THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

THE COMPLEAT PATRICIA

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the
degree of DOCTOR OF PHILOSOPHY

By

CARTER BAYS

Nor:man, Oklahoma
1974

THE COMPLEAT PATRICIA

(Each copy of the dissertation must bear the signatures of all members of the final oral examination committee.)

ACKNOWLEDGEMENTS

I wish to thank the members of my committee for their helpful and constructive comments, particularly as this dissertation was reaching its final stages. Also, I wish to thank Lisa Tadlock for her typing assistance during the early stages of the project, and Marie Reubiez for her beautiful final copy. Intangible thanks go to Caroline, Ginny, Janice Sue, JoAn, and Shirley.

```
    1.0 LHTr!UHLILOM PAGt. 1
    1.1 Itk:lidilid,y
    pagi
    Abt
PAlit
PAGt
PAl;L
FAGE
HAGL }1
1.4 frte U|GIIML IKEt
```



```
<.0 lrot tsistiglals lit ralriluIA
```



```
2.2.1 LlONEOTS l|: AlGLKITMM 2.Z
# P.S ALI,INIIHM: LISY ALL MAICHES IN A HAIKILIA TREK
    2.4 m|m mELL MALAICE! J'S A PAIFICIA IPEE?
```



```
    3.0 ALItKING THA PAIKICIA TKEE - NIHE UEIETIUN
```



```
    S.2 TOEIEKNillING; lV, ti, TI
```



```
    3.3.2 ALG!HIIH.N: FKFPAKE IHE STHUCIUKE FOR SUHIREL OELEIIUN
    3.4 C!N゙LLUSINH- DELTIING iNUUES
    4.U OELEIJ!id lit IFXT raltKIAL
```



```
    4.1.3 ALGUH1IFIF: JELEIE A SPECIFIC KEY FRUM THE TEXI
    4.2 ALG:IKITHM: INStNl ILXI
```



```
    S.l A KJGIll T:Mirimatg FATKICIA IREt.
```



```
    S.2 Pretrigter iitoutmTlAL ritPrEStrIATIUN
```



```
    4
    1.2 StANCH11GFFIN KRYS4
```

```1.3 KXAFPLE UH A STMUCTURE IVESIGNEU FUK FAST KEY REIRIEVAL09
7
```

1.S.l SHRE CHAKACIEHISIILS UF THE ALGOKITHMS IN THIS DISSEKTATJUN 4


```9
```



```pabt10
```

```C. 0 lnt tsistisilals lit HAlricia
```



```
HAGE 15
PAGE CS
Fabt 2a
Fabl 2b
PAl;t 27
FAGE CH
PAGK. 24
\mualit 30
PAFiL 31
HAGE SL
PAGE Sy
HAGE bC
FAlit S4
HAC;E S4
Palit SY
PAGE OU
PAGL Ol
PAGE 62
PAGL OS
PAGE OB
PAGE la
PAGF 7S
HAGE 75
Palit }7
Pagl }1
Haljt 7%
PAGE }0
PAGE B
HACOT BO
FAOL BO
PAgt Bo

```

FAgR 92

```

```

S.S.e L!NVENIING JVER IHE SAME NFMUKY SWACE

```







```

n.0 PiACIICAL APPLICAIJ!ivS

```

```

0.1.1 U⿴囗LEAK !!r'ralllivS

```








```

A.S ALG!!mifmri: PKI|l A liret:

```

```

O.1 Jir falfililitS lit Int. Prolionam.
H.1.1 Hta| IEx| ANJ CKEAIt a lHtr
B.1.2 DISHLAY THF IHEt AJI/HR Tr:E ItxI
S.1.3 SLARCH r|M A rey aNO LIST All IIS MAlCHES

```

```

*.1.b lirlelt l.'h I|OHFi IEXI

```

```

H.R SAMF't= l!ulpul

```


```

C.2 IIM\&im, +i.k A rkavt.kSAL IItRAIIIN
C.S |lulmy filk lliatr Alulitallites
U.U Arri.f.u\x - ImFilotam ANO Hm(iatrs
t.ll Arfr.!!)|x - !allSSAiry

```

```

1 !itx
92
PAbE 95
Pagit 45
HAGE 44
'AGE 1UL
PAGE IUI
PAGE 101
FAGG 102
HAGE 103
FAC.t jus
अAGE 100
HAGE lUG
PAGL 108
\muAlt
MAGF 10Q
PAlt. 109
PAG1 114
PAgt 114
PAGE 114
PAGL 11S
HAGF 115
Pagt 110
PAlit 110
PAgF 114
Pagt 114
Patot 114
Palot 120
HAGE 1R1
Pagt 121
Palit lcl
Hal;t lad
Palit li3
Pacit 14a
PA!F 14C
PaGE 142
Palit. 145
palit lal
Palit 1S%
Faint l'S4
|afg lh'z

```
\begin{tabular}{|c|c|c|c|}
\hline Figurt \(\mathrm{C}-1\) & TIMING FOK THE LOOP IN ALGOKITHM 2.1 & Page & 144 \\
\hline FIGURE C-2 & TIMING FOR A TRAVERSAL LOUP USING ALGORITHM 2.3 & PAGE & 145 \\
\hline FIGUKE C-3 & TIMING OF MOST PATRICIA ALGORITHMS & PAGE & 146 \\
\hline FIGUKE 1-1 & A SAMPLE TRIE MEMORY & PAGE & 8 \\
\hline FlGUKE 1-2 & a sorted binary thee & PAGE & 11 \\
\hline FIGUHE 1-3 & a digital tree & PAGE & 14 \\
\hline FIGURE 1-4 & the NUMHERS INSERTED IN DESCENDING ORDER & page & 14 \\
\hline Figurt \(2-1\) & A SImple pathicia thee & PAGE & 16 \\
\hline FlGurt 2-2 & If We aldo a key to the thee of figure 2-1 the thee is changed & page & 18 \\
\hline Flgline \(2-3\) & the actual hepresentation of the patricia tree of figure 2-1 & page & 21 \\
\hline FIOUNE 2-4 & A PATwICIA tree built by algokithms 2.2 and 2.l & PAGE & 23 \\
\hline FIGURE 2-S & THE GIT COMPAKISONS THAT ARE ACTUALLY MADE & page & 24 \\
\hline Floline 3-1 & NUTATION THAT WILL BE USEU THKOUGHOUT THE DISSERTATION & PAGE & 33 \\
\hline FIGUHE 3-2 & type 1 node structune. backward pointers art indicated & Page & 34 \\
\hline FIGURE 3-3 & TYPE 2 NUDE STRUCTURE & Page & 36 \\
\hline +1GUKE 3-4 & TYPE \(2 A\) NODE STRUCTURE & Page & 36 \\
\hline FIGURE 3-6 & TYPE ? \({ }^{\text {H }}\) & PAGE & 39 \\
\hline FITURE 3-6 & TYPE <C & PAGE & 40 \\
\hline Figukt 3-7 & TYPE 20 & PAGE & 41 \\
\hline FIGUHE 3-H & TYHE CE & PAGE & 42 \\
\hline FigUKE 3-9 & TYPE \(\triangle F\) & PAGE & 43 \\
\hline Flotint 3-10 & ghathal cunfiguhation foh a subtree deletion & PAGE & b6 \\
\hline Flount 3-11 & Shecinl case whthe tFr= ta & Page & b7 \\
\hline Flount 3-12 & SUSthe deletion cormespundus to a type 2 deletion & PAGE & ¢8 \\
\hline Flgure 4-1 & A SThange thee & PAGE & 64 \\
\hline FIGURE 4-2 & the shace has been eliminated from the text of figure 4-1 & PAGE & 65 \\
\hline FISUHE 4-3 & the f Cunth a has been eliminated from the text & patie & 66 \\
\hline Fligute 4-4 & FHEORULR ANO ENDURUFK VISITS & PACE & 71 \\
\hline FIGORE S-1 & an example of a right threaded patricia thee & DAGE & 78 \\
\hline Floukt 5-2 & ThE THEE OF FIGURE S-1 AS HUILT BY ALGOKIthm 2.2 & PAGE & 80 \\
\hline FIGURE S-3 & If we ust algohithm 2.2 and instht the keys in revehse oruer & PAGE & -1 \\
\hline FIGURE 5-4 & a hinamy tinee. & page & 47 \\
\hline Figute s-b & the pheohiler sequential hephesfintation & PAGE. & 89 \\
\hline FIGURE S-6 & Hass 1 Cheates this from the sthucture of figure s-1 & fage & 97 \\
\hline Figute 5-7 & the shetcial situation wheme llink (J) = I & PAGt & 94 \\
\hline FIGURE S-H & THE IMPOKTANT LINK FIELUS DULING STEP 2 Of ALGOKIthm S.3.7 & PAGE & 99 \\
\hline Figuint 5-y & AFTEH STEH 2 Of ALGOHITHM 5.3.7 & Patie & 100 \\
\hline FIGUKE S-10 & PHEORUER SEQUENTIAL FORM WITH LTAG ANO RLINK COMBINEO & page & 104 \\
\hline Flgute b-l & SUME text of the call for action files & page & 110 \\
\hline Figure o-z & SOME OF THE OUTPUT PROUUCED FOR CALL FOR ACTION & PAGE & 111 \\
\hline
\end{tabular}
```

