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ABSTRACT

Protein from pea cotyledons was isolated and fractionated into 

albumin, globulin, legumin and vicilin based on their solubility. On 

gel electrophoresis albumin showed numerous bands, while legumin and 

vicilin gave a diffuse band, suggesting that they are complex and 

heterogeneous. On SDS gel electrophoresis legumin showed two minor 

and three major subunits and vicilin showed five major subunits.

Overall changes in protein content during seed development 

revealed that albumin synthesis stopped earlier than globulin synthesis. 

However, during seed germination globulin depletion occurred earlier 

than albumin depletion. Deposition and utilization of legumin and 

vicilin were independent of each other. Investigation of these frac

tions during seed development and germination indicated that consider

able changes occur in the composition of albumin and subunit ratio of 

legumin and vicilin, suggesting that they are not deposited or utilized 

as a single unit.

The pea proteins were found to be glycopeptides composed of 

both neutral (mannose and glucose) and amino sugars (glucosamine).

The carbohydrate content of protein changed during seed development and 

germination. Legumin was rich in neutral sugars and vicilin in amino 

sugars. Labelling studies with ^^e-glucosamine during different days 

of seed development indicated that in legumin most of the label
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incorporated into subunit V, while in vicilin Incorporation occurred 

into all the subunits. Investigations concerned with determination cf 

the time of attachment of carbohydrate units to the peptide showed 

that these units might be attached after the peptide synthesis.

Attempts were also made to characterize the pea protease by 

using native substrates viz., albumin, legumin and vicilin and to 

associate the proteolytic activity with the protein hydrolysis during 

seed germination. It was found that the pea protease is capable of 

hydrolysing all the three native substrates at an optimum pH of 5.0 

and the proteolytic activity was in agreement with the observed 

protein hydrolysis during different days of seed germination.



PROTEIN METABOLISM IN THE COTYLEDONS OF Pi sum sativum L.

DURING SEED DEVELOPMENT AND GERMINATION

CHAPTER I 

INTRODUCTION

Many mature dicotyledonous seeds contain an embryo and stored 

food enclosed in one or two seed coats. The embryo is the potential 

plant and develops from the fertilized egg, while the seed coat is part 

of the parent. The embryo cannot synthesize its own food; thus, 

initially it is dependent upon nutrients supplied by the parent. Sub

sequently, growth is arrested at seed maturity; thereafter growth of 

the embryo is resumed during germination. During germination the 

embryo depends on the nutrients supplied from the stored reserves.

Until it becomes autotrophic the young seedling depends initially upon 

the food reserves.

In many dicotyledons the food reserves are deposited in the 

cotyledons after the termination of meristematic activity. As the seed 

matures, the metabolic activities and reserve deposition declines until 

a quiescent mature seed is produced. Metabolism is renewed during 

germination and activity is directed toward reserve hydrolysis.

The composition of seed reserves differs from seed to seed.

In the pea. Pisum sativum, it is principally starch and protein. Plant

proteins have been classified into water-and saline-soluble globulins,
1



alcohol-soluble prolamines, and dilute acid-or base-soluble glutelins. 

Pea protein is predominantly composed of albumins and globulins. The 

globulins are further subdivided on the basis of isoelectric precipita

tion into legumin and vicilin.

The amino acid composition of reserve proteins is entirely 

different than the proteins present in leaves. Legumin and vicilin also 

occur in other leguminosae seeds. These proteins have been well char

acterized and are assigned a molecular weight of 386,000 and 180,000 

for legumin and vicilin respectively. When legumin and vicilin are 

subjected to gel electrophoresis legumin gives one major band, whereas 

vicilin gives a diffuse band, suggesting that they are heterogeneous 

and very complex. When legumin and vicilin are dissociated with 

sodium dodecyl sulfate and dithiothreotol and subjected to SDS gel 

electrophoresis, legumin shows three major and two minor bands while 

vicilin shows five major bands. Hence, legumin and vicilin are not 

simple proteins but are made up of subunits.

Since it has been shown that legumin and vicilin are not 

simple proteins but are made up of subunits, it was of interest to 

determine if there might be variation in the rate and time of synthesis 

or breakdown of these subunits during different phases of metabolism.

For this purpose the pea proteins were fractionated and changes in the 

pea storage protein, followed during reserve deposition in developing 

seed and during reserve depletion in germinating seed. The composition 

and subunit structure of legumin and vicilin were studied during seed 

development and germination.

Attempts were also made to characterize the enzymes responsible 

for protein hydrolysis by using native substrates, viz., albumin,



legumin, and vicilin, and to associate the measured proteolytic activity 

with protein loss during germination.

Additionally, some legume seeds contain glycoproteins. 

Glycoproteins may be regarded as proteins that contain carbohydrate 

attached to the peptide portion by covalent linkage. Investigations 

were made in an attempt to study the glycopeptide nature of pea storage 

proteins and to isolate and identify the carbohydrates associated with 

the protein and to follow the changes in this carbohydrate content, 

during seed development and germination. Studies have been made to 

determine the subunit and sugar association and the time of attachment 

of carbohydrate to the peptide, i.e., during or after peptide synthesis.



CHAPTER II 

LITERATURE REVIEW

Reserve Protein Characterization 

As early as 1880 Eramerling studied protein synthesis in ripen

ing seeds of broad bean, Vicia faba major. He showed that nitrogenous 

products were transported from different parts of the plant to the seed 

pod where they were stored before being transported to the ripening 

seeds. Emmerling further stated that seed proteins are synthesized 

from organic nitrogenous compounds (amides and amino acids) synthesized 

in leaves. Schulze and Winterstein (1910) found that the seed pod from 

the pea contained much asparagine and little arginine, while in the 

seeds the distribution was reversed. They also showed that the amount 

of protein nitrogen increased and the amount of nonprotein nitrogen 

decreased during the ripening process.

Danielson (1949), using Osborn's (1924) fractionation procedure, 

indicated that pea proteins consist of water-soluble albumins and 

saline-soluble globulins. The globulins could be further subdivided 

on the basis of isoelectric precipitation at pH 4.5, where vicilin is 

soluble and legumin is not. In mature pea seed, globulins constitute 

60% and albumins 40% of the total protein. This composition varies from 

variety to variety (Silano and Pocchiari, 1969; McLeester et al. 1973). 

Within the globulin the legumin predominates over vicilin. The occurrence
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of two components in the reserve globulins appears to be characteristic 

of most legume seeds (Altschul et al., 1966).

It has been suggested (Danielson, 1956) that the albumins 

contain enzymatic components, whereas globulins are pure reserve proteins. 

In contrast, Kretovich et al. (1954) reported the occurrence of enzyma

tic activity with the globulin fraction isolated from pea seeds, which 

Danielson (1956) attributed to the contamination of globulins with 

albumins.

Ultrastructural analyses have indicated that in mature cotyle

dons much of the protein is confined to subcellular organelles termed 

protein bodies (Varner and Schidlosky, 1963; Bain and Mercer, 1966) and 

are rich in globulins (Varner and Schidlosky, 1963). Recently it was 

observed in peanut (Haussant et al., 1969) and soybean (Tombs, 1967) 

that protein bodies contain only one of the globulin components, sug

gesting that not all of the reserve protein is confined to the protein 

body. However, immunological studies of Graham and Gunning (1970) indi

cate that legumin and vicilin occur in protein bodies of beans. Or y 

and Hennigsen (1969) has recently demonstrated that there may be 

enzymatic activity associated with the protein body.

Various studies on globulin fractions have revealed them to be 

highly complex, with high molecular weights. A molecular weight of

331.000 for legumin and 186,000 for vicilin from pea seeds has been 

reported (Danielson, 1950). Brand and Johnson (1956) and Johnson and 

Richards (1962) reported a molecular weight of 400,000 and 398,000 +

15.000 for pea legumin. Similar high molecular weights (370,000 and 

320,000) for Vicia faba legumin have been assigned (Shutov and Vaintraub, 

1966; Bailey and Boulter, 1970).



The globulin fractions have a characteristic amino acid 

composition, being enriched in acidic amino acids (aspartic acid and 

glutamic acid) and are very low in sulphur-containing amino acids like 

cysteine and methionine (Grant and Lawrence, 1964; Bailey and Boulter, 

1970).

Since Osborn's method of protein fractionation is based on 

solubility, it might be expected that the protein isolated by this 

technique would be heterogeneous. Wetter and McCalla (1949) attempted 

to investigate the pea proteins and reported to have obtained four 

components when different protein fractions were analysed by gel 

electrophoresis. In contrast, several workers (Danielson, 1950; 

Reznichenko, 1954; Kretovich et al., 1954) reported that these globulins 

are homogeneous when investigated by electrophoresis. However, Vain

traub et al. , (1962) reported three components by electrophoresis, one

of which was selectively bound with a pigment.

N-terminal analysis by the Vaintraub's group has suggested 

that legumin contains 12 chains with an average weight of 33,000 in 

Pisum sativum (Vaintraub and Gofman, 1961) and 40,000 in Vicia sativa 

(Vaintraub et al., 1962). They identified the N-terminal amino acids of 

legumin as glycine, leucine, and threonine. Similar N-terminal amino 

acids were found by Bailey and Boulter (1970) in Vicia faba seed.

