
THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE COMPLEAT PATRICIA

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partia l fu l f i l lm e n t of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

By

CARTER BAYS

Norman, Oklahoma

1974

THE COMPLEAT PATRICIA

APPROVp BY

DISSERTATION COMMITTEE

(Each copy of the dissertation must bear the signatures of a l l members
of the f in a l oral examination committee.)

ACKNOWLEDGEMENTS

I wish to thank the members of my committee for th e ir helpful and

constructive comments, p a r t ic u la r ly as this d issertation was reaching

i t s f in a l stages. Also, I wish to thank Lisa Tadlock for her typing

assistance during the early stages of the pro ject, and Marie Reubiez

fo r her beautiful f in a l copy. Intangible thanks go to Caroline, Ginny,

Janice Sue, JoAn, and Shirley.

TABLE OF CONTENTS

1 . 0
1 . 1
1 . ^
1 . 3
1 . 3 . 1
1 . 3 . ^
1 .«
1 . ^ . 1
?. 0

1
1.1

a,ei
2 .^ .1

« 2 . 3
2 .4
2 .5
3 . 0

0 3 . 1
3 . 2
3 . 2 . 1
3 . 3
3 . 3 . 1
3 . 3 . 2
3 . 4
4 . 0
4 . 1
4 . 1 . 1

» 4 . 1 , 2
4 . 1 . 3
4 . 2
4 . 3
5 . 0
5 . 1
5 . 1 . 1
5 . 1 . 2
5 . 2
5 . 3

» 5 . 3 . 1
5 . 3 . 2
5 . 3 . 3

i h l K(, .UOL 1 1 U 5
Ibkr inHLt'(,Y
S L / ' n C r U I (., F I l k KFYS
t . XAKHL t I 'F A . S f KUCTUKh O h b l G N h U FUR F A 51 R E I R I E V A L
vSi.i'L C m a Ra L I t R l S I I L 5 UF 1 n t A L R U R l I HMS I N T H 1 5 i> 1 5 S t H T A T I UN
Al (. U K 1 1 m n ; 5 L A K L H M I R A l \L Y I N A I W R h L M l R Y
[Ht . D I G I I A L I k EF
AL'iuR I I IN ^tw r
1 n h L s .'j b i I 1 A I. S I lb
A L G I IK 1 1 h’ •' : S F- A f< C f '
C'K" "'b's I il
A L b I ‘ b i 1 ri I'I

H. iK A fxOIJt I N A U U i l l A L I R t t

I N A P A Î K 1 L I A I RfcL

I N I U A P A T R I C I A TREE

— i) L A k C M
P A I K 1 L 1 A
F I iK A NlJPh

i .N AI Gu4 1 I MM 2 .1
i n s k r i a n f w n u d e

LL' i i i c N r 5 I 'N A| l i L i RI TnM 2 . 2
AL l . i ' R i I H n ; L l s r a l l H A I C m ES I n a P A f R I C i A TREE
hui . ^ t L L n A L A ' j C t O J 5 A P A l R l C l A 1 REF ?
L u n CI i ' o H ' N S - 5 i ' M; t ARY LiF CHAP 1ER I Ni l
A L U k 1.>G THF P A I K I C I A TREE - NUI,F ü b i . F T I U N
ALCi i R 1 i n n : U E L b l E A P A I R R I A NUUF F RUN THE I REE
(>E I ER N 1 N I u(, I I ; , F f , T I
A E G U P I T h n ; blr,l) PO, J\i, F i r I T
S U t K P E r P R U N I N G - C L E E I l U N uF P R E F I X E S
P R E P A R I N G I r i t S I R u CHJRF. F u r S U U I R F F D F L b l l f l N
A E C u k I l H . - r PRF PARE I HE S T RUCI L I RE FUR S U b l R t L ü E L E T I Ü N
Cl R L E US I UN - D E L E I i t N C NUDES
DELE I I UN IIF IF XT HA 1ER M L
D E I . E I I n G CUi vT l l . UUOS I EX I
CI R . CEP T S h E H I n D DELE 1 I N b CUI i T I GL i Ul l b 1EX1
A El . UR 1 1 Hfi
AEGu K I 1 Fit-
A EC! IK i 1 ID'.

I L X 1
KEY F RUM

u F E E I E CU.N 1 I C U U US
D E e E I E A S P E C I F I C
1 USER I I EX I

C u N C L U S i i i ' i S - Ae I E R I n C I E X I
Ae I L R n a I E ME 1 NI.IDS F UK RFPRF SEN T I N G
A R j C H l 1 UREAOLD P A T R I C I A 1 REE
A E b U R I I I " : C r e a t e a R i U r i T T h r e a d e d

An l^•P'lR|A^(| AND INI
F'nE N.RDE 4 SF. NUL N T 1 AC
P R F i i r n F r HE. NUF M I I AE
AEbi iK I I I : I R A V t RSE
C a n 1 iF S I RUC I oh E Hi

T h e TEX 1

THE PA I P I C l A TREE

P A T R I C I A T R E E
i E d I A T E C U N S E D U E DCE - E| 1 M I N A 1 1 NC
R E P r E o E n I AT I U N
PA I R i c I A
A P K E u r DFR S E n U E . i I J A E S I H U C I U R E I N

u 1 1I 1 Z[. D r

L I AC

PUSTI I ROER

A E C u r J I N, S L a .i C m I HE P n E u r . U R S t . J U I N l i A l S i R U C l U R E EUR A k EY

PACE 1
PACE 4
PACE 6
PAGE 7
PAGE y
PAGE y
PAGE 1 Ü
PAGE 12
PACE 15
PAGE 2 5
PA(,E 2 1.
PAGE 2 7
PAGE 2H
PAGE 2 y
PAGE 3 0
PAGE 31
PAGE 3 2
PAGE 3b
PAGE 5 2
p a g e 5 4
PAGE 5 4
PAGE 5 y
PAGE OU
PAGE 61
PAGE 6 2
p a g e 6 3
PAGE 6 b
PAGE 72
PAGE 75
PAGE 75
PAGE 76
PAGE 7 7
PAGE 7 /
PAGE 6 4
p a g e 6 5
PAGE 6 6
P A b t 6 6
PAGE 6 6
PAGE y i
PAGE y i

*3 . 3 . 4 Hl)V' 1 MAf iOLt . Ml l U i h I C A 1 l u r ; 5 PAGF 9 2
y . 3 . y AL.UüH I h i . : L U N V L 2 1 A K i b H l THKLAL/ I -O I k LL 111 P K t ' J K D t K S t U Ü L N Î l A L P A b t 9 3
y . 3 . 6 Ù.) ' V V L 1 1 '1G l i VLH I Hh SAMt l ' M u W Y G 2 A I L P A (i t 9 3

n y . 3 . 7 ALf l ' iK 1 h r , : C U NV L k 1 (I l H K L l'KÜLW S t u H K M I A L Pi.iWM UVL K THL SAML SPACL PAGF 9U

y A y 1.1 h, 1 LY D l f - F t b t - u I v t k S l U N liK H k K ' l ' ü L k G L w G L M l A L k t PPL Gt N î A 1 K.iN P A b t l U l
y . ^ . 1 A L 1 1 I I ; . ; SLAk i . i ; l i i K u i ' b M G l K U L I b k L G l 1 n C c r m l N h U K L I ni \ - L T A G P A b t l o i
y . 4 . 2 A L b 1J K T h m ; P L i S l i i K i i l k i KAVt r PGAL liF S T k u C 1L'K(- w i Tu L Ü M t l l b L t ; W L i G K - L l A b P A b t 10 1

y , ^ . 3 ALI,'. iK T u f i ; 2 I (; h I (M k L A U L U Î U 2 2 L I ' 2 0 L K G L U G L ' ^ M L C U M U l N l N b K L] \ ' K - L T A G P A b t 1 0 2
y . y K i.ik) ri '< c m - P K t o G l i i G P A b t 1 0 3
y . o C u , \ L L :) i 1111G - Auv AN 1 At,L G (|2 THf. Cl ' f>22h Sbt - i ; Fl 'KM PAGF 1 Ob

u 2 A L 1 C a L A 2 P L I C A (I l i i .G P A b t 1 0 6
b . 1 A H t 2 1nh 1 I L AL P L U I b h - G L A L L G Y G T F M P A b t 1 0 6
b . 1 . 1 ü U 'JLt 1- t 'PF 4A T [1 iNG P A b t 1 OB
b , d A Ji.j I 11 K AP2L I C A r 1 (2 ' - CALL FL-H A L I I ü G P A b t 1 0 9
b . 3 d'Jl'k. .G L T u L I k i O G I d v i l L V l G b L l ' h P A P l G I N S I p l N G S P A b t 1 0 9
A . O A 2 2 1-,, I X - l l l hF. r< A L b U P l l H P G PAGF 1 1 9
A . 1 ALGUk 1 M ; I.f. 1 A uUGF. F Kl 12 AN A V A i L A 6 L F L 1 G 1 PAGL 1 19
A . 1 . 1 A L G1 1 lY (Ml - ; k F.Tu K j a NliDL I U AN A V A L I A U L F . L I G T P A b t 1 1 9
A . 2 A L G ».) n Th ' -S FL'k a i i i a i p L Y L I N K t u A V A I L A m I t l i ST P A b t 1 l y
A . 2 . 1 A L G ' 1K f l ' i i ; G t T A fU.OL F KUM A IJÜUKLY L I N N F b A v A l L A H L . t L I S T P A b t i i y
A . 2 . 2 A1, ' 11” | H 2 ; Kh l UKN A b'JUF. l u A üUUt^L Y L I ' mM- O A V A l L A B L t L I S I P A b t 1 l o
A . i ALG' IK 1 hh : P K I 11 A 1 KL F P A b t 1 16
B . O AL P k r I X - I H L I L S ! 2 K i a , K A 2 PAGF 1 1 9
b . 1 1 H 2 A (. I L i 1 11 S Lik T h K >•’ r< L) 11H A P A b t 1 1 9
H . 1 . 1 N t A i ; t.x 1 A NU C K t A T L A TPLF P A b t 1 19
B . 1 . 2 GivGHL Y 1 FI F I w L L A N U / U K T u t (F X 1 P A b t 1 2 0
b . l . 3 GL A 2L F UK A H L Y AMI) L I G T A i l I 1 S MATCHF S P A b t 1 2 1
y . 1 l) t L L l A M] u L F r\Uii THF I P L t P A b t 1 21
6 . 1 . y i i r L e 1 i.'K l u S F K f I t X I P A b t 121
4 . 1 • b L u 1 - V t T Tu P K F U K u LK S t ü u t N l l A L F UPM P A b t 1 2 2
6 . 2 SA' i r ’ l 1 / il 1 Pl i 1 P A b t 1 2 3
C . U AH21 N 1 X - T1 ' 11 1, b C 11N G 1 L) L K A 1 1 1J w S P A b t 1 9 2
C . 1 1 I !'■ 1 G F UK MU. Gt AWCl l LiiiJP UF A L G i i P l T,iM 2 . 1 PAGF 1 9 2
C . 2 I i l'i 11' 1 F 1 2 A 1 K A V F K G A L l I F K A l l f ' N P A b t 1 9 2
C . 3 f 1 ' ’ l G F • 1K u M U_ H A L G U K I 1 il N G P A b t 1 9 3
u , u A 2 2 t. r. 1 X - | M F i l K t . - G a n d 2 h UDF g PAbF 19 /
L . n A r 2 r 1 ! 1 X » i-iL. I IGG A i< Y P A b t 1G2

B '1 i i.ib K A 2 H Y 2 A u t 1G9
1 ,'F X 2 A LU i s y

LIST OF ILLUSTRATIONS

F I b U K t C - I T I M I N G FOR THE LOOR I N ALGORITHM 2 . 1 PAGE 1 4 4
F I G U M t C - 2 T I M I N G FOR A TRAVERSAL LOOP U S I N G AL GOR ITHM 2 . 3 PAGE 1 4 5
F I Ü U K t C - 3 T I M I N G OF MOST P A T R I C I A ALGOR ITHM S PAGE 1 4 6
F IGUKE 1 - 1 A s a m p l e T R I E MEMORY PAGE B
F l G U K h 1 - E A SORTED b l N A R Y TREE PAGE 11
F i G U R t 1 - 3 A D I G I T A L TREE PAGE 14
F IG U R E 1 - 4 THE NUMHERS IN S E R T E D I N D E S C E ND IN G ORDER PAGE 14
F IG U R E A S I M PL E P A T R I C I A THEE PAGE 16
F IG U R E 2 - 2 I F WE ADD A KEY TO THE THEE OF F IG U R E 2 - 1 THE THEE I S CHANGED PAGE I B
F IGU^'E 2 - 3 THE ACTUAL R E P R E S E N T A T IO N OF THE P A T R I C I A TREE OF F I G U R E 2 - 1 PAGE 21
F IGURE 2 - 4 A P A T R I C I A TREE G U I L T BY ALGOR ITHM S 2 . 2 AND 2 . 1 PAGE 2 3
F IGURE 2 - b THE B I T COMPARISONS THAT ARE ACTUALLY MADE PAGE 24
F IGURE 3 - 1 N U T A T I O N THAT W IL L BE USED THROUGHOUT THE D I S S E R T A T I O N PAGE 3 3
F IGURE 3 - 2 TYPE 1 NODE ST R U C TU R E. BACKWARD P O I N T E R S ARE I N D I C A T E D PAGE 3 4
F IGURE 3 - 3 TYPE 2 NODE STRUCTURE PAGE 3 5
F IGURE 3 - 4 TYPE 2A NODE STRUCTURE PAGE 3 6
F IGURE 3 - t , TYPE 2B PAGE 3 9
F IG U R E 3 - 6 TYPE dC PAGE 4 0
F IG U R E 3 - 7 TYPE 2 0 PAGE 41
F IG U R E 3 - R TYPE 2E PAGE 4 2
F IGURE 3 - q TYPE 2F PAGE 4 3
F I GLlRt 3 - 1 0 GENERAL C O N F I G U R A T I O N FOR A SUBTREE D E L E T I O N PAGE 5 6
F K iURE 3 - 1 1 S P E C I A L CASE WHERE T FR =T A PAGE 5 7
F IGURE 3 - 1 2 s u b t r e e D E L E T I O N CORRESPONDS TO A TYPE 2 D E L E T I O N PAGE 5 8
F IGURE 4 - 1 A s t r a n g e t r e e PAGE 6 4
F IG U R E 4 - 2 T h e s p a c e h a s BEEN E L I M I N A T E D FROM THE TEXT OF F I G U R E 4 - 1 PAGE 6 5
F IGURE 4 - 3 THE FOURTH A HAS BEEN E L I M I N A T E D FROM THE TEXT PAGE 6 6
F KiURE 4 - 4 PREORUER AND ENDOPDF.R V I S I T S p a g e 71
F IGURE 5 - 1 AN e x a m p l e OF A R I G H T THREADED P A T R I C I A TREE p a g e 78
F IG U R E 5 - 2 THE TREE OF F IG U R E 5 - 1 AS B U I L T BY ALGORITHM 2 . 2 PAGE 8 0
F IG U R E 5 - 3 I F wE USE a l g o r i t h m 2 . 2 AND I N S E R T THE KEYS I N REVERSE ORDER PAGE 81
F IG U R E 5 - 4 A B I N A R Y TREE PAGE 67
F IGURE 5 - 5 THE PREORDER S E U U E N T IA L R E P R E S E N T A T IO N PAGF. 8 9
F IG U R E 5 - 6 PASS 1 CREATES T H I S FROM THE STRUCTURE OF F I G U R E 5 - 1 PAGE 9 7
F I G U R t 5 - 7 THE S P E C I A L S I T U A T I O N WHERE L L l N K (J) = I PAGE 9 8
F IGURE 5 - H THE IMPORTANT L I N K F I E L D S DU PI N G STEP 2 OF AL GORITHM 5 , 3 . 7 PAGE 9 9
F I (iUR E 5 - V AFTER STEP 2 OF AL GOR ITHM 5 . 3 . 7 PAGE lOU
F I G U R E 5 - 1 0 PREORDER S E U U E N T IA L FORM WITH LTAG AND R L l N K COMBINED PAGE 1U4
F IGURE 6 - 1 SOME TEXT OF THE CALL FOR A C T I O N F I L E S PAGE 1 1 0
F IG U R E 6 - 2 SOME OF THE OUTPUT PRODUCED FOR CALL FOR A C T I O N PAGE 11 1

TABLE OF ALGORITHMS

5 , 3 . 5 A L U U k I T H M CONVENT A R I G H T THHEADED TREE TO PREORDER SECIUENTIAL PAGE 9 3
»5 . 3 . 7 AL& Ü NI TH M CONVERT TO PREORDER S E Q U E N T I A L FORM OVER THE SAME SPACE PAGE 94

n n s . 1 . 1 A L O O k IT H M CREATE A R I G H T THREADED P A T k l C I A TREE PAGE B4
* 3 . 1 AL l iC Hl TH M DELETE A P A T R I C I A NODE FROM THE TREE PAGE 3 8

4 . 1 . 3 A L b O k I T H M DELETE A S P E C I F I C KEY FROM THF. TEXT PAGE 7 5
»4 . 1 . ? ALGOHITMM d e l e t e CONTIGUOUS TEXT PAGE 72

3 . 2 . 1 a l g u h i t h m f i n d PD* t o . F T , TT PAGE 5 4
A . 2 . 1 A L G Ü k IT h M GET A n o d e FROM A DOUBLY L I N K E D A V A L I A B L E L I S T PAGE 11 5
A . 1 ALGCjkl THM GET A NODE FROM AN A V A I L A B L E L I S T PAGE 1 1 4
1 . 4 . 1 ALGOklTMM I N S E R T - s e a r c h FOR A NODE I N A D I G I T A L TREE PAGE 12

»? . 2 AL('Gk I THM IN S E R T A NEW NODE I N T O A P A T R I C I A TREE PAGE 2 7
4 . 2 AL<^0« 1 THM I N S E R T TEXT PAijE 75

»? . 3 ALGOklTMM L I S T ALL MATCHES I N A P A T R I C I A TREE PACE 2 9
b . 4 . 2 ALGOkITHM POSTORL'tk TRAVLRSAL OF STRUCTURE W ITH COMBINED R L l N K - L T A G PAGE 101
3 . 3 . 2 ALGOkITHM PREPARE THE STRUCTURE FOR SUBTREE D E L E T I O N PA(,E 6 0
A. 3 ALCjUklThM P R I N T A T h e e p a g e 1 1 6
A . 2 . 2 A L G u4 I T hM RETURN A NODE TO A DOUBLY L I N K E D A V A IL A B L E L I S T PA(jE 1 1 6
A . 1 . 1 AL G Ok IT HM RfcTURN A n u d e t o a n A V A I L A B L E L I S T p a g e 1 1 4
1 . 3 . 2 AL(’ U k I T H M SEARCH FOR A KEY I N A T R I E MEMORY PAGE 9

»»? . 1 A L G u k 1 THM SEARCH FOR A NODE I N A P A T R I C I A TREE p a g e 2 5
b . 3 . 3 ALGOklTMM SEARCH THE PREORDER S E Q U E N T I A L STRUCTURE FOR A KEY PAGE 91
5 . 4 . 1 AL(>Ok lTHM SEARCH THROUGH STRUCTURE WITH COMBINED H L I N K - L T A G PA(iE l u l
b . 4 . 3 AL G O k 1 THM t r a n s f o r m R I G H T THREADED TO PREORDER S E Q U E N T I A L C O M B I N I N G R L I N K - L T A G PAGE 1 0 2

»b . 3 * 1 ALGOk lTMM TRAVERSE A PREORDER S E Q U E N T I A L STRUCTURE I N POSTORDER PAGE BÜ

1.0 Introduction

The e f fo r t to use computers to store and manage large amounts of

textual data continues to be one of the most formidable tasks confronting

the computer sc ien tis t, for i t seems that information is being generated

at an ever increasing ra te , almost in defiance of the attempt to contain

i t . Part of the problem deals with human crea tiv ity and human articu

la t io n , which cannot be coniputerized--at least not y e t . Hence, we are

concerned here with that portion of the problem that involves the manage

ment of information and its rapid and e f f ic ie n t r e tr ie v a l . In essence,

once information has been generated, we would l ik e to know how to struc

ture i t within the computer so that;

a) . I t is c lassified in some hierarchial or alphabetical manner.

b) I t is stored as e f f ic ie n t ly as possible within the confines
of the computer.

c) We can rapidly re tr ie v e anything we want, with a minimal amount
of noise in the form of excess information.

d) We are free as much as possible from the restr ic t io ns imposed
upon us by computer manufacturers or--and more important--
in e f f ic ie n t ly w ritten programs.

I t is toward this end tha t the author has chosen to further develop

PATRICIA^ v/hose underlying concepts were discovered in 1968 by Dr. Donald

Morrison at Sandia Laboratories. PATRICIA is not " just another informa

tion re tr ie v a l system." Rather, PATRICIA can be thought of as a "concept"

PATRICIA is an acronym fo r "Practical Algorithm To Retrieve In fo r
mation Coded in Alphanumeric." PATRICIA is also the f i r s t name of Dr.
Morrison's w ife.

which gives us a most natural and f le x ib le means of c lassify ing written

matter within a computer. The underlying idea involves a binary tree

search where individual bits of key words or phrases are used in deter

mining the search path. But PATRICIA goes further than the ordinary b i

nary search. The only bits that are looked at are those pertinent in

determining the search path. I f a key word or phrase is identical to

the key being compared, a l l identical bits in the two keys are to ta lly

ignored. Thus, i f two sentences d i f fe r only in the la s t l e t t e r , then in

comparing these two sentences, PATRICIA would not bother with anything

except the la s t le t t e r of each sentence, ignoring a l l the preceding

le t te rs .

PATRICIA can search for key words or phrases of a rb itra ry length

and almost a rb itra ry format. I t defines a structure that automatically

orders information both h ierarch ica lly and alphabetically. Moreover, the

actual information is not rearranged or altered in any way, and yet the

search for a desired piece of information is accomplished very quickly.

As a practical example, consider the problem of locating an individual

income tax return that exists somewhere on f i l e containing 100,000,000

other tax returns. PATRICIA could find i t in less than one second on

a medium sized 350 system. Moreover, only two or three accesses to the

f i l e would be required.

So why are there not more computerized re tr ieva l systems using PATRICIA?

The apparent problems are given below.

1) I t is quite d i f f i c u l t to a lte r the complex PATRICIA data
structures without rebuilding them, and the rebuilding
process is of necessity quite lengthy.

2) Space restrictions are imposed upon PATRICIA by i ts data
structure.

3) There exists very l i t t l e published material on PATRICIA be
sides the work of Knuth and Morrison.

This dissertation attempts to solve a ll three of these problems.

The f i r s t problem is solved by including a group of heretofore unpublished

algorithms that w i l l perform any type of structural a lte ra t io n that a

practical application might require. These algorithms allow us to a lte r

both the PATRICIA structure and the textual information from which the

structure is b u i l t . The space re s tr ic t io n of the second problem is a l

leviated by showing how we can reduce the structure to about 40% of the

size of currently used PATRICIA structures. The third problem is attacked

by presenting a complete and lo g ic a l ly organized set of algorithms. Per

formance is evaluated and operating times are given for a typical medium

scale computer system.

The following sections of th is chapter are concerned with structures

that have certain characteristics in common with PATRICIA, but are more

elementary. A knowledge of these structures w ill be of assistance in

understanding the more complex PATRICIA structure.

Readers already fam ilia r with PATRICIA may wish to skip to Chapter

Two, which gives the essential algorithms required to build a PATRICIA

structure, search for a particu lar entry, and l i s t out a l l occurrences

of the entry.

Chapters Three, Four, and Five constitute the heart of the disserta

t io n , with Chapter Three being the f i r s t chapter dealing with unpublished

algorithms. The important PATRICIA node deletion algorithms are thoroughly

described, and th e ir use is extended to deletions of entire substructures

within a PATRICIA structure.

Chapter Four then uses the algorithms developed in Chapter Three

as part of a package that allows portions of an existing body of in for

mation to be a ltered. At this point the set of algorithms is complete

from the standpoint of any user who might be working with material th a t

is frequently a ltered.

In Chapter Five we propose and implement a standard structure fo r

PATRICIA, which then leads i t s e l f to further reduction. In fa c t , four

of the six individual elements of the PATRICIA data structure are e l im i

nated, resulting in a great saving of space.

Chapter Six gives several practical examples, including the example

afforded by the table of contents and index to th is dissertation. More

over, some additional d ir ty tricks are discussed which could be employed

in the campaign to optimize further the PATRICIA structure.

Several appendices are provided. For quick reference Appendix E

reproduces the description of the data structure terms given in the next

section. Appendix A contains some peripheral algorithms, and Appendix B

explains how the tes t program operates. (The tes t program checks a ll

the algorithms of chapters two through f iv e .) Appendix C gives timing

estimates for most of the algorithms and shows specific times for a

360/50. Appendix D develops and proves several important theorems, and

proves the v a l id i ty of some of the orig inal algorithms.

1 .1 . Terminology

This section describes terminology that is used throughout the

dissertation. Most terms are commonly encountered in the study of Data

Structures, and are described further in Knuth (1968) Chapter Two. For

convenience this section is reproduced in Appendix E.

AVAILABLE LIST—A l i s t of empty nodes. (A process which re
quires space for a new node can always get one by picking the top or
bottom node from an available l i s t .)

AVAIL LIST--Identical to an available l i s t .

ANCESTOR—Within a tree , an ancestor of node X is on a path
between node X and the root of the tree.

BACKWARD POINTER—A l in k f ie ld in a PATRICIA node, X, that points
to X or to some ancestor of X.

BINARY TREE—A data structure in which each node has no more
than two nodes hanging from i t . These two nodes are commonly called
"ROOTS of LEFT and RIGHT SUBTREES."

EBCDIC—A specific internal code where 8 bits represent one
character within the computer. For example, the EBCDIC value of
of "A" is binary "11000001."

ENDORDER TRAVERSAL--A method of looking at a l l the nodes of a
binary tree in which we f i r s t look at a ll the nodes in the l e f t subtree
of a node, then a ll the nodes in the right subtree of the node, and
f in a l ly , the node i t s e l f . Each node is "looked at" exactly once, a l
though the algorithm for e ffecting an endorder traversal may actually
pass by the node more than once.

FIELD—The smallest e n t ity of information contained in a node.
A f ie ld may be one or more binary bits in size.

KEY--A contiguous string of characters constituting a word or
phrase that we v/ish to search for and, hence, use in some comparison
scheme.

LAMBDA (" A ") — See NULL POINTER.

LEFT LINK--In a binary tree , the link f ie ld pointing to the l e f t
subtree of the node.

LINK--The specific f ie ld of a node that points to the next node
in a l i s t . (Actually, a given node can point to more than one node;
for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random,
but which have an order that is specified by the LINK f ie ld s .

NODE—An entity of information. I t w i l l consist of one or more
f ie ld s . (An example--a node could be likened to a single lib ra ry
catalogue card, and a f ie ld to an individual entry on the card, such
as the author' s name.)

NULL POINTER— (Sometimes called "LAMBDA" or " A ") . A specifica lly
valued link f ie ld that indicates the last node in a l i s t . When any link
f ie ld points to no other node, i t is given a value called " A " (frequently
zero). We sometimes say that th is link "points to A . "

POINTER--Has the same function as a l in k , except sometimes a
pointer is not contained in any node.

POSTORDER TRAVERSAL--A method of looking at a l l the nodes of a
binary tree in which we f i r s t look a t a l l the nodes in the l e f t subtree
of a given node; then we look at the node; then we look at a l l the nodes
in the r ig h t subtree of the node.

PREORDER TRAVERSAL--Still another method of looking at a l l the
nodes in a binary tree, in v;hich we f i r s t look at the node, then the
nodes in i t s l e f t subtree, and f in a l ly the nodes in i ts r igh t subtree.

RIGHT LINK--In a binary t re e , the lin k f ie ld pointing to the le f t
subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the r igh t
links of terminal nodes point to the next node that would be v is ited
i f we were traversing the tree in postorder.

ROOT— In a tree , the node from which a l l other nodes
hang. (Thus, computer trees are usually upsidedown.)

SUBTREE--A branch of a tree . Pick any node in a tree— i t is the
root of a subtree.

TERMINAL NODE--A node in a binary tree that has no l e f t and/or
right subtree. In a PATRICIA tree , the affected righ t or l e f t l in k then
becomes a ' ickward pointer.

THREAD--The same as a backward pointer.

VISIT--A term for what we do when we "look at" a node during a
preorder, postorder, or endorder traversa l. Usually a v is i t involves
performing an algorithm, or printing out information.

1.2 Searching fo r Keys

In every information re tr ie v a l system, the main concern a f te r we

have stored the information is how to get i t back out. Usually we w ill

only be interested in a small frac tion of the total amount of information

stored, such as a particular student's record in a university student

information system, or a l i s t of constituents in voting d is t r ic t three,

or a l l a r t ic le s about "Computers and Chemistry" in a l ib ra ry . Moreover,

in many situations the speed of re tr ie v a l is quite important--such as

in an a i r l in e reservation system. In a l l cases we may reduce the problem

to; "What is the best way of finding a l l keys that match a given key?"

A "key" as used in this dissertation could be a student name, a social

security number, a subject to p ic - - in fa c t any contiguous string of symbols

that is supposed to occur one or more times within the main body of

information.

For background purposes le t us examine two methods of searching

for matches to keys; these methods are predecessors to PATRICIA and are

in widespread use today,

1.3. Example of a Structure that is Designed for Fast Key Retrieval

This data structure, which was described by Fredkin (1960), looks

at every le t t e r of a key, starting from the l e f t , until i t can be deter

mined where the key is located in the main body of information. The

structure commonly goes by the name "TRIE" memory (where "TRIE" apparently

refers to reTRIEval) and should not be confused with a "tree," which is

an e n t ire ly d if fe re n t structure.

"TRIE" memory is la id out in table form as shown in f igure 1-1.

Each vertica l column corresponds to a "node" (in la te r sections, a node

w ill re fe r to a much smaller e n t ity - -a "node" in a binary t r e e) . The

scheme used to look for a key is rather simple. Let us assume we are

searching through the TRIE memory of figure 1-1 fo r the key "THEN."

I n i t i a l l y , we go to the "T" row of the f i r s t node. The "3" means that

we continue our search by going to node 3 and looking at the second

le t t e r , "H." The "H" row of node 3 contains a value of "4", which means

that we go to the 4th node when we look a t the 3rd le t te r , which is an

"E." S im il ia r ly , we arrive a t the 5th node and go to the appropriate row,

which is "N." The entry "(THEN)" means that we have found a key, and

much now check to see i f i t is the correct one. I f i t is not, our key

(A) (THE)
A 2 (TAR)

B

C

D

E ■ 5
F
G

H 4
I (TIP)
J

K

L
M
N (AN) (THEN)
0

-
(TOP)

P

Q
■

R

S
T 3
U

*

Figure 1-1. A sample TRIE memory. Each vertical column corresponds
to a node. The keys inserted were, in this order;
THE, AN, A, TAR, THEN, TIP, TOP.

is not in the TRIE memory.

The above example i l lu s tra te s the type of search that w il l be

under discussion throughout the dissertation. The search involves looking

a t the f i r s t le t t e r (or d ig it) then going on to the next le t te r , repeating

the process until a match to the key is found.

1.3.1 Some Characteristics of the Algorithms in th is Dissertation

The informal discussion just given should aid in the analysis of

the more formal algorithm given below, which is typical of those through

out this dissertation and closely follows the sty le of Knuth. For the

most part, certain variable naming conventions have been followed. P,

Q, and R always re fe r to pointer variables, as do (usually) I , J , X, Y,

and Z. The le t t e r "K" frequently refers to a character string or key

which we are searching fo r . Individual f ie ld s of nodes are always given

variable names with a t least three le t te r s . In la te r chapters, we w i l l

introduce "ATOP" which points to the top node of an available l i s t .

Algorithms with one or more in the margin next to th e ir number merit

special attention.

1 .3 .2 Algorithm: Search for a Key in a TRIE Memory (Knuth 1973)

In a TRIE alphabet, we allow N characters—normally a l l the le t te r s ,

d ig its , and special symbols. Assume that i f the characters are coded in ,

say, EBCDIC code, they w i l l be translated so that they have integer values

between 1 and N. Let each node consist of a vector of M subnodes (a sub

node is a single rectangle in figure 1 -1). Each subnode has two f ie ld s :

a PTR f ie ld and a one b it TAG f ie ld . The PTR f ie ld can either be empty

(indicated by PTR=0) or i t can point to another node (indicated by TAG=1)

10

or i t can point to the target key (indicated by TAG=0). For sim plicity

a key is assumed to be a single word, terminated by a blank. In the

following algorithm, P is a node pointer and Q is a subnode pointer.

Note that 1 < Q < N.

Input: Key we are searching for.

Output: Location of the matching key.

1) Set P <- 1 (P points in i t i a l l y to the f i r s t node), I ■<- 0,
K k e y we are searching fo r , (K w i l l be followed by a blank.)

2) Set I -t-I+1, Q -t-Ith character of K. (I n i t i a l l y , look in the
f i r s t node a t the Qth row. I f Q=blank, then K has been com
p le te ly scanned, and we w il l end up in step 3 or step 5 .)

3) I f PTR (P,Q)=0 (i . e . , the subnode is empty), then K is not in
the TRIE memory. (We may insert K by setting PTR (P,Q) <-
the location of l(, TAG(P,Q) 0)

4) I f TAG (P,Q)=1 (i . e . , the subnode points to another node),
set P <-PTR(P,Q). Go to step 2. (Go to the proper node and
compare to the next character in the key.)

5) We know that PTR (P,Q) points to a key. I f we are sure that
. K is in the table , then PTR (P,0) gives i ts location; other
wise, compare K with the key at PTR (P,Q).

END (End of Algorithm)

Although th is example is in e ff ic ie n t insofar as five nodes are

required for seven keys, most TRIE memories are much more e f f ic ie n t ly

organized, since the subnodes f i l l up as more keys are introduced. (See

Knuth (1973) page 482 where 12 nodes are used to represent 31 keys.)

1.4 The D igital Tree

The d ig ita l tree is somewhat similar in concept to the ordinary

lexicographically ordered binary tree, an example of which is shown in

figure 1-2.

n

CAT

\
BEANS

/ X

ANTS BUGS PICNIC

MESSY

Figure 1-2. A lexicographically ordered binary tree . Since "BEANS"
is in the l e f t subtree of "CAT", we know that "BEANS"
alphabetically precedes "CAT". Since "MESSY" is in the
r ight subtree of "CAT", we know that "MESSY" alphabetically
follows "CAT". A postorder traversal l i s ts the keys in
alphabetic order.

12

The difference is that the key insertion process is based on

whether a particular b i t position is a binary "1" or "0", rather than

whether one key is alphabetically "less" or "greater" than another key.

Bits are scanned one at a time to determine the position that a key is

to occupy in a Digital tree. The advantage th is tree has over the tree

in f igure 1-2 is that the D ig ita l tree is re la t iv e ly balanced, regard

less of the order of insertion. (I t is well known that a lexicographi

c a lly sorted tree can be very badly out of balance, depending upon the

order of key insertion. Note what happens when we build the tree of

figure 1-2 by inserting the keys in the order: ANTS, BEANS, BUGS, CAT,

DOG, MESSY, PICNIC.)

1.4.1 Algorithm: Insert--Search for a Node in a D ig ita l Tree

Let KEY be the key we are inserting or are looking fo r . Let each

tree node be composed of a LLINK f ie ld , a RLINK f ie ld , and an INFO f ie ld

(which w i l l point to or contain a key). I n i t i a l l y , TOP points to the

root of the tree. AVAIL is a pointer to an available node, and "X" de

notes the null l ink .

Input: KEY

Output: The location of the match, or the updated tree i f we
are inserting a new key.

1) Set X TOP, K KEY. I f X=X, then, to in sert the key, set
Z ^ AVAIL, LLINK (Z) X, RLINK (Z) ^ X, TOP ^ Z,
INFO (Z) KEY, and e x it the algorithm.
Otherwise (X/X) proceed to step 2.

2) I f KEY = INFO(X), we have a match, else set B = f i r s t b i t
of K, s h if t K l e f t 1 b i t .

3) I f B = 0 then go to step 4; else to to step 5.

13

4) I f LLINK (X) f A, then set X -f- LLINK (X) and go to step 2;
else go to step 6.

5) I f RLINK (X) f X then set X RLINK (X) and go to step 2.

6) (We had no match--insertion is done here.)
Set Z AVAIL, LLINK (Z) RLINK (Z) <-A , INFO (Z) ^ KEY.
I f B = 0 then set LLINK (X) -f- Z; else set RLINK (X) Z. Exit
the algorithm. (I f the b i t we are looking at is a 0, the key
is inserted at the l e f t ; i f i t is a 1, we insert to the r igh t.
Nothing is sacred about this scheme--it could easily have been
reversed.)

END . (End of Algorithm)

The algorithm was used to create a tree of the binary numbers 000

through 111, inserted in ascending order. That tree is shown in figure

1-3. I f the numbers had been inserted in descending order, the result

would have been the tree in f igure 1-4.

