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ABSTRACT

The work reported in this dissertation is the result of a joint venture of biomedical 

scientists and engineers for understanding human middle ear mechanics through finite 

element modeling and analysis. The main objective of the research is to explore the 

middle ear dynamics by using an accurate finite element model of the human middle ear.

The research started with developing a systematic and accurate geometric modeling 

method that can be employed to reconstruct the middle ear from the histological sections 

of a human temporal bone in the Computer-Aided Design (CAD) environment. Using the 

method, a solid model of human middle ear was constructed which reveals excellent 

accuracy in geometry.

Then a finite element model of the human middle ear was built by using the 

geometry translated from the CAD model and the published material properties of the 

middle ear system. The finite element model was finalized as the base-line finite element 

model by adjusting physical parameters based on the stapes footplate displacements 

obtained by laser Doppler interferometry measurements. Finally, the accuracy of the 

base-line finite element model was verified by using four sets of published experimental 

measurements. These verifications demonstrate that the base-line model constructed 

using the geometric modeling method developed in this research is adequate in predicting 

the dynamic behaviors of the middle ear. Therefore, it is appropriate to employ the finite

XIV



element model to simulate the middle ear frequency response characteristics, which are 

the main concerns in the middle ear sound transmission study.

The base-line finite element model was employed for three preliminary clinical 

applications. The results suggest that the base-line finite element model is very useful in 

the study of the middle ear mechanics, and the design and test of implantable hearing 

devices.
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CHAPTER ONE 

INTRODUCTION

Hearing loss is the second most widely spread impairment in the United States. More 

than 24 million Americans have a hearing and speech impairment, and 3% of all children 

are hearing impaired. Because of the rapid increase in the aged population, the number of 

people with communication disorders is growing faster than the general population

[S ilversteinefa/. 1992, VMBHRC 2000|

Dramatic advances in medicine and technology have led to new surgical 

reconstruction techniques and implantable hearing devices that allow physicians or 

surgeons to help patients for rehabilitation. The further advancement of the techniques 

and devices requires a better understanding of transfer characteristics of the ear where the 

airborne sound is first transformed into mechanical vibrations of the ossicular chain, and 

then to the fluid vibrations in the inner ear. However, the mechanics of hearing is not yet 

hilly understood, in spite of the considerable amount of research and publications. This is 

why middle ear mechanics has gained a growing interest in both experiment and 

modeling over the past years. It is a challenging task to gain more insights into the middle 

ear mechanics. This task must be tackled by interdisciplinary collaboration of physicians 

and engineers.



1.1 Middle Ear Modeling: History And Current Status

Attempts to provide an accurate mathematical model of the middle ear began with 

the work of Helmholtz in 1869. Helmholtz suggested that the eardrum’s curvature was 

the primary cause of the transformer ratio of the middle ear '*’•'1. since then, a

number of analysis methods have been attempted to explore the middle ear mechanics. 

One of the main modeling methods is circuit analog analysis. The method provided many 

insights and is still used widely in recent years Knngiebom i988; Goode ei at. i994;

Rosowski 1996. Hudde & weistcnhoicr 1997] however, these circuit analog models are not suitable to 

capture the actual stress field, detailed vibration modes, the influence of ultrastructural 

modifications, as well as nonhomogeneous, anisotropic material properties of the middle 

ear.

Some of these models, such as Onchi and Hudde et al. * weistenhoter

actually employed multibody dynamics approach * schwenassck i988i

though the circuit analog part is taken away, the method still works by directly solving a 

set of differential equations. Eiber’s model is another valuable multibody model for 

ossicles In his analysis, the eardrum was examined by finite element method.

Multibody dynamics approach is excellent in dealing with a system with rigid motion but 

will experience difficulty while modeling a “flabby” body such as the eardrum.

Another main modeling method is the finite element method (FEM). FEM was 

developed in 1960s as an approach for solving structural mechanics problems. With the 

rapid advances of computer technology, FEM has been recognized as a powerful, general 

numerical approximation method for any physical problems that can be formulated as



partial differential equations. FEM has been widely used to investigate biological systems 

because of the following advantages;

(1) It accurately models the complicated irregular geometry of biological structures;

(2) It realistically models the non-homogenous, anisotropic mechanical properties of the 

biological materials;

(3) Its various result-visualization methods, such as numerical, graphical and animated 

ones, enable the result to be understood and interpreted easily and accurately.

The investigation on the FEM analysis of the middle ear mechanics has been 

reported in many papers. Different finite element (FE) models have been used to simulate 

the static or dynamic behaviors of the subsets of the middle ear or the entire middle ear.

The first FE model of the eardrum was presented by Funnell el al. in 1978. It was a 

static three dimensional (3D) model of the cat The inertial effects were

later added to the model, and the natural frequencies and mode shapes were calculated 

[Funnell 1983] damping effects were not included in either of those two models. The 

damping effects were added and the frequency responses of the cat eardrum were 

compared with the experimental results in a later paper I’'"""'-" * ^̂ hanna i987[ ^

further improvement was completed by incorporating an elastic manubrium into the 

model ■Zhanna & Decraemer 1992] pgpgf jg worth mentioning that the manubrium

was reconstructed from serial histological sections. A set of histological sections of a cat 

middle ear were used to reconstruct the geometry of the ossicles, the posterior incudal 

ligament and the manubrium for the finite element model. However, no detailed 

discussion was revealed to delineate how to generate the 3D surfaces by joining a set of 

histological section contours and how to determine the relative spatial positions and



orientations among the middle ear components. Based on the model developed in 1987, 

the mechanical coupling between the eardrum and the manubrium was studied I'''"'"*"

In these papers, the actions of the ossicular chain and cochlea on the eardrum were 

represented as a single effective torsional stiffness and a moment of inertia at the "hinge" 

of the manubrium. The model (developed in 1992) was also improved by adding explicit 

representations of the ossicles and the cochlear load. The effects of two types of middle 

ear surgeries were simulated using this improved cat middle ear model 

The modeling method of Funnell et al. is simple but may not accurate due to the limited 

geometric information. Their interests seemed to focus on the investigation of the 

characteristics of cat middle ears.

Following the eardnun modeling procedure of Funnell et al. a FE model of the 

eardrum was developed to build an eardrum rupture criterion by Stuhmiller 

Stuhmiller quantified the blast environment into different types of pressure histories and 

successfully related the tensile stress responsible for injuries to various types of pressures 

by static and dynamic response analyses.

William et al. began publishing their models in 1988. A two dimensional (2D) cross 

sectional model, including eardrum and malleus, was created to examine the static 

behavior of the human eardrum * wiihams i9«8| ^  different 20  cross sectional model 

of the eardrum was developed to relate some diseases to the maximum shearing stress of 

the eardrum Another 20 cross section model was employed to

investigate the stress and displacement levels in the reconstructed ossicular chain 

Williams & Bia>ney 1991) 2 Q cross scctional model revealed some of the static and dynamic 

characteristics of the middle ear. However, these models are oversimplified.



The first 3D middle ear FE model of Williams et al. was published in 1990 to 

examine the effect of several eardrum geometric and material parameters on the natural 

frequencies of the eardrum ‘̂ 1 . The geometric modeling method is similar

to Funnell et a/.’s, but the different element type and varying eardrum thickness were 

employed in the FE model. Note that no ossicular loading was incorporated in the model. 

The model was modified to investigate dynamic characteristics of the Fisch II spandrel 

total ossicular replacement prosthesis I"''**'®™* * '^-1. The model was improved by

introducing beam elements connected at the nodes of shell elements in order to simulate 

the radial and circumferential fibers of the eardrum’s ultrastructure. This model was 

employed to examine the dynamic behaviors of the normal eardrum 1''''“'®"’* * as

well as the mode shapes of damaged and repaired eardrums Biayney & usscr 19971 

model was modified by adding solid elements to represent malleus and incus, and was 

employed to investigate the dynamic behaviors of the reconstructed middle ear using two 

different stapes replacement I"''"'®™*- ®'®w & Lesser 19951 modified model was later used 

to examine the dynamic characteristics and the harmonic response of diseased, repaired 

and reconstructed middle ear The

geometric modeling method of Williams et al. is very similar to Funnell et a/.’s, which is 

simple but inaccurate due to the insufficient geometric information. Values of some of 

the physical parameters employed in their models seem unreasonable compared to the 

published data. The main contributions of Williams et al. lie in the fact that their work 

related the mechanics characteristics of the middle ear to the clinical applications.

The middle ear FE model of Wada et al. was published in 1992 * ‘̂°*’®̂®**’'

Their model included eardrum, ossicles and cochlear impedance: and it was



assumed a fixed rotational axis from the anterior process of malleus to the short process

of the incus. So the elasticity of the anterior mallear ligament and the posterior incudial

ligament was neglected. The mechanical properties and boundary conditions of the

middle ear were determined by comparing the numerical results obtained from the FE

analysis and those measured from fresh cadavers. The model was modified in their later 

papers & Kobayashi .996; Koike. W ada e , at. I996 | ligaments, middle

ear cavity (as a rectangular solid) and ear canal (as a rigid tube). The forced frequency 

response to an acoustic excitation was performed. The model was also employed to 

investigate the acoustic properties of some middle ear prostheses

An accurate geometric modeling method for the components of the human middle 

ear was presented by Beer et al. D r«chcr.schm id .&  nardtkc i998i method, the

surfaces of the middle ear components including malleus, incus, stapes and eardrum were 

measured by laser scanning microscopy, and then the geometric model for each middle 

ear component was created based on the characteristic points measured. The FE models 

of the middle ear obtained by this method were assembled into different sub-models to 

investigate their dynamic characteristics

The submodel of the eardrum with malleus and ligaments was also employed to conduct 

parameter identification study '^1 , and to examine the dynamic behavior of the

middle ear reconstructed by a special Bell prosthesis The geometric

modeling method employed by Beer et al. is very accurate for each component. However, 

although the scaling procedure was performed for assembly, the inconsistency between 

different components was unavoidable because each component came from different



temporal bones. And it’s hard to keep these components in proper spatial positions and 

orientations while assembling. They did not present a model of the entire middle ear.

A middle ear FE model created by Prendergast ei al. was published in 1999 

Ferns et al. 1999] model is Very similar to Wada el a/.’s, both in geometry and in 

mechanical properties. The important differences of Prendergast et a/.’s model from 

Wada ei a/.’s are: (1) The ear canal was modeled more accurately than Wada ei a/.’s. (2) 

anisotropic and non-homogenous mechanical properties were used in eardrum, and (3) 

the boundary conditions of the eardrum and the incudomallear joint were handled in a 

way different from Wada et a/.’s. The model was employed to examine the middle ear 

dynamic characteristics, with and without a partial or total ossicular replacement ^ 

Prendergast 20001 model was also used to investigate the effect of the ventilation tubes on 

stresses and vibration modes of the eardrum Keiiyera/. 19991

The models of Wada et al. and Prendergast et a/.’s were categorized as the detailed 

analysis models with validations. But the predication may be impaired by their inaccurate 

geometry, especially when the analysis results are not so satisfactory compared with 

experimental results as presented in Prendergast et a/.’s work.

It is well known that an accurate 3D geometric model of the human middle ear is the 

crucial first step for developing a 3D FE model for middle ear mechanical analysis. A 

review about the accurate geometric reconstruction of the ear is presented next. Besides 

Funnell et al. and Beer et al. mentioned above, other authors who developed accurate ear 

geometric reconstruction methods include Takagi et al., Fujiyoshi et al. and Weistenhofer 

et al.. Although these methods were developed for other applications, for example, the 

cochlear length measurement, thev can also be used for finite element modeling. Takagi



and Sando’s method for studying the 3D structure of the temporal bone provided a wire 

frame model of the cochlea ’’*’• Takahashi « a/. i9W| method, each

histological section of the temporal bone was projected onto a paper for magnification. 

Then these papers with magnified images were stacked and aligned, and the outlines of 

the structures were input into a computer by a digitizer. Obviously, the error induced in 

this procedure was not trivial. Fujiyoshi el al. proposed a method for reconstructing the 

temporal bone, which is similar to Takagi and Sando’s method except for the histological 

section preparation W2| pujjyQsjjj employed a microscope

television camera for section digitization and 3D-reconstruction software for creating the 

geometry of a monkey ear. These two methods seem to capture detailed geometric 

information with some success. However, the models were not connected to commercial 

CAD (Computer-Aided Design) software for the computer-integrated application. 

Weistenhofer and Hudde presented a two-step procedure to create a geometric model of 

human ossicles '^1 . The ossicles’ silhouettes under different but well-

defined angles were projected on to paper using a special device and an overhead 

projector. The silhouettes were captured by hand drawing on the paper and scanned into 

computer. The solid geometric models of ossicles were then generated by extruding those 

silhouettes in AutoCAD •'"= '^^1. This procedure may provide accurate geometry

for the ossicles. However, it is difficult to determine proper spatial positions and 

orientations of each ossicles while assembling. Furthermore, it is almost impossible to 

create geometry of the eardrum by using this procedure.

All authors mentioned above tried to develop an accurate model of the middle ear. 

Their models are either geometric or FE. All existing models of the middle ear



contributed to the advancement of the middle ear mechanics in following aspects:

(1) Geometric reconstruction of the middle ear;

(2) Finite element modeling of the middle ear;

(3) Investigation and test of the middle ear material properties;

(4) Calibrations and verifications of finite element models of the middle ear;

(5) Clinical applications of finite element models of the middle ear.

However, no model is perfect. In addition, there is not a feasible computer-integrated 

finite element modeling method to systematically combine all the aspects together. 

Therefore, a simple, systematic and computer-integrated method is needed to help 

researchers create accurate finite element models of the entire human middle ear. 

including malleus, incus, stapes, eardrum, articulations and other suspensory ligaments 

and muscles. And a better FE model of the middle ear is needed to predict the dynamic 

behaviors of normal, diseased, and altered human middle ears.



1.2 Hypotheses And Objectives

As we know, all research is hypothesis driven. The hypotheses of this study are

formulated as follows;

(1) Finite element method can be used to predict the dynamic behaviors of normal, 

diseased, and altered human middle ears;

(2) An accurate and systematic geometric modeling method can be developed to support 

the human middle ear FE modeling;

(3) The FE middle ear model can be calibrated using experimental results to produce the 

base-line FE model;

(4) Clinical applications can be characterized by identifying and quantifying FE model 

parameters such as geometric characteristic parameters and material properties.

Based on the hypotheses formulated above, the objectives of this proposed research

are defined as follows:

(1) Understand middle ear mechanics by combining the FE structural frequency 

response analysis and the Laser Doppler Interferometry (LDl) experimental 

measurements.

(2) Develop a computer-integrated modeling method that supports engineers to convert 

a set of histological sections into an accurate finite element model.

(3) Create a base-line middle ear finite element model that captures the structural 

characteristics of human middle ear.

(4) Simulate the diseased or altered middle ear by varying parameters of the base-line 

FE model, which link to realistic clinical applications.

10



1.3 Approaches

In this research, advanced computer-based modeling and simulating techniques, 

namely, experiment- and computer-based imaging processes, Computer-Aided Design 

(CAD) and Computer-Aided Engineering (CAE) are employed to

reconstruct the geometry of human middle ear, and to explore the middle ear mechanics. 