The relatively high molecular weights for various seeds of

legumes investigated in conjunction with other evidence described in

the literature (Brand and Johnson, 1958; Gofman and Vaintraub, 1960; 

Johnson and Richards, 1962) indicated that each of these proteins may 

be composed of several peptide chains. It is possible that the vicilin



and legumin entities may be dissociated into subunits, i.e.,the peptide 

chains of each may be held together by forces other than primary chemi - 

cal bonds.

It has been shown by ultracentrifugation that the legumin 

particle may be dissociated by acid (Brand and Johnson, 1958), sodium 

dodecyl sulfate (Brand and Johnson, 1956; Grant and Lawrence, 1964), 

guanidium hydrochloride (Vaintraub and Nguen, 1971) or urea (Grant and 

Lawrence, 1964) into particles with an average weight of 30,000 and 

60,000. At pH 10 vicilin undergoes a reversible dissociation, while 

legumin is unaffected up to pH 10.5. Urea or foramide solutions of pea 

(Pisum sativum) globulins cause the appearance of six protein bands 

on gel electrophoresis, four arising from legumin and two from vicilin. 

Whereas SDS treatment has been reported to result in 12 well-defined 

bands, four of these arose from vicilin, six others from legumin and 

two were of uncertain origin. Shutov and Vaintraub (1966) reported 

that legumin and vicilin of vetch seed are incapable of association 

and dissociation during a change in the ionic strength in the interval 

between pH 7 to 9. In the acid region legumin dissociate irreversibly 

and in stages into 8S and 28 subunits, whereas vicilin dissociate into 

3S subunits. Bailey and Boulter (1970) assigned 3 subunits for legumin 

and reported a molecular weight of 56,000, 42,000, and 23,000, respect

ively. Similar increase in number of globulin components upon dissoci

ation has been reported (Koshiyama, 1970; Hobday and Giles, 1973; 

Wright and Boulter, 1973; McLeester et al., 1973).

Grant and Lawrence (1964) noticed that the amino acid composi

tion of all the fractions resulting from dissociation are similar and



8

had two or more different N-terminal amino acids. Difference in end- 

group composition occurred among the fractions, but some N-terminal amino 

acids were common to several fractions.

Glycopeptide

In 1964 Pusztai presented evidence that glucosamine is a 

normal constituent of seeds of higher plants. Since that time there 

have been several reports of the occurrence of glycoproteins in plants. 

Several workers have reported on the presence of glycopeptides in seeds. 

Pusztai (1965) confirmed the presence of glycoproteins in seeds by 

demonstrating the occurrence of various amounts of neutral and amino 

sugars in protein extracts from kidney beans (Phaseolus vulgaris).

After isolating two proteins, glycoprotein I and trypsin inhibitor 

from kidney beans (Phaseolus vulgaris), he showed that the carbohydrate 

part was mainly composed of D-mannose and D-glucosamine together with 

smaller amounts of arabinose, xylose, and fucose (Pusztai, 1966). The 

presence of mannose (4%) and glucosamine (1.2%) in 7S protein of soybean 

(Glycine max) casein fraction was reported by Koshiyama (1966).

Recently Pusztai and Watt (1970) isolated a glycoprotein II 

having antigenic and non-haemagglutinin activity containing D-mannose 

and D-glucosamine but no uronic acids. Similar findings were reported 

with storage protein of Phaseolus vulgaris (Racusen and Foote, 1971; 

Bianco and Bellando, 1971), Phaseolus aureus (Ericson and Chrispeels, 

1973).

Seed Development

As early as 1910, Schulze and Winterstein analysed the ripening



pea seeds at four different stages and they were able to show that the 

amount of protein nitrogen increased and the amount of nonprotein 

nitrogen decreased during the ripening process. After studying the 

nitrogen distribution in developing pea seeds, Danielson (1952)

reported that globulin-N increased at a constant rate. Globulins and

albumins are synthesized independently. He further observed that

vicilin and legumin are synthesized at different rates and the concen

tration ratio of vicilin/legumin diminished as ripening proceeds.

It was observed (Tkachenko and Klimenko, 1971; Klimenko,

1972) in peas that biosynthesis of globulins occurred in the early 

stages of maturity while albumin levels did not depend on the stage of 

ripeness, Millered et al., (1971) reported that legumin was detected 

in the young cotyledons of Vicia faba, and when the cotyledons were 

about 10 mm long, cell division was essentially complete, and there 

was a sharp increase in the rate of legumin accumulation. In contrast, 

Wright and Boulter (1972) found that vicilin was formed prior to legumin 

in Vicia faba during seed development, although the rate of synthesis 

of legumin was faster so that in the mature seed the ratio of legumin 

to vicilin was about 4:1 by weight. Further they observed that the 

subunit structure of vicilin changed during development, whereas that 

of legumin did not; and thus they concluded that vicilin is not a single 

protein.

Ultrastructural changes during seed development revealed an 

increase in membrane-bound ribosomes which corresponds with the onset 

of storage protein deposition. It has been shown (Briarty et al., 1969) 

that the build up of storage protein occurs in the cytoplasm within
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membrane-bound vacuoles which subsequently become the protein bodies 

of the mature seed, retaining the original tonoplast as the bounding 

membrane of the protein body. Later, Bailey et al., (1970), using 

%-leucine, showed that the radioactivity is associated initially with 

the endoplasmic reticulum then moved to the protein bodies, revealing 

the intracellular transport of storage proteins.

Seed Germination

When seeds are placed in an environment favorable to germina

tion, the rate of metabolism is markedly accelerated. Protein is 

broken down during germination, with a concomitant rise in amino acids 

and amides followed by protein synthesis ^  novo in the growing parts 

of the embryo, suggesting that the cotyledonary reserve proteins are 

hydrolysed to amino acids which are then transported to the developing 

axis and incorporated into proteins (Oota et al., 1953; Larson and 

Beevers, 1965; Beevers, and Guernsey, 1966). The appearance of a new 

amino acid during germination which is absent from the dry seeds was 

shown by Virtanen et al., (1953), and the actual synthesis of new 

protein was also reported (Young and Varner, 1959; Young et al., 1960; 

Miege, 1970).

Danielson (1951) observed in peas that during germination there 

was a pronounced breakdown of globulins between 5 to 10 days, which is 

the period when the new plant begins to form leaves. Vicilin and 

legumin are broken down with the same speed, whereas albumin breakdown 

was slow and occurred at a constant rate. The work of Buzila (1969) 

with pea vicilin indicated that during seed germination the vicilin is 

split, suggesting that in the early stages of hydrolysis the reserve
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protein is broken down to small fragments which subsequently split up 

into peptides or amino acids. In a more detailed study Juo and Stotzsky 

(1970) also reported that in kidney beans (Phaseolus vulgaris) the glo

bulins and basic proteins were hydrolysed more rapidly than albumins.

They also noticed the disappearance of a number of components of albumin 

fraction during early stages of germination, but several new components 

were detected about 8 days after germination, suggesting the changes in 

the synthesis of various enzymes during germination,

Catsimpoolas et al., (1968) and Daussant et al., (1969) have 

studied the metabolism of soybean and peanut globulins, respectively.

They found that the components of the globulin fraction were degraded 

at different rates during germination. Further, Catsimpoolas et al.,

(1968) reported that although the electrophoretic mobility of the llS 

globulin fraction changed during germination, there was no appearance of 

new immunological components, suggesting that no new protein subunits 

were produced during the reserve protein degradation.

Racusen and Foote (1971) studied glycoprotein breakdown in 

bean seed and found that germination for up to 114 hours had little 

effect on the glycoprotein or on the total soluble protein. Later (1973), 

the same authors reported that glycoprotein II of bean seeds decreased 

most rapidly between 7 and 10 days. Very recently, Ericson and 

Chrispeels (1973) reported that in the cotyledons of Phaseolus aureus 

glucosamine is bound to specific storage protein (legumin and vicilin) 

and are metabolised during germination.

The biochemical analysis indicating the depletion of protein 

during germination is confirmed by ultrastructural studies. Bain and
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Mercer (1966) demonstrated that the protein content of the protein 

bodies declined during germination. Smith and Flinn (1967) indicated 

that during protein depletion the protein bodies originally swell then 

coalesce before finally fragmenting to produce a vacuole-like structure. 

A similar situation has been observed in peanuts (Bagley et al., 1963) 

and beans (Opik, 1966; Briarty et al., 1970). Ericson and Chrispeels 

(1973) reported that the glucosamine-containing glycoproteins are 

associated with protein bodies.

Proteolytic Enzymes

During germination the protein content of the cotyledons 

declines, and there was an increase in alcohol-soluble alpha amino 

nitrogen. At the same time the protein and alpha amino nitrogen content 

of the axis tissue increase. These observations suggest that during 

germination the reserve protein of the cotyledons were hydrolysed to 

amino acids, which are then incorporated into protein during axis 

growth. It is generally considered that the reserve protein in the 

cotyledons is hydrolysed by proteolytic enzymes. However, although 

there are many reports of proteolytic enzymes in seeds, the role of 

such enzymes in reserve protein metabolism has not been completely 

established,

Danielson (1951) demonstrated the presence of enzyme in ex

tracts of peas which hydrolysed gelatin. However, it was indicated 

that the assayed proteolytic activity was greatest in extracts prepared 

from unripe peas. Soedigo and Gruber (1960) purified a protease from 

dry seeds which hydrolysed casein at pH 8.0; however, no physiological 

role was assigned to this enzyme. Young and Varner (1959) and Henshall
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and Goodwin (1964) indicated that proteolytic activity did not increase 

during the period of germination, when protein was being depleted.