 5.3.5 ALGUKITHM: CUNVERT A KIGHT THREADED TREE TO PREOROER SEGUENTIAL
 #S.3.7 ALGUHITHM: CONVERT TO PREORDEH SEQUENTIAL FORM OVER THE SAME SPACE
 5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
5.3.5
AL(GOKITHM: CHEATE A KIGHT THKEADED PATHICIA TREE
ALGORITHM: UELETE A PATRICIA NODE FROM THE TREE
ALOOKITHM: DELETE A SPECIFIC KEY FROM THE TEXT
ALGOHITHA: DLLETE CONTIGUOUS TEXT
ALGURITHM: FINU PU, TD. FT, TT
ALGOHITHM: GET A NODE FROM A DOUBLY LINKEO AVALIABLE LIST
ALGUKITHM: अET A NOUE FROM AN AVAILABLE LIST
ALGOHITHM: GET A NOUE FROM AN AVAILABLE LIST
ALGUHITHM: INSERT A NEW NODE INTO A HATRICIA TREE
ALGOKITHM: INSEKT TEXT
ALGOHITHM: LIST ALL MATCHES IN A PATRICIA TREE
ALGOHITHM: LIST ALL MATCHES IN A PATRICIA TREE
ALIOHITHM: PQSTOHLER TRAVERSAL OF STRUCTURE WITH COMB
ALGUHITHM: NHINT A THEE
ALGUHITHM: NETUKN A MODE TO A UOUBLY LINKEU AVAILABLE LIST
ALI,UKITHM: RETUKN A NJDE TO AN AVAILAHIEE LIST
ALGUNITHM: SEAHCH FOK A KEY IN A THIE MEMOHY
ALGUHITHM: SEARCH FOK A NOOE IN A PATKICIA TREE
ALGOHITHM: SEAHCH THE PREORUER SEQUENTIAL STHUCTURE FOR A KEY
ALGOHITHM: SEAHCH THKOUGH STKUCTURE WITH COMHINED HLINK-LTAG
ALGOHITHM: THANSFOHM HIGHT THREADEO TO PREOHDER SEQUENTIAL COMBINING RLINK-LTAG
ALGOHITHM: TKAVERSE A PREORDER SEQUENTIAL STRUCTUKE IN POSTOHDER

```
\(\begin{array}{ll}\text { PAGE } & 93 \\ \text { PAGE } & 94\end{array}\)
PAGE 84
PAGE 34
PACE 75
\(\begin{array}{ll}\text { PAGE } & 75 \\ \text { PAGE }\end{array}\)
PAGE 54
PAGE 115
PAGE 114
PAGE 12
PAGE \(\angle 7\)
PAIEE 7 S
HACEE C9
PAGE 101
PAGE 60
PADE 116
palot 116
PAGE 114
PAIE 9
PAGE 25
HAGE Y1
PARE IUl
PAGE 102
PAGE BH

\subsection*{1.0 Introduction}

The effort to use computers to store and manage large amounts of textual data continues to be one of the most formidable tasks confronting the computer scientist, for it seems that information is being generated at an ever increasing rate, almost in defiance of the attempt to contain it. Part of the problem deals with human creativity and human articulation, which cannot be computerized--at least not yet. Hence, we are concerned here with that portion of the problem that involves the management of information and its rapid and efficient retrieval. In essence, once information has been generated, we would like to know how to structure it within the computer so that:
a). It is classified in some hierarchial or alphabetical manner.
b) It is stored as efficiently as possible within the confines of the computer.
c) We can rapidly retrieve anything we want, with a minimal amount of noise in the torm of excess information.
d) We are free as much as possible from the restrictions imposed upon us by computer manufacturers or--and more important-inefficiently written programs.

It is toward this end that the author has chosen to further develop PATRICIA \({ }^{1}\), whose underlying concepts were discovered in 1968 by Dr. Donald Morrison at Sandia Laboratories. PATRICIA is not "just another information retrieval system." Rather, PATRICIA can be thought of as a "concept"

\footnotetext{
lPATRICIA is an acronym for "Practical Algorithm To Retrieve Information Coded in Alphanumeric." PATRICIA is also the first name of Dr. Morrison's wife.
}
which gives us a most natural and flexible means of classifying written matter within a computer. The underlying idea involves a binary tree search where individual bits of key words or phrases are used in determining the search path. But PATRICIA goes further than the ordinary binary search. The only bits that are looked at are those pertinent in determining the search path. If a key word or phrase is identical to the key being compared, all identical bits in the two keys are totally ignored. Thus, if two sentences differ only in the last letter, then in comparing these two sentences, PATRICIA would not bother with anything except the last letter of each sentence, ignoring all the preceding letters.

PATRICIA can search for key words or phrases of arbitrary length and almost arbitrary format. It defines a structure that automatically orders information both hierarchically and alphabetically. Moreover, the actual information is not rearranged or altered in any way, and yet the search for a desired piece of information is accomplished very quickly. As a practical example, consider the problem of locating an individual income tax return that exists somewhere on file containing 100,000,000 other tax returns. PATRICIA could find it in less than one second on a medium sized 360 system. Moreover, only two or three accesses to the file would be required.

So why are there not more computerized retrieval systems using PATRICIA: The apparent problems are given below.
1) It is quite difficult to alter the complex PATRICIA data structures without rebuilding them, and the rebuilding process is of necessity quite lengthy.
2) Space restrictions are imposed upon PATRICIA by its data structure.
3) There exists very little published material on PATRICIA besides the work of Knuth and Morrison.

This dissertation attempts to solve all three of these problems. The first problem is solved by including a group of heretofore unpublished algorithms that will perform any type of structural alteration that a practical application might require. These algorithms allow us to alter both the PATRICIA structure and the textual information from which the structure is built. The space restriction of the second problem is alleviated by showing how we can reduce the structure to about \(40 \%\) of the size of currently used PATRICIA structures. The third problem is attacked by presenting a complete and logically organized set of algorithms. Performance is evaluated and operating times are given for a typical medium scale computer system.

The following sections of this chapter are concerned with structures that have certain characteristics in common with PATRICIA, but are more elementary. A knowledge of these structures will be of assistance in understanding the more complex PATRICIA structure.

Readers already familiar with PATRICIA may wish to skip to Chapter Two, which gives the essential algorithms required to build a PATRICIA structure, search for a particular entry, and list out all occurrences of the entry.

Chapters Three, Four, and Five constitute the heart of the dissertation, with Chapter Three being the first chapter dealing with unpublished algorithms. The important PATRICIA node deletion algorithms are thoroughly described, and their use is extended to deletions of entire substructures within a PATRICIA structure.

Chapter Four then uses the algorithris developed in Chapter Three as part of a package that allows portions of an existing body of information to be altered. At this point the set of algorithms is complete
from the standpoint of any user who might be working with material that is frequently altered.

In Chapter Five we propose and implement a standard structure for PATRICIA, which then leads itself to further reduction. In fact, four of the six individual elements of the PATRICIA data structure are eliminated, resulting in a great saving of space.

Chapter Six gives several practica? examp?es, including the example afforded by the table of contents and index to this dissertation. Moreover, some additional dirty tricks are discussed which could be employed in the campaign to optimize further the PATRICIA structure.

Several appendices are provided. For quick reference Appendix E reproduces the description of the data structure terms given in the next section. Appendix A contains some peripheral algorithms, and Appendix B explains how the test program operates. (The test program checks âll the algorithms of chapters two through five.) Appendix \(C\) gives timing estimates for most of the algorithms and shows specific times for a \(360 / 50\). Appendix \(D\) develops and proves several important theorems, and proves the validity of some of the original algorithms.

\subsection*{1.1. Terminology}

This section describes terminology that is used throughout the dissertation. Most terms are commonly encountered in the study of Data Structures, and are described further in Knuth (1968) Chapter Two. For convenience this section is reproduced in Appendix \(E\).

AVAILABLE LIST--A list of empty nodes. (A process which requires space for a new node can always get one by picking the top or bottom node from an available list.)
AVAIL LIST--Identical to an available list.

ANCESTOR--Within a tree, an ancestor of node \(X\) is on a path between node \(X\) and the root of the tree.

BACKWARD POINTER--A link field in a PATRICIA node, \(X\), that points to \(X\) or to some ancestor of \(X\).

BINARY TREE--A data structure in which each node has no more than two nodes hanging from it. These two nodes are commonly called "ROOTS of LEFT and RIGHT SUBTREES."

EBCDIC--A specific internal code where 8 bits represent one character within the computer. For example, the EBCDIC value of of "A" is binary "11000001."

ENDORDER TRAVERSAL--A method of looking at all the nodes of a binary tree in which we first look at all the nodes in the left subtree of a node, then all the nodes in the right subtree of the node, and finally, the node itself. Each node is "looked at" exactly once, although the algorithm for effecting an endorder traversal may actually pass by the node more than once.

FIELD--The smallest entity of information contained in a node. A field may be one or more binary bits in size.

KEY-A contiguous string of characters constituting a word or phrase that we wish to search for and, hence, use in some comparison scheme.

LAMBDA (" \(\lambda\) ")--See NULL POINTER.
LEFT LINK--In a binary tree, the link field pointing to the left subtree of the node.

LINK--The specific field of a node that points to the next node in a list. (Actually, a given node can point to more than one node: for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random, but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more fields. (An example--a node could be likened to a single library catalogue card, and a field to an individual entry on the card, such as the author's name.)

NULL POINTER--(Sometimes called "LAMBDA" or " \(\lambda\) "). A specifically valued link field that indicates the last node in a list. When any link field points to no other node, it is given a value called " \(\lambda\) " (frequently zero). We sometimes say that this link "points to \(\lambda\). ."

POINTER--Has the same function as a link, except sometimes a pointer is not contained in any rode.

POSTORDER TRAVERSAL--A method of looking at all the nodes of a binary tree in which we first look at all the nodes in the left subtree of a given node; then we look at the node; then we look at all the nodes in the right subtree of the node.

PREORDER TRAVERSAL--Still another method of looking at all the nodes in a binary tree, in which we first look at the node, then the nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field pointing to the left subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right links of terminal nodes point to the next node that would be visited if we were traversing the tree in postorder.

ROOT-- In a tree, the node from which all other nodes hang. (Thus, computer trees are usually upsidedown.)

SUBTREE--A branch of a tree. Pick any node in a tree--it is the root of a subtree.

TERMINAL NODE--A node in a binary tree that has no left and/or right subtree. In a PATRICIA tree, the affected right or left link then becomes a :ickward pointer.

THREAD--The same as a backward pointer.
VISIT--A term for what we do when we "look at" a node during a preorder, postorder, or endorder traversal. Usually a visit involves performing an algorithm, or printing out information.

\subsection*{1.2 Searching for Keys}

In every information retrieval system, the main concern after we have stored the information is how to get it back out. Usually we will only be interested in a small fraction of the total amount of information stored, such as a particular student's record in a university student information system, or a list of constituents in voting district three, or all articles about "Computers and Chemistry" in a library. Moreover, in many situations the speed of retrieval is quite important--such as in an airline reservation system. In all cases we may reduce the problem to: "What is the best way of finding all keys that match a given key?"

A "key" as used in this dissertation could be a student name, a social security number, a subject topic--in fact any contiguous string of symbols that is supposed to occur one or more times within the main body of information.

For background purposes let us examine two methods of searching for matches to keys; these methods are predecessors to PATRICIA and are in widespread use today.

\subsection*{1.3. Example of a Structure that is Designed for Fast Key Retrieval}

This data structure, which was described by Fredkin (1960), looks at every letter of a key, starting from the left, until it can be determined where the key is located in the main body of information. The structure commonly goes by the name "TRIE" memory (where "TRIE" apparently refers to reTRIEval) and should not be confused with a "tree," which is an entirely different structure.
"TRIE" memory is laid out in table form as shown in figure 1-1. Each vertical column corresponds to a "node" (in later sections, a node will refer to a much smaller entity--a "node" in a binary tree). The scheme used to look for a key is rather simple. Let us assume we are searching through the TRIE memory of figure 1-1 for the key "THEN." Initially, we go to the "T" row of the first node. The " 3 " means that we continue our search by going to node 3 and looking at the second letter, "H." The "H" row of node 3 contains a value of "4", which means that we go to the 4 th node when we look at the 3rd letter, which is an "E." Similiarly, we arrive at the 5th node and go to the appropriate row, which is "N." The entry "(THEN)" means that we have found a key, and much now check to see if it is the correct one. If it is not, our key
\begin{tabular}{|c|l|l|l|l|l|}
\hline & & (A) & & & (THE) \\
\hline A & 2 & & (TAR) & & \\
\hline B & & & & & \\
\hline C & & & & & \\
\hline D & & & & & \\
\hline E & & & & & \\
\hline F & & & & & \\
\hline G & & & & & \\
\hline H & & & & & \\
\hline I & & & & & \\
\hline J & & & & & \\
\hline K & & & & & \\
\hline L & & & & & \\
\hline M & & & & & \\
\hline N & & & & & \\
\hline O & & & & & \\
\hline P & & & & & \\
\hline Q & & & & & \\
\hline R & & & & & \\
\hline S & & & & & \\
\hline T & 3 & & & & \\
\hline U & & & & & \\
\hline P & & & & & \\
\hline
\end{tabular}

Figure 1-1. A sample TRIE memory. Each verticâl column corresponds to a node. The keys inserted were, in this order: THE, AN, A, TAR, THEN, TIP, TOP.
is not in the TRIE memory.
The above example illustrates the type of search that will be under discussion throughout the dissertation. The search involves looking at the first letter (or digit) then going on to the next letter, repeating the process until a match to the key is found.

\subsection*{1.3.1 Some Characteristics of the Algorithms in this Dissertation}

The informal discussion just given should aid in the analysis of the more formal algorithm given below, which is typical of those throughout this dissertation and closely follows the style of Knuth. For the most part, certain variable naming conventions have been followed. \(P\), Q, and \(R\) always refer to pointer variables, as do (usually) I, J, X, Y, and Z. The letter "K" frequently refers to a character string or key which we are searching for. Individual fields of nodes are always given variable names with at least three letters. In later chapters, we will introduce "ATOP" which points to the top node of an available list. Algorithms with one or more "\#" in the margin next to their number merit special attention.

\subsection*{1.3.2 Algorithm: Search for a Key in a TRIE Memory (Knuth 1973)}

In a TRIE alphabet, we allow in characters--normally all the letters, digits, and special symbols. Assume that if the characters are coded in, say, EBCDIC code, they will be translated so that they have integer values between 1 and N. Let each node consist of a vector of \(N\) subnodes (a subnode is a single rectangle in figure 1-1). Each subnode has two fields: a PTR field and a one bit TAG field. The PTR field can either be empty (indicated by PTR=0) or it can point to another node (indicated by TAG=1)
or it can point to the target key (indicated by \(T A G=0\) ). For simplicity a key is assumed to be a single word, terminated by a blank. In the following algorithm, \(P\) is a node pointer and \(Q\) is a subnode pointer. Note that \(1<Q<N\).

Input: Key we are searching for.
Output: Location of the matching key.
1) Set \(P \nleftarrow 1\) ( \(P\) points initially to the first node), \(I \leftarrow 0\), \(K \leftarrow\) key we are searching for, ( \(K\) will be followed by a blank.)
2) Set \(I<I+1, Q+I\) th character of \(K\). (Initially, look in the first node at the Qth row. If \(Q=b l a n k\), then \(K\) has been completely scanned, and we will end up in step 3 or step 5.)
3) If \(\operatorname{PTR}(P, Q)=0\) (i.e., the subnode is empty), then \(K\) is not in the TRIE memory. (We may insert \(K\) by setting PTR ( \(P, Q\) ) the location of \(K, \operatorname{TAG}(P, Q) \leftarrow 0)\)
4) If \(\operatorname{TAR}_{3}(P, Q)=1\) (i.e., the subnode points to another node), set \(P\) < PTR \((P, Q)\). Go to step 2. (Go to the proper node and compare to the next character in the key.)
5) We know that PTR ( \(P, Q\) ) points to a key. If we are sure that \(K\) is in the table, then PTR ( \(P, 0\) ) gives its location; otherwise, compare \(K\) with the key at PTR ( \(P, Q\) ).
*END* (End of Algorithm)
Although this examp?e is inefficient insofar as five nodes are required for seven keys, most TRIE memories are much more efficiently organized, since the subnodes fill up as more keys are introduced. (See Knuth (1973) page 482 where 12 nodes are used to represent 31 keys.)

\subsection*{1.4. The Digital Tree}

The digital tree is somewhat similar in concept to the ordinary lexicographically ordered binary tree, an example of which is shown in figure 1-2.


Figure 1-2. A lexicographically ordered binary tree. Since "BEANS" is in the left subtree of "CAT", we know that "BEANS" alphabetically precedes "CAT". Since "MESSY" is in the right subtree of "CAT", we know that "MESSY" alphabetically follows "CAT". A postorder traversal lists the keys in alphabetic order.

The difference is that the key insertion process is based on whether a particular bit position is a binary "l" or "0", rather than whether one key is alphabetically "less" or "greater" than another key. Bits are scanned one at a time to determine the position that a key is to occupy in a Digital tree. The advantage this tree has over the tree in figure \(1-2\) is that the Digital tree is relatively balanced, regardless of the order of insertion. (It is well known that a lexicographically sorted tree can be very badly out of balance, depending upon the order of key insertion. Note what happens when we build the tree of figure 1-2 by inserting the keys in the order: ANTS, BEANS, BUGS, CAT, DOG, MESSY, PICNIC.)

\subsection*{1.4.1 Algorithm: Insert--Search for a Node in a Digital Tree}

Let KEY be the key we are inserting or are looking for. Let each tree node be composed of a LLINK field, a RLINK field, and an INFO field (which will point to or contain a key), Initially, TOP points to the root of the tree. AVAIL is a pointer to an available node, and " \(\lambda\) " denotes the null link.

Input: KEY
Output: The location of the match, or the updated tree if we are inserting a new key.
1) Set \(X \nleftarrow T O P, K \leftarrow K E Y\). If \(X=\lambda\), then, to insert the key, set \(Z+\) AVAIL, \(\operatorname{LLINK}(Z) \leftarrow \lambda, \operatorname{RLINK}(Z) \leftarrow \lambda, \operatorname{TOP} \leftarrow Z\), INFO \((Z)+K E Y\), and exit the algorithm. Otherwise ( \(X \neq \lambda\) ) proceed to step 2.
2) If \(K E Y=\operatorname{INFO}(X)\), we have a match, else set \(B=\) first bit of K, shift K left 1 bit.
3) If \(B=0\) then go to step 4 ; else to to step 5 .
4) If \(\operatorname{LLINK}(X) \neq \lambda\), then set \(X \nless \operatorname{LLINK}(X)\) and go to step 2; else go to step 6.
5) If RLINK \((X) \neq \lambda\) then set \(X \leftarrow \operatorname{RLINK}(X)\) and go to step 2.
6) (We had no match--insertion is done here.)

Set \(Z+\operatorname{AVAIL}, \operatorname{LLINK}(Z)+\lambda\), RLIHK \((Z)+\lambda, \operatorname{INFO}(Z)+K E Y\). If \(B=0\) then set LLINK \((X)+Z\); else set PLINK \((X)+Z\). Exit the algorithm. (If the bit we are looking at is a 0 , the key is inserted at the left; if it is a 1 , we insert to the right. Nothing is sacred about this scheme--it could easily have been reversed.)
*END*. (End of Algorithm)

The algorithm was used to create a tree of the binary numbers 000 through 111, inserted in ascending order. That tree is shown in figure 1-3. If the numbers had been inserted in descending order, the result would have been the tree in figure 1-4.

It should be noted that the maximum depth, or level, is 3 , which happens to correspond to the number of bits in the key. This is the worst case. For longer keys (coded, for example, in EBCDIC) the maximum level will be much smaller than the number of bits in the key. Unfortunately, even though the digital tree is relatively balanced, it does not preserve lexicographic order. Thus, when we traverse the tree of figure 1-3 in postorder, we get the nodes out in the following sequence:
\[
\begin{array}{llllllll} 
& 001 & 010 & 011 & 000 & 101 & 100 & 110
\end{array} 111
\]


Figure 1-3. A Digital Tree The numbers 000-111 were inserted in ascending order.


Figure 1-4. The numbers have been inserted in descending order.

\subsection*{2.0 The Essentials of PATRICIA}

We are now ready to discuss the essential workings of PATRICIA, and to describe the basic algorithms for building the structure and searching through it. It is of some assistance to notice the similarities between PATRICIA and the structures described in Chapter One. As does the digital tree, PATRICIA uses individual bits to search for a key. However, when two keys have identical bit patterns for, say, \(N\) bits, these bits are skipped over. This eliminates the unnecessary comparisons of TRIE memory (for example, the letters "THE" of keys "THE" and "THEN"--see figure 1-1); moreover, unlike the digital tree, PATRICIA preserves lexicographic order in the manner of figure 1-2, and is not sensitive to the order in which keys are inserted.

An example of a PATRICIA tree is given in figure 2-1. Let us assume that our text is a string of binary "1"s and "0"s. Suppose we are searching for a key that starts with "10100." (PATRICIA only finds keys that start with a given pattern, but the pattern may be of arbitrary length.) We begin our search at the top of the PATRICIA tree, where we immediately advance 3 bits before making any comparison. This is a result of the fact that all keys in this particular structure start with the same two bits, although we do not see the value of these bits when we are searching. Hence they and other skipped bits are indicated by "X"s. The 3rd bit of our key is a " 1 "; thus we go to the right. (A " 0 " would have caused us to go to the left.) At this point we krow that our key, in fact all keys in the right subtree, start with "XX? - -." We advance two more bits and compare again. This time, our input key of " 10100 " produces a "0" (3+2= 5th bit position). Hence, we know that our


Figure 2-1. A simple PATRICIA tree. To search for a particular key, start at the top (node "A") and go to the left (node "B") where we advance 3 bits. If the third bit of our key is a zero go to the left (node "C"); otherwise go to the right (node "D"). Eventually we get to a dotted arrow, which tells us where to make the comparison with the text. We must go to the text to see if our key is actually present.
key starts with "XXIXO - -.." Since we have reached the end of the tree (and thus the search path) we now go to the text where directed and pick up the string "10100 - - - ", which we compare with our key. In this case, they match. But suppose our pattern had been "llilo---"? The PATRICIA search would lead to the same place, but obviously the keys do not match. The mismatch is not noticed because of the bits we skipped over in our search down the tree. Hence we must always check the input key against the text that PATRICIA points to--this is the only way of verifying the existence of the key in the text. The great advantage of PATRICIA, however, is that we only do this once--namely at the end of a search. Moreover, we know that if our input key doesn't match the text starting in the position indicated by PATRICIA, then it does not occur in the text at all as a key (although the bit pattern might actually occur in the text as a non-key).

Suppose, for example, we wish to insert in the PATRICIA tree a key starting with the bit pattern "1110010 - - -.." This would require a comparison at a bit position, going from left to right, where this key first differs from all others in the tree. In this case, the key first differs from "10100" at bit position 2. But the tree of figure 2-1 has no comparison at this bit position. Hence, our tree would need a comparison at bit position 2, which would produce the structure shown in figure 2-2.

A very important property of the PATRICIA tree is that it can be thought of as a "free form" hierarchial structure. Thus, in figure 2-2 all keys starting with " 10 " are contained in the subtree at " \(B\) "; hence, if our input key were "10". we would find an entire subtree of matching keys--namely "100100 - - ", "100101 - - -", "10100 - -", and "10101 - - -".


Figure 2-2. If we add a key that starts with "11---" to the tree of figure 2-1, then that tree is changed into the one shown above. Note that the left subtree of node "E" is identical to the subtree of node "A" in figure 2-1, except the "advance 3 " of node " B " is changed to "advance ]". This is because node " \(E\) " advances 2.

The actual data structure of a PATRICIA node is shown below. We will be working with this data structure throughout the remainder of this dissertation.


Here: PTR points to the starting position of a key in the text.
SKIP gives the number of bits to advance before making the next comparison.

LLINK, RLINK are pointers to left or right subtrees (in figure 2-1, represented by lines ending with arrows) or are pointers to PTR fields where we make a comparison with a key in the text (in figure 2-1, represented by lines ending with asterisks).

LTAG, RTAG are one bit fields indicating whether LLINK, RLINK points to a key. LTAG, RTAG may, when convenient, be represented by the sign bits of LLINK, RLINK.

A PATRICIA node actually contains two separate pieces of information. Assume we are given a node, \(X\). Then during a search, \(\operatorname{SKIP}(X)\) tells which bit in our input key to look at next, going to the left subtree of \(X\) if this bit is a " 0 " and to the right subtree of \(X\) if the bit is a "l". PTR(X) points to the start of a specific key in the text. However, \(\operatorname{PTR}(X)\) is not looked at when we pass by node \(X\) in a search down the PATRICIA tree. When we reach the end of a search path, a backward pointer (some LLINK or RLINK where LTAG or RTAG \(=\) " 1 " - solid curved lines in figures 2-3 amd 2-4) points to node \(X\), meaning we go to the text position at \(\operatorname{PTR}(X)\) to get the key which our search path led us to. Each PATRICIA node will be pointed to by exactly one such backward pointer. Moreover, PATRICIA is constructed so that this backward pointer (or thread) always originates either in node \(X\) or in some descendant of node \(X\). Nothing is
sacred about this; in fact the PTR fields need not be stored in the PATRICIA tree at all. Moreover, we could have the LLINK or RLINK fields point directly to the text. Unfortunately, this would be quite wasteful, for usually there are far fewer keys (hence nodes) than there are character positions in the text. Thus several extra bits would be required for a link field to represent a textual character position; these bits would be wasted whenever the LLINK and RLINK fields were used as links.

An actual example of a PATRICIA data structure (hereafter called a PATRICIA tree) corresponding to the example of figure 2-1, is given in figure 2-3. The SKIP fields, which correspond to the "advance" fields of figure 2-1, are indicated by the numbers above the parentheses. The curved lines are RLINK, LLINK fields in nodes whose RTAG or LTAG fields are "1". These curved lines correspond to those lines in figure 2-1 which end with asterisks and point to specific PTR fields. The PTR fields, which give the text position for starts of keys, are enclosed within parentheses. The dotted lines emanating from the PTR fields show where in the text the PTR fields refer to. They perform the same function as the dotted lines of figure 2-1. However, in figure 2-1 they are not specifically associated with any node. Note that the node at START has no RLINK or SKIP fields. This node serves mainly as an initializing structure (a PATRICIA tree with only one key) and a place to hold a PTR field.

The text is considered to be one contiguous character or bit string, each character position (including blanks) being numbered consecutively. Depending upon context, any character position may be indicated as the starting point for a key and thus be entered in a PTR field.

Perhaps the most distinctive feature about the PATRICIA tree is the fact that a given key has no fixed size and is unique. Keys are of


Figure 2-3. The actual representation of the PATRICIA tree of figure 2-1. The SKIP fields, which correspond to the "advance" fields of figure 2-1, are indicated by the numbers above the parentheses. The curved lines are RLINK, LLINK fields in nodes whose RTAG or LTAG fields are "1". These curved lines correspond to those lines in figure 2-1 which end with asterisks and point to specific PTR fields. The PTR fields, which give the text position for starts of keys, are enclosed within parentheses. The dotted lines emanating from the PTR fields show where in the text the PTR fields refer to. They perform the same function as the dotted lines of figure 2-1. However, in figure 2-1 they are not specifically associated with any node. Note that the node at START has no RLINK or SKIP fields. This node serves mainly as an initializing structure (a PATRICIA tree with only one key) and a place to hold a PTR field.
arbitrary length, each starting at a position indicated by a PTR field and continuing to the end of the entire character string, or text. In actuality, we will not be looking for equality between textual keys and some specific argument key; rather, PATRICIA will find all keys in the text that begin with a specific key (Knuth, 1973). Consider, for example, the sentence:

THIS IS THE HOUSE THAT JACK BUILT.

Then if we wish to indicate the start of every word as a key, the PATRICIA keys would actually be:

THIS IS THE HOUSE THAT JACK BUILT.
IS THE HOUSE THAT JACK BUILT.
THE HOUSE THAT JACK BUILT.
HOUSE THAT JACK BUILT.
THAT JACK BUILT.
JACK BUILT.
BUILT.
Of course, not every word need be a key; for example, if we wanted keys only at the start of the words BUILT, HOUSE, and JACK, we would have: BUILT.

HOUSE THAT JACK BUILT.
JACK BUILT.
The problem of what to call a "key" actually falls upon the user, and will vary depending upon the application. For example, to produce a concordance, we would want every word to be the start of a key, whereas we would only want pertinent words if we were creating an index to a technical report. If a variable length field is used as a descriptor,



Figure 2-4. A PATRICIA tree built by algorithms 2.2 and 2.1. Every word in the sentence is the start of a key. The PTR field is parenthesized. The SKIP field is directly above the PTR field. LLINK, RLINK fields are indicated by the lines. Curved lines mean that LTAG or RTAG \(=1\). Note that the top node has no SKIP or RLINK. EBCDIC internal code is used.


Figure 2-5. The bit comparisons that are actually made. An "X" indicates that the bit is skipped. EBCDIC code was used.
we would flag it as a key. Thus, in a student information system the start of the name field (in addition, probably, to the ID number field) would be flagged as a key. In all of the above cases, the criteria for determining keys are applied to the text during the PATRICIA tree building phase, which is the one time when the text is completely scanned. The text, "THIS IS THE HOUSE THAT JACK BUILT," where every word indicates the start of a key, was used by algorithms 2.1 and 2.2 to build the PATRICIA tree of figures 2-4 and 2-5. Since the insertion algorithm requires the use of the search algorithm, the search algorithm is presented first. It does not refer to the text until the time has come to determine whether the key being. searched for is present. This is very important, since the text is probably quite lengthy and thus is relegated to secondary storage, such as a disk or a drum. An access to such storage is extremely slow compared to an access to main memory, which holds the PATRICIA tree.

\subsection*{2.1 Algoritinm: Search for a Node in a PATRICIA Tree (Knuth, 1973)}

This algorithm will search a PATRICIA tree for a specific key, K. Assume the pointer TOP points to the root of the tree. In subsequent chapters we will develop several algorithms where LTAG and RTAG are replaced by signed LLINK and RLINK fields. For this reason, steps in square brackets may be substituted if we wish to represent LTAG or RTAG \(=1\) by a negative LLINK or RLINK. Throughout the remainder of this dissertation, \(P\) and \(Q\) will refer to specific pointer variables that are used by this algorithm.

Input: \(K\), and the number of bits in \(K\).
Output: \(P\) (which points to a subtree containing all the matches of \(K\) ).
1) Set \(P\) - TOP, \(J-0, N\) number of bits in \(K\), (See section 2.1.1 for comsients about this algorithm.)
2) Set \(Q \leftarrow P, P \leftarrow \operatorname{LLINK}(P)\). If \(\operatorname{LTAG}(Q)=1\), go to step 6 . \([\) Set \(Q \leftarrow P, P P+\operatorname{LLINK}(P), P \leftarrow|P P| . \quad\) If \(\operatorname{LLINK}(Q)<0\), go to step 6].
3) Set \(J \leftarrow J+\operatorname{SKIP}(P)\). If \(J>N\), go to step 6.
4) If the Jth bit of \(K=0\), go to step 2, else go to step 5 .
5) Set \(Q \leftarrow P, P \leftarrow \operatorname{RLINK}(P)\). If \(\operatorname{RTAG}(Q)=0\), go to step 3 . \([\) Set \(Q \leftarrow P, P P \leftarrow \operatorname{RLINK}(P), P \leftarrow|P P|\) if \(\operatorname{RLINK}(Q)>0\), go to step 3.]
6) Compare \(K\) to the key in the text pointed to by \(\operatorname{PTR}(P)\). If they do not match, then \(K\) is not in the text. Assume that if they do not match, the first mismatch occurs in the \(L+1 s t\) bit.
*END* (End of Algorithm)

\subsection*{2.1.1. Comments on Algorithm 2.1.}

Step 1. J is the current bit comparison pointer.
Step 2. Moves to the left subtree. Initially (for the first comparison) this is always done. Subsequently, it is done whenever a " 0 " bit is encountered in K. An LTAG or RTAG equal to "1" indicates that LLINK or RLINK points to a node whose PTR field gives the starting character position of a key in the text.

Step 3. Skips over bits that are identical for all entries in the subtree at \(P\). So far, our search has gotten us through the first \(J\) bits of the key. If \(J>N\), then at this point all comparison bits will have been checked, and we will have (potentially) a subtree of matching keys.

Step 4. Determines whether to go to the left or to the right.
Step 5. Similar to step 2, except we are moving to the right.

Step 6. Since we have checked all comparison bits, we know that if K matches any key, it matches the key at \(\operatorname{PTR}(P)\). If we compare these two keys and they do not match, we compute a value for \(L\), where \(L+1\) is the first bit (going from left to right) that is different for the two keys. L is used by algorithm 2.2 if an insertion is to be made. If the keys do match, we may wish to invoke algorithm 2.3, which will find all matches. Multiple matches are indicated if PP is greater than zero, which results when going to step 6 by way of step 3 when \(J>N\).

\section*{\# 2.2 Algorithm: Insert a New Node Into a PATRICIA Tree (Knuth 1973)}

The insertion algorithm, which calls the search algorithm, is given below. It requires only two references to the text. Again, steps in square brackets are substituted when we are using signed LLINK and RLINK fields instead of LTAG and RTAG. \(T\) is a temporary variable and \(P, Q\), and \(L\) are values returned by algorithm 2.1. ( \(L+1\) is the first bit encountered, going from left to right, where two keys are different.) (See section 2.2.1 for comments about this algorithm.)

Input: The key we wish to insert in the PATRICIA tree.
Output: The undated tree.
1) Set \(K\) \& key we wish to enter into the PATRICIA tree. \(R \leqslant \operatorname{AVAIL}, \operatorname{PTR}(R) \leqslant\) key position in text.
2) Perform algorithm 2.1. It will terminate unsuccessfully, since presumably \(K\) is not present, and will return values for \(L, P\), and \(Q\).
3) If \(L<J\) set \(N \leftarrow L(L+1\) is the position of the first nonmatching bit), perform algorithin 2.1 again, but exit before executing step 6 . It will return values for \(P\) and \(Q\).
4) If \(\operatorname{LLINK}(Q)=P\), set \(\operatorname{LLINK}(Q) \leftarrow R, T \leftarrow \operatorname{LTAG}(Q), \operatorname{LTAG}(Q) \div 0\) else set \(\operatorname{RLINK}(Q) \leftarrow R, T \leftarrow \operatorname{RTAG}(Q), \operatorname{RTAG}(Q) \leftarrow 0\). [If|LLINK \((Q) \mid=\) \(P\) set \(T \leftarrow \operatorname{LLINK}(Q), \operatorname{LLINK}(Q) \leftarrow R\), else set \(T \leftarrow \operatorname{RLINK}(Q)\), \(\operatorname{RLINK}(Q) \leftarrow R\).
5) If the \(L+1\) st bit of \(K=0\), set \(\operatorname{LTAG}(R) \leftarrow 1\), \(\operatorname{LLINK}(R) \leftarrow R, \operatorname{RTAG}(R) \leftarrow T, \operatorname{RLINK}(R) \leftarrow P\), else set \(\operatorname{PTAG}(R) \leftarrow 1\), \(\operatorname{RLINK}(R) \leftarrow R, \operatorname{LTAG}(R) \leftarrow T, \operatorname{LLINK}(R) \leftarrow P . \quad[\) If the \(L+\) lst bit of \(K=0\), set \(\operatorname{LLINK}(R) \leftarrow-R\), RLINK \((R) \leftarrow P * \operatorname{SIGN}(T)\), else set \(\operatorname{RLINK}(R) \leftarrow-R, \operatorname{LLINK}(R) \leftarrow P * \operatorname{SIGN}(T)]\).
6) If \(T=1[\) if \(T<0]\) set \(\operatorname{SKIP}(R)+1+L-J\). Otherwise, set \(\operatorname{SKIP}(R)+1+L-J+\operatorname{SKIP}(P), \operatorname{SKIP}(P)+J-L-1\). *END*

\subsection*{2.2.1 Comments on Algorithm 2.2}

Step 1. Algorithm 2.1 will determine \(N\), the number of bits in K. (Normally, we will set \(N\) to an arbitrarily large value.) We obtain a node from an AVAIL list and store the PTR field. Of course, the text has been looked at in order to obtain the key. This is the first of two text references.

Step 2. The second text reference occurs at step 6 of algorithm 2.1. Presumably, if the key had been found, an error message would be printed, because the key cannot already be present in the PATRICIA tree.

Step 3. \(L\) is found in step 6 of algorithm 2.1. If \(L<J\), then somewhere before we reached a terminal node, there was a mismatch. We already know the search path through the PATRICIA tree, we just don't know how far down this path we must go. For this case, the new node is inserted within the tree rather than as a terminal node. The SKIP fields on the path to this node will add up to a value equal to \(L+1\), which is the first point at which this key differs from those already encountered on the path.

Step 4. The new node is inserted to the left or right, depending upon the last successful bit comparison.

Step 5. The new PTR field will be to the left if the \(L+\) lst bit of \(K\) is 0 (recall that the \(L+1 s t\) bit is the first nonmatching bit), and to the right if the \(L+\) lst bit of \(K\) is 1 .

Step 6. If \(T=1\) [or is \(<0]\), the node is terminal, and we need only find the proper value for its SKIP field. Otherwise, the new node is internal to the tree, and the SKIP field of the following node must also be adjusted. In any case, the sum of the SKIP fields leading to the new node gives the first bit position of a mismatch (i.e. \(L+1\) ).
2.3 Algorithm: List all Matches in a PATRICIA tree (suggested by

If more than one match for a key exists, this algorithm is used to 1is.t all occurrences in aiphabetical order--for example, if the key were "T", then we would find all words starting with "T". Note that the algorithm also may be invoked for the case of exactly one match.

Let PP point to the root of the subtree containing all the key matches. PP is returned by a call to algorithm 2.1, and may already point to a PTR field, indicating a single match. For this algorithm, sign bits have been used in place of LTAG and RTAG, which means that a similar version of algorithm 2.1 must be employed. Also, for this and subsequent traversal algorithms, "A" is a sequential stack.

Input: \(\quad\) PP (as returned by algorithm 2.1)
Output: A list of all keys in the subtree pointed to by \(|P P|\). or in the single PTR field pointed to by \(|P P|\).
1) (Set stack empty, prepare to traverse the subtree at \(|P P|\) ) Set ATOP \(\leftarrow 0\), set \(X \leftarrow P P\)
2) If \(X>0\), go to step 5 .
3) "Visit" the key pointed to by PTR (|X|). ( \(X\) is a backward pointer, and hence is regative.)
4) If \(A T O P=0\) exit, else go to step 6. (If the stack is empty, exit.)
5) (Stack node \(X\)--we shall visit it later) Set ATOP \(\leftarrow\) ATOP + 1. Set \(A(\) ATOP \() \leftarrow X\). Set \(X \leftarrow \operatorname{LLINK}(X)\), go to step 2.
6) (Get a node from the stack)

Set \(X \leftarrow A(\) ATOP \()\), ATOP \(\leftarrow\) ATOP \(-1, X \leftarrow \operatorname{RLINK}(X)\), go to step 2. *END*

This algorithm is a variant of a postorder traversa? (Knuth, 1968). By "visit," we mean "list the key in whatever form desired." If it is only necessary to indicate where the matches occur, we do not need to refer to the text; we simply list the PTR fields. If we wish to see the first several characters of the key, or the sentence containing the key, then we must refer to the text once for each key visited.

\subsection*{2.4 How Well Balanced is a PATRICIA Tree?}

In subsequent chapters, we shall see that PATRICIA, as Knuth puts it, "is a little tricky and requires close scrutiny before all her beauties are revealed." One of her more useful beauties is the fact that a PATRICIA tree is usually well balanced. In fact, the only way to create an unbalanced tree is to specify a series of keys whose starting characters are not only similar, but propogate this similarity. Thus, consider the text:

HIS DOG SAID, "BOW WOW." HARRY'S DOG THEN SAID, "BOW WOW BOW WOW."
THEN JOHN'S DOG SAID, "BOW WOW BOW HOW BOW WOW." MARTHA'S PARROT SUPRISED US WHEN IT SAID, "BOW WOW DOW !IOW BOW WOW BOW WOW."

If every word in the above text is the start of a key, the PATRICIA
```