The whole research can be categorized into four parts: theoretical and FE modeling 

preparations, geometric modeling, FE modeling and FE simulations, as shown in Figure 

1.1. The theoretical and FE modeling preparation utilizes the finite element method and 

structural vibration theory, describes the basic FE modeling procedure by creating a 

simple model, and investigates the material properties of middle ear components and 

attachments. This part will be discussed in Chapters 2 and 3. The second part, an 

advanced geometric modeling method, will be introduced in Chapter 4. The FE modeling 

will be discussed in Chapter 5 with the detailed considerations in the middle ear FE 

modeling and the model verifications. Chapter 6 introduces some clinical applications of 

the FE model, such as the stapes rocking study, the mass loading effect of implants and 

the eardrum stiffness study. Chapter 7 gives the conclusions of the research and 

recommendations for future work.

II
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Figure 1 .1 Computer-integrated FE modeling and simulation o f human middle ear



CHAPTER TWO 

FUNDAMENTALS OF FINITE ELEMENT ANALYSIS

This chapter provides the basic concepts, basic theory and solution techniques of the 

finite element method (FEM) for structural dynamic problems. The contents in this 

chapter are the key for understanding how to convert the middle ear mechanical analysis 

into a structural dynamic analysis, although some work described in this chapter can be 

taken care of by ANSYS a commercial FEM software that was employed

in the research. The contents in this chapter are also the key to correctly solving problems 

using commercial software and interpreting results. The first two sections describe the 

basic concepts and equations of finite element structural analysis * Babuska 19911 

third section introduces a solution technique for structural dynamic problems. The fourth 

section discusses damping expression in structural analysis 

The chapter closes with the descriptions of element types employed in this research

Inc. 1998b|

2.1 Basic Concepts Of The Finite Element Method

The finite element method is a computer-based computation method that can be used 

to analyze a field, which is defined as a physical quantity varying with position within the 

object. There are many kinds of fields, and each field has a different influence on the 

object’s performance. The fields are related to the potentials as their derivatives with
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respect to position. The exact form of the spatial derivative may vary with the type of 

fields. In this research, the object is a structure like the middle ear system, so the 

introduction to FEM is devoted to structural problems. For a structure, the field is stress 

and the potential is displacement. In general, a structure serves to resist applied loads and 

other influences. The theory requires discretization of a given structure into a network of 

finite elements and implementation of the analysis on a digital computer. Advances in 

computer hardware and software have made it easier and more efficient to use FEM for 

solving complex structural problems.

A finite element (FE) is a subregion of a continuum. It is of finite size (not 

infinitesimal) and usually has a simpler geometry than that of the continuum. The points 

where the finite elements are interconnected are called nodes or nodal points, and the 

procedure in selecting the nodes and forming finite elements is called discretization. FEM 

enables us to convert a problem with an infinite number of degrees of freedom to one 

with a finite number in order to simplify the solution process. FEM yields an approximate 

solution based on an assumed displacement function, stress function, or a mixture of 

them within each finite element, which are called shape functions. The assumption of 

displacement functions is the most commonly used technique.

FEM begins with building a finite element model of a structure. The FE model is an 

assembly of finite elements, which are obtained by discretizing the continuum. The finite 

element model contains the following information about the structure:

• Geometric domain, which is subdivided into finite elements;

• Material properties, which is assigned to each finite element;

• Loads, which are applied as exciting force;
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• Constraints, which are applied to prevent rigid body motion.

Material properties, loads, and constraints can often be expressed quickly and easily,

but geometry is usually difficult to describe for a complex structure. A typical structural

finite element analysis includes the following steps;

(1) Discretize the structure. The structure is divided in to finite elements. Finite element 

analysis (PEA) preprocessors, such as HyperMesh compuimg inc. 19971 Patran 

IMacNeai-schwendicr Corporation i998| Create the finite element meshes. This is

one of the most crucial steps in determining the solution accuracy of the problem.

(2) Define the element properties. At this step, the user must define the element material 

properties and select the types of finite elements that are the most suitable to model 

the physical system.

(3) Assemble the element mass, damping and stiffness matrices. The mass, damping and 

stiffness matrices of any element can be derived from an energy method based on its 

assumed shape function. They are then assembled to form the mass, damping and 

stiffness matrices of the system. These matrices relate the nodal displacement, 

velocity and acceleration to applied forces at the nodes.

(4) Apply the loads. Externally applied concentrated or distributed forces, moments, and 

ground motions are provided at this step.

(5) Define boundary conditions. The support conditions must be provided, i.e., the nodal 

displacements at some boundaries must be set to known values.

(6) Solve the system of linear algebraic equations. The above steps lead to a system of 

simultaneous algebraic equations where the nodal displacements are the unknowns.

(7) Calculate stresses, reactions, natural modes or other pertinent information.
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2.2 Basic Equations Of The Finite Element Method

2.2.1 Basic Equations In Elasticity

For an elastic continuum under loads including body forces and boundary surface 

loads, as shown in Figure 2.1 (a), the stress state at any point can be expressed by nine

T = no

u = u '7 \

Figure 2.1 An elastic continuum and an infinitesimal element in its field 
(The body forces, b, are not shown in the figure)

stress components with respect to a right-hand orthogonal coordinate system. The body 

forces are denoted by bx, by and b̂  that are the forces per unit volume in the respective x-, 

y- and z-directions of the coordinate system and can be written in a vector form as

where the superscript “T ’ means the transpose of a vector or matrix. Figure 2.1 (b) shows 

an infinitesimal element of the continuum at any given point in the Cartesian coordinates.
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with the edges of dx, dy and dz long. The normal and shear stresses are indicated by 

arrows on the faces of the infinitesimal element. The normal stresses are labeled Oy, 

and Gz, whereas the shear stresses are labeled txy, Xyz, Xzx, Xy%, x̂ y, and Xx%. From 

equilibrium of the element, we know

'^xy^'fyx’ = ẑŷ  '̂ xz “

Therefore only six stress components are independent. Corresponding to stresses, the 

deformation is expressed as normal and shear strains. Normal strains, 6%, Ey, and E%, are 

defined as

du ÔV ÔW
(2 3)

where u, v and ii' are displacements at the given point in the respective x-, y- and z- 

directions. Shear strains, ŷ y, Yy%, Yz%.Yy%, Yz>> and Yxz. are defined as

ÔU ÔV ÔV dw dll dw
(24)

Obviously, only three of the shear strains are independent. For convenience, the stresses, 

strains and displacements are represented as vectors

o = {o ,,o ,,O z ,x ,y ,x„ ,x„f, E = k'Gy,Ez,Yxy,Yyz,Yzx}\ u = {m,V,i v f . (2-5)

According to the dynamic equilibrium of an infinitesimal element, we have the dynamic 

equilibrium equation

L o + b = pü + pu (2-6)

where p is the mass density and p is the damping factor. L is the transpose of a linear 

differential operator that is defined to satisfy matrix manipulation as
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L =

a
0 0

a
0

a
etc dy &

0
a

0
a a

0
dy dx dz

0 0
a 0 a a
dz dy dx

(2.7)

Equations (2.3) and (2.4) are called the strain-displacement relationships and can be 

written as

e  = L u . (2.8)

The stress-strain relationships can be written in matrix form as

o = De (2.9)

where D is called the elasticity matrix and can be drawn from the theory of elasticity. For 

an isotropic material,

D

1 - V - V 0 0 0

-  V 1 - V 0 0 0

- V - V 1 0 0 0

0 0 0 2 ( 1 + v) 0 0

0 0 0 0 2 ( 1 + v) 0

0 0 0 0 0 2 ( 1 + v)

(2 . 10)

where E is Young’s modulus, v is Poisson s ratio and the superscript “-1” means the 

inverse of a matrix. For an orthotropic material.

D =

ME, -V ,y /£ , - v „ /£ - 0 0 0
0 0 0

ME, 0 0 0
0 0 0 0 0
0 0 0 0 1/G,, 0
0 0 0 0 0 MG

( 2 . 1 1 )
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where Ex and Ey are the Young’s modulus in the x- and y-dlrections, respectively. 

and Gsc are the shear modulus in the xy-, yz- and rc-planes, respectively, v.^, \yx, Vyz, 

Vg, V:c and v^c are the Poisson’s ratios and satisfy

V Vyx ^ xy
(2 .12)

E, E, E, ^

On a part of the boundary exist surface loads, denoted Tx, 7} and T:, which are the forces

per unit area in x-, y- and z-directions. The part of the boundary is called force boundary,

denoted as So, and the surface loads can be written in vector as

T = {r„r,.,7’j " .  (213)

The boundary that has known displacements ü  is called the displacement boundary, 

denoted as S„. Thus, the boundary conditions are expressed by

T = n« {onS^) , u = u (o n S J  (2.14)

where n is an operator consisted of the directional cosines of the outer normal of the force 

boundary, Hx, riy and and is defined as

n =
w, 0 0 0 n,
0 0 M, n. 0
0 0 w. 0 n, n.

(2.15)

2.2.2 Structural Dynamic Equilibrium Equations

In FEM, a structure such as the middle ear system is first discretized as an n-degree 

of freedom finite elements system. Every element can be regarded as a continuum as 

shown in Figure 2.1 (a). The nodal displacement vector of any element is represented by

<2.16)
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where ne is the number of degrees of freedom of the element. Assume displacement 

shape functions, N(x,_y,z), that relate generic displacements to nodal displacements as 

follows:

u = N(x,>',z)d“. (2.17)

The discussion on displacement shape functions can be found in related references *

Babuska 1991] Substituting Eq.(2.l7) into Eq.(2.8), it follows that

E = Lu = LN(.v,>',z)d'=Bd^' (2.18)

where

B = LN(.v,>-,r). (2.19)

Substituting Eq.(2.l8) into Eq.(2.9) gives

o = De = DBd (2 20)

Assuming a small virtual displacement vector Ôd* and using Eq.(2.l7) and (2.18), it 

follows that

d'u = Nd*d% &  = B(^d\ (2.21)

Thus, the virtual strain energy ôU^ in an element can be written as

ÔU = [^E . (2.22)
Jn

And the total virtual work of the body forces, boundary surface forces, inertial forces and 

damping forces for an element, , is

dTT, = . (2 23)

Applying the virtual work principle, ÔÛ  = dTF, , to an element gives

jd'E^oJQ = + jôu^T dS  -  jju ^ fJ Ü d Q  -  . (2 24)
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This equation is the Galerkin integral form of the dynamic equilibrium equation 

Eq.(2.6) and the force boundary condition Eq.(2.14). Substituting Eqs.(2.17), (2.20), and

(2.21) into Eq.(2.24) and canceling from both sides of the equation, we have 

(j^pN^NdO)d' +(|^//N^NdQ)d' +(j^B D&(0)d = jN^bdQ+ j ^ ^ T d S . (2-25)

Thus,

M d + C d  +K  d" = F  (2 26)

where

M = C = £/<N^N(/n, K = (2.27)

are the mass, damping and stiffness matrices of the element, respectively. While

F^'= fN''b(/K+fN^Tt/5 (228)Jn is„

is the element nodal load vector. The element nodal displacement vector d can be 

expressed using the system nodal displacement vector X(t) by a transformation matrix G' 

as follows:

d ' =C 'X (t) (2.29)

Substituting Eq.(2.29) into Eq.(2.26), premultiplying matrix C and summing them for 

all elements, we have

^ ( G '^ M 'G 3 % )  + 2](C''^C"G'')X(0 + 2[G '^K 'G ''X (0  = ^ C '^ F '  (2.30)
e tf cr

where

M = ^ G 'M  G , C = ^ G 'C  G , K = ^ [ C  K G (2 31)

are called the mass, damping and stiffness matrices of the system, respectively. While
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(2.32)

is called the external load vector of the system. Thus the system dynamic equilibrium 

equation becomes

M X(/)+CX(/)+KX(/)=F(/) (2.33)

where

(2.34)

m , , m , ,  • •• ' f ’ i n ' C |2  • •• c , „ ‘ ’ ^11 *12 • •• * ! , , ’

M  =
/M ,,

,  c  =
‘■’21 ^22

, K  =
^21 *22 ■ i t• '^2/1

• f „ 2  ■ ^m i . *»2  • •• * „ „ .

# )= k ( 0 , . i^ : ( / ) ,  ",.v„(/)}^

F(0={F,(/),/=',(/),-,f„(/)r

(2.35)

(2.36)

where n represents the total number of degrees of freedom. M, C and K are symmetrical 

matrices. The displacement vector, X(t), contains terms that include translations in x-. y-, 

and z-directions, and rotations in 8%-, Gy. and G^-directions. The external load vector, 

F(t), contains terms that include forces in x-, y-, and z-directions and moments in Gx-, Gy-, 

and Gz-directions. When the displacement boundary conditions are applied, Eq.(2.33) is 

reduced by eliminating the constrained displacements and corresponding rows and 

columns in M, C and K. For convenience, the reduced degrees of freedom is still donated 

by n and the reduced system dynamic equilibrium equation is still expressed as 

Eqs.(2.33)~(2.36). Right now, M, C and K are symmetric positive definite matrices.
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2.3 Solution Of Structural Dynamic Response

When the dynamic equilibrium equation of the middle ear system is obtained using 

the basic principles of finite element method, we can solve the system for the structural 

response. In this section, the modal superposition method is described to solve the 

displacement response of the system to harmonic loads. The natural frequencies and 

natural modes are first calculated through the undamped free vibration analysis of the 

system. Then the displacement response is expressed as the linear combination of the 

natural modes of the system. The dynamic equilibrium equation is decoupled using 

Rayleigh damping assumption and the orthogonal properties of natural modes, and then 

solved numerically.

2.3.1 Undamped Free Vibration

The undamped free vibration is represented by Eq.(2.33) without damping (C = 0) 

and external load (F = 0). The result is a matrix equation of motion

MX(/)+KX(/) = 0. (2.37)

Assume the solution of Eq.(2.37) as

X(/) =

-v,(0 w
•^2(0

► • coscot+ • b.{t)

.-v„(0 Â,(f)

sin cat = Acoswt + Bsinwt.

Substituting Eq.(2.38) into Eq.(2.37) and collecting terms gives 

[-Mo)' +K]Acos(ot + [-M(o’ +K]Bsino)t = 0. 

Since sinmt and coscot cannot be zero at the same time, therefore

(2.38)

(2.39)
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[-Mm- + K]A = 0, [-Mm- + K]B = 0 . (240)

The non-trivial solution of Eq.(2.40) can be obtained by setting the determinant of the 

matrix [-Mm" + K] to zero, i.e.,

|-M m -+ K | = 0. (2.41)

Equation (2.41) is an «‘'’-order polynomial, and therefore there are n unknown m". Since 

both M and K are symmetric positive definite matrices, there will always be n real 

solutions of m", denoted as mf,m;, • • •, m^, which satisfy

m̂  <m; < .<mj;. (242)

The smallest value of m/ (i.e., mO is referred to as the fundamental natural frequency of 

vibration, the second smallest value of m/ (i.e., mi) is called the second natural frequency 

of vibration, and so forth. The quantity of m," is called the eigenvalue of the system. 

Each natural frequency of the system has a corresponding eigenvector, denoted as q»,. 