However, Beevers and Splittstoesser (1968) and Beevers (1968) demonstrat

ed that while peptidase activity is high in early germination, the 

proteolytic activity develops only in latter phases of germination.

Mergentime and Wiegand (1946) observed caseolytic activity 

in pea extracts at an optimum pH of 5.5, while Matile (1968) observed 

this at pH 4.2. However, Beevers (1968) demonstrated caseolytic activity 

in pea extracts with opitmum activity at pH 5.5 and 7.0. Recently 

Pusztai and Duncan (1971a) reported that the proteolytic and auto 

digesting activities in kidney bean extracts showed an optimum between 

5, 0 and 5. 5.

Most of the characterization of proteases has been carried out 

with casein (Irving and Fontane, 1945; Mergentime and Wiegand, 1946;

Young and Varner, 1959; Soedigo and Gruber, 1960; Beevers, 1968;

Nakano and Asahi, 1974), gelatin (Danielson, 1951), bovine serum albumin 

(Garg and Virupaksha, 1970; Harvey and Oaks, 1974) p-nitrophenyl phos

phate (Nakano and Asahi, 1974) and N, N-dimethyl albumin (Garg and 

Virupaksha, 1970).

Similar increases in proteolytic activity during germination 

have been reported in peanuts (Oota et al., 1953) beans (Pusztai and Duncan 

19 71) and maize (Harvey and Oaks, 1974). However, in peas the most 

rapid increase in caseolytic activity occurred after the onset of rapid 

depletion of cotyledonary protein (Beevers, 1968).

More recently, Nakano and Asahi (1972, 1973, 1974) reported 

that the pea cotyledons contain a membrane-bound protease which is
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recovered in the microsomal fraction after differential centrifugation 

of whole homogenate in addition to cytosol protease and that membrane- 

bound protease activity increases during seed germination although 

cytosol protease activity does not.

In addition to the observed caseolytic activity which was 

demonstrated to increase during germination, Beevers (1968) reported 

that there were also enzymes present in the cotyledons which were 

capable of hydrolysing the synthetic peptides L-leucine paranitroamilide 

and alpha-benzoyl-DL-arginine paranitroanilide. The peptidases were 

present in the dry seed and their activity showed very little changes 

during the course of germination. Similar peptidase activity has been 

reported in barley seeds and they likewise show little change in activity 

as the seedling develops (Burger and Siegelman, 1966). In contrast 

Penner and Ashton (1966) reported that peptidase activity increased 

in squash cotyledons up to the third day following germination and then 

declined.

In spite of a lack of definitive information regarding the true 

role of hydrolytic enzymes during germination studies have been made 

regarding their origin. The work of Varner (1965) and Juliano and Varner

(1969) demonstrated that in the barley endosperm system the hydrolytic 

enzymes ribonuclease, protease, and amylase are synthesized ^  novo 

following gibberellin application. In contrast to this evidence Shain 

and Mayer (1968) reported that other enzymes arise as a result of 

hydration or activation of inactive precursors.

In considering the synthesis of new enzymes during germination, 

it is apparent that the regulation of protein production can be
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controlled at many loci. The recent evidence of Ihle and Dure (1969) 

indicates that the mRNA coding for protease production does not occur 

until imbibition. On the other hand, the inhibition of production of 

some enzymes by actinomycine D suggests that synthesis of these enzymes 

is dependent upon mRNA production.



CHAPTER III 

MATERIALS AND METHODS 

Plant Material

Pea seeds (Pisum sativum L., var. Burpeeana) were purchased 

from W. Atlee Burpee Company. Plants were grown from these seeds in a 

growth chamber in sterile vermiculite (Terralite) at a day temperature 

of 24"C) a night temperature of 13°C, a 12-hour day length, and a light 

intensity of 2500 ft-c.

Eight seeds were sowed per pot. The plants were irrigated 

every day with Hoagland's nutrient solution and were later thinned to 

four. Twenty days after germination they were staked and tagged. 

Flowering dates were noted daily. Pea pods were obtained from these 

plants during different periods of development. After harvesting, the 

testa and embryonic axis were removed from the seed. The cotyledons 

were homogenized and the homogenate was used for protein fractionation. 

For germination and enzyme studies the seedlings were grown in the dark 

in sterile vermiculite and watered with deionized water. The cotyledons 

were obtained from these seedlings during different days of germination.

Analytical Methods

Protein fractionation. Proteins were isolated and fractionated 

from the cotyledons by a procedure modified from Danielson (1949) Fig.1.

16
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Cotyledons
Homogenized in 1.0 M NaCl, 20 mM PO4 buffer, pH 7.0, set for 30 min.

Centrifuged
PelletSuper

Washed twice with 1.0 M NaCl, 20 mN. PO^, buffer pH 7.0

Pellet
Discarded

Super

Pooled

Made to 70% Ammonium Sulfate Saturation

I- - - - - - - - - - -Super
Discarded

Centrifuged

Pellet

Pellet
Suspended in 0.2 M NaCl, 5mM PO^ buffer pH 7.0

Dialysed Lgainst distilled water
Centrifuged_______

Super 
ALBUMINGLOBULIN

Suspended in 0. 2 M NaCl, 5 irM PO4 buffer pH 4.5 and kept stirring overnight
Centrifuged

I- - -Super Pellet
Washed twice with 0.2 M NaCl, 5 mM PO^, buffer pH 4,5

Super

Pooled
Dialysed against distilled water

Centrifuged

Pellet
Suspended in 0,2 N NaCl, 5 mM PO4, buffer pH 7,0 

Dialysed against distilled water

I- - - - -
Super

Discarded

Centrifuged

Super Pellet
Discarded VICILIN

Suspended in 0.2 M NaCl, 
20 mM PO^, buffer pH 7.0 
and stored at -10°C.

Pellet
LEGUMIN

Suspended in 0,2 M NaCl,
20 mM PO4, buffer pH 7,0 
and stored at -10°C.

Fig, 1. Flow sheet of protein extraction and fractionation.
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The cotyledons were homogenized in cold 1.0 M NaCl, 20 itiM phospluiLe 

buffer, pH 7.0 with a VirTis tissue homogenizer at high speed for two 

minutes and at low speed for eight minutes. The homogenate was 

stirred for 30 minutes and then centrifuged at 20,000 x g for 15 

minutes. The resulting pellet was extracted twice with the same buffer. 

The three supernatants were pooled and made to 70% saturation by adding 

solid ammonium sulfate [(NH^)2^0^  and kept at 4°C. After one hour 

the mixture was centrifuged at 30,000 x g for 20 minutes. The super

natant was discarded and the pellet suspended in 0.2 N NaCl, 5 mM 

phosphate buffer pH 7.0 and dialysed against distilled water for 2 days.

The dialysates were centrifuged at 20,000 x g for 15 minutes. 

The supernatant fraction was designated as albumin and the pellet as 

globulin. The globulin fraction was further suspended in 0. 2 M NaCl,

5 mM phosphate buffer pH 4.5 and kept stirring overnight at 6 C. The 

globulin suspension was centrifuged at 3,000 x g for 10 minutes. The 

pellet was washed twice with the same suspension buffer and centrifuged. 

The three supernatants were pooled and dialysed against distilled water 

for two days. The material precipitated during dialysis is vicilin.

The remaining pellet from the globulin fraction was suspended in 0. 2 

M NaCl, 5 mM phosphate buffer, pH 7.0 and dialysed against distilled 

water for two days. The dialysate was centrifuged at 20,000 x g for 

15 minutes. This fraction is legumin. Legumin and vicilin were stored 

at -10“C or lyophilized and stored at -10°C, as necessary. The result

ing three fractions, viz., albumin, legumin, and vicilin were used for 

further characterization. The temperature was held at 4°C during all 

the protein isolation steps.
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Protein determination. Protein content in different fractions 

(Total protein, albumin, globulin, legumin and vicilin) was determine! 

by the method of Lowry et al., (1951) with Bovine Serum Albumin as a 

standard.

Gel electrophoresis. Gel electrophoresis was performed accord

ing to the method of Davis (1964). The 7.5% gels (6 x 90 mm) were pre

pared by mixing 4 ml of Tris-HCl buffer (3.63% Tris, 4.8% 0.1 N HCl, 

0.046% N, N, N', N'-tetramethyl ethylenediamine, pH 8.9), 8 ml of 

acrylamide solution (3,0% acrylamide, 0.08% N, N'-methylene bisacrylamide, 

0.0015% potassium ferricyanide jTKg Fe(CN)gJ , 16 ml freshly prepared 

ammonium persulfate (0. 14%) and 4 ml of deionized water. The mixture 

was deaerated and pipetted into plexiglass tubes and allowed to poly

merize. The upper and lower chambers of the electrophoresis apparatus 

were filled with reservoir buffer (0.576% glycine, 0.12% Tris, pH 8.3). 

Two to three drops of bromophenol blue were added to the upper reservoir 

buffer. The cathode was connected to the upper chamber and the anode 

to the lower chamber.

The protein samples suspended in 0.2 M NaCl, 20 mM phosphate 

buffer, pH 7.0 were made to 5% sucrose concentration and 100 to 200 pig 

of protein applied per gel. Electrophoresis was run at a constant 

current of 4 m.A/tube for 2 hours or until the tracking dye reached 

approximately one centimeter above the bottom of gel. After electro

phoresis the gels were stained with 1% Amido black stain in 7.5% 

acetic acid for one hour. The gels were destained electrophoretically 

with 7.5% acetic acid. The gels were scanned in a Gilford instrument 

linear transport system at 620 nm.
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Sodium dodecyl sulfate (SDS) gel electrophoresis. The proteins 

were dissociated essentially by the method of Palmiter et al., (1971).