tree will be relatively balanced, except for projecting braches of
"SAID BOW WOW" (See Appendix B.2)

```

\subsection*{2.5 Conclusions - Summary of Chapter Two}

In this chapter, we have discussed the basic concept of PATRICIA and given the data structure which will be used throughout this dissertation. We have presented three important algorithms for:
a) Searching through a PATRICIA tree (algorithm 2.1).
b) Building a PATRICIA tree (algorithm 2.2).
c) Listing all matches to a given key (algorithm 2.3)

Moreover, we have explained that:
1) Upon building a tree, PATRICIA arranges nodes so that a postorder traversal lists keys alphabetically.
2) A PATRICIA tree is usually well balanced due to the nature of most keys.
3) It is the user's responsibility to decide upon the criteria for determining his keys; during the PATRICIA tree building phase, these keys are added to the tree by scanning the text and picking them out. This is the only time that the text as a whole is referenced.

\subsection*{3.0 Altering the PATRICIA tree - Node Deletion}

The preceding chapter explains how to build a PATRICIA tree and search through it for a particular key. Unfortunately, many real applications require that the structure be subsequently altered--for example, we might want to eliminate from a certain PATRICIA tree the specific key "CHOCOLATE PUDDING - - - - -", or the subtree containing all keys starting with "CHOCOLATE". Without algorithms to accomplish the above types of alterations, the practical applications of PATRICIA are limited. However, if we can discover algorithms to perform such alterations, then PATRICIA. becomes a powerful method for handling and updating large files containing variable length keys. The node deletion algorithms presented in the next few sections accomplish such alterations to a PATRICIA tree; moreover the algorithms are of additional importance in that they are used by the text alteration algorithms of Chapter Four.

Consider the problem of deleting a singlekey. The key is pointed to by some PTR field in some node, \(X\). To delete the key we must remove this PTR field. Moreover, node \(X\) is pointed to by some backward pointer originating either in node \(X\) or in some successor to node \(X\)--namely the node at the end of the search path to our key. The final comparison in this search path must also be deleted--this involves eliminating an entire node.

Let us examine the different substructures that can occur within a PATRICIA tree. We start with two types, illustrated in figures 3-2 through 3-4. Figure 3-1 explains the special names associated with the nodes contained in the substructures.

TD -- Node containing the thread we wish to delete. Note that TD always points to PD.

PD -- Node containing the PTR field we wish to delete.

FT -- Father of TD.

TT -- Node containing the thread that points to TD.


Figure 3-2 Type 1 Node Structure Backward pointers are indicated by curved lines.


Figure 3-3 Type 2 Node Structure


Figure 3-4 Type 2a Node Structure

Note the ambidexter:ty of the structures: in all three cases, pointers emanating to or coming from the right (left) could just as easily have been oriented left (right). The process of deletion for the different types is given below.

\section*{Type 1}

Here we uish to delete the backward pointer that orginates from PD and points back to itself. Since the other backward pointer represents a key that is still active, it must be preserved. Note that the skip followed by the comparison at node PD is no longer necessary. Hence, we can simply remove the node, and replace the LINK field of FT which points to \(P D\), with the backward thread of PD.

\section*{Type 2}

He wish to delete the PTR field of PD ii.e. that ficld which points to the textual information which we no longer wish to consider as a key). However, we must preserve the comparison at PD, for the PTR field at \(X\) represents an active key; and the comparison at PD must still be made in order to differentiate between \(X\) and \(Y\). The comparison that we are actually eliminating is at node TD. Hence we can eliminate the skip field and the node at TD, relocate PTR (TD) in PTR (PD), since PTR (PD) is no longer needed; and thein adjust the backward thread in node TT that points to \(T D\) so that it now points to PD.

\section*{Type \(2 a\)}

This seemingly distinct type is actually treated in a manner identical to Type 2. The orily field of PD which we need to alter is the PTR field; the SKIP field and backward thread at TD are the other fields being elininated, and their deletion is handied in the manner described in Type 2.

If we explore the deletion types a bit further, we find that the Type 2 structure has several special cases, all of which are given in figures 3-5 through 3-8. In every case the proper nodes for PD, TD, FT, TT have been indicated, even when some are identical.

Notice that Type 1 can be described as a special case of type 2; all we need to do is supply the proper values of TT and TD. This is done in figure 3-9, where type 1 has also been renamed type 2 f .

It can easily be shown that no other types exist (see Appendix D); thus we need only to discover an algorithm that will properly delete a node from each of the above configurations.

\section*{\#}

\subsection*{3.1 Algorithm: Delete a PATRICIA Node from the Tree}

The algorithm given here works for all the different types described in section \(3.0, W\) is a pointer variable used for temporary storage. It is assumed that we have been given the key we wish to delete, determined the value for \(T D\), and then found \(T T, P D\), and \(F T\). (How to do this is discussed in the next section.)

Input: \(T D, P D, F T\), and \(T T\)
Output: PTR (PD) is deleted; the comparison at node TD is eliminated.
1) Set \(\operatorname{PTR}(P D) \& \operatorname{PTR}(T D)\)
2) If \(|\operatorname{LLLINK}(T T)|=T D\), set \(\operatorname{LLINK}(T T) \leftarrow-P D\) else set PLINK \((T T) \leftarrow\) -PD (Note that this algorithm, as well as all others in Chapters 3 and 4, uses signed LLINK, RLINK fields instead of LTAG, RTAG.)
3) If \(|\operatorname{LLINK}(T D)|=P D\), set \(W \leftarrow \operatorname{RLI}\) i'K(TD), else set \(W \leftarrow \operatorname{LLINK}(T D)\)
4) If \(W>0\) set \(\operatorname{SKIP}(W) \leftarrow \operatorname{SKIP}(W)+\operatorname{SKIP}(T D)\)
5) If \(\operatorname{LLINK}(F T)=T D\), set \(\operatorname{LLINK}(F T) \leftarrow W\), else set \(\operatorname{RLINK}(F T) \leftarrow W\)

Node TD may now be returned to free storage


Figure 3-5. Type 2b


Figure 3-6. Type 2c


Figure 3-7. Type 2d


Figure 3-8. Type \(2 e\)


Figure 3-9. Type \(2 f\)

Type 2.
a) After step 1)
let \(X=\begin{aligned} & \text { node pointed } \\ & \operatorname{RLINK}(T D)\end{aligned}\)

b) step 2 sets \(\operatorname{LLINK}(T T)=P D\) as a thread
c) step 3 sets \(W=\operatorname{RLINK}(T D), T=0\)

After step 4

d) After step 5 .


Node TD may now be returned to free storage.

Type 2c.
a) after step 2 .

b) step 3 sets \(W=P D\).
c) step 4 has no effect, since \(W\) is a backward pointer ( \(K<0\) )
d) after step 5


Node TD may now be returned to free storage.

Type 2d.
a) After step 2.

b) step 3 sets \(W=P D\).
c) step 4 has no effect
d) after step 5

FT=PD


Node TD may now be returned to free storage.

Type 2 e.
a) Steps 1 and 2 do not change the structure.
b) Step 3 sets \(W=\operatorname{LLINK}(T D)\).
c) Step 4 alters the SKIP field of the son of node TD (It is called node "X" below)
d) after step 5


Node TD may now be returned to free storage

As an aid to understanding the deletion algorithm, each step has been traced through for Types \(2,2 c, 2 d\), and \(2 e\). The diagrams give the state of the particular structure immediately after the indicated step of the algorithm has been executed. (The initial LLINK - RLINK values are as illustrated in figures 3-2 through 3-9.)

\subsection*{3.2 Determining TD, FT, TT}

As was stated earlier, initially we are given only the key we wish to delete. It is assumed that this key exists in the text somewhere (multiple occurrences are considered in the next section). By applying the search algorithm (algorithm 2.1) to this key we will be led automatically to node \(P D\), which is the final value of \(P\) in the search algorithm. The final value of \(Q\) gives us node \(T D\); morecver the value of \(Q\) just pricr to this gives us node FT. The proper value for TT may be obtained in two or three ways: If both link fields of TD point backward, we know that one of them points to TD and originates at TD. The node called TT is the node that points to \(T D\). Hence, in this case \(T T\) and \(T D\) are the same. This corresponds to the situation where LLINK(TD) and RLINK(TD) are less than zeró; but since at least one of RLINK(TD), LLINK(TD) must be less than zero (i.e., TD has at least one backward pointer) then it is sufficient to test whether the product of RLINK(TD) and LLINK(TD) is greater than zero. If this is true, then they must both be less than zero; and hence, \(\mathrm{TT}=\mathrm{TD}\).

Another special case where we can quickly determine the value for \(T T\) is when \(P D=T D\) (this arises in types \(2 e\) and \(2 f\) ). In this case, the thread pointing to \(P D\) is also the thread pointing to \(T T\), thus if \(T D=P D\) then \(T D=T T\).

For types 2, 2a, and 2 b , we must employan alternative method to find TT. One way of doing this is to traverse the subtree hanging from

TD until we come to the thread which points back to node TD. This thread, of course, emanates from node TT. .

We can obtain an estimate of the average size of the subtree at TD. To make things easy, assume we have a balanced tree of \(2^{n}-1\) nodes, and thus \(n\) levels of search paths, including threads. Thus the total size of all the subtrees is given by the sum of the sizes of all subtrees at every level, or:
\[
\begin{aligned}
& 2^{n-1}+2\left(2^{n-1}-1\right)+4\left(2^{n-2}-1\right)+\ldots+2^{n-1}\left(2^{n-(n-1)}-1\right) \\
= & 2^{n}-1+2^{n}-2+2^{n}-4+\ldots+2^{n}-2^{n-1} \\
= & (n-1) 2^{n}-\left(1+2+4+\ldots+2^{n-1}\right) \\
= & (n-1) 2^{n}-\left(2^{n}-1\right) \\
= & (n-2) 2^{n}+1
\end{aligned}
\]
and the average size is obtained by dividing the above expression by the total number of subtrees, which equals the total number of nodes. Hence, the average subtree size is given by:
\[
\frac{(n-2) 2^{n}+1}{2^{n}-1} \quad \frac{(n-2) 2^{n}}{2^{n}} \quad=n-2
\]

Since node TT can occur anywhere in the subtree with equal probability the average search path length is half this, or \(\frac{n-2}{2}\)

\footnotetext{
\({ }^{1}\) Another more straightforward method employs the search algorithm. In this case, we retrieve the key from the text which starts at position PTR(TD), then search for it. Of course, this method is slower since it requires a reference to the text; nevertheless, it is the method included in the algorithm presented below, because it was included in the test program of Appendix B.
}

\subsection*{3.2.1 Algorithm: Find PD, TD, FT, TT}

This algorithm finds the values for PD, TD, FT, and TT. After the algorithm has been executed, algorithm 3.1 is used to complete the deletion. Assume that the search algorithm (Algorithm 2.1) has been modified in steps 2 and 5 to read:

Step 2: set \(\mathrm{FT} \leftarrow \mathrm{Q}, \mathrm{Q} \leftarrow \mathrm{P}, \mathrm{P} \leftarrow \operatorname{LLINK}(\mathrm{P})\), etc.
Step 5: set \(F T \leftarrow Q, Q \leftarrow P, P \nleftarrow \operatorname{RLINK}(P)\), etc.
Recali that in algorithm 2.1 \(P\) ends up pointing to the PTR field of the matching key, which in this case is contained by node PD, and Q ends up trailing one node behind \(P\). The above modification thus effectively locates FT as the node just behind the node pointing to PD.

Input: The key we wish to delete, \(P\) (as returned by algorithm 2.1).

Output: TD, PD, FT, TT (all of these are defined in figure 3-1)
1). Set KEY \& the key we wish to delete, \(N\) - number of bits in this key.
2) Call algorithm 2.1. The search will be successful. Set \(P D \leftarrow P\), \(T D+Q\). FT will have been automatically determined if the search algorithm is modified as shown above.
3) If LLINK(TD) * RLINK(TD) > 0 or \(T D=P D\), then set \(T T<T D\), go to algorithm 3.1, step 1.
4) Set \(N \leftarrow \infty\), KEY \(\leftarrow\) Key at text position \(\operatorname{PTR}(T D)\). Call algorithm 2.1 again. The search will be successful, and upon existing algorithm 2.1, set \(T T \leftarrow Q\), go to algorithm 3.1, step 1 to complete the deletion.
*END*

\subsection*{3.3 Subtree Pruning - Deletion of Prefixes}

We may wish to delete an entire group of nodes at one time; for example, all keys with a particular prefix, or all keys that start with
a certain word. This amounts to deleting an entire subtree. In figure 2-4, for example, to delete all words starting with " T ," we delete the subtree whose root is at (9). Unfortunately, the backward pointers complicate matters, for in reality, we are deleting not the nodes of the subtree, but the PTR fields pointed to by all the backward threads in the subtree. Notice, however, that all the pointers except one are contained within the subtree. This means that we only need to fuss with one backward pointer during deletion--namely the one pointer to the ancestor of the subtree. Since the other pointers are all contained within the subtree, the subtree may be lopped off at its root and returned to free storage. The essential structure is given in figure 3-10, Where \(R\) is the root of the subtree; and \(F R\) is the father of the root. TFR contains the thread pointing back to \(F R\), and \(T A\) contains the thread pointing back to \(A\), which is the one ancestor that contains a PTR field we need to delete. Note that TFR cannot be contained within the subtree, for a subtree must contain a backward pointer to an ancestor. The exception would be if \(F R\) and \(A\) were the same node. Then TFR and TA would also be the same node, which leads to the structure shown in figure 3-11.

Note that when we delete the subtree at \(R\), the comparison at \(F R\) is no longer necessary. This means that node FR may be deleted. We must, however, save the PTR field of FR somewhere, and adjust TFR so that it points to the newly located PTR field. Since the PTR field of \(A\) is being deleted, we can save \(\operatorname{PTR}(F R)\) in \(\operatorname{PTR}(A)\). Thus, once we have saved \(\operatorname{PTR}(F R)\) in \(\operatorname{PTR}(A)\) we adjust \(T F R\) so that it points to \(A\), and delete node FR in addition to the subtree at R. Luckily, this corresponds to a type 2 deletion! We need simply to insure that the proper structure is presented to the deletion algorithm. First, let's redraw the subtree


Figure 3-10 General Configuration for a Subtree Deletion \(R\) is the root of the subtree being deleted. TA contains the backward pointer that points to an ancestor, A, of the subtree.


Figure 3-11. Special Case where \(T F R=T A\)


Figure 3-12 Subtree deletion corresponds to a type 2 deletion if the structure is properly set up. The subtree being deleted has its root at R. Once RLINK(TD) has been pointed to PD, we can run through the deletion algorithm. The nodes contained in the subtree and node TD are returned to free storage.
structure, putting TD, FT, TT, PD where they are required (figure 3-12). In doing this, we have changed the RLINK field of TD into a backward pointer to node \(A\). The usual deletion process may now take place.

\subsection*{3.3.1 Preparing the structure for Subtree Deletion}

If the search algorithm indicates that an entire subtree matches our key (see Algorithm 2.1, step three) then upon exit, P will point to the root of the subtree, \(Q\) will be at \(F R\) (note that for this case \(F R=T D\), the node containing the thread we are going to delete). If algorithm 2.1 has been modified to find FT (section 3.2.1), we will have the proper value for FT also. Thus we need only locate TT (or TFR) and PD (or A-see figure 3-12). Locating TT is easy. We simply search for the key starting in the text at \(\operatorname{PTR}(T D)\); upon exit from the search algorithm this time, Q will point to TT. (Again, we could avoid a text reference by traversing the subtree at TD until we fird the thread that points to TD.)

Finding the node TA is, unfortunately, not quite so easy. All we know is that \(T A\) is in the subtree at \(R\), and \(A\) is an ancestor of \(R\) and thus is along the search path to \(R\). Hence, we can locate \(A\) only by looking at every thread in the subtree at \(R\) and seeing if it points to a node along the search path to \(R\). One way of effecting this is given below:
1) Set KEY \& the key leading us to the subtree at \(R\)
2) Traverse the subtree at \(R\). At each "visit," do the following:
a) Note the node pointed to by the thread we are visiting. Call this node "A" (i.e. an ancestor of the suttree at R.
b) Call algorithm a.l and search for KEY. (The search will be successful and will end at \(R\), the root of the subtree.) While going through the search, note whether we encounter
node "A". This requires a modification to algorithm 2.1. (The modification is given explicitly below.)
3) As soon as we encounter node "A" we may terminate the traversal; otherwise continue with the traversal.

We may combine the search for A or PD, with the search for TFR, or TT. This is done in the algorithm given below, which completes the preparation of the structure.

\subsection*{3.3.2 Algorithm: Prepare the Structure for Subtree Deletion}
(Assume that we have just exited from the search algorithm and have determined that a subtree of matching keys exists.)

Input: \(P, Q, W\) (output by a modified version of algorithm 2.1. where \(W\) follows \(Q\) down the search path, and \(Q\) follows P.)

Output: PD, FT, TD, then exit to algorithm 3.2 .1 step 3.
1) Set \(T D \leftarrow Q, F T \leftarrow W, R \leftarrow P, P D \ll 0\) (Again, algorithm 2.1 is modified--this time so that \(\forall\) is always set to the previous value of \(Q\) as \(Q\) and \(P\) are going down the tree. \(R\) is the root of the subtree we are deleting.)
2) Employ algorithm 2.3 to traverse the subtree at \(P\). A.t each visit to node \(X\) set \(A * X\); then call a variant of algorithm 2.1 which, in addition to the introduction of pointer \(W\), has been modified as shown below.
add to steps 2 and 5:
If \(P=A\), set \(A \leftarrow 0\).
(Recall that \(X\) is always a backward pointer to a node visited by algorithm 2.3, step 3. If node \(X\) is on the search path between the root of PATRICIA and \(R\), the root of the subtree being deleted, then the modified version of algorithm 2.1 will set \(A * 0\).
3) If \(A \neq 0\), repeat step 2 for the next node visited. Otherwise, set \(P D\) - \(X\). (If \(A=0\) we have found the pointer to the node outside the subtree.)
4) If \(\operatorname{RLINK}(T D)=R\) set \(\operatorname{RLIHK}(T D)-\quad-P D\), else set \(\operatorname{LLINK}(T D) \leftarrow-P D\). (This forces the configuration of figure 3-12; the minus sign indicates that the RI.INK or LLINK is changed to a backward pointer.)
5) Return the subtree at \(R\) to free storage. Then call algorithm 3.2.1 at step 3 to find TT and then delete node TD.
*END*
Note that the special modifications to the search algorithm, algorithm 2.1, do not in any way interfere with its operation except for the additional time involved. The same can be said about the modification suggested in section 3.2.1.

\subsection*{3.4 Conclusion - Deleting Nodes}

The algorithms of Chapter Two have been supplemented with original algorithms that allow us to delete a particular node from a PATRICIA tree. Moreover, if an entire group of similar keys is no longer needed, then a subtree of nodes may be deleted. Thus, PATRICIA has been expanded into a much more flexible information retrieval system. To complete this expansion, we must still find a technique for deleting information from or inserting information into the main body of text. This is accomplished in the next chapter.

\subsection*{4.0 Deletion of Text Material}

The processes of deleting textual information can be broken down into three specific classes.
a) Deletion of a specific key prefix which starts at exactly one point in the text.
b) Deletion of contiguous text that contains zero or more keys.
c) Deletion of a specific key which occurs at several points in the text.

Processes (a) and (b) can be combined since (a) is actually a subset of (b). The major difference is one of specification: process (a) involves specifying a particular key and having it searched for. Process (b) requires that we give the starting and ending points of the area we wish to delete; thus any starting points of keys that are contained within this area will cause the appropriate keys to be deleted from the structure. Consider the text in figure 2-4; namely:

THIS IS THE HOUSE THAT JACK BUILT

Process (a) implies that we may request, for example, that the key "HOUSE" be deleted. This would cause "HOUSE" to be squeezed from the text, and the thread pointing to the pointer to "HOUSE" to be deleted. If we had chosen to delete "HOUSE THAT \(J\) " then we would have deleted "HOUSE THAT \(J\) " from the text, and eliminated the keys:
"HOUSE THAT JACK BUILT."
"THAT JACK BUILT."
"JACK BUILT."
Process (b) is different only in that we give "coordinates" of starting and ending points to be deleted. The above example could be handled using process (b) by specifying that we wanted to delete the text over positions (13-24). The one important difference is that we could use process (b) to specify a single, non-key deletion, or a multiple-key deletion that in itself was not a key. Thus, we could specify that we shall delete (11-24), but if we invoked process (a) and searched for the key "E HOUSE THAT J" we would not succeed.

Process (c) may be accomplished by locating the duplicate keys and then re-applying process (b) until they have ali been deleted. fence, although process (c) is not a subset of process (b), it requires little more than a subtree traversal, where each "visit" means that a particular text-position (containing the key of interest) is deleted. With the above in mind, we shall attack process (b), realizing that only minor modifications are required to effect processes (a) and (c).

\subsection*{4.1 Deleting Contiguous Text}

Before getting into the text deletion process, it should be pointed out that the process is rather involved; in that sense, the examples of the previous section may have been misleading. To illustrate just how drastically a simple text deletion can alter the PATRICIA structure, consider the example given in figures 4-7, 4-2, and 4-3, where evary occurrence of \(A, K\), or \(Z\) is flagged as the start of a key. In figure 4-2, we have deleted the space. In figure 4-3, the fourth " \(A\) " has been deleted. (An explanation of how to interpret the minutiae of the printed

