢ 90% 9YS5e 100e

Figure 6-1. Some text of the Call for Action fiies. The text was punched

in free form, with vertical bars between "abstracts". For
updating purposes the approximate card number is given.

APPRDXe
CARD
NUMHER
1

VO ~NOSWN

11

12
APPROX S

canrp
NUMACR

13

14

16

17

18

19

21

22

23

24
APPRCXe

CARD
NUMIER

26

27

28

29

31

32

33

34

36

37
APPROXe

CARD
NUMIER

oLt

WEEDS AND TRASK = OKLAHOMA CITY COUNCIL

.o 3 .o .e oa .o .o . LY .e

WEEDS AND TRASH — OKLAMOMA CITY-COUNTY

.o oo .o .e . oe .0 .e . .

WELFARCD = PEDPANTMENT OF INGTITUTIONS.

WESLFYAN YILTH [MNC. . OFC

.o e . - .o .o .e .o .o -

WILDLIFE CONS OV AT TN

.o e .o .o .o - .e .o . .e

WILDLINT CUN3SZQVATION

.o .o .o . .o .o . .o L] .e

WILDLIFF CONLERVAIINSG = DKLAMOMA CITY

oo ee e .o .o) .e .s . .

WILDUIFE CONSERVAT ION = CKLAHOMA STATE

oo oo .e .o .e e .o .o .o -n

WONDER MOUSE DAY CARE CIENTER = NNONRNMAN

ENVIRONYMINT - WEEDS AND TRASH = OXKLAMOMA -
CITY CUNTIL
e ae -0 e .0 .e L] o e L] e .0 LX) e -0
HEALTH DEPARTAEN
ENVIIICNMENT - WEEDS AND TRASH = NOKLAHOMA
CITY=COUNTY HEALTH DLPARTMENT

.o .o LR} .o .o - oo .o .o oo . .o .o

SOCIAL AND RENMAN]

CHILDPEN — %ELkARE =~ OEPARTMENTY OF ItMSTITUTIONS,

SCClAL AND niHAelLlTAYXVE SERPVICES (DISNS)

CHILDREN AND JUVENILES = GUIDANCE AND COGUNSELING

- Joays - WCSLEYAN YOUTH INCaee NKC

e - e .. - e .o .o - a O-..O .o . e LR - e .e

ANINMALS -~ WILDLIFGC CONSERVATION — DKLANDMA
STATI ODFPARTMINT CF VILOLIFE CCNSCRVATION

EHNVIONYMEINT = AGENCIES AND ASSOCIATIONS
- CHLANMA STATE OEPARTMENT DF WILOLIFE
CONSTHVATION

LR] ‘e e .o .o - . L -.e - e .o .o .o .o -e ..
Z0Q .
. ANMIVALS - WILDLIFE CONSCRVATIUN — OKLLAHCMA
Cirty 700
.o .s .o e e .. ce e s ee ee te se ee
DEPARTMENT NF w!
ANTMALS — wiILOL IFE CONSERVATION ~ DOKLAMOMA

STATE DEPARTMINT CF WILDL IFE CONSERVATION

oo oo .o . .. e .o .e .o ee -w ew ow oo

CHILDNIN —~ DAY CARE SERVICES - WONDER
MOUSL DAY CANE CENTER ~ NORMAN

L) .oo .e e .o oe se .e .o

Figure 6-2. Some of the output produced for Call for Action. The keys
appear at the left. Every key is printed, along with the
entire abstract for that key. The 4 or 5 digit number
at the right gives the PTR field for the particular key;

thus we can refer
dating purposes.

back to the text (figure 6-1) for up-

23261

23317

7969

8382

2506

20500

2399

2453

5475

111

112

length of identical keys is limited to the size of the document. Of
course we would have little use for identical documents, so in actuality
the identical character strings would be much smaller. Thus, in the
example of section 6.1, we assumed no more than 500 identical comparison
characters in each document of (no more than) 5000 characters.

If this 1imit is exceeded, we may under certain circumstances
employ a differcent method to lower the numbgr of identical characters in
two or more keys. The method requires that we insert a non-printing
character somewhere in one of the identical strings. This character

should be placed so that it conforms tu the following criteria:

1) It is placed in an inoffensive spot, such as beiween two words.
2) It is far enough ahead of the sfart of any key so that it
will not interfere with a query. (30 or 40 characters ahéad
should be sufficient.) The choice of where to put such a

symbol should be made during the building phase.

This special character could also be’used to alter the overall
structure of the PATRICIA tree in an attempt to make it more balanced,
although most practical applications involve text that either produces
reasonably well-balanced structures, or does not have the sufficient 30
or 40 characters between the start of any key and the spot at which we
might want to insert our special symbol. HNevertheless, it is intrigquing
to recall the example of figures 4-1 through 4-3, where a single well
p1aced character drastically restructurecd the tree. Unfortunately, it

also caused the keys ahead of the alteration to be changed.
6.3.1 Using a Terminating Symbol to Limit the Scope of Text Alterations.

The special terminating symbol mentioned in section 6.3 also

113

serves to partition the text into small units, or "books" (Morrison
1968). This is very practical, for it means that a given text alteration
will affect only the particular book where the alteration is being made.
If we allocate on disk extra vacant épace for each book, then we can
change the affected area without having to push other unaffected books
around. Moreover, if we can hold an entire book in a memory buffer,.then
only one access to the disk is required for any alteration (or group of

alterations) made to a book.

114

A.0 APPENDIX - OTHER ALGORITHMS

This appendix contains algorithms which, though not specifically
germafne to PATRICIA, are useful to (or are required by) some of the

algorithms presented in the preceding chépters.

A.1 Algorithm: Get a node from an available list

This algorithm gets a PATRICIA node from an available 1ist of nodes
(Knuth 1968, p. 254). Initially the 1fst is sequential, consisting of
M available nodes. Also, initially let MAﬁKER = 0, TOPFREE = X. The
algorithm will exit with pointer X pointingvto the next available node.
(The nodes are linked together by their LLINK fields when they are re-
turned by A.1.1 below.)

Input: X (A pointer as yet undefined).
0utpu£: X points to an available node.

1) If TOPFREE # X, set X <« TOPFREE, TOPFREE « LLINK(TOPFREE),
exit. .

2) If MARKER = M, no space is available, else set MARKER <«
MARKER + 1, X <« MARKER, exit.

END

A.1.1 Algorithm: Return a node to an available list.

This algorithm returns a PATRICIA node to an available list. The
nodes will be linked by their LLINK fields. Assume the node being re-

leased is pointed to by X.

115

Input: X (a pointer).

OQutput: Node X has been freed.

1) Set LLINK(X) « TOPFREE, set TOPFREE « X, exit
END

A.2 Algorithms for a doubly linked available list.

The algorithms of section A.1 have beenArewritten so that they
utilize a doubly linked 1ist. A 1list head is set up at location M, the
high order memory location. The 1ist head is chosen to be there so that

it won't conflict with the PATRICIA tree. The list is unlinked to start
‘ with, and is only linked up as nodes are returned to free storage. This
guarantees a "dense" structure in that all hodes are members of doubly
linked 1ists. In other words, if X equals the Tocation of the highest
physical node in the PATRICIA tree, then fof 1 <1 <X, node (I) is a
member of either the doubly linked available Tist or of the tree (which,
after the application of algorithm 5.3.7, pass 2, is in the form of a
doubly linked 1ist.) If this were not the case, then algorithm 5.4.3
could fail in step 7 whenever node (I) contained irrelevant or random
RLINK or LLINK fields.

The algorithms are presented below. Assume that MARKER initially is
set to 2 (because lTocation 1 is reserved for the root of the PATRICIA
tree). Again, let M be the highest available memory location as well as

the Tist head. Thus, initially, we set RLINK(M)=LLINK(M)=M.

A.2.1 Algorithm: Get a Node from a Doubly Linked Available List.

Input: X (a pointer as yet undefined.

Output: X points to an available node.

116

1) If LLINK(M)=M, go to step 4.
2) Set X<RLINK(X).

3) Set LLINK(RLINK(X))M
RLINK(LLINK(X))<RLINK(X), exit.

4) If MARKER = M-1, overflow, else
Set MARKER MARKER+1, X MARKER, exit.

END

A.2.2 Algorithm: Return a Node to a Doubly Linked Available list.

Input: X (a pointer).
Output: Node X has been returned to free storage.
1) Set LLINK(X)<M, RLINK(X)<+RLINK(M)

2) Set LLINK(RLINK(M))<X,
RLINK(M)«X, exit.

END

A.3 Algorithm: Print a Tree.

This algorithm first finds the level of a node. The tree will be
printed on its side, with the root at the left. Let N horizontal spaces
exist between each level on the printout. The level, L, of a node will
be given by the number of entries in the sequential stack used for the
traversal. Only one node will be printed on a given line. We shall
have P vertical spaces between nodes.

The rules for drawing the tree are given below. At each "visit" to
a node, space out P-1 lines, printing "*" and "§". Then (where required

as defined later):

1) Write out the INFO field starting at 1ine position L*N+1 (assume
INFO is the information we wish to see, and occupies at least N

positions).

2)

3)

If the node is a right subtree, start printing a vertical

lina ("*") at position L * N, otherwise, start printing spaces
at position L * N. (Assume the root is not a right suBtree)
If the node has a lgf;_subtreé, start printing a vertical line
at position (L + 1) * N, otherwise start printing spaces.
(INFO fields take precedence over any lines; i.e., don't print

an "*" if it obliterates informatioh.)

These rules are implemented as follows:

Assume ATOP points to the top of the stack, A, which is used by the

algorithm below; then, at a visit to node (X):

The

1)
2)

3)

ATOP gives the level of node X.

If ATOP # 0 (If we are not looking at the root) and if, for
node (X), RLINK(A(ATOP)) = X (The noce at the next numerically
lower level points to nod: (X)), then node (X) is a right sub-
tree; print "*" at line position L*N.

If LLINK(X) # X , then node (X) has a left subtree. Print "*"
at (L + 1)*N.

entire algorithm is given below:

Input: TOP, the pointer to the root.

Output: The printed representation of the tree.

1)

2)
3)

4)

Set X <« TOP
ATOP <« 0.

If X =X, go to step 4.

Set ATOP « ATOP + 1,

A(ATOP) « X

X « RLINK(X), got to step 2.

If ATOP = 0, exit, we are done
else set X « A(ATOP), ATOP « ATOP-1

118

5) If X <0 go to step 4
6) "visit" node X

7) Set ATOP « ATOP+1, A(ATOP) <« X,
X <« LLINK(X), go to step 2.

Step 6 is now expanded:

(Initially, set skeleton line, S, = all "p")

6-1) | Write out S(1) through S(N*ATOP), then all node information,
starting at N*ATOP+1. '

6-2) If ATOP # 0 and RLINK(A(ATOP)) = X, move "B" to S{L*N) (node
X is a right subtree) else move "B" to S(L*N).

6-3) If LLINK(X) # A, move "*" to S((L+1)*N) (node X has a left subtree)
else move "B" to S((L+1)*N).

6-4 Write out S a total of P-1 times.

END

1o

B.0 APPENDIX - THE TEST PROGRAM

The algorithms described in chapters 2-5 have been tested by writing a
PL/I program in which there is a close correspondence between PL/I code

and the algorithms wherever possible. Details of the program's operation

are given in section B.1, and the source listing, as well as some sample

input and output, is shown in section B.Z2.

B.1 The Facilities of the Program

The test program has the capability of performing the functions
listed below.

1) Read text and create a PATRICIA tree (either Right Threaded

or unthreaded).

2) Display a PATRICIA tree and/or the text.

3) Search for a key and 1ist all matches.

4) Delete a node from the tree, (or delete an entire subtree).

5) Delete or insert text.

6) Convert from a Right Threaded tree structure to Preorder

sequential representation.

B.1.1 Read Text and Create a Tree.

The first data to follow the //GO:SYSIN card is of the self explana-

tory form given below.

*HERE *IS *SOME SAMPLE *TEXT. *THE ASTERISKS INDICATE *THE *STARTING
POINTS FOR *KEYS AND ARE NOT STORED. AT THE CONCLUSION OF THE TEXT,

120

*PUNCH *AN AMPERSAND IF YOU WANT *THE *STRUCTURE TO BE UNTHREADED,
OR A DOLLAR SIGN IF YOU *WANT IT TO BE *THREADED. *THIS *TREE WILL

BE RIGHT *THREADED. THE TEXT CONTINUES FROM COLUMN 80 OF ONE CARD TO
COLUMN ONE OF THE NEXT.$

After reading the text and creating the tree, the program will allow
one to perform any or all of the functions B.1.2 through B.1.6. For

each of these functions, lTeading blanks are ignored.

B.1.2 Display the Tree and/or the Text.

To display both the tree and the text,.type a "!". To display only
the text. type a "|". The tree is drawn on its side with the root at
the left. LLINK fields are indicated by "L"s connecting nodes and going
down the page; RLINK fields are indicated by "R"s similarly going up the
page.

The rest of the node structure is illustrated below, and is in one

of four possible forms.

1) If the node has no backward pointers:
*JJJ*SSS*PPPP
2) If the node has a right backward pointer:

*KQQQ**H*TEXT ==~~~
*JJJ*SSS*PPPP

3) If the node has a left backward pointer:

*JJJ*SSS*PPPP
QQQ*TEXT-~-~-~-

4) If the node has left and right backward pointers:

()QATEXT-mmm oo ==
*JJJ*SSS*PPPP
**(OO*FATEXT-=-=- == ===

121

where:

JJJ = physical location of the node

SSS = SKIP field

PPPP = PTR field

QQQ = value of LLINK or RLINK when one (or both) is a backward pointer
TEXT = the first 20 characters of the text pointed to by PPPP(QQQ).

B.1.3 Search for a Key and List All its Matches.

To do this, punch the key followed by a "?" Examples:

THE? - searches for all keys sfarting with THE.
THEB? - searches for all keys starting with THEB.
S?ISP?PBYBPT? - searches for all keys starting with S, ISP, and T.
SOMEBSAMPLEP? - searches for all keys starting with SOMEBPSAMPLEP.

B.1.4 Delete a node from the treec.

Punch the key, followed by a "/". Examples:

HEREBISPSOMEB/ Deletes any key starting with
"HEREBISBSOME"

HEREB/ISB/SOMEB/ Deletes any keys starting with
"HEREB" or "ISP" or "SOMEB". -

S/ T/ Deletes all keys starting with
SorT.

Only the FATRICIA tree is altered. The text is not affected in any way.

B.1.5 Delete or insert text.

The different ways of accompiishing this are given below:

(XXX-YYY) Deiete all text between (and including) positions
XXX and YYY. XXX and YYY are integers.

LLL - - -)

(XXX*LLL - - -)

122

Delete an occurrence of the characters

“LLL - - -" from the text. Note that
"LLL - - -" must be a key; moreover, only
one occurrence of "LLL - - =" as a key

will be found. To delete other occurrences,
repeat.

Insert the letters "LLL - - - " into the text
starting in position XXX + 1.

Some examples are given below. They all refer to the text given in B.1.1.

(2-9)

(4*SY)

THREA)

This would cause the text "EREBISPS"

to be deleted, along with the keys
starting at IS and SOME. The first
position of the text will still start
at "H", but the second will be "0",

and the text will read "HOME SAMPLE---."
Also, "HOME---" will be the starting
noint for a key.

This would insert the letters "SY after
the second "E" of "HERE", forming
"HERESY". Also, there will be a key
created starting at "SYBIS---". The
former key "HERE IS ---- will still
exist, but it will now read "HEI'ESY

IS ----",

This will cause "THREA" to be deleted

from the text at some occurence of a

key starting with "THREA". Either of

the two keys starting with "THREADED.---"
could be affected. The key itself will

be deleted, and the text will be altered

to read "---pBEPDED---" or "---RIGHTYDED---"
depending upon which key is deleted.

B.1.6 Convert to Preorder sequential Form.

-After the user has specified all the functions that he may wish to

perform for a particular text, he punches a “$" (dollar sign). This will

cause the tree to be converted to Preorder Sequential form if it was

created as a Right Threaded tree. The nodes will then be traversed in

postorder, and listed. The program wiil then accept a new text (i.e.

return to B.1).

123

B.2 Sample Output.

The next few pages contain a 1isting of the test program, along with
a sample run. Note that in the program listing, the algorithms are indi-

cated by enclosing them in appropriately numbered "/* - - - - */" cards.