The protein was precipitated from solution by the addition of an equal 

volume of 10% trichloroacetic acid. The protein precipitate was 

collected by centrifugation and washed twice with 5% tichloroacetic acid. 

The TCA precipitated protein was dissociated by mixing the sample with 

a glass rod for 1 to 5 minutes, while heating in a boiling water bath, 

in a freshly made solution containing 1.2% of Tris (pH unadjusted),

1.5% of dithiothreotol, 1.0% sodium dodecylsulfate and 20% glycerol to 

give a final protein concentration of 2 mg/ml.

The sample was applied to the top of an acrylamide gel (6 x

90 mm) made by the procedure of Weber and Osborn (1969). The gel solu

tion was made by mixing 15 ml of reservoir buffer (3.86% Na2HP04, 0.78% 

NaHPO^, 0.2% sodium dodecyl sulfate pH 7.1), 10 ml of acrylamide solu

tion (11.1% acrylamide, 0.3% N, N'-methylene bisacrylamide), 0.025 ml of 

N, N, N', N'-tetramethylenediamine and 1.5 ml of freshly made ammonium 

persulfate (15 mg/ml).

The reservoir chambers were filled with reservoir buffer after

diluting 1:1 with deionized water and the sample was laid over the gels

and electrophoresed in a Quickfit-Instruments electrophoresis apparatus. 

The cathode was connected to the upper chamber and the anode to the 

lower chamber. A voltage of 2 mA/tube were applied for the first 20 

minutes, then the amperage was increased to 10 mA/tube. Total running 

time was about 4 hours. The gels were removed from the plexiglass and 

fixed in 20% sulfosalicylic acid for 16 to 18 hours at 40°C and stained 

with 0. 25% Coomasie blue in water for 3 hours. The gels were destained 

with repeated washings of 7.5% acetic acid, at 40°C for 2 days and
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scanned in a Gilford linear transport system at 620 nm.

Neutral and amino sugars. Sixty milligrams of protein were 

hydrolysed with 1 N HCl for 1 hour, in sealed tubes in an autoclave at 

124°C. After hydrolysis the samples were evaporated in a rotary 

evaporator vacuo and the residues were taken up in 2 ml of 0.3 N HCl 

and applied to a column (8 x 70 mm) of Dowex 50 (200, H^ form) resin.

The sugars were eluted with a total volume of 20 ml, of 0.3 N HCl in 

2 ml fractions (Gardel, 1953).

The neutral sugar content in the initial 3 fractions was 

determined by the Anthrone-Sulfuric acid method of Yemm and Willis (1954) 

The remaining fractions were used for amino sugar determination. The 

amino sugars were estimated by the modified Rondole-Morgan method (1955). 

The eluates were neutralised to the phenolpthalein end point. Then 

1 ml of acetylacetone reagent (2% acetyl acetone in 0.5 N NagCO^) was 

added. The samples were heated in boiling water for 20 minutes and 

then cooled to room temperature. One ml of Ehrlich's reagent (0.8 gm 

recrystalised p-dimethylaminobenzaldehyde in 30 ml ethanol and 30 ml 

concentrated HCl) was added and heated for 10 minutes at 60 to 65°C; 

cooled and the optical density was read at 530 nm.

Identification of sugars. The proteins were hydrolysed as 

described earlier and eluted through the column. The eluants were 

pooled and concentrated. One hundred microliters of concentrated 

samples were spotted on Whatman No. 1 chromatogram paper, 2.5 inches 

apart and separated by single dimensional descending chromatography 

using the solvent system n-propano1-ethyl acetate-water (7:4:2) as
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recommended by Koshiyama (1966). After 18 hours the paper was dried 

and chromatographed once again in the same direction. The papers were 

dried at 90°C for 5 minutes and sprayed with alkaline acetyl acetone 

reagent[ 0.5 ml of solution B (5 ml 50% aquous KOH in 20 ml ethanol) 

in 10 ml solution A (1% acetyl-acetone in butanol)] and dried at 105 C 

for 5 minutes. The papers were again sprayed with Ehrlich's reagent 

(1 g p-dimethylaminobenzaldehyde in 30 ml ethanol and 30 ml concen

trated HCl and diluted with 180 ml butanol before use). The Rf values 

were calculated and compared with the standard sugars (Patridge,

1948).

Characterization of ^^e-glucosamine labelled protein. This 

study was aimed to determine the sugar content of legumin and vicilin 

subunits. Five microliters (1 ^c) of ^‘̂C-glucosamine (specific activity 

58 mci/ra mole) were injected into each cotyledon of peas still in the 

pod attached to the plant and incubated for 6 hours in the light. The 

cotyledons were collected and homogenized, and protein isolated and 

fractionated as described earlier.

^^C-glucosamine labelled legumin and vicilin were dissociated 

with sodium dodecyl sulfate (SDS) and dithiothreotol, and subjected to 

SDS gel electrophoresis as described earlier. After optical scanning 

the gels were frozen with dry ice and the gels were transversely sec

tioned into 1 mm thick slices by means of a Mickel gel slicer. The 

slices were placed in the scintillation vials and 1 ml of solution (con

taining 10% piperidine, 1 irM EDTA in distilled water) was added and 

dried in an oven at 60°C. After 18 hours or after complete evaporation,

0. 5 ml of water was added to each vial and the gel slices were allowed



23

to hydrate. After one hour 12 ml of scintillation fluid (8 g PPO in 1 

liter Triton x-100 and 2 liters scintillation toluene) were added. 

Subsequently, the radioactivity in the slices was determined on a 

Beckman LS-lOO liquid scintillation counter.

The presence of radioactivity in glucosamine of the protein 

was confirmed by hydrolysing l^C-glucosamine labelled legumin and 

vicilin with IN HCl. The hydrolysates were passed through the Dowex 50 

(200, form) resin and the sugars were separated by paper chromato

graphy as described earlier. The chromatographed strips were cut into 

one inch long pieces and each piece was further cut into smaller pieces 

and placed in scintillation vials. The cut pieces were eluted with one 

ml of water and the associated radioactivity was measured. The radio

activity was compared with the Rf values of standard and the sugars 

with which the radioactivity was associated were determined.

The influence of cycloheximide on incorporation of amino sugars 

and neutral sugars into protein. Pea pods were chilled immediately 

after harvest. Cotyledons were sliced to 1 to 2 mm thickness and kept 

at 4°C. The cotyledon slices were rinsed twice with 0.02 M citrate 

buffer, pH 5.5. Sixteen cotyledon slices were transferred into 5 ml 

incubation medium containing ^^C-glucosamine or ^^C-mannose and %-amino 

acids with and without cycloheximide (50 p,g/ml) in 0.02 M citrate buffer, 

pH 5. 5.

The cotyledon slices were incubated in 25 ml flasks, in a 

shaker bath at 30°C for 4 hours. After 4 hour incubation, the slices 

were rinsed thoroughly with cold deionized water and homogenized. The 

protein extraction and fractionation was carried out as described
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earlier. The experiment was performed in two replications. Aliquots 

were taken from protein fractions and counted for radioactivity in a 

Beckman LS-lOO Scintillation counter.

Preparation of crude enzyme extract. Pea seeds were grown 

in sterile vemiculite in the dark. The cotyledons were obtained from 

the seedlings on different days after germination. After removing the 

seed coat and embryo-axis, enzyme extracts were obtained by homogenizing 

the cotyledons in a VirTis homogenizer, with 0. 02 M sodium phosphate 

buffer, 5 irM 2-mercaptoethanol, pH 7.2 or 0.02 M sodium phosphate buffer, 

pH 7.2 using a tissue to buffer ratio of 1:4 (W/V). The homogenates 

were squeezed through a layer of cheese cloth and miracloth (Calbiochem) 

and centrifuged at 20,000 x g for 20 minutes. Protease activity in uhe 

supernatant was determined as described below.

Protease assay. Proteolytic activity was assayed using ^H- 

albumin or legumin or ^H-vicilin of pea cotyledons as substrate.

One ml of crude enzyme extracts were incubated with 0.2 ml ^H-legumin 

(4.4 X 10”^cpm/ml) or 0.2 ml ^H-vicilin (2.7 x 10“^ cpm/ml) or 0.5 ml 

^H-albumin (1.1 x lO'^cpm/ml) and 1.0 ml of 0.2 M sodium citrate buffer, 

pH 5.0, in a shaker bath at 40°C for 3 hours. The reaction was termin

ated by the addition of 0.8 ml (in ^H-legumin and ^H-vicilin) and 0.5 ml 

(in ^H-albumin) of 1% casein, pH 7.0, followed by 1.0 ml of 20% tri

chloroacetic acid, to give a final volume of 4.0 ml. The reaction which 

was stopped with 20% TCA immediately after the addition of enzyme, 

served as the zero time control. After addition of TCA, the samples 

were kept overnight at 6°C and the TCA insoluble material was removed
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by centrifugation. One ml aliquot was taken from the TCA soluhLe 

supernatant and the radioactivity was measured.