I t should be noted that the maximum depth, or le v e l , is 3, which

happens to correspond to the number of bits in the key. This is the worst

case. For longer keys (coded, for example, in EBCDIC) the maximum level

w i l l be much smaller than the number of bits in the key. Unfortunately,

even though the d ig ita l tree is r e la t iv e ly balanced, i t does not pre

serve lexicographic order. Thus, when we traverse the tree of figure

1-3 in postorder, we get the nodes out in the following sequence:

001 010 Oil 000 101 .100 110 111

14

o o o

OOl lOO

OlO n o

Oi l i l l

Figure 1-3. A D ig ita l Tree
The numbers 000-111 were inserted in ascending order,

I I I

O i l n o

o i o
OOl lOI

o o o 1 0 0

Figure 1-4. The numbers have been inserted in descending order

15

2.0 The Essentials of PATRICIA

We are now ready to discuss the essential workings of PATRICIA, and

to describe the basic algorithms for building the structure and searching

through i t . I t is of some assistance to notice the s im ila r i t ie s between

PATRICIA and the structures described in Chapter One. As does the d ig ita l

tree , PATRICIA uses individual bits to search for a key. However, when two

keys have identical b i t patterns fo r , say, N b its , these b its are skipped

over. This eliminates the unnecessary comparisons of TRIE memory (for

example, the le tte rs "THE" of keys "THE" and "THEN"--see figure 1 -1);

moreover, unlike the d ig ita l tree , PATRICIA preserves lexicographic order

in the manner of figure 1-2, and is not sensitive to the order in which

keys are inserted,

An example of a PATRICIA tree is given in figure 2-1. Let us assume

that our tex t is a string of binary "1"s and "0"s. Suppose we are search

ing fo r a key that starts with "10100." (PATRICIA only finds keys that

s ta r t with a given pattern, but the pattern may be of a rb it ra ry length.)

We begin our search at the top of the PATRICIA tree , where we immediately

advance 3 bits before making any comparison. This is a resu lt of the fact

that a l l keys in this particular structure start with the same two bits,

although we do not see the value of these bits when we are searching. Hence

they and other skipped bits are indicated by "X"s. The 3rd b i t of our key

is a "1"; thus we go to the r igh t. (A "0" would have caused us to go to

the l e f t .) At this point we know that our key, in fac t a l l keys in the

r ig h t subtree, s ta rt with "XXI - We advance two more bits and

compare again. This time, our input key of "10100" produces

a "0" (3+2= 5th b i t position). Hence, we know that our

start here

actual
keys

advance 3

xxl bits compared so farcompared so far xxO
advance advance 2

xxlxlxxlxOxxOxxlxxOxxO

100100
\

100101 - -

t
10100
I

10101 -

Text :
n/ V L '
1 0 0 1 0 0 1 0

(starting positions of keys are underlined)

»
*1
I

V1

dotted
arrows give

actual location in
text of keys cr>

0 1 0 0 1 1 0 1 0 1

Figure 2-1. A simple PATRICIA tree . To search for a particu la r key, s ta r t at
the top (node "A") and go to the l e f t (node "B") where we advance
3 bits. I f the th ird b i t of our key is a zero go to the l e f t (node
"C"); otherwise go to the r igh t (node "D"). Eventually we get to
a dotted arrow, which te l ls us where to make the comparison with
the te x t. We must go to the text to see i f our key is actually
present.

17

key starts with "XXIXO - - Since we have reached the end o f the

tree (and thus the search path) we now go to the text where directed

and pick up the string "10100 which we compare with our key.

In this case, they match. But suppose our pattern had been "11110 - - -"?

The PATRICIA search would lead to the same place, but obviously the keys

do not match. The mismatch is not noticed because of the bits we skipped

over in our search down the tree. Hence we must always check the input

key against the tex t that PATRICIA points to - - th is is the only way of

verifying the existence of the key in the te x t. The great advantage of

PATRICIA, however, is that we only do th is once--namely at the end of a

search. Moreover, we know that i f our input key doesn't match the tex t

starting in the position indicated by PATRICIA, then i t does not occur

in the text at a l l as a key (although the b it pattern might ac tua lly

occur in the text as a non-key).

Suppose, for example, we wish to in sert in the PATRICIA tree a

key starting with the b i t pattern "1110010 - — This would require

a comparison at a b i t position, going from l e f t to r igh t, where th is key

f i r s t d iffers from a l l others in the tree . In this case, the key f i r s t

d if fe rs from "10100" a t b i t position 2. But the tree of figure 2-1 has

no comparison at th is b i t position. Hence, our tree would need a com

parison at b i t position 2, which would produce the structure shown in

figure 2-2.

A very important property of the PATRICIA tree is that i t can be

thought of as a "free form" hierarchial structure. Thus, in figure 2-2

a l l keys starting with "10" are contained in the subtree at "B"; hence,

i f our input key were "10". we would find an entire subtree of matching

keys— namely "100100 -------- ", "100101---------- " , "10100---------", and "10101 - -

actual
keys

start

advance 2

xl bits comparedxO

advance 1
11

xOlxOO

advance 3 . advance 2

xOlxO x O lx lxOOxxlxOOxxO

100100 - - - 100101 - 10100 - - 10101 - - 00

Figure 2-2. I f we add a key that s tarts with "11 - - to the tree
of figure 2-1 , then that tree is changed into the one
shown above. Note that the l e f t subtree of node "E"
is identical to the subtree of node "A" in figure 2-1,
except the "advance 3" of node "B" is changed to "advance
1". This is because node "E" advances 2.

19

The actual data structure of a PATRICIA node is shown below. We

w i l l be working with th is data structure throughout the remainder of this

dissertation.

PTR SKIP I ?
A
G

L In K
R

• n K
Here: PTR points to the starting position of a key in the text.

SKIP gives the number of bits to advance before making the next
comparison.

LLINK, RLINK are pointers to l e f t or r ig h t subtrees (in figure
2-1, represented by lines ending with arrows) or are pointers
to PTR f ie ld s where we make a comparison with a key in the
tex t (in f igure 2-1 , represented by lines ending with
a s te r is k s) .

LTAG, RTAG are one b i t f ie lds indicating whether LLINK, RLINK
points to a key. LTAG, RTAG may, when convenient, be repre
sented by the sign bits of LLINK, RLINK.

A PATRICIA node ac tua lly contains two separate pieces of in fo r

mation. Assume we are given a node, X. Then during a search, SKIP(X)

t e l ls which b i t in our input key to look a t next, going to the l e f t sub

tree of X i f th is b i t is a "0" and to the r ig h t subtree of X i f the b i t

is a "1". PTR(X) points to the s ta rt of a specific key in the tex t. How

ever, PTR(X) is not looked a t when we pass by node X in a search down the

PATRICIA tree. When we reach the end of a search path, a backward pointer

(some LLINK or RLINK where LTAG or RTAG = " 1 " - solid curved lines in

figures 2-3 amd 2-4) points to node X, meaning we go to the text position

a t PTR(X) to get the key which our search path led us to. Each PATRICIA

node w il l be pointed to by exactly onê such backward pointer. Moreover,

PATRICIA is constructed so that this backward pointer (or thread) always

originates e ither in node X or in some descendant of node X. Nothing is

20

sacred about th is; in fact the PTR f ie ld s need not be stored in the

PATRICIA tree at a l l . Moreover, we could have the LLINK or RLINK fie lds

point d ire c t ly to the text. Unfortunately, this would be quite wasteful,

fo r usually there are fa r fewer keys (hence nodes) than there are cha

racter positions in the tex t. Thus several extra bits would be required

for a link f ie ld to represent a textual character position; these bits

would be wasted whenever the LLINK and RLINK fie lds were used as links .

An actual example of a PATRICIA data structure (hereafter called

a PATRICIA tree) corresponding to the example of figure 2-1 , is given

in figure 2-3. The SKIP f ie ld s , which correspond to the "advance" fie lds

of figure 2-1 , are indicated by the numbers above the parentheses. The

curved lines are RLINK, LLINK f ie ld s in nodes whose RTAG or LTAG f ie ld s

are "1". These curved lines correspond to those lines in figure 2-1

which end with asterisks and point to specific PTR f ie ld s . The PTR fie ld s ,

which give the text position for s tarts of keys, are enclosed within

parentheses. The dotted lines emanating from the PTR f ie ld s show where

in the tex t the PTR fie lds re fe r to. They perform the same function as

the dotted lines of figure 2-1. However, in figure 2-1 they are not

s p e c if ic a lly associated with any node. Note that the node at START has

no RLINK or SKIP fie lds . This node serves mainly as an in i t ia l i z in g

structure (a PATRICIA tree with only one key) and a place to hold a PTR

f ie ld .

The tex t is considered to be one contiguous character or b i t string,

each character position (including blanks) being numbered consecutively.

Depending upon context, any character position may be indicated as the

starting point for a key and thus be entered in a PTR f ie ld .

Perhaps the most d is t in c t iv e feature about the PATRICIA tree is

the fact that a given key has no fixed size and is unique. Keys are of

n

start

ro

bit position in text:
0 1 0 0 1 1 0 1

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Figure 2-3. The actual representation of the PATRICIA tree of figure 2-1.
The SKIP f ie ld s , which correspond to the "advance" f ie ld s of
figure 2 -1 , are indicated by the numbers above the parentheses.
The curved lines are RLINK, LLINK fie ld s in nodes whose RTAG
or LTAG f ie ld s are "1". These curved lines correspond to those
lines in figure 2-1 which end with asterisks and point to
specific PTR f ie ld s . The PTR f ie ld s , which give the tex t posi
tion fo r s tarts of keys, are enclosed within parentheses. The
dotted lines emanating from the PTR fie ld s show where in the
text the PTR fie ld s re fer to . They perform the same function
as the dotted lines of figure 2-1. However, in figure 2-1
they are not s p e c if ic a lly associated with any node. Note that
the node at START has no RLINK or SKIP f ie ld s . This node serves
mainly as an in i t ia l i z in g structure (a PATRICIA tree with only
one key) and a place to hold a PTR f ie ld .

22

a rb itra ry length, each starting a t a position indicated by a PTR f ie ld

and continuing to the end of the entire character s tr in g , or tex t. In

a c tu a l i ty , we w il l not be looking fo r equality between textual keys and

some specific argument key; ra ther, PATRICIA w il l f ind a l l keys in the

tex t tha t begin with a specific key (Knuth, 1973). Consider, for example,

the sentence:

THIS IS THE HOUSE THAT JACK BUILT.

Then i f we wish to indicate the start of every word as a key, the

PATRICIA keys would actually be:

THIS IS THE HOUSE THAT JACK BUILT.

IS THE HOUSE THAT JACK BUILT.

THE HOUSE THAT JACK BUILT.

HOUSE THAT JACK BUILT.

THAT JACK BUILT.

JACK BUILT.

BUILT.

Of course, not every word need be a key; for example, i f we wanted

keys only at the s tart of the words BUILT, HOUSE, and JACK, we would have:

BUILT.

HOUSE THAT JACK BUILT.

JACK BUILT.

The problem of what to ca ll a "key" actually f a l ls upon the user,

and w i l l vary depending upon the application. For example, to produce

a concordance, we would want every word to be the s ta r t of a key, whereas

we would only want pertinent words i f we were creating an index to a

technical report. I f a variable length f ie ld is used as a descriptor,

T H I S I S T H E H O U S E T H A T J A C K B U I L T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

(1)

3
(6)

18
(9)(24)

(29)

(13)

row

Example: (19) corresponds to the
key "THAT JACK BUILT".

Figure 2-4. A PATRICIA tree b u i l t by algorithms 2.2 and 2 .1 .
Every word in the sentence is the s ta rt o f a key. The
PTR f ie ld is parenthesized. The SKIP f ie ld is d ire c t ly
above the PTR f ie ld . LLINK, RLINK f ie ld s are indicated
by the lines . Curved lines mean that LTAG or RTAG = 1.
Note that the top node has no SKIP or RLINK. EBCDIC internal
code is used.

start
(skip zero)

XXO XXI

XXOlXXOO
JACK

X X O O 1X X O O 0

BUILT

XXOO IXXO
\

T H I
XXIX XXXX XXXX XXXX XXXX 1

THIS IS - - -

XXIX XXXX XXXX XXXX XXXX 0
T H E

XXIX XXXX XXXX XXXX XXXX 01
THE HOUSE - - -

T H A
XXIX XXXX XXXX XXXX XXXX 00

THAT JACK - - -

XXOO IXXl
IS THE - - -

HOUSE THAT - -
Figure 2-5. The b i t comparisons that are actually

made. An "X" indicates that the b i t
is skipped. EBCDIC code was used.

we would flag i t as a key. Thus, in a student information system the

s ta r t of the name f ie ld (in addition, probably, to the ID number f ie ld)

would be flagged as a key. In a l l of the above cases, the c r i te r ia fo r

determining keys are applied to the text during the PATRICIA tree building

phase, which is the one time when the text is completely scanned. The

te x t , "THIS IS THE HOUSE THAT JACK BUILT," where every word indicates the

s ta r t of a key, was used by algorithms 2.1 and 2.2 to build the PATRICIA

tree of figures 2-4 and 2-5. Since the insertion algorithm requires the

use o f the search algorithm, the search algorithm is presented f i r s t . I t

does not re fe r to the text until the time has come to determine whether

the key being.searched for is present. This is very important, since the

text is probably quite lengthy and thus is relegated to secondary storage,

such as a disk or a drum. An access to such storage is extremely slow com

pared to an access to main memory, which holds the PATRICIA tree.

2.1 Algorithm: Search for a Node in a PATRICIA Tree (Knuth, 1973)

This algorithm w il l search a PATRICIA tree fo r a specific key, K.

Assume the pointer TOP points to the root of the tree . In subsequent

chapters we w il l develop several algorithms where LTAG and RTAG are re

placed by signed LLINK and RLINK f ie ld s . For this reason, steps in

square brackets may be substituted i f we wish to represent LTAG or RTAG =1

by a negative LLINK or RLINK. Throughout the remainder of this dis

serta tio n , P and Q w il l refer to specific pointer variables that are

used by this algorithm.

Input: K, and the number of bits in K.

Output: P (which points to a subtree containing a l l the matches of K)

1) Set P TOP, J 0, N number of bits in K,
(See section 2.1.1 fo r comments about this algorithm.)

2) Set Q ^ P, P ^ LLINK(P). I f LTAG(Q) = 1, go to step 6.
[Set Q + P, PP ^ LLINK(P), P ^ |PP|. I f LLINK(Q) <0, go to
step 5] .

3) Set J ^ J + SKIP(P). I f J > N, go to step 6,

4) I f the Jth b i t o f K= 0, go to step 2, else go to step 5.

5) Set Q ^ P, P + RLINK(P). I f RTAG(Q) = 0, go to step 3.
[Set Q ^ P, PP ^ RLINK(P), P ^ |PP| i f RLINK(Q) >0, go to
step 3 .]

6) Compare K to the key in the text pointed to by PTR(P). I f
they do not match, then K is not in the text. Assume that i f
they do not match, the f i r s t mismatch occurs in the L + 1st b i t .

END (End of Algorithm)

2.1 .1 . Comments on Algorithm 2.1.

Step 1. J is the current b i t comparison pointer.

Step 2. Moves to the le f t subtree. I n i t i a l l y (for the f i r s t comparison)

this is always done. Subsequently, i t is done whenever a "0"

b i t is encountered in K. An LTAG or RTAG equal to "1" indicates

that LLINK or RLINK points to a node whose PTR f ie ld gives the

starting character position of a key in the text.

Step 3. Skips over bits that are identical fo r a ll entries in the

subtree at P. So fa r , our search has gotten us through the

f i r s t J bits of the key. I f J>N, then at this point a l l com

parison bits w i l l have been checked, and we w ill have (poten

t i a l l y) a subtree of matching keys.

Step 4. Determines whether to go to the l e f t or to the right.

Step 5. Similar to step 2, except we are moving to the r ight.

27

Step 6. Since we have checked a ll comparison b i ts , we know that i f K

matches any key, i t matches the key a t PTR(P). I f we compare

these two keys and they do not match, we compute a value for L,

where L+1 is the f i r s t b i t (going from l e f t to right) that is

different for the two keys. L is used by algorithm 2.2 i f an

insertion is to be made. I f the keys do match, we may wish to

invoke algorithm 2 .3 , which w ill find a l l matches. Multiple

matches are indicated i f PP is greater than zero,

which results when going to step 5 by way of step 3 when J>N.

ë 2.2 Algorithm: Insert a New Node Into a PATRICIA Tree (Knuth 1973)

The insertion algorithm, which calls the search algorithm, is

given below. I t requires only two references to the tex t. Again, steps

in square brackets are substituted when we are using signed LLINK and

RLINK fie ld s instead of LTAG and RTAG. T is a temporary variable and

P, Q, and L are values returned by algorithm 2 .1 . (L+1 is the f i r s t b i t

encountered, going from l e f t to r igh t, where two keys are d if fe re n t .)

(See section 2.2.1 for comments about this algorithm .)

Input: The key we wish to insert in the PATRICIA tree.

Output: The undated tree .

1) Set K key we wish to enter into the PATRICIA tree.
R <- AVAIL, PTR(R) ^ key position in te x t .

2) Perform algorithm 2.1. I t w il l terminate unsuccessfully,
since presumably K is not present, and w i l l return values for
L, P, and Q.

3) I f L <J set N L (L+1 is the position of the f i r s t non
matching b i t) , perform algorithm 2.1 again, but ex it before
executing step 6. I t w il l return values for P and Q.

4) I f LLINK(Q) = P, set LLINK(Q) ^ R, T + LTAG(Q), LTAG(O) 0
else set RLINK(Q) R, T RTAG(Q), RTAG(Q) <- 0. [I f ILLINK(Q) j
P set T LLINK(Q), LLINK(Q) ^ R, else set T ^ RLINK(Q),
RLINK(Q) 4- R.]

28

5) I f the L + 1st b i t of K = 0, set LTAG(R) 1,
LLINK(R) 4- R, RTAG(R) T, RLINK(R) P, else set RTAG(R) ^ 1,
RLINK(R) R, LTAG(R) ^ T, LLINK(R) P. [I f the L + 1st b i t
of K = 0, set LLINK(R) ̂ -R, RLINK(R) P * SIGN(T), else set
RLINK(R) ^ -R, LLINK(R) ^ P * SIGN(T)].

6) I f T = 1 [i f T<Q] set SKIP(R) 1 + L - J. Otherwise, set
SKIP(R) ^ 1 + L - J + SKIP(P), SKIP(P) <- J - L - 1.

END

2.2.1 Comments on Algorithm 2.2

Step 1. Algorithm 2.1 w i l l determine N, the number of bits in K.

(Normally, we w i l l set N to an a r b i t r a r i ly large value.)

We obtain a node from an AVAIL l i s t and store the PTR f ie ld .

Of course, the te x t has been looked a t in order to obtain

the key. This is the f i r s t of two te x t references.

Step 2. The second text reference occurs at step 6 of algorithm 2.1.

Presumably, i f the key had been found, an error message would

be printed, because the key cannot already be present in the

PATRICIA tree.

Step 3. L is found in step 6 of algorithm 2 .1 . I f L<J, then somewhere

before we reached a terminal node, there was a mismatch. We

already know the search path through the PATRICIA tree , we

just don't know how fa r down this path we must go. For this

case, the new node is inserted within the tree rather than as

a terminal node. The SKIP fie lds on the path to this node w i l l

add up to a value equal to L+1, which is the f i r s t point a t

which this key d if fe rs from those already encountered on the

path.

Step 4. The new node is inserted to the l e f t or r ig h t , depending upon

the last successful b i t comparison.

step 5. The new PTR f ie ld w il l be to the l e f t i f the L + 1st b i t

of K is 0 (recall that the L + 1st b i t is the f i r s t non-

matching b i t) , and to the r ig h t i f the L + 1st b i t o f K is 1.

Step 6. I f T = 1 [or is < 0] , the node is terminal, and we need only

find the proper value for i ts SKIP f ie ld . Otherwise, the new

node is internal to the tree , and the SKIP f ie ld o f the fo l

lowing node must also be adjusted. In any case, the sum of

the SKIP f ie ld s leading to the new node gives the f i r s t b it

position of a mismatch (i . e . L+1).

2 .3 Algorithm: L is t a l l Matches in a PATRICIA tree (suggested by
Knuth, 1973, page 501 i^l4)~

I f more than one match for a key exists, th is algorithm is used to

l i s t a l l occurrences in alphabetical o rd e r--fo r example, i f the key were

"T", then we would find a l l words starting with "T". Note that the a l

gorithm also may be invoked for the case-of exactly one match.

Let PP point to the root of the subtree containing a ll the key matches.

PP is returned by a ca ll to algorithm 2 .1 , and may already point to a

PTR f ie ld , indicating a single match. For th is algorithm, sign b its have

been used in place of LTAG and RTAG, which means that a sim ilar version

of algorithm 2.1 must be employed. Also, fo r th is and subsequent traversal

algorithms, "A" is a sequential stack.

Input: PP (as returned by algorithm 2 .1)

Output: A l i s t of a l l keys in the subtree pointed to by |PP|.
or in the single PTR f ie ld pointed to by |PP|.

1) (Set stack empty, prepare to traverse the subtree a t |PP|)
Set ATOP ^ 0 , set X + PP

2) I f X > 0, go to step 5.

3) "Visit" the key pointed to by pjR (|X |) .
(,X is a backward pointer, and hence is negative.)'

4) I f ATOP = 0 e x i t , else go to step 6,
(I f the stack is empty, e x it .)

5) (Stack node X--we shall v is i t i t la te r)
Set ATOP ^ ATOP + 1. Set A(ATOP) ^ X. Set X ^ LLINK(X),
go to step 2.

6) (Get a node from the stack)
Set X 4- A(ATOP), ATOP ^ ATOP - 1, X + RLINK(X), go to step 2.

END

This algorithm is a variant of a postorder traversal (Knuth, 1968).

By " v is i t ," we mean " l i s t the key in whatever form desired." I f i t is

only necessary to indicate where the matches occur, we do not need to

re fe r to the text; we simply l i s t the PTR f ie ld s . I f we wish to see the

f i r s t several characters of the key, or the sentence containing the key,

then we must re fe r to the tex t once for each key v is ited .

2.4 How Well Balanced is a PATRICIA Tree ?

In subsequent chapters, we shall see that PATRICIA,as Knuth puts

i t , "is a l i t t l e tr icky and requires close scrutiny before a ll her beauties

are revealed." One of her more useful beauties is the fact that a PATRICIA

tree is usually well balanced. In fact, the only way to create an un

balanced tree is to specify a series of keys whose starting characters

are not only s im ilar, but propogate this s im ila r ity . Thus, consider the

tex t:

HIS DOG SAID, "BOW WOW." HARRY'S DOG THEN SAID, "BOW WOW BOW WOW."

THEN JOHN'S DOG SAID, "BOW WOW BOW WOW BOW WOW." MARTHA'S PARROT

SUPRISED US WHEN IT SAID, "BOW WOW BOW WOW BOW WOW BOW WOW."

I f every word in the above text is the s ta r t of a key, the PATRICIA

J l

tree w i l l be re la t iv e ly balanced, except fo r projecting braches of

"SAID BOW WOW . . . (See Appendix B.2)

2.5 Conclusions - Summary of Chapter Two

In th is chapter, we have discussed the basic concept of PATRICIA

and given the data structure which w i l l be used throughout th is disser

ta t io n . We have presented three important algorithms fo r:

a) Searching through a PATRICIA tree (algorithm 2 .1) .

b) Building a PATRICIA tree (algorithm 2 .2) .

c) L isting a ll matches to a given key (algorithm 2.3)

Moreover, we have explained tha t:

1) Upon building a tree , PATRICIA arranges nodes so that a post

order traversal l is ts keys alphabetically .

2) A PATRICIA tree is usually well balanced due to the nature of

most keys.

3) I t is the user's re sp o n s ib il i ty to decide upon the c r i te r ia

fo r determining his keys; during the PATRICIA tree building

phase, these keys are added to the tree by scanning the text

and picking them out. This is the only time that the text as

a whole is referenced.

32

3.0 Altering the PATRICIA tree - Node Deletion

The preceding chapter explains how to build a PATRICIA tree and search

through i t for a p articu lar key. Unfortunately, many real applications

require that the structure be subsequently a l te re d -- fo r example, we might

want to eliminate from a certa in PATRICIA tree the specific key "CHOCOLATE

PUDDING - - - — ", or the subtree containing a l l keys starting with

"CHOCOLATE". Without algorithms to accomplish the above types of a lte ra

tions , the practical applications of PATRICIA are lim ited. However, i f

we can discover algorithms to perform such a lte ra t io n s , then PATRICIA

becomes a pov/erful method for handling and updating large f i le s containing

variable length keys. The node deletion algorithms presented in the next

few sections accomplish such alterations to a PATRICIA tree; moreover the

algorithms are of additional importance in that they are used by the text

a lte ra t io n algorithms of Chapter Four.

Consider the problem of deleting a single key. The key is pointed to

by some PTR f ie ld in some node, X. To delete the key we must remove this

PTR f ie ld . Moreover, node X is pointed to by some backward pointer o r ig in a t

ing e ith er in node X or in some successor to node X--namely the node a t the

end of the search path to our key. The f ina l comparison in this search path

must also be deleted— this involves eliminating an entire node.

Let us examine the d if fe re n t substructures that can occur within

a PATRICIA tree. We s ta r t with two types, i l lu s tra te d in figures 3-2

through 3-4. Figure 3-1 explains the special names associated with the

nodes contained in the substructures.

33

TD -- Node containing the thread
we wish to delete. Note that
TD always points to PD.

PD -- Node containing the PTR
field we wish to delete.

FT ■- Father of TD.

TT - Node containing the thread
that points to TD.

Figure 3-1 Notation that w ill be used throughout
the dissertation.

34

FT

PD

Figure 3-2 Type 1 Node Structure
Backward pointers are indicated by
curved lines.

35

PD

TD

TT

Figure 3-3 Type 2 Node Structure

35

PD

/

Figure 3-4 Type 2a Node Structure

37

Note the ambidexterity of the structures: in a l l three cases,

pointers emanating to or coming from the right (l e f t) could ju s t as easily

have been oriented l e f t (r ig h t) . The process of deletion fo r the d i f

fe ren t types is given below.

Type 1

Here we wish to delete the backward pointer that orginates from

PD and points back to i t s e l f . Since the other backward pointer repre

sents a key that is s t i l l ac tive , i t must be preserved. Note that the

skip followed by the comparison at node PD is no longer necessary. Hence,

we can simply remove the node, and replace the LINK f ie ld of FT which

points to PD, with the backward thread of PD.

Type 2

We wish to delete the PTR f ie ld of PD (i . e . that f ie ld which points

to the textual information which we no longer wish to consider as a key).

However, we must preserve the comparison at PD, for the PTR f ie ld at X

represents an active key; and the comparison at PD must s t i l l be made in

order to d if fe re n tia te between X and Y. The comparison that we are

a c tu a lly eliminating is at node TD. Hence we can eliminate the skip

f i e ld and the node at TD, relocate PTR (TD) in PTR (PD), since PTR (PD)

is no longer needed; and then adjust the backward thread in node TT

that points to TD so that i t now points to PD.

Type 2a

This seemingly d is tinc t type is actually treated in a manner

identical to Type 2. The only f ie ld of PD which we need to a lte r is

the PTR f ie ld ; the SKIP f ie ld and backward thread at TD are the other

f ie ld s being eliminated, and th e ir deletion is handled in the manner

described in Type 2.

38

I f we explore the deletion types a b i t further, we find tha t the

Type 2 structure has several special cases, a l l of which are given in

figures 3-5 through 3-8. In every case the proper nodes fo r PD, TD, FT,

TT have been indicated, even when some are identica l.

Notice that Type 1 can be described as a special case of type 2;

a ll we need to do is supply the proper values of TT and TD. This is done

in figure 3-9 , where type 1 has also been renamed type 2 f.

I t can easily be shown that no other types exist (see Appendix D);

thus we need only to discover an algorithm that w i l l properly delete a

node from each of the above configurations.

3.1 Algorithm: Delete a PATRICIA Node from the Tree

The algorithm given here works fo r a l l the d i f fe re n t types de

scribed in section 3.0, W is a pointer variable used for temporary storage.

I t is assumed that we have been given the key we wish to de le te , determined

the value for TD, and then found TT, PD, and FT. (How to do th is is

discussed in the next section.)

Input: TD, PD, FT, and TT

Output: PTR (PD) is deleted; the comparison at node TD is eliminated,

1) Set PTR(PD) PTR(TD)

2) I f |LLINK(TT)| =TD, set LLINK(TT) -PD else set RLINK(TT) ^
-PD (Note that this algorithm, as well as a l l others in
Chapters 3 and 4, uses signed LLINK, RLINK fie ld s instead of
LTAG, RTAG.)

3) I f |LLINK(TD)| = PD, set W RLINK(TD), else set W ^ LLINK(TD)

4) I f W>0 set SKIP(W) ^ SKIP(W)+ SKIP(TD)

5) I f LLINK(FT) = TD, set LLINK(FT) ^ W, else set RLINK(FT) ^ W

Node TD may now be returned to free storage

END

39

PD^FT

TD

TT

Figure 3-5. Type 2b

40

PD

/ /
/

TD=TT.

Figure 3-5. Type 2c

41

PD--FT

TD=TT

Figure 3-7. Type 2d

42

FT

PD=TD=TT

Figure 3-8. Type 2e

43

FT

Figure 3-9. Type 2f

44

a) After step 1)
Type 2.

l e t X = node pointed to by
RLINK(TD)

PTR(PD)<-PTR(TD)

45

b) step 2 sets LLINK(TT)=PD as a thread

c) step 3 sets W=RLINK(TD), T=0
A fter step 4

SKIP(X)«- , ,
SKIP(X)+SKIP(TD) \

/ \

46

d) After step 5.

PD

TD
i

/ \

Node TD may now be returned to free storage.

47

Type 2c.
e) after step 2.

PD p t r (pd)<-p tr (td)

TD=TT

48

b) step 3 sets W=PD.

c) step 4 has no e f fe c t , since W is a backward pointer (W<0)

d) a fte r step 5

PD

TD=TT

Node TD may now be returned to free storage.

49

Type 2d.
a) A fter step 2.

FT=PD PTR(PD)^PTR(TD)

TD -TT

50

b) step 3 sets W=PD.

c) step 4 has no e ffect

d) a f te r step 5

FT=PD

TD=TT

Node TD may now be returned to free storage.

51

Type 2e.

a) Steps 1 and 2 do not change the structure.

b) Step 3 sets W = LLINK(TD).

c) Step 4 a lte rs the SKIP f ie ld of the son of node TD

(I t is called node "X" below)

d) a f te r step 5

FT

SK1P(X)«- . .
SK1P(X)+SKIP(TD)

Node TD may now be returned to free storage

52

As an aid to understanding the deletion algorithm, each step has

been traced through for Types 2, 2c, 2d, and 2e. The diagrams give the

state of the p art icu la r structure immediately a f te r the indicated step of

the algorithm has been executed. (The i n i t i a l LLINK - RLINK values are

as i l lu s tra te d in figures 3-2 through 3 -9 .)

3.2 Determining TD, FT, TT

As y/as stated e a r l ie r , in i t i a l l y we are given only the key we wish

to delete. I t is assumed that this key exists in the text somewhere

(multiple occurrences are considered in the next section). By applying

the search algorithm (algorithm 2.1) to this key we w il l be led auto

matically to node PD, which is the f in a l value of P in the search algorithm.

The final value of Q gives us node TD; moreover the value of Q just prior

to this gives us node FT. The proper value fo r TT may be obtained in two

pr three ways, I f both link f ie lds of TD point backward, we know that

one of them points to TD and originates at TD. The node called TT is the

node that points to TD. Hence, in th is case TT and TP are the same.

This corresponds to the situation where LLINK(TD) and RLINK(TD) are less

than zero; but since at least one of RLINK(TD), LLINK(TD) must be less

than zero (i . e . , TD has at least one backward pointer) then i t is sufr

f ic ie n t to tes t whether the product of RLINK(TD) and LLINK(TD) is greater

than zero. I f th is is true, then they must both be less than zero; and

hence, TT = TD.

Another special case where we can quickly determine the value for

TT is when PD = TD (th is arises in types 2e and 2 f) . In this case, the

thread pointing to PD is also the thread pointing to TT, thus i f TD = PD

then TD = TT.

For types 2, 2a, and 2b, we must employ an a lternative method to

find TT. One way of doing this is to traverse the subtree hanging from

53

TD until we come to the thread which points back to node TD. This thread,

of course, emanates from node TT.^

We can obtain an estimate of the average size of the subtree a t

TD. To make things easy, assume we have a balanced tree of 2"-l nodes,

and thus n levels of search paths, including threads. Thus the to ta l size

of a l l the subtrees is given by the sum of the sizes of a l l subtrees at

every le v e l , or:

2n-l + 2(21-1-1) + 4(21-2-1) + . . ;+2'^-''(2"'^'^"‘*) - l)

= 21-1 + 21-2 + 21-4 + + 21- 21-1

= (n - l) 2 i - (1 + 2 + 4 + + 21-1)

= (n - l) 2 i - (21-1)

= (n -2)2 i + 1

and the average size is obtained by dividing the above expression by the

total number of subtrees, which equals the total number of nodes. Hence,

the average subtree size is given by:

(1- 2) 21+1 _ (n -2)2 i - n 5
 ~ - n-d

2"-l 2i

Since node TT can occur anywhere in the subtree with equal pro

b a b il i ty the average search path length is ha lf th is , or

Another more straightforward method employs the search algorithm.
In this case, we retrieve the key from the text which starts at position
PTR(TD), then search for i t . Of course, this method is slower since i t
requires a reference to the text; nevertheless, i t is the method included
in the algorithm presented below, because i t was included in the test
program of Appendix B.

54

3.2.1 Algorithm: Find PD, TD, FT, TT

This algorithm finds the values for PD, TD, FT, and TT. After the

algorithm has been executed, algorithm 3.1 is used to complete the de

le t io n . Assume that the search algorithm (Algorithm 2 .1) has been modified

in steps 2 and 5 to read:

Step 2: set FT ^ Q, Q ^ P, P + LLINK(P), etc.

Step 5: set FT ^ Q, Q ^ P, P RLINK(P), etc.

Recall that in algorithm 2.1 P ends up pointing to the PTR f ie ld

of the matching key, which in th is case is contained by node PD, and Q

ends up t r a i l in g one node behind P. The above modification thus effec

t iv e ly locates FT as the node ju s t behind the node pointing to PD.

Input: The key we wish to delete, P (as returned by algorithm
2 . 1).

Output: TD, PD, FT, TT (a l l of these are defined in figure 3-1)

1) . Set KEY -t- the key we wish to delete, N number of bits in this
key.

2) Call algorithm 2.1. The search w ill be successful. Set PD <- P,
TD Q. FT w i l l have been automatically determined i f the search
algorithm is modified as shown above.

3) I f LLINK(TD) * RLINK(TD) > 0 or TD=PD, then set TT TD, go to
algorithm 3 .1 , step 1.

4) Set N ^ KEY Key a t te x t position PTR(TD). Call algorithm 2.1
again. The search w i l l be successful, and upon existing algorithm
2.1 , set TT <- Q, go to algorithm 3.1 , step 1 to complete the
deletion.

END

3.3 Subtree Pruning - Deletion of Prefixes

We may wish to delete an entire group of nodes at one time; for

example, a l l keys with a particu lar p re fix , or a l l keys that s ta rt with

55

a certain word. This amounts to deleting an entire subtree. In figure

2-4, for example, to delete a l l words starting with " I ," we delete the

subtree whose root is a t (9). Unfortunately, the backward pointers com

plicate matters, fo r in re a l ity , we are deleting not the nodes of the

subtree, but the PTR fie ld s pointed to by a l l the backward threads in

the subtree. Notice, however, that a l l the pointers except one are con

tained within the subtree. This means that we only need to fuss with

one backward pointer during deletion--namely the one pointer to the

ancestor of the subtree. Since the other pointers are a l l contained

within the subtree, the subtree may be lopped o f f at i ts root and re

turned to free storage. The essential structure is given in figure 3-10,

where R is the root of the subtree; and FR is the father of the root.

TFR contains the thread pointing back to FR, and TA contains the thread

pointing back to A, which is the one ancestor that contains a PTR f ie ld

we need to delete. Note that TFR cannot be contained within the subtree,

fo r a subtree must contain a backward pointer to an ancestor. The excep

tion would be i f FR and A were the same node. Then TFR and TA would also

be the same node, which leads to the structure shown in figure 3-11.

Note that when we delete the subtree at R, the comparison at FR

is no longer necessary. This means that node FR may be deleted. We must,

however, save the PTR f ie ld of FR somewhere, and adjust TFR so that i t

points to the newly located PTR f ie ld . Since the PTR f ie ld of A is

being deleted, we can save PTR(FR) in PTR(A). Thus, once we have saved

PTR(FR) in PTR(A) we adjust TFR so that i t points to A, and delete node

FR in addition to the subtree at R. Luckily, th is corresponds to a type

2 deletion! We need simply to insure that the proper structure is

presented to the deletion algorithm. F i rs t , le t 's redraw the subtree

56

delev

s u o f r e e

TATFR

Figure 3-10 General Configuration for a Subtree Deletion
R is the root of the subtree being deleted.
TA contains the backward pointer that points
to an ancestor, A, of the subtree.

57

A=

TA--TFR

Figure 3-11. Special Case where TFR=TA

58

PD̂ Â

TA

Figure 3-12 Subtree deletion corresponds to a type 2 deletion i f
the structure is properly set up. The subtree being
deleted has its root a t R. Once RLINK(TD) has been
pointed to PD, we can run through the deletion algorithm.
The nodes contained in the subtree and node TD are re
turned to free storage.

structure, putting TD, FT, TT, PD where they are required (f igure 3-12).

In doing th is , we have changed the RLINK f ie ld of TD into a backward

pointer to node A. The usual deletion process may now take place.

3.3.1 Preparing the structure fo r Subtree Deletion

I f the search algorithm indicates that an entire subtree matches

our key (see Algorithm 2 .1 , step three) then upon e x i t , P w i l l point to

the root of the subtree, Q w il l be a t FR (note that fo r this case FR=TD,

the node containing the thread we are going to delete). I f algorithm 2.1

has been modified to find FT (section 3 .2 .1) , we w i l l have the proper

value fo r FT also. Thus we need only locate TT (or TFR) and PD (or A—

see figure 3-12). Locating TT is easy. We simply search fo r the key

starting in the text at PTR(TD); upon e x it from the search algorithm this

time, Q w i l l point to TT. (Again, we could avoid a text reference by

traversing the subtree at TD until we find the thread that points to TD.)