124

1 PATRICA: PINC OPTIONS (4ATINY:
/¥ THIS PrOGRAM IS MEANT TO RS A TEST PROGRAM QONLY.
THEREFORE MUCH NF THE CONDE IS STILL IN RATHER ROUGH FDRM, %/

2 {STRINGRANGE) ¢ REGING

3 {SURSCR ICTRAMGE) ¢ NEGING

4 NKEYS = 200: HCHASS = 2000:

6 MNKZYS5 = 5505 NCHARS = 23000

8 YEGING

9 DCL (RLIMNK{NKEYS) + LLINK{NKEYS),SKIPS(NKEYS)) FIXED RIN (15,0)%
10 NCL PTR(NKEYS) FIXFD) AIN {(31,0)KEY_LISTINKEYS)

FIXEY BIN (154003

11 DGCL T2 CULR(NIHARS+260) %

12 DCL fHASS CHARINCHARS)IDEF C2 P3S (250):

13 SURSTR(C2.1) = v '3

14 OCL LINK(MXEYS) FIXED BIN(.5,0) OEF KLIKKS

15 DCL COMPARE CHAR(10)0), RITS RITIRIVD) NTF COMPARE;
16 NCL KEY CHAP(1000), KCY_RitS RIT(BO0U) DEIF KEY:

17 DCL TEMP CHA®(11):

18 DoL WHAT_3ITS(200) ChARLL):

19 DCL (THRFAD_SCAQCHES,TUT_S£a’CHES) FIXED BIN (31,0}

20 NCL SKELTON CHAR(Z0J):

21 DCL (PN JeNy Ry To Ly ATOP ¢ X4 OP,FLAGMATOCH,POSTITION oKK

TOT _KEYS o PU Ty FT o TToEMPTY 64,0, C W, ¥, VeZ, 1) FIXED RIN (3),0):
22 OCL (TOPFOTF ¢ MARMFR (MySTARTING _TEXT_PISITINN,VERT_SOAGE,
HIZ12_SPACE, A(100)PFiNTPASE_alDTH) FIXED BIN (31,0):
21 boL [1 FIXSD ai™ (231,00 '
24 NCL POINT_TurS ENTRY (FIXED SIN (31,01):
/% AN AT L YL AL AL AR L LNV R S E T RIS S AL IEEL S %/

25 STARTING_TSXT_POSITION = 13

26 PRINTPAGE_WIDTH = 120:
27 PRINTPAGE _WINTH = 1323
28 M=NKEYSS
9 (PEN FILE[SYSPRINTIPAACSTIZZ(R2)LINFSIZZIPAINTPAGE_WIDTH) ¢
30 ON FNPELLFLSYSINDG G2 70 NODATAS

32 READING

33 LLINKIM) = M3 ELINK(M) = M3 MARKER = 03

35 THACAD_SEAFCHES = 03 TOT_SCAXCHES = 03

37 TOT_KEYS = 03 I= STARTING_TEXT_POSITION - 1§ KK=1:
40 SUBSTR{CHARS,1el41) = v v

41 ’ D73 WHILE (1999999}

42 GET EDIT (TEMPY ([A(1))3

43 I=1+13 IF TEMP = s
45 THEN DO:
44 TOT_KEYS = TOY_KEYS + I3

47 KEY_LISTITOT_KEYS) =.1:

48 GET EDIT (TEMPIC(A(L)):

49 ENDS

125

50 SUBSTRE{CHARS,I+1) = TEMP

51 IF TEMp = t¢t | TZupP = *§' THEN 033

53 03 L=I+1 70 1+100

54 SURSTRICHARS,LyS) = ¢ Y5 ENDS

56 GET SKXIP; GO TO MATAN: END: END;

60 NOREAD: /% SET UP RQOT (F ENTIRE STRUCTURE %/

61 IF TCHAP = &' THEN THREAD = 13 ELSE THREAD = 0%

63 TOPFRSE=0: MAFKER2=01

65 CALL GETNODE(R) S LLINK(K) = —R: PTRIRI=KEY_LIST{L1)?

68 RLINK(RY) = ~K3

69 SKIPS(R) = O3

10 POASITION = 13

71 FLAG = 01

72 CALL INSTRT_KEY:

13 PUT PAGES :

14 PUT FDITY :
{(* STATISTICS FOR BUILDIKRG TEECL, :
! MUMATR OF EXTRA MOAC ACCESSES BEUIIe s T T Can=t,

S THREAD_SYARCHES,, Y WUNATR OF SEACACS =1, T0T_SEARCH=S,

' HUMREF OF KEYS IN THE TREC=',TOT_KFEYS)

(SKIPyAsSKIP o AWF(4) ¢ SHTID A F el SKIPGAGF(4))s
/% THIS ROUTI® FEADS [N KFYS FOR MATCHING QU DFLETING.
IT ALSO PRAVINDES THE COTTAN NF DISPLAYING THF CURFENT

PATRICTL STRUCTUSE %/

75 REANMORE PUSITIUN = O

16 : TEXT_PISITION_FLAG = O3

; 7% A DERUAGING ALD CAUSES THT (C4PARTSAYM 3IT3 YO PRINT
FLAG=1:
EXENF XL FLEUTNETP A XN IXEXLTSATNEGE AN PS o b o T rubbLt ks X/

77 DN Il = 1 O 500

78 GET ENT1T (TEMP)IALL))

79 IF POUSITION = 0 & TSHD = ¢ ¢ THFN 63 TO RFADMORE
8l IF TEMD = e (1 THEM D03

83 TEXT_POSITIUN_FLAG = 13 PISITIGN = 03 ENNG

86 I Te™p = ¢7v THEN DA PUT S¥IP; PUT SKIP LIST

{resesxDFLETING ALL KFYS STARTING WITH ')

90 GO TO SF&4PCHL: END:

Q2 1F TEUD = 12¢v .THEN DO:

9% PUT PAGE LIST ('#2%26SEARCHING FU2? ALL KEYS STARTINMG WITH ')
95 GO T SEAKCHL: FNJj

97 IF TEMP = '|' THEN DO

99 PUT PAGE EDIT (' THE CAYPLETE TEXT 1§ LISTED SELRW!)

(4. SKIPYS

120 CALL PRINT_TEXT: PUT PAGE: GO TO READMORE; ENO:
104 - : IF TFMP = v§¢ THEN u0O7

106 TF THREAD = | THEN 00

108 CALL TRANSFORMZ

109
111
11?
115
117

120
123
125
127
129
131
134

136
137

138
141
144
145
14R
143
163
156
153

159
160
163
164%
165
166
169
n
173

176
180
181
183
185

186
188
190

126

X=13 CALL SEQUENTIAL_TRAVERSE(X):
END S
GET SKIP: GO T2 READING ENDS
IF TEMP = ' 1 THEN D73
PUT PAG®S: IF THRTAD = 1 THEIM PJT SKIP LIST (!
THE STRUCTURE IS RIGHT-THRZADED ')
CALL PRINT_TexT: CALL PRINT_TREE(LIR); PUT

PAGE S GO TU RAIIRES ENTD S
IF TEMPp =)0 THON D3
TEXT_FNIT: IF TEXT_9ASITIQHN_FLAG = 0 THIN 6N TO L0

ALTER_TEXT_FROM_PISITION: BI6IMT DILLI,J) FIXTD A1°H{31,3)3
I=INDCX(KEY t &) [F 1 ~= 0 THEN DN:
J=SURSTR(KFY,2,1-21: CHARS=SUASTR{CHARS 1,001
SHRSTRI(KCEY o I+#1ePISITION=T) |1 SUBSTRICHARSJ#1)

PUT SKXIP: .
PUT SKIP EDIT(takxes [NSERTING AFTER POSITION '4J,
¢t OTHT TEXT ®%21 , SUNSTE(KEY T41,PO0SITION=-1}){AF{4)ehsA3
START=J41: END=J+1: SHIFT=T-PLSITINNG
CCALL DELETE_VEXT: TOT_KEYS = 13t KEY_LIST(I) = START;
KK=0:
CALL INSERT_KEY; G TO READNMCRESY ENDS
FLSE DI
I=TMDEX{KEY, =) s [F [=0 THZN DOy OUT FDIT(*RAD CUfRY) (A) 3
GO TO RZADIZORE: £ START=CUTSTR(KTY 424 [=21) 8
ErTY = SURSTRIKEY,T41,P 31T100-T)41% SHIFT=END=STAFRTS
PUT SKID SLIT(Pe2+s0ILITING ALL TEXT RETWLIN ¢, START,
EOANMD ¢ END=1et MAMFLY $#%% ' SUBSTP(CHARS ¢START4SHIFT)}
(SKIPGAGF(4) AF(%)0A02) 0
CHARS=SUASTR(CHAF S 1o STAST=13]] SHUBSTC(CHARS,END) ¢
CALL DELETE_TEXT: GV T) HEADPUIEE;, END e
SND ALTER_TEXT_FROM_PLSITIONS
LQone: PUT SKIP ENITI #2232 DFLTING THS TfXT ',
SUASTRIKEYs 1« POSTITIONII(SKI Py 49 A) T M=FLOSITIONRES
CALL SEASCH: IF ™MATCH = 0 THIN DMy
PUT EOIT {(t%xx RUT 'T ISH''T THEKE')}(A); GO TO READMORES
FNDs ELSE PUT EDIT ('%2a Fenvy pASITION ', PTO(P))
(A F(5))3 START =PTA(P): EHUN=START4+POSITINNG
CHARS = SUBSTRICHAKSy1¢5TART=1)] 1SURSTRICIHAGS yEND)
I

SHIFT = POSITIMMG LALL OELETE_TYXTS GO TN PEADMURES KBNS
ELSE DO : *
POSITIAON = POSITION + 13 SURSTR{KEY,POSITINNG1) = TEMP]

END3S END S
SEARCHL: :
PUT £DIT (SUBSTR{KEY,1,PQSITIONY) (a);
H=POSITION * 82 Call SEA4RCH:
1f MATCH = 1 THEN CY TN CHECK_MIOKE
PUT EDIT('#%x%x BUT N MATCH WAS FOUND')(A):

127

191 G0 TC RLADMNIFG

192 CHECK_MORE: IF TEMP ~= v/¢ THEM DM: CALL TRAVERSE: GO TQ READMORE:
196 FNDS

197 IF PPCO THEN DO: CALL NDELETE_ENTRYS GO TO READMORES
201 EMO s ’

202 DELETE_SURTRLL:

/% ANOTHER DERUGGING AIND
PUT EDIT (*2%& TS SUABTFREE IS NRAWN RELOW*)I{A)Z
CALL PRINT_TREE(PRP)
2 e e R s R T a s T %/
7% H B ¥ R H K 0 K # A4 B E 40 HE b d H dNE G HA R X

7% 3¢3e? 3¢3¢2 3¢3e2 3¢3¢2 3.3.2 343.2 3e3¢2 3e43.2 ¥/
203 A_2_3.2__123: TD=0: FT=wi R=P3: PQ=0: CALL TRAVZRST:
207 A_3_3_2__4: IF ALINK(TD) = k THEN RLINK(TD) = -PN: EL3E
209 : LLINK{TD) = -PD;
219 A_3_2_2__5: CALL FINOD_IT: GO T) READVIRETS
7% 303e2 303e¢2 3¢3e2 3e3e2 303e2 34342 3342 3e3.2 %/
R EEEEEEEEEEEE N I N B R A A S A Y
212 TRAVERSE ¢ PROC s '
213 DCL (114Jdd) FIXFD RIN(31,0):
214 DCL CHARS_TO_LEFT_CS_KZY FIXED RIN(31,0):
215 neL LTME CHARIS5D0) :
216 DCL VFY_COLUMN FIXZD RIN(31+0);
217 NCL CODE CHAR (R):
218 DCL CCNRLENGTH FIXCD 85N (31,00
219 CONSLEMNGTH = 03
/% CINELFNATH MUST #7 0 FI® CALL TP ACTION FORMAT %/
220 CODELENGTH = 83
221 ncL (1,J) EIXED SIM (31,0):
222 CHARS_TO_LEFT_OF_KEY = 203
223 CHAP S_TO_LEFT_NF_KEY = 1343
224 FOUND_NME ATIP=0 X = poy
226 FOUNO_THREE: [F X > 0 THREH GO TO FCUMD_SIX:
228 IF TEMP = 12' THEN DO;
230) IT=ARS{X)s N=0T2(11)¢
/% 0 GIVES TCXT PISITION ¥/
232 LINE=SUBSTYR(C2,045249) || * ||
SURSTR{CHARS, D) :
233 D) 1 = 250 TO 2 BY —1 WrdILES (SURSTRILINE,I,41) ==tft};
234 0D 3
235 SUBSTRILINE 1, I+ I0ELENGTH) = ¢ o3
236 J=INNE X(SURSTU(LINEGs253) 411"}
237 SUBSTR(CADE.LL) = * 3
238 IF J -~= 0 THEN D3:
240 SUBSTRICONZ ¢1) = SURSTRILINE,2534+J,COVELENGTH) ¢
241 . SURSTR(LINE,252+J)= v Y3 END:

/% SPECTAL FORMAT FOR CALL FOP ACTION */

128

/% AR SRR R R G R R AR E SF I AR BRI FEGRA L LS ST E ALK AR E OB RE RGOk
PUT SKIP ZOIT (SUPSTPLTINF,252,56])4+0)
(A, XISD)F(T))
II1=T+4CNOELENGTH DY WHILE (1I<= 253+J):
JI=1MDEXLSURSTRILINEG IT+40) " ') 3
PUT ENIT (SUBSTR{LINEZIT+%0+4JJ})
(SKIP.X{52)44)2

I1=11+40¢JJ3 END 3
PUT SKIP EDJIT (('ee s o3 ' DO 11I=1 TO 3}H(CL00AYS
/% Ehi) JF SPECIAL STUFF */
7% SPECIAL FORMAT ENR DISSERTATION IHNCX. ETC. /

AR L 222 S 2 3 A 2222 S T2 S T A A RS P TS S R E 222 2 20T 2
PUT SKI1P EJ[T(SU“STQ(LIVFcZGO‘LHAQS_TO_UEFT_UF_KEY'
PRINTPAGE_WIDTH=-10),C D) .
(AdX(1)sA)2

/% FND NF DISSSRTATICN FOT AT */
/% SPECTAL FLRUMAT FOR DISSERTATION SXAMPLE IN APPENDIX P~ %/
243 PUT SKIP FDIT (SUSSTRILINE,250-304PRINTPAGE _MIDTH-10),0)
(AaX(1)eFi6))
/% N I R I 2 e AL A AL R AL S
/% END NF SPECTAL STUFF «/
244 END 3 '
245 IF YEMP = /% THEN J70: CALL CHECK_FOR_ANCESTOR S
249 IF AA=0Q THZIN D03 PD=A8SIX): GO T0O FRUNG_EXIT: ENUSG END:
254 YF ATOP = 0 THEN G TO FOUND_EYITIVLSE GO TO EQUND_MINE;
257 FOUND_SIX: ATUP = ATOP + 1% A(ATARY=X3 X = LLIMK{X)
269 160 TO FOUMIN_TH2%E S
261 FOUNP_NINE: X = A{ATOP}: ATCP = AT = 13 X = RLINK(X):
264) GU TD FIUNI_THNEES
265 CHTCK_FOP _ANFGESTQR: PROC:
266 CH_2: AL=ABS(X): CALL STAUCH:
268 EHD CHECK_FUP_ANCESTNR S
269 FOUND_EXTT: FNN TRAVERSE S
270 NINATA ¢ PUT PAGS EDIT ('RAN OUT NF DATA')(A);
27 STOP:
272 DELETE_SNTRY: PROCEDIJRE :

/% # & Rk o w F 4 H KB H R RN KK KRR E RN R X
7% 3e42e1 30241 34201 3.241 3,201 3,201 3.2.1 32,1 */

273 FIND_NODES_2: PD=ABS(P): T0=ATS(Q): FT=W; /# W WAS FOUNC
BY THE SFARCH ALGORITHM %/

276 FIND_IT: ENTRYS

277 FIND_NODL_ 32

278 IF LUINK(TD)%RLINK{TR)I>OITD=PC THEN DGi

279 TT=T0s GN TO F_MN_45 CHDG

282 FIND_NNCES_4: KEY = SUBSTR(CHARS,2T2(TN),1030) ; N=8000:

284% CALL SEAPCH: TT=9;

286) F_N_4:

129

3e241 3e201 %/

7% 3421 3e2el 34261 3.2.1 3e2.1 3.2.1
8 4 0 & o 4 8 4 0 K K0 &

J% W § 4 # B B 8 B B K ¥ B OHHHEF B
/% ANITHER DESUGGING AllL
PUT SXIP ELIT ('NELITING THE KEvY,
SUBSTRICHARSyPTR(LAGIPIN) e 3Q) ¢ 1 mm—~ PDyTOTT+FT ARE?',
P TN TT FTI(AVAWAL(AIF(5)) H
®/
/7% *t**####tt#######*tttt#t##*t¢*#####t##t#tk#*ﬁﬁ#ttttttttttt */
I¥ 4 H KR K 8 6 E B U H W& 0N R B U RN NN W EN
7t 3,1 341 3,1 .3,1 Jel 3¢1 3.1 3.1 341 3e1 2,1 */

DELETE__1:2 PTR{PD)=PTR(TN) ¢
237 NDFLETE_2: IF ARS{LLINK(TTI)=TD THEN LLINK(TT)=-PD: ELSE
2R9 RLIMNMK(TT)=-PD3
259 DELETE_3: IF ABSILLINX{TO))=nD THEY W=RLIMKITD)
292 ELSE wW=LLINK(TD):
7293 DILETE_4:¢
294 ’ IF W>0 THEN SKIPS{W} = SKIPS(W)
' + SKIPS(TD):
295 DELFTE_5: IF LLUINK{FT) = TO THEM LULINK(FT)=Ww$
297 ELSS RLINKIFT) = Wi
298 CALL FRESNIDE(TO):
/¢ 3,1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3,1 3,1 3,1 ¥/
AR NN UNE BN SN AN N N R T A A BN N N AN A N 4
291 c Nl DELETE_ENTRYS
300 DELETE_TEXT: PROCS
301 ICL (A(S00),2TOP,SSKIP,X} FIXED RIN (31,0)3
302 TOT_KEYS = 0:
VAN T A A N B A A NN B NN A A A 74
/% 4.1.2 l*.lo? l'o’..? ['.1107. 4'152 /'.1‘2 halel "0.102 %/
303 D_1: SSKIP = 07 ATOP=0; %=13
306 n_2: SSKIP=SSKIP#SKIPSIX)s LTAP=ATOP+L S A(ATOP) =X
/% P2 g 222 22 2 S AR S RS A2 S 2 R i A S
PUT EDIT (*PRITANER VISIT =Xt , X, 16k V) (A,F(4),4):
/% t/f
309 CALL DELETE_TEXT_TIL:
310 D_3: IF LLINK(X)Y > O THFH DO X=LLINK(X): 60 TO D_2% END3
315 D_4: .
316 . X=ACATOP): ATOP=ATOP-13
317 n_5: IF X<Q THEN GO TGO H_6%7 ATIP=4TOP+1: A(ATOP} ==X GO TN D_T7%
322 0.6 X=4BS(¥X)
/% #"#‘54##¢$¢¢#¢‘*1‘##{‘.‘######tt#t*t###ﬁt**##*k##*
PUT EUIT (TENDIRORR VISIT &&&t, X, t1&x ') (LyF(aY,A8
(22222232222 222222 AR PR RIS SR 2222 2258] *x/f
/% %/
323 CALL DELETE_TEXT_T2: SSKIP=S5SKIP-SKIPS(X)?

J8 eGSR EEU KRR AR R RAGL F XA AR I EHT LG IR ET AR ELEARAKADE RS AK&E
PUT LIEST (' ——=— TFER AFTZIR RMO02OIR VISIT —=1);

325
326
327
328
339
332
333
135
338
340
341
342
343
344
349
352
387
3159
359
350
362
3167
369
372
373
374
375
376

377
378
379
380
3Rl

382
384
386
390
392

CALL PRINT_TREZ(LR):

EEEIRSEERLRAR R R LR ERESTERCRCEFAXIICRSEREB NS Sb &k &/
r* */ '
60 TO D_4:

IF X = 1 THEN GO T3 0_XIT3
IF RLINK{X} <0 THEN GO TJ 0_4:
X=RLIWNK(X)s 60O TO N_2:
DELETE_TEXT_T1: PROCS

Ti_1: IF PTR(X) >= END THIN D03

PTR{X) = PTRUIX)-SHIFT: GG TU EXIT_TLS ENC:
Ti. 2% IF PT&K({X) >= START THEIN PTR(X} = 03
EXIT_TI: END DELETE_TEXT_TL:

DELETE_TEXT_T2¢ PR3CS
DCL FINISHED FIXED BIN (31.0)3
FINISHED = 03

T2_1: IF LLINYIX) <0 THEN NDJ: PO=ARSILLINK(X})S GO TO T2_43END?
T2_2: IF FINISHED = 1 THEM 6N T T2_EXITS: FIMNISHED = 13
T2.3: IF REINK(X)ICO THEM D05 PI=ARSIFLINK(X))S GU TO T2_4% END;
-6G0 TGO T2_EXIT:
T2_4:)
IF 270 (2N} >= STAKT THIN GU TO T2_23
T2.5: IF PTRIPD) = O THFEN DN
To=X3: FT=aBS{A(ATIP)) L CALL FIND_ITS 60 TO T2_ELITIENDS

T2_6¢ IF PTR(PD) 4 SSvIr/a ¢ STAT THEN GO TO ¥2_23
T2_T7T2 FT= ARSUAMATOP)I Y TI0=X3 TOT_KFYVS= TOT_KEYS + 13

KEY_LIST(TOT_Ki:¥S) = PTR(PD);

CaLL FIND_IT:
T2_EXIT: EN) DELETE_TEXT_T2:

D_rXITs

7% PEINSIRT THE MOJIFISD KREYS #/
KK=03 CALL TNSTRT_XFY!
/% 140102 4-1.2 IO-!-Z 4.!¢2 4.1-2 4
VA B BN K N RN B AN A A A A
ENDN . DELETE_TFxTs
SEARCH: 0277t
DCL LL FIXED RBIN (31,0) STATIC:
IF FL&AG == 0 THEN
WHAT RITS = ¢-*; -

162 44142 4e1.2 %/
4 4 NN Y

/% # K # H 4 B H R KU WK KUK GG HEE KR AR RE %
7% 241 261 241 241 241 241 241 2.1 2.1 2.1 2.1 %/
aNZe P =13 J = 02
Th e If P = AA THEM AL = O3
: H=Q3 Q=PI PP=LLINK(P); P=4RS(PP}3
IF LLINK(Q) < O THEN 60 T3 SIX3
THREE: :

TOT_SEARCHES = TOT_ScARCHES + 13

131

393 d = J +# SKIPS(PY: IF J > N THEN GO TN SIX:
396 FOUR: IF FLAG ~= 0 THEN IF J<209 THEN
398 WHAT_B31TS(J) = SUBSLTRIKEY_BITSJdyl)s
3499 IF SUBSTR(KEY_BITSeJol) = '0'8 THEN GO TO TWO:
401 FIvE:
402 IF P = AA THEM AN = 03
%013 W=03 Q=P: PP=RLINKIP); P=ARS(PP);
+07 IF RLINK(Q) < O THER GG TU SIX3
409 GO TO THREE:
410 SIX: IF FLAG = 1 THEN DI3
412 PUT EDIT ((WHAT_SITS(IT) DY TI=1 TO J WHILE (11<193)1})
(SKIP(2)e (12M(X(L)y[BIA(LD)) S
413 END:
414 LOMPASE = SURSTRICHARS,PTR(P) ,N/8+2) :
415 MATCH = 13
416 L=N¢
417 Nd LL=0 T4 (h-1})/8:
418 IF SURSTR{COMPAPSLL+1y1) == SUBSTR(KEY.LL+1,1)
THEN '
419 N) LL=tL#6 TO N-13;
420 [F SUISTREKEY_PITS,LL#1sl) == SURSTR(PITS,LL+L,411}
421 THEN DO 3 MATCH = 0! L=LLs GO TJ STTL: £hos
426 . END: END: :
7% FIFETALRUUFELFZLACEU LS */
428 SETL:
/% 2.1 261 2,1 241 261 241 2.1 2.1 21 2.1 241 ¥/
/% B 4 R H K B K H ME KK B KA WY kYA K RP
FETURNS
426 . EMD SEARCH:
430 INSERT_KEY: PROC 3
431 nNCL (TPyY.e2) FIXED HIN (31,0103
4322 LONP:
«33 KK=KK+13 IF KK> TOT_KFYS THEN GO TO ALLBUTILT:
435 PISITIAN = KFY_LTST(rk)s:

VA R A A NN 2 R B R R A A AN R R A N
1% 242 24?2 247 262 262 242 242 2.2 2462 262 242 ¥/

“26 S1: KEY = SUASTR{CHARS,POSITINN,1000) ¢

427 s2: CALL GETHTDE(R)

439 S3: PTRI{K) = POSITION: N=(I-PIOSITION+L) 283

449 IF N>8300 THEN N=R)J00D:

447 CalLl SEARCH:

4467 IF L C J§ THEN DO N = Lt CALL SEARCHS END;
441 Sa: TF ABSILLINK(Q)) = P THEMN DO

450 T = LLINK(Q)S LLINK(CY = PR3 EMND3S

453 FLSE DO T = PLINK(Q): ERLINKI(Q) = R$ END;
457 IF THREAD = 1 THEN A0 TQ SS_THREADS

459 . $5: IF SUBSTRIKEY_RITS.L+L,1) = *0'8B THEN DU

461 LLINK(F) = =R: RLINKIF) = P#SIGN(T) ENDJ

466 FLSE DA% RLINK(R) = =P LLINK(R) = P&SIGNITI: END3
468 60 TO S63
/* THE RIGHT THEFADING TNSFRTION &/

/% Selel 5.lel Selal Selel Selel Solel 5elel 5.1.1 #/
469 SS_THREAD: IF SUBSTRIKEY_BITS,L+1L.1) = *0'8 THEN DOZ
471 LLINK(R) = =Rt FPLINKIE)Y = PRSIGMIT) ¢ GO TN S63 ENDS
475 . ELSF NG ¢ Y= P*SIGNIT) S 7=F3
478 |2
479 S5_1: 1IF ¥Y>0 THEN DJ7=Y: Y=PLINK{Y)3
483 THRCAD_STARCHES = THRFAD_SEARCH®S + 15 GO TO SS5_13 FENDS
486 TP=PTR(.8S(Y))s PTR(ARSIY))= PTR(R)S PTP{(R) = TP}
4R R2LINK(?) = =P :
490 §5_2: FLINKIR) = ¥ ¢
491 IF T>0 THEN LLINK(R) = P{ FELSE LLINK{R) = ~R3

7% Selsl Selel S5elel Selel Selel 5elel 5elel 5elel #/

/% END YF THE RIGHT THPEADING INSERTIIN =/

494 Sé6: IF T € 0 THEN SKIPS(4) = L+1-J3
496 CLSE DIs SKIPS(R) = [+#1-J¢SK]IPS(P)S
49R SKIPSIPY = J=(1+1)1 ENDS
€09 GO Y0 L10o;

1% 2.2 242 2e¢2 247 262 el 242 242 2.2 2.2 242 */
VAR A A A U O A B O R AN O B R

-

501 ALLPUILT: LD INSERT_KEY;

502 GETNONE ¢ PROC (x)s

507 ncL Y FIXEQ PIN (31,003

504 Gl: 16 LEInve™) = & THEN GO TO G4

506 62: X=%L THK{M) ¢

507 63 LUTNKCRLTNY LX)) =M3

508 RLINK(LLINK(X)) =RUINK(X) S

509 RETUZ N

€10 G4 16 MARKER = M—1 THED PUT LIST(' $#uxsnd RONA Fxtdst)]
512 ELSE DO ¢ YARKFR = MARKER + JiX= MAQKEF: RETURNG
516 END s

517 FREEMODE : ENTEY(X)

518 F1: LLIMK(X) = M3 RLIMK(X} = RLINK(M}3

520 F2: LLINKERLINK(M)I) = X3 FLINK(M) = X3 RETUKM;

523 END GETMODEC $

524 TRANSFNRHM: PLOC

525 OCL (AC100)4ATIU2¢XeiedsKeB) FIXED RIN (3140}

/¥ 8 B 4 B K # B NN R AR YRR ¥ H ko k%
/* 56443 Se4e3 Ye4.43 S5s44¢3 S5e4e3 50443 Yelbe3 Se4e3 */

526 Tl: ATOP = 05 B=0: X=13
529 T2:
530 IF RLINKIX) < O THEN GO TU T3: ESLSE DO

. 532 ATOP = ATOP+13 ALATOP) = ARS(RLINK{X)): END:

133

535 T3: FLINKIX) = B&SIGNIRLINK(X)): R=X3

537 T4: TF ABSCLLINK(X)) -~= X THEN DO X=tLINK(X)}iGO TO T23EMDS
542 T5: IF ATOP = 0 THEN 097 LLINK(X) = -15 RUINK(L) = ~X3

K46 GD TO0 Té: END + ELSE DCs

549 2=A(ATOP): ATOP=ATUP~13 LLINKIX) = =7% X=236G0 TO T2: END:
555 T6: f=1% ATOP=1% A(CATOP) = 05 61} TQ TAS

559 T7:

560 J=EBSULLINK(TIY)S 1=1+41% 1F I>=9 THEN 60O TO TR; ELSE DO3
564 X=ARSIRUINKCI DD SLLIMKIX) = J*SIGARILLINKIXEES

566 Y=ABSLLUINK(I) s FLINKEX)=J:STOIRLINK (X)) ¢

c68 CALL SWAP(PLINKUT) pRLINKIJ) W LLINKOE) LLINKEI Y,y

569 SKIPS{T)ySKIPSUU) yPIR(IIPTR(JI}S EMOSZ

£7) T8: .

571 IF LLINK(I) >= 0 THEN 003 ATOP=AT3P41: A(ATOP) = | '
514 GO TO TT7: END3

576 T9: J=13

517 T10: IF QLINKIJ) >=0 THEN /D T Tl23

579 Tl1: K=A(ATOP): ATOP = ATTP-13% 2LTINK(J) = KESIGHILLINK(IIDS
582 JE¥U IF OATPP = O THEM G TQ VIELSE 69 7O T1032

586 T12: SLINK(Y) = (T41)sSInn(LLINKIJY)Y GO TO T73¢

/* See3 Se4e3 Sehe3 Sefie?d Sebael 5e4¢3 Dede3 Sebe3 t'/
J¥ K OB BB M F B OH U OH K H W& YRR R %S
5S8R v:

PUT PACES .
559 PUT SKIP:
590 PUT SEZP LIST (¢ TiE PAECKNCR SEQUANTIAL FORM IS GIVEN BELOW. T
HE FIELDS LISTFD ARET'}S .
591 PUT SKIP LIST (! LCCATICH ! LINKY,? SKIpt,
' START NF KEY IN TEXT'):
592 PUT SKIP LISV (t—~t OC J=1 10 5})3
593 pu J=1 TO I3
594 PUT SKIP LIST (JoLINK(J}eSKIFSUI)oSURSTFACHARSPTR(J) 430013 END 3
596 PZTURNS
597 EHD TEANSFNRUYS
568 SWAP: PRIC (AeByCeNEef G}
599 DCLUASBCoDeEWF) FirviD 00t (1%400 (GoeH) FIXED BIN (21,003
600 X=ATA=RIBR=x;X=CiC=NiN=XIX=FE;F=F F=XIX=GiC=HIH=X]
~12 FETURNS END SwAPS
614 SEQUENTIAL_TR/AVERSE: PROCIX)
615 NCL (¥,Ye2) FIXEND BIN (31,0)3%
616 PUT PAGE:
617 PUT SKIP LIST(' THE STRUCTURE IS NOW TRAVERSED 1N POSTORDER, 'y
t ONLY THE TEXT HAS BEEM LISTFNDG ')
618 PUT SKIP ENIT (¥'- =~ = = = = = = = = = = = = I(A) S
619 PUT SKIFP:

/¢ 4 4 4§ 4 4 H A HH KN Y E N KR
7*¥ 54%e2 Se4e?2 54402 56842 Sehteld 54402 He%e2 Hede2 %/