Effect of pH. The effect of various pH’s was determined by 

incubating the enzyme as described earlier, except that reaction 

buffers of different pH's were used. For reaction buffer from pH 3.0 

to 6.0, 0.2 M sodium citrate buffer was used, while from 6.5 to 9.0,

0.2 M sodium phosphate buffer was used.



CHAPTER IV 

RESULTS AND DISCUSSION

Characterization of Seed Proteins 

Extraction of mature dry peas with 1 M NaCl and precipitation 

of the solubilized protein, with ammonium sulfate indicated that there 

were 14,2 mg of protein per cotyledon. Other analyses in which the 

total protein content of the pea cotyledons was measured, indicated that 

the protein content was 15.7 mg per cotyledon. Thus saline extraction 

and ammonium sulfate precipitation effectively recovered over 90% of the 

protein in peas. Fractionation of the protein indicated that 40% was 

water-soluble albumin with the remainder being saline-soluble globulin. 

The globulin fraction was further subdivided into legumin and vicilin. 

The legumin, a globulin fraction, which is insoluble in 0.2 M NaCl 

at pH 4.5, was the major component. Globulin fractionation indicated 

that in the mature seed the ratio of legumin to vicilin was about 3:1 

by weight (Table I). It was consistently found that during the globulin 

fractionation, the sum of the vicilin and legumin component did not 

total the globulin fraction. The reason for this discrepancy is not 

known, but may be due to the incomplete precipitation of the vicilin, 

following dialysis of the relatively dilute solution. During the 

fractionation procedure the legumin fraction became less soluble in 

dilute saline. The final legumin fraction was characteristically light

green in color whereas vicilin was white.
26
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TABLE I

Protein content of different fractions of 
cotyledon extracts from mature peas.

mg per cotyledon

TOTAL PROTEIN ALBUMIN GLOBULIN LEGUMIN VICILIN

14,20 mg 4.5 mg 9.20 mg 6.70 mg 2.09 mg
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Gel Electrophoresis

When the albumin fraction was subjected to acrylamide gel 

electrophoresis at pH 8.3, it was found to be composed of at least 13 

components (Fig. 2). This is expected, since it has been indicated 

(Danielson, 1956) that the albumin fraction contains the enzymatic 

proteins. Others have demonstrated, the presence of many components 

in the albumin fraction, of bean (Sayonova et al., 1971) and field 

pea (Pisum arvense) (Kretovich et al., 1954).

The legumin component of globulin produced one slow migrating 

band following gel electrophoresis. In contrast to the distinct pro

tein bands produced by electrophoresis of the albumin fraction, the 

legumin band was diffuse suggesting some heterogeneity (Fig, 2;.

Others (Danielson, 1950; Brand and Johnson, 1956; Johnson and Richards, 

1962) have estimated the molecular weight of legumin from peas to be 

331,000 to 400,000. Vicilin migrated more rapidly than legumin, during 

gel electrophoresis and produced a much more diffuse band. The molecu

lar weight of vicilin from peas has been estimated to be 186,000 

(Danielson, 1950).

These high molecular weights and diffuse banding of the 

proteins after electrophoresis suggest that the reserve proteins may 

be heterogeneous or composed of subunits. The subunit components of 

the proteins was demonstrated by electrophoresis in SDS gels, of the 

products arising from treatment of the proteins with sodium dodecyl 

sulfate (SDS) and dithiothreotol. Legumin was found to produce 3 major 

bands and two minor bands, while vicilin yielded 5 major bands (Fig. 3). 

Grant and Lawrence (1964) indicated that the legumin and vicilin
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V

ALBUMIN LEGUMIN VICILIN

Fig. 2. Gel electrophoresis of albumin, legumin and vicilin from 
mature pea cotyledons.
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LEGUMIN VICILIN

Fig. 3. Sodium dodecyl sulfate gel electrophoresis of legumin and 
vicilin from mature pea cotyledons.
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fractions from peas, could be dissociated into 6 and 4 subunits respect

ively. The legumin from peas appears to be similar to that derived 

from Vicia faba, which also dissociated into three major and two minor 

subunits. However, Bailey and Boulter (1970) consider that the two 

minor subunits are impurities or by-products of disulphide coupling 

reactions between the subunits, due to the absence of sulfhydryl block

ing agents. However, the evidence from the current study suggests 

that the two minor components might be real subunits. If these two 

minor subunits were artifacts, they would be expected to occur in all 

of the preparations made in the same manner. However, as is indicated 

later, the two minor subunits which migrate slowly during SDS gel 

electrophoresis, are not present in legumin preparations from young 

developing cotyledons and are broken down independently during germin

ation. The nature of linkage between the component subunits has not 

been established. In some instances sulfhydryl moieties of cysteine 

residues, in component polypeptide chains are believed to interact and 

form disulphide -S-S- bridges between the component subunits. However, 

the low cysteine content of the globulins (Grant and Lawrence, 1964) 

tends to eliminate the possibility of cross linking in this manner. 

Similarly, the low cysteine content and the dissociation of the protein 

in 1.5% dithiothreotol would restrict the possibility of cross linkages 

between subunits, making it unlikely that the minor subunits are the 

products of recombination.

Vicilin produced five major subunits after dissociation with 

SDS and DTT. Among the five subunits, component II predominates, while 

subunit V is present in lowest amounts. However, in contrast, Wright
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and Boulter (1972) and Ericson and ChrLspeels (1973) reported that the 

vicilin from Vicia faba and Phascolus aureus contains four suhuniLs.

Glycopeptide

Analysis of the material resulting from hydrolysis of legumin 

and vicilin in 1 N HCl demonstrated the presence of amino sugars and 

neutral sugars. It was found (Table II) that legumin contained I,25% 

neutral sugars and 0.1% amino sugars, while vicilin contained 0.3% 

neutral sugars and 0.2% amino sugars. The levels are considerably 

lower than those usually encountered in animal tissue and are less 

than that reported for the glycoprotein component of Phaseolus vulgaris 

(Pusztai and Watt, 1970; Racusen and Foote, 1971). However, they more 

nearly approach those reported by Ericson and Chrispeels (1973) in 

Phaseolus aureus, and Pusztai (1964) originally indicated that peas 

were lower in glucosamine content than many other seeds. In many 

glycopeptides the attachment of the sugars to the peptide occurs through 

acetyl glucosamine and asparagine residues, with the neutral sugar 

components attached as oligosaccharides to the glucosamine (Spiro, 1970). 

Pusztai (1966) has indicated that the glycoprotein from Phaseolus 

vulgaris was composed of D-glucosamine and D-mannose with small amounts 

of arabinose, xylose and fucose. Koshiyama (1966), Racusen and Foote 

(1971) and Ericson and Chrispeels (1973) have similarly detected the 

occurrence of glucosamine and raannose in glycopeptides from soybeans 

(Glycine max), beans (Phaseolus vulgaris) and Phaseolus aureus respect

ively. The glucosamine is in all probability present in the glyco

peptides as acetyl glucosamine, in which the acetyl group is released 

during acid hydrolysis. In the present study it was found that the
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TABLE II

Percent sugar content of protein 
from mature pea cotyledons

LEGUMIN :

Neutral Sugars

1. 25%

Amino Sugars 

0. 10%

VICILIN:

Neutral Sugars

0.32%

Amino Sugars 

0, 25%
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hydrolysates of legumin contained glucose, mannose and glucosamine, 

while vicilin hydrolysates contained mannose and glucosamine (Table III). 

Thus the reserve components from peas appear to be similar but not 

identical to those from other legumes.

On the basis of the neutral sugar and amino sugar analysis, 

it appears that vicilin has several glucosamine residues with relatively 

short chain oligosaccarides attached. In contrast, the lower amino 

sugar and greater neutral sugar content of legumin suggest that this 

glycopeptide has fewer glucosamine residues with longer chain oligo

saccharides attached.

Characterization of ^^C-Glucosamine Labelled Protein

The low amino sugar and neutral sugar content of these reserve 

proteins compared to those reported in glycopeptides of animal tissues, 

might be due to the fact that not all of the subunits in the complex 

reserve proteins are glycopeptides. To investigate this possibility 

the pea proteins during different days of seed development were 

labelled with ^^C-glucosamine and recovered legumin and vicilin were 

dissociated with SDS and dithiothreotol and separated by SDS gel- 

electrophoresis. The gels were sliced and the distribution of radio

activity determined. The results (Fig. 4) show that most of the 

radioactivity in legumin from 18 day peas was associated with the sub

unit V, suggesting that in early stages of development most of the 

glucosamine is incorporated in the subunit V. At later stages of seed 

development the incorporation of glucosamine was still predominantly 

occurred in the subunit V.

In contrast, the radioactivity from glucosamine was incorporated
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TABLE III

Sugar composition of legumin and vicilin

1. LEGUMIN:

Neutral Sugars:

Glucose

Mannose

Amino Sugars:

Glucosamine

11. VICILIN:

Neutral Sugars:

Mannose

Amino Sugars:

Glucosamine



Fig. 4. The distribution of radioactivity following SDS gel electrophoresis of legumin 
from cotyledons, injected with 1‘̂C-glucosamine during different days of seed 
development (18, 21, and 24 day).
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into all the subunits of vicilin (Fig. 5), from different days of seed 

development suggesting that all the subunits are glycopeptides and 

glucosamine is incorporated in all the subunits from the early stages 

of development. However, subunits I and II appear to incorporate the 

greatest amount of radioactivity. This is in agreement with the 

analytical data which indicated more glucosamine in vicilin than legumin.