And mi and q», are related by the equation

[-Mm;+K]qi, = 0 . (243)

The eigenvectors are called natural modes o f the system, which take the form

The n solutions of m previously computed show that the response of the structure can be 

represented as the combinations of n natural modes. Therefore,

n  __

X(0 = cosm,t + B, sinm,t]. (2.45)
(=1

When Eq.(2.45) is substituted into Eq.(2.37), it follows that
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^ [-M to ; + K][A, coso),t + B sinco,t] = 0. (2A6)
/»!

Therefore, to obtain a nontrivial solution, it must follow that

[-M(o; + K]A, = 0 , [-Mm- + K]B, = 0. (2-47)

Comparing Eq.(2.43) with Eq.(2.47) gives

A, = 0 ,9 ,, B, =6,9,. (2.48)

It follows from Eq.(2.45) that

n It

X(0 = ^ 9 , k  cosm,t+ 6, sinm,t] = ^ 9,9,(0 (2.49)
f=l 1=1

where

</,(t) = o, cosm,t + 6, sinm,t. (2.50)

This is the solution of the undamped free vibration. The values of o, and 6, can be 

determined based on the given initial conditions.

2.3.2 Orthogonality Of Natural Modes

Since the orthogonal properties of natural modes are the prerequisite for decoupling 

the dynamic equilibrium equations, we discuss them in detail in this section. Natural 

frequencies of vibration, m^,m2, - ,m^, and the natural modes, 9 ,,9 , , - - , 9 „ , satisfy the 

eigenvalue equation. The norm (or length) of any natural mode is defined as

Because each natural mode has an arbitrary scaling factor, they can always be normalized

with the norm equal to 1. This type of normalization of natural modes is called norm
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normalization. Denoting the normalized natural modes as it then follows

that

(2.52)

The advantage of the norm normalized natural modes is that the sizes of the elements in 

the natural modes do not become large and thus do not result in numerical ill- 

conditioning when used in other matrix equations. If Eq.(2.43) is divided by the norm of 

the natural modetp,, then it follows that

|^ [ - lM (o ; + = [-Mco' + K]^, = 0 . (2.53)

Consider the natural frequencies of vibration, w, and o),, and their corresponding

natural modes, 9 , and 9 ^. Equation (2.53) can be written for each natural frequency, and

it follows that

[-Ma),-+K]9 , = 0  (2.54a)

[-M (û;+K]9 , = 0 . (2.54b)

Premultiplying Eq.(2.54a) by 9 ) ,  Eq.(2.54b) by 9 J gives

9 }[-M (o;+K]9 , = 0  (255a)

9 ^[-M (o;+K]9  ̂ = 0 . (2.55b)

Since both M and K are symmetrical matrices, it follows that

(2.56)

Substracting Eq.(2.55b) from Eq.(2.55a) and using the property of the mass matrix M and 

stiffiiess matrix K in Eq.(2.56), it follows that
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9 j Mç ,((o; - û);) = 0. (2.57)

For any co, # (o,, it follows that = 0. This is known as the orthogonal property

of two natural modes with respect to the mass matrix M. A similar orthogonal property of 

two natural modes with respect to the stiffness matrix K can also be derived from 

Eq.(2.55). It states that = 0  for any m, In summary, the orthogonal

property for the system mass and stiffness matrices states that

0 i * j \

Define the modal matrix of norm normalized natural modes to be

0 / ^  j.
(2.58)

9 ll <Pl2

?2i 9:2
••• <Pi„ 

<P2n

.«Pnl 9 n2 •••

(2.59)

and it follows that

w, 0 ■ • •  0 ■

r A
0 • • •  0

0 m-. ' .  0
, K  = < b  K 0  =

0 2̂ ■
• .  0

0 0 • ••  f » n . 0 0 •
• •

(2.60)

Note that these relationships exist for any normalization of the natural modes although 

the orthogonal relationships were derived using the norm normalized natural modes.
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2.3.3 Damped Response

Having the discussions in Sections 2.3.1 and 2.3.2, we can solve the middle ear 

system for the structural response. Using the modal superposition method, the structural 

response is expressed as a linear combination of its natural modes

X(0 = (t) + 92^2 (0 + • • • + (t) = <Î>Q(/) (2.61)

where are called the generalized coordinates and

Q(0 = k (0 ,9 :(0 ,

is called the generalized coordinate vector. For a large system, it may not be feasible to 

calculate all the natural frequencies and natural modes. Consider the first k natural 

frequencies and natural modes, where k <n ,  then Eq.(2.61 ) becomes

X(/) = 9,^,(t) + 92<?2(0+-+9*<7*(t) = ®Q(0

where

(2.64)

<Pii 9,2 ••• 9ik </i(0

<î> = [ 9 , ,9 , , - - , 9 j  = 92, 922 92k
, Q(0 = -

</2(0 >

9», 9.2 ••• 9nk. q,ii)

Note that ^  is à n x k matrix that is not a square matrix. Substituting Eq.(2.63) into the 

dynamic equilibrium equation, Eq.(2.33), it follows that

Md»Q(/)+Cd»Q(r)+K4>Q(/)=F(r). (2-65)

Premultiplying Eq.(2.65) by 0 ^  gives

<î»^MÔQ(/)+ $  € # ( / ) + $  K0Q(f)= 0^F(r). (2 66)

Using Rayleigh proportional damping, the damping matrix C is a linear combination of 

the mass and the stiffness matrices;
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C = aM + pK. (2.67)

where a and p are the damping parameters and their units are 5  ' (second ')  and 

5 (second), respectively. Because the natural modes are orthogonal to the mass and 

stiffness matrices, the modes will be orthogonal to the damping matrix. Therefore, it 

follows that

= M (2.68a)

m,, • m, 0 ••• 0 ■

v] w,,
•’<PJ =

0 m. •. 0

>U. • 0 0 •••

9 I ^11 ^ 1:  ■■■ ^ In ifc, 0  . . .  0

$  K è  =
9 ] ^21 ^22  ' • ^2n 0  k ,  ■•. 0

9 I . J^n\ ^ii2 , 0  0  • ••  k , _

= k  (2.68b)

4 »  C < D  =  0  ( a M + p K ) 0  =  a < D  M $  +  P $  K Ô

aw, + pt, 0 0 c, 0 ••• o'

0 aw, + pt. 0
=

0 c. '. 0

0 0 0 0 •••

= C (2.68c)

Substituting Eq.(2.68) into Eq.(2.66) gives

MQ(/)+ CQ(/)+ KQ(/) = 4>^F(/).

Equation (2.69) represents k uncoupled equations, each of which takes the form

(0+^,4, (0+^,9. (0  = v ! P(f)

or alternatively

q, (/)+ 2;,(0,9, (r)+ (ùjq, (/) = ¥{t)/ m, (2-71 )

(2.69)

(2.70)
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where cOj is the natural frequency and is called /'** modal damping. They are defined 

as

û)‘ = k,lm ,,  2̂ jO), =c,lm, (2.72)

When the external load vector F(t) in Eqs.(2.33) and (2.71) is sinusoidal loads with 

frequency p as

F(/) = Fo s in /j/, (2.73)

the oscillating motion forced by this type of loads is called harmonic response or

frequency response. The uncoupled dynamic equilibrium equation becomes

2Ç,(û,<), (/) + {i) = /„, sin pt / in, (274)

where

A  = 9 %  (2.75)

The particular solution (steady response) takes the form

q,{t)= Â  cos pi + A2  sin pi (2.76)

Substituting Eq.(2.76) into Eq.(2.74) gives

-  p^{A^ cos pt + A2  sin pr) + 2 Ç,(û,p(-/l, sin pt + A, cos pt)

+ (O' {Â  cos pt + A, sin pt) = sin pt / m, ^2 7 7 )

Collecting the cosine terms into one equation and the sine terms into another equation 

gives the two simultaneous equations for and A:. These equations are

-p^A^  +2Çi(û,pi4, +(o^X, =0 (2.78a)

- p - A ,  -2Ç,œ ,p4 +(0 '/ l 2 (2.78b)

Let r, = p i (Ù,, which is the ratio of the forcing frequency to the natural frequency of

the system. Solving Eq.(2.78) gives
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/o, [ 2;,r, 1 j -  -/o' f 1 - r  1

K L ( l - r ; ) :+ ( 2 ( / , ) : J ’ -  i. L ( l - r / ) :+ ( 2 ; ,r , ) : j (2.79)

It follows from Eq.(2.76) that

9,(0  = . 2I - 2 ; / ,  cosp t H \ - r;)sin  pt).
(1-r, ) +(2Ç,r,) (2.80)

Substituting Eq.(2.8G) into Eq.(2.63) gives

X(0 = ^ 9 ,9 ,  (t) = ^ • (2.81)

This solution is the displacement response of the system to harmonic exciting loads.
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2.4 Damping Parameters

Damping is an important dynamic characteristic of structures. It is also an important 

parameter for biological systems. However, the damping effect is hard to determine 

because the damping factor p of a material is hard to evaluate. In engineering, the 

damping effect of a material is considered by assuming certain damping parameters such 

as Rayleigh damping parameters, a  and p. These parameters are converted to the modal 

damping Ç, that appears in Eq.(2.81). When Rayleigh damping is used, the values of a  

and p can be determined by assuming first two modal dampings. Then the modal 

damping for modes can be obtained by the following equation

 ̂ _ a + Pto,’ (2.82)

Although the Rayleigh damping parameters were assumed for the whole system in 

the above discussion, they also can be assumed for any subsystem to deal with different 

materials used in the system. Of course, the damping factor p can be directly used for the 

mass-spring-damper system. Some commercial finite element analysis codes such as 

ANSYS employ the similar damping expressions.
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2.5 Element Types Employed In The Research

To build the finite element model of human middle ear, four types of elements were 

employed. The section provides the descriptions of ANSYS element types used in the 

finite element model.

2.5.1 C0MBIN14 Spring-Damper Element

C0MBINI4, as illustrated in Figure 2.2, is the spring-damper element that has 

longitudinal displacement in one, two or three dimensions. The element is a uniaxial 

tension-compression element with two nodes /  and J, each having up to three degrees of 

freedom: translations in the nodal x-, y-, z-directions. No bending or torsion load are 

considered. It is massless. In Figure 2.2, k and p are the spring constant and the damping 

coefficient of the damper, respectively. F, di and dj are the axial force and displacement

at points I  and J, and have a relation of F  = -k\d, - d j . C0MBINI4 was

employed to model the stapedius annular ligament and the cochlear impedance.

 J

Figure 2.2 C0MBIN14 spring-damper
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2.5.2 SHELL41 Membrane Shell Element

SHELL41, illustrated in Figure 2.3, has membrane (in-plane) stiffness but no 

bending (out-of-plane) stiffness. Only normal loads are permitted. The element is defined 

by four nodes, /, J, K  and L, each having three degrees of freedom: translations in the 

nodal X-, y-, z-directions. The element can be the quadrilateral element or triangular 

element. The circled numbers in Figure 2.3 represent the surface identification. SHELL41 

was employed to model the eardrum, which will be presented in Chapter 3.
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Figure 2.3 SHELL4I membrane shell

2.5 J  SOLID45 3D Structural Solid Element

S0LID4S, illustrated in Figure 2.4, is used for the three dimensional modeling of 

solid structures. The element is defined by eight nodes, /. J, K, L, M, N, O and P, each 

having three degrees of freedom: translations in the nodal x-, y-, z-directions. The
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element can be the hexahedral (brick element), pentahedral (prism element) or 

tetrahedral. The circled numbers In Figure 2.4 are the surface identification numbers. The 

element type was employed to model the ossicles, ligaments and muscles.

o.p

Pentahedral Element

BbiwM C oocdiM iSyittm

K,L

Itiratiedral Element

Swfact coordiMie «yttem

Figure 2.4 SOL1D45 3D structural solid

2.5.4 SHELL63 Elastic Shell Element

SHELL63, illustrated in Figure 2.5, has both bending and membrane capabilities. 

Both in-plane and normal loads are permitted. The element is defined by four nodes, /, J, 

K  and L, each having six degrees of freedom; translations in the nodal x-, y-, z-directions 

and rotations about the nodal x-, y-, z-axes. The element can be the quadrilateral element 

or triangular element. The circled numbers in Figure 2.5 represent the surface 

identification. The element was employed to model the eardrum, which will be discussed 

in chapter 5.
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CHAPTER THREE

PRELIMINARY STUDY OF HUMAN MIDDLE EAR 

MECHANICS

Before developing the computer integrated modeling and simulating method, a 

simple FE model was created to provide a quick look of the behaviors of the middle ear. 

In addition, the simple model provides the FE modeling experience for creating the next 

more accurate model by using serial histological sections of a human temporal bone. This 

simple model provides:

( I ) Preliminary understanding on the anatomy and functions of human middle ear;

(2) Valuable FE modeling experiences that can be used to build a more accurate FE 

model;

(3) Thorough investigation about the physiological ranges of mechanical properties of 

the human middle ear;

(4) Initial observations about the effects of the physical parameters and boundary 

conditions on middle ear mechanics.

3.1 Structures And Functions Of Human Ear

A human ear is divided into three sections: the outer ear, the middle ear and the inner 

ear, as shown in Figure 3.1.
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The outer ear consists of the external pinna (auricle) and auditory meatus (ear canal), 

which is terminated by the tympanic membrane (eardrum). The pinna helps to collect 

sound and determine the direction of sound sources of high frequency. The ear canal acts 

as a pipe resonator that boosts hearing sensitivity in the range of 2,000 to 5,000 Hz.

m wmicirariar caiub
oval window

cochlea

temporal bow
euslachian lube

\

Outer

Figure 3.1 A schematic diagram of human ear

The middle ear lies in a cavity of complex form in the outer, mastoid portion of the 

temporal bone. The cavity is filled with air and connects the middle ear to the pharynx 

through the Eustachian tube to provide a means of pressure equalization. The middle ear 

begins with the eardrum, to which are attached three small bones (ossicles). The eardrum, 

which is a fiber composite with a cross section consisting of several layers and regions, is 

kept taut by the tensor tympani muscle. The eardrum ultrastructure study shows the 

regularity of the radial and circumferential fibers appearing in the pars tensa 

shimada & Lim 19711 j j j g g g  scts of fibers represent a majority of the stiff fibers appearing

38



in the eardrum. The main portion of the eardrum (pars tensa) is firmly held in a groove in 

a bony ring formed by the walls of the ear canal, except in a triangular region (pars 

flaccida) at the upper border (notch of Rivinus) where this ring is incomplete and the 

connection is lax. The eardrum changes the pressure variations of incoming sound waves 

into mechanical vibrations to be transmitted via two distinct mechanisms: ''ossicular 

coupling” and "acoustic coupling” 1992; Merchant.r«/, I997&1998]

The first ossicle, the malleus, is attached to the eardrum along a radius running from 

the notch of Rivinus to the center of the eardrum (umbo) by the handle (manubrium) of 

the malleus. The second ossicle, the incus, extends from the malleus to the third ossicle, 

the stapes. The stapes has its footplate held firmly in the oval window by the stapedius 

annular ligament. The three ossicles are joined by means of articulations and suspended 

in the middle ear cavity by ligaments, muscles and attachment. They are the tensor 

tympani muscle, the posterior stapedial muscle, the superior, anterior and lateral 

ligaments of the malleus, the posterior ligament of the incus, and the malleus attachment 

on the eardrum, as shown in Figure 3.2.