Finding the node TA is , unfortunately, not quite so easy. All

we know is that TA is in the subtree at R, and A is an ancestor of R

and thus is along the search path to R. Hence, we can locate A only

by looking a t every thread in the subtree at R and seeing i f i t points

to a node along the search path to R. One way of effecting th is is

given below:

1) Set KEY the key leading us to the subtree at R

2) Traverse the subtree a t R. At each " v is i t ," do the following;

a) Note the node pointed to by the thread we are v is it in g .

Call this node "A" (i . e . an ancestor of the subtree a t R.

b) Call algorithm a . l and search for KEY. (The search w i l l

be successful and w i l l end at R, the root of the subtree.)

While going through the search, note whether we encounter

60

node "A". This requires a modification to algorithm 2.1.

(The modification is given e x p l ic i t ly below.)

3) As soon as we encounter node "A" we may terminate the traversal;

otherwise continue with the traversal.

We may combine the search for A or PD, with the search for TFR, or

TT. This is done in the algorithm given below, which completes the pre

paration of the structure.

3 .3 .2 Algorithm: Prepare the Structure for Subtree Deletion

(Assume that we have just exited from the search algorithm and

have determined that a subtree of matching keys e x is ts .)

Input: P, Q, W (output by a modified version of algorithm 2.1.
where W follows Q down the search path, and Q follows P.)

Output: PD, FT, TD, then ex it to algorithm 3.2.1 step 3.

1) Set TD Q, FT ^ W, R P, PD <- 0 (Again, algorithm 2.1 is
modified--this time so that W is always set to the previous
value of Q as Q and P are going down the tree . R is the root
of the subtree we are deleting.)

2) Employ algorithm 2.3 to traverse the subtree at P. At each
v is i t to node X set A <- X; then ca ll a variant of algorithm
2.1 which, in addition to the introduction of pointer W, has
been modified as shown below.

add to steps 2 and 5:

I f P=A, set A ^ 0.

(Recall that X is always a backward pointer to a node v is ited by

algorithm 2 .3 , step 3. I f node X is on the search path between the root

of PATRICIA and R, the root of the subtree being deleted,then the modified'

version of algorithm 2.1 w i l l set A 0.)

3) I f A / 0, repeat step 2 for the next node v is ited. Other
wise, set PD <- X. (I f A=0 we have found the pointer to
the node outside the subtree.)

4) I f RLINK(TD)-= R set RLINK(TD)<- - PD, else set LLINK(TD)<- - PD.
(This forces the configuration of figure 3-12; the minus
sign indicates that the RLINK or LLINK is changed to a back
ward pointer.)

61

5) Return the subtree at R to free storage. Then ca ll algorithm
3.2.1 at step 3 to find TT and then delete node TD.

END

Note that the special modifications to the search algorithm,

algorithm 2 .1 , do not in any way in terfe re with i ts operation except for

the additional time involved. The same can be said about the modifi

cation suggested in section 3 .2 .1 .

3.4 Conclusion - Deleting Nodes

The algorithms of Chapter Two have been supplemented with original

algorithms that allow us to delete a particular node from a PATRICIA

tree . Moreover, i f an entire group of similar keys is no longer needed,

then a subtree of nodes may be deleted. Thus, PATRICIA has been ex

panded into a much more f le x ib le information re tr ieva l system. To

complete th is expansion, we must s t i l l find a technique for deleting

information from or inserting information into the main body of text.

This is accomplished in the next chapter.

4.0 Deletion of Text Material

The processes of deleting textual information can be broken down

into three specific classes.

a) Deletion of a specific key pre fix which starts at exactly one

point in the text.

b) Deletion of contiguous tex t that contains zero or more keys.

c) Deletion of a specific key which occurs at several points

in the tex t.

Processes (a) and (b) can be combined since (a) is ac tua lly a

subset of (b). The major difference is one of specification; process

(a) involves specifying a p art icu la r key and having i t searched for.

Process (b) requires that we give the starting and ending points of the

area we wish to delete; thus any s tarting points of keys that are con

tained within th is area w ill cause the appropriate keys to be deleted

from the structure. Consider the tex t in figure 2-4; namely:

THIS IS TflE HOUSE THAT JACK BUILT

Process (a) implies that we may request, for example, tha t the

key "HOUSE" be deleted. This would cause "HOUSE" to be squeezed from

the te x t , and the thread pointing to the pointer to "HOUSE" to be deleted.

I f we had chosen to delete "HOUSE THAT J" then we would have deleted

"HOUSE THAT J" from the text, and eliminated the keys:

63

"HOUSE THAT JACK BUILT."

"THAT JACK BUILT."

"JACK BUILT."

Process (b) is d if fe re n t only in that we give "coordinates" of

starting and ending points to be deleted. The above example could be

handled using process (b) by specifying that we wanted to delete the text

over positions (13-24). The one important difference is that we could

use process (b) to specify a single, non-key deletion , or a multiple-key

deletion that in i t s e l f was not a key. Thus, we could specify that we

shall delete (11-24), but i f we invoked process (a) and searched for the

key "E HOUSE THAT J" we would not succeed.

Process (c) may be accomplished by locating the duplicate keys

and then re-applying process (b) un til they have a ll been deleted. Hence,

although process (c) is not a subset of process (b j , i t requires l i t t l e

more than a subtree traversal, where each "v is it" means that a p a r t i

cular text- position (containing the key of in teres t) is deleted. With

the above in mind, vie shall attack process (b) , re a liz in g that only

minor modifications are required to e ffect processes (a) and (c).

4.1 Deleting Contiguous Text

Before getting into the tex t deletion process, i t should be pointed

out that the process is rather involved; in that sense, the examples of

the previous section may have been misleading. To i l lu s t r a te just how

d ra s t ic a l ly a simple text deletion can a lte r the PATRICIA structure, con

sider the example given in figures 4-1 , 4-2, and 4-3 , where every oc

currence of A, K, or Z is flagged as the s tart of a key. In figure 4-2,

we have deleted the space. In figure 4-3, the fourth "A" has been de

leted. (An explanation of how to interpret the minutiae of the printed

64

i 0 • I *> • ni# T.# ! :3*

J1 nr

MO

R f.ft ft#»A#

P ft* ft *• 116
Q I q L
r L P 1.

1 9 • ft tftftft/AWf\f

p L q ft 1 # ft '••.ft l>t

p L 3

p L P
p L Q
p ft lAft 2 I ft K *>

1 TO
AKZKf&KZe.

n

u

• 3ft 2ft
) L
c L
P L
Q

L
P L
7 L
c L
f- L
: L
P L

L

L
P L
Ç L
P L
P L
9 L
P L
P L
P L
n L

L
p A

?

p

w
9
P

P
9

P
P

P

P

P

P

P
a

p

f.

P

rj

1* 110■* I I#
• ft tlftft# Airz«< ZA</'»•

qftftft< zp.
ft O ft 1« 11 ^
r L
P L
P L • >

c L ft
c L a
L L o

r p
r L c

L Q
p 1. c

L p
o ft 1
c

L
r.

> * 134

** 1 • : :
• K ; \< / AKZi<ZAKf^, - - - -

• iAft*«rr a</ak;av:/p«

11 2

<
1 1 7

AftftftAf/AKfn, ----

Aft *»* llA

L
L
•ft ;#ft*AK76KfA<7r, -

• in* *1 ■ 101ft* 11**ftA*/*<*l<f A*/AK/A<fP-

1n* 71* 1 0 A
I ;>ftftft4</4f/

10 ft
' % ' f t » .W Z AK /A«f f AK /P,

Figure 4-1. A strange tree. Every character in the text is a key.

65

10* IS*» ? .)4 »)• 4 s# -lO* **;* IOÎ*

103 *̂C/ 4K; in *4 K/AK .'AS ' I»,

• s • n# it%

9 # 9 * I i B
L

L
$# 6#**7AK7n, ----

• 5* 24» I 1 t
L
L
• 4 3 # « # ? A K ? A K ? n , - - - -

• 10* 2 4# ICS
L
L
• • l2##*fAKZAK/*K/n, - - - -
• 12# 2&# 109

L

L• 4 lS*##fA*7&KZAKZlK?P.
• IS* 24» 19A
• m l 4 * # # y / t / A K Z A K % & K 7 A K / n .

3# 34 11 2

P#»#KfO.

a# IS# ! ! 7
L
L
#» S» #• *C7 A#./-*.
» 5 • 2 4 » 1 1 A

M *

1 •I
L

: ' 7. - .K /n,

1 ? ?

« |\«».<?*n/AK7Â7P.

1 ? • ?t * 19 1
I
L
*t 1 <• • * « K- 7 ; <7 '»K 7 M' ,
« 1 « # 2 A
«• |l*##*:/AK/4<7AK74*'74*̂ 7n,

7###*K 7^# — — — —.

7 # 2 4 # n *

L
L
* 4 * • • A n ? A r 7 y ,

• 4# 2 4 • 1 1 1
L
L
1 a # • * 4»!' / * < 7 Ate 7 .)

• % "i# 24# 110

;4#*#*K7AK74K7A<7n. - ,
1 4 « 9 4. J . -I 7

I
I
• *] ? • ♦ • *. n * .* • ' 7 A h- 7 A r 7 4 ^

• 17* 2>* I'A

Figure 4-2. The space has been eliminated from the text of figure 4-1

66

t , «

ft
100 Atk/ »K/A<fK7 4»/ iK .»;» ,

0* 10 1
L
L • • X7«**7p

L • 17* 2*
L $* 0***7»

L R

L ft

L * 9# ft* 104

L P L
L 3 L
L P L
L ft L

L R L • *

L P L R

I. P L r

L P * f* :4* :
L 9 L
L C L
L O • •

L 9 *

L ft * #

L o

I A • #*fA<7W,

1A • r # 114
4**#fAKZK/AK'AK7n.

70,

II* 2 * 1 I I
?#.#/*, 7A< f AK * A< T",

»#
* X /. • - II',

#» g***KfKZ&K7AKZP.
ft

L

L

L
L

L
L

2# I I C?

T« ’ • 1 1 *

4* ?4 » 1
I
L
»* 10* ••«;z A< ?/.< 7f.
• 10* M.o
• « • K 7 A r / ,*. r 7 k 7 A ' f. < / «' ,

• « 13#**AK Zî«

• I • r * 1 1 *:
• • 7***A*Zf?\K7lf

P
7* 94 * 107

t
L L
L

L
L
t.

• • 1 «

* • X ? • # * 5 »• 7 A * ' 7 t» ,

* Î r • 9 * 11?
* • A • ♦ • Î < / A 7 A » 7 A r 7 f) .

Figure 4-3. The fourth "A" has been eliminated from the text,

structure is given in Appendix B.) Most deletions w ill not cause such

serious structural changes, but the reader should at least be aware of

what could happen.

The reason that the text deletion process can cause such structural

changes is that when we delete text, we also a l t e r the b it comparison pat

tern fo r any key or keys that happen to extend over the deleted area.

That is , any key not within the deleted area whose search path (as a

re su lt of successive skips) leads i t into the deleted area, must be re

evaluated. Moreover, there is no way of predicting where the newly

evaluated key w i l l be positioned in the PATRICIA tree without actually

re-evaluating the key. An example should help to i l lu s tra te th is . Con

sider the rather contrived text of a figure 4-2:

AKZAKZAKZAKZAKZAKZ

where every le t te r is the s ta rt of a key. Notice that, in scanning from

l e f t to right (which is exactly what the search algorithm does), the

f i r s t difference between the keys

AKZAKZAKZAKZAKZAKZP

and

AKZAKZAKZAKZAKZP

occurs at the comparison between "P" of the second key and the la s t "A"

of the f i r s t . However, when we have the text shown in figure 4-3 (i . e . ,

the fourth "A" has been deleted) then the same comparison would now be

made between the keys

AKZAKZAKZKZAKZAKZP

and

AKZAKZKZAKZAKZP

Here the f i r s t difference occurs a t the third "A" of the f i r s t key.

One may easily ve rify that a l l keys starting with "A", "K", or

"Z" which orig inate ahead of the deleted "A" w i l l be s im ila r ly affected!

This amounts to an entire restructuring of the search path, which is

obviously reflected in the vast difference between the PATRICIA trees

of figures 4-2 and 4-3.

4.1.1 Concepts Behind Deleting Contiguous Text

Let START and END be pointers that point to character positions

in the te x t. Assume that we are going to delete a l l te x t which occurs

between (and including) the characters whose positions are given by START

and END-1 (i . e . , up to but not including END). We must look at every

node in the PATRICIA tree and do the following. (Assume the node we are

looking a t is pointed to by X.)

1) Recalculate the proper address for the PTR f ie ld in the case

where the PTR f ie ld points to text that v/as moved in order

to f i l l in the space l e f t by the deleted te x t . I f X points

to a node which requires such modification, then no other

modification is required for the node. The recalculation is

handled quite as ily by the step:

I f PTR(X) > END, set

PTR(X) PTR(X) - (START - END)

2) Delete any PTR f ie ld that points to a key which starts within

the deleted area. This is done by the deletion algorithm,

setting PD ■<- X. (Note that in addition to PC, the deletion

69
algorithm must also find TD, FT, and IT .) The step to

detect such a node is , quite simply:

I f START < PTR(X) < END, then set PD - X, call

the deletion algorithm at the appropriate entry point.

Since step 1 checked for PTR(X) _> END, we can eliminate that

part of the " if" statement and write simply:

i f PTR(X) > START, then etc.

Note that such a node requires no further a tten tion , i . e . ,

once we have deleted i t , we are done with i t .

3) Fix any node whose search path has been altered as a result

of the text deletion. This is done by deleting the old node,

looking at the new b i t pattern given by the new key, and re

inserting the new key. The step is given in simplified form as:

i f PTR(X) + E SKIP f i e lds leading to PTR(X)
number of b its per character

is ^ START, delete PTR(X); then re insert into the tree

the key which starts at PTR(X) in the te x t. (Remember,

the text has already been concatenated.)

The rest of the nodes fa l l in the class where:

PTR(X) + E SKIP f ie ld s leading to PTR(X) < START
number of b its per character

and which are therefore unaffected by the text that was deleted.

I t would be nice i f we could simply traverse the PATRICIA tree in

endorder, a l te r in g , deleting, and reinserting nodes a l l with ju s t one

pass over the structure. Unfortunately, th is is d i f f i c u l t to do, for

several processes are taking place which are capable of dynamically

70

a lte r in g the tree in a manner that would e ither cause any traversal

algorithm to f a i l , or would change the structure in such a way that the

deletion algorithm wouldn't be able to function during the traversal

process. For example, i t is possible for the deletion algorithm to move

a PTR f ie ld from a node to i t s ancestor. I f this PTR f ie ld is one which

must be modified to point to i t s proper text position, which was shifted

by the textual concatenation (i . e . , PTR ^ END) , then we must take care

that the modification does not occur twice.

I f we make the above modification during the " v is i t " of a preorder

t rave rs a l, then we can perform deletions without worrying about acciden

t a l l y a lte r in g a PTR f ie ld twice, fo r a preorder traversal v is its a l l

ancestors of a node before i t v is i ts the node. I f any deletions to be

made are made at this same v i s i t , then any PTR f ie ld s being moved w ill

be moved into areas already v is i te d , and hence w i l l not be molested any

fu rth er . Unfortunately, other problems preclude making the necessary

deletions during a preorder traversa l.

For example, i f we use algorithm 3.2.1 and encounter a type 2a

de le tio n , node TT w i l l not have been processed y e t. The algorithm, which

searches for the node by looking a t the tex t, w i l l not find i t i f node TT

is a node being deleted or a lte red . The only way to insure that this

s itua tio n w i l l not occur is to v i s i t a l l descendants f i r s t , which requires

an endorder traversal. Hence, i f we make our necessary deletions during

the v i s i t of an endorder t ra v e rs a l , and modify the necessary PTR fie ld s

during the v is i t of a simultaneous preorder trav e rs a l, we w il l avoid at

least the d i f f ic u l t ie s indicated above. The traversals may be simul

taneous since an endorder traversal v is its a given node a t either the

same time or la te r , as i l lu s tra te d in figure 4-4.

71

Node Access Interval
Preorder Visit

Endorder Visit

A B C D
C "D B

E E C

G F E A

Figure 4-4. Preorder and endorder v is i ts .
A preorder v is i t always occurs
a t the same time or before an
endorder v is i t .

72

Some problems s t i l l remain, however. Any node whose search

path was altered may, of course, be deleted during the traversal. How

ever, we must be careful when we reinsert the node, since i t could wind

up anywhere in the structure. This obviously could be undesirable; i f

the node were inserted in a place that had not been v is ited , then i t

would be deleted and reinserted again! There is an easy way of avoiding

th is problem. We can make a l i s t of a l l the nodes being a ltered , linking

them up by their LLINK or RLINK fie lds as we delete them. Then, a f te r

the traversal has been completed, we can re insert the nodes by looking

a t the PTR fie lds of the nodes we put in our l i s t . These pointer f ie ld s

give the starting te x t positions for the keys whose search paths must be

recomputed.

” 4 .1 .2 Algorithm: Delete Contiguous Text

The complv Le algorithm for deleting te x t is now presented. I t is

broken up into three subalgorithms. I n i t i a l l y , set pointer TOPLIST X;

SHIFT END - START. Assume that the tex t between START and END - 1 has

been deleted, the remainder having been concatenated.

Subalqorithm T.O Traversal

This subalgorithm traverses the tree in preorder and endorder.

I f both v is its occur a t the same time, the preorder v is i t w i l l be done

f i r s t . The algorithm uses a stack, A.

Input: START, END, SHIFT.

Output: The updated PATRICIA tree .

1) Set L SKIP <- 0, ATOP ^ 0, X ^ pointer to root of PATRICIA tree.

2) Set E SKIP 4- E SKIP + SKIP(X)
ATOP ATOP + 1, A(ATOP ^ X
(Preorder v is i t) Preform subalgorithm T . l .

3) IF LLINK(X) is not a thread, (i . e . : > 0)
set X ■<- LLINK(X); go to step 2

4) Set X ^ A(ATOP), ATOP ^ ATOP-I

5) I f X > 0, set ATOP ^ ATOP+1,
A(ATOP) -f- -X go to step 7, else set X - X

6) (Endorder v i s i t) . Perform subalgorithm T .2 , then set
E SKIP ^ E S K IP -S K IP (X)
(even though node X may have been deleted, i ts SKIP f ie ld
is s t i l l in ta c t) ; go to step 4.

7) I f X=1 (i f we are back at the ro o t) , e x i t .

8) I f RLINK(X) is not a thread, set X RLINK(X), go to
step 2, else go to step 4

Subalgorithm T.l

This subalgorithm adjusts PTR fie lds when they point beyond the

area of tex t that has been deleted. I t also marks those PTR fie lds

which are to be completely deleted. (The actual deletion must take place

l a t e r .)

Input: X, START, END, SHIFT

Output: PTR(X) adjusted, or set to zero i f node X is to be deleted

1) I f PTR(X) > END, set PTR(X) <- PTR(X) - SHIFT, e x it T.l

2) I f PTR(X) > START, set PTR(X) 0, e x it T . l

Subalgorithm T.2

This subalgorithm deletes nodes marked by T . l . I t also deletes

those nodes whose search path must be recomputed, and saves them in a

l i s t . I f a deletion is to occur, the algorithm ca lls on the node deletion

algorithm (3 .2 .1); i t w il l not call the node deletion algorithm twice for the

74

same node, as this could foul up the traversal process. I f a node con

tains 2 threads, and both are to be deleted, then the second deletion

w il l occur a t the v is i t to the parent of X (which w i l l contain the other

unwanted thread a fte r the deletion of the f i r s t thread).

Input: X, START, END, SHIFT.

Output: The node a t X is deleted, or the search path of its
key is recomputed, or node X is l e f t alone.

1) (The subalgorithm uses a f la g , FINISHED, to force an ex it
a f te r LLINK and RLINK are checked.)
Set FINISHED 0
I f LLINK(X) is a thread, set PD |LLINK(X)|, go to step 4.

2) I f FINISHED = 1 e x it T .2 , else set FINISHED = 1
(e x it i f we have looked at both link f ie ld s)

3) I f RLINK(X) is a thread, set PD +^(RLINK(X)| go to step 4,
otherwise ex it T.2.

4) (PD gives the pointer we might want to delete. F irs t we
must check i t .)
I f PTR (PD) > START, go to step 2
(no modification necessary, since the key l ies beyond the
affected area)

5) I f PTR(PD) =0, set TD + X, FT + |A(ATOP)|
(the top node of the stack is the father of the node being
v is ited in endorder) ca ll the node deletion algorithm at
step 3 of algorithm 3 .2 .1 . Then ex it T.2

6) IF PTR(PD) + E SKIP________________ '
number of b its per character

is < START, go to step 2 (the text deletion did not affect
the search path to node X)

7) Set FT ^ |A(ATOP)| , TD + X,
ca ll the deletion algorithm at step 3, algorithm 3.2.1 but
instead of returning node X to free storage, save i t (to be
reinserted) by:

8) LLINK(X) ^ TOPLIST, TOPLIST ^ X. Then e x it T.a.

A fter exiting from subalgorithm T.O we merely re insert a l l the nodes

whose search path was altered; namely the nodes in the l i s t pointed to

by TOPLIST.

END

75

4.1 .3 Algorithm: Delete a specific key from the text

The algorithms presented in the previous section may be used to

perform a varie ty of functions. For example, to e ffec t a"process (a)"

text deletion (i . e . , the key is given) we employ the b r ie f algorithm

below.

Input: The key we wish to delete.

Output: An occurrence of the key is deleted from the tex t.

1) Set K ■«- key, N <- number of b its in K, call algorithm 2.1.
There w ill be a match a t node P.

2) Set START PTR(P), END START + number of characters in K.

3) Concatenate the text by bringing together locations
START - 1 and END (e f fe c t iv e ly deleting positions START
through END - 1)

4) Set SHIFT END-START.

5) Call algorithm 4 .1 .2 T.O.

6) Use algorithm 2.2 to re insert the keys whoso PTR f ie ld s are
given in the l i s t created by algorithm 4 .1 .2 T.2 step 8.

END

A "process (b)" deletion is even easier, since we are already given

START and END- simply enter algorithm 4 .1 .3 at step 3.

4.2 Algorithm: Insert Text

The process of inserting new text is p ractically identical to the

process of tex t deletion. Keys whose search paths are changed must

have the ir search paths recomputed, and PTR fields pointing to text which

has been shifted (in this case to make room for the new te x t) must be

altered. The only difference is that no old keys are deleted, for no

text is deleted. The text insertion process is given below. Assume we

are given the information TEXT, which we want to add, along with START,

76

the position at which the next text is to be inserted.

Input: START, TEXT, number of characters in TEXT

Output: The updated PATRICIA tree , the updated te x t, e x it
to algorithm 4 .1 .3 , step 5.

1) Set END START (this guarantees that subalgorithm T . l
w il l not delete any keys.

2) Break apart the text at position START-1 and insert TEXT.

3) Set SHIFT (t- the number of characters in TEXT)
(The net resu lt w ill that subalgorithm T.l w i l l add SHIFT
to a l l PTR fie ld s that point beyond and including position
START)

Now, simply enter algorithm 4 .1 .3 at step 5.

END

4.3 Conclusions - A ltering Text

The user now has a complete set of working algorithms that enable

him to update or a l te r e ither the PATRICIA tree or the tex t. The

algorithms.presented in Chapter Four can:

a) Delete any area of the text (algorithm 4 .1 .2) .

b) Delete any specific key from the text (algorithm 4 .1 .3) .

c) Insert new text anywhere (algorithm 4 .2).

77

5.0 Alternate Methods for Representing the PATRICIA Tree - Compressing
the Structure.

In the previous two chapters, we developed the algorithms necessary

to e f fec t most of the operations that a user might encounter when working

on an interactive basis with PATRICIA. This section w ill be concerned

with alternate methods of prepresenting the PATRICIA tree which w i l l re

s u lt in more e f f ic ie n t use o f memory, or more rapid retrieval of in fo r -

n.ation, or both.

5.1 A Right Threaded PATRICIA Tree

The backward links of the PATRICIA tree do not resemble ordinary

"threads" (as explained in Knuth 1958, p. 320) in that they do not neces

s a r i ly point to nodes which are postorder predecessors or successors.

I f we could build a PATRICIA tree in a way such that the backward pointers

were "threaded," then we could compress the structure and thereby save

considerable storage space. Let us focus our attention on the p o s s ib il i ty

o f building a right threaded PATRICIA tree , where such a structure is

defined below.

D efin it ion 5-1.

A righ t threaded PATRICIA tree is a PATRICIA tree in which the back

ward-pointing l e f t links point to themselves, and the backward pointing

r ig h t links point to th e ir postorder successors. An example of such a

structure is given in f ig u re ^ 5 - l , where the tree is made up of keys th a t

78
T H F S T ^ U C T U P F I S P I G H T - T H~ F ^ O F D

5 * 1 0 * 1 5 * P O * P S * 3 0 * 3 5 * 4 C * 4 5 * 5 0 * '■ 6 0 * 6 5 * 7 0 ’-'

0
1 0 0 T (- F C ' J I C K BFPWM F OX J U Y P F D n v F F T H F 1.4 7 Y D O G . î

* 1 * C * 1 0 1
L
L
L * * 1 * * * T H F Q U I C K EFCWN F O X ------------
L * 7 * 3 4 * 1 3 3
L * * 7 * * * T H E L A Z Y D O G «S ----------
L P
L P
* 2 * 3 * 1 0 5

L

L * * 2 * * * Q U TCK DROWN F O X J U M P ----------
L * 5 * 1 * 1 2 8
L R L
L R L
L R * * 5 * * * n v E P T H F L A 7 Y D O G . F
L R * 6 * 1 * 1 3 7
L R L.
L R L
L R * , * ^ f ^ ^ L A Z Y D O G . 3
L R * 5 * 1 * 1 P 1
L R * * 3 * * * J U D P F D O V " G
L R
L R
* 3 * 1 *

L
L

1 1 7

L * * 3 * * * F O X J U M P 3 D n V F P THF
L * Q * 1 * 1 4 2
L * « Ç * * * D O G « î

L P
L P
* 4 * 2 * 1 1 1
* * 4 * * * B P n w N F O X J U M ^ ç d O V F ----------

T l l - L A Z Y ----------

Figure 5-1. An example of a Right Threaded PATRICIA tree. Every
LLINK thread points to the orig inating node and every
RLINK thread points to the postorder successor (the node
on the lin e above).

79

begin at every word of the sentence:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Note that a thread always points to the f i r s t node encountered,

moving up the page. The usual, or "non-right threaded" structure,

which is b u i l t by inserting keys in the order in which they are scanned

(going from le f t to r ig h t) , is shown in figure 5-2.

Observe that when we build the structure with algorithm 2 .2 , the

positioning of the backward pointers is determined by the order in which

we insert the keys; thus, we could have attained our r igh t threaded

structure by inserting the keys in the order:

THE QUICK . . .

THE LAZY . . .

QUICK . . .

OVER . . .

LAZY . . .

JUMPED . . .

FOX . . .

DOG . . .

BROWN . . .

which is simply reverse lexicographic order. Figure 5-3 shows the struc

ture which results when the keys are inserted in the order given above,

using algorithm 2.2.

Unfortunately, we cannot always insert the keys in reverse le x i

cographic order; in fa c t , we p ractica lly never can e f f ic ie n t ly . Thus,

what we need is a new node insertion algorithm which w ill insure that

when we insert a new node, tfie "right-thread" property w il l be preserved.

80

5 *] 0 * 1 5 * 2 0 * 2 5 * 5 0 * 3 5 * * 0 * * 5 * 5 0 * 5 5 * OC * 5 ^ ^ 7 U *

0
1 0 0 T H F C U I C K 5 P 0 W N F OX J U M P F O OVEC THE l . A Z Y D O G . O

* 1 * 0 * 1 0 1
L
L
L * * 1 & * * T H F Q U I C K gnOWN F P X ----------
L * 7 * 34 * 1 3 3
L * * 7 * * * T H F L A Z Y D E G . O -------------
L R
L P
* 2 * 3 * 1 0 5

L
L
L * * 2 * * * 0 U I C K FROWN F OX J U M P -----------
L * 5Y 1 * 1 2 1
L P L
L R L
L R * * 6 * * * n V E P T H F L A Z Y 0 0 G . 0 -----------
L R * 6 * 1 * 1 2 3
L R L
L R L
L R ■*>■ 3 * * * L A Z Y O O G . 6 ----------
L R * 0 * 1 * 1 3 7
L R *>:■ 5 * * * J U V . P 3 0 OV. - r T H E 1. A Z Y ----------
L P
L R
* 3 * 1 * 1 1 1

L
L
L * * 4 * * * F . 0 X J U M O P O O V ' P T H ' - -------------
L * o * 1 4 ?
L * * 0 * * * E ' P G * E “— ----
L P
L P
* 4 * 2 * 1 1 7 .
* * 3 * * * B P n w N f o x ' J U M P E D O V E ---------

Figure 5-2. The tree of figure 5-1 as built by algorithm 2.2.

5 * 1 0 * 1 5 * 2 0 * 2 5 * 3 0 * 3 5 * 4 0 * 4 5 * 5 0 * 5 5 * 5 0 * 6 5 * 7 0 *

0
1.00 T H E Q U I C K T H E L A Z Y Q U I C K OV E R L A Z Y J U M P E D P C X OCG P o r w \ &

* 1 * C* 1 0 1
L
L
L * * 1 * * * T H E C U I C K T H E L A Z Y Q----------
L * 2 * 3 4 * 1 1 1
L # * 2 * * « t h E L A Z Y Q U I C K O V E R ----------
L . R
L P
* 3 * 3 * 1 2 0

L
L
L * * 3 * * * Q U I C K O V F P L A Z Y J U f / P ----------
L * 4 * 1 * 1 2 6
L R L
L R L
L R * * 4 * * * 0 V F R L A Z Y J U MP ED c r) x ----------
L R * 5 * 1 * 1 3 1
L R L
L R L
L R * * 5 * * * L A Z Y J U M P ^ n F O X DOG —
L R *. 6 * 1 * 13 6
L R * * 6 * * * J U r.'PED F OX D OG P F 0 >v D—
L R
L R
* 7 * 1 * 14 3

L
L
L * * 7 * * * r n x n o G BROwur.
L * a * 1 * 1 4 7
L * * a * * * O G G 3 5EWN&
L R
L G
* 9 * 2 * 151
* * 9 * * * B P C W N & ------

Figure 5-3. I f we use algorithm 2.2 and insert the keys in reverse
lexicographic order we get a Right Threaded tree . The
keys have been underlined in the text.

8 2

I f we look at algorithm 2 .2 , we see that the point where the

threads are created occurs at step 5. I f we insert a node, X, whose L+lst

b i t is zero, into a r ig h t threaded structure, then th is step w i l l cause

the LLINK f ie ld to point back to X. The value of the RLINK f ie ld w ill

depend upon oh type of structure the node belongs to. The four types

(where the I t b i t = 0) are given below. Let the father of X be de

noted by FX.

Type 1. X hangs from the le f t l in k of FX, and has no
righ t subtree.

Type 2. X hangs from the right lin k of FX, and has no
r igh t subtree.

Type 3. X hangs from the le f t l in k of FX, and has a
right subtree.

Type 4. X hangs from the right l in k of FX, and has a
right subtree.

(Remember, for a ll these types, the LLINK f ie ld of X points back to N

i t s e l f .) After making an insertion, the following structural changes w i l l

have taken place.

For type 1, RLINK(X) w i l l point to the same place that LLINK(FX)

previously pointed to, namely FX i ts e lf . Thus, RLINK(X) w ill point back

to FX, which is the postorder successor of X.

For type 2, RLINK(X) w i l l point to the same place that RLINK(FX)

previously pointed to, namely i ts postorder successor. But now, FX's

postorder successor has become X 's postorder successor (X having been

inserted to the righ t of FX).

For types 3 and 4, RLINK(X) will point to the root of X's subtree,

and the "rightmost" node of this subtree (the las t node traversed in

postorder) w ill s t i l l point to its postorder successor, even a f te r we

have inserted node X (which is actually the postorder predecessor to

the subtree).

83

Hence, types 1-4 are correctly handled automatically by algorithm

2.2 (assuming, of course, that the structure is r igh t threaded before X

is inserted). The real problem occurs when the L+lst b i t of X is "1",

and hence algorithm 2.2 would t ry to set RLINK(X) = X, which is forbidden.

Again, we have four types of structures to be concerned about.

Type 5. X hangs from the l e f t l ink of FX, and has no le f t
subtree.

Type 6. X hangs from the r igh t link of FX, and has no le f t
subtree.

Type 7. X hangs from the l e f t l ink of FX, and has a le f t
subtree.

Type 8. X hangs from the r ig h t link of FX, and has a le f t
subtree.

For type 5, step 5 of algorithm 2.2 would cause LLIhK(X) to point

to FX, and R L i r i K (X) to point to X. What we actually want is the re

verse of th is , namely, RLINK(X) should point to FX and LLINK(X) should

point to X. We may a lte r the LLINK-RLINK fie lds in th is manner, but

then we must swap the PTR f ie ld s of X and FX.

Type 6 is handled ju s t l ik e type 5, except tha t RLINK(X) should

point to the node that RLINK(FX) pointed to. Again th is requires that

the PTR fie ld s of X and of the node pointed to by RLINK(FX) must be

swapped.

For types 7 and 8, we must search for the node in the subtree

which points to the postorder successor of the subtree. For type 7,

th is postorder successor would be FX, and for type 8 , i t would be some

ancestor of FX. At any ra te , th is search is easily and rapidly ac

complished by going down the RLINK fie lds of the subtree until a back

ward thread is encountered. Again, PTR fie lds must be swapped; this

time between X and either FX (type 7) or the ancestor we found (type S),

84

Moreover, the backward thread which we found must be altered so that i t

points to X, which has become the postorder successor to its subtree.

The average number of searches required to find the postorder

successor of the subtree in types 7 and 8 is easily estimated for a

balanced tree of P=2n - 1 nodes. (A "search" in this case means simply

an inspection of the node to see i f i t has a backward RLIMK.) For such a

tree, the average number of searches required to access any node is well

known to be approximately log^P - 1 (Salton, 1958, p. 72). But the max

imum search path length, which is also the path length to a ll terminal

nodes, is 1092?. Hence, the average remaining number of searches is

the same as the remaining path length, or loggiP - 1) = 1. Since we are

only performing th is extra search when a node has an L+lst b i t equal to

"1", then the average number of extra searches required to build a Right

Threaded PATRICIA tree is approximately:

number of nodes in the tree

which is obviously an ins ign ificant additional cost. (This figure has

been v e r i t i fe d fo r several cases where n = 9 and 10.)

5.1.1 Algorithm: Create a Right Threaded PATRICIA Tree

The b r ie f algorithm given below w i l l accomplish the threading

process. I t is inserted in place of step 5 of algorithm 2.2.

Input: See algorithm 2.2.

Output: The updated Right Threaded PATRICIA tree

Step 5. I f the L+lst b it of K = 0, set LLINK(R) ^ - R,
RLINK(R) P*SIGN(T), go to step 6 , otherwise
set Y 4- P*SIGN('i) , Z 4- R.

85

5-1 I f Y > 0 then set Z ^ Y, Y + RLINK(Y),
repeat; otherwise, swap PTR(|Y|) and PTR(R),
then set RLINK(Z) -R.

5-2 Set RLINK(R) ^ Y, then i f T>0 set LLINK(R) P,
otherwise set LLIMK(R) -R.

Step 6. Etc.

END

The algorithm is quite short, and since the additional cost is so

s lig h t , a PATRICIA tree should always be Right Threaded. For one thing

the Right Threaded structure is a standardized structure. More importantly,

however, is that i t allows us to compress the PATRICIA structure con

siderably, as is seen in the following sections.

5 .1 .2 An Important and Immediate Consequence - Eliminating LTAG

Algorithm 5.1.1 is used with the version of Algorithm 2.2 that

represents LTAG, RTAG by the sign b i t of LLINK, RLIMK. I t would have

been ju s t as easy to construct a version that could be used with the

LTAG-RTAG version of algorithm 2.2 . Note however that i f the tree is

Right Threaded, we may immediately elliminate the LTAG f ie ld (or the

sign b i t of LLINK); fo r , i f we are given a pointer, X, that points to

a node in a Right Threaded PATRICIA tree , then the test

I f LTAG(X) = 1

Becomes simply

i f LLINK(X) = X

in which case, we know LLINK(X) is a thread.

On the other hand, we could just as easily have eliminated the

LLINK f ie ld whenever LLINK is a thread. In this case, we le t LTAG(X) = 1

86

indicate that LLINK(X) = X; and when LTAG(X) = 0, then LLINK(X) points

to a descendent. The real importance, however, of the r igh t threaded

structure, w i l l be seen in the next section.

5.2 Preoder Sequential Representation

Consider the tree il lu s tra te d in figure 5-4. I f we w rite out the

nodes in preorder, we get;

A. B C D E F G H I

Now, le t 's associate with each node a RLINK f ie ld whose value is X i f

the node has no r igh t subtree, and otherwise points to the r ig h t sub

tree of the node. We indicate this f ie ld with arrows and "X"s below.

RLINK
INFO.

X
A B

r r ~ i . I
D

X TX X
E F G

X
H

♦x
I

To complete the representation, note that i f a node has a l e f t

subtree, i ts root is immediately to the r igh t of its parent node. Ob

viously, every node (except the la s t) has another node to i ts r ig h t .