That the radioactivity associated with the legumin and vicilin 

components was due to glucosamine and not products arising from its 

metabolism, was confirmed by hydrolysing the proteins with 1 N HCl.

The hydrolysates were passed through Dowex 50 resin and the eluates 

were concentrated and the sugars were separated by paper chromatography 

as described in Methods, and compared with the standards to identify 

the sugars with which the radioactivity was associated. Such experi

ments indicated that 70% of the radioactivity in the labelled protein 

was associated with glucosamine.

Time of Attachment of Carbohydrate Units to the Peptide

Since it has been established that pea reserve proteins are 

glycoproteins and that all the subunits are not enriched with carbo

hydrates, the next question which arose was whether the carbohydrates 

were attached during the peptide synthesis or after the peptide 

synthesis.

The pea cotyledon slices were incubated in a medium containing 

glucosamine or ^^C-mannose and %-amino acids with and without 

cycloheximide. Cycloheximide inhibits protein synthesis on 80S ribo

somes. It was observed (Table IV) that amino acid incorporation into 

legumin was inhibited by 95 to 100% by cycloheximide whereas
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TABLE IV

Influence of cycloheximide on incorporation of ^n-amino acids and 
l^C-glucosamine or ^‘̂C-mannose into protein

R I
CPM

R I I
14c 3H 14c

LEGUMIN:

^-amino acids + ^^C-glucosamine 54460 23730 33600 17430
%-amino acids + ^^C-glucosamine + 35700 29960 840
cycloheximide (50 ^g/ml) (35%) (100%) (11%) (95%)

^H-amino acids + l^C-mannose 13580 20650 10360 9233
%-amino acids + l^C-mannose + 8680 1610 6160 828
cycloheximide (50 ug/ml) (36%) (92%) (40%) (91%)
VICILIN:

^H-amino acids + ^^C-glucosamine 3240 1822 2100 1037
^H-amino acids + ^^C-glucosamine + 840 106 720 103
cycloheximide (50 pg/ml) (74%) (94%) (66%) (90%)
% -amino acids + -mannose 1440 1530 1122 1319
^H-amino acids 4- ^“̂C-mannose + 600 94 602 104
cycloheximide (50 ag/ml) (58%) (94%) (46%) (92%)

Figures in parenthesis indicate percent inhibition over the control.

u>vo
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glucosamine incorporation was inhibited by only 11 to 35%. Thus 

glucosamine incorporation was less sensitive to inhibition by cyclo

heximide than amino acid incorporation. Similarly amino acid incorpor

ation was inhibited by 91 to 92% by cycloheximide; however, mannose 

incorporation was inhibited by only 36 to 40%.

Amino acid incorporation in vicilin was greatly inhibited 

(90 to 94%) by cycloheximide. However, the glucosamine and mannose 

incorporation was inhibited by 66 to 74% and 40 to 58% respectively. 

Here again, it is apparent that amino acid incorporation is more 

sensitive to inhibition by cycloheximide than is the incorporation of 

glucosamine and mannose.

If carbohydrate attachment occurred during peptide synthesis, 

inhibition of peptide production should prevent carbohydrate incorpora

tion into the proteins. However, the data indicate that this is not 

the case and it is concluded that the carbohydrate residues are 

attached after the complete peptide was synthesized. Significantly, 

the incorporation of glucosamine and mannose into vicilin was inhibited 

by cycloheximide to a greater extent than was the incorporation of 

carbohydrates into legumin. Since the incorporation of sugars into the 

protein depends on the availability of acceptor sites, it is clear that 

the amount of sugar incorporated will depend on the rate of protein 

synthesis. In this regard it was observed (Table IV) that the amino 

acid incorporation into legumin was ten times higher than that into 

vicilin, suggesting that legumin synthesis exceeds that of vicilin. 

Thus, a low rate of synthesis of vicilin will reduce the acceptor sites 

present for glycosylation and this inhibition of protein synthesis will



41

effectively reduce the glycosylation. The observation that the proteins 

are glycosylated after peptide chain synthesis is consistent witu the 

observation by Lew and Shannon (1973) indicating that in horse radish 

peroxidase the carbohydrate units are attached after peptide synthesis.

Seed Development

Changes in protein content. Cotyledons of different ages were 

obtained from developing pods, homogenized and the protein was fraction

ated as described in Methods. The findings (Fig. 6) show that a small 

amount of protein was present (0.32 mg/cotyledon) at early stages (12 

days after flowering) of seed development. However, maximum protein 

deposition occurred between day 18 and 27 after flowering. When the 

protein was fractionated and individual components studied, it was 

observed (Fig. 6) that albumin synthesis occurred up to day 24 and 

after day 24 albumin deposition declined. However, globulin deposition 

was continued up to day 27. It appears that legumin and vicilin were 

synthesized independently with legumin deposition predominating the 

vicilin deposition. This contrasts with Phaseolus aureus where vicilin 

is the principal globulin (Ericson and Chrispeels, 1973). Deposition 

of legumin and vicilin occurred up to day 27.

Similar increases in albumin and globulin fractions during 

seed development were recorded by Danielson (1952) in peas, Bailey 

et al., (1970) in Vicia faba, and Klimenko (1972) in peas, lentil and 

Cicer arietinum. Millered et al., (1971) found that in Vicia faba, 

legumin was detected in young cotyledons and there was a sharp increase 

in legumin accumulation during cotyledon development. Wright and 

Boulter (1972) reported that vicilin was formed prior to legumin in
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Vicia faba although the rate of legumin synthesis was faster, so that 

in the mature seed the ratio of legumin to vicilin was about 4:1 by 

weight.

The present observation that globulin content exceeded the 

albumin content in the young cotyledons, is similar to that reported 

by Danielson (1952). However, Beevers and Poulson (1972) reported 

that initially the albumin content was greater than that of globulin. 

These discrepancies may be attributed to a more rapid maturation of the 

peas in Oklahoma compared to Illinois and a modification in the extrac

tion procedure. By using 1 M NaCl in comparison to the 0.5 M NaCl, 

used Beevers and Poulson (1972) the fractionation of albumin and globu

lin by dialysis against distilled water was much more efficient.

The albumin, legumin and vicilin fractions were further 

investigated by gel electrophoresis, to determine if there are any 

changes in the composition of protein fractions during seed development.

Gel electrophoresis of albumin. When the albumin prepared from 

cotyledons of different developmental age were subjected to gel electro

phoresis, considerable variation in the albumin composition was found 

(Fig. 7). Some protein bands became less prominent, while other new 

protein bands appeared. Changes in the albumin composition occurred 

up to day 24, during which period albumin deposition was active. After 

day 24 no great alterations in composition were noticed.

Since it was postulated that the albumin fraction contains 

the enzyme proteins, changes in composition are to be expected 

(Danielson, 1956), reflecting changes in enzyme composition associated 

with changes in metabolism of the developing cotyledon.



Fig. 7. Changes in the albumin composition during different days of seed development
(18, 21, 24, 27, 30 and 33 day),
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SDS gel electrophoresis of legumin and vicilin. When legumin 

from developing cotyledons was dissociated by SDS and DTT and investi

gated by SDS gel electrophoresis, it was found (Fig. 8) that the subunit 

composition of legumin changed during seed development. It appears 

that among the five subunits of legumin, subunit V was produced earlier 

followed by subunit III. By day 24 all the five subunits that are found 

in mature cotyledons were present. After day 27 there was not much 

change in the subunit ratios. However, Wright and Boulter (1972) 

reported that in Vicia faba subunit structure of legumin did not change 

during development.

Like legumin, vicilin also showed changes in the subunit 

structure during development (Fig. 9). It was found that subunit II,

III and IV were present in vicilin preparations from young cotyledons. 

All the five subunits found in vicilin from mature cotyledons were 

present by day 24, again after day 27 there was not much change in the 

subunit composition. These findings are similar to those of Wright and 

Boulter (1972), who found that the subunit structure of Vicia faba 

vicilin changed during development. However, as indicated previously 

vicilin from Vicia faba contains only 4 subunits.

Changes in sugar content of protein during seed development.

The sugar content of legumin and vicilin from developing pea seeds 

was studied, after hydrolysing the protein with 1 N HCl. The study 

revealed (Table V) that legumin from young cotyledons (15 day) had a 

lower neutral sugar content (0.85%) than from mature cotyledons (1.2%), 

suggesting an increase in neutral sugar content during development. 

However, very small changes were noticed in amino sugar content



Fig. 8. Changes in subunit composition of legumin during different days of seed development
(18, 21, 24, 27, 30, and 33 day).
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Fig. 9. Changes in subunit composition of vicilin during different days of seed development
(18, 21, 24, 27, 30, and 33 day).
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TABLE V

Changes in percent sugar content of protein during pea seed development

DAYS
LEGUMIN VICILIN

Neutral Sugars Amino Sugars Neutral Sugars Amino Sugars

15 0.856 0. 100 1.020 0.180

18 1. 326 0.082 0.930 0. 250

21 1.410 0.078 0. 601 0. 270

24 1.360 0.056 0.260 0. 177

27 1.440 0.066 0. 250 0.184

30 1.070 0.066 0. 290 0.150

33 1.250 0.073 0.320 0.254
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(0.1% to 0.07%) of legumin during development, revealing that there is 

not much change in amino sugar content.