```

l

```
1* No はit


Figure 4-1. A strange tree. Every character in the text is a key.


Figure 4-2. The space has been eliminated from the text of figure 4-1.


Figure 4-3. The fourth " \(A\) " has been eliminated from the text.
structure is given in Appendix B.) Most deletions will not cause such serious structural changes, but the reader should at least be aware of what could happen.

The reason that the text deletion process can cause such structural changes is that when we delete text, we also alter the bit comparison pattern for any key or keys that happen to extend over the deleted area. That is, any key not within the deleted area whose search path (as a result of successive skips) leads it into the deleted area, must be reevaluated. Moreover, there is no way of predicting where the newly evaluated key will be positioned in the PATRICIA tree without actually re-evaluating the key. An example should help to illustrate this. Consider the rather contrived text of a figure 4-2:

\section*{AKZAKZAKZAKZAKZAKZ}

Where every letter is the start of a key. Notice that, in scanning from left to right (which is exactly what the search algorithm does), the first difference between the keys

AKZAKZAKZAKZAKZAKZP
and

\section*{AKZAKZAKZAKZAKZP}
occurs at the comparison between "P" of the second key and the last "A" of the first. However, when we have the text shown in figure 4-3 (i.e., the fourth "A." has been deleted) then the same comparison would now be made between the keys

AKZAKZAKZKZAKZAKZP
and

Here the first difference occurs at the third "A" of the first key. One may easily verify that all keys starting with "A", "K", or "Z" which originate ahead of the deleted "A" will be similarly affected! This amounts to an entire restructuring of the search path, which is obviously reflected in the vast difference between the PATRICIA trees of figures 4-2 and 4-3.

\subsection*{4.1.1 Concepts Behind Deleting Contiguous Text}

Let START and END be pointers that point to character positions in the text. Assume that we are going to delete all text which occurs between (and including) the characters whose positions are given by START and END-1 (i.e., up to but not including EMD). We must look at every node in the PATRICIA tree and do the follouing. (Assume the node we are looking at is pointed to by X.)
1) Recalculate the proper address for the PTR field in the case where the PTR field points to text that was moved in order to fill in the space left by the deleted text. If \(X\) points to a node which requires such modification, then no other modification is required for the node. The recalculation is handled quite asily by the step:
\[
\begin{aligned}
& \text { If } \operatorname{PTR}(X) \geq E N D, \text { set } \\
& \operatorname{PTR}(X)+\operatorname{PTR}(X)-(S T A R T-E N D)
\end{aligned}
\]
2) Delete any PTR field that points to a key which starts within the deleted area. This is done by the deletion algorithin, setting PD \(-X\). (Note that ir addition to PD, the deletion
algorithm must also find TD, FT, and TT.) The step to detect such a node is, quite simply:

If \(\operatorname{START} \leq \operatorname{PTR}(X)<E N D\), then set \(P D \leftarrow X\), call the deletion algorithm at the appropriate entry point.

Since step 1 checked for \(\operatorname{PTR}(X) \geq E N D\), we can eliminate that part of the "if" statement and write simply:
if \(\operatorname{PTR}(X) \geq S T A R T\), then . . . . etc.

Note that such a node requires no further attention, i.e., once we have deleted it, we are done with it.
3) Fix any node whose search path has been altered as a result of the text deletion. This is done by deleting the old node, looking at the new bit pattern given by the new key, and reinserting the new key. The step is given in simplified form as:
if \(\operatorname{PTR}(x)+\frac{\sum \text { SKIP fields leading to } \operatorname{PTR}(x)}{\text { nurber of bits per character }}\)
is \(\geq\) START, delete \(\operatorname{PTR}(X)\); then reinsert into the tree the key which starts at \(\operatorname{PTR}(X)\) in the text. (Remember, the text has already been concatenated.)

The rest of the nodes fall in the class where:
\[
\operatorname{PTR}(X)+\frac{\sum \text { SKIP fields leading to }}{\text { number of bits per character }}(X)<\text { START }
\]
and which are therefore unaffected by the text that was deleted.
It would be nice if we could simply traverse the PATRICIA tree in endorder, altering, deleting, and reinserting nodes all with just one pass over the structure. Unfortunately, this is difficult to do, for several processes are taking place which are capable of dynamically
altering the tree in a manner that would either cause any traversal algorithm to fail, or would change the structure in such a way that the deletion algorithm wouldn't be able to function during the traversal process. For example, it is possible for the deletion algorithm to move a PTR field from a node to its ancestor. If this PTR field is one which must be modified to point to its proper text position, which was shifted by the textual concatenation (i.e., PTR \(\geq\) END), then we must take care that the modification does not occur twice.

If we make the above modification during the "visit" of a preorder traversal, then we can perform deletions without worrying about accidentally altering a PTR field twice, for a preorder traversal visits all ancestors of a node before it visits the node. If any deletions to be made are made at this same visit, then any PTR fields being moved will be moved into areas already visited, and hence will not be molested any further. Unfortunately, other problems preclude making the necessary deletions during a preorder traversal.

For example, if we use algorithm 3.2.1 and encounter a type 2a deletion, node TT will not have been processed yet. The algorithm, which searches for the node by looking at the text, will not find it if node TT is a node being deleted or altered. The only way to insure that this situation will not occur is to visit all descendants first, which requires an endorder traversal. Hence, if we make our necessary deletions during the visit of an endorder traversal, and modify the necessary PTR fields during the visit of a simultaneous preorder traversal, we will avoid at least the difficulties indicated above. The traversals may be simultaneous since an endorder traversal visits a given node at either the same time or later, as illustrated in figure 4-4.


Node Access Interval
Preorder Visit
Endorder Visit


ABCD
E FG
C \({ }^{\circ} \mathrm{D}\) B
G F E A

Figure 4-4. Preorder and endorder visits. A preorder visit always occurs at the same time or before an endorder visit.

Some problems still remain, however. Any node whose search path was altered may, of course, be deleted during the traversal. However, we must be careful when we reinsert the node, since it could wind up anywhere in the structure. This obviously could be undesirable; if the node were inserted in a place that had not been visited, then it would be deleted and reinserted again! There is an easy way of avoiding this problem. We can make a list of all the nodes being altered, linking them up by their LLINK or RLINK fields as we delete them. Then, after the traversal has been completed, we can reinsert the nodes by looking at the PTR fields of the nodes we put in our list. These pointer fields give the starting text positions for the keys whose search paths must be recomputed.
\# 4.1.2 Algorithm: Delete Contiguous Text

The compi, ie algorithn for deleting text is now presented. It is broken up into three subalgorithms. Initially, set pointer TOPLIST \(\leftarrow \lambda\); SHIFT \(\leftarrow\) END - START. Assume that the text between START and END - 1 has been deleted, the remainder having been concatenated.

\section*{Subalgorithm T. 0 Traversal}

This subalgorithm traverses the tree in preorder and endorder. If both visits occur at the same time, the preorder visit will be done first. The algorithm uses a stack, A.

Input: START, END, SHIFT.
Output: The updated PATRICIA tree.
1) Set \(\Sigma\) SKIP \(\leftarrow 0, A T O P ~+0, X \&\) pointer to root of PATRICIA tree.
2) Set \(\Sigma\) SKIP \(+\Sigma\) SKIP \(+\operatorname{SKIP}(X)\)

ATOP \(\leftarrow\) ATOP +1, A \((A T O P \leftarrow X\)
(Preorder visit) Preform subalgorithm T.l.
3) IF \(\operatorname{LLINK}(X)\) is not a thread, (i.e.: > 0)
set \(X+\operatorname{LLINK}(X) ;\) go to step 2
4) Set \(X \leftarrow A(A T O P)\), ATOP \(\leftarrow A T O P-1\)
5) If \(X>0\), set ATOP \(\leftarrow\) ATOP +1 , \(A(\) ATOP \() ~+~-X ~ g o ~ t o ~ s t e p ~ 7, ~ e l s e ~ s e t ~ X ~-~ X ~\)
6) (Endorder visit). Perform subalgorithm T.2, then set \(\Sigma\) SKIP \(+\Sigma\) SKIP-SKIP (X)
(even though node \(X\) may have been deleted, its SKIP field is still intact); go to step 4.
7) If \(X=1\) (if we are back at the root), exit.
8) If \(\operatorname{RLINK}(X)\) is not a thread, set \(X \notin \operatorname{RLINK}(X)\), go to step 2, else go to step 4

\section*{Subalgorithm T. 1}

This subalgorithri adjusts PTR fields when they point beyond the area of text that has been deleted. It also marks those PTR fields which are to be completely deleted. (The actual deletion must take place later.)

Input: \(X\), START, END, SHIFT
Output: \(\operatorname{PTR}(X)\) adjusted, or set to zero if node \(X\) is to be deleted
1) If \(\operatorname{PTR}(X) \geq E N D\), set \(\operatorname{PTR}(X) \leftarrow \operatorname{PTR}(X)\) - SHIFT, exit T.1
2) If \(\operatorname{PTR}(X) \geq \operatorname{START}\), set \(\operatorname{PTR}(X)<0\), exit \(T .1\)

\section*{Subalgorithm T. 2}

This subalgorithm deletes nodes marked by T.l. It also deletes those nodes whose search path must be recomputed, and saves them in a list. If a deletion is to occur, the algorithm calls on the node deletion algorithn: (3.2.1); it will not call the node deletion algorithm twice for the
same node, as this could foul up the traversal process. If a node contains 2 threads, and both are to be deleted, then the second deletion will occur at the visit to the parent of \(X\) (which will contain the other unwanted thread after the delction of the first thread).

Input: \(X\), START, END, SHIFT.
Output: The node at \(X\) is deleted, or the search path of its key is recomputed, or node \(X\) is left alone.
1) (The subalgorithm uses a flag, FINISHED, to force an exit after LLINK and RLINK are checked.)
Set FIMISHED * 0 If \(\operatorname{LLINK}(X)\) is a thread, set \(P D *|\operatorname{LLINK}(X)|\), go to step 4.
2) If FINISHED \(=1\) exit T.2, eise set FINISHED \(=1\) (exit if we have looked at both link fields)
3) If \(\operatorname{RLINK}(X)\) is a thread, set \(P D+\mid(\operatorname{RLINK}(X) \mid\) go to step 4 , otherwise exit T.2.
4) (PD gives the pointer we might want to delete. First we must check it.)
If PTR (PD) \(\geq\) START, go to step 2 (no modification necessary, since the key lies beyond the affected area)
5) If \(\operatorname{PTR}(P D)=0\), set \(T D \leftarrow X, F T \leftarrow|A(A T O P)|\)
(the top node of the stack is the father of the node being visited in endorder) call the node deletion algorithm at step 3 of algorithm 3.2.1. Then exit T. 2
6) IF PTR (PD) \(+\frac{\sum \text { SKIP }}{\text { number of bits per character }}\) is < START, ge to step 2 (the text deletion did not affect the search path to node \(X\) )
7) Set \(F T \leftarrow|A(A T O P)|, T D \leftarrow X\), call the deletion algorithm at step 3, algorithm 3.2.1 but instead of returning node \(X\) to free storage, save it (to be reinserted) by:
8) \(\operatorname{LLINK}(X) \leftarrow\) TOPLIST, TOPLIST \(\leqslant X\). Then exit T.a.

After exiting from subalgorithm \(T .0\) we merely reinsert all the nodes whose search path was altered; namely the nodes in the list pointed to by TOPLIST.

\subsection*{4.1.3 Algorithm: Delete a specific key from the text}

The algorithms presented in the previous section may be used to perform a variety of functions. For example, to effect a"process (a)" text deletion (i.e., the key is given) we employ the brief algorithm below.

Input: The key we wish to delete.
Output: An occurrence of the key is deleted from the text.
1) Set \(K *\) key, \(N *\) number of bits in \(K\), call algorithm 2.1. There will be a match at node \(P\).
2) Set START \(~+\operatorname{PTR}(P), E N D ~ \& ~ S T A R T+\) number of characters in \(K\).
3) Concatenate the text by bringing together locations START - 1 and END (effectively deleting positions START through END - 1)
4) Set SHIFT \(<\) END-START.
5) Call algorithm 4.1.2 T.0.
6) Use algorithm 2.2 to reinsert the keys whose PTR fields are given in the list created by algorithm 4.1.2 T. 2 step 8.
*END*
A "process (b)" deletion is even easier, since we are already given START and END-simply enter algorithm 4.1.3 at step 3.

\subsection*{4.2 Algorithm: Insert Text}

The process of inserting new text is practically identical to the process of text deletion. Keys whose search paths are changed must have their search paths recomputed, and PTR fields pointing to text which has been shifted (in this case to make room for the new text) must be altered. The only difference is that no old keys are deleted, for no text is deleted. The text insertion process is given below. Assume we are given the information TEXT, which we want to add, along with START,
the position at which the next text is to be inserted.

Input: START, TEXT, number of characters in TEXT
Output: The updated PATRICIA tree, the updated text, exit to algorithm 4.1.3, step 5.
1) Set END \(\leftarrow\) START (this guarantees that subalgorithm \(T .1\) will not delete any keys.
2) Break apart the text at position START-1 and insert TEXT.
3) Set SHIFT ( \(\leftarrow\) the number of characters in TEXT)
(The net result will that subalgorithm T. 1 will add SHIFT to all PTR fields that point beyond and including position START)

Now, simply enter algorithm 4.1.3 at step 5.
*END*

\subsection*{4.3 Conclusions - Altering Text}

The user now has a complete set of working algorithns that enable him to update or alter either the PATRICIA tree or the text. The algorithms. presented in Chapter Four can:
a) Delete any area of the text (algorithm 4.1.2).
b) Delete any specific key from the text (algorithm 4.?.3).
c) Insert new text anywhere (algorithm 4.2).

\subsection*{5.0 Alternate Methods for Representing the PATRICIA Tree - Compressing the Structure.}

In the previous two chapters, we developed the algorithms necessary to effect most of the operations that a user might encounter when working on an interactive basis with PATRICIA. This section will be concerned with alternate methods of prepresenting the PATRICIA tree which will result in more efficient use of memory, or more rapid retrieval of inforriation, or both.

\subsection*{5.1 A Right Threaded PATRICIA Tree}

The backward links of the PATRICIA tree do not resemble ordinary "threads" (as explained in Knuth 1968, p. 320) in that they do not necessarily point to nodes which are postorder predecessors or successors. If we could build a PATRICIA tree in a way such that the backward pointers were "threaded," then we could compress the structure and thereby save considerable storage space. Let us focus our attention on the possibility of building a right threaded PATRICIA tree, where such a structure is defined below.

\section*{Definition 5-1.}

A right threaded PATRICIA tree is a PATRICIA tree in which the back-ward-pointing left links point to themselves, and the backward pointing right links point to their postorder successors. An example of such a structure is given in figure \(5-1\), where the tree is made up of keys that


L
L \(\quad\)＊＊ \(1 * * * T H E\) OUICK EFCNA FOX－－－
L \(\quad\)＊ \(7 * 34 * 133\)
L＊＊ \(7 * * * T H E\) LAZY DOG．s－－－
\(L \quad R\)
L \(\quad\) R
＊ 2 ＊3＊ 105
L．
L \(\quad *\) 2＊＊＊QUTCK EPOWN FOX JUMP－－
L ＊ \(5 * 1 * 12\) 只
\(L \quad R \quad L\)
\(L \quad R \quad L\)

L R＊6＊＊ \(1 * 13\) ？
\(L R \quad L\) ．
\(L \quad R \quad L\)

\(L \quad \mathrm{Q}\)＊ \(8 \% 1 \neq 121\)

\(L \quad P\)
\(\begin{array}{llll}\mathrm{L} & & R & \\ * & 3 * & 1 * & 117\end{array}\)
L
\(L\)

L＊ \(0 * 1 * 142\)
L \＃ッ G＊＊＊ロOG・お
\(L \quad R\)
\(L \quad R\)
＊ 4 ＊2＊ 111


Figure 5－1．An example of a Right Threaded PATRICIA tree．Every LLINK thread points to the originating node and every RLINK thread points to the postorder successor（the node on the line above）．
begin at every word of the sentence:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Note that a thread always points to the first node encountered, moving up the page. The usual, or "non-right threaded" structure, which is built by inserting keys in the order in which they are scanned (going from left to right), is shown in figure 5-2.

Observe that when we build the structure with algorithm 2.2, the positioning of the backward pointers is determined by the order in which we insert the keys; thus, we could have attained our right threaded structure by inserting the keys in the order:
```

THE QUICK . . .
THE LAZY . . .
QUICK . . .
OVER. . . .
LAZY . . .
JUMPFD . . .
FOX . . .
DOG . . .
BROWN . . .

```
which is simply reverse lexicographic order. Figure \(5-3\) shows the structure which results when the keys are inserted in the order given above, using algorithm 2.2.

Unfortunately, we cannot always insert the keys in reverse lexicographic order; in fact, we practically never can efficiently. Thus, what we need is a new node insertion algorithm which will insure that when we insert a new node, the "right-thread" property will be preserved.


Figure 5-2. The tree of figure 5-1 as built by algorithm 2.2.
```

 5* 10* 15* 20* 25* 30* 25* 40% 45* 50* 55* 60% 65* 70%
 O
 100
 THE QUICK IHE LAZY QUICK DVER LAZY JUMPFD ECX DCG FORWNE
 * 1* C* 101
 L
 L
 L ** 1***THECUICK THELATY Q----
 L * 2* 34* 1111
 L ** 2***THE LAZY QUICK OVER ----
 L R
 L P
 * 3* 3* 120
 L
 L ** 3***QUICK OVFP LAZY JUMP----
 L * 4* 1* 126
 L
 L R ** 4***OUVER LAZY JUSPED FOX----
 * 5* 1* 131
 L
 L.
 #* 5:**-AZY jumprr FQx UOG ----
 e 6 1* 136
    ```

```

 L
 L
 143
 L
 L
    ```

```

 L * 8* 1* 147
 L ** \rho,***OCG TRCWNE - - - -
 L R
 L E
 * 9* 2*151
 ** G***BPCWNE
    ```

Figure 5-3. If we use algorithm 2.2 and insert the keys in reverse lexicographic order we get a Right Threaded tree. The keys have been underlined in the text.

If we look at algorithm 2.2, we see that the point where the threads are created occurs at step 5. If we insert a node, \(X\), whose L+lst bit is zero, into a right threaded structure, then this step will cause the LLINK field to point back to \(X\). The value of the RLINK field will depend upon ch type of structure the node belongs to. The four types (where the \(1 . t\) bit \(=0\) ) are given below. Let the father of \(X\) be denoted by FX.

Type 1. \(X\) hangs from the left link of \(F X\), and has no right subtree.

Type 2. \(X\) hangs from the right link of \(F X\), and has no right subtree.

Type 3. \(X\) hangs from the left link of \(F X\), and has a right subtree.

Type 4. \(X\) hangs from the right link of \(F X\), and has a right subtree.
(Remember, for all these types, the LLINK field of \(X\) points back to \(N\) itself.) After making an insertion, the following structural changes will have taken place.

For type 1, RLINK(X) will point to the same place that LLINK(FX) previously pointed to, namely FX itself. Thus, RLINK(X) will point back to FX , which is the postorder successor of \(X\).

For type 2, \(\operatorname{RLINK}(X)\) will point to the same place that \(\operatorname{RLINK}(F X)\) previously pointed to, namely its postorder successor. But now, FX's postorder successor has become \(X\) 's postorder successor (X having been inserted to the right of \(F X\) ).

For types 3 and 4, RLINK(X) will point to the root of X's subtree, and the "rightmost" node of this subtree (the last node traversed in postorder) will still point to its postorder successor, even after we have inserted node \(X\) (which is actually the postorder predecessor to the subtree).

Hence, types 1-4 are correctly handled automatically by algorithm 2.2 (assuming, of course, that the structure is right threaded before \(X\) is inserted). The real problem occurs when the L+lst bit of \(X\) is "1", and hence algorithm 2.2 would try to set \(\operatorname{RLINK}(X)=X\), which is forbidden. Again, we have four types of structures to be concerned about.

Type 5. \(X\) hangs from the left link of \(F X\), and has no left subtree.

Type 6. \(X\) hangs from the right link of \(F X\), and has no left subtree.

Type 7. \(X\) hangs from the left link of \(F X\), and has a left subtrce.

Type 8. \(X\) hangs from the right link of \(F X\), and has a left subtree.

For type 5 , step 5 of algorithm 2.2 would cause LLIMK \((X)\) to point to \(F X\), and RLITK \((X)\) to point to \(X\). What we actualiy want is the reverse of this, namely, RLi:iK \((X)\) should point to \(F X\) and LLINK \((X)\) should point to \(X\). We may alter the LLINK-RLINK fields in this manner, but then we must swap the PTR fields of \(X\) and \(F X\).

Type 6 is handied just like type 5, except that RLINK \((X)\) should point to the node that \(\operatorname{RLINK}(F X)\) pointed to. Again this requires that the PTR fields of \(X\) and of the node pointed to by RLINK(FX) must be swapped.

For types 7 and 8 , we must search for the node in the subtree which points to the postorder successor of the subtree. For type 7, this postorder successor would be FX, and for type 8 , it would be some ancestor of FX. At any rate, this search is easily and rapidly accomplished by going down the RLINK fields of the subtree until a backward thread is encountered. Again, PTR fields must be swapped; this time between \(X\) and either FX (type 7) or the ancestor we found (type 8).

Moreover, the backward thread which we found must be altered so that it points to \(X\), which has become the postorder successor to its subtree.

The average number of searches required to find the postorder successor of the subtree in types 7 and 8 is easily estimated for a balanced tree of \(P=2^{n}-1\) nodes. (A "search" in this case means simply an inspection of the node to see if it has a backward RLINK.) For such a tree, the average number of searches required to access any node is well known to be approximately \(\log _{2} \mathrm{P}-1\) (Salton, 1968, p. 72). But the maximum search path length, which is also the path length to all terminal nodes, is \(\log _{2} P\). Hence, the average remaining number of searches is the same as the remaining path length, or \(\left.\log _{2} P-1\right)=1\). Since we are only performing this extra search when a node has an \(L+l\) st bit equal to "l", then the average number of extra searches required to build a Right Threaded PATRICIA tree is approximately:

\section*{number of nodes in the tree}
which is obviously an insignificant additional cost. (This figure has been veritifed for several cases where \(n=9\) and 10.)

\subsection*{5.1.1 Algorithm: Create a Right Threaded PATRICIA Tree}

The brief algorithm given below will accomplish the threading process. It is inserted in place of step 5 of algorithm 2.2.

Input: See algorithm 2.2.
Output: The updated Right Threaded PATRICIA tree

Step 5. If the \(L+1\) st bit of \(K=0\), set \(\operatorname{LLINK}(R) \leftarrow-R\), \(\operatorname{RLINK}(R) ~ \& ~ P * S I G N(T)\), go to step 6, otherwise set \(Y \leftarrow P * \operatorname{SIGN}(i), Z \leftarrow R\).

5-1 If \(Y>0\) then \(\operatorname{set} Z+Y, Y+\operatorname{RLINK}(Y)\), repeat; otherwise, swap \(\operatorname{PTR}(|Y|)\) and \(\operatorname{PTR}(R)\), then set \(\operatorname{RLINK}(Z) \leftarrow-R\).

5-2 Set \(\operatorname{RLINK}(R) \leftarrow Y\), then if \(T>0\) set \(\operatorname{LLINK}(R) \& P\), otherwise set LLINK \((R) \leftarrow-R\).

Step 6. Etc.

\section*{*END*}

The algorithm is quite short, and since the additional cost is so slight, a PATRICIA tree should always be Right Threaded. For one thing the Right Threaded structure is a standardized structure. More importantly, however, is that it allows us to compress the PATRICIA structure considerably, as is seen in the following sections.

\subsection*{5.1.2 An Important and Immediate Consequence - Eliminating LTAG}

Algorithm 5.1.1 is used with the version of Algorithm 2.2 that represents LTAG, RTAG by the sign bit of LLINK, RLIN:. It would have been just as easy to construct a version that could be used with the LTAG-RTAG version of algorithm 2.2. Note however that if the tree is Right Threaded, we may immediately elliminate the LTAG field (or the sign bit of LLINK); for, if we are given a pointer, \(X\), that points to a node in a Right Threaded PATRICIA tree, then the test
\[
\text { If } \operatorname{LTAG}(X)=1
\]

Becomes simply
\[
\text { if } \operatorname{LLINK}(X)=X
\]
in which case, we know \(\operatorname{LLINK}(X)\) is a thread.
On the other hand, we could just as easily have eliminated the LLINK field whenever LLINK is a thread. In this case, we let \(\operatorname{LTAG}(X)=1\)
indicate that \(\operatorname{LLINK}(X)=X\); and when \(\operatorname{LTAG}(X)=0\), then \(\operatorname{LLINK}(X)\) points to a descendent. The real importance, however, of the right threaded structure, will be seen in the next section.

\subsection*{5.2 Preoder Sequential Representation}

Consider the tree illustrated in figure 5-4. If we write out the nodes in preorder, we get:

\section*{A.BCDEFGHI}

Now, let's associate with each node a RLINK field whose value is \(\lambda\) if the node has no right subtree, and otherwise points to the right subtree of the node. We indicate this field with arrows and " \(\lambda\) "s below.

RLINK
INFO.


To complete the representation, note that if a node has a left subtree, its root is imnediately to the right of its parent node. Obviously, every node (except the last) has another node to its right. Hence, we must differentiate between nodes with left subtrees and those without. To do this, we use the LTAG field; if \(\operatorname{LTAG}(X)=0\), then \(X+1\) points to the left subtree of \(X\) and if \(\operatorname{LTAG}(X)=1\), then \(X\) has no left subtree. The complete representation, which is called Preorder Sequential form (Knuth, 1968), is shown below (the " \(\lambda\) "s have been omitted, and nonnull RLINKS are indicated by arrows.)
RLINK
INFO
LTAG



Figure 5-4. A Binary Tree

\subsection*{5.3 Preorder Sequential PATRICIA}

The technique just illustrated may be utilized to construct a very compact yet efficient PATRICIA structure. If we assume that the tree is Right Threaded, then we may create the Preorder Sequential representation, in which an LTAG field of 1 means that the node has a left thread which, of course, must point to the node itself. Now, the problem remains: how do we indicate a right thread? We could introduce an RTAG field, and let"RTAG(X) \(=.1\) " mean that \(\operatorname{RLINK}(X)\) was a thread. This is unnecessary, however. Recall that a preorder traversal will visit all ancestors of a given node before the node itself is visited. Hence, a right thread of node \(X\), which always points to an ancestor of \(X\), has the property:
\[
\operatorname{RLINK}(X)<X
\]
that is, it is numerically lower than the address of node \(X\). Thus, if \(\operatorname{RLINK}(X)>X\), then \(\operatorname{RLINK}(X)\) points to the right subtree of \(X\); otherwise RLINK ( \(X\) ) is a backward thread which points to the postorder successor of \(X\).

The tree of figure 5.1 (which incidentally is identical in form to the tree of figure \(5-4\) ) has been converted to preorder sequential representation in figure 5-5. Note that the root (node \#1) never has a right subtree; this is always indicated by setting RLINK(1) \(=0\).

In order to effect many of the PATRICIA algorithms, particularly to find all occurrences of a given key, it is necessary to traverse a portion of the tree in posiorder. The algorithm below accomplishes this for a Preorder Sequential structure. Assume that we wish to traverse the subtree at \(X\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Physical Node Location & SKIP & PTR & LTAG & RLINK & TEXT (indicated by PTR) \\
\hline 1 & 0 & 101 & 0 & 0 & THE QUICK BROWN - - - \\
\hline 2 & 3 & 105 & 0 & 9 & QUICK BROWN FOX - - \\
\hline 3 & 1 & 117 & 0 & 6 & FOX JUMPED OVER - - \\
\hline 4 & 2 & 111 & 1 & 5 & BROWN FOX JUMPED - - - \\
\hline 5 & 1 & 142 & 1 & 3 & DOG \\
\hline 6 & 1 & 128 & 0 & 2 & OVER THE LAZY - - - \\
\hline 7 & 1 & 137 & 0 & 6 & LAZY DOG \\
\hline 8 & 1 & 121. & 1 & 7 & JUMPED OVER THE - - \\
\hline 9 & 34 & 133 & 1 & 1 & THE LAZY DOG \\
\hline
\end{tabular}

Figure 5-5. The Preorder Sequential representation for the PATRICIA tree of figure 5-1. Note that the text contains 100 leading blanks.

Input: \(X\) (a pointer to the root of the subtree we wish to traverse).

Output: A postorder visit to all nodes in the subtree whose root is at \(X\).
1) Set \(Y+X\)
2) (Traverse left) if \(\operatorname{LTAG}(Y)=0\), set \(Y \leftarrow Y+1\), go to step 2, else go to step 3.
3) Visit node \(Y\).
4) Set \(Z \leftarrow \operatorname{RLINK}(Y)\). If \(Z<X\), exit (we are done).
5) If \(Z<Y\), set \(Y \leftarrow Z\), go to step 3 , otherwise set \(Y \leftarrow Z\), go to step 2.
*END*
This algorithm has several nice properties. For one thing, it done not require the use of a stack. Moreover, the algorithm may be used to find the postorder successor of any node. Simply set \(Y+l o c a t i o n\) of the node, \(X \leftarrow 1\), and enter the algorithm at step 4 ; the first visit is the postorder successor to node \(Y\).

The algorithm was applied to the structure in figure \(5-5\); the PTR fields of the nodes in the order they were visitec are given below. (Initially, set \(X \nleftarrow 1\) since we are traversing the entire structure.)

> Physical location

4
111
5
142
3
117
8
121
7
137

\subsection*{5.3.2 Can the Structure be Utilized?}

The apparent advantage gained by squeezing away the LLINK and RTAG fields is merely academic unless we can utilize the structure. Unfortunately, it is extremely difficult to build or alter a tree in Preorder Sequential form, for whenever we insert (or delete) a node, we must linearly shift part of the structure up (or down) and then pass over the entire structure in order to fix up the RLIIK fields that refer to the shifted area.

On the other hand, postorder traversal is, as we have seen, quite nicely handled. Moreover--and much more importantly--we can effectively perform a PATRICIA search through the structure by altering algorithm 2.1. This has been done in the algorithm presented below, which is slightly faster than algorithm 2.1 since the LLINK subscript has been elininated. If we can then find a way of efficiently handling alterations to the structure, we will have established its practicality. This process is discussed in section 5.3.4. First we present the search algorithm.

\subsection*{5.3.3 Algorithm: Search a Preorder Sequential Structure for a Given Key}

This algorithm very closely resembles algorithm 2.1. The same explanatory remarks apply (section 2.1.1).

Input: \(K\), the number of bits in \(K\) (see algorithm 2.1).
Output: \(P\) (a pointer to the root of a subtree containing all matches to \(K\) ).
1) Set \(P \leftarrow 1, J \leftarrow 0, N \leftarrow\) number of bits in \(K\).
2) Set \(Q \& P\). If \(\operatorname{LTAG}(P)=1\), go to step 6 else set \(P \& P+1\) (the left subtree of \(P\) is the next sequential node)
3) Set \(J+J+S K I P(P)\). If \(J>i\), go to step 6 ,
4) If the J+1st bit of \(K=0\), go to step 2.
5) Set \(Q<P, P \nleftarrow \operatorname{RLINK}(P)\). If \(P>Q\) go to step 3 (otherwise, \(\operatorname{RLINK}(Q)\) is a thread).
6) Compare \(K\) to the key in the text pointed to by \(\operatorname{PTR}(P)\).
*END*

\subsection*{5.3.4 How to Handle Modifications}

As has been pointed out, altering a Preorder Sequential structure requires at least one pass over the structure for each alteration, and hence, would be rather slow if we had several changes to make. A violent example is shown by the process of deleting the "A" from the structure illustrated in figure 4-2, thus getting the structure shown in figure 4-3. Practically every node had to be deleted and reinserted; if this were done with the Preorder Sequential form, then each node deletion could require a pass over the entire structure, the reinsertion would require another pass, and this would be repeated for every node we had to delete and reinsert--clearly an inefficient process.

A better solution is not to do any aitering at all. Instead, make all alterations to the full blown Right Threaded structure; then when all alterations have been made, make one pass over the Right Threaded structure to convert it to the Preorder Sequential structure. This can be easily accomplished if we have an area in main memory large enough to hold both structures. He simply traverse the large structure in preorder and as we visit the nodes, we place them sequentially into the new structure. The algorithm below will do this.

\subsection*{5.3.5 Algorithm: Convert a Right Threaded PATRICIA Tree to a Preorder} Sequential PATRICIA Structure

Assume storage space is available for both structures. We shall differentiate between the two with a single quote mark (') thus, LLINK (X) refers to a node in the Right Threaded tree, and LLINK' \((X)\) refers to a different node, occupying different memory, in the Preorder Sequential structure. The algorithm does not alter the Right Threaded structure, and uses an auxillary stack.

Input: A Right Threaded PATRICIA tree whose root is at location one.