620
621
625
627
€30
636

639

6547
648

540
550
551
652
653
655

657

A58
559

OH60
6502
664
567
6618
670
674
61715

676

Sli: y=X:
52: TE LINK(Y) D=0 THEN DN ¢ Y=vel: 63 TN S25 EHNG
§3: PUT SKIP EDIT (SUBRSTRICHARS,PTRIY},30))(4):
S4: 7=ARCSLLINK(YIISIF 24X THEN RESTURN :
55: IF 7<Y THEN DQs Y=7: GO TO S3: END: ELSE DN
Y=7%: GO T S2: ENOS .
/% 5."02 Seltel Delel Sebel Sefte2 S5e4a2 Sette2 50‘0!2 */
/% # K K R #4 B 4R K & 4 8 4R H #OH 4 K HRE R R

4
END SEQUENTIAL_TRAV=ZSSES
PRINT_TEXT: PRQOC: ’
N0 11 = 0 TG I 8Y 1Nn0;
IF((IT/7100U}$100N-11) = C THEHN
010
PUT SKIP EDIT({'~* NN L=1 TN 100),+*' APPR(IX.*)
(X{11)s (100JACL},A)
PUT SKIP ZDIT ({Lo'%' DN L= 5 T3 100 PY 5),*' CARD
AXUL1) e (200 (F(G)0ALTNDA)3
PUT SKIP EDIT(('-* 00 L=1 TO 100),* NUM3EFR ')
(XCLt) (100VA(L1) VA
. EHNDS
PUT SKIP EDIT (ITySUASTR{CHARSI[+14100),11/80¢1)
(X(3)4F(5)eX{3)eAF{6)) 3

EMDs
PUT SKIP Z0IT ({('=t DY L = 1 T3 120))(A) H
trD POINT_TEXT;

FRINT_TPEE: PROCEDURE (V)3
DL (ATI00Y G ATOP I X, Y2) FIXTD RIN (31,013 X=V3
SKELTAON = ' ¢ VLRT_SPACE =
2%
HO2 [7_SPACE =
8:
E49TY = L
PRINT_1: ATCP = CMPTY:
/t SIPCE THE 20T OF THE PATRTICTIA STRUCTUAS HAS MO FLIMK, WE
MUST NIT ATTE4OT TN TRAVIRSE [T5 PIGHT SUITRFE =/
IF X=1 THEN GO T7 o5[MT_é11:
PRINT_2: 1F X<O THEN 60 TO PIINT_4%
ATOP = ATUP + 13 A(/THP) = ¥3 X=RLINK(X):
6 TO PRIMNT_2:
PRINT 4 IF ATOP = EMPTY THEN GO TC ORINT_EXIT:
Y=A(ATOP) s ATOP=ATP=15 1F X<O THEN GQ TO PRINT_43
POINT_61: CALL TEXT_CUT(PLINK(X)):
PRIMNT_611:)
PUT SKIP ENIT (SURSTR{SKELTING Ly ATGP4HORIZ_SPACE-1),
0 Xt G SKIPSEX) %1 PTR{X))
(ASACL) oFU5) g AWFI3) VA FIG))}
CALL TEXT_OUT(LLINKIX)):

617
678
679
h82

682
HR&4
685
687
6R8
AR08
637
650
691
691
692

694
695
699

700
701

135

TEXT_OUT: pPrQacC (LINK)
bCL LINK FIxed BINM{15,0)%
IF LIMK € 0 THEN DO:Q=PTR{ARIILINL}) .
PUT SKIP FDIT (SURSTRISKELTO !, L4 ATAPERIRI7?_SPACE~1),
Pen t ABSILINK) V%450 SaSTR({CHARS ¢ C420) 4V ====1)
AAsLsF(3)sAs A A)S

END;
FNN TEXT_NUTS
PRINT_62: [F ATAP -=7MOTY THEN TF PLINK(ARSCACATUP)))= X THEN

SURSTRUSKELTON AT X172 _SPACE, 1) = Q'
CLSF .
SURSTR (SKELTOMATAPEHCY T _39ACC L) = ¢ ¢
PRIVIT_63: IF LLIANKIX)I-C 3 THEY
SURSTO LSKELTONGLATOPH LY <12 _SPACE,1) = ('
ELSE
SHMSTR{SVELTONG(LTO24 1} 3HN2172_SPACE, 1) = ¢ '3
PRINT_b64: N 1I1=1 T VERT_SPALCT: PJT SKI1P EQIT
(SUBSTRKISKELTONGLoPATNTOAGE_WIDTH))L A) S
ENDG
PRINT_T: ATAO = ATIP+] 3 ALATOP) = —=X; X=LLINK({X)3IGO TO PRINT_23
PRINT_EXIT:
J% EHCHIEIEIXIPALETVLLNLRL TN UL FI L EUFRA L oINS LN L ITIHE K/

PUT SKlp LlST" ® o & ¢ e o 9 5 e & © o o .CIQQO.):

END PRINT_TREES
END PATRICAS

A~
=

(81 0T - - \q o)
a2 Q._)(2NN* P\(NAETYE?Y SURPRISED HS UHER IT M EDINROM/UMY HYHZHY DA ToM/POMT Ty

£ WILL 3T&RT @ MEM KEY. » T? (iM- 1023717

t 2 CLONETHIS .‘.\EHTEHF'
! u
. yoROL WO P\"“ Ss cASURES
poalR, “RECK WD BOH MO oIt uOH EOV e JORE FOR oo we t\F
werpit WO FOR HOE T PO LT o uniL T ATHER O
e ¥ENT #3EID ol BOM W prae T BT ng SpERRDT S
g wephid WOM) o FERTHAYS .
e wupEn #17 *#3A1H s RO Rute AR Y £
‘FF‘QI\;FH AL (’«Fﬂ\\) Pl { , Nl gt
' e D00 »3pllh - €706 ATHEY
o pypER FAOHEE i TS S
WU ATV W
~ #3019 “ﬂri .
_ ,,rpf_\)i.?}‘-b =T ‘ '
sy * e T

9l

137

STATISTICS F12 PULILOIIG Tafe
NUMPER OF EXTRA NONE ACCESSES RFQUIPED TO THREADw 0
NYMAFR IF SEATCHISE 167 .
NYMRER NF XEYS IN THE TRFEs 32 .

100 UW KW 809 W)Ir BOW WWe™ MARTHA'S PARFOY SUCOITSTD US WHEN (T SA1D, 7554 Wik 85w Wik
200 «® 1 THEN 6GAVE U2 aND SAID, "3CwWw WOW EOW WCW 31'W WOW BCW Wdwae ™ UNE MOIE FOP GOLU MEASUXE:
300 WAW RIW WDH RIW WNW ROY wWDW ROw wOWe"™ g

/] MY D15 CHENKERS SALd, "B WK HARMYES OLG THEN 5410 "304 WOW UIW h3A.™ THEN JTHYS CI6 taln, »g
I8 wilw 80m

mmcemm—me APPT (X

Carn
NUMAER

1

2

3

4

¢ l* Qe 2

*% [R&FESURPREISTD US WHEN [T~eee
¢ 18 3% 142
L

L
e 4L3%eSLIN, "ROW WOWe™ HAR==-=
* 9#]06% 52
L
L
% QELISALID, "A0W WON BOW We=e-
* J4* 64t 93
L
L
¢8]49eeSAID, "A0W WOW BOW We=-a
* 22¢% 64% 163
L
8

L
L .
L 3 20583 wHEN TY SAID, “BUW We=-=
L ¢ 20% 1% 155
L R L
L R t
L R *¢ 1G¢ee(S KHEN JT SAIN, "80~---
L r ® 278 ot 2106
L R #% 27840 UP AND SAIC, "“A40W Wl~===
L R
L 2
L 19% 3s 152
L L
L L
3 L s BEFLTHIN SAID, "BOW HOW ——e
L t * 1li® 35 77
L L R L "
L [R L
L L R % L1S$STHEY JOMN'S DIG SAID-~--
L L R * 25¢ l& 206
L L [% 2S58¢@THEN GAVE U AND SAJe~m=
L L R
L , L ®
L & 8% 2% 47
Lt L .
L L
L
t
t
L
L
L
L
L
L
L
L
L
L
L
L
L

DOV OVOODDDOVOIOIINONNIDIOALONONNAND s

- -

Ao e

4% 3

ol o o o o R P P R R R R

138

L % 29¢88S5L1D, "“H)W WHW RON We—--
L ® 29% 23e 223

L o 208025410y “BOW WOW NNa Weow=~
L R

L R

s 319 64 29)
a¥ 31eeeSAl0, "AOW WOW BOW Womee

8%] 72xePARROY SUIPRISEDN UG ====

* 17% 1* 135
L

L

#¢ 1#ssvy T05 (HECKERS SATV-=--

* 168 42 126

58 1600 MARTHAYS PARPOT SURPw—==

a2

o6 12328 30HN'S DOG SAID, "SO--—

#¢ 21*v*]T SAID, "EOW HOW BO---~

* 24v iw 206

*% 24%%8] THEN GAVE UP AND S-~--

R
R

* 21* 3% 160)
L¥SFHARRYIS DOG THEN SAl-=m-

s

18

R
R
R
3
[
R
R

s 128 2t

-3

R

2& 1= s

L

L

L

L

t

L

1§

L

L

L f

Lt R

s 6 1t
t
t
|8
L
L
L
L
L
L
L
L
L
L
L
L
PY

- L] . . .

Tree(",5 THEN SAIDe "BIW —=-—

S5¢ 89

te (3883006 SATDy "ANA WOA Be—e=

* 2%66D0G CHECKFRS SA1Dy Wemwm

35
% 268 cGAVE UD AND SATD, "Bew—-
$ 2¢% (% 211
L
L
L L 44
L s 138
t
L)
L R
* T7e 28% 43
*
3s 1 9

L

L
s

A
N

(ol ol all ol ol off ol ol ol ol ol ol ol ol ol ol ol il ll il ol ol ol b ol ol i B BRI b [S I U P B

FAVIDAIAITDODODODDOIDDRDDOD &

¢ 28 1e 219

* 3Jsee(HECKERS SAID, "BOW ———
5S¢ 1¢ 25

S$88R30w WN, ™ HARRY'S DDw==-
* 10¢ S3s 59 °

L
¢3 108%230%W WOW BOW WOWe™ TH~=—m
® 5% 66* 100
L
L
#* 15%%¥B0W WOW BOW WOW BOW ~=—-
® 23% 64% 170

L

L

L

L * 9% 23e 220
[

L R

t r

* 3728 t4r 24P

*e 3J249000W WIW AOW WIR BOW ==w=

¢ 2882\ SAID, MAON W(OW Re-=-

®8 JOORIN WIW ACHW »OW BIW ~=-

$3 23838A0K WUN POW WOW BOW ==-

139

101
Ly
1 %3
14 14

65t
31
91¢
iy
183
902
r4A]
81

£6

22
€9l
162
stl

21
r4°)
091
202
SE
18 %4
ey
68

s2

.31

GOt
0t2
oLl
86
612

IHiess AV3IAVN £01

CNV 101

N33ML38 AX34 TV 9NIL3INIUesens

SO U3SIvdYNS 1003Vd SaVhaidih w*A0F KO8 KOM KDG ACH RO *A3X MM 18VIS TTIA 3INHINAS SIHL Gs *01VS Q00 SiNHUF KN3H1 w "HUM
SA3N M3 ¥ Lavey UAin JINIIN3S SIHLU. *QIVS UG Satidf NIHL w®MIM RlUu HOR KOG *GIVS t3M1 Q00U SsAtrVH o "MCM MOUbe *UIVS
HLOVKW W KON MOYE MUM MDY MLM MD A3X MIN ¥ LuVLS TULM 3OL3LNIS Sitioe *CIVS 900 SeNHOP NINL w®MCH MLYH MCH MC8a *QLVS KIML
‘OIVS :3uNSVIH GOUD ¥0J 3Y0W IND w *MOM MO8 MOM MIY MIHM MOY MOM ACua *01VS UNV oft 3AVY H3Hl I w*mGr RCE P4 Mlov MWLM My M

i HLIM SRIZBYLS SAY VW 2Ly UNInDav7iSsesse

SASN N3N %V IUVLES FUIM 2ONFUINGS SIHLese 1X3L 34

RUM MOH MUM MOne U138 ONY dii JAVY N3HL 1 « *MOP Rod HMUN HOd KOM RGY MUM K00 *01YS 1)
MIY ATHM RUER YQIVS ONY o) JAYO N3IHL 1 w®*rdn MY MOK MOS HOM koe HOP MDYa *CIVS 1T NIn
MOM MOB. C0IYS 23aNSVIk CUOI T SdUW NG o *HIA Av MOR RDY MOM M0 MOM HUbe *CIVS G

Ya SeVHINVH w®MOM M3Y MUM 108 ROM Mibae SCIVS SOC St l KZhy w®rUF kUG ATM MOGa *QIYS

TGIVS L1 AGHM SN QST AddANS LO%avd SeYHLIWVW w *FOM MUY MOM 4duu HOM RLLe *QIVS S0C S ohnOT

OIS TNSTIN w00 Yud 530W UNC w *MUM MO8 POAM «Ou HOM PUu KRLA AUYW *OIVS ChY dfr 3AVY
Wb *GIVS LV dN SAVY AZnl [o a®MUM MG MOM M MOM PT Fam Aogue *OINS LT AMIBK SO C3ST
PO MOYe COIVS O8O SeARUE NTHL W CREM MG YEM ROu CCIVY ddre S00 SLABeVH wAlH Muve ¢

LOedavd Se¥rd=vvi w 0N ald Po™ PIH NGY M0ts C0IVS LU0 SaNHGE NIME 6 oMLY w00 MOM MUkl *

M “0d MOM B0ue PQIVS LT KIMM SN G3%10da0S LGeaVd SHVHIYIVA a*MLP FLY 40N MDD MIH MCby *
AOY MR MM Ahbe YGITS 25uASY36 CLOY 04 3rTe IR0 wtmLA 4Ly LA MCd MUGM MUD MUY MUOue *
MUM RUY RUM MOG AUM MUde CQEVS GRY dll 5AVY R3na 1 w®sLr 0y ALY MUd ALY B34 AU% ADE. ¢
3 WEOMOM Mg PLAM MLo MO O MCU MOM MG ML Mibe

VS UAV ol =AVI NJHL] wMuM Mud POM OHOY RORF MOC Fem KO CCIVE 2T NInd S0 CuSidodns gt
SOC SahnOF KNANL W "MUM KT KMOM MUse *UEVS NIHL DUL S AcetH o *FCM FLUe S SHINIIHD G
SATG NIHL b wtm0M MDY RN Mew MUR OMCE PCHM FCLL CCIVS LD NIk SO G3SteaeNS 10rEva SV

Ot 4GINS 21 N3HA SN ULS14deNS Llcevd Savelldia u sk N R LIS TV $CIVS Y 5o

Hud SO A64G MOY MUce YGIVS OAY ot A M3l T w s 08 mly BIW AUy MO iy MUM MOrs fUTVE

INS T30S Vim GLuS altd IUGH 360 w ®MM 80w MM MO0 908 A0S #UF BGLL *0GIYVS CANY dfi SAVL Nl
W HCA MOG 0% KO 4% MCT. SUIVS Sul SoNHOPR N3ml wron flo ADW ¥06G,w *CIUS NSHL L0U Seh
RCru YGIVS 223¥NASTEn QULLD =04 3IRCe IR0 o AUk RCU MOM FLU MOM Moy b0 MY. *UIVS OWY on
VAlBVW L *NMCN MUG MOM ALY MG4A MLCun 01VS 90U Selinbl A3hyi w "HUM ALY PO MDBG *GINVS NIt
B oMOM MOEG SOIVS LD NHr SR USSTINENNS LUnavd SeVE IV W CHLM KLG FOM o aUd MLM Miva *UTVS
VS GO0 Savull NIUHL w HOM RmGd BN MOoda CUIVS NIHL D00 SeAnbvr o ®reM Fova YULYS S2I¥3300
CAINS U900 SUNHIP i2Al W *ALM NMUg #t4 MUta *divs Lind UUd SitAcaV n*t0A Hluw *uLivS SEIX
MOM MO0 AOM 900k fOIYS LLU SONMUE LEHL « ®MCM B0 00 MUYe SO3YS NEHL SO0 SANBYR W hiHM
S13deNS LGesva SevilavW W "HGM KUY MOM MUY LA PUUe 0000 Yuu SaSHOGE NEHL w®MOM HUw mUM
Ry MuM HCd AOM Mdae SGIVS BT NSeR SN GISTAdaNS LLaeve Savidieva w*F oM Mlu MUY MUY MUK
UM My MUK MGG MM wGHe COTFS S3VLSVIW Q0UY 80 sl Sh0 u®Mie HOE HOM My HLM sl MOM
OM MDY ROM NOE AUM MUY MUM MUUW *QIVS QAV dn AV WKL T WOSKOM ROY RUM MDY KUM AQu MUR
WHOM MJy MIM MIY LOM MU MOM MUR MCM
MOY MOM HCGuw *QIVS 2 33SVIn UOCO 202 40w Jno W HCN KOU MOM ROw MCHM AGd RUM MUGn CGEYS
MLl

aot

RSHM
MoSN
¢ afl
Ninl
Hand
LTINS
dafiS
BRARN
Ciys
olvs
glvs
GIvS
JIvS
advd
G A
lrvw
Lhe
11
Hy |
savn
ELY R
LLa