The ossicles play a very important role in the hearing process. They act together as a 

mechanical transformer to fulfill the “ossicular coupling” of sound transmission from the 

eardrum to the cochlea. Another function of the ossicles is to protect the inner ear from 

very loud noise and sudden pressure change. Loud sound triggers two sets of muscles: 

tensor tympani muscle tightens the eardrum and posterior stapedial muscle pulls the 

stapes footplate away from the oval window of the inner ear.

The inner ear contains the semicircular canals, the vestibule and the cochlea. Only 

the cochlea is concerned with hearing. The other parts are the body’s horizontal-vertical 

detectors necessary for balance. The cochlea is filled with liquid (cochlear fluid) and
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Figure 3.2 The anatomy o f human middle ear
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Figure 3.3 Schematic diagram of cochlea

surrounded by rigid bony walls. Its cross-section shows three distinct chambers that run

the entire length: the scala vestibuli, the scala tympani and the cochlear duct, as shown in

Figure 3.3. Resting on the basilar membrane is the delicate and complex organ of corti

that contains several rows of tiny hair cells to which are attached nerve fibers. When the

stapes footplate vibrates against the oval window, hydraulic pressure waves are

transmitted rapidly down the scala vestibuli, inducing ripples in basilar membrane. When

the basilar membrane vibrates, the hairs of the hair cells are bent, thus generating nerve

impulse to the brain. The impulse rate on the auditory nerve depends on both the intensity 

and frequency of the sound Wever& Lawrence 1954; Anson & Donaldson 1981]
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3.2 Sound Pressure Level (SPL)

In Section 3.1, we discussed the anatomy and functions of human ear. In the process 

of hearing, our ears respond to the sound pressure stimuli of sound waves. In a sound 

wave, there are extremely small periodic variations in atmospheric pressure to which our 

ears respond in rather complex manner. The minimum pressure fluctuation to which the 

ear can respond is less than one billionth of the atmospheric pressure at sea level. This 

threshold of audibility, which varies from person to person, corresponds to a sound 

pressure amplitude of about 2x 10"’ at a frequency of 1,000 Hz. The threshold of

pain corresponds to pressure amplitude approximately one million times greater, but still 

less than one thousandth of atmospheric pressure. Because of the wide range of pressure 

stimuli (p), it is convenient to measure sound pressures on a logarithmic scale, called the 

decibel (dB) scale. Although a decibel scale is actually a means for comparing two 

sounds, we can define scale of sound level by comparing sounds to a reference sound 

with standard reference sound pressure =2x10' ^N / m ' . The Sound Pressure Level

(SPL), denoted by Lp , is defined as

Lp =2a\og-^  {dBSPD .
Po

Thus the conversion formula from SPL to pressure is

P = = 2xlO ‘'x lO -“ [Ntm-)
(3.2)
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3.3 A Simple Human Middle Ear FE Model

The construction of the middle ear geometry is the first step to build a three- 

dimensional finite element model. HyperMesh (''luircompuiinginc.i ^ commercial FEA pre- and 

post-processing software, was employed to build the simple model. The model consisted 

of the eardrum, the ossicular chain, and associated ligaments and muscles. The basic 

geometric data of the middle ear components and the original authors are listed in Table

3 . 1 .  However, most of the data came from Wever & Lawrence’s book Lawrence 19541 

The key dimensions and characteristics of the entire middle ear system are shown in

Figure 3 . 4  that was drawn by Gan based on Wever et al.'s desciptions *

Lawrence 1954; Kirikae I960; Âwengenera/. 1996; Gulick era/. 1989; Anson & Donaldson 198I|

Table 3.1 Basic anatomic data for human middle ear

EARDRUM Published Data Sources
Diameter along manubrium 8 .0- 10.0 mm Gray 1918 '
Diameter perpendcular to manubrium 7.5-9.0 mm Helmholtz 1863 *
Height of Cone 1.54 mm 

2.00mm
Wada e ta /. 1992 
Slebenmann 1897 *

Area 55.8-85.0 mm' Wever & Lawrence 1954. Keith 1918" 
von Bèkésy 1941 *

Thickness 0.1 mm
0.04-0.075 mm 
0.132 mm

Helmholtz 1863 * 
Kirikae 1960 
W ada era/. 1992

MALLEUS
Length from end of manubrium

to end of lateral process
5.8 mm Stuhlman 1937 '

Total Length 7.6-9.1 mm Bast & Anson 1949 *
Weight 23-27 mo Stuhlman 1937 *. Wever & Lawrence 1954

INCUS
Length along long process 7.0 mm Stuhlman 1937 *
Length along short process 5.0 mm Stuhlman 1937 *
Weight 25-32 mg Stuhlman 1937 *. W ever & Lawrence 1954

STAPES
Height 2.5-4.0 mm Stuhlman 1937 ", Wever & Lawrence 1954
Length of footplate 2.64-3.36 mm 

2.5 mm
Wever & Lawrence 1954 
Our Measurement

Width of footplate 0.7-1.66 mm Helmholtz 1863 ", Wever & Lawrence 1954
Weight 2.05-4.35 mg Wever & Lawrence 1954

' The work was done bv the listed authors but the data came from Wever & Lawrence's book uwtcnce 1954I
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Figure 3.4 Schematic drawing of human middle ear
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Eardrum

The eardrum was modeled as an unsymmetrical spatial elliptic conic shell. The 

geometry was obtained by trimming an elliptic conic surface with a long bottom radius of 

5.659 mm, a short bottom radius of 4.523 mm and a height of 2.0 mm using an elliptic 

cylindrical surface with a long bottom radius of 4.6 mm and a short bottom radius of 

4.342 mm. Then the trimmed surface was meshed with 127 triangular and quadrilateral 

membrane elements with a uniform thickness of 0.132 mm, as shown in Figure 3.5(a).

(a) Eardrum (b) Malleus

(c) Incus (d) Stapes
Figure 3.5 Geometric characteristics of the simple model
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Ossicles

The characteristic points, lines and surfaces were first created based on the key 

dimensions of the ossicles listed in Table 3.1 and the relative position of the ossicular 

chain in space shown in Figure 3.4. Then the FE model was built by directly creating 

solid elements using these characteristic points, lines and surfaces. The whole ossicular 

chain consisted of 181 8-node-hexahedral, 6-node-pentahedral, and 4-node-tetrahedral 

solid elements, as shown in Figure 3.5 (b, c, d).

The dimensions of eardrum, malleus, incus and stapes were defined in four local 

reference frames. Then each of these component FE models was transformed into the 

global coordinate system by transforming the corresponding reference frame to global 

coordinate frame.

Ligaments and Muscles

There are four ligaments and two muscles included in the model, following the 

drawing shown in Figure 3.4. They are the superior mallear ligament (Cl), the lateral 

mallear ligament (C2), the anterior mallear ligament (C4), the posterior incudal ligament 

(C3), the posterior stapedial muscle (C5) and the tensor tympani muscle (C7). Each 

ligament or muscle was modeled as a set of linear springs (C0MBIN14 elements) along 

three orthogonal directions.

Middle Ear FE Model

The middle ear FE model was created by assembling these individual components in 

global coordinate frame and applying the boundary conditions and loads. The eardrum 

and the malleus were coupled along the manubrium by coupling their corresponding
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nodes. The malleus, incus and stapes are connected at incudomalleolar joint and 

incudostapedial joint by coupling their corresponding nodes respectively. Each ligament 

or muscle was attached to the appropriate position of the ossicles at one end and fixed at 

another end. The tympanic ring was modeled as a set of linear springs (C0MB1N14 

elements) along three orthogonal directions to simulate the elastic boundary of the 

eardrum. The impedance of the cochlear fluid (C6) was simplified as three linear springs 

with dashpots (C0MBIN14 elements). Consequently, the ossicles were held on the 

eardrum by the malleus, and in the oval window by the stapes footplate with resistance 

provided by a set of linear springs with dashpots. The ossicles were also supported by six 

sets of linear springs. The eardrum was supported by a set of linear springs. The simple 

middle ear FE model is shown in Figure 3.6.
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Figure 3.6 A simple finite element model of human right middle ear
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3.4 A Review On Mechanical Properties Of The Middle Ear

It is very difficult to determine the mechanical properties of biological materials 

because either they cannot be isolated for testing or the size of the available specimens is 

too small to conduct meaningful measurement. Furthermore, it is difficult to keep these 

specimens in the normal living conditions for measurements Consequently,

there are not many experimental data published for mechanical properties of the middle 

ear. A thorough literature survey was conducted for available mechanical property data of 

the middle ear. Results of the survey are listed in Table 3.2 and 3.3. Note that the data 

listed in these tables came partly from experimental measurements, but mostly from 

estimates. Almost all of the ligament and muscle properties came from estimations. 

Although the damping coefficients of the middle ear were reported in some papers, big 

differences existed among the data from different sources. The exception is the damping 

coefficient of the cochlear fluid, which is 0.620 N s/m 0.624 N s/m

0.717 Ns/m  and 0.737 Ns/m  However, it was at

specific frequencies that these values were obtained. Therefore, they cannot be used as a 

standard to select the damping coefficient of the cochlear fluid. This will be discussed in 

Chapter 5.

For this simple model, the mechanical properties of the middle ear components 

were assumed homogeneous and isotropic, and were selected based on those listed in 

Table 3.2. The densities of malleus, incus and stapes were determined by dividing their 

corresponding weights obtained from Table 3.2 by their respective volumes obtained 

from the FE model. It is because the coarse geometry of the FE model caused overlarge 

volumes of the ossicles so that we had to use the calculated densities to match the weights 

of the three ossicles. The mechanical properties used for the main components of the
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Table 3.2 Published mechanical properties of middle ear components

EARDRUM Published Data Sources
Density (kg/m') 1.0x10' Funnellefa/. 1983,1987,1992

1.2x10’ Williams etal. 1990
W adaef a/. 1990,1992, B eeref a/. 1996 
Ferris e t al. 2000,

Young's Modulus (N/m'‘)
Isotropic 2.0x10’ von Bèkésy 1949,1960

Funnellefa/. 1978,1983,1987,1992,1996
2.0x10' (pars tensa), 1.0x10' (pars flaccida) Ladakefa/. 1996
3.2x10' W ada ef a/. 1992
3.3x10' (pars tensa), 1.1x10' (pars flaccida) W adaef a/. 1990,1996
4.0x10' Kirikae 1960
1.0x10'-2.0x10' Williams ef a/. 1990

Anisotropic 4.0x10“-  4.0x10' (circumferential, pars tensa) Prendergast, Ferris ef a/. 1999 
Ferris, Prendergas at a/. 2000

2.0x10'- 4.0x10' (radial, pars tensa) Prendergast, Ferris etal. 1999 
Ferris, Prendergas ef al. 2000

1.Ox 10'(pars flaccida) Prendergast, Ferris etal. 1999 
Ferris, Prendergas ef al. 2000

2.0x10' (circumferential), 3.2x1 o' (radial) B eeref a/. 1996

MALLEUS
Density (kg/m') 2.55x10' (for head) 

4.53x10’ (for neck) 
3.70x10’ (for handle)

Kirikae ef al. 1960, W ada ef al. 1992

2.30x10’ Williams ef a/. 1990
Weight (mg) 23-27 Stuhlman 1937, Wever ef al. 1954
Young's Modulus (N/m') 1.00x10^“ Funnell ef al. 1978, Williams ef al. 1990

1.20x10’° W adaef a/. 1996
1.41x10'° Kirikae ef a/. 1960, Herrmann etal. 1972 

Koike 1996, Wada etal. 1992,1996
1.483x10'° Spelrsefa/. 1999
2.00x10'° Prendergast ef a/. 1999

Funnell etal. 1992,1996

INCUS
Density (kg/m') 2.36x10’ (for body)

2.26x10’ (for short process) 
5.08x10’ (for long process)

Kirikae ef a/. 1960, W ada etal. 1992

2.30x10’ Williams ef a/. 1990

Weight (mg) 25-32 Stuhlman 1937, Wever ef al. 1954
Young's Modulus (N/m') 1.00x10'° Funnellefa/. 1978, Williams ef a/. 1990

1.20x10'° W ad aef a/. 1996
1.41x10'° Kirikae etal. 1960, Herrmann etal. 1972 

Koike 1996, Wada et al. 1992,1996 
Spelrsefa/. 1999

2.00x10'° Prendergast ef a/. 1999 
Funnellefa/. 1992.1996

STAPES
Density (kg/m') 2.20x10’ Kirikae 1960

2.30x10’ Williams ef a/. 1990
Weight (mg) 2.05-4.35 Wever ef a/. 1954
Young' Modulus (N/m') 1.00x10*“ Funnell ef al. 1978, Williams ef al. 1990

1.20x10'° W ad aef a/. 1996
1.41x10'° Kirikae ef a/. 1960, Herrmann etal. 1972 

Koike 1996, Wada etal. 1992,1996 
Prendergast ef a/. 1999

2.00x10'° Funnellefa/. 1992,1996
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Table 3.3 Published mechanical properties of ligaments, muscles,
joints and cochlear fluid stiffness

Ligaments/ Muscles 
Boundary Conditions

Young’s Modulus or Spring Constant
Published data Source

Superior mallear ligament (C1) 4.9x10’ N/m* Beer era/. 1996
Lateral mallear ligament (C2) 6.7x10* N/m* Beer or a/. 1996
Posterior Incudal ligament (C3) 6.5x10‘ N/m‘ Wada etal. 1996, Prendergast 1999. Ferris etal. 2000
Anterior mallear ligament (C4) 5.2x10“ N/m* 

2 .1x10 'N/m*
Beer e ta /. 1996
Wada at al. 1996, Prendergast 1999, Ferns et al. 2000

Posterior stapedial muscle (CS) 7.4x10* N/m* 
5.2x10“ N/m*

Beer etal. 1996
Wada etal. 1996, Prendergast 1999, Ferris etal. 2000

Cochlear fluid (C6) 440 N/m (for cat) 
510 N/m (for cat) 
ON/m

Ladak etal. 1996 
Funnellefa/. 1978 
Wada etal. 1996

Tensor Tympani tendon (C7) 1.4x10* N/m* 
2.6x10' N/m*

Beer etal. 1996
Wada etal. 1996, Prendergast 1999

Incudomalleolar joint

Incudostapedial joint 6.0x10“ N/m* Wada etal. 1996, Prendergast 1999, Ferris etal. 2000
Stapedial annular ligament 6.5x10* N/m* 

1.0x10* N/m*
Wada ef al. 1996, Prendergast 1999, Ferris ef al. 2000 
Lynch etal. 1982

simple model are listed in Table 3.4. As shown in Table 3.4, the densities are much less 

than the published data in Table 3.2.

Because the ligaments and muscles were modeled as a set of linear springs along the 

three directions of the global coordinate system, it was inconvenient to adopt the stiffness 

data for the ligaments and muscles based on Table 3.3. In addition, there lack reliable 

published damping data. Thus the initial FE model was created without ligaments, 

muscles and damping. In this initial model, the stiffness of cochlear impedance was set to 

440 N/m based on Ladak et ai estimation and the spring constants of the

eardrum supports were set to 10̂  N/m to simulate the fixed constrains. The adjustment of 

the initial FE mode focused on the adjustments of the stiffness of ligaments and muscles 

and the damping parameters of the system.