Output: A Preorder Sequential structure.
1) Set I +0 , stack the number zero, set RLIIJK (1) \& 1. Traverse the right threaded structure in preorder and postorder. At each preorder visit to \(X\), perform step 2 and at each postorder visit (which, of course, comes later) perform step 3. After completing the traversal, exit.
2) (Preorder visit)
set \(I+I+1, S K I P^{\prime}(I) ~+\operatorname{SKIP}(X)\)
PTR' (I) \& PTR(X), stack I.
if \(\operatorname{LLINK}(X)=X\), set \(\operatorname{LTAG}^{\prime}(I)<-1\),
else set LTAG'(I) -0 .
3) (Postorder visit) pop stack into J. if RTAG(X) \(=1\), set RLINK' (J) \& value currently on top of stack, else, set RLINK'(J) \(=1+1\)

\section*{*END*}

\subsection*{5.3.6 Converting Over the Same Memory Space}

The above algorithm works well enough; unfortunately, it is not very practical. For it we had plenty of memory, we wouldn't need to use the more compact Preorder Sequenicical form to start with. Probably the right threaded PATRICIA tree will take up all available memory;
hence, if we are going to convert to Preorder Sequential form, then the conversion must be done directly over the threaded structure, which of course is then sacrificed. Unfortunately, the conversion cannot be done in one pass, for as we move a node to its sequential location we must swap it with the node formerly contained in the sequential location, and we have no idea where the father of this node is. (We must locate the father so that we can fix up the appropriate RLINK or LLINK field).

We can, however, effect the conversion in 2 passes. The first pass forms a doubly linked list of the nodes in preorder and uses the LTAG and RTAG fields to indicate whether a node has a left or right subtrce. 1 The second pass then recreates the proper value for the RLINK field, and swaps nodes when they are out of physical sequence. The rationale behind using the doubly linked structure is that it allows us to move nodes around with no difficulty.
5.3.7 Algorithm: Convert to Preorder Sequential form over the Same

The two passes of the algorithm are presented below. Both use a stack, A, and pointers, I, J, \(W, X, Y, Z, A T O P\), and \(B\). This is the only storage requirement outside of the threaded structure.

Input: A Right Threaded PATRICIA tree whose root is at location one.
Output: A Preorder Sequential PATRICIA struciure starting at location one.
\({ }^{7}\) This is a linked version of the linear representation given in Knuth (1963) p. 359, exercise 2. It is perhaps the most compact form possible, since both RLINK and LLINK are eliminated. Infortunately, except for the additional space saved, this form has ? . ti?e practical value here, for it cannot be searched efficiently. it might, be useful for storing extremely compressed structures, if auxilary bulk storage were at a premimum. Usualiy, however, this is not the case.
1) Set \(A T O P+0, B+0, X+1\).
2) If \(\operatorname{RTAG}(X)=1\) (If \(X\) has no right subtree)
go to step 3, otherwise
set ATOP \(\leftarrow\) ATOP +1 , \(A(A T O P) ~ \& ~ R L I N K(X)\) (stack the right subtree of \(X\) )
3) Set \(\operatorname{RLINK}(X) \leftarrow B, B \leftarrow X(\operatorname{RLINK}(X)\) now points to thepreorder predecessor)
4) If \(\operatorname{LLINK}(X) \neq X\) (If \(X\) has a left subtree)
set \(\operatorname{LTAG}(X)+0, X+\operatorname{LLINK}(X)\)
Go to step 2.
5) Set \(\operatorname{LTAG}(X)<1\) (Now get the preorder successor, if there is one, and point \(\operatorname{LLINK}(X)\) to it)
If ATOP \(=0\) then set \(\operatorname{LLINK}(X)<-1, \operatorname{RLINK}(1) \nleftarrow X\), exit. Otherwise set \(Z \leftarrow A(A T O P)\), ATOP \(\leftarrow A T O P-1, \operatorname{LLINK}(X) \leftarrow Z\), \(X<Z\), go to step 2.
*END*

If we apply the above algorithm to the tree of figure \(5-1\) we will get the structure shown in figure 5-6. The nodes are more easily recognized by the first few letters of the key pointed to by the PTR field, and the LLINK-RLINK fields are indicated by arrows.

We now make the second pass over the structure with the algorithm given below. It will recreate the proper RLINK field at the same time it is forming the preorder Sequential representation.

\section*{Pass 2}
1) (initialize)

Set \(I \leftarrow 1\), ATOP \(-1, A(\) ATOP \()+0\) Got to Step 3
2) (Linearize and go to next node)

Set J+LLINK(I), I \(+\mathrm{I}+1\). If I \(\mathrm{I} \geqslant \mathrm{J}\)
go to step 3 , else
set \(\operatorname{RLINK}(\operatorname{LLTNK}(I))<-J\)
\(\operatorname{LLINK}(\operatorname{RLINK}) I)) \cdots J\)
swap all fields of nodes I and J
3) If \(\operatorname{LTAG}(I) \neq 1\), set \(A T O P A T O P+1\),
\(A(A T O P)+I\) (stack the node and continue down the left subtree) go to step 2.
4) Set \(J+I\) (We are going to find the proper value for RLINK(3)
5) If \(\operatorname{RTAG}(J) \neq 1\), go to step 7.
6) (RLINK (J) is a thread)

Set \(W \leftarrow-A(A T O P)\), ATOP \(+A T O P-1\),
RLINK(J)-W, J+W (RLINK(W) might also be a thread)
if \(A T O P=0\), exit else go to step 5.
7) (RLINK(J) points to a right subtree, which is the next node to be visited) Set \(\operatorname{RLINK}(J)<I+1\), go to step 2.
*END*
Step 2 is deceptive. It "linearizes" the coubly linked list in what, at first glance, seems to be an obvious manner. Upon further examination one will find that step 2 doesnit actually interchange nodes--it garbages up the LINK fields in many cases (for example when LLINK(J)=1). However, observe that step 2 does in fact work, as is illustrated in figures 5-7 through 5-9. One should note that the only permanently garbaged up fields are LLINK and RLINK fields of nodes which are to be encountered next; and these fields are not needed anyway. Also note that the algorithm requires the tree to be "dense" in that it occupies a contiguous physical area. This will always be the case unless some deletions have been made, which causes nodes to be returned to free storage. Thus, the algorithms for finding space and freeing space, GETNODE and FREENODE, use a doubly linked list as explained in Appendix A.2.

After exiting from the second pass of algorithm 5.3.7, the structure of figure 5-6 will. have been converted to the structure of figure
\(\frac{\text { Physical }}{\text { of } \text { Nocation }}\)
LTAG,RTAG, PTR,SKIP
\(\frac{\text { TEXT }}{\underline{\text { by }} \text { (indicated }}\)


Figure 5-6. Pass 1 creates this from the structure of figure 5-1. The LLINK and RLINK fields are used to form the doubly linked list.


Figure 5-7. The special situation where \(\operatorname{LLINK}(j)=i\). The contents of the nodes are indicated by the letters \(Q, R, S\), and \(T\). Their physical locations are given by the letters \(i, j\), and \(x\). The LLINK fields enanate from the lower right side of the nodes.


Figure 5-8. The important link fields during step 2 of algorithm 5.3.7, pass 2, just before "Swap all fields of nodes \(i\) and \(j . "\) Note that node \(j\) seems to be hopelessly disoriented.


Figure 5-9. After step 2 of algorithm 5.3.7 has been completed, node i contains the proper information and LLINK(j) correctly points to node \(x\). All other link fields are irrelevant.

5-5. The RTAG and LLINK fields are no longer needed and may be used for other purposes.

\subsection*{5.4 A slightly Different Version of the Preorder Sequential Representation}

We may find it more convenient to represent LTAG and RLINK simply as a single signed LINK field, particularly if we were using signed RLINK-LLINK fields to start with. In this case, we may easily rewrite the search and traversal algorithms; however algorithm 5.3 .7 is a little more difficult to alter. The converted algorithms are given below.

\subsection*{5.4.1 Algorithm: Search Through Structure with Combined RLINK-LTAG}

This is a converted form of algorithm 5.3.3.

Input: K, number of bits in \(K\).
Output: \(P\) (a pointer to the root of a subtree containing all matches to K).
1). Set \(P \leftarrow 1, J \leftarrow 0, N\) number of bits in \(K\).
2) Set \(Q+P\). If \(\operatorname{LINK}(P)<0\), go to step 6 , else set \(P \leftarrow P+1\).
3) Set \(J<J+S K I P(P)\) if \(J>N\), go to step 6.
4) If the \(J+1\) ist bit of \(K\) is 0 , go to step 2 .
5) Set \(Q<P, P+|\operatorname{LINK}(P)|\). If \(P>^{r} 30\) to step 3 .
6) etc. (same as algorithm 2.1)
*END*
5.4.2 Algorithm: Postorder Traversal of Structure with Combined RLINK-LTAG

This is a converted form of algorithm 5.3.1.

Input: \(X\)
Output: Visit all nodes in the subtree whose root is at \(X\).
1) Set \(Y \& X\).
2) If \(\operatorname{LINK}(Y)>0\) set \(Y \leftarrow Y+1\) repeat step 2 .
3) Visit node Y.
4) Set \(Z+\operatorname{LINK}(Y)\) if \(Z<X\) exit.
5) If \(Z<Y\) set \(Y+Z\) go to step 3 , else set \(Y+Z\) go to step 2.
*END*

\subsection*{5.4.3 Algorithm: Transform Right Threaded Structure to Preorder Sequential Form with Combined RLINK - LTAG}

This is a converted form of algorithm 5.3.7. Note that we must be careful not to destroy the sign bit of the RLINK - LLINK fields while the doubly linked structure is being linearized (step 7). Also, Pass One and Pass Two have been combined into a single rather long algorithm. The RLINK field is the field which eventually becomes the LINK field, and the LLINK field is freed. Initially, assume (as before) that a negative LLINK or RLINK field indicates a thread.

Input: A Right Threaded PATRICIA tree whose root is at location 1.
(See algorithm 5.3.7)
Output: A Preorder Sequential PATRICIA structure starting at location 1.
1) (Pass one) set \(A\) ATOP \(\leftarrow 0, B \leftarrow 0, X \leftarrow 1\).
2) If \(\operatorname{RLINK}(X)<0\) go to step 3 , else set \(A T O P+A T O P+1, A(A T O P)+|\operatorname{RLINK}(X)|\).
3) Set \(\operatorname{RLINK}(X)+B * \operatorname{SIGN}(\operatorname{RLINK}(X)), B * X\).
4) If \(|\operatorname{LLINK}(X)| \neq X\), set \(X+\operatorname{LLINK}(X)\), go to step 2 .
5) If \(\operatorname{ATOP}=0\), then set \(\operatorname{LLINK}(X) \leftarrow-1, \operatorname{RLINK}(1) \leftarrow-X\), go to step 6 , else set \(Z+A(A T O P)\), ATOP \(\&\) ATOP -1 , \(\operatorname{LLINK}(X) *-Z, X+Z\), go to step 2.
6) (Pass two) Set \(I \leftarrow 1\), ATOP \(\leftarrow 1, A(A T O P) \leftarrow 0\), go to step 8 .
7) Set \(J+|\operatorname{LLINK}(I)|, I \leftarrow I+1\).

If I>J go to step 8, else set RLINK ( \(|\operatorname{LLINK}(\mathrm{I})|)+\) J*SIGN(RLINK (|LLINK(I) \(\mid)\) ), set LLINK \((|\operatorname{RLINK}(I)|) \leftarrow\) J*SIGN(LLINK(|RLINK(I)|)). Swap all fields of nodes I and J.
8) If \(\operatorname{LLINK}(I) \geq 0\) set \(\operatorname{ATOP}+\operatorname{ATOP}+1, A(A T O P)+I\), go to step 7 .
9) Set \(J \leftarrow I\).
10) If \(\operatorname{RLINK}(\mathrm{J}) \geq 0\) go to step 12.
 J - K. If ATOP \(=0\) exit, else go to step 10.
12) Set \(\operatorname{RLINK}(\mathrm{J}) *(\mathrm{I}+1) * \operatorname{SIGN}(\operatorname{LLImK}(\mathrm{~J}))\), go to step 7 . *END*

The above algorithm will transform the tree of figure 5-1 into the structure of figure 5-10 instead of the structure of figure 5-5.

\subsection*{5.5 Further Compression}

At the expense of an additional disk access when we are looking at a specific position in the text, we may eliminate the PTR field from the node and place a table of PTR fields on disk along with the text. If the table gives the PTR fields in the order corresponding to the location of the nodes, it is then a simple matter to use the address of a node to access the proper PTR field; then, the PTR field is utilized in the usual manner to pick up the proper text from the disk. Moreover, note that all the nodes of a subtree follow immediately below the root. For example, the node in location 3 (Text = FOX...) is the root of the subtree containing the nodes in locations 4,5 , and 6 .

Thus, if we have a match with several keys, and have a buffer area large enough to hold, say, N PTR fields from disk, then we may access the disk once to pick up the PTR fields, and as long as the subtree contains no more than N nodes, we only need to access the disk whenever we pick up the actual text. Hence, if we have \(N\) matches for a key, we need only access the disk \(\mathrm{N}+1\) times. (The usual method would have required \(N\) accesses).
\begin{tabular}{|c|c|c|c|c|}
\hline Plysical Node Location & SKIP & PTR & LINK & TEXT \\
\hline 1 & 0 & 101 & 0 & THE QUICK - - \\
\hline 2 & 3 & 105 & 9 & QUICK BROWN - - \\
\hline 3 & 1 & 117 & 6 & FOX JUMPED - - \\
\hline 4 & 2 & 111 & -5 & BROWN FOX - - - \\
\hline 5 & 1 & 142 & -3 & DOG \\
\hline 6 & 1 & 128 & 2 & OVER THE - - - \\
\hline 7 & 1 & 137 & 6 & LAZY DOG \\
\hline 8 & 1 & 121 & -7 & JUMPED OVER - - - \\
\hline 9 & 34 & 133 & -1 & THE LAZY - - \\
\hline
\end{tabular}

Figure 5-10. Preorder Sequential form with LTAG and RLINK combined.

\subsection*{5.6 Conclusions - Advantages of the Compressed Form}

The main points of this chapter are summarized below.
1) We have reduced the PATRICIA node in size from the following structure:

to this one:

2) We have speeded up the search process by eliminating one of the subscripts.
3) We have notsignificantly slowed down the text accessing process, - particularly when there exist multiple matches to the same key.

\subsection*{6.0 Practical Applications}

Some real and potential applications are now given which employ the algorithms presented in the previous chapters. Note that the table of contents for this dissertation, as well as the list of illustrations, list of algorithms, and index, were all prepared using PATRICIA: specifically algorithms 2.1, 2.2, 2.3, 3.1, 3.2.1, and 3.3.2. First, a deck of cards was punched where each card contained either a chapter or subchapter heading, or a figure caption, along with the page number containing the particular heading or figure. Selected words were flagged as keys; for example every chapter or subchapter number, every occurrence of the word "ALGORITHM" in algorithm subheadings, every occurrence of words such as "TREE", "NODE", "!TAG", etc. To create the list of illustrations, the key "FIGURE" was searched for. The table of contents was listed by searching for the keys "1.", "2.", etc. Then the subtrees containing the keys "FIGURE", "l.", "2.", ctc. were deleted from the structure, and a search was made for the null key, which caused all remaining keys to be listed. This forms the index, which does not duplicate chapter and subchapter headings, or the lists of figures and algorithms.

\section*{6. 1 A Hypothetical Medium - Scale System}

Let us assume that we have a file of 20,000 documents, where each document represents an abstract, a dossier, a student record, or some similar thing. Let us further assume that each document contains up to

500 words of about 10 characters each, and contains an average of 5 keys. Thus, our structure would consist of a text of \(100,000,000\) characters, (which will be stored on bulk storage devices such as IBM 2314 disks), and a PATRICIA tree of 100,000 nodes. The individual node in the PATRICIA tree would have the following bit requirements:
\begin{tabular}{lll} 
PTR field - 27 bits & (PTR \(<100,000,000\) ) \\
LLINK field - 17 bits & (LLINK \(<100,000\) ) \\
RLINK field - 17 bits & (RLINK \(<100,000\) ) \\
LTAG, RTAG - 2 bits & \\
SKIP field - 12 bits & \begin{tabular}{l} 
(assume a string of no more than \\
500 identical characters in any two \\
keys, or 4000 bits)
\end{tabular}
\end{tabular}

This amounts to 75 bits, or 10 bytes (rounded to the next byte), or one million bytes for the PATRICIA tree. The node for the Preorder Sequential form of section 5.5 would have the bit requirements given below:
LINK field - 18 bits \(\quad(\mid\) LINK \(\mid<100,000)\)
SKIP field -12 bits
which is 30 bits, or 4 bytes, or 400 K bytes for the entire Preorder Sequential structure. In addition, the PTR field would require 27 bits, or 4 bytes, or 400 K bytes of disk storage for the entire PTR table.

Thus, PATRICIA would use \((400+300+1000) K\) bytes of disk storage which amounts to \(1.7 \%\) of the entire file. Building the PATRICIA structures would require an amount of time not much greater than \(2 \cdot 100,000 \cdot x\), where \(X\) represents the average access time to the disk (see Appendix \(C\) ). Two disk accesses are required for each key inserted into the tree. If we assume that \(X=75\) milliseconds (the average access time for a 2314 disk), we note that none of the algorithms involved in the building
process (2.1, 2.2, 5.1.1, 5.4.3) require an amount of time per key that is anywhere near the time used by disk accesses. Thus, the PATRICIA structures would be built in about \(72 \cdot 2 \cdot 100000\) milliseconds \(=15,000\) seconds or about 4 1/2 hours.

The user would run in either "update" mode or "query" mode. In update mode, alterations are made to the PATRICIA tree or to the actual text. After all alterations have been completed, the new version of the Preorder Sequential form is built; this structure, along with the tree, is then written out on the disk. In query mode the user works with the Preorder Sequential structure, which could run in a multiprogranming environment since it requires so much less space than the tree.

\subsection*{6.1.1 Booiean Operations}

For most applications the user wants the capability of asking for specific combinations of keys; for example, he might want to find all keys that start with "ANT" except "ANTLER" and "ANTECEDENT." Or he might want to retrieve all documents that contain both of the keys "CHEMISTRY" and "CRYSTAL."

The construction of a particular Boolean query editor is easily accomplished for PATRICIA, since we can quickly find all the subtrees for the keys contained within a Boolean expression. For example, if we wish to eliminate "ANTLER" and "ANTECEDENT" from our query for "ANT", we simply traverse the subtree of keys that start with "ANT", but we do not visit either of the subtrees of keys starting with "ANTLER" or "ANTECEDENT", which are both contained in the larger subtree for "ANT." To find only those documents containing both of the keys "CHEMISTRY" and "CRYSTAL" we look at the PTR fields of nodes in the two subtrees, and
only keep entries which point to documents that are present in both.

\subsection*{6.2 Another Application - CALL FOR ACTION}

The text program of Appendix \(B\) was used to create a key word index to referral files for the Oklahoma branch of CALL FOR A.CTION, which is based in Oklahoma City at television station KWTV, channel 9. The data was gathered by a graduate student in Library Science at the University of Oklahoma, who prepared the cards in a rather unrestrictive format that was most comfortable for her. She tagged key words with asterisks, and indicated the end of a particular "abstract" by punching a "1"; then she continued inmediately with the next record (on the same card if she wished). At the time of this application, the program maintained all text in core, which imposed a 32767 characier restriction. Nevertheless, this was sufficient to permit the run. Two runs wire made, each consisting of about 1000 keys and 25000 characters of texi. In the process of preparing the data, a mistake in one of the texts was corrected by punching a text alteration card, which was entered after the entire structure had been built.

To list all the keys, a search was made for the null key. The entire run took about seven minutes on a \(360 / 50\), with 15 copies of the printout being produced. Some of the output is illustrated in figures 6-1 and 6-2.

\subsection*{6.3 Some Useful Dirty Tricks Involving Comparison Strings}

We can guarantee that the number of identical characters in a comparison between two keys is held to a reasonable limit. The usual way to do this is to give each document a unique terminating symbol in the form of some catalogue code number. This insures that the maximum
\begin{tabular}{|c|c|c|}
\hline &  & CARD NUMHER \\
\hline 0 & & 1 \\
\hline 107 & & 2 \\
\hline 207 & & 3 \\
\hline 30. & faghicultide－oklaho & 4 \\
\hline 403 &  & 6 \\
\hline － 07 &  & 7 \\
\hline con） &  & 8 \\
\hline 100 &  & 9 \\
\hline no． &  & 11 \\
\hline \multirow[t]{2}{*}{30）} &  & 12 \\
\hline &  & \begin{tabular}{l}
ACDROX \\
caro
\end{tabular} \\
\hline 100： &  & numatar
33 \\
\hline 1：い &  & 14 \\
\hline 1.30 &  & 16 \\
\hline 1？ &  & 17 \\
\hline 1407 &  & 10 \\
\hline 170） &  & 19 \\
\hline ［50） &  & 21 \\
\hline 170） &  & 22 \\
\hline 140） &  & 23 \\
\hline \multirow[t]{2}{*}{1ソつつ} &  & 24 \\
\hline &  & \\
\hline 3007 &  & 26 \\
\hline 2100 &  & － 27 \\
\hline 2313 &  & 2H \\
\hline 23．90 &  & \(3{ }^{3}\) \\
\hline 20n） &  & 31 \\
\hline －5，90 &  & 32 \\
\hline 2100 &  & 33 \\
\hline 210） &  & 34 \\
\hline , &  & 36 \\
\hline 2007 &  & 37 \\
\hline &  & cars \\
\hline
\end{tabular}

Figure 6－1．Some text of the Call for Action files．The text was punched in free form，with vertical bars between＂abstracts＂．For updating purposes the approximate card number is given．


Figure 6-2. Some of the output produced for Call for Action. The keys appear at the left. Every key is printed, along with the entire abstract for that key. The 4 or 5 digit number at the right gives the PTR field for the particular key; thus we can refer back to the text (figure 6-1) for updating purposes.
length of identical keys is limited to the size of the document. Of course we would have little use for identical documents, so in actuality the identical character strings would be much smaller. Thus, in the example of section 6.1, we assumed no more than 500 identical comparison characters in each document of (no more than) 5000 characters.

If this limit is exceeded, we may under certain circumstances employ a different method to lower the number of identical characters in two or more keys. The metiod requires that we insert a non-printing character somewhere in one of the identical strings. This character should be placed so that it conforms to the following criteria:
1) It is placed in an inoffensive spot, such as beiween two words.
2) It is far enough ahead of the start of any key so that it will not interfere with a query. (30 or 40 characters ahead should be sufficient.) The choice of where to put such a symbol should be made during the building phase.

This special character could also be used to alter the overall structure of the PATRICIA tree in an attempt to make it more balanced, although most practical applications involve text that either produces reasonably well-balanced structures, or does not have the sufficient 30 or 40 characters between the start of any key and the spot at which we might want to insert our special symbol. Nevertheless, it is intriguing to recall the example of figures \(4-1\) through \(4-3\), where a single well placed character drastically restructurec the tree. Unfortunately, it also caused the keys ahead of the alteration to be changed.
6.3.1 Using a Terminating Symbol to Limit the Scope of Text Alterations.

The special terminating symbol mentioned in section 6.3 also
serves to partition the text into small units, or "books" (Morrison 1968). This is very practical, for it means that a given text alteration will affect only the particular book where the alteration is being made. If we allocate on disk extra vacant space for each book, then we can change the affected area without having to push other unaffected books around. Moreover, if we can hold an entire book in a memory buffer, then only one access to the disk is required for any alteration (or group of alterations) made to a book.

\section*{A. 0 APPENDIX - OTHER ALGORITHMS}

This appendix contains algorithms which, though not specifically germaine to PATRICIA, are useful to (or are required by) some of the algorithms presented in the preceding chapters.

\section*{A. 1 Algorithm: Get a node from an available list}

This algorithm gets a PATRICIA node from an available list of nodes (Knuth 1968, p. 254). Initially the list is sequential, consisting of Mavailable nodes. Also, initially let MARKER \(=0\), TOPFREE \(=\lambda\). The algorithm will exit with pointer \(X\) pointing to the next available node. (The nodes are linked together by their LLINK fields when they are returned by A. 1.1 below.)

Input: \(\quad X\) (A pointer as yet undefined).
Output: \(X\) points to an available node.
1) If TOPFREE \(\neq \lambda\), set \(X \leqslant\) TOPFREE, TOPFREE \(\leftarrow \operatorname{LLINK(TOPFREE),~}\) exit.
2) If MARKER \(=M\), no space is available, else set MARKER \(\leftarrow\) MARKER + 1, X \& MARKER, exit.
*END*

\section*{A.1.1 Algorithm: Return a node to an available list.}

This algorithm returns a PATRICIA node to an available list. The nodes will be linked by their LLINK fields. Assume the node being released is pointed to by \(X\).

Input: \(\quad X\) (a pointer).
Output: Node X has been freed.
1) Set \(\operatorname{LLINK}(X) \leftarrow\) TOPFREE, set TOPFREE \(\leftarrow x\), exit
*END*

\section*{A. 2 Algorithms for a doubly linked available list.}

The algorithms of section \(A .1\) have been rewritten so that they utilize a doubly linked list. A list head is set up at location \(M\), the high order memory location. The list head is chosen to be there so that it won't conflict with the PATRICIA tree. The list is unlinked to start with, and is only linked up as nodes are returned to free storage. This guarantees a "dense" structure in that all nodes are members of doubly linked lists. In other words, if \(X\) equals the locacion of the highest physical node in the PATRICIA tree, then for \(1 \leq I \leq X\), node (I) is a member of either the doubly linked available list or of the tree (wnich, after the application of algorithm 5.3.7, pass 2 , is in the form of a doubly linked list.) If this were not the case, then algorithm 5.4.3 could fail in step 7 whenever node (I) contained irrelevant or random RLINK or LLINK fields.

The algorithms are presented below. Assume that MARKER initially is set to 2 (because location 1 is reserved for the root of the PATRICIA tree). Again, let \(M\) be the highest available memory location as well as the list head. Thus, initially, we set \(\operatorname{RLINK}(M)=\operatorname{LLINK}(M)=M\).