Hence, we must d if fe re n tia te between nodes with le f t subtrees and those

without. To do th is , we use the LTAG f ie ld ; i f LTAG(X) = 0, then X+1

points to the l e f t subtree of X and i f LTAG(X) = 1, then X has no l e f t

subtree. The complete representation, which is called Preorder Sequential

form (Knuth, 1958), is shown below (the "X"s have been omitted, and non

null RLINKS are indicated by arrows.)

RLINK
INFO
LTAG

n
A B
0 0

C
0

D
1

y
F G
0 0

y
H I
1 1

87

Figure 5-4. A Binary Tree

ff

8 8

5.3 Preorder Sequential PATRICIA

The technique just i l lu s tra te d may be u t i l iz e d to construct a

very compact ye t e ff ic ie n t PATRICIA structure. I f we assume that the

tree is Right Threaded, then v/e may create the Preorder Sequential

representation, in which an LTAG f ie ld of 1 means that the node has a

l e f t thread which, of course, must point to the node i t s e l f . Now, the

problem remains: how do we indicate a right thread? We could introduce

an RTAG f i e ld , and let"RTAG(X) = 1 " mean that RLINK(X) was a thread.

This is unnecessary, however. Recall that a preorder traversal w ill v is i t

a ll ancestors of a given node before the node i t s e l f is v is ited . Hence,

a r igh t thread of node X, which always points to an ancestor of X, has

the property:

RLINK(X) < X

that is , i t is numerically lower than the address of node X. Thus, i f

RLINK(X) > X, then RLINK(X) points to the right subtree of X; otherwise

RLINK(X) is a backward thread which points to the postorder successor of X.

The tree of figure 5.1 (which incidentally is identical in form

to the tree of figure 5-4) has been converted to preorder sequential

representation in figure 5-5. Note that the root (node #1) never has

a righ t subtree; this is always indicated by setting RLINK(l) = 0.

5.3.1 Algorithm: Traverse a Preorder Sequential Structure in Postorder

In order to effect many of the PATRICIA algorithms, particularly

to find a l l occurrences of a given key, i t is necessary to traverse a

portion of the tree in posborder. The algorithm below accomplishes

this for a Preorder Sequential structure. Assume that we wish to traverse

the subtree at X.

Node Location SKIP PTR LTAG RLINK TEXT (indicated by PTR)

1 0 101 0 0 THE QUICK BROWN - - -

2 3 105 0 9 QUICK BROWN FOX - - -

3 1 117 0 6 FOX JUMPED OVER - - -

4 2 111 1 5 BROWN FOX JUMPED - - -

5 1 142 1 3 DOG

6 1 128 0 2 OVER THE LAZY - - -

7 1 137 0 6 LAZY DOG

8 1 121 ' 1 7 JUMPED OVER THE - - -

9 34 133 1 1 THE LAZY DOG

Figure 5-5. The Preorder Sequential representation for the PATRICIA
tree of figure 5-1. Note that the tex t contains 100
leading blanks.

90

Input: X (a pointer to the root of the subtree we wish to
traverse).

Output: A postorder v is i t to a l l nodes in the subtree whose
root is at X.

1) Set Y ^ X

2) (Traverse le f t) i f LTAG(Y) = 0, set Y Y+1,
go to step 2, else go to step 3.

3) V is i t node Y,

4) Set Z -t- RLINK(Y). I f Z<X, e x it (we are done).

5) I f Z<Y, set Y ^ Z, go to step 3, otherwise
set Y + Z, go to step 2.

END

This algorithm has several nice properties. For one thing, i t

done not require the use of a stack. Moreover, the algorithm may be

used to find the postorder successor of any node. Simply set Y location

of the node, X ^ 1, and enter the algorithm at step 4; the f i r s t v is i t

is the postorder successor to node Y.

The algorithm was applied to the structure in figure 5-5; the

PTR f ie ld s of the nodes in the order they were v is ited are given below.

(I n i t i a l l y , set X 1 since we are traversing the entire structure.)

Physical location PTR f ie ld

4 111

5 142

3 117

8 121

7 137

6 128

2 105

9 133

1 101

91

5.3 .2 Can the Structure be U tilized?

The apparent advantage gained by squeezing away the LLINK and

RTAG fie ld s is merely academic unless we can u t i l iz e the structure.

Unfortunately, i t is extremely d i f f i c u l t to build or a l te r a tree in

Preorder Sequential form, for whenever we insert (or delete) a node,

we must l in e a r ly s h i f t part of the structure up (or down) and then pass

over the entire structure in order to f ix up the RLINK f ie ld s that refer

to the shifted area.

On the other hand, postorder traversal is , as we have seen, quite

nicely handled. Moreover--and much more importantly--we can e ffec tive ly

perform a PATRICIA search through the structure by a lte r ing algorithm 2.1.

This has been done in the algorithm presented below, which is s l ig h t ly

faster than algorithm 2.1 since the LLINK subscript has been eliminated.

I f we can then find a way of e f f ic ie n t ly handling a lterations to the

structure, we w i l l have established its p rac tic a lity . This process is

discussed in section 5 .3 .4 . F irs t we present the search algorithm.

5.3.3 Algorithm: Search a Preorder Sequential Structure fo r a Given Key

This algorithm very closely resembles algorithm 2.1. The same

explanatory remarks apply (section 2 .1 .1) .

Input: K, the number of b its in K (see algorithm 2 .1) .

Output: P (a pointer to the root of a subtree containing a l l
matches to K).

1) Set P 1, J ^ 0, N -t- number of bits in K.

2) Set Q P. I f LTAG(P) = 1, go to step 6
else set P P+1 (the l e f t subtree of
P is the next sequential node)

3) Set J J+SKIP(P). I f J > N, go to step 6,

92

4) I f the J+lst b it of K=0, go to step 2.

5) Set Q ^ P, P<- RLIMK(P). I f P>Q go to
step 3 (otherwise, RLINK(Q) is a thread).

6) Compare K to the key in the text pointed to
by PTR(P).

END

5.3 .4 Hov; to Handle Modifications

As has been pointed out, a lte r ing a Preorder Sequential structure

requires a t least one pass over the structure for each a lte ra t io n , and

hence, would be rather slow i f we had several changes to make. A

violent example is shown by the process of deleting the "A" from the

structure i l lu s tra te d in figure 4 -2 , thus getting the structure shown

in figure 4 -3 . Practically every node had to be deleted and reinserted:

i f this were done with the Preorder Sequential form, then each node

deletion could require a pass over the entire structure, the reinsertion

would require another pass, and th is would be repeated fo r every node we

had to delete and re in s e rt- -c le a r ly an in eff ic ien t process.

A bette r solution is not to do any altering at a l l . Instead, make

a l l a lterations to the fu l l blown Right Threaded structure; then when a ll

a lterations have been made, make one pass over the Right Threaded struc

ture to convert i t to the Preorder Sequential structure. This can be

easily accomplished i f we have an area in main memory large enough to

hold both structures. We simply traverse the large structure in pre

order and as we v is i t the nodes, we place them sequentially into the new

structure. The algorithm below w i l l do this.

93

5.3 .5 Algorithm: Convert a Right Threaded PATRICIA Tree to a Preorder
Sequential PATRICIA Structure

Assume storage space is available for both structures. We shall

d if fe re n t ia te between the two with a single quote mark (') thus, LLINK(X)

refers to a node in the Right Threaded tree , and LLINK'(X) refers

to a d i f fe re n t node, occupying d if fe re n t memory, in the Preorder Se

quential structure. The algorithm does not a lte r the Right Threaded

structure, and uses an aux ilia ry stack.

Input: A Right Threaded PATRICIA tree whose root is at
location one.

Output: A Preorder Sequential structure.

1) Set I + 0, stack the number zero,
set RLINK(l) 1. Traverse the right
threaded structure in preorder and postorder.
At each preorder v is i t to X, perform step 2
and at each postorder v is i t (which, of course,
comes la te r) perform step 3. After completing
the traversal, e x it .

2) (Preorder v is i t)
set I ^ I+ l , S K IP '(I) ^ SKIP(X)
PTR'(I) PTR(X), stack I .
i f LLINK(X) = X, set LTAG'(I) 1,
else set LTAG' (I) 0.

3) (Postorder v is i t)
pop stack into J. i f RTAG(X) = 1,
set RLINK' (J) value
currently on top of stack, e lse,
set RLINK'(J) = I+ l

END

5.3.6 Converting Over the Same Memory Space

The above algorithm works well enough; unfortunately, i t is not

very p rac tica l. For i t we had plenty of memory, we wouldn't need to

use the more compact Preorder Sequentical form to s ta rt w ith . Probably

the r ight threaded PATRICIA tree w i l l take up a ll available memory;

94

hence, i f we are going to convert to Preorder Sequential form, then

the conversion must be done d ire c t ly over the threaded structure, which

of course is then sacrificed. Unfortunately, the conversion cannot be

done in one pass, for as we move a node to i ts sequential location we

must swap i t with the node formerly contained in the sequential location,

and we have no idea where the father of this node is . (We must locate

the fa ther so that we can f ix up the appropriate RLINK or LLINK f ie ld) .

We can, however, e ffec t the conversion in 2 passes. The f i r s t

pass forms a doubly linked l i s t of the nodes in preorder and uses the

LTAG and RTAG fie lds to indicate whether a node has a l e f t or righ t

subtree.1 The second pass then recreates the proper value for the RLINK

f ie ld , and swaps nodes when they are out of physical sequence. The

rationale behind using the doubly linked structure is tha t i t allows us

to move nodes around with no d i f f ic u l t y .

5 .3 .7 Algorithm: Convert to Preorder Sequential form over the Same
Memory Space.

The two passes of the algorithm are presented below. Both use

a stack. A, and pointers. I , J, W, X, Y, Z, ATOP, and B. This is the

only storage requirement outside of the threaded structure.

Input; A Right Threaded PATRICIA tree whose root is at location one.

Output; A Preorder Sequential PATRICIA structure starting at
location one.

This is a linked version of the linear representation given in
Knuth (1963) p. 359, exercise 2. I t is perhaps the most compact form
possible, since both RLINK and LLINK are eliminated. Unfortunately,
except fo r the additional space saved, this form has l i t t l e practical
value here, for i t cannot be searched e f f ic ie n t ly , i t might be useful
for storing extremely compressed structures, i f auxilary bulk storage
were at a premimum. Usual ly, however, tiiis is not the case.

95

Pass One

1) Set ATOP ^ 0 , B + 0 , X + T.

2) I f RTAG(X) = 1 (I f X has no r igh t subtree)
go to step 3, otherwise
set ATOP <- ATOP+1,
A(ATOP) RLINK(X) (stack the r igh t subtree of X)

3) Set RLINK(X) + B, B + X (RLINK(X) now
points to the preorder predecessor)

4) I f LLINK(X) f X (I f X has a l e f t subtree)
set LTAG(X) + 0 , X + LLINK(X)
Go to step 2.

5) Set LTAG(X) 1 (Now get the preorder successor,
i f there is one, and point LLINK(X) to i t)
I f ATOP = 0 then set LLINK(X) <1, RLINK(l) <-X,
e x it . Otherwise set Z A(ATOP), ATOP ^ ATOP-1, LLINK(X) Z,
X ^ Z, go to step 2,

END

I f we apply tiie above algorithm to the tree of figure 5-1 we w il l

get the structure shown in figure 5-6. The nodes are more easily recog

nized by the f i r s t few le t te rs of the key pointed to by the PTR f ie ld ,

and the LLINK-RLINK f ie ld s are indicated by arrows.

We now make the second pass over the structure with the algorithm

given below. I t w i l l recreate the proper RLINK f ie ld at the same time

i t is forming the preorder Sequential representation.

Pass 2

1) (i n i t i a l i z e)

Set M , ATOP^'l, A(AT0P)^-0 Got to Step 3

2) (Linearize and go to next node)

Set J^LLINK(I), K I+ 1 . I f I>J

go to step 3, else

set RLINK(LLINK(I))+d

LLINK(RLINK)I))<-J

96

swap all f ie lds of nodes I and J

3) I f LTAG(I) fi, set ATOP ATOP+1,

A(ATOP)^I (stack the node and continue down the l e f t

subtree) go to step 2.

4) Set J<-I (We are going to find the proper value for RLINK(J)

5) I f RTAG(J)^1, go to step 7.

6) (RLINK(J) is a thread)

Set W^A(ATOP), ATOP+ATOP-1,

RLINK(J)4d, J-<T/ (RLINK(W) might also be a thread)

i f ATOP=0, e x it else go to step 5.

7) (RLINK(J) points to a r ig h t subtree, which is the next node

to be visited) Set RLINK(J)^T+1, go to step 2.

END

Step 2 is deceptive. I t " linearizes" the doubly linked l i s t in

what, at f i r s t glance, seems to be an obvious manner. Upon further exam

ination one w il l find that step 2 doesn't actually interchange nodes--it

garbages up the LINK fie lds in many cases (for example when LLINK(J)=1).

However, observe that step 2 does in fact work, as is i l lu s tra te d in

figures 5-7 through 5-9. One should note that the only permanently gar-

baged up f ie lds are LLINK and RLINK fie lds of nodes which are to be

encountered next; and these f ie ld s are not needed anyway. Also note that the

algorithm requires the tree to be "dense" in that i t occupies a contiguous

physical area. This w ill always be the case unless some deletions have

been made, which causes nodes to be returned to free storage. Thus,

the algorithms for finding space and freeing space, GETNODE and FREENODE,

use a doubly linked l i s t as explained in Appendix A.2.

A fter exiting from the second pass of algorithm 5 .3 .7 , the struc

ture of figure 5-6 will.have been converted to the structure of figure

97

Physical Location
o£Node

LTAG,RTAG,PTR,SKIP TEXT (indicated
E l PTR]

0 , 1 , 101,0

0,0,117,1

1 ,0 ,111,2

0,1,137,1

1 , 1 , 121,1

1,1,133,34

THE QUICK - - -

QUICK - - -

FOX

BROWN -

DOG

OVER - -

LAZY - - -

JUMPED

THE LAZY

Figure 5-6. Pass 1 creates this from the structure of figure 5-1
The LLINK and RLINK f ie ld s are used to form the
doubly 1 inked l i s t .

98

old i

i^ i+1
LLNK(i)

Figure 5-7. The special situation where LLINK(j) = i .
The contents of the nodes are indicated by the
le tte rs Q, R, S, and T. Their physical locations
are given by the le t te rs i , j , and x. The LLINK
f ie ld s emanate from the lower right side of the
nodes.

99

Figure 5-8. The important link fie lds during step 2 of
algorithm 5 .3 .7 , pass 2, just before "Swap
all f ie ld s of nodes i and j . " Note that node
seems to be hopelessly disoriented.

100

Q

Figure 5-9. After step 2 of algorithm 5.3.7 has been
completed, node i contains the proper information
and LLINK(j) correctly points to node x.
All other link fie lds are irre levant.

101

5-5. The RTAG and LLINK fie lds are no longer needed and may be used

for other purposes.

5.4 A s l ig h t ly Different Version of the Preorder Sequential Representation

We may find i t more convenient to represent LTAG and RLINK simply

as a single signed LINK f ie ld , part icu la r ly i f we were using signed

RLINK-LLINK fie lds to s ta rt with. In this case, we may easily rewrite

the search and traversal algorithms; however algorithm 5 .3 .7 is a l i t t l e

more d i f f i c u l t to a lte r . The converted algorithms are given below.

5.4.1 Algorithm: Search Through Structure with Combined RLINK-LTAG

This is a converted form of algorithm 5 .3 .3 .

Input: K, number of bits in K.

Output: P (a pointer to the root of a subtree containing a l l
matches to K).

1) • Set P ^ 1, J ^ 0, N number of bits in K.

2) Set Q -t- P. I f LINK(P)< 0, go to step 6, else set P P+1.

3) Set J J+SKIP(P) i f J> N, go to step 6.

4) I f the J+lst b i t of K is 0, go to step 2.

5) Set Q ^ P, P +|LINK(P)| . I f P go to step 3.

6) etc. (same as algorithm 2.1)

END

5.4.2 Algorithm: Postorder Traversal of Structure with Combined RLINK-LTAG

This is a converted form of algorithm 5 .3 .1 .

Input: X

Output: V is i t a l l nodes in the subtree whose root is at X.

1) Set Y X.

1 0 2

2) I f LINK (Y) > 0 set Y ^ Y + 1 repeat step 2.

3) V is i t node Y.

4) Set Z ^ LINK (Y) i f Z < X e x it .

5) I f Z < Y set Y ^ Z go to step 3, else set Y ^ Z go to step 2.

END

5 .4 .3 Algorithm: Transform Right Threaded Structure to Preorder
Sequential Form with Combined RLINK - LTAG

This is a converted form o f algorithm 5 .3 .7 . Note th a t we must

be careful not to destroy the sign b i t of the RLINK - LLINK fie ld s while

the doubly linked structure is being linearized (step 7) . Also, Pass One

and Pass Two have been combined into a single rather long algorithm.

The RLINK f ie ld is the f ie ld which eventually becomes the LINK f ie ld ,

and the LLINK f ie ld is freed. I n i t i a l l y , assume (as before) that a neg

a tive LLINK or RLINK f ie ld indicates a thread.

Input: A Right Threaded PATRICIA tree whose root is at location 1
(See algorithm 5 .3 .7)

Output: A Preorder Sequential PATRICIA structure s tart ing at
location 1.

1) (Pass one) set ATOP ^ 0, B -̂ -0, X -e- 1.

2) I f RLINK(X)< 0 go to step 3, else set
ATOP 4- ATOP + 1, A(ATOP) ^ |RLINK(X)|.

3) Set RLINK(X) ^ B*SIGN(RLINK(X)), B ^ X.

4) I f |LLINK(X)| f X, set X ^ LLINK(X), go to step 2.

5) I f ATOP = 0 , then set LLINK(X)^ -1 , RLINK(l) ^ -X,
go to step 6, else set Z -t- A(ATOP), ATOP ATOP - 1,
LLINK(X) + - Z , X + Z, go to step 2.

6) (Pass two) Set I 1, ATOP 1, A(ATOP) 0 , go to step 8.

7) Set J ^ |LLINK(I) |, I - I + 1.
I f I>J go to step 8, e
J*SIGN(RLINK(
J*SIGN(LLINK(

LLINK(I)
RLINK(I)

se set RLINK (
)) , set LLINK (

LLINK(I)
RLIMK(I)

)
)

)) . Swap a ll f ie ld s of nodes I and J.

103

8) I f LLINK(I) >0 set ATOP ^ ATOP + 1, A(ATOP) ^ I , go to step 7.

9) Set J ^ I .

10) I f RLIMK(J) >0 go to step 12.

11) Set K ^ A(ATOP), ATOP ^ ATOP - 1, RLIHK(J) K*SIGN(I.LINK(J)),
J <- K. I f ATOP = 0 e x i t , else go to step 10.

12) Set RLINK(J) + (I+ l)*SIGN(LLINK(J)) , go to step 7.

EMD

The above algorithm w il l transform the tree of figure 5-1 into the

structure of figure 5-10 instead of the structure of figure 5-5.

5.5 Further Compression

At the expense of an additional disk access when we are looking

at a specific position in the te x t, we may eliminate the PTR f ie ld from

the node and place a table of PTR f ie ld s on disk along with the text.

I f the table gives the PTR fie lds in the order corresponding to the

location of the nodes, i t is then a simple matter to use the address of

a node to access the proper PTR f ie ld ; then, the PTR f ie ld is u t i l ize d

in the usual manner to pick up the proper text from the disk. Moreover,

note that a l l the nodes of a subtree follow immediately below the root.

For example, the node in location 3 (Text = FOX...) is the root of the

subtree containing the nodes in locations 4, 5, and 6.

Thus, i f we have a match with several keys, and have a buffer

area large enough to hold, say, N PTR f ie ld s from disk, then we may

access the disk once to pick up the PTR f ie ld s , and as long as the sub

tree contains no more than N nodes, we only need to access the disk

whenever we pick up the actual tex t. Hence, i f we have N matches for

a key, we need only access the disk N+l times. (The usual method would

have required N accesses).

Physical Node Location SKIP PTR LINK TEXT

1 0 101 0 THE QUICK - - -

2 3 105 9 QUICK BROWN - - -

3 1 117 6 FOX JUMPED - - -

4 2 111 -5 BROWN FOX - - -

5 1 142 -3 DOG

6 1 128 2 OVER THE - - -

7 1 137 6 LAZY DOG

8 1 121 -7 JUMPED OVER - - -

9
•

34 133 -1 THE LAZY - - -

Figure 5-10. Preorder Sequential form with LTAG and RLINK combined.

105

5.6 Conclusions - Advantages of the Compressed Form

The main points of this chapter are summarized below.

1) We have reduced the PATRICIA node in size from the following

structure:

L R L,
PTR SKIP I T

A
G G

L
K

to th is one:

2) We have speeded up the search process by eliminating one of

the subscripts.

3) We have not s ign ificantly slowed down the text accessing process,

p a rt ic u la r ly when there e x i s t multiple matches to the same key.

106

6.0 Practical Applications

Some real and potential applications are now given which employ

the algorithms presented in the previous chapters. Note that the table

of contents for this dissertation, as well as the l i s t o f i l lu s tra t io n s ,

l i s t of algorithms, and index, were a l l prepared using PATRICIA: spec

i f i c a l l y algorithms 2 .1 , 2 .2 , 2 .3 , 3 .1 , 3 .2 .1, and 3 .3 .2 . F i rs t , a deck

of cards v/as punched where each card contained e ither a chapter or sub

chapter heading, or a figure caption, along with the page number con

taining the particular heading or figure. Selected words were flagged

as keys; for example every chapter or subchapter number, every occurrence

of the word "ALGORITHM" in algorithm subheadings, every occurrence of

words such as "TREE", "NODE", "LTAG", etc. To create the l i s t of i l

lustra tions, the key "FIGURE" was searched for. The table of contents

was l is te d by searching for the keys "1 ." , "2.", etc. Then the subtrees

containing the keys "FIGURE", "1 ." , "2 ." , etc. were deleted from the

structure, and a search was made for the null key, which caused a l l

remaining keys to be l is te d . This forms the index, which does not

duplicate chapter and subchapter headings, or the l is ts of figures and

algori thms.

6.1 A Hypothetical Medium - Scale System

Let us assume that we have a f i l e of 20,000 documents, where each

document represents an abstract, a dossier, a student record, or some

sim ilar thing. Let us .further assume that each document contains up to

107

500 words of about 10 characters each, and contains an average of 5 keys.

Thus, our structure would consist of a text o f 100,000,000 characters,

(which w i l l be stored on bulk storage devices such as IBM 2314 di^ks),

and a PATRICIA tree of 100,000 nodes. The individual node in the PATRICIA

tree would have the following b i t requirements:

PTR f ie ld - 27 bits (PTR < 100,000,000)

LLINK f ie ld - 17 bits (LLINK < 100,000)

RLINK f ie ld - 17 bits (RLINK < 100,000)

LTAG, RTAG - 2 bits

SKIP f ie ld - 12 bits (assume a string of
500 identical characters in any two
keys, or 4000 b i ts)

This amounts to 75 b i ts , or 10 bytes (rounded to the next byte),

or one million bytes for the PATRICIA tree. The node for the Preorder

Sequential form of section 5.5 would have the b i t requirements given below:

LINK f ie ld - 18 b its (jLINK| < 100,000)

SKIP f ie ld - 12 bits

which is 30 b its , or 4 bytes, or 4G0K bytes for the en tire Preorder

Sequential structure. In addition, the PTR f ie ld would require 27 b i ts ,

or 4 bytes, or 400K bytes of disk storage fo r the e n tire PTR table.

Thus, PATRICIA would use (400 + 300 + 1000)K bytes of disk storage

which amounts to 1.7% of the en tire f i l e . Building the PATRICIA struc

tures would require an amount of time not much greater than 2*100,000*X,

where X represents the average access time to the disk (see Appendix C).

Two disk accesses are required for each key inserted into the tree. I f

we assume that X = 75 milliseconds (the average access time fo r a 2314

d is k) , we note that none of the algorithms involved in the building

108

process (2 .1 , 2 .2 , 5 .1 .1 , 5 .4 .3) require an amount of time per key

that is anywhere near the time used by disk accesses. Thus, the PATRICIA

structures would be b u i l t in about 72'2-100000 milliseconds = 15,000

seconds or about 4 1/2 hours.

The user would run in either "update" mode or "query" mode. In

update mode, a lterations are made to the PATRICIA tree or to the actual

tex t. After a l l a lte ra tions have been completed, the new version of

the Preorder Sequential form is b u ilt ; this structure, along with the

tree , is then w ritten out on the disk. In query mode the user works

with the Preorder Sequential structure, which could run in a m u lt i

programming environment since i t requires so much less space than the

tree.

6.1.1 Boolean Operations

For most applications the user wants the capability of asking for

specific combinations of keys; for example, he might want to find a l l

keys that s ta rt with "ANT" except "ANTLER" and "ANTECEDENT." Or he might

want to retrieve a l l documents that contain both of the keys "CHEMISTRY"

and "CRYSTAL."

The construction of a particular Boolean query editor is easily

accomplished for PATRICIA, since we can quickly find a l l the subtrees

fo r the keys contained within a Boolean expression. For example, i f we

wish to eliminate "ANTLER" and "ANTECEDENT" from our query for "ANT",

v/e simply traverse the subtree of keys that s ta r t with "ANT", but we

do not v is i t e ither of the subtrees of keys starting with "ANTLER" or

"ANTECEDENT", which are both contained in the larger subtree for "ANT."

To find only those documents containing both of the keys "CHEMISTRY" and

"CRYSTAL" we look a t the PTR fields of nodes in the two subtrees, and

109

only keep entries which point to documents that are present in both.

6.2 Another Application - CALL FOR ACTION

The tex t program of Appendix B was used to create a key word index

to re fe rra l f i le s for the Oklahoma branch of CALL FOR ACTION, which is

based in Oklahoma City at te lev is ion station KWTV, channel 9. The data

was gathered by a graduate student in Library Science at the University of

Oklahoma, who prepared the cards in a rather unrestr ic tive format that

was most comfortable for her. She tagged key words with asterisks, and

indicated the end of a p art icu la r "abstract" by punching a "1"; then

she continued immediately with the next record (on the same card i f she

wished). At the time of th is application, the program maintained a ll

tex t in core, which imposed a 32767 character re s tr ic t io n . Nevertheless,

th is was su ffic ien t to permit the run. Two runs were made, each con

s isting of about 1000 keys and 25000 characters of tex t. In the process

of preparing the data, a mistake in one of the texts was corrected by

punching a tex t a lte ra tion card, which was entered a fte r the entire

structure had been b u ilt .

To l i s t a l l the keys, a search was made for the null key. The

en tire run took about seven minutes on a 360/50, with 15 copies of the

prin tout being produced. Some of the output is i l lu s tra te d in figures

6-1 and 6-2.

6.3 Some Useful D irty Tricks Involving Comparison Strings

We can guarantee that the number of identical characters in a

comparison between two keys is held to a reasonable l im i t . The usual

way to do this is to give each document a unique terminating symbol in

the form of some catalogue code number. This insures that the maximum

t h c c n w ^ L * ’

1 o n
r o " '
1 0 -)
4 on
son
f , 0)
/ o n

no)
o n)

tool
% : o n
1 .vn n
I T ') ' »
I 4 nn
1 son
I son
I 7 n .-)
J MO)
toon

? n o n
P I n n
p.^nn
? t o o
P4on
psno
psnn
P 7 0 0
?0 0)
poon

s o * S 3 » 7 0 » 7 5 » 8 0 » 0 3 » 9 0 » 9 5 » 1 0 0 »

1 A r . m c u L T s o e - o k l a h o

• A O r n T : :>r | Mr_r» T o f - A S I W A I , I u n U S T U Y 0 l V I 3 1 t ; N | AG- ' I C U L T U R E - O K L A H O M A C M ° L O Y M F N T S E C U R I T Y C O M M |
' ; > 1 C G - i . a m- v . ^ A I A ' . I M L A r n n r T p O R T (i n r o) 1 A O R I C U L I ' ^ R C - Fwn A»- .nuA c t ^ t p I . M V C R S I T Y - C O O P t - O A T I V C t x

T J S M . ^ J Si ? Y i r K I A I . C (D ^ F L I S M - Al . C Tjt I Si . I C S A N C N Y M D U 3 , I N C . | A L C O H S L I 5M - C C N T P A L O K L A H O M A A L C H H / I L T 9
r A : 4 \ T r C N i i .* | a l c s ' h . i s m - c a p (C c.^’ v u m t y A r r i n s p ' ^ o g r a .v c p O k l a h o m a c i t y a n o c o u n t y , i n c .) I a l c

f ' * - U r , M - c NT N Al . S f A T L c w I F » I n M V ' m ,<‘j a L H l S ^ T T A L , NO- OMa N , O M . A M n M A | A L C O H O L I S M - C O Y N H C A M P O f . L L HO
S > i r A l i A l C P m O L I S M - O t . N ' . ' P A L i N F O S M A f l O N - A M p) ; C A N M E D I C A L A S S O C I A T I O N) A L C O M O L I SH - I N O I A N O E V C L

I . ? ') * i H A O * A 3 * 3 Ü * 3S » 6 0 » 6 S * 7 0» 7 5 » n o » 0 5 » 9 0 » 9 5 * 1 0 0 »

.\C 1 L

KC
A .

Pi. Cr
n< 1. A'

: r ' - i j i V, I 'M:. \ a l CShsl I sm - main c <
:> A !.'nul .M - CKC I ALCSHfJL IS'** - OKLAHOMA O iP/.PTM

C S t u I - S U N ' H : AM H d v r A s n F A M I L Y S \ l . 'V I CL - n < c I
S ' I AT UH A ' . C ' l H N L t S M I N C K L A H l ' M A - O K L A H ' f A

I r - . L • M s T i . l A . " - V L i r S A N S I
1 riry r c i j ' | ammals - ccntrfl of ones I

- (. I TV \ f , l N " IT S J

i H A C l I Y " 0 ; ND 1 A N I M A L S - C L n T I ^ O L O f - S 0 C 3
- ' . i\ I f. n I s] ANivALS - C'n.r-̂ .u. nr - pats

•t - SN/" c SkS’ijM A\n Pl.’lSCN CDNTKOL. | ArUtALS -

L A » . (: * ' A C I T Y I A L C C M I L I SX - SKLAHCJva C I T Y C OU
I N T r r . M u N T A L H E A L T H - 0 1 V I S I O N OF A L C O H O L I S

A L C O H C L I S M - r P F A T M L N T - D U U C T O P Y C f ' H: SOU
S T A T E D F P A P T. MKNT OF H E A L T H | A L C O H O H S M - V .

I AN I MA L 5 - A H A N D O N M C N T O F - L A W S . S T A T U T E S , E

A N I M A L S - CDNTROL of - C A T S | A N I M A I . 3 - COnTW

I A N I M A L S - C O N T P D L Ü F - H O G S -
- n L A H i n MA C I T Y A N I M A L W E L F A R E D I V I S I O N | AN!

1 A M M A L S - C O N T R O L O F - S K U N K S) A N I M A L S - C
O I S P S ' . A L n r - L A W S . S T A T U T E S . E T C , - O K L A H O M A

t'J* 3 J* f) 0 J- 6 5 * 7 C » 73» 3 0 * 83» 90* 95» iOO*

c : w
or A . :

. I ' : ' -

r 'lOA.
T N T 1
n -v Î • <•
V (' r t: .• t

OL I . - :
I ftj.

.. . 1 H A L S - D I S P O S A L OF - O K L A H C V A i r X ,
- \ N l j ^ . L t N O ' . i S T R Y D I V I S I O N 1 I ' S \ L 3 - P

I A N I M A L S -■ P D O f C L T I F N OF - V P L U N T C f R ' . F O
AN I U 3 I I / H . I . V A L S - V<: T \ H I *i AH I A ' i S - S

' T I ' j N - O K I A H : : MA C I T Y | a n i m a * . ; ; - w K . '
c H N S . R V A T I ON I A D ' ^ I . D F 0 ^ 6 1 S - S L l f C T l V F S|
: I :-nc.:s - vfiîôans - a‘-*{.k;can nati.o al •

^ n . ' i K S I ANIMALS - OKLAHOMA STATt OrPA.OTMLNT

• on . cTiOfj or - a n i m a l p r o t e c t i o n l f . a g u r a n d h
-V A'J I M ,\L V/ELFAPr , I n C . \ A N I M A L S - V f T C Q I N A I R A
TAT.- Vc* TOR I N A P I A N S A S S O C I A T I O N j A N I M A L S - W %
■'I : r i . c n N S f p v A T i O N - c k l a h o v . a s t a t k n t P A n i M C x
,vicr INFOPMAT ION AND Of,'AF

O Cr MSS I AF'Mi'.n FTRCFS - v é t é r a n s - E 'DLOY'1
\) i n . > c - s - V L i i R A N * . - r - - ; * n * D A L o r \ r r 11 s ' h r

’.RATION Sr / vl CF I APMro F O.NCL S - VFTFRAM. -

J - V l T L R A ' f S A.-jM I N Î 3 T 9 A T I C N O F F I C C - 3 ' : N F G A L

iTTDANS AND Dc PL NDhN T S - V L T C R A N S A D M I N I S T R A T !
. A . H /) S D J f A L - H F A L TM S t P V I C F S | A R M E O f O f CC S -

) F R R . \ L S 1 ARM.%1) F O n c C S - V E T E R A N S - V L T C D A N S D

»0* 2 3 » 3 0 » 40» A3» 5 0 » •33» 60». 65» 70» 73» 80» 85» 90» 9 3» 100»

approx,

C A P O

NUMBER

12
3

4
6
7

0
9

1 1 12
APPROX,

CARO

numocr
I J

1 4

16
1 7

1 a
1 9

2 1
22
2 3

24

APPROX.

CAPO
NUMHFP

26
27
28

29

31

32

.13

34

36

37

A P p n o x ,
CARO

NUMtlLR

Figure 6-1. Some tex t of the Call fo r Action f i l e s . The tex t was punched
in free form, with vertica l bars between "abstracts". For
updating purposes the approximate card number is given.

w c c n s a n d T R A S h - C l K L A H r j M A C I T Y C O U N C I L

E N V I U 3 N ' ^ ! : N T - W E E D S A N D T R A S H - O K L A H O M A
C I T Y C - 3 U S C I L

23261

AND TPASH - fJKLA/HOMA CITY-COUNTV Mg ALT H DEPART VI N

LNVIDCNXKNT - WEEDS AND TRASH - OKLAHOMA

CITY-CO'JNTY health DEPARTMENT

*El FADC - DEPART ICNT OF INSTITUTIONS. SOCIAL ANU RGHAfU

CHlLOPf.rJ - welfare - DEPARTMENT OF I f: ST I TUT I ONS •
SOCIAL AfJO REHAei LIT AT IVE SERVICES (D I SR S)

7966

w e s l f y a n y d l t h I r . ' C . . 0 < C

C H l L D F r . N A N D J U V E N I L E S - G U I D A N C E A N D C O U N S E L I N G
L I OYS - W E S L E Y A N Y O U T H I N C . . O K C

WILDL IFF CONS C i.V AT ION

A N I M A L S - y l L O l . I F C C O N S E R V A T I O N - O K L A H O M A
S T A T E o r f ‘ AN TM.r .N T O F V / I L O L I F E C C NS C R V A T I ON

W T L O l . I l T C I NS . R V AT I C N
^ N V I R C N M L ' n T - A G E N C I E S A N D A S S O C I A T I O N S

- l' - : l AM i m a S T A T E O c P A R T . V E N T O F W I L D L I F E
C C N S C » ' V A T I ON

W I L D I . I F F C P N - . F R V A f l O N - O K L A H O M A C I T Y 7 .0 0

A N : V A L S - w i l d l i f e c o n s e r v a t i o n - O K L A H O M A
C I T Y / n o .

VILDLIFF CONSERVAT ION - CKLAHCIVA STATE DEPARTMENT OF .«I

A N I M A L S - w i l d l i f e C O N S E R V A T I O N - O K L A H O M A
S T A T E D C P A N T m C N T C F W I L D L I F E C O N S E R V A T I O N

WO N D E R H O U S E D A Y C A P E C E N T E R - s r) R M A N
C h I L ! > P F n - D A Y C A R E S E R V I C E S - W O N D E R

H O U S E D A Y C A R E C E N T E R - N O R M A N

2 5 0 6

2 0 5 0 0

2399

5475

Figure 6-2. Some of the output produced for Call for Action. The keys
appear at the l e f t . Every key is printed, along with the
entire abstract fo r that key. The 4 or 5 d ig i t number
at the r igh t gives the PTR f ie ld for the pa rt ic u la r key;
thus we can re fe r back to the tex t (f igure 6-1) for up
dating purposes.

112

length of identical keys is lim ited to the size of the document. Of

course we would have l i t t l e use for identical documents, so in actuality

the identical character strings would be much smaller. Thus, in the

example of section 6 .1 , we assumed no more than 500 identical comparison

characters in each document of (no more than) 5000 characters.

I f this l im it is exceeded, we may under certain circumstances

employ a d iffe ren t method to lower the number of identical characters in

two or more keys. The method requires that we insert a non-printing

character somewhere in one of the identical strings. This character

should be placed so that i t conforms to the following c r i te r ia :

1) I t is placed in an inoffensive spot, such as between two words,

2) I t is fa r enough ahead of the start of any key so that i t

w ill not in terfe re with a query. (30 or 40 characters ahead

should be s u f f ic ie n t .) The choice of where to put such a

symbol should be made during the building phase.

This special character could also be used to a l te r the overall

structure of the PATRICIA tree in an attempt to make i t more balanced,

although most practical applications involve tex t that e ither produces

reasonably well-balanced structures, or does not have the suffic ient 30

or 40 characters between the s ta r t of any key and the spot a t which we

might want to insert our special symbol. Nevertheless, i t is intriguing

to reca ll the example of figures 4-1 through 4-3 , where a single well

placed character d ras tica lly restructured the tree . Unfortunately, i t

also caused the keys ahead of the a lteration to be changed.