Wil

RNV

Zard
L)Y

Mok

IR 1]

MUY

Mld

My

nY

NOTL1SUO ©31dV ON13635K] svess

SN UISI¥dchS 10BuVa SevHLLTR
JisSlcdolS 10ccVd SeVeilbVh w'p
JAYY None 1 w*M0n kL mLn Mo
GUT SeAluVh o *MLA KlHW *0lVS
WtMlH P(Y FLY Aiva CCLIVS Ndha
I w®ilr Mlu MM BCH KM GG K
L0EaVd SaVilYin W MM PUg MUA
So3AUIN) ULy Al

NZttd ULG SeALAvb w *YUN hduu ®
QUL SeAlf Kibkyi o *M0K ko MUA
OV ol 2AVD hon1 T w¥run AUd
11 ngtir SN C3SltexNs llevVae S
$3ENSV L CLLY eld Sele 3%G w®
SaVirilavem w *HiM Klb POUN PIY W

wPLM FLY POM ALY MUM Fouoe *Q
NIHL 0 ®F0OM Pl MOR R0 *GIVS
Nirdrd S (3¢S 1 zed08 10eutd Savn
anLA MLy FUN KLY KUA PLUY AUAM
2®H4LA YLue C01VS Su3Xizdd 90U
N3HL T w®MUM MCU PUM MLE MUK

SeAstuH w *HMC® Midw *CIVE SN

[358 SR B B 4

SahbLl haMa W *PLM MUY PN MU
An

V0 Awn

*ulvs SEaAITHI UL A

CAlVS hAnd YvU SeAaYTH u “MUM
COEYS ULO SeLHLT NIHML W *FOA
PCIVS LAY eD 3AVY NSl 1 w K
CQIvS ol st SHQ3%1cacels 4
QIS 33l SVah OLDY al3 540w
afl 3AVY N3l] w®rLm AUl ACHK

uhl&uVlS SAIN VW bld UnlHIoVIiSesens

*000eSEARCHING FOR ALL KEYS STARTING WITH T

W RNW WDW RIW WIW ROW Wiwe®™ ! THEN GAVE UP AND SAID, "BOW WOW BCW WOW 80w wOW BOW WOW.® ONE MORE FOR GOOD MEASURE: SA1D,

THEN SAID. ™AW WOW B8IW WIW.® THIN JOHN'S DOG SAIO. “AS SENTENCE WItL START A NEW KEY, OW WOW ANW WOW ROW WOWe" MARTHACS
SAIDe %AW WIWe ™ HARRYIS DUG THIN SAID, "AOW WOW BOW WOH.® THEN JOMN'S DOG SAID, 85 SENTENCE Will START A Hiw FEYe UW

ese0e [NSERTING AFTER POSITION 200 VTHE TEXT sesA7
seere INSCRTING AFTER POSITION 200 THE TEXT see8

eesve INSERTING AFTSk POSITION 200 THE TEXT eeaf

P00 CARCHING FAR ALL XEYS STARTING WITH A
WW A4 wdW, ® 1 THEN SAVE up &ND SAID, "POA WOW BCW WNW BOW WOW BOW WOW.™ ONE MORE FOR GOOO MFASURE: SAID, "B80OW WOwW BOW
T SURPRISED U3 WHEM IT SAIDLTR AZ "8OwW WOW 30W WOW BCW WOW RDW WCW.™ | THEN GAVE UP AND SALID, "udW WOW ROW wWOW 80w WOW BO

eseee ATLETING THS TEXT SURPRISEN US WHEN [T w#e FeCM POSITION 175

THE COMPLETE TEXY 1S LISTED RELOW

T e T e e T R PR —————— e e e e APPROX,

5¢ 100 1S¢ 20% 25« 30* 35¢ 40 45 50" 55% 606 65¢ 70% 7S¢ g0« 8Se 90% $5¢ 100¢ CARPO

———————————————— -— ——— - —=~ NUMAER
v} MY DG CHECKERS SAID, "30W WIWe™ HARRY'S 0IG THEN SAID, “a%a4 0W AOW WOW, ® THEN JOHN'S DOG SAID, "0 1
100 S SENTENCE WILL START A NEW KEYe OW WOW AOW WIw ROW WAL MARTHAIS PAPDOT SATDLTAA? MAUK WIW PCw WONW 2
220 AW WIW BUW WOWL™ 1 THEN GAVE UP AND SAIN, "3ANW W 809 WNW B WNW BIW WOWe " ONE MOFE FOR GOUD M:A 3
00 SURKE: SATO, "40W wiW HIW Wlw 823W WOA BUH wld ROW widide™ 1A 4
$0ee0SFAKCHING FIK ALL XEYS STARTING WITH a0w
MORE FOA3 005D MEASHIF: SAID, @ 0BNw WOW B0W WOA AOW HCW BOA wlw BCA WUW. " £

a” MAPTHA'S PAROIT SAIDTHAZ " fidW WIW NOK WUK BCw Wild B34 wilWa™ | THEN GAVE UP AND SAIN, "RDW wWDW ROW WOW AUW WOW BUW NO
Wo® .1 THEN GAVE UP AND SAID. " BOW AOW ACw WOW BOW WOW BOW WCWe® ONE MNORE FOR GI0JD MEASURE: SAIN, "AOW wOW AOW WOW B0w WO
WOWe ™ HAGRY 'S DG THAN S2I0, ™ B WiW BIW WOWL™ THEH 13HN'S D15 5410, "AS SENTENCE WILL START A NEW KEYe DW Wln Riiw wWOW

MY DIG CHECKTRS SAIN " BW WIWe®™ HARRY'S DOG THEN SAIT, "30W ADW BOw WhAe™ THEN JOHN'S DOG SAID, *BS SENTENCE wWIL
S0 eDELETING ALL XEYS STARTING WITH BCh
®0s0eSEARCHING FNR ALL KEYS STARTING WITH WOW Hees AUT NQ MATCH wAS FCUND

*0&0oDFLETING ALL XKEYS STARTING WITH H

®eresSEARCHING FOR ALL KEYS STARTING WITH BfiWese BT NO NATCH WAS FOUND

239
47

256
203

ovt

314
186
2h6

25

1 v

comccacrcms e ———— B L L R et D D D T T Y 1 PYIT $4
Se 10e 1% 208 %8 30¢ 358 LO& 4Lhe 50 558 60e 656 Tae TS BOe RS 0% 56 100" (L~-.)
—m—recen—- ittt D e D e et cemeremmeao—e mecmemeemmees WybELE
/] MY D06 CHECKERS SAIN, ™dda Wiwe™ HASS YYD D)0 THI Y SAID, "ANW JUd AW WIW® THEN JUei0S DOG LA, “y 1
100 S SENTPINGE wWILL STAZTY 2 MPw kEY, OW Wi ENW whiW “0o wiine® MARTHA'S PAMENT SATH,TRAZ "AUW WIW PUW KoK 2
200 ANW WIW RNWd KUWG™ T THEYN GAVE U0 AND SAID, Y& w7l (W WUW BUW WUm BUs WLKe"™ UNE MUFT FUP (OND MEA 3
299 SULF: SAINe MA0w KIW RW ®Zw ACW WOW BCW hiw HBOh wi'We"” 4 I3
& 1% Q= 148
L
L ’
L se 1G8ssy? AND SAID, "BOW WO===-
L ¢ 19% 3¢ 232
L R L
L R L
L R *% 20882 SAID,TBAZ "BOW WOW Bee-- .
L R ¢ 29¢ 358 175
L R L .
L R L
L R *s 23248 SATD, "AS SENTENCE We-—-
L 3 ¢ 23% 26* 93
L R L =
L R L
L R 8 L%845A10, "AOW WIN.® HAR——==
L R * 9% 50¢ 52
L R L
L R L
L R ®® ge%¢SLID, “BOW WOW BOW Weoe——
L R & 19¢ 64% 239
L R L
L R L
L R ¢ 14633540y "POW WOW BOW Weem—
L R * 31312a¢ 307
L R $¥ 31sesSA[D, "BOW WU'W BOW We-==
L R
L R
* 4e¢ 3% 18
- L
L
L ¢% |os&PANRNT SAID,TRAZ "AT—~——
L ¢ 128 2¢ E2
L %]12¢88JOHN'S DOG SAID, "RS~---
L R
L e
* 2¢ 1x 227
L
L
2 Gasx] THIN GAVE UP? AND S5--—-
¢ 6% 1% 220
L
L
&% 23¢8GAVE UP AND SAIDy "Bem=~
s 3% 1% 9
L
L
t s¢ J3¢8(HFCKERS SAID, "BOW =—=m
t * 5¢ 1s 1Bl
L R L
L R L
. L R s+ 33288RS SEATENCE WILL STa-=--
L [3 * 33¢ 3¢ 100
L R 0 5%3838A7 "HUw WOW BOW WOW-——w=
L R
L R
& 28¢ 1% 235
L
L .

vetedSELPCHING FAR ALL
wJIH R0k WWL M I THEN GaV: UP
WOW ™ MALTHATS 2AQX737T Sa10,To
W owlme™ MaRTHAYS DALOAT 10,7
WIWe™ THON JOKN'S D6 SAID. "
MY DG
WOW RNW WOW RUOW Wiiwe " T THEHN
WON ROW Witw O)W WY RMd RIW, "
SAIMe "SUW «dwW A N4 WV ™ THIN
A BOR WO ADW WlhW, ™ MARTRAE
o™ ML MOKRE FLP LSTD VMITLASURS S
Foiw miee®] THES

Gave nooann
e "DOA Wk ™ HLIIY TS LG Th

MY {106 CH4FCeFrs
CIAL TR SXLN TN La RECHA RSN PR
wlime ® MAYTHAIS PLEINT
RUW WIWe "™ | THIN GAVS

WOy R
WhW B IW
ROW W IW

8 22838L7 "R
® 22% 4% 182
s¢ 28¢9*AND SAID,

WiW ROW WOWN ———-

"80W WOW R-===

KEYS STAQTIMNA wWlTH

SaINe "ANw WOW AW w24 279 Wl QNG WOW, ™ O4C MNOKE FAR (D)D) YFASURE:
U0 W3R ATH RWOR SURm WOW BN wmCde™ I THON GAVE UP AND AN,
ALY MOCK PN ROW WOR AR kR TR W™] THEM GAVE UP A% SAT), “YBiw VW 30W WOw 40k wiiw B
HY STNTONCF wILL START 2 ‘idw vFY, OW WOs Biw WOW Hia wiwe ® MARTHAYS 24200 SATR, THA? ®any
CHETRiwm S S4i T "UTW hine™ HL-2VIS DOG FHIN 5810 "RIW W4 KIW ¢ lwg®™ Thily gt s DLL SATD,
GAVE IR AN0 SATT . "eldv Wiw 2% W W wcW B0 WOWe MO ONE MRS FOR GYJu AEASHRL: SN, AW
T THON GAVE UP 25D SATD, "Pow wlw 406 Wik PAOW WOk A0k wlae ™ SN MR FE COOD L ASU3F T ST
Joet e FOL S IO e MRS STNTTNOE wILL STACT A KREW REYe TOW sk Q09 Wik ROW wOWe ™ MAKTHA'S P ARG

RFEE}
&N

&7

SAID, "AOW WOW HOW
"Rla wWld Pllm Wi 30 BOw 80

CATHTHAZ PRI wiTwW 30W W™ PCw mlm AUN Witke ™ T THLN GAVE 0 AND 5410, "G0'w alw Afw
il WY DR RiW BiiR kil DT Wil ATW W lae [4
T W OO WTH ACE KOS vl wlwe® ONE MAZF FOE GU)D MPASURT S SAIN, "0 wilh Bi'W WOW
SR W TW BT R et T 0RRES G SATD MHS SeNTESCE wWILL STATT F fie KTY. T owmidk R
NE W WOR, M MALL Y, D TN 510, " ldn Wl Db q A M THET JENG e QAN YR, SENTE
CALDy MUS STATONCE mlLL ATIET 4 KP4 KEY, OW W Him WOW ROW Wi " ML THATS PALEDT S1lyg, Yup
SATTGTRAT ™ 0m Witk Fllg wtw oW mwle Slm Wlime™ 1 T80 GAVE UP ANT S3I7, "0 wik Giiw wiw Piim
UP END SATRe "ROW ROW KW KWiw Dde wlW B0W Whwe ™ UNF MUPE BB GGUD MUASUSE S SAJU, "f.owm Wb

142

C.0 APPENDIX - TIMING CONSIDERATIONS

This appendix gives estimates of execution times for most of the
important PATRICIA algorithms. To obtain these estimates several al-
gorithms have been analyzed in terms of 360/50 operations. The estimates
are close, but are not to be considered exact, since some of the 360
operations are variable, depending upon the operands involved. If the
user wishes to convert to another machine, consider the average instruc-
tion execution time for the 360/50 to be 5 microseconds, and the instruc-
tions to be ADD, SHIFT, AND, COMPARE, LOAD,‘STORE, and BRANCH, which

are the predominant operations of all PATRICIA algorithms.

C.1 Timing for the Search Loop of Algorithm 2.1.

The 360/50 instructions required for each bit comparison cycle, along
with their -times, are given in figure C-1. The comparison cycle in-
cludes steps 2-5 of the algorithm. Step 1 and Step 6 are each executed
only once. A search is found to take 63 mjcroseconds on a 360/50. Thus,
for example, in a relatively balanced tree of 100,000 nodes, we would

be able to access any node in less than 1 millisecond.

C.2 Timing for a Traversal Iteration

The timing for a traversal loop of a postorder traversal is given
in figure C-2, which shows the 360/50 machine code necessary to effect
an iteration using algorithm 2.3. The main loop of the algorithm was

used, except for steps which are concerned with backward pointers to

143

the structure and the actual "visit." The time in figure C-2 of 36

microseconds means that we could traverse a PATRICIA tree of 100,000

nodes in 3.6 seconds on a 360/50.

C.3 Timing for Other Algorithms

Using the above technique, we may obtain time estimates for other
important PATRICIA algorithms. A table of algorithm execution times
(including an estimate of the time‘required on a 360/50 with a 2314 disk)

is given in figure C-3.

‘STEP IN 360 - 360/50 TIME

ALGORITHM 2.1 OPERATION MICROSECONDS COMMENTS

3 L 4 fetch SKIP field

3 AR 3 accumulate sum of SKIP fields

3 C 4 compare to see if we are beyond the

3 BC 4 number of bits in the key

4 LR 3 save accumulated SKIP (we need it twice)

4 SRDL 5 divide by 8 to get byte position

4 N 6 mask out all but remainder, which we
use as an index (this is the second use
of the accumulated SKIP)

4 L 4 get proper word of key

4 N 6 mask out all but proper bit (the mask is
determined by the index we obtained above)

4 C 4 compare with a '1'

4 BC 4 branch to right or left

2,5 L 4 get RLINK or LLINK

2,5 C 4 compare sign to see if we are at the

2,5 BC 4 end of the search

2,5 B 4 loop '

total = 63

Figure C-1. Timing for the loop in algorithm 2.1.
On a 360/50, a comparison can be made every 63 microseconds.

STEP IN 360 360/50 TIME

ALGORITHM 2.3 OPERATION MICROSECONDS COMMENTS
5 A 4 ATOP « ATOP + 1
5 ST 4 put X on the stack
2 C 4 check to see if
2 BC 4 we are at a terminal node
4 BC 4 see if stack is empty
6 L 4 unstack X
6 S 4 ATOP <« ATOP - 1
5,6 L 4 X « LLINK(X) or X < RLINK(X)
5,6 B 4 loop

]
(o}
()}

total

by
Figure C-2. Timing for a traversal Toop using algorithm 2.3.
Omitting the visit, a node can be traversed every 36 microseconds.