Table 3.4 Mechanical properties of the middle ear components 
employed for the simple FE model

Properties Eardrum Malleus Incus Stapes
Density: p (kg/m“) 1.2x10“ 0.85x10“ 1.35x10“ 1.55x10“
Young's modulus; E (N/m*) 3.2x1o' 1.41x10'° 1.41x10'° 1.41x10’°
Poisson s  ratio: v 0.3 0.3 0.3 0.3
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3.5 Simple FE Model Calibration

The experimental measurements used for the simple FE model calibration were 

conducted by Gan et ai on seventeen normal fresh-frozen, cadaveric temporal bones (age 

32 to 96 years, 13 males and 4 females) -“ 'I. a  small reflective tape was placed 

on the center of the stapes footplate to serve as a laser-reflective target. When pure tone 

narrow band, filtered sound of 90 dB SPL was delivered near the eardrum in the ear 

canal, the displacement of the stapes footplate caused by the sound pressure on the 

eardrum was measured across the frequency range of 250-8,000 Hz. The measurement 

was conducted using a single point laser Doppler interferometer by focusing the helium- 

neon laser beam onto the reflective tape on the center of the stapes footplate. The 

measured mean peak-to-peak displacement of the stapes footplate on the seventeen 

temporal bones was employed to calibrate the FE model. The mean curve was employed 

instead of 17 curves so that the average trend of the frequency response curves of the 

stapes footplate displacement can be captured easily.

To be consistent with the experimental setup, the simple FE model was applied a 

uniform pressure of 90 dB SPL (0.632 N/m') on the lateral side of the eardrum. The 

harmonic analysis was conducted on the FE model across the frequency range of 250- 

8,000 Hz. The displacements of the stapes footplate in frequency field were collected and 

converted to the peak-to-peak displacement response of the stapes footplate. The 

objective of the FE model calibration process is to match the FE model prediction with 

the experimental curve obtained by the laser Doppler interferometry (LDI) as close as 

possible, by adjusting undetermined model parameters of the simple model. The curve 

obtained from the initial model was shown in Figure 3.7 with the LDI curve, the mean of 

17 experimental curves.
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Figure 3.7 Stapes footplate displacement frequency response for the initial FE model

During the FE model calibration process, the dimensions and geometric shape of the 

model were kept constant. The published mechanical properties were selected for the 

main middle ear components. The parameters to be adjusted were mainly limited to the 

mechanical properties of ligaments, muscles and eardrum periphery support. In another 

word, the FE model calibration process was nothing but finding an optimum combination 

for the mechanical properties of ligaments and muscles by means of the cycling 

optimization method The stiffness of the ligaments or muscles was

alternatively cycled to search for a set of optimum ligament or muscle stiffness values.

Next, we show how to estimate the adjustment ranges for the stiffness of ligaments 

and muscles. According to Wever and Lawrence’s work, the length and cross-sectional 

area of the tensor tympani muscle are 25 mm and 5.85 mm^ respectively, and the length 

and cross-sectional area of the posterior stapedial muscle are 6.3 mm and 4.9 mm'
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respectively uwrence 19541 gy assuming a muscle to be a bar (a two-force element),

then we can estimate the longitudinal stiffness of the muscle by the following formula:

(3.3)
L

where k is the longitudinal stiffness; L and A are the length and the cross-sectional area of 

the muscle, respectively; and E is the Young’s modulus of the muscle. If the bar is 

regarded as a spring, the longitudinal stiffness is its spring constant. In Table 3.3, there 

are two values, 1.4x10^ M/m  ̂ and 2.6x10* N/ni^, for the Young’s modulus of the tensor 

tympani muscle; and two values, 7.4x10'* i\/m ‘ and 5.2x10* N/m^, for the Young’s 

modulus of the posterior stapedial muscle. Based on the above discussion, we estimated 

two spring constant values, 3.3 N/m and 608.4 N/m, for the tensor tympani muscle; and 

two spring constant values, 57.6 N/m and 404 N/m, for the posterior stapedial muscle. 

Therefore the stiffness adjustment range of the muscles was set to be between 0 and 1000 

N/m. Under the assumption that the stiffness difference among ligaments and muscles is 

not too large, the stiffness adjustment range of ligaments were also set to 0-1000 N/m.

In the adjustment range, the cycling processes were conducted. The first ligament Cl 

was added to the initial model. The stapes footplate frequency response curves with the 

stiffness values of 0,100,200, 300,400 N/m for ligament Cl were calculated. The curves 

of different stiffness values obtained from finite element analysis (FEA) were compared 

with the experimental curve, as illustrated in Figure 3.8. In the figure, it is seen clearly 

that the stiffness of ligament Cl affects the frequency response curve significantly. From 

these curves, the stiffness value that gives the “best” curve oscillating along or closest to 

the experimental curve was adopted. In this case, the value of 300 N/m was selected for 

ligament Cl. Then the second ligament was added with the first ligament kept in the
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Figure 3.8 Select the optimum stiffness value of ligament Cl

model. The same procedure was conducted and the ' best" stiffness value was obtained 

for the second ligament. When the “best” stiffness value for the last ligament or muscle 

was adopted, the first cycle ended. The stapes footplate displacement response curve aAer 

completing first cycle is shown in Figure 3.9. The stiffness values are 300,400,400, 300, 

50,300 N/m, respectively, for ligaments C l, C2, C3, C4, C5 and Cl.

The second cycle started with the set of ligament or muscle stiffness values obtained 

from the first cycle. The same procedure was used except keeping all ligaments and 

muscles in each step. When the cycling procedure was performed several times and the 

frequency response curve obtained from the FEA could not be further improved, the set 

of ligament or muscle stiffness values was accepted.

The same method was employed to search for the optimum cochlear fluid impedance 

stiffness, the Young’s modulus of the eardrum and the damping coefficients of the
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Figure 3.9 FE stapes footplate displacement response curve after first cycle

model. Figure 3.10 shows the stapes footplate displacement frequency response curve 

using the optimum combination of the mechanical properties that is shown in Tables 3.5 

and 3.6.

Table 3.5 Mechanical properties of the human middle ear simple FE model

Properties Eardrum Malleus Incus Stapes
Density: p  (kg/m') 1.2x10' 0.85x10' 1.35x1 o ' 1.55x1 o '
Young's modulus: E (N/m') 1.6x10' 1.41x10" 1.41x10'° 1.41x10'°
Poisson s  ratio: v 0.3 0.3 0.3 0.3
Damping coefficients: 3 (s) 0.0001 0.0001 0.0001 0.0001

Table 3.6 Boundary conditions of the human middle ear simple FE model

Ligaments/Conditions Spring Constant (N/m) Damping (N-s/m)
Superior mallear ligament Cl 500 0
Lateral mallear ligament 02 400 0
Posterior incudal ligament 03 500 0
Anterior mallear ligament 04 300 0
Posterior stapedial muscle 05 50 0
Coctilear fluid 06 60 0.054
Tensor Tympani tendon 07 40 0
Eardrum Support Spring 1.0x10* 0
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Figure 3.11 FE stapes footplate displacement frequency response curve 
afler changing the thickness of the eardrum to 0.074 mm
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To further improve the curve, the thickness of the eardrum is uniformly changed to 

0.074 mm that is another published data, so that the resulting curve is closer to the 

experimental one, as shown in Figure 3.11.
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3.6 Observations And Lessons Learned

Observations and lessons learned from this simple FE model are summarized as 

follows:

(1) The frequency response curve of stapes footplate displacement obtained using the 

simple FE model is plotted with the 17 LDl experimental curves in Figure 3.12. It is 

shown that the FE curve matches the experimental curves very well. However, some 

important parameters of the FE model, such as the densities of ossicles and Young's 

modulus of the eardrum are out of the reasonable ranges, as listed in Table 3.3.

0 1

OOT

Each of Gan ef af.'s Measurements

•^ M e a n  of Gan ef af.'s Measurements

f  E A  P red iction

100 1000 10000

Frequency (tk)

Figure 3.12 Stapes footplate displacement frequency response curves: 
FEA prediction and Gan et al. 17 LDI experimental curves (2001 )

(2) The stiffness of ligaments or muscles affects the stapes footplate frequency response 

curve significantly, especially, in low frequency range.

(3) The Young’s modulus of the eardrum affects the frequency response curve 

significantly in all frequency range.
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(4) The effect of damping coefficients was complicated. The stiffness matrix multiplier^ 

smoothed the curves in all frequency range. The larger the stiffness matrix multiplier, 

the flatter the curve. The damping coefficient of the cochlear fluid had an important 

impact on magnitude of the frequency response cur\ e, especially in high frequencies.

(5) The support elasticity at the eardrum periphery had no significant influence on the 

frequency response curve. It is unreasonable in reality though. One possible 

explanation is that the membrane element (SHELL 41) employed in modeling the 

eardrum makes its periphery so flexible that the additional support elasticity is almost 

ineffective.

The simple FE model is successful in supporting the preliminary study of human 

middle ear mechanics. With this model, we have not only obtained a valuable FE 

modeling experience but also developed a satisfactory method of calibrating the FE 

model. In addition, we obtained good results using the simple model. These results help 

us better understand the middle ear mechanics.

However, the simple FE model has to be improved to predict the behavior of human 

middle ear more accurately. This is particularly because its geometric shape and spatial 

arrangement are based on sketch and best possible characteristic geometric dimensions. 

Furthermore, the ultrastructure of the eardrum was neglected and a number of main 

mechanical properties, such as mass densities, were out of the physiologically reasonable 

ranges. Therefore, a new FE model of human middle ear needs to be developed based on 

serial histological sections of human temporal bone, which will be presented in the 

following chapters.
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CH A PTER FOU R 

COMPUTER-AIDED GEOMETRIC MODELING OF 

HUMAN MIDDLE EAR

In this chapter, an advanced computer-aided modeling method that supports 

engineers to establish accurate 3D geometric and finite element models of human middle 

ear is presented. This method combines the traditional histological morphometry study 

and the computer-aided geometric modeling and computer-aided design (CAD) 

technology. In this method, a set of histological slides is employed for capturing the basic 

geometry of the middle ear. Although the magnetic resonance imaging (MRl) and the 

computer temography (CT) scans seem to be ideal for this purpose, the resolution for 

ordinary CT and MRl is not adequate. Moreover, both methods demand expensive 

equipment, the implementation of complex image processing and numerical techniques.

A brief overview of the proposed approach is shown in Figure 4.1. As illustrated in 

the figure, the proposed approach includes four stages that will be respectively discussed 

in the following four sections. In Section 4.1, the histological section preparation of 

human temporal bone, the first stage, will be discussed. Section 4.2 describes the stage of 

the scanning and imaging process. The section digitization and the solid model 

construction stages are respectively described in Section 4.3 and Section 4.4. Potential 

errors induced in various stages are discussed as well.
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stage 1

Stage 2 

Stage 3

Stage 4 Assembly

Tenyoral Bone

Section Digitization

Serial Mstologlcal Slides

Decalcllÿing and Embedding

Cutting, Staining and Mounting

Viewing Slides by 
light Microscope

Scanning and Imaging Process

Geometric Model of 
Human Middle Ear

Solid Model 
Lofting

Curve Fitting and 
Surface Skinning

Figure 4.1 Computer-aided geometric modeling of human middle ear
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4.1 Histological Section Slide Preparation Of Human Temporal Bone

4.1.1 Decalcifying And Embedding A Temporal Bone

A freshly extracted human temporal bone (female, age 52, right ear) was first 

observed under a Zeiss OPMI-1 operating microscope ’ to confirm an intact

eardrum and normal ear canal. Then the bone was fixed in aldehyde and decalcified in 

10% nitric acid for at least two weeks. The specimen was then run through graded 

alcohols to absolute alcohol ethyl for dehydrating. The temporal bone was placed in a jar 

with 3% celloidin dissolved in absolute alcohol ethyl. In order to ensure that the celloidin 

penetrated into every cavity of the temporal bone, the jar was left uncovered and was 

placed in a vacuum bottle on a moving table for a week. And then, the specimen was 

transferred to 6% and finally 12% celloidin each for one week. The temporal bone was 

allowed to harden slowly by controlled evaporation and finished off with immersion in 

chloroform over a two-week period. The resulting block, roughly 25x20x15 mm  ̂in size, 

was then removed from the container, trimmed and mounted on a metal chunk and stored 

in 70-80% alcohol Do"‘*“'=*Gusscn 1966|

4.1.2 Section Cutting

Before the specimen was cut for histological sections, four parallel fiducial holes 

were vertically (from superior to inferior) drilled in the celloidin block surrounding the 

middle ear structure. The holes were drilled with the guidance of the holes in a wooden 

block placed over the specimen in order to keep them perpendicular to the cutting plane. 

Permanent black ink was injected into these holes to color the fiducial marks. The
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specimen was then cut horizontally on an AO 860 sliding microtome 

corpormioni ^ thickness of 20 pm for 600 histological sections that were saved in 80% 

alcohol. Illustrations and detailed steps of the cutting setup and procedure are described 

in Figures 4.2.

Cutting Setup

( I ) Level the fixture set of the microtome using 

an Empire 360^ level "̂'•’1 and

tighten the tightening screw.

(2) Mount the celloidin block in the fixture and

make sure its cutting plane is horizontal.

(3) Install a dripping bottle with 70% alcohol on 

a Irame and adjust the dropping hose to drop 

alcohol on the cutting plane of the block for 

keeping the block hard.

(4) Adjust the knife stand to clear from the 

cutting plane of the celloidin.

(5) Mount the long knife on the knife stand.

(6) Set vertical increment at 20 pm on the

microtome and tighten the screw.

Cutting Procedure

(I) Pull the knife through the block smoothly 

and quickly.

Spread out the section.

Put a slide paper with a serial number over 

the section.

Slide the section away along the knife blade 

and put it in the 70% alcohol with its face 

down in a peri-dish.

Store the sections in a covered bottle with 

70% alcohol after finishing cutting.

(2)

(3)

(4)

(5)

Figure 4.2 Cutting setup and celloidin block cutting
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4.1.3 Section Staining

The sliced temporal bone sections, obtained from the procedure described in Figure

4.2, were stained with eosin and hematoxylin in a sequential series of every lO"* section. 

The detailed staining setup and procedure are described as in Figure 4.3.

Step# Solutions for Staining Solution Makeup Purpose Layover Time 

(Second)

\ Stilled water Hydrate 15

2 Stilled water Hydrate 15

3 Hemotoxyiin(10%) Diluted with stilled water Stain 30

4 Tap water Rinse 30

5 Alcohol Ethyl (50%) Rinse A few

6 Alcohol Ethyl (50%) Rinse A few

7 Clarifier 70% Alcohol Ethyl 
+ 10% Acetic

A few

8 Tap water A few

9 Bluing reagent 3 ml Ammonia Hydroxide 
+ 1 liter tap water

30

10 Tap water 30

11 Alcohol Ethyl (95%) Ethyl Alcohol -  190 proof 30

12 Eosin (1%) 5 gram Eosin Y 

+ 500 ml stilled water

Stain 30

13 Alcohol Ethyl (70%) Rinse 30

14 Alcohol Ethyl (100%) Ethyl Alcohol -  200 proof Dehydrate 30

15 Alcohol Ethyl (100%) Ethyl Alcohol -  200 proof Dehydrate 30

16 Alcohol Ethyl (100%) Ethyl Alcohol -  200 proof Dehydrate 30

17 100% Alcohol Ethyl 
+ Chloroform

Half 100% Alcohol Ethyl 
+ Half Chloroform

30

18 100% Alcohol Ethyl 
+ Chloroform

Half 100% Alcohol Ethyl 
+ Half Chloroform

30

19 a  turpineal 
+ histoclear

Half a  turpineal 
+ Half histoclear

30

20 a  turpineal 
+ histoclear

Half a  turpineal 
+ Half histoclear

30

Figure 4.3 The staining setup and procedure
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4.1.4 Slide Mounting

Each stained section was mounted on a glass slide immediately after staining. A total 

of 60 slides were obtained, and the anatomical distance between two adjacent slides was 

about 0.2 mm. The section mounting follows the procedure shown in Figure 4.4.