\section*{A.2.1 Algorithm: Get a Node from a Doubly Linked Available List.}

Input: \(\quad X\) (a pointer as yet undefined.
Output: \(\quad X\) points to an available node.
1) If \(\operatorname{LLINK}(M)=M\), go to step 4.
2) Set \(x \neq \operatorname{RLINK}(x)\).
3) Set \(\operatorname{LLINK}(\operatorname{RLINK}(X)) \times-M\)
\[
\operatorname{RLINK}(\operatorname{LLINK}(X))+\operatorname{RLINK}(X) \text {, exit. }
\]
4) If MARKER \(=\) M-1, overflow, else Set MARKER MARKER +1 , X MARKER, exit.
*END*

\section*{A.2.2 Algorithm: Return a Node to a Doubly Linked Available list.}

Input: \(\quad X\) (a pointer).
Output: Node \(X\) has been returned to free storage.
1) Set \(\operatorname{LLINK}(X)+M, \operatorname{RLINK}(X)+\operatorname{RLINK}(M)\)
2) Set \(\operatorname{LLINK}(\operatorname{RLINK}(M))+X\), RLINK (M) C , exit.
*END*
A. 3 Algorithm: Print a Tree.

This algorithm first finds the level of a node. The tree will be printed on its side, with the root at the left. Let \(N\) horizontal spaces exist between each level on the printout. The level, \(L\), of a node will be given by the number of entries in the sequential stack used for the traversal. Only one node will be printed on a given line. We shall have \(P\) vertical spaces between nodes.

The rules for drawing the tree are given below. At each "visit" to a node, space out P-1 lines, printing "*" and "b". Then (where required as defined later):
1) Write out the INFO field starting at line position \(L * N+1\) (assume INFO is the information we wish to see, and occupies at least \(N\) positions).
2) If the node is a right subtree, start printing a vertical line ("*") at position L * N, otherwise, start printing spaces at position L * N. (Assume the root is not a right subtree)
3) If the node has a left subtree, start printing a vertical line at position \((L+1)\) * \(N\), otherwise start printing spaces. (INFO fields take precedence over any lines; i.e., don't print an "*" if it obliterates information.)

These rules are implemented as follows:
Assume ATOP points to the top of the stack, A, which is used by the algorithm below; then, at a visit to node ( \(X\) ):
1) ATOP gives the level of node \(x\).
2) If ATOP \(\neq 0\) (If we are not looking at the root) and if, for node \((X), \operatorname{RLINK}(A(A T O P))=X\) (The nocie at the next numerically lower level points to node ( \(X\) )), then node ( \(X\) ) is a right subtree; print "*" at line position L*N.
3) If \(\operatorname{LLINK}(X) \neq \lambda\), then node \((X)\) has a left subtree. Print "*" at \((L+1) * N\).

The entire algorithm is given below:

Input: TOP, the pointer to the root.
Output: The printed represeritation of the tree.
1) Set \(X+T O P\)

ATOP \(<0\).
2) If \(X=\lambda\), go to step 4 .
3) Set ATOP \(\leftarrow A T O P+1\),

A(ATOP) \(+x\) \(X \leftarrow \operatorname{RLINK}(X)\), got to step 2.
4) If ATOP \(=0\), exit, we are done else set \(X+A(A T O P)\), ATOP \(~+A T O P-1\)
5) If \(X<0\) go to step 4
6) "visit" node \(X\)
7) Set ATOP \(\leftarrow A T O P+1, A(A T O P) \leftarrow X\), \(X+\operatorname{LLINK}(X)\), go to step 2.

Step 6 is now expanded:
(Initially, set skeleton line, \(S\), = all " b") \(^{\prime}\)
6-1) Write out \(S(1)\) through \(S\left(N^{*} A T O P\right)\), then all node information, starting at \(N * A T O P+1\).
6-2) If ATOP \(\neq 0\) and \(\operatorname{RLINK}(A(A T O P))=X\), move " \(B\) " to \(S(L * N)\) (node \(X\) is a right subtree) el se move "b" to \(S(L * N)\).
6-3) If \(\operatorname{LLINK}(X) \neq \lambda\), move "*" to \(S((L+1) * N)\) (node \(X\) has a left subtree) else move "b" to \(S((L+1) * N)\).

6-4 Write out \(S\) a total of \(P-1\) times.

\section*{B. 0 APPENDIX - THE TEST PROGRAM}

The algorithms described in chapters 2-5 have been tested by writing a PL/I program in which there is a close correspondence between PL/I code and the algorithms wherever possible. Details of the program's operation are given in section B.l, and the source listing, as well as some sample input and output, is shown in section B.2.

\section*{B. 1 The Facilities of the Program}

The test program has the capability of performing the functions listed below.
1) Read text and create a PATRICIA tree (either Right Threaded or unthreaded).
2) Display a PATRICIA tree and/or the text.
3) Search for a key and list all matches.
4) Delete a node from the tree, (or delete an entire subtree).
5) Delete or insert text.
6) Convert from a Right Threaded tree structure to Preorder sequential representation.

\section*{B.1.1 Read Text and Create a Tree.}

The first data to follow the //GO•SYSIN card is of the self explanatory form given below.
*HERE *IS *SOME SAMPLE *TEXT. *THE ASTERISKS INDICATE *THE *STARTING POINTS FOR *KEYS AND ARE NOT STORED. AT THE CONCLUSION OF THE TEXT,
*PUNCH *AN AMPERSAND IF YOU WANT *THE *STRUCTURE TO BE UNTHREADED, OR A DOLLAR SIGN IF YOU *WANT IT TO BE *THREADED. *THIS *TREE WILL be RIGHT *THREADED. THE TEXT CONTINUES FROM COLUMN 80 OF ONE CARD TO COLUMN ONE OF THE NEXT. \$

After reading the text and creating the tree, the program will allow one to perform any or all of the functions B.1.2 through B.1.6. For each of these functions, leading blanks are ignored.

\section*{B.1.2 Display the Tree and/or the Text.}

To display both the tree and the text, type a "!". To display only the text. type a "|". The tree is drawn on its side with the root at the left. LLINK fields are indicated by "L."s connecting nodes and going down the page; RLINK fields are indicated by "R"s similarly going up the page.

The rest of the node structure is illustrated below, and is in one of four possible forms.
1) If the node has no backward pointers: *JJJ*SSS*PPPP
2) If the node has a right backward pointer:
3) If the node has a left backward pointer:
```

*JJJ*SSS*PPPP
QQQ*TEXT-------

```
4) If the node has left and right backward pointers:
```

@@Q*TEXT----------
*Jju*SSS*PPPP
Q000*TEXT----------

```
where:
JJJ = physical location of the node
SSS = SKIP field
PPPP = PTR field
QQQ = value of LLINK or RLINK when one (or both) is a backward pointer
TEXT \(=\) the first 20 characters of the text pointed to by \(\operatorname{PPPP}(Q Q Q)\).

\section*{B.1.3 Search for a Key and List All its Matches.}

To do this, punch the key followed by a "?" Examples:
THE? - searches for all keys starting with THE.
THEB? - searches for all keys starting with THEX.
S?ISßP?BABAT? - searches for all kays starting with S, ISKん, and T.
SOMEBSAMPLEß? - searches for all keys starting with SOMEDSAMPLEF.

\section*{B.1.4 Delete a node from the tree.}
Punch the key, followed by a "/". Examples:
HEREBISBSOMEB/ \begin{tabular}{l} 
Deletes any key starting with \\
"HEREBISBSOME"
\end{tabular}
\begin{tabular}{ll} 
HEREB/ISB/SOMED/ & \begin{tabular}{l} 
Deletes any keys starting with \\
"HEREB" or "ISb" or "SOMEb".
\end{tabular} \\
T/ & \begin{tabular}{l} 
Deletes all keys starting with \\
S or T.
\end{tabular}
\end{tabular}

Only the FATRICIA tree is altered. The text is not affected in any way.

\section*{B.1.5 Delete or insert text.}

The different ways of accomplishing this are given below:
(XXX-YYY) Eeiete all text between (and including) positions \(X X X\) and \(Y Y Y\). \(X X X\) and \(Y Y Y\) are integers.
\begin{tabular}{ll} 
LLL - - ) & \begin{tabular}{l} 
Delete an occurrence of the characters \\
\\
"LLL - -" from the text. Note that
\end{tabular} \\
"LLL---" must be a key; moreover, only \\
one occurrence of "LLL---" as a key \\
will be found. To delete other occurrences, \\
repeat.
\end{tabular}

Some examples are given below. They all refer to the text given in B.1.l.
\begin{tabular}{ll} 
(2-9) & \begin{tabular}{l} 
This would cause the text "EREDISBS" \\
to be deleted, along with the keys \\
starting at IS and SOME. The first \\
position of the text will still start \\
at "H", but the second will be "O",
\end{tabular} \\
and the text will read "HOME SAMPLE---." \\
Also, "HOME-.-" will be the starting \\
point for a key:
\end{tabular}

\section*{B.1.6 Convert to Preorder sequential Form.}

After the user has specified all the functions that he may wish to perform for a particular text, he punches a " \(\$\) " (dollar sign). This will cause the tree to be converted to Preorder Sequential form if it was created as a Right Threaded tree. The nodes will then be traversed in postorder, and listed. The program will then accept a new text (i.e. return to B.1).

\section*{B. 2 Sample Output.}

The next few pages contain a listing of the test program, along with a sample run. Note that in the program listing, the algorithms are indicated by enclosing them in appropriately numbered "/* - - - */" cards.
```

 PATRICA: FFIC ORTIDNS (1AINI:
 f* THIS PONITRAM IS MEANT TO RE A TFST PROGRAM ONLY.
 THEREFORE MIJCH OF THE CODE IS STILL IN RATHER ROUGH FORM. */
 (STRINGFAONOEI: REGIN:
ISURSCGIOTCA'IGLI: BEGIH;
NKFYS = 200: NUCHA=S = 2000:
NKEYS = 550: INCHARS = 2.1000:
SEGIV:
DCL (RLINK(NKEYS),LLINKI.NKEYSI,SKIPS(NKEYS)) FIXED RIPN (IS,O):
NEL PTR(NKEYS) FIXF.) R!N (31,O).KEY_LIST(NKEYS)
FIXf:) BIN (15,0):
DCL P? R,पC,F(NLHACS+?50):
DCL CHAFS CH,R2(NCHARSIGEF C2 PJS (250):
SIHSTス̃(C2.1) = ':
DCL LI'NK(NKEYS\ FIXE? 3IHI\&5.0) OEF KLJfiK:
DCL CJMPGRE CHAF(1OJOI. BITS FIT(ROON)) DEF COMPARE:
NCL KEY CHAP(1000), Kr.Y_Ri,S RITIBOOO) LIEF KEY:
DGL TEMP CHAN(1):
[CL WHAT_3ITSI2OO) CHAR(1):
DCL (THRFAO_SEARCHES.TUT_SEARCHES) FIXEO EIH (31.0):
DCL SKELTON CHAR(2UJ):
OCL (D, П,J,N,R,T,L,ATI:P, X,DP, FLAG,ANTC,H,POSITICN,KK,

```

```

 CC.L. ITGPFOTF, A1QKER,M,STA:QTIGr_TEXT_PJSITI!IV,VEKT_SOACE,
    ```

```

 UCL I! FIX=0 {IM (31.0):
 NCL DCI:|T_TOFE ENTEY (FIXEO 「IN (31,0:);
    ```

```

 STARTI:NO_TEXT_PrSITISN = 1:
 PEINTPASF_WIOTH=120:
 PRIIITPACEWIITH= 132:
 N=NKEYS:
 BPEN EILE\SYSPRINTIOAFrSIZE(52)LINESITF(PPINTPAGE_WIOTH):
 OH F\NFILFISYSINI G] TO INOOATA:
 RENDIN:
LLISK(M)=M: FLINK(M) = M: MARKER = 0:
THZSAO_SEAFCHEES = O; T'IT_SEムFCHES = 0;
TOT_KEYS = 0: I= STARTINS_TEXT_OUSITION - 1; KK=1:
SUBSTR(CHARS,1.I+1)= : :
D3 wHILE (1<099909):
GET EDIT (TEMP) (A(1)):
I=I+1: IF TFYP = '*I
THEN DO:
TOT_KEYS = TOT_KEYS + 1:
KF.Y_LIST(TOT_KEYS)=.1:-
GET EDIT (TEMPIIA(LII:
END:

```


```

 GO TS PEADMOTF:
 CHECK_HJRE: IF TEMP न= '/' THEN DN: CMLL TRAVERSF: GO TO RSAOMDRE:
FNU:
IF RP<O THEN DO: CALL DELETE_ENTRY: GO TO KEADMORE;
ENIO:
UELFTE_SUBTETE:
/* \&NUTHER DERUGGING AI!
PUT EDIT ('\#\#* ITS SUGTFEE IS ORAWN AFLOW')(A):
CALL PFINT TP{E(PP):

```


```

 1* 3.3.2. 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 #/
 A_?_3_?_-173: TD=0:FT=W: K=P: 「L=O: CALL TRAVEFSE:
A_3_3_2_4: IF RLI:MK(TO) = K THFAJRLINK(TO) = -PN: ELSE
LLI|K(TO) = -PO;
A_3_3_2_5: CALL FIMN_IT: GOTJ ₹EIDNTN号:
/\# 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 3.3.2 */

```

```

TRAVFRSE: مरDC:
LCL (II.JJ) FIXFO RIV(31.0):
OCL CHAKS_JO_LEFT_C=_KEY FIXEO नIN(31.0);
DCL L!:IE C!4:Q (500):

```

```

 DC: r.JNE C:HAK (F):
 fCl CCOFLENO,H FIX[`) a:N (3l,O):
 ranELFYOTH= = 0;
    ```

```

 CIDFLEAGTH= = %
 OCL (I.J F{XE.) OIN (31.0):
 CHMFS_TG_LEFT_OF_KEY = 2O;
 CH:OS_TO_LEFP_DF_KEY= 3%:
 FOUND_DAE: ATTP=\overline{0}
FO|HIO_THFEF: IF X > 0 THFPI GO TO FCU:IN_SIX:
IF TEMP = '?' THFII OM:
||=AFS(x): 0=OT:(1!):
** 0 GIVES TEXT PJSITION */
LIVE=SURSTFIC?.C,2491 || ' ||
SUASTE(CHARS,DI:

```

```

 Ers0:
 SUBSTR(LINE.l.I+FTOELF.NGTH)= : :
 J=[t|NE X(SU3STO(LINE,2531.'1');
 SIJYSTR(C.OOE.1) = ':
 IF J }=0\mathrm{ THEN DO:
 SUBSTRICODE,LI = SUMSTA゙(LINE,253+J.COUELENGTHH:
 SURSTRILINE,252+J 1= *:ENO;
 I# SDECIAL FIQMAT FOR CALL FDF ACTION */
    ```

```

 PUT SKIP EOIT (SURSTD(1TMF.25?,56),n)
 (A,X(50).F(7)):
 II=1+C\capIJELE:NGTH DO WH!L.F (II<= ?53+J):
 JJ=I:DEX\SUBSTPILINE,II+4(1),' '1:
 PUT ENIT (SURSTRILINE.II,40+JJI)
 (5M,10, x(5?).4):
 II=II+{O+JJ; EvN;
    ```

```

 /* EM, OF SDECILL STUFF */
    ```


```

 HITT SKIP EDITISUASTRILIME.25O-LHASS_TO_LEFT_RF_KEY,
 ORINTPASEWIUTH-10),CODEI
 (A.X(1),A):
 /* rNO NF OISS=FTATICNFGFA:T */
    ```

```

 \rhoUT SKIN FOIT (SUSSTR(LINE,250-30,PMINTPACE_HIDH-10),0)
 (A,X(1),F(6)1:
    ```

```

 /# EHa !if SPECIAL STUFF #/
 f:v!;
 IF TEMP = '/' THEH Mר: rall CHECK_FO:_MNCESTOF:
    ```

```

 IF ATOP = O THE:G G'l TO FOWN_EXIT:FLSE GO TO FOURO_NIME:
 FOUNO_SIX: ATUP = ATOP + I: AI:TINP =x: \overline{x}=LLI:IK(x)
GG TC FOUM!_TH2EF:

```

```

 (G) TO FOUN)_THREE:
 CHERK_FO"_ANTESSTOR: PFOC:
 CH_Z: }\quad|{=ABS(X): CALL SESUSH:
 FPIG CHECK_FCD_ANCESTOP:
    ```

```

NONATA: PUT PAGE EDIT (TFAR: SIIT OF MATA')IAI;
STOP:
DELETE_ENTRY: pROCEDIJRE :

```

```

 /* 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 */
    ```

```

 HY THE SFIECH ALCDE!THM */
 FIND_IT: ENTRY:
 FINO_NOOC_3:
 IF LLINK(TD)*rLINK(TNI>O|TD=PC THEN DE:
 TT=TO; GO TS F_N_4: FPR:
 FINO_NOCFS_4: KEY = SUBSTRICHAPS.OTR(TI),10.01: N=8000:
 F_N_4:
    ```
```

 /# 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 #/
    ```

```

 /* ANJTHER DEBUGGING All,
 PiJT SkIP eligT ('Deleting the key',
 SIJSTR(CHARS,PTRI治(PSI),j0),'---- PO,TD,TT,FT ARE',
 PD,TO.TY,FTI(A,A,A,(4)F(5)) ;
    ```


OSLETE_1: PTP(DD)=PTR(TD):
DFLETE_2: IF ARS(LLItKK(TI)=TO THFM LLINK(TT)=-PD: ELSE
                                RLIMK(TT)=-PD:

                        ELSE W=LLI:NK(TO):
DミLETE_4:
        If \(W^{\prime}>0\) TMEN SKIPS(W) \(=\) SKIPS(W)
                + SKIPS(TD):
DELSTS_5: IF LLINK(FT) = TD THEN LLINK(FT)=W:
                            ELSE RLINK(FT) = A:
                            Call FZE = リJDE(TD):


            END DELETE_EATAY:
DELETE_TEXT: PFRE:
                            JCL (A(500), CTGD, SSKIP, X) FIXEO RIN (31, O):
                                THT_MEYS = 0;

    1* 4.1.2 4.1.? 4.1.2 4.1.? 4.1.2 4.1.? 4.1.2 4.1.2 \#/
N_1: \(\quad S 5 K I P=0 ; A T D P=0 ; \quad x=1\);



        1* *1
        Call aElete_text_ti:

D_4:

0_6: \(\quad x=4 e s(x):\)



                                    */
                                CALL OELETE_TEXT_TZ: SSKIP=SSKIP-SKIPS(XI:

        PUT LIET (' --- TFEF A「TEQ 「थOD?ワミ々 VISIT --I):

\section*{CALL PRIIT＿TEEE（lR）：}


325
326
327
32 月
D_7:
                    G,O TO D_4:
    if \(x=1\) THFN GO TD G_EX! \({ }^{\text {T }}\)
    IF KLI!K \((x)<0\) THEN GO TU 11_4i

DELETE_TEXT_TI: pRUC;
    Tl_1: IF PTR(X) \(\quad\) = END THEN DO:
    PTR(X) = PTR(X)-SHIFT: GG TU EXIT_TL: ENC;
TL_2: IF PYR(X) \(\quad=\) START THEN PTR(X) \(=0\) :
EXIT_TI: ED TFLETE_TEXT_TI:
DELETE_TEXT_T2: PFOG:
    DCL FINISHED FIXED BIN (31.0):
        FINISHEO \(=0\);
    TE_1: IF LLINK(X) <0 THEN DU: PI)=43S(LLINK (X)I: GJTO T2_4:ENO:
    T2-2: IF FI'ISHED \(=1\) THEN GO TI T2_EXIT: FINISHEN = 1:

    - go torz_exiti
    T2.4:
    T2_5: \(\quad\) IF PTR(P) = OTHKNOT:
    1F OTOIPNI >= STRET THEN RO TO TZ_Z:



        KEY_LISTITOT_KI:YS) \(=\) PTQ(PD):
        CALL FINS_IT:
    Th_EXIT: FNS DELETE_TEXT_T2:
        D_EXIT:
        \% PEINSERT THE mOIFIED KEys */
    KK=0; CALL INSEOT_KEY:
    \(1 \% 4.1 .24 .1 .2 \quad 4.1 .24 .1 .24 .1 .24 .1 .24 .1 .24 .1 .2 \quad\) \#

    Eリn DELETE_TEXT:
SEARCH: Dã̃:
            DCL LL FIXED PIV (31.0) STATIC:
                            IF FL4S, \(=0\) THEN
                            WHAT..RITS = '-';

วvミ: \(\quad \dot{p}=1: J=0\) :
    TN: \(\quad\) IF \(P=\Delta \Delta\) THEN \(A B=0\);
    \(W=0: D=P: P P=L L I S K(P): D=G R S(P P) ;\)
                            IF LLINK(O) < 0 TIFEN TOO TO SIX:
    three:
        TOT_SEARCHES = TOT_SEARCHES + 1:
```

393
396
398
349
401
40?
403
\&07
4 0 7

```
    J=J + SKIPS(P):IF J>NTHENGOTOSIX:
```

 J=J + SKIPS(P):IF J>NTHENGOTOSIX:
 FOUR:
 FOUR:
 IF FLAG }=0\mathrm{ THEN IF J<20) THEN
 IF FLAG }=0\mathrm{ THEN IF J<20) THEN
 NHAT_3ITS(J) = SUBSTK(KEY_RITS,J,1):
 NHAT_3ITS(J) = SUBSTK(KEY_RITS,J,1):
 IF SUBSTF(KEY_BITS.J.l) = '0'g THEN f%O TO THO:
 IF SUBSTF(KEY_BITS.J.l) = '0'g THEN f%O TO THO:
 FIVE:
 FIVE:
 IF P = AA THEN AA = 0;
 IF P = AA THEN AA = 0;
 N=0: Q=P: PP=RLINK(P); P=\BS(PP):
 N=0: Q=P: PP=RLINK(P); P=\BS(PP):
 IF KLINK(Q) < O THEN 6O TU SIX:
 IF KLINK(Q) < O THEN 6O TU SIX:
 rO TO THREE:
 rO TO THREE:
 SIX: IF FLAG = I THEN DG:
SIX: IF FLAG = I THEN DG:
PUT EDIT ((WHAT_ IITSIII) DU II=I TO J WHILE (II<193)|)
PUT EDIT ((WHAT_ IITSIII) DU II=I TO J WHILE (II<193)|)
(SKIP(2). (1a)(X(1),{\&){(1))):
(SKIP(2). (1a)(X(1),{\&){(1))):
ENO:
ENO:
CO:APATS = SURSTR(THARS,PTR(P),N/8+2):
CO:APATS = SURSTR(THARS,PTR(P),N/8+2):
MATCH = 1:
MATCH = 1:
L=N:
L=N:
O) LL=0 TO (fl-1)/8;
O) LL=0 TO (fl-1)/8;
IF SURSTR(COMPAPS,LL+1,1) 工= SIJRSTFIKEY,LL+1,1)
IF SURSTR(COMPAPS,LL+1,1) 工= SIJRSTFIKEY,LL+1,1)
THEN
THEN
D.) LI=iL*\&. TO N-1:
D.) LI=iL*\&. TO N-1:
IF SU3STR(KEY_RITS.LL+1,1) T= SURSTE(PITS,LL+1,1)
IF SU3STR(KEY_RITS.LL+1,1) T= SURSTE(PITS,LL+1,1)
THEN \capO : MATCH = 0: L=LL: GU TJJ SETL: ETiO:
THEN \capO : MATCH = 0: L=LL: GU TJJ SETL: ETiO:
ENO: END:

```
                    ENO: END:
```



```
    SETI:
```

 SETI:
 /* 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2 1 2.1 2.1 */
    ```
    /* 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2 1 2.1 2.1 */
```



```
        FETURN:
```

 FETURN:
 FND SEARCH:
 FND SEARCH:
 INSERT_KEY: PE!UC:
 INSERT_KEY: PE!UC:
 OCL (TD,Y.T) FIXED HIN (31,0);
 OCL (TD,Y.T) FIXED HIN (31,0);
 KK=KK+1: IF KK\ TIJT_KFYS THEN GO TR ALLBUILT:
 KK=KK+1: IF KK\ TIJT_KFYS THEN GO TR ALLBUILT:
 r.jSITIJP! = KFY_LTsT(rk):
 r.jSITIJP! = KFY_LTsT(rk):
 ##)
 ##)
 /* 2.2 2.7 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 */
 /* 2.2 2.7 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 */
 S1: KEY = SUBJTRITHAZS.PNSITIC:J.10001:
 S1: KEY = SUBJTRITHAZS.PNSITIC:J.10001:
 S2: CALL GETN?OF(P):
 S2: CALL GETN?OF(P):
 S3: PTK(F)= POSITIOV: il=(I-P\SITIUN+I)&&:
 S3: PTK(F)= POSITIOV: il=(I-P\SITIUN+I)&&:
 IF H>RJOO THEN: N=8JOO;
 IF H>RJOO THEN: N=8JOO;
 CALL SEARCH:
 CALL SEARCH:
 IF L < J THEN DO; N = L.; CALL SF*RTH: ENO;
 IF L < J THEN DO; N = L.; CALL SF*RTH: ENO;
 IF ABS(LLINK(O)) = P THFNS OU;
 IF ABS(LLINK(O)) = P THFNS OU;
 T = LLINK(Q): LL!NK(C) = P: END:
 T = LLINK(Q): LL!NK(C) = P: END:
 FLSE OO: T = PLINK(D): FLINK(Q) = R: END;
 FLSE OO: T = PLINK(D): FLINK(Q) = R: END;
 IF THREAD = I THEN TO TO ST_THREAD:
 IF THREAD = I THEN TO TO ST_THREAD:
 IF SUBSTAIKEY_RITS,L+l,I; = '0'B THENN DIJ:
    ```
    IF SUBSTAIKEY_RITS,L+l,I; = '0'B THENN DIJ:
```



```
TEXT_\capUT: PFOC (LINK):
```

TEXT_\capUT: PFOC (LINK):
ICL LINK FlXEC HI:I(15.0):
ICL LINK FlXEC HI:I(15.0):
IF LINK < O THEN DO:J=PTR(AĖS(LIHK)):