In contrast to legumin, the neutral sugar content of vicilin 

decreased (from 1.02% to 0.32%) and amino sugar content increased 

from 0.18% to 0.25% during seed development. These results show that 

during seed maturation incorporation of neutral and amino sugars occurs 

at different rates. An increase in neutral sugar content might be 

attributed to the elongation of oligosaccharide chains on the protein, 

while a decrease might be due to breakdown of oligosaccharide chains.

It appears that in legumin elongation of oligosaccharide chains occurs 

during seed development, since there was an increase in neutral sugar 

content, while the amino sugar content remains more or less constant. 

However, in vicilin there is an increase in amino sugar content. This 

may be due to the addition of shorter chain oligosaccharides to the 

peptides during seed development and a shortening of the oligosaccharide 

chains initially associated with the proteins. Alternatively, the 

oligosaccharides associated with subunit I and IV (i.e., the subunits 

produced later during seed development) may have a different composition 

(i.e., high glucosamine to neutral sugar content) than that of subunits 

II, III and V developed early in seed development.

Seed Germination

Changes in protein content. The pattern of protein breakdown 

during seed germination was investigated, by following the changes in 

protein composition in cotyledons of germinating seeds. It was found 

(Fig. 10) that protein breakdown was slow (17%) during the first 4 days 

and from the 5th day onward rapid protein breakdown occurred. By day
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16, 92% of the protein was utilized indicating that rapid protein 

hydrolysis occurred between day 5 and 16.

Among the various fractions globulin depletion occurred 

earlier than albumin depletion. During the first four days of germina

tion, globulin hydrolysis was slow (16%). However, after 5 to 6 days 

the globulin breakdown increased rapidly and by the 16th day most of 

the globulin (97%) was utilized. Legumin and vicilin were broken down 

at a similar rate and both reached a low level (0.22 and 0.05 mg per 

cotyledon respectively) by day 16. The albumin content decreased 

more slowly than globulin during early stages of germination, but by 

day 16 most of the albumin (93%) had been disappeared.

These results confirm the findings of Danielson (1951) who 

indicated that during pea seed germination, there was a pronounced 

breakdown of globulins between days 5 to 10. Vicilin and legumin were 

broken down at the same rate, while the decrease in albumin was slow 

and constant. Similarly Juo and Stotzsky (1970) reported that in kidney 

beans (Phaseolus vulgaris), the globulin and basic proteins were 

hydrolysed more rapidly than albumins.

Gel electrophoresis of albumin. The breakdown of protein 

fractions during germination was further investigated by gel electro

phoresis. The albumin composition starts to change after day 2 with 

the most dramatic changes occurring after day 4 (Fig. 11). Some 

components decreased during germination, and in addition new peaks 

were produced. These changes in albumin composition might be expected 

because of the enzymatic nature of albumins. The enzyme components 

will change with the altered metabolic activity of the seed during



Fig. 11. Changes in albumin composition during different days of seed germination (0, 2, 4,
6, 8, 10, 12, and 14 day).
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germination. Juo and Stotzsky (1970) also found the disappearance 

of a number of components of albumin fraction in beans, during early 

stages of germination with the appearance of new components after 8 

days of germination.

Gel electrophoresis of legumin and vicilin. On gel electro

phoresis, legumin shows one major band. It was observed (Fig. 12) that 

there is a change in the electrophoretic mobility of legumin fractions, 

prepared from peas at successive stages of germination. In legumin 

there is increased movement toward the anode (positive pole). This 

observation suggests that it is becoming more negatively charged 

during germination. This increase in negative charge might be due to 

the loss of amino groups from the legumin by the action of deaminases 

or peptidases.

After electrophoresis vicilin produces a broad diffuse band and 

it is relatively difficult to assess the electrophoretic mobility. 

However, like legumin, vicilin also showed (Fig. 13) changes in the 

electrophoretic mobility during germination. Unlike legumin, the 

migration of vicilin toward the cathode (negative-pole) decreased during 

germination, revealing that the protein is becoming more positively 

charged. This could be attributed to the loss of carboxyl groups by 

the action of decarboxylases or peptidases giving a more positive charge 

to the protein. Catsimpoolas et al., (1968) also found changes in 

electrophoretic mobility of IIS and 7S components of soybean (Glycine 

max) reserve protein during germination.

SDS gel electrophoresis of legumin. It was found (Fig. 14) that



Fig. 12. Changes in the electrophoretic behevior of legumin during different days of
seed germination.
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Fig. 13. Changes in the electrophoretic behavior of vicilin during different days of
seed germination.
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the subunit composition of legumin changed during germination.

Subunit III disappeared early during germination, while subunit V was 

still present 16 days after germination. It appears that subunit III 

might be more susceptible to hydrolysis than subunit V. Significantly 

subunit V is the component which incorporated the greatest amount of 

^^C-glucosamine.

SDS gel electrophoresis of vicilin. In case of vicilin major 

changes in the subunits occurred after day 4 of germination (Fig. 15). 

Among the subunits, IV and V were hydrolysed slowly and can be seen 

even in late stages of germination, while subunit I was utilized by 

day 6 followed by II and III. Appearance of a new minor subunit was 

observed on day 10, indicating the possibility of existence of high 

molecular weight intermediate products of hydrolysis.

Changes in carbohydrate content of legumin and vicilin during 

seed germination. The carbohydrate content of legumin and vicilin 

prepared from cotyledons at various stages of germination was determined 

and it was found (Table VI) that in legumin both neutral and amino 

sugar content increased (from 1.63% to 10.007» and 0.0787» to 0.1357» 

respectively) during germination. Similarly, in vicilin also neutral 

sugar content increased from 0.367» to 2.97» and amino sugar content from 

0.247» to 0.967». However, many fluctuations in carbohydrate content 

were noticed during different days of germination. The increase in 

both neutral and amino sugar content indicates that during germination 

non-glycopeptides are depleted more rapidly than glycopeptides. This 

preferential cleavage of non-glycoprotein could produce a glycoprotein



Fig. 14. Changes in the subunit composition of legumin during different days of seed
germination.
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Fig. 15. Changes in the subunit composition of vicilin during different days of seed
germination.
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TABLE VI

Changes in percent sugar content of protein during pea seed germination

DAYS
LEGUMIN VICILIN

Neutral Sugars Amino Sugars Neutral Sugars Amino Sugars

0 1.630 0.078 0.360 0.241

2 1.430 0.080 0.710 0. 230

4 2.860 0.083 1.112 0.180

6 1.410 0.091 2.060 0.200

8 1.456 0.110 2.270 1.015

10 2.516 0.116 2.080 0.600

12 2.330 0.125 2.970 0.960

14 10.153 0.135 1.080 0. 280
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rich protein and give rise to the observed increase in sugar content.

It thus appears that glycopeptides are more resistant to hydrolysis 

than non-glycopeptides. Subunit V of legumin and subunit II, III, IV 

and V of vicilin which incorporated the greatest amount of ^^C-glucosa- 

mine were hydrolysed slowly during germination to support this idea.

Proteolytic Activity

It is generally believed that during germination the proteins 

are hydrolysed. The enzyme protease is believed to be responsible for

protein breakdown. Most of the characterization of proteases from

germinating seeds has been done with casein, a milk protein, and

haemoglobin as a substrate. In this study attempts were made to use

native substrates in order to better characterize pea proteases, which 

might be found in seed. The substrates used were pea ^H-albumin, 

%-legumin and %-vicilin.

Enzyme extraction and assay procedure. Cotyledons from germin

ating seeds were used for enzyme extraction as described in Methods.

By differential centrifugation it was found that most of the enzyme 

activity is associated with the 20,000 x g supernatant.

The assay conditions were similar to those reported by Beevers 

(1968) except, ^H-albumin, legumin, or ^H-vicilin was substituted 

for casein. One-half to 0.8 ml of 1% casein was added to the reaction 

mix just before stopping the reaction with TGA, to facilitate precipita

tion of protein. The TCA soluble counts were measured and the enzyme 

activity expressed as CPM released per milliliter of enzyme per 3 

hour reaction period.
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Assays were also performed by substituting the grinding buffer 

for enzyme, to ensure that the observed proteolytic activity was not 

due to bacteria or autodigestion. In addition, one drop of toluene 

was added to the reaction mix and test tubes were sealed with parafilm, 

to reduce any possible microbial contamination.

Effect of pH. Pea protease from cotyledons of 13 day old 

seedlings was extracted with and without 2-mercaptoethanol (sulfhydryl, 

-SH) in the grinding medium and incubated in a reaction mix at pH 3.0 

to 9.0. The results revealed that maximum protease activity occurred 

(Fig. 16) at pH 5.0 with all the three substrates, %-albumin, %-legu- 

min and ^H-vicilin. The enzyme extracted with -SH, showed higher 

activity than the one without -SH, suggesting that -SH is necessary for 

activation of the enzyme. Similar -SH dependence for enzyme stimula

tion with all the three substrates was observed. The enzyme showed 

very little activity at either pH extremes. However, when vicilin was 

used as the substrate, it was found that in addition to the optimum 

pH of 5.0 a peak of hydrolytic activity occurred at pH 2.5.

These results demonstrate that the pea protease is capable of 

hydrolysing all three native substrates found in the seed at an optimum 

pH of 5.0 and it is -SH dependent. A similar optimum pH for protease 

activity was noticed by other workers in peas (Mergentime and Wiegard, 

1946; Beevers, 1968) and beans (Pusztai and Duncan, 1971).