6.3.1 Using a Terminating Symbol to Limit the Scope of Text Alterations.

The special terminating symbol mentioned in section 6.3 also

113

serves to p a rt it io n the text into small un its , or "books" (Morrison

1968). This is very practica l, fo r i t means that a given tex t a lte ra t io n

w ill a ffec t only the particular book where the a lteration is being made.

I f we allocate on disk extra vacant space fo r each book, then we can

change the affected area without having to push other unaffected books

around. Moreover, i f we can hold an entire book in a memory bu ffer , then

only one access to the disk is required for any a lteration (or group of

alterations) made to a book.

114

A.O APPENDIX - OTHER ALGORITHMS

This appendix contains algorithms which, though not specifica lly

germaine to PATRICIA, are useful to (or are required by) some of the

algorithms presented in the preceding chapters.

A .l Algorithm: Get a node from an available l i s t

This algorithm gets a PATRICIA node from an available l i s t of nodes

(Knuth 1968, p. 254). I n i t i a l l y the l i s t is sequential, consisting of

M availab le nodes. Also, i n i t i a l l y le t MARKER = 0, TOPFREE = X. The

algorithm w ill ex it with pointer X pointing to the next available node.

(The nodes are linked together by the ir LLINK fie ld s when they are re

turned by A .1.1 below.)

Input: X (A pointer as yet undefined).

Output: X points to an available node.

1) I f TOPFREE f X, set X ^ TOPFREE, TOPFREE ^ LLINK(TOPFREE),
e x it .

2) I f MARKER = M, no space is available, else set MARKER <-
MARKER + 1, X ^ MARKER, e x it .

END

A. 1.1 Algorithm: Return a node to an available l i s t .

This algorithm returns a PATRICIA node to an available l i s t . The

nodes w i l l be linked by th e ir LLINK fie lds . Assume the node being re

leased is pointed to by X.

115

Input: X (a po inter).

Output: Node X has been freed.

1) Set LLINK(X) TOPFREE, set TOPFREE ^ X, e x i t

END

A.2 Algorithms for a doubly linked available l i s t .

The algorithms of section A.l have been rewritten so that they

u t i l i z e a doubly linked l i s t . A l i s t head is set up a t location M, the

high order memory location. The l i s t head is chosen to be there so that

i t won't c o n f l ic t with the PATRICIA tree. The l i s t is unlinked to s ta rt

with, and is only linked up as nodes are returned to free storage. This

guarantees a "dense" structure in that a ll nodes are members of doubly

linked l i s t s . In other words, i f X equals the location of the highest

physical node in the PATRICIA tree , then for 1 <^1 £ X, node (I) is a

member of e ither the doubly linked available l i s t or of the tree (which,

a fte r the application of algorithm 5 .3 .7 , pass 2, is in the form of a

doubly linked l i s t .) I f th is were not the case, then algorithm 5.4.3

could f a i l in step 7 whenever node (I) contained ir re le v an t or random

RLINK or LLINK f ie ld s .

The algorithms are presented below. Assume that MARKER in i t i a l l y is

set to 2 (because location 1 is reserved for the root of the PATRICIA

t re e) . Again, le t M be the highest available memory location as well as

the l i s t head. Thus, i n i t i a l l y , we set RLINK(M)=LLINK(M)=M.

A.2.1 Algorithm: Get a Node from a Doubly Linked Available L is t .

Input: X (a pointer as yet undefined.

Output: X points to an available node.

1 1 6

1) I f LLINK(M)=M, go to step 4.

2) Set X^RLINK(X).

3) Set LLINK(RLINK(X))^-M
RLINK(LLINK(X))^RLINK(X), ex it .

4) I f MARKER = M-1, overflow, else
Set MARKER MARKER+1, X MARKER, e x it .

EMD

A .2.2 Algorithm: Return a Node to a Doubly Linked Available l i s t .

Input: X (a pointer).

Output: Node X has been returned to free storage.

1) Set LLINK(X)+M, RLINK(X)^RLINK(M)

2) Set LLINK(RLINK(M))^-X,
RLINK(M)+X, e x it .

END

A .3 Algorithm: Print a Tree.

This algorithm f i r s t finds the level of a node. The tree w ill be

printed on i ts side, with the root a t the l e f t . Let N horizontal spaces

ex is t between each level on the printout. The le v e l , L, of a node w i l l

be given by the number of entries in the sequential' stack used for the

traversal. Only one node w i l l be printed on a given l in e . We shall

have P vertica l spaces between nodes.

The rules for drawing the tree are given below. At each "v is it" to

a node, space out P-1 lin e s , printing and "0". Then (where required

as defined la te r) :

1) Write out the INFO f ie ld starting at l in e position L/N+1 (assume

INFO is the information we wish to see, and occupies at least N

positions).

11 /

2) I f the node a r ig h t subtree, s ta rt printing a vertical

l in e ("*") at position L * N, otherwise, s ta r t printing spaces

at position L * N. (Assume the root is not a r ig h t subtree)

3) I f the node has a l e f t subtree, s ta rt printing a vertical l in e

at position (L + 1) * N, otherwise s ta rt prin ting spaces.

(INFO fie lds take precedence over any lines; i . e . , don't print

an i f i t ob lite rates information.)

These rules are implemented as follows:

Assume ATOP points to the top of the stack, A, which is used by the

algorithm below; then, at a v is i t to node (X):

1) ATOP gives the level of node X.

2) I f ATOP f 0 (I f we are not looking at the root) and i f , for

node (X), RLINK(A(ATOP)) = X (The node at the next numerically

lower level points to node (X)) , then node (X) is a right sub

tree ; print at l in e position L*N.

3) I f LLINK(X) f X , than node (X) has a l e f t subtree. Print

at (L + 1)*N.

The en tire algorithm is given below:

Input: TOP, the pointer to the root.

Output: The printed representation of the tree.

1) Set X 4- TOP
ATOP 0.

2) I f X = X, go to step 4.

3) Set ATOP ^ ATOP + 1,
A(ATOP) ^ X
X <- RLINK(X), got to step 2.

4) I f ATOP = 0, e x it , we are done
else set X A(ATOP), ATOP ^ ATOP-1

118

5) I f X < 0 go to step 4

6) " v is i t" node X

7) Set ATOP ^ ATOP+1, A(ATOP) ^ X,
X LLINK(X), go to step 2.

Step 6 is now expanded:

(I n i t i a l l y , set skeleton l in e , S, = a l l "#")

6-1) Write out S (l) through S(N*ATOP), then a ll node information,

starting at N*AT0P+1.

6-2) I f ATOP f 0 and RLINK(A(ATOP)) = X, move "|5" to S(L*N) (node

X is a righ t subtree) else move "fci" to S(L*N).

6-3) I f LLINK(X) X, move to S((L+1)*N) (node X has a l e f t subtree)

else move to S((L+1)*N).

6-4 Write out S a total of P-1 times.

END

11 y

B.O APPENDIX - THE TEST PROGRAM

The algorithms described in chapters 2-5 have been tested by writing a

PL/I program in which there is a close correspondence between PL/I code

and the algorithms wherever possible. Details of the program's operation

are given in section B . l , and the source l is t in g , as well as some sample

input and output, is shown in section B.2.

B.l The F a c i l i t ie s of the Program

The tes t program has the c ap ab il ity of performing the functions

l is te d below.

1) Read text and create a PATRICIA tree (e ither Right Threaded

or unthreaded).

2) Display a PATRICIA tree and/or the tex t.

3) Search for a key and l i s t a l l matches.

4) Delete a node from the t re e , (or delete an e n t ire subtree).

5) Delete or insert te x t.

6) Convert from a Right Threaded tree structure to Preorder

sequential representation.

B.1.1 Read Text and Create a Tree.

The f i r s t data to follow the //GO'SYSIN card is of the se lf explana

tory form given below.

♦HERE *13 *SOME SAMPLE *TEXT. *THE ASTERISKS INDICATE *THE *STARTING

POINTS FOR *KEYS AND ARE NOT STORED. AT THE CONCLUSION OF THE TEXT,

120

♦PUNCH *AN AMPERSAND IF YOU WANT *THE *STRUCTURE TO BE UNTHREADED,

OR A DOLLAR SIGN IF YOU *WANT IT TO BE *THREADED. *THIS *TREE WILL

BE RIGHT *THREADED. THE TEXT CONTINUES FROM COLUMN 80 OF ONE CARD TO

COLUMN ONE OF THE NEXT.I

After reading the text and creating the tree , the program w ill allow

one to perform any or a ll of the functions B . l . 2 through B . l . 6. For

each of these functions, leading blanks are ignored.

B . 1 . 2 Display the Tree and/or the Text.

To display both the tree and the tex t, type a " !" . To display only

the tex t, type a " |" . The tree is drawn on its side with the root at

the l e f t . LLINK fie lds are indicated by "L"s connecting nodes and g o i n g

down the page; RLINK fie lds are indicated by "R"s s im ila r ly going up the

page.

The rest of the node structure is il lus tra ted below, and is in one

of four possible forms.

1) I f the node has no backward pointers:

*JJJ*SSS*PPPP

2) I f the node has a r ig h t backward pointer:

QQQ*TEXT---------
*JJJ*SSS*PPPP

3) I f the node has a l e f t backward pointer:

*JJJ*SSS*PPPP
QQQ*TEXT--------------

4) I f the node has l e f t and r ig h t backward pointers:

nQQ*TEXT--------------------
*jjj*SSS*PPPP
QOO*TEXT-----------------

121

where:

JJJ = physical location of the node

SSS = SKIP f ie ld

PPPP = PTR f ie ld

QQQ = value of LLINK or RLINK when one (or both) is a backward pointer

TEXT = the f i r s t 20 characters of the tex t pointed to by PPPP(QQQ).

B . l . 3 Search for a Key and L is t All i ts Matches.

To do th is , punch the key followed by a "?" Examples:

THE? - searches for a l l keys starting with THE.

THEM? - searches fo r a l l keys starting with THEM.

S?ISM?MMMMT? - searches for a l l keys s tarting with S, ISM, and T.

SOMEMSAMPLEM? - searches for a l l keys starting with SOMEbSAMPLEM.

B . l . 4 Delete a node from the t re e .

Punch the key, followed by a " /" • Examples:

HEREMISMSO1IEM/ Deletes any key starting with
"HEREMISMSOME"

HEREM/ISM/SOMEM/ Deletes any keys starting with
"HEREM" or "ISM" or "SOMEM". '

S/ T / Deletes a l l keys starting with
S or T.

Only the PATRICIA tree is a ltered. The text is not affected in any way.

B . l . 5 Delete or insert t e x t .

The d iffe rent ways of accomplishing this are given below:

(XXX-YYY) Delete a l l text between (and including) positions
XXX and YYY. XXX and YYY are integers.

122

LLL --------) Delete an occurrence of the characters
"LLL - - from the te x t . Note that
"LLL - - must be a key; moreover, only
one occurrence of "LLL - - as a key
w il l be found. To delete other occurrences,
repeat.

(XXX*LLL --------) Insert the le tte rs "LLL --------- " into the text
starting in position XXX + 1.

Some examples are given below. They a ll re fe r to the text given in B.1.1.

(2 -9) This would cause the text "ERE}4IS|4S"
to be deleted, along with the keys
s tarting at IS and SOME. The f i r s t
position of the text w i l l s t i l l start
a t "H", but the second w i l l be "0",
and the text w i l l read "HOME SAMPLE— ."
Also, "HOME— " w i l l be the starting
point for a key.

(4*SY) This would insert the le t te rs "SY a fte r
the second "E" of "HERE", forming
"HERESY". Also, there w i l l be a key
created starting at "SY^IS— ". The
former key "HERE IS ------ w i l l s t i l l
e x is t , but i t w i l l now read "HEI ESY
I S ".

THREA) This w i l l cause "THREA" to be deleted
from the text at some occurence of a
key starting with "THREA". Either of
the two keys starting with "THREADED. — "
could be affected. The key i t s e l f w i l l
be deleted, and the te x t w i l l be altered
to read "--bBEpDED---" or RIGHT0DED---"
depending upon which key is deleted.

B . l . 6 Convert to Preorder sequential Form.

A fter the user has specified a l l the functions that he may wish to

perform for a particu lar te x t , he punches a "$" (d o lla r sign). This w il l

cause the tree to be converted to Preorder Sequential form i f i t was

created as a Right Threaded tree . The nodes w i l l then be traversed in

postorder, and lis ted . The program will then accept a new text (i . e .

return to B . l) .

123

B .2 Sample O u tp u t .

The n e x t few pages c o n ta in a l i s t i n g o f th e t e s t p ro g ra m , a lo n g w i th

a sam ple ru n . Note t h a t in th e p ro gram l i s t i n g , th e a lg o r i t h m s a r e i n d i

c a te d by e n c lo s in g them in a p p r o p r i a t e l y numbered " / * - - — * / " cards .

124

1 P A T R I C i : PROC OPTI ONS (4 A I ' J I ;
/ * T H I S Pcni ;%AM I S MEANT TO PE A TEST PROGRAM ONLY.
THEREFORE MUCH OF THE CODE I S S T I L L I N RATHE» ROUGH FORM. * /

2 (STR INF-R ANOE) : P t G I N ;
3 t SUPSCR I ° T R A' lGt I : PEG I N ;
4 NKFYS = ? 0 0 ; NCHA: S = 2 0 0 0 :
6 NKEYS = 5 5 0 ; NCHAP.S = 2 1 0 0 0 :
8 S E G I N :
9 DC L (RL I NK(NK E Y S) . L L I N K t N K L Y S) , SKI PS(MKEYS I) F I X E D P I N (1 5 , 0) !

10 nCL PT RI NKL YS) F I X E) P I N (3 1 , 0) , K E Y _ L I S T (N K E Y S)
F I X r O B I N (1 5 , 0) ;

11 or.L CP cHf,K (n ; h a r s + ? p o) ;
12 DCL CHARS Ch AR(NCHARS) OEF CJ POS (2 5 0) :
13 S U r i S T R (C 2 , l) = ' ' :
14 OCL L I N K (M K E Y S) F I X C O P I I K , . 5 , 0) OL F R L I N K :
15 OCL COMPARE C H A R . (I O I O) , P I T S R I K P O O O) OFF COMPARE:
16 DCL KEY CHAR(1 0 0 0) , K C Y _ B i . S PI T (ROOO) OEF KEY ;
1 7 DCL t e m p C H A R (l) ;
I B DCL W H A T _ 9 I T S (2 0 0) C H A R t l) ;
19 OCL (T H R F A 0 _ SEARCHE S, TUT_ SE ARCHE S) F I XED BI N (3 1 , 0) ;
20 OCL SKELTON C M A R (2 0 J) :
21 OCL (P , 0 , J , N , R , T , L , A T O P , X , o p , F L A G , m a t c h , P O S I T I G N , K K ,

T O T _ K F . Y S . P U , T [J , F T , T T , [: M P T Y , A \ , n , c , . . i , Y , V , Z , I) F I X E D P I N (3 1 , 0) ;
22 DC I. (TOPFPEF , MAR' ^FR, M, START I NC _TEXT_P3S IT I ON, V E RT _ S P ACE,

H0RI 7 . _SPACE, A(1 0 0) ,P. FI • !TP\ OE_v. ' I DTH) F l x E D B I N (3 1 , 0) :
2 3 DCL I I r i X - D P I M (3 1 , 0) :
24 DCL PR I ! i r_TR' : E ENTRY (F I X E D P I N (3 1 , 0 !) :

2 5 S T AP T i , v j r , _ T ç x T _ P nS I T I ON = 1 :
26 PR I NT PAOE. WI OTH = 1 2 0 :
2 7 P R I N T P A G E _ K ' I D T H = 1 3 2 :
2B h = n k e y s :
2 9 OPEN F l L E (S Y S P R I N T) P A F . F S I Z E (5 2) L I N r S I 7 : (P R I N T P A G E _ W I 0 T H)
30 ON FMr ' c i L F I SY SI N) GO TO NODATA;
32 R E A OI N :
3 3 L L I N K (M) = M: R L I N K (M) = M; MARKER = 0 :
35 THREf D. SEAFCHES = O; TOT_SEARCHES = 0 :
3 7 TOT_KEYS = 0 : 1= S T A R T 1 NG_TcXT_ROS1T I ON - 1 : KK = 1:
4 0 SUBSTRI CHARS, I , I ■•)) = ' ' ;
41 DO WHI LE (K 9 9 9 9 P 9) :
42 GET E D I T (TEMP) (A(1)) ;
4 3 1 = 1 + 1 ; I F TEMP = '
4 5 THFN DO;
4 6 TQT_KEYS = T(TT_KE YS + 1:
4 7 K E Y _ L I S T I T O T _ K E Y S) = . I ;
4 8 GET E D I T (T E M P K A d I) ;
4 9 END:

125

50 S U B S T f . (C H A R S , I , l l = TFMP;
51 I F T = yP = ' t * I = ' t ' THEN 1)3;
53 DO L = I + 1 TO I + l O O ;
54 S t j n S T R (C H A R S , L f 5) = ' ' ; END:
56 GET S K I P ; Gt) TO NOREAD; END; END;
6 0 NDREAO: / * SET UP ROOT UF E N T I R E STRUCTURE * /
61 I F TEMP = ' t * THEN THREAD = I ; ELSE THREAD = 0 ;
63 TOp f p e f t q : h a p k c P = o ;
65 CALL GETNQDE (r;) ; L L I N K (k) = - R : PTR (R (=KE Y_ L I ST (1) ;
6A R L I N K I R I ? - k ;
6 9 S K I P S (R) = O;
70 p o s i t i o n = I ;
71 FLAG = 0 :
72 CALL I . NSERT_KEY;
73 PUT PAGE:
74 PUT F D I T

(' S T A T I S T I C S FOP, n u i L D I N G T R C f i ,
' NUM. iE? PE EX T " A p - P " A r r " S S " S " - 0 H 1 " " D TO TI E EAO = ' ,

■ THRE' -, : i _SEARCHHS. ' ND' - ’ A ' S DF SE Ak C ME ' = > , T DT _S E AR CHE S ,
' NUNHEF PF KEYS I N THE T 5 E C = ' , T i lT _ x E Y S)
(S K I P , A , S K I P , A , E (4) , S K ! 0 , A , F (A 1 , S K I P , A , F (4 I 1 ;

/ » T H I S ROUT I) " F LADS I N K"YS FUR MATCHI NG 0" OFl F T I N G .
I T ALSO P Rü V I ÜF S t h P F " T I UN OF D I S P L A Y I N G TM" CURPFNT

P A T R I C I A STkUCTUi -C.
75 REAOMORE: P O S I T I O N = 0:
76 T r ; K T „ P ' J S I T i n i l _ f LAO = 0 ;

/ ♦ A DEP.UGGIMG AI D GAUSFS THE COMPARI SON 0 I T 5 TO PRI NT
F L A G = l ;

77 on I I = 1 TO 5 00 :
78 GET E D I T (T EMPI t A l l) I ;
79 I F P o s i t i o n = o t t e n p = • • t h f n go t o r f a o m o r e ;
f i l i f t f m o = « (' t h e m n o ;
A3 TEXT_PC' 31 T I U N_ F L AG = l ; P O S I T I O N = 0 ; END;
86 I F TEMP = i / t t h e m DO: PUT S K I P ; PUT S K I P L I S T

(, * # * $ * r) F L E T I NG ALL KEYS S T A R T I N G WI TH ') ;
90 GO TO S F ARCHl ; FNO;
97 I F TEMP = • ?< - THEN DO;
9 4 PUT PAGE L I S T SEARCH ING FUR A I L KEYS ST ART I NG WI T H ») ;
95 GO TO SFAkCHL; F N J ;
97 I F TEMP = • I ' THEN DO:
99 PUT PAGE E D I T (* THE CO' " ’ L r T F TEXT IS L I S T E D B E L O W)

(A , S K I PI ;
1 0 0 CALL P R I N T _ T E X T ; PUT PAGE: GO TO RFADM' JRE; END;
1 0 4 I F TFMP = • $* THEN DO; '
1 06 I F t h r e a d = I THFN DO:
I DA CALL TRANSFORM:

126

109 X = l ; CALL S K O U L M T l ûL _ T R A V E R S E (X) ;
111 END;
11? GET S K I P ; r,0 TO RE ADI N; END;
1 15 I F TEMP = « • THEN DC;
117 PUT P A G f ; I F THREAD = 1 THEN PUT S K I P L I S T ('

THE STRUCTURE I S B I G H T - T H R AOED • ! :
1?0 CALL P R I N ^ . T E X T ; CALL PR I NT_TRE E f 1 P I ; PUT
123 PAGE; GO Til EELDM' i RE; END;
125 I F T E v p = I) • THEN 0 0 ;
127 T E X T _ E O I T : I F TP XT_POS I T I Ü'1_R LAO = 0 THEN GO TÜ LO^P;
129 ALTER_TEXT_FPQV. _PDSI T i n J: t lE-GIN; D C L I I . J I p I XED 0 1 'U 0 1 , D) ;
131 I = I ND£ x ' i KEY, • : I F I -.= 0 THEM DO;
134 J = S U P S T R (K F Y , 2 , I - 2) : CHARS^SUOST R(CMAPSf 1 i J) I I

St lPSTR (KEY,I + l t P Û S I T l P N - I) I I S U P S T R (C H A F S , J * l l ;
136 PUT S K I P ;
137 PUT S K I P E D I T ! I N S E R T I N G AFTER POS I T I ON » , J ,

' THP Tt XT t SU^STP (K F Y , I + I , P O S I T I Û N - I I) (A , F (4) , A , A 1 ;
13R START = J + l ; E f . P = J + l : SH ; F T I - P D S I T I ;
141 CALL 0 = L S T E _ T 5 X T ; T OT _ Kt YS = 1 : K E Y . L I S T I I I = ST ART ;
144 KK= 0 :
145 CALL I N S F P T _ K E y ; GO TO F-EADHCRf ; END:
14P ELSE d o :
1 4 9 I - I ' l O E X(KE Y, ' ; I F 1 ^ 0 T " E N DO : " U T F D I T (' P A D COER Y ') I A) :
1 5 ? GO TO R E A D ' O R E : END: S T A R T = M) r E T R (K" Y , 2 , I - 2 I :
I 56 END = 5UBSTR (Kf. Y. H I . P'.'S I T I) «■ I ; SH I F T = EM D - 3 T AP. T :
153 PUT S K I D El.’ I T(• Y9S J - ^ O E L E ' I NG ALL TEXT I ' LTWLEM ' , STAR T ,

' AND ' , c N D - 1 , ' NAPFLY , S U P S T P (C H A P S , S T A R T , S H I F T I I
(S K I P , A , F (41 , A, F I 4 I , A , A I :

1 59 CHAP S = S U - Y S T R (C H A P S I 1 . S T ' . R T - n I I S U ' - . S T R (C H A P S . END) ;
160 CALL DSLETF. _Tp x T; G 1 T J R E A D " ? : P : END:
163 END AL T E P _ T P X T _ F RO' ' _ P ' S S I T I ON:
164 LOOP: PUT SKI P EDI T(• <-R=xF»DF L-'T I NG THE TEXT
165 SURSTR (KF; Y, 1 , POSI TI ON I) (SKI P. A. AI : ri = F C S I T I ONRL-;
166 CALL SEARCH; I F MATCH c n t h EN nr' ;
169 PUT E D I T I ' * * * PUT ' T I S M ' ' T THE k P ' I (A) ; GO TU READMORF;
171 END; ELSE PUT EDI T (' * f * F r " v P O S I T I O N ' , P T o (P | |
173 (A , F (5 I) : START = P T R (P | ; E MO= S T A R T F P D S I T I OM;
175 CHARS = SUf i STRI CHAkS. 1 . ST a p T - 1) I I si ipSTR (CHARS , END) ;
176 S H I F T = P ' J S I T I OM; l ALL O F C r T E . T E X I ; (, j TO PFADNCiRh; FNO;
i n o ELSE o n ;
181 P O S I T I U N = POS I T I ON + I ; S UP S T R(KE Y , P O S 1TI ON, 1 I = T EMP;
183 END; END:
1 85 SEARCHl :

PUT E D I T (S U B 3 T R (K E Y , 1 . P O S I T I O N) I (A) ;
186 N = P O S I T I Q N 'X 8 : CALL SEARCH;
188 I F HATCH = 1 THEN C l TO Cl l ECK_MOKE;
190 PUT E O I T (' * * * BUT NO HATCH WAS F O U N D ') (A) :

127

191 GO TO P.CADMD^F;
19? C H E C K . r O R t : I F TF.MP -.= • / ' THEM OP; CALL T R 4 V F S S F : GO TO GEADMORE:
1 9 6 FMU;
197 I F P P < 0 THEN 0 0 ; CALL DE L E T E _ E N T P Y : GÜ TO kEADMORE;
201 END;
20 ? Ü E L F TE . S URTP E E :

/ ♦ ANOTHER DEBUGGI NG A I D
PUT E D I T (' » * * . ITS SURTF.EE I S DRAWN PFLOW ' I (AI :

CALL P P I N T _ T P f E (P P) :
***$*<: *4**4* ♦/

It • I V U II H h i i l l H t i l l l l * /
/ * 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 ♦ /

2 0 3 A _ ? _ 3 _ 2 _ _ 1 2 3 : TD = 0 : FT=W; R = P; P l' = (); c a l l TRAVERSE :
2 0 7 A _ 3 _ 3 _ 2 _ _ 4 : I F R L I MK (T O) = K THEN R L I N K (T D) = - P D : ELSE
2 0 9 L L I H K (T O) = - P O ;
2 1 0 A _ 3 _ 3 _ 2 _ _ 5 ; CALL F I N O _ I T ; GO T 1 RE AOv.ORE:

/ * 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 3 . 3 . 2 * /
/ * H U II H V II U H H H - l i II U H I = H It a U K a H V » H I I I I U U * /

2 12 TRAVERSE: p ROC :
2 1 3 OCL n i . J J) F I X F D R 1 N (3 1 , 0) ;
2 1 4 DCL CHAR S _ T O _ L E F T _ C - _ K E Y F I X E D 3 I f - I (3 I , 0) ;
2 1 5 OCL L I NE C H A R (E O O t :
2 1 6 DCL KFY_CQLU! - ' N F I XED 31 N(3 1 , 0) ;
2 1 7 DCL CODE CHAR (0) :
2 1 8 DCL CCOCl ENGI M F I X E D P I N (J l . O) ;
2 1 9 C O D " t f N G T H = 0 :

/ * COOEL^.NC.TH MUST 0 F 3° CALL FOP ACO I ON ! OR NAT * /
2 2 0 CODE LENGTH = 0 :
2 2 1 DCL (! , J) P I X E D D I N (3 1 , 0 1:
2 22 r H A P , S _ T C _ L E F T _ n F _ K E Y = 2 0 ;
2 23 C H I P S _ T n _ L E F r _ n F _ KE Y = 3 6 ;
2 2 4 FDUND_DME: A T 0 P = 0 : X = PR;
2 2 6 FQUN0_THREF: I F X > 0 THEN GO TO F C U N D _ S I X :
2 28 I F TEMP = ' ? ' THEN DO;
2 3 0 I I = A f S (X) ; 0 = D T 3 (i n :

/ * 0 GI VE S TEXT P O S I T I C N * /
2 3 2 L I N E = S U P S T r (C ? , C , 2 6 9) I I ' ' I I

S U R S T K I C H A R S . D I :
2 3 3 DJ 1 = 2 5 0 TO 2 BY - I WHI LE (SUBSTR (L I NE, I , I I - ,= ' | « l ;
2 34 END;
2 3 5 S U D S T R I L I N E . l . I + C O D E L F N G T H) = ' ' ;
2 3 6 J = I N D E X (S U 3 S T R (L I N E , 2 5 3) , ' I ') ;
2 3 7 Stm STR (CODE, 1 I = • • ;
2 3 8 I F J -.= 0 THEN 0 0 ;
2 4 0 S U B S T R (C O O E . I) = SUOS T RI L I NE, 2 5 3 + J , CDOELENGTHI ;
241 S U B S T R (L I N E , 2 5 2 + J) = « • ; END;

/<= S P E C I A L FORMAT FOR CALL FOP ACT I ON » /

128

PUT S K I P 5 0 1 T (S U^ S T P H T T ' F , 2 S ? , S 6) , U)
(A . X I S Û) , F (7)) !

1 1 = 1 +C'^'Jc l e n g t h 0 0 WHI LF (I I < = ?S1 + J) :
JJ = 1 *IDC X(EUf i STM L I N Ï , I T + ' * 0) , ' ' I ;

PUT E D I T (S U B S T R I L I N E , I I . 4 0 + J J) >
(S K I P . X I S I I . A) ;

I I = I I + 4 0 ^ J J ; END;
PUT S K I P E O I T ((' , . ' no 11 = 1 TO %) K (1 0 0) 6 1 :

/ * t f iO OF SP ECI AL STUFF » /
/ * SP ECI AL FORMAT F UP ÜI SS ERT ATI ON I f ' OC X , ETC.

PUT SKI P E 0 I T (S U n S T 3 (L [0 - , 2 ' 5 0 - L H A R S _ T Q _ L ‘E F T _ n F _ K F Y ,
p S I N T P A G E _ W I Ü T h - 1 0) . C O D E)

(A . X (1 I . A) ;
/ « Ton HF n i S S E F T A T I C N F f P T.'-T * /

/ * SPECI AL FO- MAT FOR 0 1 S S FF T I flfl EXA^PL^ I N APPENDI X P ' * /
2 4 3 PUT SKI P F O I T (SUOST P 1 L 1 NE . 2 S O - T PR I MT P AOI _1M DT H - 1 0) , 0)

I A . X (1) , F I 6) I :
/ t é 4

/ * f f u» SPÇCI AL STUFF * /
2 4 4 FNO:
2 4 5 I F t e m p = • / ' THEN 0 1 : F / \ l L Ch ECK_FQ: ;_, \ ,NCESTOR ;
2 4 5 I F AA = 0 THEN 0 0 : P O - A B S (X | : GO TO F n o \ t , _ E x | T ; Ef|Cl: END;
2 5 4 I F ATOP = 0 THEN GO T(l F OUNO_E x IT : r L S E GO TO F n u N U _ N I N E :
2 5 7 F OUNO_S I X: ATOP = ATOP f 1; AI AT,11') = X: X = LLI NK I X)
2 6 0 ; G0 TP FOU' i r)_THR"-f ;
2 6 1 FOI jnn_«JiNF ; X = AI A T O P) ; ATOP = ATOP - I : X = R L I N K I X I :
2 6 4 ' GU TO F O U N l . T H R E E ;
2 6 5 CHFr.K_FOP_ANCESTOR ; PPOC:
2 6 6 C H _ 2 : A 6 = A 3 S (X) : CALL SEARCH:
261) END CHECK_FOO_ANCESTnP ;
2 6 9 r n H N n . . E x i T ; f n o t h a v e e s i ;
2 7 0 NOnATA; PUT PAGE E D I T (' R A N nOT r;F D A T A ') (A) ;
2 7 1 STOP:
2 7 2 D£ LETE_ ENT R y : PROCEDURE :

I t H U H U H I: t i t i t l U U a t l U S H I! « * /
/ * 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 , 1 * /

2 7 3 F I N 0 _ K n 0 E S _ 2 : PO = A B S (P) ; TO = A " S (C) : FT = K ; / * V. V.’AS FOUND
BY THE S F arch ALGUP. ITHM * /

2 7 6 F I N O . I T : e n t r y ;
2 7 7 F l Nl) _NnOE_3;
2 7 8 I F L L I N K (T O I * P L I A ' K (T O) > O l T O = PC THEN 0 0 :
2 7 9 T T = T D : GO TO F _ M_ 4 : F u n ;
2 R2 F I N 0 _ N n 0 F S _ 4 : KEY = SUOSTRI CHAR S . P T R I T O) , 1 0 JO I : N = 8 0 0 0 ;
2 8 4 CALL s e a r c h ; T T = 0 ;
2 8 6 F _ N _ 4 :

129

/ * 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 3 . 2 . 1 * /
/ ^ H « H II H I I U H f l l l H l t H I I H l ' H U I t i l V U U I I H t i il u n * ^/

/ * ANTTHl R DEBUGGI NG Al l ,
PUT SKI P SLUT (• n S L L T l N G TI 'S K E Y ' ,
S') ' 3STR(CUARS. PT P (/ . n S (P j)) . 301 . ' -------------- P D . T D . T T . F T ARE».

P D . T n . T T . P T H A . A . A , (4 i r i 5 l I :
* /

a a a fi a u H a u a H u it u u a n H Ü a H !t n u a a ti fé fi
/ * 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 * /

O E L E T S _ l ; PTP.I PI) I = PTR(TD) ;
2 3 7 0 FLETL- _2 : I F ABS (LL I MK (T T)) = TD THEN LL I NK (TT) = - P 0 : ELSE
2 3 9 R L I N K (T T) = - P O ;
2 9 0 0 E L F T E _ 3 : I F APS (LLI . Nk { TO I I = '’ 11 THEN W = P.L I NK! TO I :
2 9 2 ELSE W = L L I M K (T D) ;
29 3 0 E L F T E _ 4 :
2 9 4 I F W>0 THEN S K I P S I W I = SKI P St WI

+ S K I P S ! T D) :
2 9 5 D E L E T F J S : I F L L I N K I C T) = TO THEN L L I N K ! F T I=W;
2 " 7 ELSE R L I N K ! F T) = W;
2 9 3 CALL F 3 E ' N 0 0 E ! T 0) ;

/ * 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 3 . 1 ’ . 1 3 . 1 3 . I * /
/ t H II ti n ti u fi u H ti h i: i; n il n II 0 >f t> ii ;i n n u t! II u H t /

2 9 9 END o r L F T E . E N T h Y;
3 0 0 D L L E T R _ T E X r : p p n r ;
301 OCL ! A ! 5 0 0) , A TOD. S S K I P , XI F I X ED B I N ! 3 1 , 0 I :
3 0 2 T OT . KEY S = 0 :

H H H H H U a n n t i n I I u u II n n n n II n n H H i i i i i i n H I f /
/<= 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 , 1 , 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 * /

3 0 3 n _ l : SSKI P = o; AT OP= 0 ; x = l :
3 0 6 0 _ 2 : SSK I P = SSKI PF SKI PS! X) ; ATqi . ^ atO'> + I ; A ! A T n p) = x ;

PUT SOI T ! ' P ; < E r 9 0 S R V I S I T * f * ' , X , ' t * * <) (A , F | 4 I , A) ;
/ * * r f

3 0 9 CALL i) E L E T E _ T C X T _ T l :
3 1 0 0 _ 3 t I F L L I N K I X) > 0 THFN 0 3 : X ^ L L I N K I X) : GO TO D „ 2 ; END;
3 1 5 D _ 4 :
3 1 6 X = A ! A T O P) ; A T n P = A T O P - l ;
3 1 7 n _ 5 : I F X< 0 t h e n GO TO D , 6 : ATOpzAT' j P+ l : A ! AT' ID) = - X ; GO TO 0 _ 7 :
3 2 2 D _ 6 ! X = A P S (x) :

/ f F *********$******
PUT E' JIT (' ENOOROFR V I S I T * t * ' , X , ' * * * ' I (A , F (4) , A 1 ;

/« * /
3 2 3 CALL n E L 6 T F _ l F X T _ T 2 : SS K 1 r> = SSK I P- SK I PS (X) :

PUT L I S T (' TFF.E AFTER SND020ER V I S I T — •) ;

130

CALL P P I I I T _ T C E ; E (I R) ;
* * * * * * * * * * * * * * * * + * /

/ * ♦ /
3 2 5 0 0 TO D _ 4 :
3 2 6 D _ 7 :
3 2 7 I F X = I THFN GO TO.
3 2 0 I F R L I ' J K (X) <0 THFN GO TO 0 _ 4 :
3 3 0 X = P . L I N K (X) : GO TO n _ 2 :
332 O E L c T f _ T F X T _ T l : P.30C;
3 3 3 T l _ l : I F P T 3 I X) > = FNO THFN 0 0 ;
3 3 5 P T R I X l = P T P t X) - S H I F T ; GO TO E X I T _ T l ; END;
3 3m T U 2 : I F P T 4 I X) >= START THEN P T 4 (X) = O;
3 4 0 E X I T . T l : END O F L E T E _ T E X T _ T I ;
3 41 O r L E T E _ T E X T _ T 2 : PPOC;
3 4 2 OCL F I N I S H E D F I X E D GI N (3 1 , 0) ;
3 4 3 F I N I S H E D = 0 ;
3 4 4 T 2 _ l : I F L L I N K I X) < 0 THEN OJ ; P') = A3 S (LL I NK (X)) ; GO TO T 2 _ 4 ; E N D ;
349 T 2 _ 2 ; IF F I N I S H E D = 1 THEN GO TO T 2 _ E X | T ; F I N I S H E D = I ;
3 5 2 T 2 _ 3 : I F R L I N K (X) < 0 THEN 0 0 ; P AGS(F L I N K (X)) ; GO TO T 2 _ 4 ; END;
3 5 f -GO TO T 2 _ E X I T ;
.3 5 3 T 2 _ 4 :
3 5 9 IF P T o (P n) > - START THEN GJ TO T 2 _ 2 :
3 5 0 T 2 _ 5 : IF P T R t P O) % 0 TI ' f n m ;
3 6 2 TO = X; FT = ABS(M A T O f) 1 ; CALL F I N O _ I T ; GO TO T2_EA I T ; END ;
3 6 7 T 2 _ 5 ; I F P T K (P O) + S S K i r / p < ST.A^T T n f N Gf) TO T 2 _ 2 ;
3 6 9 T 2 _ 7 ; FT= A 3 S (A(A T OP)) ; T ' = X: T OT _ k f y S= T 0 T _ KE Y S + I :
3 7 2 <EY_L I ST(TOT_Kr . YS) = P T P (P D) ;
3 7 3 CALL F I N D _ I T ;
3 7 4 T 2 _ E X I T : ENT O E L E T E _ T F X T _ T 2 ;
3 7 5 0 _ E X I T :

/ * P E I N S E R T THE MOTI F I ED KEYS * /
3 7 6 KK=D; c a l l I N S ? p T_KFY;

/ * 4 , 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 4 . 1 . 2 * /
II p u n H H i f U H H I l H l i l i H U H H U U t t H f i l i f i l i * /

3 7 7 END 0 F L C T F _ T F X T ;
3 7 0 SEARCH: ORGC;
3 7 9 OCL LL f i x e d G I N (3 1 , 0) ST AT I C;
3 80 I F FLAG -.= 0 THFN
3 81 WHAT. . PI TS =

/ n u P t l U U t l i l U H U U P I i P H U i i H l i l l U U H U U U f l l l l ! * /
/ * 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2,1 2.1 2.1 2.1 * /

3 3 2 DNE: P = I ; J = 0;
3 8 4 TWO: I F P - AA THEN AA = 0 ;
3 8 6 H = 0 ; 0 = p ; P P = L L 1 N K (P) ; P = A P S (P P) ;
3 9 0 I F L L I N K (Q) < 0 THEN GO TO S I X ;
3 9 2 THREE:

TOT^SEAHCHES = TOT. SEAPCHES + I ;

131

3 9 3
3 9 6
3 98
3 9 9
401
4 0 ?
403
4 0 7
4 0 9
4 1 0
4 1 ?