```
    IF LINK < O THEN DO:J=PTR(AĖS(LIHK)):
```



```
        (A,A,F(3),A,G,A):
```

 (A,A,F(3),A,G,A):
 ENO:
 ENO:
 FN\cap TrXT..DUT:
    ```
        FN\cap TrXT..DUT:
```



```
                        ELSF
```

 ELSF
 SUMSTE(SKELTOM.ATOMEMG?:1?_3OACR:1)= ':
 SUMSTE(SKELTOM.ATOMEMG?:1?_3OACR:1)= ':
 PRI'VT_G3: IF LLI:NK(x)つく D THE:N
 PRI'VT_G3: IF LLI:NK(x)つく D THE:N
 SuMS10(SRELTIN.(ITCO+1)*H;4!2_S:NACE,I)= 'L':
 SuMS10(SRELTIN.(ITCO+1)*H;4!2_S:NACE,I)= 'L':
 ELSE
    ```
                        ELSE
```



```
    M11=1 TH VERT_SHACr: PIT SKIP EOIT
```

 M11=1 TH VERT_SHACr: PIT SKIP EOIT
 (SLIgST<(SKELTOM,L.P)IVTOAB:_NIOTH))(A):
 (SLIgST<(SKELTOM,L.P)IVTOAB:_NIOTH))(A):
 EN:)
 EN:)
 PPIIIT_7: ATHO=ATOP+I: A(ATOP) = - X; X=LLIINK(X):GO TO PRINT_2:
 PPIIIT_7: ATHO=ATOP+I: A(ATOP) = - X; X=LLIINK(X):GO TO PRINT_2:
 PRINT_EXIT:
    ```
        PRINT_EXIT:
```



```
                            PUT SKIPLISTI'. . . . . . . . . . . . . . . . . . ')! 
```

 PUT SKIPLISTI'. ')!
 END PRINT TREE:
 END PRINT TREE:
 ENT PATRICA:
    ```
                            ENT PATRICA:
```


$\xlongequal{3}$

(100\%THIS SEHTENCF WILL STAET A MEL KEY.) T ? (1n1-103)T?

STATISTICS F3P PUILDING TREC
HUMRER OF EXTFA ATOE ACCESSES RFGUIOEO TO THREAD- O
N:JMAER JF SEAECHES= 167
NUMAEQ DF KEYS in the treem 32

 900 SiAEVVH -MCM MCOM UIVS

 gicu Sadeun a Min mida - ujos

 Lotata sibitri:n .. Mim riva mun Sojajivij $2 \rightarrow 4$ al,

 : jens;

 NaM1 1 a MLM PCS P-JM MLG MLA

 gun an

 "Oivs eln sorintr rijat "rion 4 - Uivs 11 lastei sfi ojsbeders 1


```
****searching fir all keys starting hith
```



```
HEN SAID. MATK WOW BJH WTH.N THEN JOHN'S OOG SAID. "AS SEWTENCE WILL START A NEW KEYO OW HOH ROY WDH ROW WOW.N MARTHAOS
```



```
**** INSERTING aftcr pISSITION 200 THE TEXT ***Al
**** InSERTING aftch posititin 200 the text ***g
**** IVSERTIVG afyek positiOid 200 tי'E TEXt ***T
***EAHCHING FJQ ILL KEYS STARTING WITH NO,TA
```



```
#***.iTLETING tHE TEXT GIJPPQISEN US WHEN IT *** F&CM POSITION 175
the Complete text is listed aElow
```



```
****SFIFCHIIG FIN ALL KEYS STARTING WITH GON
```


NY DJG CHECKEQS SAID." BiOH WJW." H
****DEletjag all keys starting hith bom

```
1* 0=168
* ** 19***UP AND 5AID. mBOW hO----
* 19* 3* 232
    L
    ** 20***SAID.TBAT mBON WOM R----
    * 29* 35* 175
                L
                *2 23***SAID, "AS SENTEPICE H-=--
                -23* 26* 93
                    L/ 93
                                    L
                                    ** 9**#SA10, NRON WOW BOH H-*-
                                    * 2%* 64* 239
                                    l
                                    * 144**S410, mPOW WON BON H----
                                    * 31*128* 307
                                    * 31=**SA10, "BOH hlW BOH N----
4* %** 18
** 1***PAKROT SAID,TASZ mP\ー--
    * 12* 2* E2
    * 1DR**JOHN'S DOG SAID. "RS---*
    R
2* 1* 227
    l
    * G***! T-1E-i T,LVE UN AINJ 5----
        * 6* 1*220
            L
                    2***GAVE UD AHO SA:D,"B----
                    1* % 
```


***OSEADCHINT FOR ALL KEVS STAOCIMR WITH

 hy Nilg WIW ATIW WCH RUN WIIW. 1 IHItI
 SAlfi. metimejw ald wir. " Pury!

P- in mimen 1 thir roave in aion - "njer inth." HLSiYes firg riort

 RกW MO RUN WJW." I THEN roAvs

 $\therefore \therefore \boldsymbol{A} \boldsymbol{O}$

C. 0 APPENDIX - TIMING CONSIDERATIONS

This appendix gives estimates of execution times for most of the important PATRICIA algorithms. To obtain these estimates several algorithms have been analyzed in terms of $360 / 50$ operations. The estimates are close, but are not to be considered exact, since some of the 360 operations are variable, depending upon the operands involved. If the user wishes to convert to another machine, consider the average instruction execution time for the $360 / 50$ to be 5 microseconds, and the instructions to be ADD, SHIFT, AND, COMPARE, LOAD, STORE, and BRAMCH, which are the predominant operations of all PATRICIA algorithnis.

C. 1 Timing for the Search Loop of Algorithm 2.1.

The 360/50 instructions required for each bit comparison cycle, along with their times, are given in figure $\mathrm{C}-1$. The comparison cycle includes steps 2-5 of the algorithm. Step 1 and Step 6 are each executed only once. A search is found to take 63 mịcroseconds on a $360 / 50$. Thus, for example, in a relatively balanced tree of 100,000 nodes, we would be able to access any node in less than 1 millisecond.

C. 2 Timing for a Traversal Iteration

The timing for a trâversal loop of a postorder traversal is given in figure C-2, which shows the $360 / 50$ machine code necessary to effect an iteration using algorithm 2.3. The main loop of the algorithm was used, except for steps which are concerned with backward pointers to
the structure and the actual "visit." The time in figure C-2 of 36 microseconds means that we could traverse a PATRICIA tree of 100,000 nodes in 3.6 seconds on a $360 / 50$.

C. 3 Timing for Other Algorithms

Using the above technique, we may obtain time estimates for other important PATRICIA algorith:is. A table of algorithm execution times (including an estimate of the time required on a $360 / 50$ with a 2314 disk) is given in figure C-3.

| - STEP IN ALGORITHM 2.1 | $\begin{aligned} & 360 \\ & \text { OPERATION } \\ & \hline \end{aligned}$ | 360/50 TIME
 MICROSECONDS | COMMENTS |
| :---: | :---: | :---: | :---: |
| 3 | L | | fetch SKIP field |
| 3 | AR | 3 | accumulate sum of SKIP fields |
| 3 | C | 4 | compare to see if we are beyond the |
| 3 | BC | 4 | number of bits in the key |
| 4 | LR | 3 | save accumulated SKIP (we need it twice) |
| 4 | SRDL | 5 | divide by 8 to get byte position |
| 4 | N | 6 | mask out all but remainder, which we use as an index (this is the second use of the accumulated SKIP) |
| 4 | L | 4 | get proper word of key |
| 4 | N | 6 | mask out all but proper bit (the mask is determined by the index we obtained above) |
| 4 | C | 4 | compare with a '1' |
| 4 | BC | 4 | branch to right or left |
| 2,5 | L | 4 | get RLINK or LLINK |
| 2,5 | C | 4 | compare sign to see if we are at the |
| 2,5 | BC | 4 | end of the search |
| 2,5 | B | 4 | loop |
| | | $=63$ | |

Figure C-1. Timing for the loop in algorithm 2.1. On a $360 / 50$, a comparison can be made every 63 microseconds.

| $\begin{aligned} & \text { STEP IN } \\ & \text { ALGORITHM } 2.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 360 \\ & \text { OPERATION } \end{aligned}$ | 360/50 TIME
 MICROSECONDS | COMMENTS |
| :---: | :---: | :---: | :---: |
| 5 | A | 4 | ATOP + ATOP + 1 |
| 5 | ST | 4 | put X on the stack |
| 2 | C | 4 | check to see if |
| 2 | BC | 4 | we are at a terminal node |
| 4 | BC | 4 | see if stack is empty |
| 6 | L | 4 | unstack X |
| 6 | S | 4 | ATOP + ATOP - 1 |
| 5,6 | L | 4 | $X \leftarrow \operatorname{LLINK}(X)$ or $X * \operatorname{RLINK}(X)$ |
| 5,6 | B | 4 | 100p |
| | | 36 | |

Figure C-2. Timing for a traversal loop using algorithm 2.3. Omitting the visit, a node can be traversed every 36 microseconds.

| Algorithm | Function | Symbol | Estimated Formula for Time | Estimated Actual Time (seconds) for $360 / 50$, 2314 disk, 100,000 keys |
| :---: | :---: | :---: | :---: | :---: |
| 2.1 | Search (one iteration) | L | | . 000063 |
| 2.3 | Traversal (one iteration) | T | | . 000036 |
| 2.3 | Traverse tree (no visits) | | PT | 3.6 |
| | Disk Access Time | X | | . 075 |
| 2.1 | Search for key, do not Retrieve | | $(n-1) L$ | . 001 |
| 2.1 | Search for, Retrieve a key | | $X+(n-1) L$ | . 076 |
| 2.2 | Build PATRICIA tree | | $\frac{n}{2} \mathrm{pL+2px}$. | 15,000 |
| 3.1 | Delete a llode | D3 | | .00005 |
| 3.2 .1 | Find PD, TD, etc. | F3 | $T \frac{n-2}{2}+(n-i) L$ | . 001 |
| | Total for a node deletion | | F3+D3 | . 001 |
| 3.3.2 | Prepare for Subtree Deletion | A3 | $\frac{\text { Ikeys }}{2} T+(n-1) L$ | .0013 average (5-50 keys) |
| | Total for deleting a subtree of keys | | $A 3+D 3$ | . 002 |
| 4.1 .2 | One iteration only | 14 | . | . 0002 ave |
| 4.1 .3 | An entire text alteration operation | | p $14+\alpha X$
 (a depends upon "book" size and can be made equal to 1. See section 6.3.1) | 20 |
| 5.4 .3 | One iteration | A5 | | . 0003 |
| 5.4 .3 | Convert entire structure to preorder sequential | | A5p | 30 |

Figure C-3. Timing of mosi PATRICIA algorithms. Assume $p=2^{n}-1$ keys in the tree.

D. 0 APPENDIX - THEOREMS AND PROOFS

This appendix presents some useful theorems and their proofs.

Given: 1) $\alpha, \beta, \gamma, \delta$, are PATRICIA keys.
2) T is a PATRICIA tree.
3) All the keys $\alpha, \beta, \gamma, \delta$, are unique.

Let $\quad \phi(\alpha, \delta)$ express the number of identical leading bits in the two keys δ and α.

Theorem For any $\alpha \notin T$, algorithm 2.1 finds a unique $\gamma \in T$ such that $\phi(\alpha, \gamma) \geq \phi(\alpha, \beta)$ for all $R \varepsilon T$

Proof (induction)

1) obviously true for a tree of one node
2) assume true for an arbitrary tree we will show that if α is inserted, the property is preserved.
let $B_{1}, B_{2}, B_{3} \ldots B_{n}$ be the bit positions looked at by algorithm 2.1 in our search path to $\gamma ; N_{B_{1}}, N_{B_{2}}, \ldots N_{B_{n}}$ are the nodes encountered.
a) (contradiction)

Assume \exists a β s.t. $\phi(\alpha, \beta)>\phi(\alpha, \gamma)$
$\Rightarrow \exists$ a search path, $N_{B_{1}}, N_{B_{2}}, \ldots N_{B_{i}}, N_{Q_{1}}, N_{Q_{2}}, \ldots N_{Q_{n}}$
leading to β which first differs from the path to
γ in node $N_{Q_{1}} \rightarrow$ bit comparison at B_{i}

$$
\begin{aligned}
& \text { got us to } N_{Q_{i}} \text { instead of } N_{B_{i+1}} \Rightarrow B_{i} \text { th bit } \\
& \text { of } \beta \neq B_{i} \text { th bit of } \gamma . \\
& \quad \text { If } B_{i}<\phi(\alpha, \gamma) \\
& \Rightarrow \quad \phi(\alpha, \beta) \leq B_{i}<\phi(\alpha, \gamma) \quad \text { which contradicts } \\
& \text { assumption a) }
\end{aligned}
$$

Now, note that algorithms 2.1 and 2.2, when creating the search path for a new key, insert the comparison at the first bit where this key differs from all others on the search path. But our inductive assumption states that this is the longest sequence of identical bits for the two keys.

We thus have:
$\delta_{1}=\delta_{2}$ through the first B_{i} bits, for all keys
δ_{1}, δ_{2} in the subtree at $N_{\mathbf{P}_{\mathbf{i}}}$. Thus, if $\phi(\alpha, \gamma) \leq \mathrm{B}_{\boldsymbol{i}}$ then $\phi(\alpha, \gamma)=$ $\phi(\alpha, \beta)$, which contradicts assumption a).

Corollary For a given node, $N_{B_{i}}$, the first B_{i} bits of all keys in the subtree at $N_{B_{i}}$ are identical.
Corollary For a given set of unique PATRICIA keys there exists one and only one PATRICIA tree.

Proof The comparisons that separate all keys are at the longest leading identical bit strings. Since all keys are unique, only one structure of comparisons exists.

Corollary Algorithms 2.1 and 2.2 build the PATRICIA tree in such a way that a postorder traversal presents the keys in ascending numeric order.

Proof

Theorem In any PATRICIA subtree, there exists exactly one backward pointer to a node outside the subtree. (Assume the header node is not contained in any subtree)

Proof . (induction)
For a tree of one node, R, (along with header node, H) algorithm 2.2 constructs the link fields such that one pointer of R points to R, the other points to H.

Assume theorem is true for a.PATRICIA tree of n nodes. Use algorithm 2.2 to insert a new node, R. Call R's father"Q"and R's son (if any)"P". Then step 5 will set one of R's link fields equal to R (as a backward pointer). Following this:
a) If R is a terminal node.

The other link is pointed back to the node wiere the replaced link of Q pointed.

This preserves the structure specificed by
the theoren for subtrees at Q and R. No othe: subtrees are affected.
b) If R is a non-terminal node.

The other link is pointed to P, which was the successor of Q. Again, the structure is preserved.

Corollary All backward pointers in any PATRICIA subtree, except for the backward pointer referred to above, are contained within the subtree.

Corollary The single backward pointer that points outside the subtree points to an ancestor of the subtree.

Theorem Algorithm 3.1 properly deletes a PTR field and a bit comparison.

Proof Firsi define " \rightarrow " as "is the father of," and " $\rightarrow \rightarrow$ " as "is the ancestor of (but not the father of)" Then, enumerate all the node structures and their corresponding types in terms of the notation introduced section 3.0.

| PD | $\rightarrow+$ | TD | \rightarrow, | TT | - | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PD | $\rightarrow+$ | TD | \rightarrow | TT | - | |
| PD | $\rightarrow+$ | TD | $=$ | TT | - | |
| PD | \rightarrow | TD | $\rightarrow+$ | TT | - | |
| PD | \rightarrow | TD | \rightarrow | TT | - | |
| PD | \rightarrow | TD | $=$ | TT | - | |
| PD | = | TD | \rightarrow | TT | - | cannot |
| PD | = | TD | \rightarrow | TT | - | cannot |
| PD | $=$ | TD | $=$ | TT | - | $\{2$ |

No other relationships between $P D, T D$, and TT exist (e.g. TD \rightarrow PD) due to their definitions. Also, note that FT is defined by the position of TT. Now, simply run each configuration through algorithm 3.1.

Corollary Algorithm 3.1 preserves a Right Threaded PATRICIA tree.

E.0. APPENDIX - GLOSSARY

The terms described in Section 1.1 are reproduced here for convenience.

AVAILABLE LIST--A list of empty nodes. (A process which requires space for a new node can always get one by picking the top or bottom node from an available list.)

AVAIL LIST--Identical to an available list.

ANCESTOR--Within a tree, an ancestor of node X is on a path between node X and the root of the tree.

BACKIIARD POINTER--A link field in a PATRICIA node, x, ihat points to X or to some ancestor of X.

BIMARY TREE--A data structure in which each node has no more than two nodes hanging from it. These two nodes are commonly called "ROOTS of LEFT and RIGHT SUBTREES."

EBCDIC--A specific internal code where 8 bits represent one character within the computer. For example, the EBCDIC value of of "A" is binary "11000001."

ENDORDER TRAVERSAL--A method of looking at all the nodes of a binary tree in which we first look at all the nodes in the left subtree of a node, then all the nodes in the right subtree of the node, and finally, the node itself. Each node is "looked at" exactly once, although the algorithm for effecting an endorder traversal may actually pass by the node more than once.

FIELD--The smallest entity of information contained in a node. A field may be one or more binary bits in size.

KEY-A contiguous string of characters constituting a word or phrase that we wish to search for and, hence, use in some comparison scheme.

LAMBDA (" λ ")--See NULL POINTER.
LEFT LINK--In a binary tree, the link field pointing to the left subtree of the node.

LINK--The specific field of a node that points to the next node in a list. (Actually, a given node can point to more than one node: for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at random, but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more fields. (An example--a node could be likened to a single library catalogue card, and a field to an individual entry on the card, such as the author's name.)

NULL POINTER--(Sr $\quad * A^{\prime}$ or " λ "). A specifically valued link field that field points to no o ${ }^{+}$. ue called " λ ". (frequently zero). We sometimes

POINTER-- Has pointer is not conti

POSTORDER TRF. binary tree in which of a given node; then nen in the right subtree of

PREORDER TRAVERSAL--Still cillulier method of looking at all the nodes in a binary tree, in which we first look at the node, then the nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field oninting to the left subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right links of terminal nodes point to the next node that would be visited if we were traversing the tree in postcrder.
hang. (Thus, computer trees are usually upsidedown.)
SUBTREE--A branch of a tree. Pick any node in a tree--it is the root of a subtree.

TERMINAL NODE--A node in a binary tree that has no left and/or right subtree. In a PATRICIA tree, the affected right or left link then becomes a backward pointer.

THREAD--The same as a backward pointer.
VISIT--A term for what we do when we "look at" a node during a preorder, postorder, or endorder traversal. Usually a visit involves performing an algorithm, or printing out information.

The terms deccribed in Section 1.1 are reproduced here for convenience.

AVAILABL! LIST--A list of empty nodes. (A process which requires space for a new node can always get one by picking the top or bottom node fro: an available list.)

AVAIL LIST--Identical to an available list.

ANCESTO?--Within a tree, an ancestor of node X is on a path between node X and the root of the trec.
 to X or to som? ancestor of Y

BINARY TIEE--A dita structure in which each node has no more than two nodes lansing frum it. These two nodes are commonly called "ROOTS of LEFT ind RIGHi SUBTiETS.

EBCDIC--f. specific internal code where 8 bits represent one character within the computer. For example, the [BCDIC value of of "A" is binar: "11000001."

ENDORDER TRAVERSAL--A method of looking at all the nodes of a binary tree in which we first look at all the nodes in the left subtree of a node, then all the nodes in the right subtree of the node, and finally, the nore itself. Each node is "looked at" exactly once, although the algo:ithm for efferting an endorder traversal may actually pass by the nod:: more than once.

FIELD--r:e smallest entity of information contained in a node. A field may be one or morn binar'; bits in size.

KEY--A r niticusur string of characters constituting a word or phrase that we rish to search for and, hence, use in some comparison scheme.

LAMBDA (" λ ")--See NULL POIITER.
LEFT LI: subtree of the rode.

LINK--The specific field of a node that points to the next node in a• list. (Actually, a given node can point to more than one node: for example, a node in a binary tree can point to two other nodes.)

LIST--A series of nodes which are physically stored at randon, but which have an order that is specified by the LINK fields.

NODE--An entity of information. It will consist of one or more fields. (An example--a node could be likened to a single library catalogue card, and a field to an individual entry on the card, such as the author's name.)

NULL POINTER--(Sometimes called "LAMBDA" or " λ "). A specifically valued link field that indicates the last node in a list. When any link field points to no other node, it is given a value called " λ ". (frequently zero). We sometimes say that this link "points to λ. "

POINTER--Has the same function as a link, except sometimes a pointer is not contained in any rode.

POSTORDER TRAVERSAL--A method of looking at all the nodes of a binary tree in which we first look at all the nodes in the left subtree of a given node; then we look at the node; then we look at all the nodes in the right subtree of the node.

PREORDER TRAVERSAL--Still another method of looking at all the nodes in a binary tree, in which we first look at the node, then the nodes in its left subtree, and finally the nodes in its right subtree.

RIGHT LINK--In a binary tree, the link field pointing to the left subtree of the node.

RIGHT THREADED BINARY TREE--A binary tree in which the right links of terminal nodes point to tha next node that would be visited if we were traversing the tree in postorder.

ROOT--In a tree, the node from which all other nodes hang. (Thus, computer trees are usually upsidedown.)

SUBTREE--A branch of a tree. Pick any node in a tree--it is the root of a subtree.

TERMINAL NODE--A node in a binary tree that has no left and/or right subtree. In a PATRICIA tree, the affected right or left link then becomes a backward pointer.

THREAD--The same as a backward pointer.
VISIT--A term for what we do when we "look at" a node during a preorder, postorder, or endorder traversdl. Usually a visit involves performing an algorithm, or priniing out information.

BIBLIOGRAPHY

Fredkin, E. (1960) "Trie Memory." Comm ACM 3,9 (September) 490-99.
Knuth, D. E. (1973) The Art of Computer Programming, Vol. 3 Sorting and Searching. Addison-WesTey, Reading, Mass.

Knuth, D. E. (1968) The Art of Computer Programming, Vol. 1 Fundamental Algorithms.

Martin, W. A. (1971) "Sorting." Computer Surveys. 3,4 (December) 147-174.

Morrison, D. R. (1968) "PATRICIA - Practical Algorithm to Retrieve Information Coded in Alphanumeric." JACM 15, 4 (October) 514-534.

Salton, G. (1968) Automatic Information Organization and Retrieval McGraw - Hill, New York.