Effect of addition and removal of -SH groups in the reaction 

mix. Since it was shown (Fig. 16) that the enzyme activity was greater 

in the cotyledon extracts prepared in the presence of 2-mercaptoethanol,



Fig. 16. Effect of pH on the proteolytic activity with different 
substrates.
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further studies were made to determine whether the-SH requirement was 

limited only to the enzyme extraction or throughout the assay period. 

For this purpose four enzyme preparations were made and used for assay: 

(1) Enzyme A : enzyme extracts prepared with 2-mercaptoethanol in 

grinding medium; (2) Enzyme B : enzyme extracts prepared without 2- 

mercaptoethanol in grinding medium; (3) Enzyme C : enzyme extracts 

prepared with 2-mercaptoethanol in grinding medium, precipitated with 

ammonium sulfate and the precipitate suspended in buffer without 2- 

mercaptoethanol; (4) Enzyme D : enzyme extracts prepared without 2- 

mercaptoethanol in grinding medium, precipitated with ammonium sulfate 

and the precipitate suspended in buffer containing 2-mercaptoethanol.

It was found (Fig. 17) that there is not much increase in the 

activity of Enzyme A, with the addition of additional SH groups in the 

reaction mix, probably due to saturation. Enzyme B which was extracted 

without SH in the grinding medium, showed a greater stimulation than 

Enzyme A upon addition of -SH to the reaction mix. Enzyme C, which was 

prepared from Enzyme A after removing -SH groups from the suspension 

medium, showed maximum stimulation upon addition of -SH to the reaction 

mix. Without addition of-SH to the reaction mix, Enzyme C showed lower 

activity than Enzyme A, indicating that it lost its original activity 

due to removal of -SH from the medium. In contrast. Enzyme D which was 

prepared from Enzyme B, by addition of -SH in the suspension medium, 

showed higher activity than Enzyme B, suggesting that addition of -SH 

in the suspension medium stimulated the enzyme activity. However, no 

further increase in activity was noticed on further addition of more 

SH to the reaction mix indicating a saturation effect.
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This experiment clearly indicated that the presence of -SH is 

not only protecting the enzyme during extraction, but is also required 

for proteolytic enzyme activity. On this basis the protease may be 

characterized as an acid -SH protease.

Effect of -SH concentration. Incubation of enzyme with various 

concentrations of 2-mercaptoethanol indicated (Fig. 18) that increasing 

-SH concentration up to 0.1 M stimulated the enzyme activity, suggesting 

that the enzyme had a rather high -SH requirement.

Proteolytic activity during germination. The cotyledons from 

germinating seeds of various ages were analysed for enzyme activity.

The cotyledons showed (Fig. 19) very little proteolytic activity during 

early stages of germination and no increase in activity was noticed 

during the first two days of germination. However, after day 3 the 

enzyme activity increased very slowly up to day 5 and from day 5 there 

was an 8-fold increase in enzyme activity up to day 15, and then the 

activity declined.

When the proteolytic activity was measured at pH 7.5, no 

appreciable increase in enzyme activity was observed until day 9 and 

after day 9 a 14-fold increase in activity was observed. This activity 

remained more or less constant up to day 15 and then declined. There 

are two possible explanations for this behavior: first, the observed

activity might be the residual activity of the same enzyme. If it is 

considered as residual activity, the pattern of enzyme activity changes 

which occurred at pH 5,0, should have been reflected at pH 7.5 also.

In contrast, no similarities were noticed between the two pH's with
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Fig. 19. Changes in the proteolytic activity during different days of pea seed
germination.
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both legumin and vicilin whose enzyme activity profiles were similar.

The second possibility might be production of new enzyme during the 

later stages (day 9) of germination, having a higher pH optimum. The 

second possibility could be strongly supported since with both legumin 

and vicilin as substrates, very identical enzyme activity profiles at 

both pH 5.0 and 7.5 were observed.

Other studies (Beevers and Splittstoesser, 1968; Beevers,

1968) have indicated an increase in caseolytic activity during germina

tion; however. Young and Varner (1959) indicated that proteolytic 

activity did not increase during the period of germination, when protein 

was being depleted. Beevers (1968) showed that caseolytic activity 

occurred after the onset of rapid depletion of cotyledonary protein and 

the peptidase activity was high in early germination.

The current study showed that very little protein was depleted 

from the seeds up to day 2 after germination, during which period low 

proteolytic activity was observed. However, the proteolytic activity 

slowly increased from day 3 to 5 accompanied by considerable protein 

degradation. Rapid increase in enzyme activity from day 5 to 15 was 

in agreement with the protein hydrolysis data which showed maximum 

protein breakdown between day 6 to 16. After day 16 very little protein 

was left in the cotyledon. Hence it can be suggested from this study 

that pea protease from germinating seeds has the capacity to utilize 

all the three native substrates, it is -SH dependent. The protein 

hydrolysis data during germination is in close agreement with the 

increase in enzyme activity.



CHAPTER V 

CONCLUSIONS

Isolation and fractionation of pea proteins indicated that 

they are composed of two major fractions viz: albumin and globulin, 

the latter of which can be further subdivided into legumin and vicilin. 

Thus the pea proteins consist of characteristic components of legume 

seeds. Globulins constitute 60% of the total protein (Tabic I), and 

the reamining is albumin. In globulins legumin and vicilin distribu

tion is 3:1. Further, investigation of the individual fractions by 

gel electrophoresis indicated (Fig. 2) the presence of numerous proteins 

in albumin, which might be due to its enzymatic nature. However, legumin 

and vicilin gave diffuse bands on electrophoresis (Fig. 2) suggesting 

that they are complex and heterogeneous. On dissociation with SDS 

and DTT, legumin and vicilin showed that they are not simple proteins 

but are made up of subunits (Fig. 3).

The studies directed toward determining the possible glyco- 

peptide nature of reserve proteins indicated that in fact the pea 

proteins are glycopeptides, containing both neutral and amino sugars. 

However, it appears that legumin has a higher neutral sugar content 

than vicilin (TableII), It is possible that legumin has fewer glucosa

mine residues with longer chain oligosaccharides, while vicilin has 

several glucosamine residues with relatively short chain oligosaccharides 

attached.
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The experiments in which cotyledons were injected with ^^C- 

glucosamine indicated that in legumin, subunit V showed the highest 

glucosamine incorporating capacity, even in the early stages (18 days 

after flowering) of development, while in other subunits the incorpora

tion is low, suggesting that only subunit V of legumin is the major 

glycosylated component. In contrast, all the five subunits of vicilin 

showed glucosamine incorporation during all stages of development, 

suggesting that in vicilin all the subunits contain glucosamine and are 

glycosylated. Attempts to determine the time of attachment of carbo

hydrate units onto peptide showed that the carbohydrates are attached 

after the peptide synthesis.

Although seed proteins are composed of different components 

they are not synthesized concomitantly. Developmental studies have 

indicated (Fig. 6) that albumin deposition declined (24 days after 

flowering) earlier than globulin (27 day after flowering), while legumin 

and vicilin deposition occurred independently. Investigation of indivi

dual protein fractions by gel electrophoresis showed (Fig. 7) that the 

albumin composition changed during seed development. This was expected 

because of the enzymatic nature of albumins. Changes in sub-unit composi

tion of legumin and vicilin suggest (Figs. 8 and 9) that these proteins 

are not synthesized as a single unit, but on a subunit basis. Studies 

of the carbohydrate composition of the protein during seed development 

(Table V) indicate that the glycopeptides may have varying carbohydrate 

content.

Studies of seed germination have demonstrated (Fig. 10) that 

globulin depletion occurred earlier than albumin depletion and the
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reserve protein hydrolysis commenced soon after imbibition. Gel- 

electrophoretic investigation (Fig. 11) of albumin showed that its 

composition changed during germination, presumably associated with its 

enzymatic nature, which would change with the changed metabolic 

activity of the seed during germination. Gel electrophoretic investiga

tion of legumin (Fig. 12) and vicilin (Fig. 13) indicated that during 

germination there was a change in electrophoretic mobility of the pro

teins. It appears that legumin becomes more negatively charged and 

vicilin more positively charged. This might be due to the action of 

deaminases or decarboxylases and/or peptidases.

Dissociation with SDS and DTT showed (Figs, 14 and 15) that 

in both legumin and vicilin some subunits were hydrolysed faster than 

others. Significantly the subunits which showed higher ^^C-glucosamine 

incorporation were depleted slower than the others. Hence, it might be 

possible that the subunits rich in carbohydrates might be resistant 

to hydrolysis. Further, the carbohydrate content of legumin and vicilin 

increased (TableVD during germination, indicating a preferential cleav

age of non-glycopeptides over glycopeptides.

Investigations dealing with proteolytic activity of the coty

ledon extracts, from germinating seedlings indicated (Fig, 16) that the 

pea protease is capable of hydrolysing all the three native substrates, 

albumin, legumin and vicilin at an optimum pH of 5,0. It requires the 

presence of sulfhydryl for maximal activity. Hence the pea protease is 

an acid-SH-protease.

The enzyme had a low activity during early stages of germina

tion (5 days), which increased rapidly by day 15 and then declined
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(Fig. 19). This increase in enzyme activity was in close agreement 

with the protein depletion during germination, indicating that active 

protein breakdown synchronizes with the increased enzyme activity.

An Increase in proteolytic activity was noticed at pH 7.5 after 9 days 

of germination. It seems that synthesis of a new proteolytic enzyme 

complement, with a higher pH optimum may occur during later stages 

(after 9 days) of seed germination.
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