(1) Put a section on a slide (7Sx30xI mm) trom the a  turpineai-histoclear 

solution and then spread it.

(2) Align and trim the edge of the section.

(3) Blot the section using bibulous paper.

(4) Drop glue (permont) on the section.

(5) Cover the section with a microscope cover glass (45x50x0.1 mm).

(6) Remove the bubbles between the permount and the slide.

(7) Weigh down the slide with two weights for one week.

(8) Store slides in a slide box.

Figure 4.4 Section mounting procedure

The black ink injected in the fiducial holes for fiducial marks still remained around 

the edges of the four fiducial holes on each section after staining and mounting, so that 

the fiducial marks can be identified in the finished slides.
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4.2 Imaging Process

The sixty slides, with the required geometric information of the middle ear enclosed, 

were scanned into computer as digital images with a resolution of 1200 pixels per inch. 

These images were saved in TIFF (Tag Image File Format), a common image format 

widely accepted. Each section image file was named as B plus its section serial number 

(for example, B4S0). Then the middle ear components, including malleus, incus, stapes 

and eardrum, were identified and marked on the section images by an otologist, as shown 

in Figure 4.5. Before digitizing these images, they were oriented, aligned, stretched and 

trimmed in Adobe Photoshop incorporated] maintain consistency across the

sections by referring to the fiducial marks.

Fiducial Mark Eardrum
^ ^ a l l e u s ^ >

Figure 4.5 A typical section image identified by an otologist

There were three steps involved in the imaging process. First, the section images 

were rotated to make the two bottom fiducial marks align horizontally, as shown in
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Figure 4.6. This step ensured that all section images were properly oriented. Second, a 

standard template with four fiducial marks (A, B, C, D) was constructed using a typical 

section image, as shown in Figure 4.7. Finally, the template was used as the base with

riducMl Ma

til Reference

Step 1. Adjustment oflm aeeO rientation

(1) Start Photoshop and choose FUe>Preferences>Units & Rulers to set the unit to 

cm.

(2) Choose File>Preferences>Guides & Grid to set a gridline every I cm and 10 

subdivisions and turn on ruler and grid.

(3) Import an image into Photoshop and choose lmage>Adjust>Brightness/Contrast 

to adjust its contrast/brightness to make four fiducial marks (A, B, C, D) clear.

(4) Measure the coordinates of the center of two fiducial marks (A and B) on the 

bottom o f the image and record them. Then calculate the angle 6 between the 

horizontal line and the line joining the centers of these two fiducial marks.

(5) Choose lmage>Roiaie Canvas>Arbitrary to rotate the image with angle 0 in 

order to make the two fiducial marks to lie on the same horizontal line.

(6) Save the image.

(7) Repeat (3) -  (6) for each image.

Figure 4.6 The orientation of the images
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Datum C

B

Step 2. Constructing a Standard Template

( I ) Import a carefully oriented section image (for example, B450) into Photoshop as

the base for constructing the standard template.

(2) Choose Layer>New layer to get a new layer and name it "template".

(3) Activate the template layer. Click Eilipiical Marquee Tool and select one of the 

four fiducial marks. Choose Seleci>ModiJy>Border and type in a width value of 

I pixel. Then click paint bucket tool and fill the highlighted ring area with a 

solid color. Go through other three fiducial marks following the same procedure. 

By now, there are four small circles to serve as the reference points on the 

template.

(4) Click line tool and draw a horizontal line connecting the centers of the two 

bottom circles (A and B), and two orthogonal lines through the centers of each 

circle. Use these lines as datum lines. The center of A, which is the intersection 

point of the horizontal line and the left vertical line, is taken as the datum point 

for aligning images.

(5) Duplicate the template layer into a new file named template.

Figure 4.7 The standard template

the referencing datum point for calibrating all the section images, as shown in Figure 4.8. 

By aligning the fiducial marks on each section image with those on the template, the
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Step 3. Adjusting Individual Images

( I ) Bring a properly oriented section image into Photoshop.

(2) Activate the template file and choose layer>duplicate layer to duplicate the 

template into the new image.

(3) Activate the background and select the center of fiducial mark A as the origin of 

this image. Click Move Tool to move the section image to make its origin 

coincide with the datum point of the template.

(4) Compare the dimensions and the positions of the fiducial marks on the section

image with the circles on the template. Modify the image to make the fiducial

marks on the section image to match the corresponding circles as accurately as 

possible in dimension and position by scaling the new image. The scaling ratio 

is determined by the mean stretching rate of the distance of any two fiducial 

marks with respect to the corresponding distance of two circles on the template.

(5) Delete the template layer. Click Rectangular Marquee Tool and select a 

standard sized rectangle with dimensions 1.2 cmxi.l cm beginning from the left 

top position, which is recorded for all section images.

(6) Choose lmage>Crop to trim the section image as a standard sized image and 

save it in bitmap format to obtain a standard sized image file.

(7) Repeat (I) ~ (6) for each section image to obtain the standard sized section

image file.

Figure 4.8 Adjusttnents of the individual image
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section images were calibrated. They were then trimmed to standard sized images, which 

enclose ossicles, eardrum and surrounding structures, as shown in Figure 4.9.

Eardrum

Malleus

I Stapes

Figure 4.9 The standard sized section image
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4.3 Section Digitization

AAer completing the imaging process, sixty standard sized section images were 

digitized using SolidWorks, a commercial CAD so Aware. The standard sized section 

images were imported into SolidWorks and served as the information source of 2D 

geometric contours. The contours of each middle ear component on the section images 

were digitized for creating closed curves that characterized the middle ear geometry. The 

procedure is described as follows. A reference rectangle was created on the Plane I (OX Y 

plane) of the sketch mode in SolidWorks, as shown in Figure 4.10. Note that this 

rectangle was created with the same dimensions as the standard sized image to ensure 

that the actual size of the section image can be represented accurately in SolidWorks. 

Then sixty sketch planes parallel to plane I were created in SolidWorks for digitization. 

Note that each section image was imported into SolidWorks on its corresponding sketch 

plane. The distance between two adjacent sketch planes was 0.2 mm, which was identical 

to the distance between two corresponding adjacent section images extracted from the 

temporal bone. The next step was to bring a standard sized section image onto the 

corresponding sketch plane, and fit it to the reference rectangle. The 2D contours of the 

middle ear components, including eardrum, malleus, incus and stapes, were then digitized 

on the sketch plane from the section image. This was carried out by properly marking 

points along their boundary using the “Point” option of the sketch mode in SolidWorks, 

as shown in Figure 4.10. Finally the image was removed Aom the sketch plane.

The same procedure was conducted for each standard sized section image. The 

digitized contours were saved separately for malleus, incus, stapes and eardrum. Then the 

files were used to build the contour curves for the middle ear components separately
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Figure 4.11 Section contours of the middle ear represented by a series of curves
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using the “Spline” option of the sketch mode in SolidWorks. Figure 4.11 shows the 

section contours of the malleus represented by a set of serial Spline curves. In this way, 

the relative positions among middle ear components were well maintained for final 

assembly of the middle ear components. The procedure is summarized in Figure 4.12.

(1) Start SolidWorks and open a new part file. Choose Tools>Options>Grid/Uniis to set 

Length Unit as millimeters, Major grid spacing as 10 mm and Minor-iines per major as 

10.

(2) Click Plane I and choose lnsert>Sketch. Draw a rectangle with dimensions 12 mmx 11 

mm and make the left bottom comer of the rectangle coincide with the origin of the 

coordinate system in SolidWorks. Then choose View>Modify>Zoom To Fit to obtain a 

standard sized reference rectangle.

(3) Choose lnsert>Reference Geometry>Plane>Offset to insert a reference plane parallel 

to Plane I for every image and renaming them as Pb plus section serial number (for 

example, Pb4S0). The distance between two adjacent reference planes is 0.2 mm.

(4) Choose lnsert>Object to import a section image into SolidWorks. Select the 

corresponding reference plane and choose lnsert>Sketch.

(5) Move the image to make the left bottom comer of the image coincide with that of the 

reference rectangle (origin o f the SolidWorks’ coordinate system) and drag the right 

top comer until the image fits into the reference rectangle.

(6) Choose Toois>Sketch Entity>point and click (with the Ctrl key pressed) along the 

contour of each component on the section image to digitize its boundary by generating 

a series of points. Close the sketch and delete the image. Then, rename the sketch as Sb 

plus its section number (for example, Sb4S0).

(7) Repeat (4) -  (6) for all the images and save the working file under four different files 

named, separately by malleus, incus, stapes and eardrum.

(8) Open file named “malleus” in SolidWorks. Choose Tools>Sketch Entity>spiine and 

click (with the Ctrl key pressed) on the digitized contour points of the malleus to create 

the closed contour curve for each sketch. Then save the file.

(9) Repeat (8) for the files named incus, stapes and eardrum.

Figure 4.12 Detailed procedure for section digitization
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4.4 Solid Model Constructions

Two methods were employed for solid model constructions. The first method utilizes 

the “loft” and “doom” features available in SolidWorks to create the initial solid model of 

the middle ear. The second method involves curve fitting and surface skinning techniques 

that significantly improve the surface quality and geometric accuracy of the solid model. 

The second method creates solid models with much smoother surfaces. Both methods use 

the same set of discrete points obtained by digitization.

4.4.1 Solid Mode! Construction By ^Loff' And ^Doom” Features

The initial solid models were created using the “loft” and “doom” features in 

SolidWorks. The “loft” feature creates a solid model, as shown in Figure 4.13 (b), by 

connecting multiple closed curves on parallel planes along the plane normal direction, as

Doom Added

\  
Lofted Model

Doom Added

(a) Closed Curves On Parallel Planes (b) Lofting Solid (c) Adding Dooms

Figure 4.13 Solid model construction using “loft” and “doom” features
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shown in Figure 4.13 (a). The “doom” feature adds dooms to the flat ends of the solid 

model to create smooth closures for the structure, as shown in Figure 4.13 (c). Note that 

the “doom” feature is C “ -continuous with the rest “loft” feature. Using the “loft” and 

“doom” features, the solid models of the middle ear components were first created 

separately, as shown in Figure 4.15. Then these component models were assembled to 

create the entire middle ear by mating their coordinate systems, as shown in Figure 4.16. 

The detailed procedure is summarized in Figure 4.14.

(1) Open the file named malleus. Choose lnsert>Base>lofi, select the sketches 

representing the contours of malleus in a proper order, and click OK to create the solid 

model of malleus. Because the shape of each component often changes abruptly from 

one section to another section, sweeping through these sections for loft feature may not 

be straightforward in SolidWorks. Usually, these closed curves have to be divided into 

several overlapping groups for lofting, and some guide curves may be needed.

(2) Choose lmert>Features>Dome to add a “cap” on each end of the solid model and save 

the file.

(3) Repeat (I) and (2) for incus, stapes and eardrum.

(4) Open a new assembly file. Choose lnsert>Componeni to bring four components in. 

Assemble them by mating their coordinate systems.

Figure 4.14 The procedure of solid model construction 
using “loft” and “doom” features

As shown in Figures 4.15 and 4.16, the lofted solid models are not smooth and the 

rough surfaces will create difficulties in generating the finite element mesh for structural 

analysis. In addition, it is problematic to translate the models from SolidWorks to other 

modeling software for creating FE model. The solid model is not quite acceptable and 

must be improved by other modeling techniques.
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(a) Malleus (b)Incus

(c) Stapes (d) Eardrum
Figure 4.15 Lofted models of middle ear components

(a) Anterior View
Figure 4.16 Lofted middle ear solid model

(b) Isometric View
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4.4.2 Solid Model Construction By Curve Fitting And Surface Skinning

To smooth the surfaces of the solid models, we employed the curve fitting and 

surface skinning techniques The same set of discrete points obtained by

digitizing section images of the temporal bone were retrieved from SolidWorks through 

its API (Application Protocol Interface). These points were employed for constructing B- 

Spline curves and surfaces externally to SolidWorks. These points were grouped by the 

individual middle ear components and arranged in sequences at each of the section 

images. The curve fitting technique was employed to best fit the geometric points with 

closed B-Spline curves on individual sections within a prescribed error bound. The 

surface skinning technique was then applied to quilt the series of sections using B-Spline 

surfaces. These techniques are briefly described as follows:

Curve Fitting Technique

The curve fitting technique employs the least square fitting for the given geometric 

points on a pre-selected section of an object. The best fitting curve can be obtained by 

minimizing the distance sum between the curve and the geometric points. The distance 

sum /is defined as

/  = S ||* * y -* K )|| (4.1)/=o

where P j is the position vector of the / '  geometry point, and r+ / is the total number of 

geometric points of the contour; ||#|| is the norm of the vector •; \(u) is the fitting B- 

Spline curve; x(«, ) = [.v, (w, ),.v,(m  ̂),.V;(ŵ  )] is the position vector of the fitting B-Spline 

curve at u„ where u is the parametric coordinate of the curve. The m, in Eq.(4.1) is defined
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by the length ratio of the polygon formed by the geometric points Pj, as illustrated in 

Figure 4.17(a). Mathematically, the values of uj can be calculated by

/-I
Mo =0, M, = ( r + l ) X |l ‘(*..)moU(,..) ~ *** | , U = ^r) (4.2)

and the B-Spline curve is defined as.

x(m ) =  £  B, iV, *(M) ( 4  3 )
1=0

where B, is the f '  control point shown in Figure 4.17(b), «+ / is the number of control

points, and Ni,k(u) is the basis function of the B-Spline curve defined recursively as

(M-/,)iV,,^.,(M) (/,,t-M)iV,„^.,(M) fiV,̂ |(M) = l, f, <M <(i+l

- L i [A^,i ( m) = 0, otherwise (4.4)

where [//, //+/) is a knot span formed by the two consecutive knots i, and and k -I  is 

the polynomial order of the basis functions '̂ *̂ 1.