4 1 3
4 1 4
4 1 5
4 1 6
4 1 7
4 1 0

4 1 9
4?0
4?1
4 2 6

4 2 8

4 2 9
4 30
4 3 1
4 3 2
4 3 3
4 3 5

4 3 6
43 7
4 3 8
4 4 0
44?
4 4 3
44.8
4 5 0
4 5 3
4 5 7
4 5 9

four:

F I V E :

J = J + S K I P S ! P I : I F J > N THEN GO TO S I X ;
I F F l a g - ,= o t h e n i f j < 2 oo t h e n
WHAT_3 I T S (J) = S U B S T R (K E Y _ 8 I T S , J , l) ;

I F S U B S T R (K E Y _ B I T S . J , 1 I = ' O ' 9 THEN GO TO TWO:

I F p = AA THEM A A = 0 :
w= o: o = P : p p = R L i N K (p) : p = a b s (p p i :
I F K L I N K (O) < 0 THEN GO TO S I X :
GO TO THREE:

s i x : i f FLAG = 1 THEN DO;
PUT E D I T I (W H A T _ 8 I T S (I I 1 DO 11 = 1 TO J WHI LE (I K 1 9 3) I I

I S K I P I ?) , (12) (X (l I , 18) A (i n I :
EMO ;

COMPARE = S U R S T R I F M A R S . P T R I P) , N / 8 < - 2) :
MATCH = 1:

L = n ;
DO L L = 0 TO I N - l) / e ;

I F S U 8 S T R (C 0 H P A R E , L L f 1 , 1) -,= SURS TP. (KEY , L L + 1, 1)
THEN
n.o LL = L L - r , TO N - 1 :
IF S U 3 S T R (K E Y _ P I T S , L L + 1 . 1) -.= 5 U P S T R (P I T S , l L + l . l I
THEN DO ; MATCH = O: L = L L : G O TO S C T L : EGO:

END: END:
/» *4

SETl . :
/* ?.l 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2 1 2.1 2.1 ♦/

RETURN:
FNO SEARCH:

I N S F R T _ K E Y : PRDC :
DCL (T P , Y , 7) f i x e d b i n (3 1 , 0) :

LOOP :
KK = KK+ 1 : I F K.K> TOT. KFYS THEN GO TO A L L B U I L T :
P O S I T I O N = K F Y _ L I f.T (VK) ;

il H H n H H U H H H il H M U t t H U H M H H * /
/ ♦ 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 «/

S I :
S 2 :
S 3 :

S 4 :

S 5 :

KEY = SUBS TP (CHAR 5 , POSI T I ON, 1(100) :
CALL G c T N O U F I P) :
PTR I F) = p o s i t i o n ; f |r ((- p o s 1 T I UN + 1) « 8 ;
I F N > n o 0 0 THEM N = 8 3 0 0 ;

CALL SEARCH:
I F L < J THEN 0 0 ; N = L : CALL SEARCH; END:

I F ABSI LL I.NK (0) I = P THEN D(i ;
T = L L T N K (O) : L L I N K (C) = P.: END:

ELSE DO: T = P L I N K (O) : R L I N K (O) = R ; END:
I F THREAD = 1 THEN GO TO S5 _THRÇAD:

I F S U n S T R I K E Y _ n i T S . L + l , l i = ' O ' B THEN 0 0 :

461 L L I N K (P) = - r ; R L Î N K (F) = P # S I G M (T I ; END:
4 6 4 ELSE 0 1 ; R L I N K (R) = - P *, L L I M K (R) = P * S I G N (T) ; END;
4 6S 0 0 TO 5 6 :

/ » THE P, I i ' , hT THF. r An i Mr , I N S P P T I O N f /
/ * 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 P . 1 . 1 5 . 1 . 1 5 . 1 . 1 * /

4 6 9 S 5 _ T H P E A 0 : I F SU3 STP t K E Y_f l I T S , L + l . 1 1 = ' O ' P T H c O 0 0 :
4 71 L L I N K l P . l = - R : P l . ’ N K l P) = P * S I O O ! T) : GO TO 5 6 : EN'O:
4 7 5 ELSF 0 0 : Y= P * S I G N (T) : 7=-f.:
478 r i : o : .
4 7 9 S 5 _ l : I F Y> 0 THEN n O : 7 = Y: Y = P l . I N K (Y) :
4 8 3 T HPr A0 _ 5 P . \ P CMF S = TMP r AD_5EARCHES + 1 : GÜ TO S 5 _ l : END:
4 8 6 T P = P T 7 (A S S I Y I I : P T p (ARS(Y)) = P T R (P) : P T P (R) = T P :
4 8 9 P L 1 N K (7) = - P :
4 9 0 5 5 _ 2 : PL INK e u = Y :
4 91 I F T >0 THEM L L T N K I K I = P: ELSE L L I N K (R) = - P :

/ * 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 5 . 1 , 1 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 5 . 1 . 1 * /
/ * END OF THE R I GH T THPEAOI MG I NSE RT I ON

4 9 4 S 6 : I F T <■ 0 THFN SKI PSt - ^1 = l + l - j :
4 9 6 ELSc 0 0 : S K I P S (P) - 1 4 - 1- J^SK] PSI P) :
4 9 8 S K T P S (P) = J - I E + 1) : cNO:
5 no GO TO L ') j ° :

/ R 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 . 2 2 2 2 . 2 R/
/« Il I! Il il II II i‘ H II II II il il 4 t! I! Il ,i II H H I. Il II I, Ü U H il

501 A L L P U I L T : FNO i NSEFT_K. EY;
5 0 2 GFTNOOE: PR OC 1 X 1 :
5 03 nCL X F I X P O " I N (2 1 , 0 1 :
5 0 4 G l : TF L l l M K C U = « I HEM GO TU 0 4 :
5 0 6 G2 : X=Pl Î N K (M) :
5 0 7 G 3 : L L I N K (R L l N E (X) 1 =M;
5 0 8 R L 1 NK(L L l N K (X 1 1 =Rl H I X (X 1 :
5 0 9 RF T U= N:
5 1 0 G4 : !<= MARKER = M- 1 THt 0 PUT L I S T (' a t t t s M O ROOM * » * * * ' ! :
5 1 2 ELSE DO : MARKFP, = MARKER + 1 : X = MARKER: RE' i URN:
5 1 6 END:
5 1 7 FREENODF: E N T R Y ! X I

5 1 8 F I : L L I N K ! XI = M : R L I N K I X I = F , L I N K (M | :
5 2 0 F 2 : L L I N K ! R L I N K ! M l I = X: P L i N K ! M) = X: RETURN;
5 2 3 END OETMUDG:
5 2 4 TRANSFORM: PROC:
52 5 OCL ! A ! 1 0 0 I . A T 0 3 , X , I , J , K , 8 I F I X E D P I N 1 3 1 , 0) :

/ * # # « « # # # # # 1/ # # # # # # ,
/ * 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 * /

5 2 6 T l : ATOP = 0 : 8 = 0 : X = 1 :
5 2 9 T 2 ;
5 3 0 I F R L I N K I X I < 0 THFN GO TU T 3 : ELSE DO:
5 32 ATOP = A T O P + 1 : A I A T QP I = A 8 S I ? L I N K ! x I I : END:

133

5 3 5 T 3 : R L I N K (X) = B «■ S I ON (RI I ' JK (X)) : n = x :
5 3 7 T 4 : IK ARS(L L I N K (X)) X THEN [TO: X = l L I NK (X I ; 0 0 TO T^;G^!LT;
5 4 2 T 5 ; I F ATOP = 0 THEN O'J; L L I N K I X) = - 1 ; R l I N K (l l = - X :
R46 o n TO 7 6 ; EMIT : ELSE DC;
5 4 9 Z = A (A T O P I : ATOP = A' ^ (JP- l ; L L I N K (x) = - 7 ; X = 7 . ; 0 0 TO T 2 : EMU:
555 T 6 : 1 = 1: 4 T 0 P = I ; A (A T ü P) = 0 ; r-:i t o t r ;
5 5 9 T 7 :
6 6 0 J = A B S (1 L I N K (n I : 1=1 + 1 ; i f I ' » = J t h e n r , o t o t » ; e l s e i to;
5 6 4 X = A P S (R l I N K (1 I) ; L L I I K (X) = J + 5 I G N (L L I N K (X I I :
5 66 y = A P S I L C I M K (M) ; RL I NK I X I = J $ S I (, ' I (R L I N K (X I) :
5 6 8 CALL SRAPI P L I H K I I) . R L T M K I J I , L L l I l K (1) , L L I N K ! J) ,
5 6 9 S K I P S ! I I , S K I P S ! J) . P T R (I t , p T P (J I) ; EMO;
5 70 T 8 :
5 7 1 I F L L I N K ! !) > = 0 THEN OP; A T 0 P = A T 0 P 4 1 ; A ! A T O P) = I !
5 7 4 GO TO T 7 ; END;
5 76 T 9 : J = I :
5 7 7 T i e ; I F R I I N K I J I > = 0 THEN S3 TO T 1 2 :
5 7 9 T i l : K = A ! A T O P l ; ATOP = A T O P - I ; R L I N k ! J | = K * S I C N ! L L I N K ! J I I :
50? J = K : i f ATPP = 0 THEM GO TO V : EL SE GO TO T i o ;
5 0 6 T l ? : E L I N K I J) = ! I +1 I * S I G ' l ! L I I NK! J) I : GO TO T 7 ;

/ * 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 . 3 5 . 4 , 3 5 . 4 . 3 5 . 4 . 3 * /
U n II I! II ÿ tl l i U U h I; ÿ 41 II u ti H U li a H ÿ Û i; a II H ft

5 0 8 V ;
PUT PACE;

5 0 9 PUT S K I D :
5 9 0 PUT Sk ; d l i s t ! ' THE PSECROCR SEOUENTI AL FORM I S GI VEN Bt LOW. T

HE F I E L D S L I STED A R E ' I :
591 PUT SKI P L I S T ! ' L C C A T I F N ' , ' L I N K ’ , ' S K I P ' ,

’ START n r KEY I N T E X T ') ;
5 9 2 PUT SKI P I 1 S T ! ! ' — • 0 0 J=1 TO 5 I I ;
593 n u J = I TU I ;
5 94 PUT SKI P L I S T ! J , L I MK ! J) , S k IE'S (J I , SUOS1 E ! FH AH S , PTP. ! J) , 30 11 ; END:
5 9 6 RETURN:
5 9 7 END t r a n s f o r m ;
5 9 8 SWAP; PHOC. ! A . 0 , C . 0 . E . I , G . H) :
5 9 9 O C L ! A , B . C , D . E , F I F I X E D P I N ! 1 5 , 0 1 , ! G , H) F I X E D B I N (3 ! , U t :
6 0 0 x =a ; A = p ; n = x ; x = r. ;C = 0 : d = x ; x = E : f = F ; F = x : x = g ;C-=h : h = x :
6 1 ? r e t u r n ; END SWAP;
6 1 4 S E O U E N T I A L . T R AVERSE : P P O C I X) ;
6 1 5 n r i ! X , Y . Z I F I X E D P I N ! 3 l , 0) :
6 1 6 PUT PAGE;
6 1 7 PUT SKI P L I S T ! ’ THE STRUCTURE I S MOW TRAVERSED I N POST ORDER. • ,

’ ONLY THE TEXT HAS 5EFI> L I S T F D . ') ;
6 1 8 PUT S K I P E D I T ! ’ --- ’) ! A) ;
6 1 9 PUT S K I P ;

/ * l l 4 I P I I I I U I I H H H t i H l l l l l < 1 4 - H ‘l l l t f t i 4 4 t l t l l l l t i H n * /
/ * 5 . 4 . 2 5 . 4 . 2 5 , 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 * /

6 2 0 S i : Y= X :
6 2 1 S2 : I F L ! N K (Y) > = 0 THFN nn ; Y- Y4- 1 ; GO TO S 2 ; Ff j n .
6 2 6 S3 : PUT S K I P E D I T (SUBSTR (CHARS , PT^ (y 1 , 3 0) I (A I ;
6 2 7 S4: 7 = A S S (L T N K (Y I I ; I F 7<X THFN RETURN ;
6 3 0 SS: I F 7<Y THEN 0 0 ; Y = 7 ; GO TO S3 : FNO: ELSE 0 0 :
6 3 6 Y = 7 : GO TO S2 : EMU;

/ # 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 5 . 4 . 2 ♦ /

6 3 9 END S E 0 U E N T U L _ T K 4 V “ 5SE:
6 4 0 P R I N T _ T E X T : PROC:
6 4 1 0 0 T I = 0 TO I GY mo:
6 4 2 l F ((I I / l O 0 U l < - 1 0 G 0 - i n = 0 THEfi
6 4 3 0 0 :
6 4 4 PUT S K I P E D l T d » - ' 0 0 l. = l TO 1 0 0 1 . ' APPROX. ' I

(x (m . (10 0) A(n , M :
6 4 5 PUT S K I P E D I T (I L . ' * ' 0 0 L= 5 TO 100 RY 5) , ' CARO •

(X l i n , (2 0) (F (4 I . A l l)) , A) :
6 4 6 PUT SKI P E D I T d ' - ' 0 0 L = l TO 1 0 0) , ' NUM3FP ')

(X (1 I) . (1 0 0) A { 1) , A) ;
6 4 7 . Ef iP:
6 4 8 PUT S K I P E D I T (I I . S i n S T R I C H A P S , I I + 1 , 1 0 0) , I I / G O + 1)

(X(3) , F (5) . X I 3) , A , F (6)) ;
6 4 9 EMO:
6 5 0 PUT S K I P EOT T 00 L = 1 TO 1 2 0 1 1 (4 1
6 5 1 FNO " P I N T _ T F X T :
6 52 P R I N T _ T P F F : PRUCFOURC (y) :
6 5 3 0 - L (A(1 0 0) , A T OP , J , X , V , 0. R) F I X F O 8 1 N (3 1 . 0 1 : X=Y:
6 5 5 SKELTON = • ' ; VLRT_SPACE =

2:
6 5 7 H p 3 i 7 _ S R A C E =

8;
6 5 0 E'APTY = 1:
6 5 9 P R I N T . 1: ATEP = E ^ P T Y :

/ R S K ’CF THE RCO' OP THE P A T R I C I A STRUCTURE HAS NO E L I MK , WE
MUST NOT ATTEMPT TO TRAVERSE I TS RI GHT SU3TRPF * /

6 6 0 I F X=1 THEN GO TO p R I ' I T _ 6 1 1 :
6 6 2 ■ P R I N T _ 2 : I F X< 0 THEN GO TO d a I N T _ 4 :
6 6 4 ATOP = ATOP ♦ 1: A(/ T' ,P I = x ; X = R I . ! N K (X) :
6 6 7 GO TO P R | N T _ 2 :
6 6 8 P R I N T _ 4 : I F ATOP = EMPTY THEN GO TO p R 1 N T _ E X I T :
6 7 0 X = A (A T O P) : A T O P = A T U ? - l : I F X<0 THEN GO TO P R I N T _ 4 :
6 7 4 P 0 ! N T _ 6 1 : CAl.L TP XT_OUT(PL I NK(X) 1 :
6 7 5 P P I N T _ 6 I l :

PUT S K I P E O I T (S U 3 S T R (3 K E L T O N , 1 , A T O P 4 H O S I / _ S P . A C E - 1) ,
' * ' , X , ' * ' . S K I P S (X) . ' * ' , P T R (X))

(A , A (l) , F (3) , A , F n) . A , F | L) | ;
6 7 6 CALL T S X T _ O U T (L L I N K (X)) :

135

6 7 7
6 7 0
6 7 9
6 8 2

6 8 ?
6 8 4
6 89
6 8 7
6 8 8
6 83
6 3 7
6 9 0
691
691
69?

6 9 4
6 9 9
6 9 9

7 0 0
701

T E X T . n U T : P?DC (L I N K) ;
DCL L I N K F l X t P B i r i (1 5 , 0) ;

I F L I N K < 0 THEN 0 0 : J = P T R (4 8 3 (L 1 N K)) :
PUT S K I P F D I T (S U O S T K ' î XFL' Fa ’ i . l , M n P * H T 9 I 7 _ S P 6 C ? - l) f

• , ; \ a S (L I N K) , , S U 9 S T R (C H / . 8 S t C . 2 0 l ')
(A , t . F (3) i A , 4 , A) ;

ENO;
FNO TFXT. . OUT;

P R I M T _ 6 2 : I F A I i l P -.= : h PTY THEN I F 9 L I NK (A8S (A (AT Jp))) = X THFN
SUPSTR t SKELTON, ATO-^ + H H ’. l 7 . . 9 P 4 C t , I I - " O ' ;

ELSE
SU8STF (S K E L T O N , A i n T t i l C ’ 1 7_3 >AF9 , 1 t = ,

P R r i T _ 6 J : I F L L I N K (X) - < 0 t h f n

S U 9 S I F (SKELTON. (A T OP t L) 7_SP “ C r , 1) = ' L ' :
ELSE

SIJ“ STR (S K E L T O N , (A TOP-i I ; I 7 _ S P . \ C F , 1) = '
P P T N T _ 6 4 : n o 1 1 = 1 TO VF.P,T_SPACF : P IT S K I P EOI T

(S U S S T ^ I SKEL TON, 1, P I NT n A E _ W I DT M)) (A 1 :
ENO:

P P . r i T _ 7 : A TOC = ATOP+1 ; AIATLTP) - - X : X = LL I NK (X) :GG TO P R I N T _ 2 :
P R I N T _ C X I T :

PUT S K I P L I S T I ' ' I
END PP. I N T _ T R E E ;

ENO P A T R I C 4 ;

(2 n n* AT > f p n) (T 0 nf T) A') SURPRISrn il:' l'An- IT > Ipnt'-^pnivuni-! !?

; r x = S 5 i | i i r
*I'P

_ »nwfV\ ♦ n

,T .G

wen

137

STiTisTics Fn? puiinric r:<fc
N ' J f ' l t R OF EXTCA N I O F ACCESSES <EEÜUI»EO TO TH REA D"

OF S E A R C H E S ' 1 6 7
NUHREA OF KEYS I N THE T R E E * 32

5 * 1 0 * 1 5 * 2 0 * 2 5 * 3 0 » 3 5 » 4 0 * 4 5 * 5 0 » 5 5 * 6 0 » 6 5 * 7 0 » 7 5 * BO* 8 5 » 5 0 *

0 HY 0 0 3 CH EOKFE S SA 10 . "ROW WO w . " H A RR Y ' S Er_,r. THE ' ; S A I C i * 3ÜR WCW BOW WCW. " THEN JEH. ' . ' S COE, S A j n ,
1 0 0 OH WDW HOW 'W'JW BOH WO w . " MAr . THA ' S P A E f O T SU^ 1 S T OS UHEN I T S A I D , "SOW "OW P.O* W l h PfiW fcl jw EC* WDH
2 0 0 I THEN (, i v - l)!> ANO S A I D . " BCw WOW BOW WÜW 3 i ’ w WCR BCW WJ w . " ONE PORE FOR GOj O wEASUkE : S A I D , " D' Jw
3 0 0 w o w BOW wn w BOW wn w R o w HOW ROW WÛW, " C

----------- APPTOK.
9 5 * 1 0 0 » CARO

--------------------- NUMBER
1 2
3
4

* 1* 0 *
L

2

I
L ?0* *evsHf . N Î T S . M O f " BCW W--------
L 2 0 » I * 1 5 5
I R L
L R I

R • • 1<5»««US WHEN I T S AI n , »'0n---------
L n » 2 7 * t * 2 1 6
I R * 2 7 * * * UP AND S A I D , "RHW WD- ------
I R
L R
L • 1 9 * 3 * 152
I R L
L R L
I R I * 8 * * * T H I N S A I D , "BOW W n w ---------
I R I * 1 1 $ 3 5 * 7 7

R I R I
L R .1 R L
I R L R * • U * * * T h 6N J0HN«S 0 0 0 S A I D ---------
I R I R ♦ 2 5 » 1» 2 0 6
I R L P. * » ? 5 * » * T H F N g a v e [}° AND S A I ---------
I R L R
L . L R
I R * 8* 2 * 4 7
I R I

R I
I R * l 8 * * * S U R P R I S r O us WHEN I T ---------
L R » 1 8 * 3 * 1 4 2
I R L
L R 1
I R »» 4 * $ * S A i n , "ROW WOW. " HAR---------
L R * 9 * 1 0 6 * 52
I R L
L R L
L R » * 9 * 4 * S A I D , "ROW WOW BOW
I R • 1 4 * 6 4 * 93
L R I
L R L
L R $ * I 4 * * * S A | 0 , "BOW
I R • 2 2 * 6 4 * 1 6 3
L R L
I R L

138

4 * 1 8

L • 2 9 * 2 2 3
L • • 2 2 # * * S A I U $
L R
I R
• 3 1 * 6 4 $ 291
$$ 3 l * $ $ s & 1 0 , "ROW WOW ROW W-

«R‘1W wr>W ROW w----
" p o w WÜW m < * W - -

$ • 1 7 " $ $ P A R . 0 Q T SU=’ P R I S E 0 0$

2$

12#

$
R
R
R
P
R
R
P

2 #

1 7 $ 1$ 1 3 5 L
I
$ 2 0 3 CHECKERS S &%'.)-
$ 1 6 $ 4 # 1 2 6
$ $ 1 6 $ # # M A P T H A « S PARPOT SÜRP-

0?
$ 1 2 # # # J 0 H N ‘ S OOG S A I D * " 3 0 —

6 $ 1

21$

$ $ 2 l $ $ $ I T S A I D * "DOW WOW BO --
$ 2 4 $ i $ 2 0 4
$ $? 4 $ $ » I THEN GAVE UP AND S---------
R
R

3 $ 1 6 0
$ 6 $ $ * H A R R Y » S DOG THFN S A I -

3 5

$ $ 2 6 * * f - n A V I U'"’ AND S A T ! ' ,
• 2 6 - i» 211

$ # 7 $ * t r * ; 3 t h e n s a i d , " 0DW -
$ 13# 5* 89
* • 1 3 # * # 0 O G S A I D , " n o w WOW B -k
R

7 $ 2 9 $ 4 3
2# # $ CÜG CHFCKFRS S A I D , " ---------

3$ 1

» $ 3$$$CHECKERS S A I D ,
5 $ 1$ 2 5

"BCW

R
R
R
R
R
R
ft
ft
R
R
R
ft
R
R
R
R
R

R
ft
ft
K
ft

2 8 $ 1# 2 1 9
$ 2 8 $ $ $ A S 0 S A I D , "BOW WCW R------

L
I

$ 5 # $ $ B 0 W WOW. " H A R R Y ' S DO----------
$ 1 0 $ 5 3 $ 59 '

L
L
$$ 10#$$B0W WOW BOW W O W . " TH---------
$ 1 5 $ 6 4 $ 1 0 0

I
L

$ I S $ $ $ 8 0 W WOW BDW WOW ROW —
$ 2 3 $ 6 4 $ 1 7 0

L
$ $ 3 0 « $ $ F 0 W WDW BCw »DW aow
$ 3J$ 2 3 * 230

$ 23$»$A0w H'.IH PCW KOW eCWR
r

$ 32 $ 6 4 $ 29P
$$ 32#$$.n0w wnw ROW wnw BOW — —

I H i * * » Al3<iVN t o i ONV 101 N33M13B iX a i 11» OUI 131 3 Ü ** * * *

1 0 1 S n Ü 5 5 1 > < < l b n s l O o b V d S t V h i b (K * " M O k K Ü 8 f . CM H t ' S n c h HO " 1 3 X h i t i J i b V l S H I M 3 3 N 3 1 N 3 S S l H l
1 1 * A 3) | MS ' . » I b V i b I ' l l M 3 J N 3 i \ 3 S S I H i B w ‘ d I V S OUG S . N ' H j r - J l H l u * h j m h (m MOM MOB. , * Ü I V S t ; 3 H i
I L H i b V M » * K O M MOa MUM M u a MOM MO " A 3 b M 3 N » i b V i S H I M 3 0 t . 3 1 N 3 S S l H i o n ‘ L ' l V S 0 0 0 S i M I O T N 3 I U
2 1 2 ‘ U l V S : 3 » n S » 3 H 0 0 0 0 b O d 3 b O H 3 N 0 * " MOM MOB MOM M J U MOM MOW MOM MOOw ‘ O I Ï S O N » aCI 3 A V 0 0 3 H 1

f l * * 0 1 V 5 0 0 0 S . O H O r N3M1 . " MOM
0 0 0 S l i i r b V H W "MCM MOb« ‘ U l V S
u ’ MCn MCW MOM M O B * " C l V S k l H l
1 * "MOM MOa MOM MGu MOM MOW M

H U M 0 0 1 i b » i S S A i b 1 1 » a O j O M h O f i V3 S * * • • •

• A 3 b M30 1 i b V i t H I M J 0 N 3 J O 5 S S I H l * » * 1 * 3 1 3H1 CG I N C l I l I S U O B J l d V O M j o 3 5 M * * • * «

oi
CO

SSI
ZH
9 1 Z 11 II 302
Zbl
a I
2i
C&
122
tVl
162
S t l
2
921

26
0 9 1102
S tIIZ
t s68
5
6
SZ
60
001
O t Z
O i l
862
612

MOM MOW MUM MOW.. * U 1 5 S 0 0 » 2 n 5 A V J S 3 H 1 I . " MOM Mu d mJ M HOW MUM M i J MUM M O D * " O I V S 11 N3 I I M
M i a M- .M M u t . " O I V S 0 6 7 0(1 3 A 7 0 6 3 H 1 I „ " M O M MOW MUM MOS M.OM M U t MUM MOW,, * U 1 VS 1 1 6 3 „ M 5(1
MOM m o b * " O I V S : 3 o n S v 3 H COOO b Od a r f U w 3 U 0 „ " m J m mU k m.Om MOW mJm mo w M.Gh MOW,, ‘ C I V S C Î . 7 o (l

V d S . V H l b V H * " M O M MOW MUM COB MOM MOW,, " C I V S ST,G 5 , (' , ! : (" 6 3 1 , 1 „ " MUM M . w MÜM M O B * " O I V S 6 3 H 1
C I V S I I M H M s o Ü3S I b d bOS l O b d V d S , 7 H l b V , < „ " MUM r u ü MJM m u u M. . H MCW* " d l V S s u e 5 , 6 1 , o r M j m I
‘ O I V S : g y n s v i w g o C j s ud s s c h 3 i, c « " . mu m m j b m o . mc.w m u m c u b Mf.M MOV,, " o i v s u ; , v wr, s a v o (, =h i
UWu ‘ 0 1 . S U . . V d (l 3 A V J 6 £ n i I « " M U M MOW MUM M..L' Ml.M, Mu i , M. ,M M . U , „ " IJ I I S 1 1 M j H M S f l C3 S I I d c f i S

• J U S
• c U S
•GIYS
" G l V S
"OIVS
• u u s

M O * MOW* " (U ' S •Jf l ' l S l . M . i r M i l l * "MO, * Ml ,1 *1 M MOB. , ' 0 I V S . ' i j H l • j Ou S . A O C . V H i, " r . l M M o w *
I C t H V d S . V m I " » . , „ " * 0 m MOW M * M MZi l .MO* . M û t * " l l l V S J J „ S l l i l u f I. I H I - ,. ' M L * * l i a MUM. M U b „

M * 0 d MOM * d d „ " G l V S I I l , 3 H M s n G S S I o d b d S l O c v V d S . V i i i i V A M u w . I f j * MOO Ml M "1L'b, i
M O * “ . . I t M-,M MOW,, " d I V S : 3 b t l S V 3 h C C P O b C d 3 b O n 3 6 0 „ * m. L, " “ . L d (T m MC, (m C.m m ü ü M l * M U w *
MuM MCW MUM * r w Mu M M t d * " O I V S Ü I . Ï d l l d A V J M i l l I « " . ' wM * ' l' M l U M.uW . I * M " . J d .Ml * A.-^W„

1 „ " “ 0 M * c w M. .M MCa MUM 6C u MO.M MHO Ml .M M.l W„
VS t ' 6 V d l l = A V j 6 3 0 1 I * " M O * M'uW MCM MOW MOM M.Jv . -UM MJ W„ " I U S 1 I 6 : „ M SO C i S l b o b d S i C b d I d
COO s , ‘ . H n r c a m . . " m u m mc w mc . * m u u „ " u i v s n s h i s u e s . a c c v h . . " m c m m c j , , - j i v s S b ; > ' J 3 i , o ' . n. o n i

3 A V 0 N j H l I * " M O M MCW M ' M ' .Mun MCM MCl i >C* I U J L „ " C U S 1 I l . ' J i l M S(1 C 3 S I d d c O S l O l - b V o S i V I . l i V H
O B * " C i v s 1 1 . \ 3 l l M s n C ' j S l i d s n S I C c c V d S . V i l l b V , . w " , ' O M MJw r . M M^Sl Ml .M MOW,, " C l V S U u l l S i t . H I T

M u J MU/1 MO.J .MUM M ü O „ " C I V S Ü 6 » u O 3 A * U 6 3 , 1 1 I u " M . J M r _ d / ; : ' l M f - , M.' , / l M. W M j M MCw, , " C i v : I I
I V S : j u l ' S » : ' , , Û L . ■; CJ U ' j l U l S t i U „ " M l M MUw Mi M MU, ' . T . * M: ' 0 MJM MCI . , , ' (. I V S C 6 Ï d (, B A V C 6 W H i I
* " M C m m o o mo m MOW .MOM Ml t „ " U l V S ‘J u U S i l . H j r N 3 n l M i d .‘ .OM. MUfc, . " C I V S 6 5 H 1 COG S i A b s V M
M l ' B * " C I V S i r - v n s v b , . U C J C b l 3 3 6 0 * 3 6 0 - " , * i , M MUW Ml .M C J l l MuM M u l l (CM MOW* " O l V S 0 6 V dO 3 A V J
i V n l b v K * " . * C . * M U u MOM MCW M Ü 1 M 0 „ „ " O l V S OCU S i C . i C C . ' .31,1 * " f , C M . Ml U U . ' l M i l l , * " O I V S 6 3 H 1 C l , G
a " u M « U W * " d u s 1 1 6 3 H M s n c s s i W d s i i S i r . v n V d S i V i i " . . .
»S o r e s , . ' , i i i . r c j n i * " m,u m h c w m c m m j w „ " i i i v s 6 ; i n i u u c

• d i v s u o d S i O H j r i . S H i * " m c m m c w , " l i m. ù i ,.* • u i v s / . i
MCM " I GJ M. .M “ C w „ " 0 1 7S C u C S i 6 M Û r I . 3 H 1 „ " , * G M , UC,' . Ml .1
S l b d K l S I C b i V o S i V i i l d V * ' „ "MO.M MUW MOM MuU Ml .M M u u „ ‘

h . l r i Mu m MU 3 M O * M 0 „ „ " O I V S 1 1 6 3 MM s n 0 3 S I * d . . . l S I L . - v
UM MOW MUM MCW MOM MC W* " l l I V S ! 3 d l . S » J H OOUU b U d 3 .'I H
OM MOa HUM HUS Mu M MUU MCM M U U * " O I V S 0 6 V d O 3 A V 0 6 31, 1 I „ " IVGM HOW MCM H d u MUM n O U MUM M u d

■j „ " MT.M .MJd M.:,M M j u f . OH H U b " o l M MU U MCM MUW
MOW MOM M C C * " O I V S : j b l l S V 3 h UO C O b O d 3 a O U J 6 d * "MC. * MUW M U * h O w MCM MOW MUM M U S „ " O I V S C 6 V

. . " * , . * M l W MIJM * L W M U * M | . | . „ " O I V S O. iU
S . I M V , , * " r u M M . . d „ " U l V S S b O G S i . ' j U . i c

; J S l A o w V i , ,. "M.o I Mc ' b, , " U l V S S b 3 * 3 b H 3
l . i ' , . " . j U. S ; ; 0 J S i l b b V n * " (l u M M.Jw
' . I C u u S , M H . r 6 3 H1 „ " MOM MUW MUM MuW

S i V I I J d V d ,. " M. i M M i l , MCM MCU MUM Ml , I I
6(1 U "M(.M MCW MUM M d u MuM MCW HUM .MuU

s n U J S I b d c l . S i C b b V w S . V H i o V h
J J S l c d b / i S l O o c V d S i V r l l h V H * " M
3 AVU 63,11. 1 * ".MCM M,_w h u M MCW
OL'G S i A J j VH * " MCM MCW* " U l V S
* ".MUM MCW Ml , . " M , . u „ " O I V S 6 3 H i
I „ " * (M M. n. M u * M i ' l l MuM MCW M
i C b a V d S i V i U V ' . ’ w * " M u * Mu d MuM
S o j M ' j S l . J ‘J L u Ai ,
6 3 H 1 UCC S i A . b ï l , * " " U M (, J U , i "
Ü ÜÜ S . 6 l , u r 6 3 1 . 1 . . " M C M Ml d h u m
0 6 V o n 3 A V J 6 j H 1 I * " M u * Mud
I I r . i i i M s n c j s i t d s n s i c t b V o s
I 5 b(l S . J ,. U l C J c C d 3 u u , . j ' . u * "
S i V l i l d V M I, " M c M MUW MUM M.JW MG

* " M l , * MCW MCM Ml W M i l * M u d * " 0
6 J l i i „ " m ' 'M Ml I, Ml .M (. ' l (. „ " C I V S
6ÙHM SI . c 3 S I : a 'd(.S i C c d V d S i V m
* " M U * MuW MUM MU d MUM MCW MÜM
* " * U M MCW* " U l V S S a d M J b H j OUU
6.3111 I * " M u M MCW M JM McW " C M

. S i A S b V H „ " M l " MCM* " U l V S S b j d
S , l i U t . I l . - j H i * " MUM M l , a M C * m l o
Art
QUO ÀK

4. * u l v S S b j x O l M J Oi .vJ k . i
u ‘ Q I V S ‘J t O S i A a V V H # ' .MUM
M * n i v s ‘J t r S i t . H I . r f . r i H i „
u ' L I VS L N V d P i AV î d N i H i I w
u * U U S x i U a i U i Sf . Q a S l c d c P S X
W « O U S : 3 c f S V s W O U O J o O i ÔHÙH

uO Ü A V V N 3 H 1 I U ,-4uh MOM
H U M ‘j N J A o V i S S A a) * l l y b L J U M h 3 0 V3 S • • •

***»»SEA'»CMINC FHR all KEYS STARTIHr, WITH
W ROW wOW P3W wnw ROW w o w . " I
t h e n SA 1 3 . "ROW wOW QJW w o w . "

S A I D . "ROW WOW. " H O R R Y ' S 3UC

THFN GAVE UP AND S A I O . "BOW WOW BCW HOW BOW wOW BOW WOW. " ONE MORE FOR GOOO MEASURE: S A I D ,
t h e n J O H N ' S OOG S & I O . " B S SENTENCE W I L L START A NEW K E Y . OH HOW BOW WOW BOW H O W . " M A R T H A ' S
TI ICN SAI 3 . " B O H WOW BOW WOW. " THEN J O H N ' S OOG S A I O , " B S SENTENCE WILL START A I ; " H K E Y . UW

• • » » • I N S E R T I N G AFTBR P O S I T I O N 2 0 0 THE TEXT • • • A 2

I N S E R T I N G AFTER P O S I T I O N 2 0 0 THE T E X T * * * 3

» • • * ♦ I N S E R T I N G a f t e r P O S I T I O N 2 0 3 T h e TEXT * * » T

219
77
4 7

♦ ♦ . ♦ • S F A R C H I N G f o r a l l KEYS S T A R T I N G WI T H A
WOW B IW wOW. " I T h f n s a v e u p ANO S A I O , "BOW wow b o w wow b o w wow BOW w o w . " o n e m o r e f o r GOOO MEASURE : S A I O , "BOW wow BOW 2 5 6

T S U R P R I S E D US WHEN I T S A I O . T ? A2 " B3 W WOW BOW WOW BOW WOW BOW WCW. " I THEN GAVE UP ANO S A I D , "BOW WOW BOW WOW BOW WOW BO 2 0 3