```
*..OStANGMINU FOH ALL KEYS STAMTING IITM
    -IGUAE <-3 tHE ACTUAL HEPAESENTATION OF THE PATHICIA THEE OF FIGUNE 2-I
```



```
    auvantaiges uF ImE commaESsed form
    2.1.1 commetrs un
IGUNF C-I TIMIMiOFON TME LOOH IN
    Iiming fon imitenambh LOON OF
```



```
    t fNEE UF Fll,O-E S-I AS quILI OY
    rIGuDF h-s It at u\E
IGING fun a inavareSal LOMm usi.u
    Fllowr b-4 AFT:N SIENく UF
```



```
            A." an+atilx - nimer
```



```
getar C-S Tlmlidg or missl matmilia
    3.1 STm& CHaNACtENISTICS lit PHE
Une <- A cafricia fict gullimy
            4.1 . CuvCluDluNS -
                                    S!1)os-
                                    7.0
                    M-0
                    1.0
                    A.0
                    M.0"
                    M.L Al,IJTEH
    ALFOMITMM: G.OL NHACTICAL
    ALFOWITMM: GET A NIDEN FTUM AN
    ALGORITMM: AFTUNA " NOUR. IO AN
    alrunitrage io a dugslr linaeu
Gt I a Nour fNOM a Duuhly lareu
```



```
                    2.4 NUM ELL
                    FIguml b-a,
            FIGHLEE l-く 4 SUNTEU
```



```
        G.Z ANOTAFH ADNLICATIONS
        SumE OF TME OUTPUT NNUJuCFOS FUH
        flgure n-l some feaf tit int
            Flillue Bull SHECIAL
F THEE UF flOUAE 2-1 PrE THEE I
                1.3.1 sume
gundial fummaginglias anu nliah
gmifar fmavrmal of ginuctung milm
m: qEamCH THatur,M stmucturt: mitm
al'umitmma.
AloumITMm <.I
loumitmm 2.1
```



```
Acounitrm
```



```
aloutitrucej
LwhITMM s.3.7
L0:J!l!:M bob.l
```



```
AL!tim!i,M
```



```
Gluutitima. IN THIS ulsGEHTATIUN
Glojmli.NS L.C ANJ 子.l
```



```
aligmimi tme hatmicia thet - Nooe deletion
```



```
arotren haplicatiUN - CALL. FUN ACIION
Mrecolla - "LuSSAmy
arHendlx - Olrem alijon!Tmes
arpedulx = int rest rmogman
Gmrtroulx - tretlatus an:l rmours
Grmligatilin - Call Fun ACtiun
arrellatious
vallamlt lis
VallagLE LIST
vallahle Lls
avallacul lisi
HaCrmanl. Mulatths ant INDICATEU
```



```
is a catwlCIA fhze?
ginlufmarat
mainay fmet
```



```
MuMLEAG UN:.NATIOMS
Mouleah unintiliomb
Hulli my alogmitmm z.d
GLL fun ACTION
ALL FON ACTICN
Cast aMEME THG=TA
Cmap.bed
Ghmactemistics ur the algonitmms in this oisSehtation
Cum|atu
UM:INED mLINN-LTAG
Cum:ilito mblak-LTaO
```

Page
PAGE
PAGE IO
page
HALE 144
PAGE IC 2
PAGE
PAGE
PAGE H
HAGE 14S
HAGE LUO
page lug
pabe ya
Hage 114
page 114
pagt 143
pagt 143
page 140
Page 140
palik 115

| Pagige 115 |
| :--- |
| PAGE |

Pagt cj
paut is 70
Paut 70
Page 7
Hage lua
Page luy
palie loz
PaGE libz
PaCRE 114
Pace 119
pave 1a7
paut laz
page luy
paut lub
page 114
page lia
Page 115
Page 116
Paige 115
PAGE 34
Page 30
Pagit 154
$\begin{array}{ll}\text { PAGE } & 154 \\ \text { PAGE }\end{array}$
PAGE
PAGE
PAGE 1
Page 11
PAGE 24
PAGE 108
PAGE 80
$\begin{aligned} & \text { PAGE } 80 \\ & \text { PAGE } 109\end{aligned}$
PAGE 109
Page 111

| Page 110 |
| :--- |
| Page |
| St |

Page lo
HAGE
PROE 104
－afe 101
pace 101

| T Tmhtaued to paforiten stuufntial | Cumainifg hlink-ltag
 Conntits un algonithm P. 1
 Cumments on aligumithm 2.2 |
| :---: | :---: |
| 3 Sume uitful tricas involvidde | cimasarisumestmitas |
| flgumi con the. Mit | Corrarisuvs that are actually mave |
| conclusions - anvantages of the | C.jnomesseu fumm |
| ¢.btuntmen | comriossslun |
| -. 1.1 | Cotateris athind ueletidg conflulous itat |
| 1.4 | |
| 4.9 | Cumblusturs - aubantabes of fre COmphessto form |
| 4.9 | |
| 2.7 | CINALUNIUSS - Sumuany hi Chapteh imu |
| Figijmf 3016 utiotwal | |
| | |
| C.0 Anhandx-IIMliot | Cusslormitlus) |
| -1 Weltily | cor.jlownos lext |
| -a.l.e alginitrus letite | Cuiflいjoms leat |
| -. l.l Cuscerts armitu utitilig | cericimunus leal |
| S.1.S AL.OUlifat | |
| -1.n | |
| -5.1.7 Al'uulitim: | |
| 4.1.0 | Coroverilfou grter int Scut memuny Stact |
| men.l.t Alinumitrm: | Cataic a might imatalut pathicia inet |
| N.l.1 htau texi ancs | coeate A late |
| figuat b-e uass 1 | Critates tris rmom the sinucturt of fiount s-l |
| n-1.4 | birlele a mueg tmun tre fret |
| - 3.1 alivulime | Wetele a matricia arlut from tme thee |
| 4.1.3 AL'junitra: | fritit a sricitic key frum tay iexi |
| m4.l.2 aligum!tma | UELEIt Cuvitumaus text |
| H.1.) | belete un lrstat texi |
| 4.1 | dithellat ruytiruous text |
| 4.1.1 CUNCENTS HEHINO | Lelctithe curtiguous text |
| 1.4 cunclusiur. - | UELEIIPA NuJts |
| alithing tht patuicia tretr - mone | Delelion |
| | crietion |
| | letetiun |
| | URLETIUN |
| Hatpart the stmucture for sutimet | Weterion |
| Flibut 3bl2 sugiare | uetetion cumbe sporus to a type 2 deletion |
| 3.3 Sthitree fruvitos- | Lelciliun of patalats |
| 4.0 | Leletion uf text matefial |
| bunt 1-4 ime murates instatiol in | OESCETiuldu oruer |
| 3.2 | Uetemminivg Tu, Ft, it |
| S.4 A SLIGHily | OItremetil version uf preondte segutnilal hepresentation |
| 1.4 Tre | UIGITAL TAEE |
| +1ount 1-3 A | OlGItal laEe |
| : InStht - stangh fore a nulu in a | |
| H.1.c | Oishlay tme thet aroson tme text |
| that mill he usfog thruughutit fre | ulsstriatiun |
| Hisilcs of tre algumithes l:l inls | UlSberyailum |
| A.t algoritinusfine a | Wug:ly liamed available list |
| - 2 alsuhifim: wetumn a nuut io a | Uujuly linkeu availagle lisi |

| | |
| :---: | :---: |
| E | |
| AGE | |
| page | 10 |
| page | |
| page | |
| page | 10 |
| page | |
| AGE. | |
| abe | |
| Pate | |
| AGE | |
| AGt | |
| abt | |
| ab | |
| pale | |
| Page | |
| abe | |
| Page | |
| E | |
| age | |
| Patie | |
| parse | |
| abe | 119 |
| page | |
| page | 1 |
| page | |
| page | |
| GE | |
| age | 12 |
| age | |
| page | |
| page | |
| AGE | |
| age | |
| Ge | |
| age | |
| age | |
| AGE | |
| AGE | |
| abe | |
| Gt | |
| GE | |
| Pa | 10 |
| Ha | |
| Page | |
| Pa | |
| Paije | 12 |
| page | |
| PL | |
| page | |
| Page | |

```
2.1 ALCORITHM: GFT A NOGE FROM
    IGINE 4-3 INT FOUWTH A MAS HEE
    flgurt a-? THS. SHACE HAS HEEN
HTANT AROS lMMEDIATE CUVSE JUENCE
            Flount 4-4 prevavera A.vo
                        C.0) INE
                        *GuNe b-1 AN
            1.3
                H.1 TME
Mylf uF A stmuctunt wESludf0 Fum
```



```
                .c.1 A!r;uN!tra
```



```
MS - Allvavinots OF in! CuMret!sie!
```



```
                        4,5
                        A.\hat{Cl AlinU.ITrM:}
                        A.l alnurlimm:
                                arremela=
                                *.1
            3.1.2 AN IMPUMTANT A.N
                3-1.? AN
                        ffgurt s-t THE
                        1.4.1 ALO!NITMA:
                        H.D.J l!LEIE |N
                        4.?. ALOINITMA:
6-3 If we uSE algrin!PGM <.? anv
        Tlularg flim a traversal
```



```
H.l.3 Seancontum A
.3 algonfirm: bflete a shtcific
    1.3.e alborlTHm: seamCH fuH A
```



```
            l.e seancmiag tun
```



```
wItan: inflome a soode TC a nounl
OMITHM: GET & anOE FHUM a NOUHL
mm: bt. a rocr. Frun an avallarl
Mus ti,a a lumuly lima Avallanle
```



```
lu}a\mathrm{ luomlr LlimeD avallagle
Hout IN A h!ounlr LIP.PED Avallanle
    H.l.S StCHCH tuNA K+Y A...)
,-7 InF SHECIAL sITUAIIUN wrat.re
```


doubly linned avaliable list

```
FLIMINATEU FMGM Trt IEXT
FLIMINATEU GHGM Trt IEXT
ELIMINATEU FHUM THE IETT OF FIGURE
Liminating litag
rovurute vislis
InICla
samit OF －Iumi rantade Paldicia THEE
Eaburle ur a sinucturt desiuneu for fast mey hethieval
acilitity i）t int mhogata
asi aty rethitual
```


11.5

```
（v）fi．Tu．トT．II
```

```
F1नM
保
Itm ltás anu hlinr comblite
「．T
＋1．it
Hat Cumphtstiun
```



```
le：a suut frum an avallatele lisi
Lubsiny
armutatidial medium－scale system
duntliatt conse juteret－Eliminatimg LTAG
onfuriant anu lumidiatt curse：jutince－eliminating litag
```



```
lיSEMT TEAT
IAsemi TExT
loseht tret xeys IN hevfrist UhDEh
limmullitiuy
litration
rer
ker anu list all its majches
key frum tith itexi
key In a thit memulay
fir Hetritvil
aty ro tre inte of figume 2－1 the thee is changed
rers
```



```
LItGR Flellis Luming，STtP？OF ALGOHITMM b．3．7
LIfretl avallame LIST
LICREU AVAILAGLE L！SY
LIlCFE AVALIABLE LIST
LIST
Is
L1si
list
LIST
IST all its matcines
Ist all matcmes in a oathicia thee

```

 figume C-I tImING FOH TME
 C.1 IIMING FON THE CEARCH
 gruaf C-? IIMIVG EOH A TNAVEHSAL
    ```


```

atulatt COVR:GUfARE - ELIMINATIIG

```

```

bl| मatliN|EN StGUENIIAL FUNM WITA
SramCH f!\& A KET A:|! LIST ALL ITS
\#!.3 alrom|itmm: lint all

```

```

 m.l s mobormtical
 flci.or 1-1 a Stmplafinge
    ```

```

 S.1.0 CuSVENIItS OVEN IME GAME
 4." Alithiate
 5.1.4 m04 TJJGA,MLE
 - tGuNE c-- TIMITOG uF
    ```

```

 a.c.l alronITMu: UEf a
 A.C.l alronIIMu: GET A
    ```


```

ALFONITHM: INSrNT - SEAMCH FON A

```



```

 Flrilme J-4 Trut PA
 A.z.a ALfonmlimm: at.TUMN A
 A.C.r ALCNMIIMM: atIUMN A
 3.4 CUPOLIJS!OV - UEIETING
 flgunr s-1
 -.l.l unOleay
 HE NUNOTHS INSENTFU IN OESCEAMINIG
-C ANO l:NSEOI THF Kr.YS IN WFVENOE
C.IM IIMINGFUH
Htgume a-ry some of tme
HTGuNE a-r sOME OF THE
?.1N Tme ESSEAT:ALS DF

```

```

 froyat C-3 fimitig ur musi
 M.1
 Fig(1) <-1 a GIMPLE
 2.1 a mboni froga(ezo
 ALFOHITHM: LISI ALI mATCOLS IN A
 ALGOHITHM: StaRCH F(UN A NiOUR IN A
1 AN EXAAMLE UF A NIGHT THALAICD
(omJTMM: lostat A mem vule into a
lguritmm: Catatg a miont inhzavel

```

LOUN IN ALGOHITMM 2.I

ltau
LTAU
liag
liag anj hlink comainet
matches
matiocs it a patmicia taee
mattrial
mediun-scale ststem
Mrustay

mitmulis pum hepresenting tme pathicia treg
muilticatiuns
musi patnicia algonitmas
Nem nuve inio a patilicia thee
Noいl UfLEIJIN
Nitut frum a huUnly linaed avaliable list
Nule frum ard avallamle list

parte in a digital thee
Nout in h Halwicia tate


Nobe strultions
nulle binuctume gacmado hointies ahe indicateu
Nothe io a wưhir linken avallable list
NHLE TO AN avallartt List
Pauts
notaliun imat mill be usto theovghout the disstrtation unenatluns
onber
Ofmen algurilmas
outrut
outrut phuuucto fun call fon action
pGSS 1 Chiates inis fhom the sthuctuine of figuke 5-l
painicia
pathicia
pathicia algoritmms
fulnicia ruout from tme tat
phimicia thet
patmicta tate
pathicla tret
phinicla lret
ofinicia thet
paticia tree
palkicia thet
PAGE
PAGE
14
PAGE 142
PAGE 145
PAGE 145
PAGE 101
Page 101
Page 102
Page
OS
PAGE 101
PAGE 104
PAGE lCl
paut cy
PauE GZ
Page 100
page a
PAGE y
PAGE Y 3
PaGE 11
PaGE YZ
Page 1 AO
PAGE 27
HAGE 32
HAGE 115
PAGE 114
PagE 121
PAGE 38
PAGE
PaGE
page <S
PaGE 35
\begin{tabular}{ll} 
PaGE & 36 \\
page \\
\hline 4
\end{tabular}
page 116
Page 116
Page 114
Page bi
PAGE 33
pale 108
page 14
page
pave ol
Page IAS
PauE 1<S
pace 11
Paue y
patie is
PAGE 80
PAGE 1\&6
PAGE 30
Page 16
PAGE 7
page
page
page
page \(\langle 7\)

PAGE 84
\begin{tabular}{|c|c|}
\hline natf methous fon hertesenting the 3. 0 altenling inE & ```
pathicta thet
patmicia late - nout dfletiun
paimiCIA tmeg hullf gy abgOmitmms 2.C and 2.l
``` \\
\hline Tht actual hemugheatatiun of the & Hatricia intt Uf figume \(2-1\) \\
\hline 2.4 MOn w!Ll UALAHCED IS A & Patmicla lkte: \\
\hline & He. Tu, Fi, IT \\
\hline trpe 1 Nutie sthucture. Macknamu & Puititens ane inuicateu \\
\hline Phfibuita se cut itial simictiont in & PGsitm? \\
\hline s.t.e abivulitme: & Pustumben thavensal of stmuctume mith combintu rlink-ltag \\
\hline A.l & hatilical ghtlications \\
\hline Sunpiat pruntrig - ijttrilun uf & puetiats \\
\hline Flovier mat & \\
\hline & Hatumath strotitial \\
\hline Ifrm: 1 manstumm higmi thmesiat 10 & Preutider sediatrital Conhin!dog hlink-ltag \\
\hline ب.1.h Cu®vrnt IT & Heturuth stwutivill fowm \\
\hline -3.3.7 Al guillmu: Cuovtar iu & \\
\hline Floumf sbla & Hatimuth semetatial tung oitm liag and hlink Comointo \\
\hline 4.9 & Haturber starevilat paikicla \\
\hline 7.2 & Hrchmith itiverolial meduesevialion \\
\hline Flourt s-5 ine & Parelimeth itacerilal repatsteriation \\
\hline A Slighily uiffertnt vensiun ur & Patimidm selutioliti mewnestitation \\
\hline S.S. 3 ALinolimu: Starch the & \\
\hline & \\
\hline 3.3.7 Altu-ithm: & Hathare tre stmuliumi fon huatmet deleplijn \\
\hline 3.3 .1 & Wetrarimis tre stuuctuef fun surimee ethetion \\
\hline A. 3 Al,oultict & Print a tate \\
\hline h. 0 appenilx - Int test & pocoigmas \\
\hline H.l The ficilitits of the & - Frouutam \\
\hline 0.0 afrendix - Theuaters anj & prouts \\
\hline 3.3 SH:TNEE & \\
\hline 4.1 .1 & whal text and cheate a thee \\
\hline b.p Pmentigh semutaitial & hr.peksentatio:* \\
\hline GUAE S-S int patincteh Semutatlal & hatuestentation \\
\hline & hePrevectitiun \\
\hline flgune z-3 lat actual & metmestntation of tme datmicia thee of figume 2-1 \\
\hline S.0 altenatie metmuds fua & wetrestifitio the ratricia twee \\
\hline A blqueruge uespgeifl fore Fast mey & Wermievel \\
\hline A.e.t alionitime & he tuma a pulit tu a dughly litaxed availadie ligt \\
\hline A.l.1 aluunitimu: & Ketuma a morit iu ar, avallatle list \\
\hline OHIPMM ?.? AND INSEMI Tht. AEYS IN & meverse cwith \\
\hline 3.1 a & Hismi lmariski paimicia tmet \\
\hline * lgurer s-1 ara exammla of a & miont trmeabed maimicia inet \\
\hline & miomi trineasio patricia thee \\
\hline & hight imaraber to pnechuth seduential combining hlink-litag \\
\hline & miluri lmazaitu tate to paturuth stoutailal \\
\hline DEH SECUEVIIAL FOWM WITH LTAGANJ & HLitirn Conaliato \\
\hline VEKCLL UF Strucilure oitm (OMAINE) & \\
\hline & MLIMM-LTA, \\
\hline m Imatucot struclighe mith Cunalnato & hlinm-lial, \\
\hline - b.b.t Cunveridng oven tre & Same mencur suace \\
\hline floums \(\begin{gathered}\text { H. } \\ 1-1\end{gathered}\) & Sample wutput \\
\hline figurs d-1 A & sample tait memuky \\
\hline
\end{tabular}
```

        1.3.2 ALGONITMM:
    1.4.1
        IOJ.? ALGOLITMM:
        -E?.1 ALGOMITHM:
        C.1 IIMING FOF THE
        5.3.3 ALCIUNITMM:
        5.4.1 Al.,ON!THM
            1.?
    ```



```

7 Algoritam: Cosut~I To Perouncem
Flglate billo p+efla|le
C.3 Patowlet
b.z N.ep(anli=h
flount a-S ime reflowbey

```



```

    FlGume <-1
    H|OUNE S-T INE DNECIAL
        Flount 1-z A
    CONVERTIM, OVER TME SAME MEMORY
            +16UHE 4-, IME UEA Stidenital form outh int sant
    ```

```

            Flgute val Int
    4.1.a algomithu: ibelett a
Fl:oun= 4-1

```

```

    FlGl:ut 3-1 Irwe? ? PNOLE
        Flourf 3-4 irme ca move
            1.3 LPCMPG OF A
    ```

```

    3.3.1 PreramiA,D THE
    ```

```

b-b HESS! CHEATSS IMIS FMOMTINE
ALGOHIIMM: WOSTI:NOEN TRAVIMSAL UF

```

```

            Ffolare i-c TrNE I NIS,N
    ```

```

Isif cotifinal CONFliumation fon A
On!TmM: PhEraHE THE STAlictuFE Fun
FIGURE 38IC

- A hypormer CUNCLUsIONS
3.? UETEMUINITGO
3.2.1 ALGOHITHM: FiNU PU.

```

StamCh for a ktr and list all its natches
Stanch fur a ker in a thit memury
StamCM FUH a nout in a ulgital inet
Stamen fur a moue in a patilicia the
Stanch luun uF alountima c.l
Sfangh fre prefurben stojential sthucture foh a key
Stanch frmulou structume gitm comidato hilmk-biag
stauchlidu Fur feys
st batertlat
Sowetilal C(IMEIAING HLINN-LIAG
Shatilal funm
SHAOENTIML FUMN JVEH THE SAME SPACE
elcalnilal fung mifr Litag anu hlink Cumylnto
at dotrotial oainicis

sidutiditat memeseditatua
s! dutild merwtyentatiun
S: ut vilal Stwiction! fing a rey

Sivation mitane lilink(J) \(=1\)

Sowlen mivany
Stict
mas meta thininated from fre fext of figure a-1
(is
Clal cast areat Jfn=ia

wicit:c mey fngm fhe tex
sinctut late
STMINIS
siructu
STMCIUR
Hi UIILI2EO?
STHICTIUNE UE SlGITU FON FAST KEY RETRILVAL
simucture for a key
Simalictine for sumtaee reletion
STLICTIUNE PON SLATHEE DELETION
Sinucruint in mosporiien
Sinuliunt of flouite s-
sthacture mitm conalden hlimaltag

simucluet. esacratul rulntths are indicated
Su:Jta!! LeLETlUM
Sutlati totetiduy
suatret 0eletidun
Surtme leletloy cohhesponds to a type 2 deletion
Suritee hruiticg - Deletion uf phefixes
Sunmany UF Cmajtin iou
Sustem
Tu. fi, it
iU. \&T. TiPAGE

PAGE 14
PAGE 142
\(\begin{array}{ll}\text { Page } \\ \text { PagE } & \text { HI }\end{array}\)
page

PAGE

PaGE 43
Page lue
PAGE l<Z
face
Pabe 104
PAGE AB
HAGE \(O\) O
PAGE OY
Page 101
Pact yl
page y
pace 10
PaGE yd
page lul
PAG: 11
PAGE 93
page o
PACE
PAGE
PAGE Y
pale
PAGE O
PAGE JU
PAGE 3
PAGE
PaGE 4
PagE
\begin{tabular}{ll}
PaGE \\
PAGE & y \\
\hline
\end{tabular}
Page lul
Page lul
page 101
Page 101
PAGE SY
PAGE PAGE
page ó
HaCE 5
PaGE 54
page 11
PAGE IUG
PAGE
Page bu
\begin{tabular}{|c|c|}
\hline \[
\text { H.O GPPENU: }{ }^{1.1} \mathrm{I}^{\text {THE }}
\] & TEHMINOLOUT TEST PROGHAM \\
\hline h.l.5 DEIEIE UN INSFHT & text \\
\hline 4.1 Algumithat instat & TEXT \\
\hline 4.1 nelfitag contiguidus & IEx 1 \\
\hline 4.3 Cunclicluas - alitwlyg & text \\
\hline -1.a visplay trf thet antion the & TExt \\
\hline & Text \\
\hline ACENIS Meminu delelidy covilguous & ital \\
\hline M : Otctit a shtcific any fnimm the & fexi \\
\hline Tha mas mhtiotiminateg faju the & text \\
\hline n.1.1 etco & text ano cheate a thee \\
\hline -.0 belerion uf & Teal materlal \\
\hline HaCE mas met.n Elimiratsernom tht & teat of athune a-l \\
\hline Fiollre \(0-1\) Shat & itat uf the call for action files \\
\hline a.c arncrialx - & briountus ano ratours \\
\hline -.l a wiont & Tritatev mathicia thet \\
\hline Flutime t-i an examile of a mbint & Prasilevomimicia tute \\
\hline ma.l.l algomitmm: ¢heate a migit & Pmmeaute matmicla thet \\
\hline & \\
\hline 5.1.5 Alriotithas Cinverita milini & \\
\hline C.u Arptaulx - & Tlugtuv Curslutamituns \\
\hline C.? & timinu fum a thavehsal ittaation \\
\hline Flgunt c-s & Timing fum a imavinsal luop using algohithm 2.3 \\
\hline C. 3 & \\
\hline -1gune C-I & \\
\hline C. 1 & Itmit.b tum the stanch loun uf algumilmm 2.1 \\
\hline Flumat \(6-1\) & ilmitho of must hatmicia alcomithms \\
\hline 5.4.3 Aluuntimy: & \\
\hline C.? TIMI里 FOM A & thavtiesal lithation \\
\hline Figure c-z timivg fur a & imavemsal loun usimg algonitmm 2.3 \\
\hline S.t.L ALGOHITHM: HUSTONOLH & thavthsal us stmuctumt eith comajige mlink-litag \\
\hline *h.3.1 aliounitma: & thavehst a preonuen sedutntial sthactual in pustonger \\
\hline 1.4 tne uigital & T-\&EE \\
\hline Fliglat 5-4 a minamy & fure \\
\hline Fibu, fi-s a dilitial & Tme \\
\hline & intt \\
\hline A. \({ }^{\text {a }}\) algumblitm: Hndruta & TCEt \\
\hline figune l-̇ a sunteg hinamy & prete \\
\hline FIGURE S-I A SIMMLE PATMICIA & Tret \\
\hline B.i.4 uelete a vule from tiot & Tuet \\
\hline H.1.1 meau if.at ayu cutale A & tute \\
\hline b.l a miuht immeaute rathicia & Thee \\
\hline H: LIST all matemes in a hathicia & Inet \\
\hline : deleje a natuicia noue finm ithe & TheE \\
\hline : Stamer fun a moge in a dafmicia & trec \\
\hline mplet ut a higat thataneo paimigia & THEL \\
\hline lustri 2 atar honut intu a patmicia & Tnet \\
\hline creatita hiont thmyalici matmicia & THEE \\
\hline ucis for heratitating ime oatricia & Trec \\
\hline - ceanerfon a mout iv a uijital & Inte \\
\hline 3.0 Altygidu ime patialcia & imee - node oeletion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pagf & \\
\hline page & 119 \\
\hline Pagt & \(1<1\) \\
\hline page & 75 \\
\hline page & 63 \\
\hline Page & 18 \\
\hline hage & 120 \\
\hline paide & 72 \\
\hline page & 08 \\
\hline pale & 15 \\
\hline PAGE & 06 \\
\hline Pa'ge & 119 \\
\hline page & 62 \\
\hline Page & 65 \\
\hline pagt & 110 \\
\hline Pabt & 147 \\
\hline Pabe & 77 \\
\hline Patie & 78 \\
\hline PAGE & 44 \\
\hline hage & 102 \\
\hline page & 43 \\
\hline Palet & 142 \\
\hline Page & 142 \\
\hline Pagt & 14b \\
\hline paue & 1,3 \\
\hline pate & 144 \\
\hline page & 1-2 \\
\hline Page & 140 \\
\hline page & 102 \\
\hline pagt & 142 \\
\hline page & 145 \\
\hline page & 101 \\
\hline page & 88 \\
\hline page & 10 \\
\hline page & 47 \\
\hline Hage & 14 \\
\hline page & 64 \\
\hline rage & 116 \\
\hline page & 11 \\
\hline page & 16 \\
\hline paue & \(1<1\) \\
\hline Page & 114 \\
\hline page & 17 \\
\hline hage & 29 \\
\hline Page & 38 \\
\hline PaEE & 25 \\
\hline page & 78 \\
\hline page & 27 \\
\hline page & 44 \\
\hline pale & 77 \\
\hline page & 12 \\
\hline P\&しE & 32 \\
\hline
\end{tabular}
```

    e.l.z D:Splay tme thee aftu/un Tme texi
    FIgumE z-4 a pathicia
    al WEPWEGFHIATION OF IME ~ATHICIA
    IruNE F-iC IF WE A!Si A REY TU IHE
    ```

```

    m"M well HALدP,r&GIS A WATAICIA
        m"m well malsp,rfolis a watalCIA
            rghitme l-1 a commpl
    R.OOH1:mm: StimCN +OM A akY INA

```


```

Flugm- 1-a

```

```

                    Flusat 3-s
                    flejus 子-*
                    flolme j-:
    Flgume s-5
    Flojme i-1
    Flgm: j-4
    Flome i-g
        0.3}\mathrm{ Save
    2.3.2 cin the simucturt me
    FluUWE a-G PNEORREN AINU Chw/INUEN

```

THEE ARWION The text
THEE DUILI GY ALGOAITGMS 2.2 AND C. 1
TriE UF FIJUNE \(2-i\)
tiate uf fluume \(2-1\) the thee 15 chanuted
inte UF + ! Ojue g-i as bullt ay alounitme 2.2
inte fu medujen seuur.vilial
inip?
Tritiss invulvide combanison sthinus
inite mimuny
ifit memuiny
if
\(i\)
Trat 1 :oUt sthucitunc. hacamarg hointehs ahe indicated

TrFE \(<\) PuJt siruetione
lrre \&\& NuNe sinuctiont
Tres <!
True ce
Trrese co
lure 1 E
True of
ustafulikicks invulving cumparison sthings

\(1 \leq 115\)

PAGE 120
PAGE 2
Page 21
page 1
PAGE
PAGE
G
Page gage
Page 30
page lut
PAGE IUZ
Pable
Page
Page
Page
Pabe
Page
HaUE
PaGE
Pave Sat
P\&GE
HRGE
Page
Hage 30
Page 39
rave
HAGE
Hage 4
\(\therefore \therefore\) Cu
PSit 109
paioe yl
past 11```