In order to minimize f ,  the derivatives of/  with respect to the n+/ control points are 

set to zero. For simplicity, considering only the control point, one has

= t H P ,  1 K, ( « , ) + 2 Î K,(", ) i  K,(", )B,
/=01 (=0 f=0 \ / = 0

=  0 . (4.5)

For i  = 0, n, the above expression can be rewritten in a matrix form as

N^NB = N^P 

where N e = R '" " " ', and

(4.6)

N = (4.7)

(r+l)»(n+l)
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Polygon of Geometric Points
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(a) Curve fitting for geometric points P,

Polygon of Control Points 
(Control Polygon)

Sn ^3------- -

 ►

(b) B-Spline curve with control points B, 

Figure 4.17 B-Spline curve fitting
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Note that N^N is invertible if AA,  ̂ ) # 0 '^’*1. This is true if and only if

,̂-k*\ < < /,+!, for i = 0,n-, and j  = 0,r. This implies that there must exist at least one

Uj in at least one knot span so that iV,̂  (m, ) ^  0 for all basis functions. This requirement

can be achieved by adjusting the knot values of the basis functions. The curve fitting 

error can be controlled by adjusting the polynomial order and the number of control 

points. The output of the curve fitting is a set of control points and basis functions that 

describe the smoothed section contour. The computational algorithm of B-Spline curve 

fitting is summarized in Figure 4.18.

( I ) Collect and sort geometric points;

(2) Smooth geometric points by averaging their positions with two previous and two

following nodes (optional);

(3) Specify desired error bound e;

(4) Determine polynomial order;

(5) Determine number o f control points, /, as small as possible;

(6) Construct the B-Spline curve, reduce fitting error by adjusting u, values using the 

chord length parameterization method;

(7) Calculate e = f/(r+1), if e < e  acquire control points B, to construct B-Spline curve;

(8) Otherwise, increase k or n, repeat steps 4 to 7.

Figure 4.18 The computational algorithm of B-Spline curve fitting 

Surface Skinning

The fitting B-Spline curves discussed above are then related across sections to form 

an open B-Spline surface, as shown in Figure 4.19, using the surface skinning technique. 

Note that in this process, the number of control points of the B-Spline curves must be 

kept identical across all the sections. In addition, the polynomial order of the basis
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functions and knot values of the B-Spline curves must be identical on all sections. The 

control points are connected to their corresponding points across sections, as shown in 

Figure 4.19(a), to form a control polyhedron. The enclosed B-Spline surface is then 

constructed, as shown in Figure 4.19(b), by

x( m, ' v) =  S  X  ( " )  ^^/,/ ( '« ') , (4  g)
1=0 y=0 V • /

where n+l and m+I are the numbers of control points in the u- and w-parametric 

directions, respectively; and k - l  and i - l  are the polynomial orders of the basis functions 

N,i^{u) and M  ̂Xw), respectively. Note that the B-Spline surface constructed is C’-

continuous in both u- and w-parametric directions, if cubic basis functions are assumed. 

End caps can be generated by introducing additional control points on the end face of the 

control polyhedron. More than one control points can be added to the end face and each 

of them can be adjusted individually to best fit the geometry of the structure. Note that 

the C'-continuity is maintained between the cap and the flat end face if a bi-cubic B- 

Spline surface is employed. This is the main reason why the surface skinning method can 

produce much smoother models. The control points, B , and basis functions, iV,̂  (i/)

and , of the B-Spline surface can be imported back to CAD tools to support solid

modeling. The computational algorithm of the B-Spline surface skinning technique is 

summarized in Figure 4.20.

After the closed B-Spline surfaces that represented the geometric boundary of each 

middle ear component were constructed using the curve fitting and the surface skinning 

techniques, they were then respectively imported into SolidWorks by using the API. In 

SolidWorks, the smooth solid models of the middle ear components were generated using
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»oo<̂ ,

(a) Control polyhedron and section contours

(b) B-Spline surface enclosed by the control polyhedron

Figure 4.19 B-Spline surface skinning
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(1) Define the longitudinal direction (tv-direction) and identify parallel sections along 

the direction;

(2) Acquire and sort the geometric points on each section;

(3) Find the section with the most complex geometric contour manually and construct a 

B-Spline curve to fit the geometric points using the curve fitting method;

(4) Obtain the minimum number of control points that describe the most complex 

section for a given error bound, and use it as the common number of control points 

for the rest of the sections;

(5) With the number of geometric points r+ /, basis function order k-l, and common 

number of control points n+! available for the f  section, use the chord length 

parameterization method to determine W  =[UQ,W|, - ,w^] and, subsequently, the 

knot vector . This procedure is repeated for the rest of the sections;

(6) Average the knot values of the corresponding knots across all sections for a 

common knot vector ;

(7) Generate B-Spline curves with the basis function order k-l, control point number 

n+ / and common knot vector to tit the geometric points of each section;

(8) While performing curve fitting for each section, check the curve fitting error. If 

there is a section with an error that exceeds the error bound specified, define it as 

the section with the most complex geometric contour and repeat steps 3 to 8, until 

the maximum curve error is less than the desired limit e;

(9) Construct the common basis function for the «-parametric direction, A, (w) ;

(10) Calculate the knot vectors of the f.''' row in the w-parametric direction based on

the control points obtained in step 8, use the knot value placement suggested by 

Rogers el a i '” ’1. This process is repeated for all rows.

(11) Similar to , the common knot vector T„ in the w-parametric direction is 

determined using the same averaging scheme as step 6.

(12) Construct the common basis functions for the w-parametric direction, Mj ;

(13) Acquire control points B,j and basis functions of the B-Spline surface, and 

construct the B-Spline surface.

Figure 4.20 The computational algorithm of 
B-Spline surface skinning technique
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the “thicken” feature. The “thicken” feature creates a solid model by thickening a surface 

or knitting a closed surface. Finally, these component models were assembled into the 

smooth middle ear model by mating their coordinate systems. Because these coordinate 

systems were copied from the same coordinate system used for section digitization, the 

assembly ensured that the components were properly positioned and oriented.

The refined middle ear solid models using the curve fitting and surface skinning 

techniques are shown in Figures 4.21 and 4.22. Figure 4.21 shows four middle ear 

components constructed. Figure 4.22 shows the assembled middle ear model in anterior 

view and isometric view. In comparison with the models shown in Figures 4.15 and 4.16, 

the quality of the surfaces of the refined model was significantly improved. The smooth 

model is not only closer to the real representation of the biostructure, but also facilitates 

translating the model from SolidWorks to other modeling tools for finite element mesh 

generation.

In SolidWorks, the solid model of middle ear can be easily manipulated for 3D 

visualization. Geometric dimensions can also be easily verified by measuring the middle 

ear solid model. The characteristic dimensions of the model were measured in 

SolidWorks and are well within the ranges of published data listed in Table 4.1. The 

result in Table 4.1 shows that the geometric model created by the proposed method is 

very accurate.
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Malleus Incus

Stapes Eardrum
Figure 4.21 Smooth mode of middle ear components

(a) Anterior View (b) Isometric View
Figure 4.22 Smooth model of middle ear
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Table 4.1 Comparison of geometric characteristics between
t 1C CAD model an< published data

EARDRUM CAD Model Data Published Data Published Data References
Diameter along manubrium 8.76 mm 8.0-10.0 mm Gray 1 9 1 8 '
Diameter perpendcular to manubrium 8.93 mm 7.5-9.0 mm Helmholtz 1863 *
Height of Cone 1.46 mm 1.54 mm 

2.00mm
W ada etal. 1992 
Slebenmann 1897 *

Area 66.30 mm' 55.8-85.0 m m' W eversfa/. 1954, Keith 1918*. 
von Békésy 1941*

Thickness 0.05-0.074 mm 0.1 mm
0.04-0.075 mm 
0.132 mm

Helmholtz 1863 * 
KIrikae 1960 
W ada of a/. 1992

MALLEUS
Length from end of manubrium

to end of lateral process
4.20 mm 5.8 mm Stuhlman 1937 *

Total Length 7.65 mm 7.6-9.1 mm Bast & Anson 1949 *
Weight 23.94 mg 23-27 mg Stuhlman 1937 *, W eversfa/. 1954
INCUS
Length along long process 6.08 mm 7.0 mm Stuhlman 1937 *
Length along short process 4.49 mm 5.0 mm Stuhlman 1937 *
Weight 24.77 mg 25-32 mg Stuhlman 1937 *, W eversfa/. 1954

STAPES
Height 2.87 mm 2.5-4.0 mm Stuhlman 1937 ", W eversfa/. 1954
Length of footplate 2.5 mm 2.64-3.36 mm 

2.5 mm
W eversfa/. 1954 
Our Measurement

Width of footplate 1.38 mm 0.7-1.66 mm Helmholtz 1863 *, Wever sf a/. 1954
Weight 2.24 mg 2.05-4.35 mg W eversfa/. 1954

• The work was done by the listed authors but the data came from Wever & Lawrence's book u^tmce iiwi
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4.5 Physical Middle Ear Model Fabricated By Rapid Prototyping

One major advantage of constructing a CAD solid model of the middle ear, instead 

of an FEA model first, is that the middle ear constructed in solid model can be fabricated 

for physical models directly using the rapid prototyping technique. Rapid prototyping is a 

fabrication technology that replicates physical prototypes of objects from their virtual 

mockup. The main advantage of rapid prototyping is that a physical model is built 

directly from the solid model, instead of employing the traditional manufacturing 

process. In all rapid prototyping processes, physical models are fabricated layer by layer 

(Jacobs 19941 model is mostly used for geometric verification, tooling, and for an early 

marketing investigation. Sometimes it can be used for function checking when high 

strength material such as Nylon and Polycarbonate is used.

As a general procedure, a CAD solid model is exported into a file format that 

describes the geometric boundary of the solid model by trianglar facets, such as an STL 

(Stereolithography) file '̂ "*1 The faceted representation describes the approximate 

geometry of the solid model. In SolidWorks, the level of the approximation can be 

adjusted by using different quality setting. The quality setting controls the total number of 

the triangles in the facet approximation by adjusting the chord height deviation and the 

angle tolerance between the actual model surface and the triangle facets. The STL file is 

transferred into a slicing software, which converts the STL file into a slice-by-slice 

format so that the rapid prototyping machine can accept and process. The sliced model 

file is processed by the rapid prototyping machine to fabricate a physical prototype. The 

physical prototype is then fabricated and cured.

In this research, the physical model of human middle ear was fabricated using an
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SLA-7000 from 3D System, Co. Systemsî  g rapid prototyping machine as shown in 

Figure 4.23 (c). The CAD model of human middle ear was exported as a STL file from 

SolidWorks. The file includes about 390,000 facets. The STL model was then sliced by 

Buildstation Systems) ^ software tool developed by 3D Systems, Co. The sliced STL file 

was sent to SLA-7000 and then the physical model was fabricated. The procedure is 

briefly shown in Figure 4.23. The physical model, as shown in Figure 4.23 (d), is pretty 

smooth. The model can be used for geometric verification, education, and surgical 

rehearsal.

By using high strength building materials, the CAD model may also be used for 

producing anatomically shaped prostheses through the rapid prototyping technique.

(a) CAD Model — ^  (b) STL Model

(c) SLA-7000 (d) Physical Model

Figure 4.23 Fabrication of physical middle ear
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4.6 Discussions

4.6.1 Potential Geometric Modeling Errors

We note that possible errors in the solid model mainly come from the histological 

section preparations (Stage I shown in Figure 4.1). The errors induced in the stage can be 

categorized into method errors and operational errors. The method errors include those 

induced by variations in thickness, the shrinkage, tearing, folding and wrinkle of the 

section issues. The variations in thickness can be alleviated by adjusting the hardness of 

the celloidin block and the shrinkage can be corrected by estimating the shrinking rate. 

The tearing, folding and wrinkle on some sections are inevitable, but the problem can be 

solved by substituting the damaged section by its adjacent good section and adjusting the 

distance from the previous layer.

The operational errors are due to inconsistency of different operators (operator 

inconsistency), different shrinking rate of sections and inconsistent setup if the celloidin 

block is cut at different time (time inconsistency), incomplete record of damaged 

sections, and damaged or missing fiducial marks. The operator inconsistency can be 

minimized by having one operator to work on the entire process. The time inconsistency 

can be avoided by finishing section cutting in one day. Other operational errors may be 

minimized or eliminated by operating carefully and keeping a good experimental record.

One other possible error may also come from the section imaging process (Stage 2 

shown in Figure 4.1) while determining the center location of the fiducial mark. But it 

can be minimized by carefully adjusting the images; that is, carefully identifying and 

measuring the center of each fiducial mark. Because the computer-integrated section
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digitization and solid model construction is systematic and less error-prone, we believe 

that the reconstructed solid model is very accurate if only the temporal bone sections are 

obtained consistently. This has been shown by the geometric dimensions of the 

constructed middle ear model comparing with those published.

4.6.2 Advantages of The Geometric Modeling Method

The proposed geometric modeling method provides researchers with a systematic 

and practical approach to accurately capture middle ear geometry for constructing 3D 

computer models. This method is accurate, systematic, low cost, and general.

This method retains the accuracy of the middle ear anatomy by employing 

histological section images obtained by slicing human temporal bones. The systematic 

imaging process aligns, orients, and resizes the section images to minimize mismatch of 

component contours due to inevitable operation errors. Furthermore, the error control 

scheme employed in the curve fitting for image contours ensures that the reconstructed 

geometry can be close to the real middle ear structure within a prescribed error range. 

The accuracy of the proposed method has been demonstrated, as shown in Table 4.1.

This method is systematic. As presented in Figure 4.1, this method follows a 

prescribed procedure. The standardized procedure makes the method easy to follow and 

eliminates potential inconsistency and mistakes. In addition, the required software tools 

are operating system independent and less demanding on computing resources. The 

computing environment can be easily created to support the modeling work using the 

proposed method.

The proposed method is low cost, as compared with possible alternatives such as 

CT, MRI or laser scans with comparable accuracy. The laboratory setup that is required
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for supporting temporal bone slide preparations, as described in stage 1 of Figure I, is 

very common in any bioengineering laboratory. A regular scanner, HP ScanJet Scanner 

(Hewien-packardî  was employed for scanning the slide images into computer with required 

accuracy and resolutions. Software tools that support imaging process, image digitizing, 

and geometric modeling are industrial standard, off-the-shell tools. The only special tool 

employed in the method is the curve fitting and surface skinning that is developed 

separately by our research team.

Most importantly, the proposed method is general. It is applicable to structures with 

complicate geometry, various topology, and different physical sizes. This method works 

especially well with small-size structure and complicate geometry like the human middle 

ear.

Furthermore, the method opens up many research possibilities that require further 

anatomic and pathologic information about the function of complex and tiny 

biostructures. The solid geometric model of human middle ear has been proven to be a 

good basis for finite element analysis of human middle ear. It also provides a possible 

way to fabricate the middle ear prostheses with accurate geometry, as shown in the 

physical model in section 4.5.
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CHAPTER FIVE

COMPUTER INTEGRATED FINITE ELEMENT 

MODELING OF HUMAN MIDDLE EAR

In this chapter, a procedure of constructing the FE model of the middle ear is 

presented. The finite element mesh of the middle ear was first generated based on the 

refined middle ear solid model obtained from Chapter 4. Then the material properties 

were assigned to individual parts of the system. Most material properties came from 

published data as reviewed in Chapter 3. The remaining material properties were 

assumed partially based on engineering reasoning, partially through the modeling 

practice in Chapter 3 and partially by the FE model calibration process. The finalized FE 

model was verified by comparing the FE model prediction with published experimental 

measurements. The objective is to construct a FE model as the base-line FE model for 

clinical-related applications. The FE model includes malleus, incus, stapes, eardrum, 

joints, ligaments, muscles and cochlear impedance. The middle ear cavity was not 

included in this model because it is shown that the middle ear cavity does not contribute 

significantly to the normal middle ear mechanics i986| words, the

“acoustic coupling" is assumed not playing a significant role in sound transmission in 

normal middle ear. And this assumption is also consistent to an experimental setup, in 

which the middle ear cavity is open.
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5.1 Mesh Generation For The Middle Ear FE Model

To prepare for the finite element analysis of middle ear mechanics, all surfaces of the 

refined solid model were translated into HyperMesh via ACIS format l  The

surfaces translated into HyperMesh are shown in Figure 5.1. Based on these surfaces, the 

finite element mesh of the middle ear was created by means of both automatic and 

manual meshing capabilities in HyperMesh. A total of 1,746 3-noded triangular and 4- 

noded quadrilateral shell elements (SHELL 63) were created to mesh the eardrum, which 

yielded a resolution of 25 elements/mm" in average. The mesh of eardrum includes 1,561 

nodes with 9,366 degrees of freedom. Surrounding the eardrum periphery, the tympanic 

ring was meshed using 113 3-noded triangular and 4-noded quadrilateral shell elements. 