« « « . « D C L E T I NG THE TEXT RI JPPRI SEO US WHEN I T • » » FPCH P O S I T I O N 1 7 5

T h e c o m p l e t e t e x t i s l i s t e d b e l o w

1 0 * I S * 2 0 *5» 2 5 * 3 0 » 3 5 * 4 0 » 4 5 * 5 0 " 6 0 * 6 5 * 70* 7 5 * 8 0 * 8 5 * 9 0 * 9 5 * 1 0 0 *

0 MY 0 3 G CHECKERS S A I D , " B O H WOW. " HARRY'S 0 0 0 THEN S A I D , " P ' j w i nw BOW H O W . " THEN JOHN'S DOG S A I D , " B
1 0 0 S s e n t e n c e w i l l s t a r t a new k e y . Ow wow now W Iw now WJW." mART' i - ' s p a r r o t S A I D . T B A I "BUW HOW P Cw wow
2 3 0 B3W wDw n e w wnw." I T u F N GAVE UP AND S A I D , "ROW , n v oow wnw m w wnw anw wow." o n e m o r e f u r g u o d m e a
3 0 0 SURE : S A I D , "ROW w. lH H3W W j w BOW W3W BCW wCw " O w w. } . . ' . " S

A P P R O X .
CARO

NUMBER
1
2
3
4

o

* * * » * S F A R C H I , n 3 f i r a l l k e y s s t a r t i n g w i t h

MORE FOR r . n n o m f a s u r f : s a i d .
. " M A R T H A ' S P a R R I T S 4 I O . T R 4 2 "
w . " I T h e n g a v e u p a n d s a i d . "
WDw. - H A R P Y ' S P I G T h -"n S A I D . "

" Y D I G CHECKERS S A I D . "

BOW
n o w wnw BOW wnw n o w wc w n o w wnw r ow w n w . " t 3 1 4
n . i w wnw n o w wuw n o w wow i v j w w n w . " i t h e n g a v e u p a n d s a i d , " mo w wuw n o w wow n o w wOw b o w wo 1 86
n o w wow HOW WDW BOW WOw DOW WCW. " ONE " O P E FOR G TOO ME A S U R E : S A I D , "ROW WOW ROW WOW HOw WO 2 4 6
m w w: iw m w w o w . " t u e h . m u n ' s d i g s a i d , "as s e n t e n c e w i l l s t a r t a n e w k e y . o h wdm n o w wo w 59
8 3 W w n w . " H A R R Y ' S OOG THEN i A i D , "BDW wt iw BO" WO W. " THEN J O H N ' S DUG S A I O , " B S SENTENCE W l l 2 5

* * * * * O c L E T I NG A L L KEYS S T A R T I N G WI T H ROW

* * » # * S E A R C H I N G FOR ALL KEYS S T A R T I N G WI T H WOw H * * * BUT NO BATCH WAS FCUNO

* * * » * 3 f L £ T I N G AL L KEYS S T A R T I N G W I T H H

* ** * *SEARCHING FOR AL L KEYS STARTING WITH BOW*** BUT NO MATCH WAS FOUND

1 0 » I S * ? 0 * "*S* 1 0 * I S # 4 0 * 4 S * SO* SS* 6 0 * 6 S * 7 0 * 7 S * 80 # 8 S * VO*

0 MY
1 0 0 S S
2 0 0 BO
3 0 0 SUM

I *

MY o n r , C H t C K f ^ s s & i o , " 4 3 # w) w . " H A - - ' Y * r o j r t m ' n % & i n , « s n w w i w w - i w . * * t m t n o n ;
T« ' ‘; * . F w T i i S T i > T & m f h ► ' V . r w w r w p.nw w n w T w w n ^ . " k / . p t m a »s s a i i u t p ; * / " % u w wnw r o w wow
WI W n n w » J W . " ? T W C \ C i V : U*» A N D S A I D , " S T w MCW kUW 8 0 * WÜ# HU # W O k . " C N t K U F " f UP f «Onn M t A

S A i n , « 8 0 » . kOW m i w WCw BCW w o w e c w U (. m h " ^ h t el ’W . " c

 -----«— anp^riK,
3# 100* CA-0
-------------------- u u s - . e r .
Air, "s I

2
.1

1 6 8

4 $

R
R

R
R
R
R

R
R
R

R

R

R

R

R

R

R
R

R

R

R
R
R

R

3 *
L
L

L
L
L
L
L
$

« 1 9 * * * U ? AND S A I O , " BOW WO---------
1 9 * 1 * 2 3 2

I
L
* * 2 o * * * S A I D , T B A Z "BOW WOW 8— -
* 2 9 * 3 5 * 1 7 5

L
I

* 2 3 * * * S A I D , " r t S SENTENCE W---------
* 2 3 * 2 6 * 93

I
L

* 4 * * * S A T 0 , «ROW WOW. " HA R-
9 * SO * 52

L
$ * 9 * * # S M 0 , "BOW WOW DOW W—
$ 1 4 # 6 4 * 2 3 9

I
L
* * 1 4 * * * S A I 0 , "POW WOW BOW H -
* 3 1 * 1 2 9 * 3 0 7

* 3 i * * * 5 A i o , "BOW k u w now W-

18

?♦

• *
P
P

2 2 7
LI

l * * * p & P R n T S A I D . T R A Z " 8 0 ---------
1 2 * 2 * 62

1 2 « # * J O H N ' S DOG S A I D . " B S ---------

6 » * * I
6 » 1 *

L
L
*

T'lEN gave
2 2 C

UP AN3

2 * * * G A V E AND S A ! P , « B -
3 * 1 *

L

L
L
L
I
L
L

L

L
L

L
#

3 * * * C H F C K E R S S A I O , "BOW —
S * 1 * 181

I
L

$ 3 3 * * * R S SENTENCE WI L L
$ 3 3 * 3 * 1 0 0
* * 5 * * * B A 2 " R C * WOW BOW HOW-

2 8 *

* #
$

R
P
P
R
P
R
R

I *
L
L
* 2 ? * * * A 7 "ROW wnw BOW WQW
* 2 2 * 4 * 182
* ♦ 2 8 * * * A N P S A I O , "BOW WOW

STA —

2 3 5

* * * * * S r A P C M l N G FAR 4LL K^YS S T i '
JW «0W k S w . " I THt-w GAVr UP
w n w . " H \ f . T H A « S S ü Ü . T l'

W w U m . " S a W T H A ' r D . \ f > ^ T S A I O . T
KIW," TnrS JOHN'S 11Ù SAU’. "

MY POG
wpw BOW u n w RÜW k i ' .w. « I TMt r j

wow POw wnw o 3w HJW BOW w ' ' K . "
S A I D , «C()w B iW W i v , " Tmtp ;
Ow h Cw w iw ROW w r w . " p A - T ^ . ‘, ' S

nsr "CPF fjp
r* ÏW I t h » \ r . i v f ' i n f . n

. "now WOU." HÂ 'Y'S U1G Tf.f f.
MY i i . JG C H F C K F r

w n v POV Wf’ W . " T ' i ' N " " l i lG
WPW R IW W t . K . " m a - t h a ' S p a ^ - O T
ROW W)W POW H O W . " I THEN r.AV*

'"nc witm
: / ! S A i n . " p n w wow ROW
i / ,"!»/ WOW n e w WCW SGh
:g* T " l o w w ?w n-nw wow hm

H.' S ' N T C N C r W I L L S T a = T
Cl : T * i » s S A i o , « n o w wr,
r . W ^ UP ANC S A I ' ' , " l O V
I TM' ^r j r..*.VF ' I P A S P < ; A I N
j ' < r.r. ŝ ir. • «rs s:
p . w - o * ‘ U g . t p a ; " R ' l w w
S i I iw w' l w PPw k, w
;•*. I I ‘ . rtf}W «'<W W'-.W
S T I', ■ J •'k w?w k .
>*. 1 ' . " I - :w W ^ k . "
' A I 0 , « " S S ' . ' J T ‘. \ C E k i l l

"' •■Jw wl W I' 14
UB ÉND S M P , "ROW WWW I-

wOW P-'W w : w RHw w n w . " ONC M P P f POP TOOO " F A S U P E : S A I D . "RPW WOw ROW
wOw * CW . « I T h CN GAVE UP ANO SA 1:1, " wOw PC'W waw m w w c ^ bo

W W,iW --xrw W V . " I T H f S GAVE U» A M I S A M , 1m k' lW ?1w W*'w Rf.W R
/ ‘Ji-m KEY, nw wo. MN. WOW »'J. .Om, « M T.L iM.i'S = A-T f-T SAl̂ .TSAf "BOW
,»• h A * - v « S OCG TW; N S A I O . « k .'jw w i w «Ow , 1 « , " TH: N PuG S A I O ,
w r w " ' k W'M » M wow y:l»< Wf'W, « “iNE M k G l j u P t A f - H ^ r . : S A M , "BOW

"W . ' 1 . ' * n . wnw p ' l w W3k R' 'W * 3 * . " J \ f • ' i k E f Cr r - U **‘. A S 1 ' - F : SAI
N T M Ct- " I I I STA^T A New k (Y . r w W.IK R IW W I k HUH w O W . " S.*.w Th A»S PAKR
r w w - 4 new " 0 " Raw w a w . " I T H i \ GAVE u p a n o Sa I û , " i . Ow wOw nr .w
H 0 H k-ÎR P' p̂ W-?W R''W Wl..,** E

nr„ K IW '•:> HOW." ON- MO=r Fpc G ' IP MEAfU::: SAIP, ""Ow wOk Pi’w wpw

" !*-■• l i r a SAM, "'*S SrNTïNCL Will '.TAFT f f i i. Ok .Ok R
j 'G To ' S ' j A i n , •• ' , ’ rt Wi ’ w H. lw «0W. " T O ' ’ .' J I N N ' S ‘ ‘ ^G S A K ' , "R S S F M e

G* ' . ^ T M NEW K f v , pw wOw WiM wi ' to ROW H t ' k . " * ; L T " A ' S p .M-^o i S M O . T H A
W- i * H> W w Im ('■C n I i P ' N G/ . VP UP AN'l ' S h M , *' U'm . U V ROW pru ,
uw WUW r . j w Wfw now WCIW." UNF m ü c c GGUO R E A S U r l : S A l ü , "Û. 'W k C k

142

C.O APPENDIX - TIMING CONSIDERATIONS

This appendix gives estimates of execution times for most of the

important PATRICIA algorithms. To obtain these estimates several a l

gorithms have been analyzed in terms of 360/50 operations. The estimates

are close, but are not to be considered exact, since some of the 360

operations are variab le , depending upon the operands involved. I f the

user wishes to convert to another machine, consider the average instruc

tion execution time for the 360/50 to be 5 microseconds, and the instruc

tions to be ADD, SHIFT, AND, COMPARE, LOAD, STORE, and BRANCH, which

are the predominant operations of a ll PATRICIA algorithms.

C.l Timing for the Search Loop of Algorithm 2 .1 .

The 360/50 instructions required for each b i t comparison cycle, along

with th e ir times, are given in figure C-1. The comparison cycle in

cludes steps 2-5 of the algorithm. Step 1 and Step 6 are each executed

only once. A search is found to take 63 microseconds on a 360/50. Thus,

for example, in a re la t iv e ly balanced tree of 100,000 nodes, we would

be able to access any node in less than 1 millisecond.

C.2 Timing for a Traversal Iteration

The timing fo r a traversal loop of a postorder traversal is given

in figure C-2, which shows the 360/50 machine code necessary to e f fe c t

an ite ra tion using algorithm 2.3. The main loop of the algorithm was

used, except for steps which are concerned with backward pointers to

143

the structure and the actual " v is i t ." The time in figure C-2 of 35

microseconds means that we could traverse a PATRICIA tree of 100,000

nodes in 3.6 seconds on a 360/50.

C.3 Timing for Other Algorithms

Using the above technique, we may obtain time estimates for other

important PATRICIA algorithms. A table of algorithm execution times

(including an estimate of the time required on a 360/50 with a 2314 disk)

is given in figure C-3.

'STEP IN 360 360/50 TIME
ALGORITHM 2.1 OPERATION MICROSECONDS COMMENTS

3 L 4 fetch SKIP field
3 AR 3 accumulate sum of SKIP fields
3 C 4 compare to see if we are beyond the
3 BC 4 number of bits in the key
4 LR 3 save accumulated SKIP (we need it twice)
4 SRDL 5 divide by 8 to get byte position
4 N 6 mask out all but remainder, which we

use as an index (this is the second use
of the accumulated SKIP)

4 L 4 g e t p r o p e r w o r d o f k e y
4 N 6 mask out all but proper bit (the mask is

determined by the index we obtained above)
4 C 4 compare with a '1*
4 BC 4 branch to right or left
2.5 L 4 get RLINK or LLINK
2.5 C 4 compare sign to see if we are at the
2.5 BC 4 end of the search
2.5 B 4 loop

total = 63

Figure C-1. Timing for the loop in algorithm 2.1.
On a 360/50, a comparison can be made every 63 microseconds,

STEP IN 360 360/50 TIME
ALGORITHM 2.5 OPERATION MICROSECONDS COMMENTS

5 A 4 ATOP 4- ATOP + 1
5 S T 4 put X on the stack
2 c 4 check to see if
2 BC 4 we are at a terminal node
4 BC 4 see if stack is empty
5 L 4 unstack X
6 S 4 ATOP ^ ATOP - 1
5 ^ 5 L 4 X ^ LLINK(X) or X ^ RLINK(X)
5,’ô . B 4 loop

total = 36

Figure C-2. Timing for a traversal loop using algorithm 2.3.
Omitting the v i s i t , a node can be traversed every 36 microseconds.

Algorithm Function Symbol Estimated Formula
for Time

Estimated Actual Time
(seconds) for 360/50,
2314 disk, 100,000 keys

2,1 Search (one
ite ra tio n)

,000063

2.3

2.3

Traversal (one
ite ra tio n)

Traverse tree
(no v is its)

PT

,000036

3,6

2,1

Disk Access Time

Search for
key, do not
Retrieve

(n-1) L

,075

,001

2,1 Seafch fo r.
Retrieve a key

X+(n-l) L ,076

2,2

3.1

3.2.1

Build PATRICIA tree

Delete a Node D3

Find PD, TO, e tc . F3

Total for a node
deletion

pL+2pX

T ^ (n - l) L

F3+D3

15,000

,00005

,001

,001

3,3,2 Prepare for
Subtree Deletion

A3 fkeys T+(n_T)L .0013
average
(5-50 keys)

Total for deleting
a subtree of keys

A3+D3 ,002

4 ,1,2 One iteration
only

14 ,0002 ave

4,1.3 An entire text
a lteration operation

p I4+aX
(a depends upon "book"
size and can be made
equal to 1, See section
6,3.1)

20

5,4,3 One iteratio n

5,4,3 Convert entire
structure to
preorder sequential

A5

A5p

,0003

30

Figure C-3, Timing of most PATRICIA algorithms
Assume p-2^-l keys in the tree.

147

D.O APPENDIX - THEOREMS AND PROOFS

This appendix presents some useful theorems and th e ir proofs.

Given: 1) a , B, y , 6, are PATRICIA keys.

2) T is a PATRICIA tree.

3) A ll the keys a, B, y, 6, are unique.

Let <{> (a , 6) express the number of identical leading bits in the

two keys 6 and a .

Theorem For any a ̂ T, algorithm 2.1 finds a unique y c T such that

* (a , y) ^ 0(a, B) for a l l BeT

Proof (induction)

1) obviously true for a tree of one node

2) assume true for an a rb itra ry tree -

we w i l l show that i f a is inserted,

the property is preserved.

le t B-|, Bg, B^.-.B^ be the b i t positions looked at by algorithm 2.1 in

our search path to y; N , N , . . .N p are the nodes encountered.

a) (contradiction)

Assume 3 a 3 s. t . (^a, 6) > y)

5 a search path, N , N , . . . Ng , N„ , N , . . . N
1 2 i l ^2 n

leading to B which f i r s t d if fe rs from the path to

y in node b it comparison at B̂

148

got us to instead of N B th b i t

of 3 i B.th b it o f Y- 1

I f < 0 (a , y)

(p(a ,3) < < * (a , y) which contradicts

assumption a)

Now, note that algorithms 2.1 and 2 .2 , when creating the search path

fo r a new key, insert the comparison at the f i r s t b i t where this key

d i f fe r s from a ll others on the search path. But our inductive assump

tion states that this is the longest sequence of identical bits for the

two keys.

We thus have:

Ô.J = ôg through the f i r s t B̂ b i ts , fo r a ll keys

ô.|, ôg in the subtree a t Np . Thus, i f cj)(a, y) i B̂ then (}) (a ,y) =
i

4)(a , 3) . which contradicts assumption a).

Corollary For a given node, Ng , the f i r s t B̂. bits of a l l keys
i

in the subtree at are id en tica l.
i

Corollary For a given set of unique PATRICIA keys there exists one and only

one PATRICIA tree .

Proof The comparisons that separate a ll keys are at the longest

leading identical b i t strings. Since a ll keys are unique,

only one structure of comparisons exists.

149

Corollary

Proof

Theorem

Proof

Algorithms 2.1 and 2.2 build the PATRICIA tree in such a

way that a postorder traversal presents the keys in ascend

ing numeric order.

Given a PATRICIA tree. Since algorithm 2.1 goes to the

l e f t i f a "0" is encountered and to the r ight for a "1"

then fo r a given node, , any node, Ng , farther
1 i+J

down the search path and to the l e f t of N is numerically
B.
1

less than any node farther down the search path and to

the r ig h t. I f we apply this recursively for a l l nodes,

we have defined the " v is it" o f a postorder traversal to

mean "is less than."

In any PATRICIA subtree, there exists exactly one backward pointer

to a node outside the subtree. (Assume the header node

is not contained in any subtree)

(induction)

For a tree of one node, R, (along with header node, H)

algorithm 2.2 constructs the l in k f ie ld s such that one

pointer of R points to R, the other points to H.

Assume theorem is true fo r a PATRICIA tree of n nodes.

Use algorithm 2.2 to insert a new node, R. Call R's

father"Q"and R's son (i f any) "P". Then step 5 w ill set

one of R's link fie lds equal to R (as a backward pointer).

Following this:

a) I f . R Is ^ terminal node.

The other lin k is pointed back to the

node wiiere the replaced link of Q pointed.

This preserves the structure specificed by

150

the theorem for subtrees at Q and R. No

other subtrees are affected,

b) I f R is a non-terminal node.

The other l in k is pointed to P,

which was the successor of Q. Again,

the structure is preserved.

Corollary

Corollary

Theorem

P) oof

All backward pointers in any PATRICIA subtree, except fo r

the backward pointer referred to above, are contained w ith

in the subtree.

The single backward pointer that points outside the sub

tree points to an ancestor of the subtree.

Algorithm 3.1 properly deletes a PTR f ie ld and a b i t

comparison.

F irs t define " ->- " as "is the father of," and " ^ "

as "is the ancestor of (but not the father of)"

Then, enumerate a l l the node structures and th e ir

corresponding types in terms of the notation introduced

section 3.0.

PD -> ->■ TD -> -> TT Type 2a

PD ■+ TD ■y TT 2â

PD ■y -y TD = TT 2c

PD -y TD -y -y TT 2b

PD ■y TD -y TT 2b

PD -y TD = TT 2d

PD = TD ■y TT cannot construct

PD = TD y TT cannot construct

PD = TD = TT f 2e
2f

151

No other relationships between PD, TD, and TT exist

(e.g. TD ->■ PD) due to the ir defin it ions . Also, note

that FT is defined by the position of TT. Now, simply

run each configuration through algorithm 3 .1 .

Corollary Algorithm 3.1 preserves a Right Threaded PATRICIA tree.

152

E.O. APPENDIX - GLOSSARY

The terms described in Section 1.1 are reproduced here for convenience.

AVAILABLE LIST--A l i s t o f empty nodes. (A process which re
quires space for a new node can always get one by picking the top or
bottom node from an availab le l i s t .)

AVAIL LIST— Identical to an available l i s t .

ANCESTOR--Hithin a t re e , an ancestor of node X is on a path
between node X and the root of the tree.

BACKWARD POIMTER--A lin k f ie ld in a PATRICIA node, X, that points
to X or to some ancestor of X.

BINARY TREE--A data structure in which each node has no more
than two nodes hanging from i t . These two nodes are commonly called
"ROOTS of LEFT and RIGHT SUBTREES."

EBCDIC—A specific in ternal code where 8 b its represent one
character within the computer. For example, the EBCDIC value of
of "A" is binary "11000001."

ENDORDER TRAVERSAL—A method of looking at a l l the nodes of a
binary tree in which we f i r s t look a t a ll the nodes in the l e f t subtree
of a node, then a l l the nodes in the righ t subtree of the node, and
f i n a l l y , the node i t s e l f . Each node is "looked at" exactly once, a l
though the algorithm for e ffec ting an endorder traversal may actually
pass by the node more than once.

FIELD--The smallest e n t i ty of information contained in a node.
A f ie ld may be one or more binary bits in size.

KEY--A contiguous s tring of characters constituting a word or
phrase that we wish to search fo r and, hence, use in some comparison
scheme.

LAMBDA ("X")— See NULL POINTER.

LEFT LINK--In a binary t re e , the l in k f ie ld pointing to the l e f t
subtree of the node.

153

LINK—The specific f ie ld of a node that points to the next node
in a l i s t . (Actually, a given node can point to more than one node:
for example, a node in a binary tree can point to two other nodes.)

LIST—A series of nodes which are physically stored a t random,
but which have an order that is specified by the LINK f ie ld s .

NODE--An entity of information. I t w il l consist of one or more
f ie ld s . (An example--a node could be likened to a single l ib ra ry
catalogue card, and a f ie ld to an individual entry on the card, such
as the author's name.)

NULL POINTER-
valued l in k f ie ld that,
f ie ld points to no
zero). We sometime^

POINTER— Ha:
pointer is not conti

POSTORDER TRA
binary tree in which
of a given node: then
in the r ig h t subtree of

or "X"). A sp ec if ica lly
in a l i s t . When any l in k
ue called "X" (frequently

0 X."

except sometimes a

t a l l the
des in the
wo look at

nodes of a
l e f t subtree
a l l the nodes

PREORDER TRAVERSAL— S t i l l ciuuuiier method of looking a t a ll the
nodes in a binary tree , in which we f i r s t look at the node, then the
nodes in i t s l e f t subtree, and f in a l ly the nodes in i ts r ig h t subtree.

RIGHT LINK--In a binary t re e , the link f ie ld pointing to the l e f t
subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right
l inks of terminal nodes point to the next node that would be visited
i f we were traversing the tree in postcrder.

ROOT— In a tree , the node from which a ll other nodes
hang. (Thus, computer trees are usually upsidedown.)

SUBTREE—A branch of a tree ,
root of a subtree.

Pick any node in a tre e — i t is the

TERMINAL NODE--A node in a binary tree that has no l e f t and/or
r ig h t subtree. In a PATRICIA tree , the affected r ig h t or l e f t link then
becomes a backward pointer.

THREAD--The same as a backward pointer.

VIS IT—A term for what we do when we "look at" a node during a
preorder, postorder, or endorder traversal. Usually a v is i t involves
performing an algorithm, or printing out information.

152

E.O. APPENDIX - GLOSSARY

The terms de^crib^d in Section 1.1 are reproduced here for convenience.

available l is t —A l i s t of empty nodes. (A process which re
quires space for a new node can always get one by picking the top or
bottom node fro : an available l i s t .)

AVAIL LIST— Identical to an availab le l i s t .

ANCESTOP.--Within a tree , an ancestor of node X is on a path
between node X <nd the root of the tree.

BACKWARD POINTEP -A lie!; f ie ld in a PATRICIA node, X, that points
to X or to some ancestor of X.

BINARY TfHE--A data structure in which each node has no more
than two nodes ianginq from i t . Those two nodes are commonly called
"ROOTS of LEFT and'RIGHT SUBTREES."

EBCDIC--A specific internal code where 8 bits represent one
character w ithin the comouter. For example, the EBCDIC value of
of "A" is b inar. "11000001."

ENDORDER TRAVERSAL--A method of looking at a l l the nodes of a
binary tree in which we f i r s t look at a l l the nodes in the l e f t subtree
of a node, then a l l the nodes in the r igh t subtree of the node, and
f in a l ly , the node i t s e l f . Each node is "looked at" exactly once, a l
though the algorithm for effecting an endorder traversal may actua lly
pass by the nod - more than once.

FIELD--T'.e smallest entity of information contained in a node.
A f ie ld may be me or more binary bits in s ize .

KEY--A r jn t ig u ju f string of characters constituting a word or
phrase that we '/ish to search for and, hence, use in some comparison
scheme.

LAMBDA ("X") — See NULL POINTER.

LEFT L IN <--In a binary tree, the l in k f ie ld pointing to the l e f t
subtree of the node.

153

LINK—The specific f ie ld of a node that points to the next node
in a l i s t . (Actually, a given node can point to more than one node:
fo r example, a node in a binary tree can point to tv/o other nodes.)

LIST--A series of nodes which are physically stored a t random,
but which have an order that is specified by the LINK f ie ld s .

NODE—An entity of information. I t w i l l consist of one or more
f ie ld s . (An example--a node could be likened to a single l ib ra ry
catalogue card, and a f ie ld to an individual entry on the card, such
as the author's name.)

NULL POINTER— (Sometimes called "LAMBDA" or "X"). A sp ec if ica lly
valued lin k f ie ld that indicates the las t node in a l i s t . When any l in k
f ie ld points to no other node, i t is given a value called "X" (frequently
zero). We sometimes say that th is l in k "points to X."

P0INTER--W3S the same function as a l in k , except sometimes a
pointer is not contained in any node.

POSTORDER TRAVERSAL—A method of looking at a l l the nodes of a
binary tree in which we f i r s t look at a ll the nodes in the l e f t subtree
of a given node; then we look a t the node; then wo look at a l l the nodes
in the r ig h t subtree of the node.

PREORDER TRAVERSAL— S t i l l another method of looking a t a l l the
nodes in a binary tree , in which we f i r s t look at the node, then the
nodes in i ts l e f t subtree, and f in a l ly the nodes in i t s r ig h t subtree.

RIGHT LINK--In a binary t re e , the lin k f ie ld pointing to the l e f t
subtree of the node.

RIGHT THREADED BINARY TREE—A binary tree in which the right
l inks of terminal nodes point to the next node that would be visited
i f we were traversing the tree in postorder.

ROOT— In a tree , the node from which a l l other nodes
hang. (Thus, computer trees are usually upsidedown.)

SUBTREE--A branch of a tree . Pick any node in a t r e e - - i t is the
root o f a subtree.

TERMINAL NODE--A node in a binary tree that has no l e f t and/or
r ig h t subtree. In a PATRICIA tree , the affected r ig h t or l e f t link then
becomes a backward pointer.

THREAD—The same as a backward pointer.

VISIT—A term for what we do when we "look at" a node during a
preorder, postorder, or endorder traversal. Usually a v is i t involves
performing an algorithm, or printing out information.

154

BIBLIOGRAPHY

Fredkin, E. (1960) "Trie Memory." Comm ACM 3,9 (September) 490-99.

Knuth, D. E. (1973) The Art of Computer Programming, Vol. 3 Sorting
and Searching. Addison-Wesley, Reading, Mass.

Knuth, D. E. (1968) The Art of Computer Programming, Vol. 1 Fundamental
Algorithms.

Martin, W. A. (1971) "Sorting." Computer Surveys. 3,4 (December)
147-174.

Morrison, D. R. (1968) "PATRICIA - Practical Algorithm to Retrieve
Information Coded in Alphanumeric." JACM 15, 4 (October) 514-534.

Salton, G. (1968) Automatic Information Organization and Retrieval
McGraw - H i l l , New York.

INDEX

• • • • S t a»^CnlNo F04 ALL KEYS s TAk TING « IT r
^IGU4E /-3 Tut

F l G U ^ ' t I F # L
S*6 CONCLUSIONS -

2 . 1 . 1 C Q w w L N T b UN
l O U ^ P c - 1 T l M l N I . K) H TMr LOU^* I N

timing FÔ TmF t̂ŵ CM L0OÜ OF
2 . 2 . 1 C Ü H M L f i T b UN

M t T * ^ t t u F F l i i U-^F S - l AS m u I l T m Y
F I G u * ^ ^ I F wl U b t

I l N l N O FOM A T ^ A V F M S A L L O) H US I N ' ,
K I l » u . * - S - N A F T t ' J S T t M 2 o f

TANT L I S'" f l l L O s U u * - l N N s T t P / (jF
A . 0 A w p . N , l 4 - 0 T n r w
C , 4 T I I N' * r n * . u T M » w

GONr C - i t i m i n g of m u s t p a Th U I A
A . 2

y * 1 S(»MF C M A*< Û C T t I b T I C S OF T m E
UML 2 “ '* A ^ A T m I C I A T M U I l T m Y

4 . i conclusions -
1.U

. Ü
.̂2 F . u

A . O
H • f>
0 . u

C . O
. 2 A f . O T H t M

> > ^ AC T 1 C AL
n OOE F -Ju m a n

N U u t TO AN
a l g o r i t h m : g f t a

1 A| . G(* k I T h m : 4 F T U M N
A L G u M I T m m S F O " A O o U r f L Y L i N F t U

M L T U M N A N u u t TO A O u U H L Y L i N K L O
: OF T A n O l ' F F' mQM a O u U H L Y L I N K C O
IbÛ'F j-2 TYPE I N(U»t STMuCTuML.

2 . 4 o O » # E L L

FIGuMfc, b - * * A
FIGUkE 1 - 2 A S U M T t l i

F I 0 U 4 L 2 - * ^ T Mt

^.l.I
Mt b - 2 T m L I m EE of F i O U i ' t S - l AS

6 . 2 A N Ü T m F h A P k L I C A T I O N -
S iJm E o f T h e O UTP UT UMOUuCFO F 0 4

F l O U n i t h - 1 S O ’̂ t T E a T of T m L
F 1 G i w c J V M S H t C l A L

MF Th EE OF F I O I N E 2 - 1 Th e T w t t I S
1 . 3 . 1 SU*t

O O E M I A l FOhM ^ I T h l T a u A n O k l I n <
f.»r*OF>y T K A V t * " S A L OF S T ^ v u C T j n F ml Im
mm: S E a - C H T m ^ O u O h S T h U C T u m F m f T M

a c t u a l h EP W E S E n T A T i o n o f T m E P A T k l C i A T k EE OF F I G U R E 2 - 1
AÜÜ A k e y t o T m E THEE OF F l u u k L 2 - 1 T m E THEE I S C H AN GE D
A O V A n T A u E s OF T h t C ü m H Q E S s EÛ F û H m
ALNOmITmM 2 . J
ALOUhI TmM 2 . 1
ALUU»1TmH 2.1

A L ^ U H 1T M M 2 . 2

A L u u k IT r M 2.2
ALUUM I Tr 'M 2 . 2 a n d I N S E R T T m E k e y s I n K E v EHSE OHDEN
ALUUF" I Tr 'M 2 . 3
AL^, L ' P l T r M t) . J . 7
AL I T mM S.J.f

A L M U h ITmM̂

AL Uf.'H I T »lM V
A l u u m 1 T f H s
ALuuHTmm̂ K)h a DOUOLY LINKlD availadle l i s t
ALUU^- I TuM^s I N TmIS U l S S E H T A T I U N
AL O u M 1 T " M b 2 . 2 ANO 2 . 1
A L l t M l N ' , T l f T
A l I E h I n i . TML p a T h I C I A THEE - NODE D E L E T I O N
A L T t H f . i T L m E T m i j OS F OH O t P N E S t N T i N U Tm E P A T R I C I A THEE
A s O T f c M A H P L l C A I l u N - c a l l F UH A C T I O N
A H M t S u I * - l,L US S A w Y
A m h L S u I x - o I m L m A L O O m I T m h S
A P P t N u I * - T n t T t S T m m O-.-w a h

AmfM.uIa - TmL«»*<E-S ANO PmOUFS

a m p F n u I a — T I M I N G C U N s I O E m A T I O N S
A h k l I C A T I i i N - c a l l FCJm A C T I O N
AkmLILA TIuNS
A V A I L A B L E list

A v A l L A M L k L I b T
A v A l L A M L t L I S T
A V A l L A M L k L I S T
A v A L l A u L t L I S T
M A C r . A " H . P U l N T t N S A m E I N D I C A T E D
M Û L A N L E U I s A R A T m I C I A TWEE?
b I ML I l . Gr t AKMY
M l S A m Y Th c E
H l u A h Y i M t t
n I T A V I S O N S T m AT AWE A C T U A L L Y MADE
Mi j (> L t r t N uMr.MATIONS

h u I l T H y a l u I ' h I T m h 2 . 2
C A L L F O m a c t i o n
c a l l F Oh A C T I O N
C A L L F U w a c t l u N F I l ES
CASE * M E H L TFW=TA

CMANOcD
Cm Am a c T c h I S T I C S OF T m E A L u Oh XT m MS I N T h l S D I S S E R T A T I O N
C u « M I N E U
C u M n l N k O m l I n k - l T a G
C O M r i l N t O m l I N R - L T A G

PAGE 21
PAGE I H
PAGE l u b
PAGE ^ 6
p a g e 1 4 4
PAGE 1 4 ?
PAGE p a
PAGE MO
PAGE M l
PAGE 1 4 S
PAGE 1 u o
p a g e v J
PAGE 1 1 4
PAGE l 4 j
PAGE 1 4 6
PAGE 1 1 b
PAGE ')
p a g e E J
PAv E 7 6
p a g e J ?
PAGE 77
PAGE 1 O'}
PA(.E 1 6 2
PAGE 1 14
PAGE 1 1 9
p a g e 1 4 7
p a g e 1 4 ?
PAGE 1 0 9
p a g e 1 0 6
PAGE 1 1 4
PAGE 1 1 4
PAGE 1 1 5
PAGE 1 1 6
p a g e 1 l b
PAGE 3 4

PAGE 3 0
PAGE 1 5 4
PAGE b 7
PAGE 1 1
PAGE 2 4
PAGE 1 08
PAGE BO
PAGE 1 0 9
PAGE 1 1 1
PAGE 1 1 0
p a g e 5 7
PAGE l a
PAGE 9
PAGE 1 0 4
PAGE 1 0 1
PAGE 101

T T n ^ t û t l E O TU P w F O H (» t w S L U U F n T U l

?• 1 • 1
f . / . l

3 So m e u S E F u l T H I C 4 S I n v ü L v I n o
K I G l JHt T n r MI T

C H N C L U S I O N S - A n V A N l A O t S { ' F T n t
S * S F U K l n t ^

 ̂• i • 1
4.4

4 . .1

F i r>U«f- 3 * 1 0 üh Nt " A L
s . l . f AN IvpuwlANT AND

C . O APH» NU 1 * - T 1 « I-NO
“ . l i)Ll t T 1 N»»

" 4 . 1 . ^ A L O i i K l T n M : l . t i F Î E
» . ! . ! C U \ C E ^ " T < M h M l u U u t L I T I f , G

S.) . b Al.->uw I l M4:
• l • »>

f S , j . 7 AL >ü»^ I I MM :
b . 1 • fï

• * ‘> . 1 . 1 ALmumI fMM;
k L A U Tt * ; AN J

F I G U - t b - o WASS 1

1 . 1 A L ' » U M I I MM :

4 . 1 . 3 A L ù ' j k ' I T» ' 4 :
4 , 1 . 2 A L u U » I T m m :

H , l . *j
4.1

4 , 1 . 1 CUNCLHT s , H L h l N Ü
3 . 4 CU N C l U S I u N -

AL TF W I N G T m F P A I m i c I A T ^ t r - N O J t
E ^ A M 1 Niÿ T MF S T m i j C T u ^ F F iJh S u -i Tm l E
N L M A L CIJNF I L-L»Mû t I ON F OM A S U n T - ' t t

l ' t l t l I O N Cl ' MML yPU.NUb r O A TYPE d
p M t P A H t i M t S T m p C T u h E FOH b U b l M E t

F I G t w E 3 * 1 2
3 . 3 SL' m I m l E p M u N I N G —

4 . 0

G ü ^ t 1 - 4 Î H t NU*^ iC M ^ i N b E ^ T t U I N
1.2

S . 4 A à L i v M T L Y
l . *♦ T n t

F 1 OUh t 1 - 3 A
b t A M C M FOP A n o d e i n a

M . 1 . 2
hE U b F i) T h p u u o m ü u T TmE
TME a l o ü ^ - I T m m s I N T h I s

A , 2 A L O O k I T m Mj F(J.< A
. 2 A L M J P I T m m : mETUmN a n u u e î o a

% I n S l k T

TMAT W I L L
k I : , T I C b ÜF

C d m o I n I n G K L I n k - l T a u
C D ' - m E n TS o n ALOCiM 1 TMM ? , 1
C o M M t N T b ON A L o U m I T m M ? , 2
LuMM A r I b l *N ST H I NOb
c o 4 P A H i b u N b Th a t a p e a c t u a l l y h a d e
C j M M M f b b E u F o p h
CQM f ^ w E S b l u N
c d ' . l l p t s M L M i N O D e l e t i n g c o n t i o u o u s t e a t

C O N C L U S I O N - D t L t T l f , 0 N d HES
C i i N L L u S l O N S - a d v a n t a g e s OF TME C ü H P P E S S t ü F O h M
C U N C L U S I O n s - A L T F 4 I N 0 TEAT
C u N L L O' , I UNS - S u Mm a p y OF C m AMTEW T « 0
Cuf , F I uPM A T I u N I DM A S U ^ T P t E D E L E T I O N
Cu NS 1 UL'L L - E L I ^ I N A T I N O L T A G
CONt , I D* m AT I D \ ' i
L ' i f . T I i M i Ou S Î t A T
Cv»iN T I u O u V s T c * T
C'-*f.T I v U u U D T t a T
C' ,NVC M T A h I i .m T Tm m E A I ' F O t w e e TO P m E O P d EW S E O U E N T I A L
C u N / t n T Tf) p K l i i P l i b P S t G u t N t l A L F O k w
C o N w L n T Tu h h l u p d e H S E Q U E N T I A L F u h M OVEH T m E s a m e s p a c e