Algorithm

21

2.3

2.3

2.1

2.1

2.2

3.4

3.2.1

3.3.2

4.1.2

4.1.3

5.4.3

5.4.3

Function

Search (one
iteration)

Traversal (one
iteration)
Traverse tree
(no visits)

Disk Access Time

Search for
key, do not
Retrieve

Search for,
Retrieve a key

Build PATRICIA tree
Delete a lode

Find PD, TD, etc.

Total for a node
deletion

Prepare for
Subtree Deletion

Total for deleting
a subtree of keys

One iteration
only

An entire text
alteration operation

One iteration

Convert entire
structure to .
preorder sequential

Figure C-3.

Symbol

D3

F3

A3

14

A5

Estimated Formula
for Time

pT

(n-1) L

X+(n-1) L

gpL+2pX

T 22

F3+D3

i&gXE.T+(n-1)L

A34D3

p I14+aX
(o depends upon "book"
size and can be made

equal to 1. See section

6.3.1)

ASp

Timing of most PATRICIA algorithms.
Assume p=2"-1 keys in the tree.

Estimated Actual Time
{seconds) for 360/50,
2314 disk, 100,000 keys

.000063

.000036

3.6

.075

.001

.076

15,000
.00005
.00

000

.0013
average
(5-50 keys)

.002

.0002 ave

20

.0003

30

147

D.0 APPENDIX - THEOREMS AND PROOFS

This appendix presents some useful theorems and their proofs.

Given: 1) a, B, ys 8, are PATRICIA keys. -
2) T is a PATRICIA tree. '

3) A1l the keys o, B, Y, 8, are unique.

Let ¢ (o, 8) express the number of identical leading bits in the

two keys § and o .

Theorem For any o« ¢ T, algorithm 2.1 finds a unique y ¢ T such that

¢las v) > ofa, B) for all peT

Proof (induction)
1) obviously true for a tree of one node
2) assume true for an arbitrary tree -
we will show that if o is inserted,
the property is preserved.
let B], 82’ B3...Bn be the bit positions 160ked at by algorithm 2.1 in

s NB ""NB are the nodes encountered.

1 2 n

our search path to v; NB

a) (tontradiction)
Assume J a B s.t. ola, B) > ¢la, ¥)

> 3 N b IS 3 ..
> J a search path NB 5 NB. N
1 2 1 1 2 n

leading to B which first differs from the path to

v in node N_. > bit comparison at Bi

Y

148

got us to NQ instead of NB —> B th bit
i
1 i+l

of B # B, th bit of .

If B'l < ¢(as Y)

= ¢la ,B) < B, < o(a, y) which contradicts

assumption a)

Now, note that algorithms 2.1 and 2.2, whenvcreating the search path
for a new key, insert the comparison at the first bit where this key
differs from all others on the search path. But our inductive assump-
tion states that this is the longest sequence of identical bits for the

two keys.

We thus have:

6] = &, through the first Bi bits, for all keys

81> &y in the subtree at N Thus, if ¢(a, v) < By then ¢(a,y) =

P.
i

¢ (o, B), wWhich contradicts assumption a).

Corollary For a given node, N, , thé first Bi bits of all keys

B,
i

in the subtree at NB are identical.
i ‘
Corollary For a given set of unique PATRICIA keys there exists one and only
one PATRICIA tree.
Proof The comparisons that separate all keys are at the longest

leading identical bit strings. Since all keys are unique,

only one structure of comparisons exists.

149

Corollary Algorithms 2.1 and 2.2 build the PATRICIA tree in such a
way that a postorder traversal presents the keys in ascend-
ing numeric order.

Proof Given a PATRICIA tree. Since algerithm 2.1 goes to the
left if a "0" is encountered and to the right for a "1"

then for a given node, NB , any node, NB ~, farther
i it]

down the scarch path and to the left of NB is numerically

i
Tess than any node farther down the search path and to
the right. If we apply this fecursive]y for all nodes,
we have defined the "visit" of a poctorder traversal to
mean "is less than."

Theorem In any PATRICIA subtree, there exists exactly one backward pointer
to a node outside the subiree. (Assume the header node
is not contained in any subtree)

Proof . (induction)

For a tree of one node, R, (along with header node, H)
algorithm 2.2 constructs thel1ink fields such that one

pointer of R points to R, the other points to H.

Assume theorem is true for a. PATRICIA tree of n nodes.

Use algorithm 2.2 to insert a new node, R. Call R's
father"Q"and R's son (if any)"P". Then step 5 will set
one of R's link fields equal to R (as a backward pointer).
Following this:

a) IfRi

a terminal node.

The other Tink is pointed back to the
node wiere the replaced link of Q pointed.

This preserves the structure specfficed by

Corolla

ary

Corollary

Theoren

Proof

150

the theorem for subtrees at Q and R. No
other subtrees are affected.

b) If R is a non-terminal node.

The other 1ink is pointed to P,
which was the successor of Q. Again,

the structure is preserved.

A11 backward pointers in any PATRICIA subtree, except for
the backward pointer referred to ébove, are contained with-
in the subtree.

The single backward pointer that points outside the sub-
tree points to an ancestor of the subtree.

Algorithm 3.1 properly deletes a PTR field and a bit
comparison.

First define " -~ " as "is the father of," and " >~ > "
as "is the ancestor of (but not the father of)"
Then, enumerate all the node structures and their

corresponding types in terms of the notation introduced

section 3.0.
PD > > - > - 1T - Type 2a
PD > > m T - 2a
PD > > D = TT - 2c
PD > ™ > - T - 2b
PD -~ TD - TT - 2b
PD > 10 = 1T - 2d
PD = 0 > 1T - cannot construct
PD = 1D > TT - cannot construct

PD = ™ - T - { 2e

{ of

151

No other relationships between PD, TD, and TT exist
(e.g. TD - PD) due to their definitions. Also, note
that FT is defined by the position of TT. HNow, simply

run each configuration through algorithm 3.1.

Corollary Algorithm 3.1 preserves a Right Threaded PATRICIA tree.

152

E.O. APPENDIX - GLOSSARY

The terms described in Section 1.1 are reproduced here for convenience.

AVAILABLE LIST--A 1ist of empty nodes. (A process which re-
quires space for a new node can always get one by picking the top or
bottom node from an available 1ist.)

AVAIL LIST--Identical to an available 1list.

AMNCESTOR--Within a tree, an ancestor of node X 1is on a path
between node X and the root of the tree.

BACKWARD POINTER--A 1ink fTield in a PATRICIA nodc, X, ‘hat points
to X ¢or to some ancestor of X. ,

BINARY TREE--A data structure in which each node has no more
than two nodes hanging from it. These two nodes are commonly called
"ROOTS of LEFT and RIGHT SUBTREES."

EBCDIC--A specific internal code where 8 bits represent one
character within the computer. For example, the EBCDIC value of
of "A" is binary "11000001." ‘

ENDORDER TRAVERSAL--A method of looking at all the nodes of a
binary tree in which we first look at all the nodes in the left subtree
of a node, then all the nodes in the right subtree of the node, and
finally, the node itself. Each node is "looked at" exactly once, al-
though the algorithm for effecting an endorder traversal may actual]y
pass by the node more than once.

FIELD--The smallest entity of information contained in a node.
A field may be one or more binary bits in size.

KEY--A contiguous string of characters constituting a word or
phrase that we wish to search for and, hence, use in some comparison
scheme.

LAMBDA ("A")--See NULL POINTER.

LEFT LINK--In a binary tree, the link field pointing to the left
subtree of the node.

153

LINK--The specific field of a node that points to the next node
in a‘list. (Actually, a given node can point to more than one node:
for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random,
but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more
fields. (An example--a node could be likened to a single library
catalogue card, and a field to an individual entry on the card, such
as the author's name.)

A or "\"). A specifically
in a list. When any link
ue called "A" (frequently
0 A"

NULL POINTER--(Se
valued 1ink field that
field points to no ot
zero). Ye sometimes

POINTER-- Has except sometimes a
pointer is not conti

POSTORDER TRE
binary tree in which
of a given node; then
in the right subtree of

.t all the nodes of a
des in the left subire®e
v we look at all the nodes

PREGRDER TRAVERSAL--Stitt cuauvener method of looking at ail the
nodes in a binary tree, in which we first look at the node, then the
nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field z=ninting to the left
subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right
links of terminal nodes point to the next node that would be visited
if we were traversing the tree in postcrder.)

ROOT--1In a'tree, the node from which all other nodes
hang. (Thus, computer trees are usually upsidedovm.)

SUBTREE--A branch of a tree. Pick any node in a tree--it is the
root of a subtree.

_ TERMINAL NODE--A node in a binary tree that has no left and/or
right subtree. 1In a PATRICIA tree, the affected right or left link then
becomes a backward pointer. ,

THREAD--The same as a backward pointer.
VISIT--A term for what we do when we "look at" a nodé during a

preorder, postorder, or endorder traversal. Usually a visit involves
performing an algorithm, or printing out information.

152

E.0. APPENDIX - GLOSSARY

The terms de<crib:d in Section 1.1 are reproduced here for convenience.

AVAILABL! LIST--A 1ist of empty nodes. (A process which re-
quires space for a new node caen always get one by picking the top or
bottom node fror an available list.)

AVAIL LIST--ldentical to an available Tlist.

ANCESTOR--Within a tree, an ancestor of node X is on a path
between node X ¢nd the root of the trce.

BACKUARD POINTIR - 1int field in a PATRICIA node, X, that points
to X or to som~ ancestor of Y.

BIMARY TiHE--A dita siructure in which each node has no more
than two nodes iaunging fvom it. These two nedes are commonly called
"ROOTS of LEFT &nd RIGHT SUBTHIIS.”

EBCDIC--/. specific internal code where 8 bits represent one
character withisn the comouter. For example, the CBCDIC value of
of "A" is binar, "11030001."

ENDORDER TRAVERSAL--A method of looking at all the nodes of a
binary tree in vhich we first look at all the nodes in the left subtree
of a node, then all the nodes in the right subtiee of the node, and
finally, the node itself. Each node is "looked at" exactly once, al-
though the algorithm for effecting an endorder traversal may actually
pass by the nod: more than once.

FIELD--T:e smallest entity of information contained in a node.
A field may be sne or more binary biis in size.

- KEY--A contiguous string of characters constituting a word or

phrase that we wish to s2arch for and, hence, use in some comparison
scheme.

LAMBDA {“A")--See NULL POINTER.

LEFT LIN4--1In a binary tree, the 1ink field pointing to the left
subtree of the node.

153

LINK--The specific field of a node that points to the next node
in a 1ist. (Actually, a given node can point to more than one node:
for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random,
but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more
fields. (An example--a node could be likened to a single library
catalogue card, and a field to an individual entry on the card, such
as the author's name.)

NULL POINTER--(Sometimes called "LAMBDA" or "X"). A cspecifically
valued Tink field that indicates the last node in a list. Vhen any link
field points to no other node, it is given a value called "A" (frequently
zero). ‘e sometimes say that this 1link "points to A."

POINTER--Has the same function as a link, except sometimes a
pointer is not contained in any node,

POSTORDER TRAVERSAL--A method of looking at all the nodes of a
binary tree in which we first look at all the nodes in the left subiree
of a given node:; then we look at the node; then we lcok at all the nodes
in the right subtree of the node.

PREORDER TRAVERSAL--Sti11 another method of Tooking at all the
nodes in a binary tree, in which we first lTook at the node, then the
nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field pointing to the left
subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right
links of terminal nodes point to th» next node that vould be visited
if we were traversing the tree in postorder.

ROOT--1In a tree, the node from which all other nodes
hang. (Thus, computer trees are usually ups1dedown)

SUBTREE--A branch of a tree. Pick any node in a tree--it is the
root of a subtree.

TERMINAL NODE--A node in a binary tree that has no left and/or
right subtree. 1In a PATRICIA tree, the affected right or left link then
becomes a backward pointer.

THREAD--The same as a backward pointer.
VISIT--A term for what we do when we "look at" a node during a

preorder, postorder, or endorder travﬁrdd] Usually a visit involves
periorming an algorithm, or printing out information.

154

BIBLIOGRAPHY

Fredkin, E. (1960) "Trie Memory." Comm ACM 3,9 (September) 490-99.

Knuth, D. E. (1973) The Art of Computer Programming, Vol. 3 Sorting
and Searching. Addison-Wesley, Reading, Mass.

Knuth, D. E. (1968) The Art of Computer Programming, Vol. 1 Fundamental
Algorithms.

Martin, W. A. (1971) "Sorting." Computer Surveys. 3,4 (December)
147-174.

Morrison, D. R. (1968) "PATRICIA - Practical Algorithm to Retrieve
Information Coded in Alphanumeric." JACM 15, 4 (October) 514-534.

Salton, G. (1968) Automatic Information Organization and Retrijeval
McGraw - Hill, New York.

INDEX

scssesp anCrINL FOR ALL KEYS STARTING wITr

PIOURE ¢=3 Tnt ACTUAL HEPRESENTATION OF Trt PATWHICIA TREE OF FIGURE 2-1 PAGE 21

Flouwe 2=2 IF =t AUD A& XEY TO Trt TREE CF Flount 2-1 ThE TREE 1S CHANGED PAGE 1B

Set CONCLUSTONS = AUVANTAGES OF THE COMPRESSED FORM PAGE U5

2elel COMMEANTS UN ALOHUNITHM 2,]) PAGE ¢6

TOURE C=1 TIMING POw Tt LOOP IN ALLUN]ITRM 2,1 PAGE Jas
TIMING FOR THF SpuwChr LOOP UF ALLURETRM 2,1 PAGE 1«2
2420l COMMENTS uUN ALuur]ThM 2.¢ PALE ¢8

nt Iwkt UF Flou«t S=] aS -ulLT nY ALovuklTrM ¢.¢ PAGE u0
FIOGURF Sey 1¥ wt USE ALLUFETrRM Z.¢ AND INSENRT Tht KEYS IN REVERSE OWUER PAGE 81

TUAING FOR A TRAVERSAL LOOP uSTwn ALCURTITRM 205 FAGE 145
FlGu«e S=4% AF Tz STew 2 uf Lotk [Term 50307 PAGE Lol

Tan® LIt »IeLDS Uus 1% STEP ¢ OF ALGogw]Trm Ho3,7 PALE v9
A ARPeG] A = DThe N LUK] Tamy . PAGE 114

Cod TIvI%s Flow QTrew AL stoe | Toms PAGE 14l

Gune Ce3 TIMING OF Mu>T PATKRICIA ALk Trmy PAGE lwb
. 3%4 ALGURITrMs FOn A QOUNMLY LINKLD AVAILABLE LIST HAGE 115

e3e? SUME (HANACTEwISTICS GF TrE ALLURITrMs [N THIS UISSERTATIUN PALE 9
Unt ¢=« A ©alwe|[ClA Tuart AUILT ny ALOur]TeMy 24¢ AND 2o} PaLt <3
€ed CoNCLuSTUNS = aLderltes TH2Y PAot 7o

3.0 ALTErInG Tre PATHICIA TRER = NOOE DELETION FAGE 32

“o0 ALTErted Tt METHUUS FON REPHMESENTING THE PATRICIA THEE PAGE 17

XY ANOTeew ARPLICATION = CALL FOUM ACTION . PAGE TuY

teu Lrbet iyl R = BDLUSSAmY) PAGE 152

A,0 aAPrENUIX = OTrbw ALGOMITHMS PAGE)1

Hels tHPt Ul = TR TEST PeNowaM . PAGE 119

D.v AvPEhUlR = TrEOSEYS AND PHOUFS Paot la7

C.vu © aePENUla = TIMING LONSIDE~ATIONS . : - PALE 142

XY+ ALOTAER AerL ICATIUN = Capy FO~ aCTlun PAGE luvy

Helr PHACTICAL Arrp [LATIONS Paot lue

ALARORITHEM: GET A NOLE F-u% AN AvajLantt LIST PAGE 11a

1 ALGORITHM: RETURN o NOuR TO AN AvATLasLt LIST . PAGE 114
ALOUNTITHYS FUR A QuusLY LINFKRU Avaltatie LIST) PAGE 115
wETUSNN A NuRE TO A LoURLY LINKED AvValLAaLE LIST PAGE 116
PGET A NNLUF FROM A DUURLY LINKZU AvaL lastt LIST PaLE 115
TouwE 3-2 TYPE 1 NODE STruCTurte. RACrwd~l PULINTERS A=t INDICATEDL PAGE 3«
Col mOw wELL HALANLED IS A FATWICIA THLE? PAGE 30