C u f , v t ^ T l N u U v t M T^ E S4*- 'L M l M j p y SSACE
c - * F - T t A K i i . m t m w e a d e o m a t p i c i a T h e e
L » E A 11 A 1 M F t
C ‘ ' t A l E S T MI s F POM T ME S T w u C T u G E OF F l o u P t 5 - 1
l > r L t Î E A NU u E F m U** Tm E T^-e E
D E L E T E A P A T p I C I A NODE F ^ u M Tm E THEE
K ' r l t T E A S M r C l F l C « f . Y FPOM T m F TEXT
D E L E T E CUNT I u U D u S T E x T
D E L E T E UP I N S E R T T t x T
[‘ f l E T I n i , C u n T I l. d OUS t e x t
d e l l t I n o Co n t i g u o u s T e x t

UE L E T I M» N O j E s
D E L E T I O N
Dt LE I I ON
I l l E T I o n
DE LE I 1 ON
d e l e t i o n

d e l e t i o n C D P P E S P Q n OS t o a TY PE 2 D E L E T I O N
DtI t T ION OF P p EF I AES
D E L E T I O N OF T E X T M A T E R I A L
OtSLENOINo OPOEf t
o e t l m h i n i s g To * f t * TT
O I F f e h E n T v E m s I O N OF P ^ E O h DL P S E Q U E N T I A L P E P P E S E N T A T I O N
d i g i t a l T m EE
D I G I T A L T m EE
d i g i t a l T m EE
d i s p l a y Th e TPEE A N D / 0 » T m £ TEXT
D I S S E R T A T I O N
D l S S f c p T i T I C N
DO u m l Y l I np- ED A V A I L A B L E L I S T
Ü U U o L Y L I N K E D A V A I L A B L E L I S T

PAGE 1 0 ^
PAGE l î b
PAGE 2 8
PAGE 1 0 9
PAGE 2 4
PAGE l u b
PAGE 1U3
PAGE G8
PAGE b l
PAGE l U b
PAGE 7 b
PAGE 31
PAGE b b
PAGE Ob
p a g e | 4 2
PAGE 0 3
PAGE 7 2
PAGE b a
PAGE 9 3
PAGE 1 2 2
PAGE 9 4
PAGE 9 3
PAGE 8 *
PAGE 1 19
p a g e 9 7
PAGE 1 2 1
PAGE 3 8
PAGE 7 b
PAGE 7 2
PAGE 1 2 1
PAGE b 3
PAGE b 8
p a g e b l
PAGE 3 2
PAGE b 9
PAGE b b
PAGE b b
PAGE bO
PAGE b 8
PAGE b 4
PAGE 0 2
PAGE 14
PAGE b 2
PAGE 1 0 1
PAGE 10
PAGE 14
PAGE 1 2
PAGE 1 2 0
p a g e 3 3
p a g e 9
PAGE 1 l b
PAGE 1 1 b

?.l AlC.OOIThm: r.FT A NOOt FmOH A
FIOl'HE *-■) IrlE FOUmTM a mas MttN

FIOUME THf. SMACt HAS HtFN
WTAkT AM) l“MtniATt CO-JSt. jUfNCt -

Fll.U’̂ t 4-4 PMtOMOtS AwO

iMt

f IOU-t S- 1 an

l . i
M.1 Tnt

A M P I f U F A S l w u C T U r l f l i t S I I , N E t) F u M

S u F ' t T t » T l ' F T n f C a l l K ' - I C T l i i N

. 1 . ^ . 1 A L ' . i w 1 I P 4 :

6 n . ' S V t P T I I I P n f O n i t M b [i J f M i A L

N S - A LI V A S T A p t S (I F T - t Ci.̂ '̂ npiAStO

F I (. U ' « t S V P l P ^ f O P ' t P SL , ; •) (f . T I A L

Î • F i n T L*«“ I '• 1 *ip (P •
1 • • 1 A l . o U n l T n M : F i N l ; n i l # T LI «

M.S
A.f.l Al I'Ui' I r I'M :
A , 1 A L ' I L I A I T n H :

F,0 AnPtNLÏA -

n . 1 A

s.I.? AN ImMU-TAnT a,J

•J . 1 . i ; A N

F I (j U i (t S - A T n t

1.4.1 ALi.lln I Thm :

»? . £* AL "ijn 1 Tm M :

A . I .•J lit Lk 11 DM

* . ? . Al iiU“ ITnM:

S - 3 I F Mt USE ALOF'MlfMM ? . ? AnLj

1.0
C.? riMlNF, F UP A iMAvtMSAL

EdxlltM SEQUkMlAl STwiCTli-t Fup a

H.l.J StAnCn tdn A

1.3 AlüOpITmm: OFLrIt A M̂kClttC

1 . 3 . ? aliiOpITmh: it'APCH f UP A

OF A SiPiJCTO-t OFblO-.tU FOM KÂT

F 10 0-1F ?-? IF wt Aim A
l.ir SuAMCnlNL, F'JK

USF AL I'OP 1 T n̂ f* . ? ANO iN̂tnT Tnt

F I ('I I'l t --M Tnt I "pop TANT

A.? At I'l'P I T MM- F 04 A fOUhLf
(JPITnn: PFTl.nN A NO' t T 0 A nOUMLT

OOP 1 TMM: OtT A sont FMOM A ('OuHlY

Tmh: (.t,T A f.OoF Fpop AN AvAjLArlLt

IIP : MtlLlPN 4 NOOF Id AN AVAILABLE

rius F UP A t.llUILT L I'lSLD Al/AlLAhLt

Dr F 40" A lit'LinL T LI'.'til avalIAmlE

►JOÜF To A liiiUriLT LIN', to AvAIlAMlE

n.l.j SFAPCm F 04 A l<FT A.,,)

• ?.3 al OOP ITmm:

t 7 Tnf SPECIAL alTUATIoN wntMt

DOUbLY LiNNtO AVALlAbLF LIST

F LiMlNATtU FhO“ Tnt TEXT

fLiMlNATtO FMo" iMt TEXT OF FlOUMt 4-1

LL IMINAT INO LTAC,

t N I) UP lit 4 VISITS

E SSt NT I ALS (IF pATpIC I A

lxAhplE of A -lunT Tn-tADEO PATWIClA TmEE

Example of a STpocTumE OLSIoNEU FOH FAST KEY HETHIEVAL

FACIL I T i t s i)F Tnt PHiKjOAM

FAST A t Y 4 L ThI t VAL

F h ..s
F I M i P Ü , To. FT. TT

FuPM

F 04M

FuPM mITm LTAO ANO MLINY, COMM I FlEO

FT, TT

FT. T T

F '.14 TntH C V4P4F Ss 1 ON
OF T A NOL'E F POM A OOUnLY L I Nn E 0 AVALIAHLt LIST
(>L r A NuuE F 40" AS AvAlLAnLt LIST
OLOSS. Ap y

MfPuTntTICAL MtOhiM-SCALE SYSTE M
ip-tl.IATt CONStJOENCt - EL I MISAT IN(, LTAO
IPPUPTAST Asu iMMrulATF COSslOuESCl - LLIhInaTING LTAG

ImpupTAsT lisa F It LOS DuhI No STEP ? OF alOOHITmh s.3.7

IssEpT - sEApCm Fop a nude In A DIGITAL THEE
I'llknT A SL4 .SUUE INTO À PATPICIA THEE

I N S l p T I t x T
INSthT TtxT

IsSE HT Tnt keys In PtvfHSt OHOLH

1st p O p O L TION

I Te HAT ION

r k T

HEY AsO LisT All its MATCHES

K e y F k O m m t T t x T
MY IN A Th Ik MtMllHY
FE Y P e T p I e VAL
KEY TO Th e T p EE OF F T G U p E 2 - 1 T m E THEE IS CHANGE D
FE Y S

FEYS IS Hr.vEPSk OPi'F 4

LISP fields OOP IN(, STEP ? OF" AL&OHITMM S.3.7

L l f i F . E O A V A I l A m l E l i s t

LlNhtu available list

L i N ' t O A V A l I A m l E l i s t

L l s T
LIST

L I S T
LIST

LIST

LIST all its MATCHES

LlsT all MATCHES IN A paTHICIA TpEE

LLll.KlJ) = I

PAGE > 1 5
PAGE 6 6
PAGE 6 5
PAGE US
p a g e 71
PAGE 15
PAGE 7 8
p a g e 7
PAGE I W
PAGE 7
PAGE n o
PAGE 5 4
PAGE 1 2 2
p a g e 1 0 5
PAGE 1 0 4
PAGE 5 2
PAGE 5 4
p a g e 1 0 3
PAGE 1 1 5
PAGE 1 14
PAGE 1 5 2
PAGE 1 0(3
PAGE 8 5
PAGE 8 5
PAGE VV
PAGE 12
p a g e 2 7
PAGE 1 2 1
PAGE 7 5
p a g e 8 1
PAGE 1
p a g e 1 4 2
PAGE v l
PAGE 12 1
p a g e 75
PAGE 9
PAGE 7
PAGE 18
PAGE 6
PAGE 8 1
p a g e 9 9
PAGE 1 1 5
PAGE 1 1 6
PAGE 1 1 5
PAGE 1 1 4
p a g e 1 1 4
PAGE 1 1 5
PAGE 1 1 5
PAGE 1 1 6
PAGE 12 1
PAGE 2 9
PAGE 9 8

f i n u k t C - I T I M I N Ü FOU THE LO U P I N Al ü Q P I T M m ? . l PAGE 1 4 4
C . l I I M I N Ü FOU i M t AOCM L O U P OF A l o O P I T m m 3 . 1 PAGE 1 * 3

l O L H F C - ? T I m I s g F ow a T 4 A v t k S A L L OUP U S I N G A L g Op I T m m 3 . 3 PAGE 1 4 5
OF S T k o C T u k F i t l T M C U V r t l f . F U PL 1 0 4 - L T A u PAGE 1 01

t l l M I ' t M ‘ .F o u t N I I AL C l l M r t l M t t u m L I ‘4 4 - L l A u PAGE 1 0 3
P F u l A T t CONi>t U L . r U C t - t L I H l o A T I i . U L T A m PAGE e y
Ul t P S T - t t C T U - i t « I T ri C U P r t l N L U h L I o 4 - L I AU PAGE 1 01
b l y PWt 1WI I LM b t u u E o I I A L F J K M « I l r l L T A u ANO W L I N K C O M O l N t n p a g e 1 0 4
F t A k C n F UP A a F r a r t u l I S I a l l I T S m a t c h e s PAGE 131

* / . ! A l Ou h I T m h : l I a T A L L MATCMES I N A P A T P I C I A TREE PAGE 3N
- . 1 I ' L l L I I U i t u t T f a T HA T F H 1 a l p a g e b 3

A . I t n f P O T r t T I C a l M r . u l U H - s C A L t S y s t e m PAGE 1 0 6
F I T U ' ^ r , 1 - 1 A S A h U l F I — I t Mr Ml. p Y PAGE H

m I T p m : ' - F A r . r - t F UP A A t » I n A I P I t Mr. M. iP T PAGE V
h . l . t) C U N V t - I l N O O V t M I t ' F SAMt. Ml M|>p Y p P A C t PAGE *13

S . ' i A L l F P O A l c . Mt Tm u OS F UP P t P P t S E N T I N U TME P A T R I C I A TREE PAGE 7 7
y . 1 . A u U P TO - A ^ . U L t M U t ' l F 1 C A T I Ü N S p a g e V 3

F l O u P t 0 - 1 T I m I n u uF M u s I P A T p I C I A A l GOp I T m m S PAGE 1 * 6
* / . Z A l r . O P l Tm h : I N S f. h T A N e « N u O t I N T O A P A T R I C I A TWEE PAGE 3 7

0 A L T E H l M - T m F P A T P I C I A I n t t - N u U t U F l t T l i j N PAGE 3 3
A . t ’ . l A L i -Op I T m h : u t T A NOuE FPUM A DOUB LY L I N K E D A V A L I A B L E L I s T PAGE 1 15
A . 1 A L u U p I I m h : O t T A NULt FPUM AN A V A I L A B L E L l S T p a g e 1 1 4

M . l . A U t l t T t A N u u E FPUM Th e T p EE PAGE 1 3 1
1 A L t ' O P l IMH: O t u F T t A P A T p I C I A NUuE F P u M Tm E TPEE PAGE 3 6

a l o o p I T m m : l N S r . P T - S l a - l m FOP A N u u E I N A O I u I T a l TREE PAGE 13
» » P . l a l u u p I T m h : s l a h C m F'p p a N U u t I FI A P A T p I C I A TREE PAGE 3 5

A / . Z A L O U p I T p m : l U a t P T A O l a N U l t I N T O A P A T p I C I A TREE p a g e 3 7
F l n u - ^F . J - J T Y P t ?. •NiltiE S T P U l Tu'PF PAGE 3 5

F i r . l l H t j - 4 TYPF t 'A N I N E S T P U l Tu p E P A u E 3 6
F I ' - . u. ' F 3 - ? I f P t 1 NUOE S T p U C I L ' p E . B A C WABO P O I n TEFIS APE I N D I C A T E O p a g e 34

A.?./ A L O O P 1TMM: H t l u - N A NOl i h TO A U Ü U I I L Y l I N K E O a v a i l a b l e L I S T PAGE 1 1 6
A . 1 . 1 a l OOp I T m h : P t T u P N A N u u E TO a n a v a i l a b l e l i s t PAGE 1 1 4

3 . 4 COFt CL ' J i . ' ON - U t t t T I . N O N u u E S PAGE 61
F I O u p F 0 - 1 N U T a I I O N TMAT « I I I h e U S t O T m WOUGHOUT TME d i s s e r t a t i o n PAGE 3 3

p . 1 . 1 B O O L t A N O P t P A I I UNS p a g e 1 0 8
ML N U P n F P S I N S E p TFU I N O t S C F N O l N ù QPUF P PAGE 14

. â AND iNStPT TmF Kr.Yb IN hF vt P at O p u E P page 6 1
c . 3 T I h I n u F UP OTmfp algopITmms PAGE 1 4 3

B . ? s a m p l e O u t p u t p a g e 1 3 3
Fl O u P t s-p SOME OF TmE O UT P UT P P O U u C t O FOH C A L L FOW A C T I O N PAGE 1 1 1

F1 oupF y-B P A SS 1 C w t A T L S Th i s F p OM T m E S T R U C T U R E OF F I G U R E 5 - 1 p a g e V7
? . | | T m e E S S E N T I A L S OF P A T p I C I A PAGE 15

y.3 ppfokolp seuofntul P A T P I C I A PAGE 88
F ir > iJ P t c - 1 T I M I N U UF m u s t P A T p I C I A A L G O P I T m m S PAGE 1 4 6

A O . l A l O-o p I T m h : u l i F. TL a P A l P l L l A NUUE F POM TME TREE PAGE 38
F 1011 IE / - I A s i m p l e P A T R I C I A TREE PAGE 16

y . l A - l o M T TMPtADtO P a Tp I C I a T p EE PAGE 7 7
A l O-Op I T h m ; l i s t a l l m a TCm ES I N A P A T P I C I A I h EE PAGE 3 9

A L U O P I I m m : S E A P C m F o p A NODE I N A P A I P l C i A I p f t PAGE 3 5
1 AN E X A M P L E UF A p IC. h T T m p E A O e U p a T p I C I a TREE PAGE 7 8
M i p I T m m : I n s f p T A r . F « NUDE I N T O A P A T p I C I a T r e e PAGE 3 7
L G u p I T m m : C p E A T e a p I u HT T m We AOEU P A T R I C I A TWEE PAGE 8 4

NA T F m F T m OUS FOW H & k W E S E N T I ^ G ThE
J , 0 A L T L w | N G Tr iE

FIGuhL A

T m F a c t u a l WtŵfStNTATION OF T h £
P.4 MÜW «!.LL tiALA:*Ctn IS A

J.2.1 ALOOwITmm: FINO

TVPt I NUl't STPUCTUr-t.
PHf UHULW StOutsTTA\. '>THwCTuHt IN

S.A.f aluühITm.m;

f* . c
SU t ' T - ' ï E t PWU S t ^ l G • ' J t l F l I C i N uF

F I u u '<F 4 -«*
CO f j V K wT A MI (,M T T M w b A u L u T ^ L L 10

ITmmj Tr - ' ANbFUMM pIGmT T M ^ f A ^ r U TO
y . l . f ' Cu•JV^ WT TO

■ S..'1,7 ALGjPIÎmm: CosvkwT TO

FIbuwf y&iu

S . j
n . ^

F I GUWt *3"S Tn£
A Sl I o m T l T O l F F f ^ r S t T VC I OS uF

S.;i. 1 AL'>OOI Ikh:

#b.J. I ALGjP:T̂H:

3. .1. ?

M.O

H. 1
0 . 0

G U ^ F S —S

ScakCm Th£

T'<AVF Kbt A

ALhuw" I TMH:

3 . 3 . 1
AL'*OP I Tmh:

ÎMt TEST

A. J

A P P E n O I A
T u t F A C l L l T I L h (i F T n c

APPFNiMA - iMku^EMS A\'J
3 . 3 Si ' r iT*^c, I :

M . 1 . 1
,? PhFOWiiLW SLoUF NT I AL

iMf PWEOr t LLW b E u U e N l l A U
NT V t W S l O N OF P h F O k I i EH b t O U K N T l A L

F I G U « f ^ - 3 TmF A C T U A L
S . O A L T c P M A T E H E T m u D S F u W

A S I Q U C T U P E U L ^ I G N f l - F O h F A S T me Y
A./.f AL'»(jh I Tmm :

A.1 . 1 ALOU*^ I Tmh :
Op I T m M ? . ? AND I N S E R T T m K r E Y S I N

• 3 . 1 A
b - 1 AN t X A M M U f OF A

A L G O k I T - * M : CmFATE a
AL"'0̂ 1 TMM : ThAnsFUWh
AL'.'Ô̂ I Tmm: C r . V c . w T A

OF. k S t N U t S T l A L FO ^ M w 1 T M l TAO A n O
V t k < A L uF ST HUt ' T l J - v t mITh C(JWHlsti)

TO P M F o w O t w S t . U l . F M l A L C U M - i l M s G
M TmwOuOH SThuCI'JWE wITM CU«nlNr.D

S . 3 . 6 C U N V t P T l N G O v F k TmE
H. ?

F I ÜUKC 1 - 1 A

F 1GUMr
»**S. I • I

S . 4 . 3
y. KS

P A T r t l C I A T U t t PAGE 7 7
P A T x l t l A i K t t - N O U t O F L E T I O N PAGE 3 2
P A i P i c i A i H t t huIlt y y algorithms a m o ? . l PAGE 2 3
P A T P I C I A T H t t OF F I G U R E 2 - 1 PAGE 21
H A T k I C I a iRtt.' PAGE 3 0
P ' j * T u * F T * TT PAGE S .
Pu INTERS ARE i N O I C A T t U page 34
PIoTOr TEh PAGE 88
PusTOhUtH T R A V E R S A L OF s t r u c t u r e w I T m C U M H l N t U H L I N K - L T A G PAGE l u l
Practical applications PAGE 10b
P‘-eF IFTS PAGE b4
P-EURLTR ANl) ENJ(»-l‘ER VISITS PAGE 71
PrEURrER SEULE '«TIAL page V 3
PRtuPiER seurTnTIal C 0 “ H I M N G RLINK-LTaG page 1 0 2
PRtl.U'i.ER SEUUt’.TIAL FORM PAGE 122
pREUR./ER SEiiJtSTllL FORM UVER T h e s a m e space PAGE V4
PRC()-.itR SERCtSTlAL Form 11 I t MLTAO ANO HLINN C O M B I N E D PAGE 1 04
PRtliPclR si ST I AL PATRICIA PAGE 88
PrlIjrCER sEluEl'TlAL REPRESENTATION PAGE B b
P-EuRvER sE'lLENTIAL rEPrIsIe«TATIGN PAGE O' i
P-tU-i'lR SE U ur E, T I A L RE RR I SI E(T A T I OEJ PAGE l u l
pRE I Pul R SlUiE'.TiAL sTRjCTL'RE for a key PAGE 91
PrEUriIr seuuEe.TImL sIRrCTcrE I N POSTl'rOEH PAGE 88
Prepare Trl STrucTurI. fur suuTreE OLLETION PAGE 6 0
PRI PAR I *u* Tr E STRUCTURE For SUrT-tE OELETION PAGE 8 9
Print a Tree PAGE 1 1 6
PrGurar page 1 1 9
PRUuRAM PAGE 1 1 9
PR'JUFS PAGE 1 4 7
Pruning - uFLETIU.n OF P R E F I X E S PAGE 84

Ri.Aü TEXT anG Create a tree PAGE 1 1 9
Re.PrEsEnTaTIO.n page 86
Rt PRE SENT AT ION PAGE 8 9
representation page 1 0 1
REPRESENTATION OF THE paTpILIA TREE OF f i g u r e 2 - 1 PAGE 21
REpREsfcFiTIf*** The PATwICIA TREE PAGE 77
RETRIEVAL page 7
Rt Turn A NUuE T u A OUUHLY LlFurtU XVAILAOLE LIST PAGE 1 1 6
RETURN A Nort TO AN A V A I L A B L E LIST PAGE 1 1 4
reverse (;R 'E R PAGE 81
P I u h T I PRE Ai 'E L' P A T R I C I A T r e e PAGE 77
pIcrT THREADED PATRICIA Tree PAGE 7 8
pIuhT ThRea;H0 PATRICIA TREE PAGE 84

RIGHT THRuAOEG TO prECPüER SEQUENTlAL C O M b l N l N O H L l N K - L T A G PAGE 1 0 2
rIuhT ThreAuEO TreE to PREOROER SEQUENTIAL page 9 3
R u l N A C()Rr I f*E 0 PAGE 1 04
RL I N« -L ’ A' . PAGE 10 1
R L I N R - L T A u PAGE I 0 2
RLINR-LI Au page l u l
Same MEMORY S “ ACE PAGE 9 3
SAMPLE OUTPUT PAGE 1 2 3
sample ThIE HEMUKY PAGE 8

p . 1 . 3
1 . 3 . 2 A l ü I P - I T m H !

1 . 4 . 1 A L O n P l T H M : i N S k ' M T -
• « ? . I A L G U k 1 T m h :

C . l T l H l s G M ' H T m E
5.3.3 AL'iUHlTMH:
b . H . l A L G Ù M I T M H :

1 . 2
TO
TO
TO
TO

A k l G M T i M H t A I - t l . T n t t .
N b F l i P H P I G m I T M r . t £ i J f O

p . l . M CONVICT
7 A L O c p I T m m : C O O v L m I

F i o o - I t b * l ü
s . 3
S . 2

F l ' ï O H t S - y T l i t
Tor l i IFFFKtsr VtHM'lM OF

3 a l Oo p I T m h : s k a p Cm iMt

1 a l G u m I T m h : Tr-AVti-yt A
r I G O -

1 1 GÛE y- T Tmi.

Pit OGOlH

PKF t i i i i t P
Pit Oil l tP

Pit OiOt.H

Pit iwotR

Pit Oi l i t H

P i t O m Gl P
Pit IWiJt H

Pi t Oipt H

Pit OP i)t. H

Pit IJPOC-P

" t. 2-1 A
y P L C l A L

G . i A

F l O u i t 1 - 2 A
CnNVttiTlNf. OVEN Tnt SAME MtHOiT

t I G U i t 4 - / TmF

u t i St' lULMIAL FOPM OVLW Ti t SA-t

F It .Hit j u i

F IGOit S7 T IMt

4 . 1 . 3 ALGOpITmm: .i t-LtTt A

F 100-4 4-1 A

SEFl'L TPlCt: INVOLVING CohPApISoN

FlOiiPt 3- t TYPE 2 f.OOL

FlGUiE 3-4 TYPE 2A t.out

y .3 .2 CAN TmE

1 . 3 EXAMPLE OF A

m: SEAMCH TmE phEOmUEw SclUFNTlAL

3.1.1 Pi tPAi lNl i T i E

3 . 3 . 2 AL .'Oi I T M M : PitPAPt TmE

M: IMAvtWSt A t.il.iKiiEM SfJoENlIAL

y - 6 PASS 1 C i E A TF s i m s FmOm TmE

ALOi'PITMm; POSTi.iOt P TiAVI iSAL OF

b.4.1 AL G'' i I T PM : SEAiCi 1 MiOU..M

F l t ' t i i t 3-2 Type 1 NOut

.3.1 PPFPApInG TmE STHulTuHE FOP

3E10 otfiFPAl CONF IGlmAT ION FO- A

ÜMlTtiH: Pi tPAiE T i t STHOCIUPE F OP
FloUiE 3 4 1 2

3 . 3
2. y C O N C L U S I O N S -

. 1 A H Y P O T m e T I C A L M L O I U H - S L A i E
3 . 2 U E T t M M l N I r . G

3 . 2 . 1 Al O O P I T m m : F I N O P D .

S E A m Cm FOM A KEY ANO L I S T A L L I T S M A T C m ES
S E A m Cm F u h a IVEY i n a T p I E MEWOPY
SEAMCM FOP A N O U t I N A O I G I T A L T p EE
S E A m C m F O m a n o u e I N A P A T P I C I A TPEE
S e A m C m L O U P OF a l g U P I T m u 2 . 1
SFamCm Tm e PmEomUeM S t O u E M I A L S T P U C T u P E FOP A KEY

S r A M C M Tmpoi’oM STpuCTL’ME bITm CQp-'INEO Fi l I N K - L T A G
S t 4.<CM I t i p F u m k e y s
S t t i l ' E t. T 1 AL
Sc GUI ST IAL
St I . . E NT 1 A l

St ,)t N T I -L
S t i . j ENT 1 AL
St l i s t t.T I Al
Si IILE 'I t ! Al
Sc HUE N T 1 At

St I Jt N T I Al

St iLE NT I AL

St i -E N T I AL

s I “ P i t PAY

COMilNlSG HLINR-LTAg

F UMM

FOiP OvLM T- t same space

FOpH »|Tm LTAG ANO ML INK

PATPICIA

Pt PHtStNTATIUN

“ tPi tSt ' iTATlON

Ptt ' i t i tNTATION

STPt.L TtiiE FOP A KEY

STiliCTi.’iE IN PuSTuPOLH

1 L I A T .11, F

C O P H I t i E D

P H t O i O E W S E U U E N T I A U R E P R E S E N T A T I O N
S I T U A T I O N « m E P e LE I NK I J l = I
S l I u m T l y :i I F t E i t N I v l p S I O N u F

S g “ T e u m I n a m y Tm e E
SPACE
SPACE MAS h t E N E l I m I n a TEO FPUM TmE T E X T OF F I G U R E 4 - 1
S P A C E

Special case «mEme tfi. = ta

S P E C I A L S I T U A T I O N » m E m F L L I N K TUI = I
S P E C I F I C K E Y FMOM T m E T E X T
S T m a n g E T m e E
S T R I N G S
S I p u C I H i t
S T p g C T u p E
S T i u C T U i E
ST P i i C TUPE
S I m u C T I W E
S T M i l C T l i i E
S T m u C To p e
S T P t iC T u P t
S I P u C TUp e
STPUC T U k E
STmi.C Tt i — E
S TMOC l U i E

S u m T P i !
S o r t T P E i
S u n T m EE
S g 2 T m E E
S u n T m EE
S U M M A R Y

system

T u » F T . TT
T U . F T . TT

ME u t i l i z e d ?
UE S I G N E u F O m F A S T KEY R E T R I E V A L
FOM A K t T
FOM SUMTift D E L E T I O N
FOM SGm T p EE O E L E T I O N
I s p o S T i i M O E m

OF FlGUiE y - T
m I T m CO“ i I N E D H l I N k - L T A G
w I T m C u “ i 11. Ef t PL I NS - L T A G

m a c k . A M U P O I N T E M S A i t i n d i c a t e d

UELE T I UN
D E L E T I O N
U e L E I I O N
D E L E T I O N COp m ESPO. n DS TO A TYPE 2 DELETION
P P U N l f i G - D E L E T I O N OF P R E F I X E S
UF C m A P T E m T » 0

PAGE 1 2 1
PAGE 9
PAGE 12
PAGE 2 5
PAGE 1 4 2
PAGE 91
PAGE 1 0 1
PAGE G
PAGE 9 3
PAGE 1 0 2
PAGE 1 2 2
PAGE V4
p a g e I 0 4
PAGE 8 b
p a g e b b
PAGE 0 9
PAGE 1 0 1
PAGE 91
PAGE 8 8
PAGE l b
PAGE 9 8
PAGE l u l
p a g e I I
p a g e 9 3
p a g e b S
P A g F V4
PAGE 5 7
PAGE 9 8
PAGE 7 5
PAGE 8 4
PAGE 1 0 9
p a g e 3 5
PAGE 3 b
p a g e 9 1
PAGE 7
PAGE 9 1
PAGE 5 9
PAGE 6 0
PAGE 8 8
PAGE 9 7
p a g e l u l
PAGE l o i
PAGE 3 4
PAGE 5 9
PAGE 5 6
PAGE 6 0
PAGE 5 0
PAGE 5 4
p a g e 31
p a g e l u b
PAGE 5 2
PAGE 5 4

1 . 1 T t M M l N O L O O r PA GF ♦
H . O A P P E N D I X - T m e T E S T P P D G m AM PAGE 1 19

k . l . b D E I E T E DM I n S F m T T e x t PAGE I x l l
4 . / A L D i i h I T m h : I n S E m T T E X T PAGE 7 b

4 . 1 O E l E T I N O C O N T I O U O o S TE XT PAGE 6 3
4 . J CONCLU* ; I DNS - J L I t . ' l N ü T E X T PAGE 76

. 1 . ? D I S P L A Y Tm F T F t t A N U / OM T- i £ TE X T PAGE 1 2 0
1 . ? A L O D M I T h m : U f L t TE C(i n T l o u d u S T t x T PAGE 7 2
N C t P T b M t M l N D D L L E T I n u COn T I o u O o S T e x t PAGE 6 0
M : ' U L T T E a S P t C I F I C r E r F m u m Th E TEX T p a g e 7b
T m a m a s h . e n * l I “ I n a TEO F h o m T- 'E TEXT PAGE 6 6

M. 1 . I Mt AO Te x t AND CP E A T E A T p EE PAGE 1 1 9
- . 0 D E L E T I O N oF T t x T m a T E p I a l PAGE 6 2

PACE M i b m e e n E l i m i n a t e d e m o m t m e T t x T OF F I o u p E 4 - 1 PAGE 6 b
F I I ' U ’. t 0 - 1 SOM& TEXT UF T m E c a l l f o p A C T I O N F I L E S PAGE 1 10

D . U A P P l M / M - T P t O P E M S AND P P D u F S p a g e 1 4 7
N . l A m I o m T T r P t A u t U P A T P I C I A TPEE PAGE 7 7

f l O l ' M t S - l AN e x a m p l e UE A m I I . m T T m p E A L E U P p T p I C I A TPEE PAGE 7t l
* 0 . 1 . 1 A L O D m I T m M: (. h E A I E a m R . m T T M - t A u E D p A T m I C I a TPEE PAGE 0 4
S , - , 3 A L U , - I TMM ; T m A NSEI ; * . m p I i 'i m T T M - t A i ' - G Tu PPL P u E P S F O u e N T I a l C u h ü I N I N G M L I N K - L T A G p a g e 1 0 2
S . I . S ALE,UP I T M" : C m N v l p T a P U . m T T M - r AGr U T p E r Tu p p E U P ' ' EM S E O U E N T I a l PAGE 9 3

C . O A p p e n d i x - T l “ I N o CONS 1U E P A I 1 UNS p a g e 1 4 2
c , ^ T I H I N O F UP A T p a v e P S A L I T E R A T I O N PAGE 1 4 2

F I O u m E C - £ t i m i n g F D p a T p A N t P S A l LOOP U S I N G A L O O P I T M M 2 . 3 PAGE I N b
c . 3 t i m i n g F UP OT- i r . M a l GOp T T h p S P A o E 1 * 3

E I O U P l C - 1 t i m i n g F UP T me L O U P I n a-l g o p I T m h ? , 1 PAGE 1 m 4
C . l t i m i n g t o p I M t g E a p Cm l o o p U f A L G U p I T m m ? . l PAGE 1 - 2

F l o u HE C - J t i m i n g UF MUST P A T P I C I A A l GOp I T m p s PAGE 1 4 6
S . A . 3 A L O O " I T M M : T p a n S T U p m P I g m I T p p E A D f O TO p p E O H U E p S E Q U E N T I A L C O M B I N I N G R L I N K - L T A G PAGE l u 2

C . ? r i M l N O FDM A T P A v E P S A L I T E p A T I d n PAGE 1 4 2
F I G U M E C - i * T I M I N G FOP A T p A V E p SA L L OUP U S I N G A I . GO p I T m M ? . 3 PAGE l 4 b

i > . 4 . £ * a l O O P I T h h : POSTDPDEW T P A v L P S A L UF ST M u C T u p E » I T H C U m m I N E D p l I n r - l TAG PAGE l o i
* S . 3 . 1 AL GUM I T MM : T P A v E P S E A P P E O M u E P s e q u e n t i a l S i h U C T u P E I N P U ST O MDER PAGE 8 0
l . A Tm E d i g i t a l T p e E PAGE 10

F I O D m E S - 4 A H I n A m V T p t E ' PAGE b 7
F I G . . P F 1 - .) A D I G I T A L T p l E PAGE 14
F I o l -'E A - I A S T P A * j E TPEE PAGE 6 4

A . 1 A L G O m I I n u : P p I n T A T - t t PAGE 1 16
F I G U M E 1 - i A S U M l E l) H I N A m t TPEE PAGE 11

F I G U M E i - 1 A S I M P L E P A T P I C I A T p E L PAGE 16
B . 1 . 4 d e l e t e a NUUE F p Oh T m E T p l E p a g e 1 2 1
B . l . I p EAD T E x T AND C p E A I E a TPEE PAGE 1 1 9

S .) A P l u M T T H P t A U E U P A T P I C I A T P t E PAGE 77
M : l i s t a l l m a Tl' p e S I n A PA Ts I C I A T m e E PAGE 2 9
: d e l e t e a P A T P I C I A N U ' J t F m OH I m E Tp EE PAGE 3 8
: S r AM C M F D p a e. d o E I n a P A T P I C I A Tp E e PAGE 2 b
M P L E U r A P I G m T T m „ (A O t O P A T P I C I A T p EE PAGE 7 0
i N b f P T A N E - N ' l u E I n TU a P A T p I C I A TPEE PAGE 2 7

CPE ATE A M l , M l T M K t A D E D P A T P I C I A Tp EE PAGE 8 4
DOS FOP P E P p E S E N T I M , Tm E P A T P I C I A T p E r. p a g e 77

- f l a p Ch F,3p a NOUE I n A D I G I T A L T p E e p a g e 12
3 . 0 A l T e p I n o Tme P A T P I C I A Tp EE - NODE O E L E T I U N PAGE 32

D I S P L A Y T m L
F l O U - P e - * A P A T M I C I A

Al P t P P t S K M A T I O N OF T n t P A T w I C I A
K . u w t i ' - c ' I K w t AIJO A A t » TO I n t .

M L ' O W t h - P I r i K
G r i w I l H w : C o s v t w T A wIgmT TmmEaj lO

M' ' * « t L I - HALAr . rc . i l i A P A TWI CI A
A * i dOwc USt F UL

F I G V c I “ 1 A r.
Al C O P I ; h m : StAwCM FOW A b LT I n A

S.P ;p I t W--I J iNf , I , ' , F I .
. p . I Al Ol lwl i M " : r i . - 'O P O. 1(1. F I .

K t ' r i T - . f E O F L F T I O N C'

. .1. P
F I o u p l a - a

c a n T Mr.
P W t O P P t w

F I u j w -
" WL , ' Po lUG

F I V j n F
F I -j
F I G lwr
F I 0 i jM r
F 1 0 j " :

F l o ; wr
F l o u w F
f i . j

S T P O C t O W t Mt*
Ag o c . f i v (i t o t W

. f - P
TU A
J - J
J - w
J - ' J
1 - &

.)-/
j-M
J - W
S t i w t

T w t e A F , o / 0 P T n t T t » T
T w t t (J J I L I F.Y A L U U W I T w M S 2 . P ANO p . I
T w t t Cj F F l ' j l j w t P - Î
T w t t u F K l u U w t P - 1 T M t T w t t I S C t i A N G t U
i H t t OF F l u j i ' L S - l AS I ' U I L T t l Y A L G O W I T fiM 2 . ?
T w t t 10 P w t O M J t W S t o u t N T l A L
T H « F ?
Tw I , : J s I N v O L v I n C r . o w P A W I S O N S T W I n g S
T w i t p f p o w r
T W I t Mt MOWT
T I
T I
l Y P t 1 N O U t s T w u C T U W t . H A C K d A P O P O I n T E h S AFIE I N D I C A T E D
Type f UtLt TION
TtwE P NuJt SlwoCIUWt

TYPt PA NuUt SiMUClGWt

T * P t PM
T r w t PC

T Y P t PU
T Y P t P t
T Y P t Pr
O S t f O L T H I C K S I N V U L V I n G C O W P A P I S O N S T H I n GS
O l l L l P t u ?
VI s i I s

PAGE
PAGE
PAGE
page
PAGE
PAGE
p a g e

PAGE
P A g E
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

p a g e
page

PAGE
PAGE

:

PAGE
P A 0’ t
PAGE

120
23
21
IB
»0
9 3
30

luv
b
9

S2
S a

J *

J S
Jb
J 9
*0
A l

4P
A J

1 0 9
91
71