It [GOrArny PAGE 15«

FIGUNL S=« A HMiYvanY Tect PAGE 87

FIGUKE 1-¢ & Su«Tel BlrndkY Ixte PaGE 11

FIGURL 2=n Tt all CouvearlSunS THAT ARE ACTUALLY MADE PAGE 2«

telel HobLbaN P waTIONS PAGLE 08

He S=2 THE T~tE OF FlOuwe S5=1 AS BUILT MY ALoONITrM 2.2 PAGE 80
bec ANOTHER APPLICATION = CaLt Fomv ACTION PAGE 1v9

SUME OF Tek OUTPUT PRuDUCHD Fus CALL FOW ACTION PAGE 111
FlGuxe n=1 SOvE Teal 0F Tnt CALL Fuw aCTlun FILES PAGE 110
Flfitwe 3911 SreClay CasSt wrbwt THH=TA . PAGE 57

HE TwbE OF FIOGUSE 2=-1 Intk Twtb IS CranoLeDd ’ PAGE 1d
le3.1 Sume CHanAlTenISTICY UF THE ALUORITPMS IN ThIS DISSERTATION rAGE 9

QUENTIAL FORM «[TH LTaL AND HLINK CuMsInt L BAGE L0a
Onlfw TRAVESSAL OF STHUCTUukRE wlin CuMalnt) wLINR=LTAG FAGE 101

HM: SEANCH Th=OULOH STHUCTURE wlTH COMBINED wLINK=LTAG PAGE 101

T TrutaDED TO PRFORDER SEUUENT AL
Pelel
2.241
3 SUME USEFUL TRICKS InvoLvine
FIGUrt 2=% Trhr olT
CONCLUSTIUMNS = ANYVANTALES OF Tne
Seh tunTnex
wolel
1.6
Sen
bot
24"
FIGU~E 3910 O WAL
Selel AN [MPUMTANT AND JUMEL]aTE
C.0 APRYNOIX = TIM1i
“.l VELE TN
malel ALLUNITRM: LeLb IR
wale)l CUNCERPTS mrmInD vttt 1106
Seded ALoUNITHu:
Helen
89.39.7 ALDUM]TnmM:
HSelet
. lal ALvUm [Trm:
Helel READ Texf ANy
FIGu~t S-6 ©PaASSH)
Belawe
"1,1 ALbun]TnM:
S.led ALnuUWITrHG:
Bbeale2 ALuurlTnmg

Heloe®

6,1l
Selel CUNCEPTS HERNIND
deb CUNCLUS UM =

ALTERING THE PATWRICIA THrr = NOOE
EvawING THE STHUCTURE For SuaTuet
NEwAL CONFIGU~aTEION FOM A SunlToet
DELETION CUneESPONLS TO A TyYPE ¢

PutpPare Thr STWULCTURE FOR SUsTerE
Flou<t 3812 susT~et

3.3 SUnTreE PuuNING =
“wol

Hunt 1= Trt NUvESS INSERTRD N
3.2

Seo A SLlonTLy

Jow Tt

FIGu~e 1=3 A

$ OINSERT = SEARCH FOR A NUDE IN A
helad

THAT wiltlL HE USED THROULROOT Tng

RISTICS OF Tk ALOLU~TTHMS Iy THIS
a.72 ALGOR]TrHYS FUx A

ol ALGOPITmM: wETUNN & NUUE TO A

COMBINING HLUINK-LTAOG

COMMENTS UN ALULOMITHM ?,1

ComMme NTS ON ALLUNITAM 2,2

CumMRARISON STrRINGS

CorPArISUNS TrHAT AKE ACTUALLY MADE

Currwt SSEtu FunM

COMrt S lun

Cutelt PTS ~t=INL LELETING CONTIOUOUS TEXT
CunCLuUSiLY = OELETING NODES

CUNLLULUSTIUNS = ADVANTAUES OF THt COMPHLSSED FOKM
ContLus o> = aLTedlne Teat

CoONLLUNTUYD = SuMuarny 0O CrAPTER TweQ

Cutb JoumdTlut Fum & SU=T<eE UELETION
Cunttuuehir =~ ELIMINITING LTAG
Cussluvr wa T JONS

CarTloeunus Text?

CateT fonuus Teal

CunTiouuus Teal

Convenl A mlunt Traf DD TRt TO PrEOROENR SEWUENTIAL
Curtivt el T4 Petun(ite SELUENTTIAL FORW
CLtovbm T Tu Priuriek SEOQJENTIAL FUunm OVER THE SAME SPACE
Coteyven T Lo Uvtr Teb Seut MEmMyRY SEACE
Cotale A HIunT ThetaltD PATHICIA TwWit
LeebATE A Twb b

Chut &TES TrlS FwOM Twt STwUCTuRLt OF Floukk S=]
betele A NUuE bPruw Teg Teet

wtit e A #»ATW]ICTA AOUE FHuM THE THEE
LritTh & SeeCIPIC REY FRUM ThE TEXT
vtltTe CunTiovuhus TexT

DeLETE UW INSENT TEXT

LeLETING CUNTIGUOUS TEXT

DLt TInL CUNTIOUOUS TEXT

veLbk TInw NUUES

DELETION

OeLeTION

(eLETION

peLETlON

DELETION

DEt e TION CURHESPONUS TO A TYPE 2 DELETION
beleTION OF PwEFIALS

etk Tion OF TERT MATEHTAL

DESCERD [N ORUER

VL TERMINING Tuw FYy TT

OIFre B VERSICN OF PLONDER SEQULNTIAL REPRESENTATION
UIOGITAL TwEE

O1GITaL T~EE

LILITAL TwtE

DISkLAY THe TWHtE AND/OR THE TERT
LDISSteTATIUN

DISsSERTATIUN

LousLyY LisctD AvAalLABlLE LIST

DUuLsLY LINKRED AvAJLAYLE LIST

PAGE
PAGE
PAGE
PAGE
PAGE
P4AGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGLE
PAGE
FAGE
PAGE
PAGE
FAGE
PAGE
PAGE
PAGE
PAGE
PLULE
PAGE
PAGE

101

115
116

2e1 ALGORITHM: GET A NOUE FuOM A
FIGURE 4<-3 Trt FOUWTH A HAS BieN
FlGurt &-¢2 THF SPACE HAS HEEN
RTANT AND IMMEDLATE CONSE sUENCE -
FlGUne 4~4 PHEURUVER AWD
Zot) Tne
FfOu~t S-1 AN
1.3
el Tne
AMPLE UF A STRUCTUHE DESTunEDR Fus
SumMt TEaT OF Trbk CaLt PO aCTloN
3.2.1 AL GUR] THu:
6 CONVERT TO &wF0wiibn St surNT AL
NS = ADVANTLOES OF Tt Cuvedb nsed)
FIOUE Sw] PebOmo b St gur b THAL
Ser e Tesem ey Tus
YJeloel ALLUXITRM:I FING Dy Tus
“eh
Accal ALGUST Trev:
a.l LYRPIVED & T
E.v ArvPrNLlz -
el 4
Sele2 AN IMPUNTANT Ay
Dele? AN
FIounrt HS-4 Tnt
lewol ALUDMITHM:

"2l AL vigw] THY:

HMalen Lt TR OR

4,0 . ALuuv] Trv:

&=3 IF wk USE ALONNITHM 2,2 AND
1.0

Cec¢ TIMING FUR A ToAVEHSAL

EOMDER SEQUEMTTAL STHUCTU~E Fuw A
Hele3d SEANTCH FUw A

1e3 ALGOWITRM: OFLETE A SrECLIFIC
lede? ALLORITHMI >SEAWCH FUR A

OF A STRAUCTU~t CESIOGNWED FUS FAST
Flouet 2-2 IF we AL A

lec SLARCHING oW

USE ALGDR I THe 2,2 2ND TNSERT Trek
Flounwp sew Tt [veONTanT

A.7 ALOUSTTaMS Foy~ & [ouhkLY
QRIT=E HFTumnN 3 NOUE TC & DOurLY
QUNITHM: GET A NOADE FHOM A DOUNLY
Trm: G T A KNOCh FRU™ aN AVA[LADLE
MMl HETURN 4 NOLE Tu AN AvAalLAuLE
MMS FOw A LOUHLY LINtED AVAILABLE
D FRUM A DoUuRLY Liroel) AVALTADLE
MODE TG A bouslY LIMED AVAILAALE
Heled SrebCr Fuw A KEY A

#7’.3 ALGUWTTHYS

9=7 TwE SPECTAL SITUATIUN wni <t

DOUBLY LINRED AVALIABLE LISY

FLIMINATELU #wOM Tt TERT

ELIMINATED FhuM TrE TEXT OF FIGUREL 4-])
ELIMINATING LTAO

thburutw VISITS

ESHENTIALS OF PATWICTA

LAAMPLE OF & w]lunl Tnet ADLD PATRICIA TREE
EALMELE UF A STHUCTURE DESIONEUL FOR FAST KEY RETHIEVAL
FACILITIES b Thnt PHOOLPAM

tAST AbY =~ ThlbvAL

Flics

FIND FOe TUs FTe 1T

Fuom

Fuwm

Furv wlTH LTAG ANU RLINK COMBINED

Fie TY

FTe TT

FusTrngd CumMpit SSTUN

GET A NOUE FwDM A LOUMLY LINKRED AVALIABLE LIST
LT A NUUE FROM AN AvalpAaolLt LIST

OLUSSa~Y

HYPUTRETICAL MeDluM-SCALE SYSTLH

ITvset CJATE CONSEAUENCE = ELIMINATING LTAO
I¥FunTANT ANU TuMYrU]ATE CUNSEUUENCE = ELIMINATING LTAG
IMPURTANT LINK FIeLuS DUNING STLP 2 OF ALGONRITHM Se3.7
ISt = SEawCr FOR A NODE [N A ODLIGITAL THEE
Inste] & New NUDE INTO A PATKICIA TREE
["WSexT Teal

INSewT Teald

IrSeRT Trk KEYS IN WEVERSE URDLR
INTruLUCTIUN

[TeRATION

ey

KEY AND LIST ALL ITS HATCHES

KeY FrOmM Tnt TEXT

REY IN A TwIEL MEMoky

FEY WeTwleval

KeY TO Tre Twit OF FIOUME 2-) THE TRLE 1S CMANGED
rEYS

reYS IN REVERSE OWul R

Liten FIeLDS LUumING STEP 2 OF ALGONRITHM 5,3.7
Litrkl avaliami € LIST

Litmeu AVAILAGLE LISTY

LItiPbkD AvaLlAanLE LIST

LISt

LIST

LiST

LIST

LIST

LIST ALL ITS MaTCrES

LIST ALL MATCHES IN A PATKICIA TREE

LLInKktD) = 1

PAGE
PAGE
PAGE

PAGE

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALLE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PasL
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FAGE
FAGEL
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

115

11%
116
115
11¢
11e
115
115
lio
121

a9

Y98

FIGUWE C=1 TIMING FOR THE

C,.) TIMING FOR THE SEARCH
16Ut C=2 TIMING FoN A TRAVERSAL
OF STRUCTuURE wlTH CuMdalNtD LTIk
EORUEN SEQUENTISL COMBINTINL WL fNK=
MEUTATE CONStuUrHZE = ELIMINATING
Uurt STruCTu-«t wlilrn COMaINSD L InS-
b1 FREOSNDEN SEUUENTIAL FUuxM wlTn
SrAkCH P A RETY ANL LIST ALL ITS

L YR ALGOR]TIThNM: L IST atL
“al ObleTlon ut Teat
~ol ConrPdTrETICAL

FIOL<r 1=1 & SamPLF [w]t

HITrM: SEAmCn PO A REY [N A RIS
Hete CutVE~TING OVER Tt Sdwur
Qe ALTernaTe

Seled rU4 TO =arit

PLGU~E (=3 TImlno uf

LY ALGORTTRYM: INSE~T A

0 ALTERING Trt PATRICEA Iwte =
Aeaal ALEOWITHM: OET A

A.l ALHUPITrU: GET A

Beleb DLz1ETE A

1 ALGORTTHM: DELETE A PATWICTA
ALAORTTHMED INSERT = SEAmCn FOR A
om/.1 ALLUPITHM: SEANCH FOR A
[Y Y4 ALGOUPITAME Thot AT A i 4

FlOou~“k d-3 Tykr 2
FlGu~t Jd4=4 TrPt 24

Flouek 3-2 1TrPk |
Aeled ALGORITMM: wr TUxN A
Aclel ALGORITHM: bt TUNN A
3.4 CUNCLUSION = DELETIAG
FlGune 3-1
tolal voOOLE AN
HE NUMRE NS INSENTFU IN OESCENDIMNG
o2 AND INSERT ThF KrYS IN wEVEWSE
C.3 TIMING Fuw

B.2 SAMPLE

FIGUNE &=¢ SOME OF TnE

Flotiat S=on

Cent THe ESSENTIALS OF

S PREORbER SENUFNTTAL

FIGU<E C=3 TIMING UF MOST
LEPY! BLGOMITM: el b TE A
FIGuit ¢~1 A SIMPLE
Sal A ~]oAT Th2E40LED
ALGORITHMD LIST ALl MATCHLS IN A
ALLORITHEM: SEARCH FUR A NOUE IN A
b AN EXAURLE UF A W16HT THRLADED
COWTITHM: INSERT A hiw NUODE INTO A
LOUMITRM: CrEATE A FIGHT THHEAUED

LOUP IN ALGOWITHM 2.]

LOUF OF ALOLOWITHM 2.1

LOUP USINL ALLORITHM 2.3

LTau

LTay

LTauw

Liao

LIAL AND HUINK COMBINED
HaT(HES

MalimesS 1IN A PATHICIA TREE
MATEwiap

M bjuM=sCalt SyYSTem

Mr kY

Mr AN Y

Mpwpy skACE

M TrUuUS PUK NEPRESENTING THE PATRICIA TREER
Mun e ICATIONS

MusT PATWICIA ALGONTTHNS

Ntw NUUE INTO A PATRICIA TREE
NODE UELETION

NOwk FruMm & UOuHLY LINXED AVALIABLE LIST
Nul'e FRUM AN AvAlLanLE LIST
Nuuk BruM Tree TwEd

NUUE FHyM Tre THEL

pOLE IN A QILITAL THEE

NOwE 1M 4 PATWRICIA TWEE

NOLE INTU A PATW]ICTA TREE
Aotk ST=UL T

NOCE STRUCTuRE

MUDE STHUCTUNE . UACKWARD POINTLHS AHE INDJCATED

NOtE TO A pounlyY LINKED AVAJLABLE LIST
NuLtk TO AN avalparsLE LIST
Nuut S

NOTATION TraT wiLt 8E USED THROUOHOUT THE DISSLRTATION

OPL B TIOUNS

OWUE W

Owibw

OTnt~ ALLUKRITHMS

QuTrul

QuUTrHUT PROLUCED FUKR CALL FOR ACTION

P&sy 1 CHEATES THIS FuOM Tk STRUCTUME OF FIGUKE Sl

PaTr]Cla

PLTIRICTA

PLIwICTA ALOONITHMS
PalwiCla HUDE FHOM THE TRLE
PLINMICTA TrER
PalwICla Twtt
PATRICIA Txtt
PLInICTA TxfL
PATRrICTA TwEL
PLTMICTIA THEER
PAaTHICIA THEE

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGLE
PAGE
PALE
PLGE
PALE
PAGE
PAULE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

144
132
145
101
102

85
101
104
1¢l

<9

106

93
T
92
146
21
32
115
114
121
3y
12
25
e
35
36
34
116
114
61
33
ivs
14
ol
143
123
111
97
15

146
34
16
17
29
25
78
27
-1

NATE METHOUS FOR REFQESENTING THE
3.0 ALTENING TnE
FIGUKE 2~-4 A
Tt ACTUAL KEPOESESTATION OF Tht
2ot HOw wtLL 0ALANCED {S A
de2el ALOGONRITHM: FIND
TYPE 1 NUDE STHUCTUrE. mACKwAND
PHYOKLER St GUESNTTAL STwRLCTune N
Sebar ALuUMITRHMI
~.0
LUnTAEE PRUNTHMGL = OELETION OF
Flounr o=
CONMVERT A wlGnT Thebautu Twbbk [O
ITr¥: THANSEURM KIORT Tnwbdic D T0
“elah CUnavVERT TO
#5.3.7 ALOGURPITRM: CONVENT TO
FlouwE Sele
N
n.2
Flourt -5 TnE
A SLIOGHTLY UIFFEwENT vewSTun OF
Seled ALHORTINME St anln THE
89,341 ALGUHITrME ThaAvENSE A
Jede? ALOHUWITHM:
Je3del
a.3 ALOUKITHv:
He0 APPENDIX = Tt TESNT
1 Tt FACILITIES OF Tnd
AFPENDTIX = THEU<EMS BNO
K] StinsTect
Helal
Se? PrENDRUER SEUF MTTAL
OGURE S5=9 Tht PAtORLER SEUUEANTLAL
NT VERSION OF P<EORBEN SEOUENTIAL
FIou~F 2-3 Tnt aCrTuap
5.0 ALTERNATE METHUDS FUR
A STQUCTURL LESIGNED FOw FaST mey
Aale?2 ALOGOMITHM:
Aslel ALOUXITHM:
ONITHM 2,2 AND INSERT Trmt AEYS IN
2.l A
FlGUne S=1 AN EXAMPLF OF A
LLLYR U ALAGORITAM: (rEATE A
Sebbad ALWONITHHD THANSFORM
Saleh ALGORITMME CotvewT A
DEk StLuENTIAL FOum wlTm LTAG AnD
VERSEL UOF STruCTU~E wlTr COMAINED
TU PHEOUWDEwW SEULENTLIAL COMATNING
h THROUGH STRUCTURE wlTh CUYSINED
. S5e3e6 CUNVERTING OVEW TrE
B.2
FIGune 1=1 A

He
0.0

PATRICIA THEE

PATHICTIA Txtt = NODE OFLETION

PATHICTA THEE HBUILT MY ALGOKITHMS 2,2 AND 2,1}
PATHICIA THtt UF FIGUWE 2-1

PATRICTA Tweb?

Pue Tus FTe 17

POINTERS ANE INDICATED

POSTORIL R

PuSTURDER THAVERSAL OF STRUCTURE wITH COMBINED RLINK-LTAG
bracTICAL 2PFLICATIONS

Phesklats

Prrturnttr aNO ENJOSDER VISETS

Poutournbe sttt Tlag

Pt bbb SEOUbNTLAL CUMBINTNG KLINK=LTAG

Pett ot STUUEATIAL FOWM

Peturoth Stuut WTTAL FUNM QvEN THE Same SPACE
Pt rut et St NTTAL FORM w1l LTAG AND RUINK COMBINED
PotubUE R Staat NTIAL PRTRICTA

Pt it SESOERTIAL wePweseNTATION

Pur b bk SbuuveNTIAL wEP<«ESENTATION

Pautmirb s Sztuut WTTal wtbet SENTATION

Prt Ukt n StucesTlal >TPLuCTurt FON A Kty
Prtrt b SLUUubATTel STRGCTUNE TN POSTUNUER
Pt vine Tt STeulTust FON SuuTwebt CELETION
Pt par]tn Trk STHuCTU=F Fer SUrTwef CELETION
PrINT A& Tttt

Prl,oMav

PHOUNAM

P~yQFS

PeUNING = ufELETION OF PREEIXES

~tAD TEXT ANUL CHELATE A4 THEE

He Pl SENTATION

HEPHE SENTATION

HePrb st NTATIUN

He b SENTATION OF Trek PATHICIA THEE OF FIOGURE 2=-1
HrbewestNT ity The PATHICIA TWEE

b Televal

e Tunh A NOLE TO & DUUHLY LINXED AVAILABLE LIST
He Turh A Aulit TO AN AVAILABLE LIST

MEvekse GNDeH

RlIONT Trwe it PATHICTA Twit

wlonT Trewz &DED PATKICTIA TrEL

plonT Trwcabt) PATHICIA ThEEL

KIGHT TreraRtS TO PRLCRULK SEQUERTIAL COMBINING RLINK-LTAG
RIurT Trws At Twet TO PREORUER SLQUENTIAL
kLIMNR COMSINED

KL [tan = T4,

HLINR=LTA

HLUINR =L TAL

Samt Mpwomy SOACE

Saspe b guTPUT

SAMPLE TrIEL MEMURY

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGL
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FAGLE
PAGE
PAGE
PAGEL
PAGE
PAGLE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

102

104
101
lu2
lul

93
1¢3

Reled
1edo2 ALGOW]THM:
ool ALGORITHM: INSERT =
ss2,) ALGOWT THM:
Cel TIMING FOH THE
Se3e3 ALHGUW]ITHMI
Sedal ALHUMITHM:

1.2
A WIGHT TrHxtabLbl Twtt TO PotOR0ER
NSFORM RIGRT THet tur b TO PRFUwDER
Lelernr COMVERT TO PubtinDLR
T ALGUK[TnM: CONMNvErT TQ Pxtu~ULR
FIGU~e S¥10 wrtivpeR
.3 Petb OWDER
5.2 Pk Onlie R
Floudt S=9% THz pPuat et R
TLY GIFFEOENT VERSTAON OF Mk O~UE N
3 ALGURTITRMD NEARCr THME 9uab uRDER
H ALGUFITHY: Travest A Prbuykuex
FIOUwr 2=1 A
Flouvt S=7 Tre SPEClaL
Dek A
FlGuwt 1-2 A
CONVERTING OVER Trbk SAME MEMONY
FLOUSE 4=r THE
UE= SEUUENTIAL FORM OVER TRk Sasg
Flouxt 3911}
Flou<t 371 Ink
oled ALGORTITHM: DebTE A
Flause =1 A
SEFUL TRICkS INVOLVINDG CuvPar]SuN
Floute 3=-3 Typbk 2 400k
FlouxE 3=w TrPE ¢cA KODLE
Se3.2 CAN Tk
1.3 LALMPLF OF A
M: SEANCH THE PREORDER St iutNTAL
3.3.1 Prutrarineg ThE
3a3,72 BLOUNITHMD Pwrvavh THE
M: TRAVERSE A Poi0kpbe SeauENTTAL
S=6 PLSS] CHeATES THIS FrOM Tng
ALOGNHITHUL EOSTuWDE W THAVYI #SAL OF
Sewol ALGOSITrEMI G anCs THeOUuon
FIlou=t d=¢ TrPo | NOuk
e3d.) PREPLMINS Trbk STRULCTURE FOR
A0 CENFRAL CONFLIGURATION FOR A
Ox[TrM: PrEFARE TobE STRUCTURE FoR
Flouwt 3312

3.3
CeS CONCLUSTONS =
ol A RYPOTHETICAL MEUTUM=SCALE
3.2 DETEwMINTING

3241 ALGORITHM: FIND PO,

SEAnCH FOr
StaA~nCH FUx
SkawCn FOR
StaxCn FUw~
StawCn LOUL
SEawiCn ITre
St AxCH Trw
St Aw(rlto
Sttt T 1AL
StwutaTlaL
StuobnTlag
Steent NT g
StteobNTIAL
StwubhTlAL
Sravenatiag
Steut et Ay
SEaUbNT AL
Sttt NTlaL
St Tlag
Stuwit Pat
SITueTlun
stlurTLy o
Su~Ten #IN
SHACt
SeACE waAS
Swace
S»tclal Ca
SkeClaL >
SLECItIC
STwerut T4
ST INGS
STruCTuwt
STeuCTuxt
STruClu~t
SThul Tunt
STruClu=t
StTrulTuwt
ST Tunt
STeuCTut
STruC Tune
STRUC TUNE
STruL(Tuwt
STrUCTU=L .
Sus TwES Le
SudI~ti Dt
SunTntt Ot
Sur Tt LE
SurnTwEE #wn
SUUMARY OF
SYSTEM

Tue FTs TT
TUe FTe T7

A KtY AND LIST ALL 1TSS MATCHES

A KtY [N A TRIE MEMUNWY

& NOUE IN A DIGITAL TREL

A NODE IN & PATHICIA THEE
P UF ALOUW]ITIHW 2,1

PrEURLER SEOUENTIAL STRUCTURE FOR A KEY
Ut'or STRUCTURE wlTrh COMSINED RLINK=LTAG
Fun reys

COMSINING HLINR=LTAL

Fukw

FOrM Dyl Tt SaMr SPACE

FUrM w]TH LTAL aNU HLINR COMHINED
OATMICTA

wh ey Qe NTATTON

“t e 5t TATION

wrbewp SseNTATRON

SThtCTust PNR A KEY

STrulTuwt IN PUSTUROLR
wlLla Tort

webWe LLINKEY) =]

IFFEmen T veswSION UF PREONDER SEQUENTIAL REPRESENTATION
Ay Twet

BebN ELIMINATED FROM THE TEXT OF FIGURE &-)
St wmbwt TFH=TA

TUATION wrHeNF LLINKEY) =]

LY FrUM THE Tex?T

tt

ve UTILI280?

LESloNty FOX FAST KEY RETRILVAL
FUR & KeY

FOR SUNT~EE DELETION

FOR SunTwEt DELETION

IN #OSTORDEW

OF Flouwe o5=1

wiTr COMalNED RLINK=-LTAGD

wllTh CuvalhtDd RLINS=LTAG
uACYwhAey FOINTENRS AxE INDICATED
LETION

LETION

LETION

LETIUN COWHESPONDS TO A TYPE 2 DELETION
unIt = DELETION OF PwIFIXES
CraPTEw Ym0

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FaGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAG»
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
FAGE
PAGE
PAGE
PAGE
FAGE
FAGE
PAGE
PAGE
PAGE
PAGE
PAGE

led
Be0 APPENDIX = THE
HeleS DELETE UNR INSFHT
(X% ALGONITHM: INSERT
6,1 DELFTING CONTIGUOUS
LY} CONCLUSIONS = ALTEHING
ele2 DISPLAY TrHF Thet ANU/ON THE
Tod ALGDRITHM: DELETE CONTILUOUS
NCEPTS rerInND DELETING CONTIOLUOUS
M: DELETE A SPECIFIC REY FruM Tk
TH A nAS Hrfe PUIMINATED Fagw Toe
Helal «t &0
“el) LELETION UF
PACE ras HEEN ELIMINATEY FHOM TnHE
Flouxe b=1 §0mg
Deu AbPehi PR -
el A wlenT
Flutme Sel AN LXAMPLE OF A wlbnT
Aualel ALOGOUNITRM: (HEATE A wIGAHT
S,w.3 ALG=]THM?! THWANSFUSM R]IGAT
Sedeh ALGORITRUI CooNveENT A KIGNT
Cov ArPEnplx -

Ce?
Fiourt C=2

C.3
FlGUse C=1)

C.l
Flount C=3
Se#ed ALLUV]Tr4:
Ce? TIMING FOR A
FIGURE C=2 TIMING FOF A
Debod ALGORITHM: RUSTORDER
#h.3e1 ALGUN]THME
1ot Tt LVIGITAL
Flouwk Se8 A HINAWY
FIoLmwF J=3 A DIG]ITAL
Fiouvt o=t A STrar,t
AJ) ALGU» I Trm: pPrlrT A
FIGURE 1=2 A SUNRTED HINAWY
FIGURE 2-1 A& SIMPLE PATRICLA
Belos DELETE A NUUE FrOM Tre
Belal w~EAD TEAT AND (NEATE A
Sel A HlonT ThreaurU rvalkiCIA
TOLIST ALL MaTCreS IN A FATHICIA
DELETE A wATRICIA NUDE FROM [mE
St aAwCr FU» A MNODE Iv A PATHICA
MPLE Ur A KIGHT THxt 80ED PATHICIA
InSERT A Nbw~ NDUE ITMTO A PATKICA
CneATEL A KIonT Thet ADCD PATHICLA
UUS FON HEPSESENTING Thg PATRICTA
~ CSEAWCH FON A MOUE IN A DISITaL
.0 ALTESING THE PATHICTA

oo X

TERMINOLOLY

TEST
Tex?
TEXT
TEXT
TexT
TExT
Tex?
Text
Ttat
Texl
TexT
Teal
TeaTl
Teat

PROOLHAM

AND CHEATE A TwWEE

MaTbw]aL

OF FILUME A-]

OF Tret CALL FOW ACTIUN FILES

Tre okt ™S AND PHROUFS
Trerdvey »ATHICTIA THEE

Trwut

ALED Pulw]Cla TREE

Trepautl =ATRIClA TREE

Tr~paieh Tu kot et SFQUENTIAL CUMBINING RULINK=LTAG
Trwe el Tobe TO #~LORTER StOQUENTIAL

Tlv“lho COMSTURRATIUNS

TIMINO FUN & TrAvewSAL ITERATION

TIMINO FUS A TwAVe NSAL LOOP USING ALGOKITHM 2.3
TIMING FUR QTme R AL GURT THMS

L TIMENG FOR Tre LOOP IN ALLUNTITHM 2,1

TIMING FUN ThE StanCn LOUR UGF ALGUNITRM 2,1

TIMING UF MOST PATRICIA ALGONR] THHS .

TaanSEONM KIenT TrebADED TO PRECRUEKR SEQUENTIAL COMBINING RLINK=-LTAG
TeavbnSal ITtwaTIon

TrAVERSAL LOUP USING ALGONITAM 2,3

THAVERSAL UF STRUCTUxE wiTH COMHINED KLINK-LTAG

THAVEKSE A PHEONULN SEOQUENTIAL STRUCTURE IN PUSTORDER

Twek
Twt b
Tetk
T~tt
Tttt
Tttt
TeEL
Ter b
IwEE
The €
Intk
TetE
et
Twrttb
Twb b
TrtE
Trte
Trte
Tt

= NODE OELETIUN

PAGF
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAOE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGL
PAGL
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PaLE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAOLE
PAGE
PAGE
HPAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PALE
PAGE
PaCE

4
119
121

75
63
16
120
72
oy
1%
6o
119
62
65
110
147
17
74
L)
102
93
142
la2
labd
143
1aé
1«2
146
1v2
142
145
101
88
10
u?
14
64
116
11
16
121
11y
17
29
3y
2%
18
27
ba
17
12
32

Bile2 DISPLAY TnE
FIGU~F 2~4 A PATKICIA

AL PEPWESENTATION UF THE waTrIC]A
Ihuwtg 7=¢ I¥F wt Al A KEY Tu Trk
Yloure S=2 TInt
ONnRITrM: CONVENT 2 “IOLHMT ThefaAuk
Miw Wbl HALINLCED IS A »aTRICIA
ot >34t ust Ful

Flhire =) A Sampr

LLGOHR]IrM: SEXNCH FOW A REY IN A
4.2 DETerlNING f0e Fle

- alel AL GORT T F LD PO The FTo
Fluurs 3=2

St Vb€ DELETION CunNE~RPU WS TO A
Floomt 3-4

Floare 3=«

FlOne 3=9

FlGurne s=%

Floawe 3=1

F LG s 2en

Flouryr J3=9

[JI] Sove

Sede2 CAN THe STRUCTURE HE
Flouvws a<s PREQRDEX AU thubixobR

TWEE AhD/0R Tnbk Tex?

THEE wUILT BY ALOLORITHMS 2,2 AND ¢.i

Twtl OF Flvuwe 2-i

T=EE OF Flouwe 2=1 THE TRELE IS CHANGLU
Trtt UF FIOuke Y=l AS BUILT oY ALOGUR]ITHM 2,2
Tret TO PReGHOEN SeQueNTIAL

Tnet?

Tulusy INVULVING CUMRANTISON STHINGS

Trle Ht™uwY

T2t MEmUKY

T

1i

TYyPe 1 0Dt STHULTURE . BACKWARPL FOINTERS ARE INDICATED
TYyor ¢ vtLETIoON

Tyrt ¢ ruDL STWuTTUNE

Tyrek ¢4 Nuue STHUCTURE

Tvre 0

Troe ¢~

TYyrt 20

Tryre 2L

Trer ¢F

USEFUL TRICKS INYULVING CUMPARISON STHRINGS
ullileeu?

vislls

PAGE
PAGE
PAGE
PAOLE
PAGE
PAGE
PaGt
PAGE
PALE
PAGE
PaGLE
paot
PLGE
HLOE
PAGE
FAGE
PAGE
PAGE
PAGE
PAGE
vl
Ak
Past
PAGE

120
23
2l
18
80
93
30

1uy

.

9
Y4
Y4
Jb
b=1-
35
36
39
“l
4}
LY
L]

109
(2
71