There were 812 8-noded hexahedral, 6-noded pentahedral and 4-noded tetrahedral solid 

elements (SOLID 45) created to mesh ossicles, joints, ligaments and muscles with an

(a) Anterior View (b) Isometric View
'igure 5.1 Surface model of human middle ear in HyperMesh

average resolution of 45 elements/mm\ The total number of nodes was 1,497, and 

therefore the total number of degrees of freedom was 4,491. Lying in the stapes footplate 

plane, there were 25 spring elements (COMBIN 14) employed to model the stapedius
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annular ligament. A total of 49 spring-damper elements perpendicular to the footplate 

plane were employed to model the cochlear fluid. The size of the model is adequate for 

an accurate FE analysis with a reasonable computation time. Figure 5.2 (a), (b) and (c) 

show the middle ear FE mesh in anterior, superior and isometric view, respectively.

Incus .  Stapedius 
/  Annular Ligament

C7 /

Malleus

Malleus

(a) Anterior View

à l-S Joint
. /  .  Stapedius
/C6 Annular Ligament

Incus

Stapedius 
Ligament

l-S Joint

Periphery

(c) Isometric View

TM Periphery 
TM

(b) Superior View

Figure 5.2 Finite element mesh of human middle ear
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5.2 FE Modeling Considerations

The anatomy and functions of the middle ear discussed in Section 3.1 were 

incorporated into the FE modeling. The modeling considerations were realized in the FE 

model by assigning different material properties to different parts of the middle ear 

system. Most material properties came from published data reviewed in Chapter 3. The 

remaining material properties were assumed partially based on engineering reasoning, 

partially through the modeling practice in Chapter 3 and partially by the FE model 

calibration process.

The Poisson s ratio was assumed 0.3 for all materials of the middle ear system based 

on the fact that all published Poisson's ratios are close to this value. In addition, there is 

no evidence showing significant effects of Poisson’s ratio on dynamic behaviors of the 

middle ear system The published stiffness and density were used for

main components of the middle ear, including malleus, incus, stapes and eardrum. 

Ligaments, muscles, malleus attachment on the eardrum, incudostapedial joint and 

tympanic ring were assumed the same density as that of the eardrum. Five of six 

ligaments and muscles, including superior malleus and incus ligaments, lateral malleus, 

posterior incus, the posterior stapedial muscle and the tensor tympani muscle, and 

incudostapedial joint were assigned the published stiffness data. The stiffness of 

incudomalleolar joint was assumed by reasoning based on the published experimental 

observations. The stiffness of the anterior malleus ligament (C4 in Figure 5.2) and the 

tympanic ring were adjusted and finalized by the FE model calibration process, as 

described in Chapter 3. The damping coefficients for all the parts of the middle ear 

system were selected based on the study of the simple model presented in Chapter 3.
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The detailed modeling considerations incorporated for the main middle ear 

components, joints, attachment, ligaments, muscles and tympanic ring are introduced in 

the following subsections.

5.2.1 Material Properties Of Middle Ear Components

Eardrum

The eardrum ultrastructure study 19711 the regularity

of the radial and circumferential fibers appearing in the pars tensa. The analytical studies 

by Rabbitt and Holmes also indicate the importance of anisotropic

material properties of the eardrum. The eardrum in this FE model was modeled as a linear 

elastic shell structure with homogeneous and orthotropic material properties. The shell 

element (SHELL 63) was employed instead of the membrane element (SHELL 41) so 

that the elastic support effect of the eardrum periphery could be incorporated (unlike the 

problem encountered in the simple model in Chapter 3). Based on the review of Section 

3.3, the material of the eardrum was assumed to have circumferential Young’s modulus 

of 2.0x10^ N /n r  in the pars tensa and 1.0x10 Y/m" in the parsa flaccida, and radial 

Young’s modulus of 3.2x10^Y/m" in the pars tensa and I.OxlO Y /m ' in the pars 

flaccida, respectively. The annular ligament, which divides the eardrum into pars tensa 

and pars flaccida, was assumed to have the same Young’s modulus as the pars tensa. The 

consideration reflects the ultrastructural chacteristics of the eardrum '’*'•

Rabbin and Holmes 19861̂ ^  shown in Figure 5.3. The thickness varied in accordance with the 

eardrum eeometrv obtained in the CAD solid model.
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Nulch of Rivinus flaccida

Annular Ligament

lympariicRing

Figure 5.3 Eardrum FE model in medial view

Ossicles

The ossicles were modeled as linear elastic and isotropic structure. The homogenous 

Young’s modulus 1.4x 10'° N /m ' was employed. Based on the work of Kirikae

the mass densities varied in different portions of the ossicles, which are listed in 

Table 3.2. Although some research shows that there exists certain relationship between 

the Yoimg’s modulus of a material and its density, the relation was not considered in this 

research due to lack of experimental data.

Malleus Attachment on the Eardrum

The malleus attachment on the eardrum, as shown in Figure 5.4, was modeled as 

linear elastic, homogeneous and isotropic hard tissue. The attachment is softer than
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Incus
Incudomallcar Joint

Incudostapedial Joint

Malleus i 
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Mai CHS

# a  Stapes

Eardrum

Figure 5.4 Malleus attachment on the eardrum, 
incudomalleolar joint and incudostapedial joint

ossicles because the manubrium is not tightly attached to eardrum in human temporal 

bone '’’*1. Therefore, Young’s modulus of the attachment was assumed one

third of that of the ossicles to simulate the “softer” effect.

Incudomalleolar Joint

The incudomalleolar joint is shown in Figure 5.4. Studies on auditory physiology and 

sound transmission through human ear have suggested that the incudomalleolar joint is 

relatively rigid at physiological sound pressure levels for frequencies below 3000 Hz 

[Guinan and Peake 1967; viaming 19871 j j ÿ g  means that there is no relative motion between malleus

and incus in the low frequency range. It may not be the case in the high frequency range 

or high sound pressure amplitude. Therefore, the incudomalleolar joint was modeled as
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homogeneous and isotropic hard tissue with a Young’s modulus identical to the ossicles.

Incudostapedial Joint

The incudostapedial joint, as shown in Figure 5.4, appears to be non-rigid 

19881 is there is a relative motion between incus and stapes. So the joint was 

modeled as homogeneous and isotropic ligamentous tissue * Pfcidergast 20001

Young’s modulus was assumed as 6 .0xl0’ .Y/w’ , which was reported by Wada et al.

[Wada g» a/. I996|

The damping coefficients for all the middle ear components were assumed to be 

a = 0 5 ' ,p = 0.0001 s , based on the study of the simple model in Chapter 3. The malleus 

attachment on the eardrum, incudomalleolar joint and incudostapedial joint, which 

consist of the solid elements as described in Section 5.1, connect malleus and eardrum, 

malleus and incus, and incus and stapes by coupling the corresponding finite element 

nodes among them. The material data used for the middle ear FE model and their sources 

are summarized in Table 5.1.

5.2.2 Boundary Conditions

Figure 5.2 illustrates the boundary conditions employed in the FE model. As shown 

in this figure, three ossicles (malleus, incus, and stapes) were held at the eardrum by the 

malleus, and at the oval window by the stapes footplate. The ossicles were also supported 

by suspensory ligaments and intra-aural muscles. Four major suspensory ligaments 

(superior malleus and incus, lateral malleus, posterior incus, and anterior malleus), the 

posterior stapedial muscle and the tensor tj'mpani muscle were regarded as elastic
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Table 5.1 Material properties of middle ear components used for the FE model

EARDRUM Data Used for FE Model Source
Density (kg/m') 1.2x10" Williams e ta /. 1990

W adaefa /. 1990,1992, Beer e ta /. 1996 
Ferris a t a/. 2000,

Young's Modulus (N/m')
pars tensa 

pars flaccida

2.0x10' (circumferential) 
3.2x10' (radial)
1.0x1 o' (circumferential) 
1 .0x10 '(radial)

Beer af a/ 1996 

Prendergast, Ferris ef a/. 1999

Damping a=O s", 0=0.0001 s Chapter 3 of this dissertation

MALLEUS
Density (kg/m") 2.55x10" (for head) 

4.53x10' (for neck) 
3.70x10' (for handle)

Kirikae ef a/. 1960, W adaefa/. 1992

Young's Modulus {Wm‘) 1.41x10'“ Kirikae af a/. 1960, Herrmann ef a/. 1972 
Koike 1996, Wada ef a/. 1992,1996 
Prendergast ef a/. 1999

INCUS
Density (kg/m") 2.36x10" (for tKjdy) 

2.26x10' (for short process) 
5.08x10' (fbr long process)

Kirikae ef a/. 1960, Wada ef a/. 1992

Young's Modulus (N/m") 1.41x10'“ Kirikae ef a/. 1960, Herrmann ef a/. 1972 
Koike 1996, W ada etal. 1992,1996 
Prendergast ef a/. 1999

Damping a=O s ', 0=0.0001 s Chapter 3 of this dissertation

STAPES
Density (kg/m") 2.20x10" Kirikae 1960
Young' Modulus (N/m") 1.41x10'“ Kirikae ef ai. 1960, Herrmann ef a/. 1972 

Koike 1996, W ada etal. 1992,1996 
Prendergast ef a/. 1999

Damping a=0 s ', 0=0.0001 S Chapter 3 of this dissertation

INCUDOMALLEOLAR
JOINT
Density (kg/m') 3.2x10"
Young's Modulus (N/m") 1.41x10'“
Damping a=O s ', 0=0.0001 s Chapter 3 of this dissertation

INCUDOSTAPEDIAL JOINT
Density (kg/m") 1.2x10'
Young's Modulus (N/m") 6.0x10" N/m" W ada ef a/. 1996, Prendergast 1999 

Ferris ef a/. 2000
Damping a=0 s '.  0=0.0001 S Chapter 3 of this dissertation

MALLEUS ATTACHMENT 
ON THE EARDRUM
Density (kg/m") 1.0x10^
Young's Modulus (N/m") 4.7x10'“
Damping a=0 s ', 0=0.0001 S Chapter 3 of this dissertation

constraints, C1-C5, C7, respectively. The tympanic ring was modeled as an elastic ring 

that connects the eardrum periphery and the bony wall of the ear canal. The cochlear fluid 

was assumed a viscoelastic constraint, C6. The detailed modeling considerations are 

described as follows.
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Ligaments and Muscles

The ligaments and muscles, including the superior, anterior and lateral ligaments of 

malleus, the posterior ligament of incus, the tensor tympani muscle, the posterior 

stapedial muscle, (shown in Figure 5.2) were modeled as homogeneous, isotropic 

ligamentous tissue using solid elements as described in Section 5.1. As listed in Table 

5.2, the Young’s moduli of all ligaments and muscles were chosen based on the review in 

Section 3.3 except the anterior mallear ligament (C4 in Figure 5.2). The published 

Young's modulus for the anterior mallear ligament was not used in the FE model because 

it differs significantly from rest o f the ligaments. The consideration was based on the 

assumption that the materials having similar histological structures should have similar 

mechanical properties. The value of C4’s Young's modulus was adjusted and finalized 

through the FE model calibration process. The damping parameters for all ligaments and 

muscles were assumed to be a  = 0 s ',P = 0.0001 s based on the study of the simple 

model in Chapter 3. Each ligament or muscle was attached to the ossicles by coupling 

corresponding finite element nodes among them at one end, and fixed at the other.

Table 5.2 Initial boundary conditions used for the FE model

Young's Modulus or Spring Constant Damping
Superior mallear ligament (Cl) 4.9x10^ N/m’ (Beer e t a/. 1996)

a=0 s  '. p=0.0001 SLateral mallear ligament (02) 6.7x10* N/m’ (Beer a t a/. 1996)
Posterior incudal ligament (03) 6.5x10' N/m’ (Wada a t a/. 1996,

Prendergast e t al. 1999. Ferris et at. 2000)
Anterior mallear ligament (04) 2 .1x10 'N/m’ (Wada e t at. 1996.

Prendergast a t at. 1999. Ferris at a/. 2000)
Posterior stapedial muscle (OS) 5 .2x10 '14/m’ (Wada a t a/. 1996,

Prendergast a t  at. 1999. Ferris a t at. 2000)
Tensor tympani muscle (07) 2.6x10° N/m’ (Wada etal. 1996. Prendergast etal. 1999)
Ooctilear fluid (06) 60 N/m (Chapter 3  of this dissertation) 0.054 N-s/m
Stapedius annular ligament 9 N/m (Converted from Lynch a t at. 1982) 0 N-s/m
Tympanic ring 3 .2x10 'N/m’ a=0 s  ', 8=0.0001 s
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Tympanic Ring

To simulate the flexible support at the eardrum periphery the tympanic ring

was modeled as an elastic ring of 0.2 mm width and 0.2 mm thick using shell elements, as 

described in Section 5.1. The ring was connected to the eardrum periphery at the inner 

edge by coupling corresponding nodes and was constrained against translational 

movements at the outer edge, as shown in Figure 5.3. The constraint consideration was 

based on Williams et a/.’s study The Young’s modulus was initially

assumed identical to the eardrum, and then adjusted in the FE model calibration process. 

To consider the effect of the missing part of the ring, notch of Rivinus, the Young’s 

modulus of the part corresponding to the notch of Rivinus, was assumed one third of that 

of the ring. The damping coefficients for the tympanic ring were assumed to be identical 

to the eardrum.

Stapedius Annular Lieament

The in-plane stiffness action on the stapes footplate due to the stapedius annular 

ligament was represented by 25 linear spring elements distributed evenly around the side 

periphery of the footplate, as shown in Figure 5.5. These springs are perpendicular to the 

side periphery of the footplate. Each spring was attached to the corresponding node of the 

side periphery of the footplate at one end, and flxed at the other, to simulate the 

attachment to the margin of vestibular fenestra. The arrangement replicates the fact that 

the stapedius annular ligament restrains mainly against in-plane motion of the footplate. 

The out-of-plane stiffhess was combined into the consideration for the stiffness induced 

by the cochlear impedance. Assuming that the material of the stapedius annular ligament
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Slapcs Footplate 

Side Periphery

Stapes

25 Springs To Simulate 
Stapedius Annular Ligament

Figure 5.5 Stapedius annular ligament

is homogenous, isotropic and uniformly distributed surrounding the side periphery, 

Lynch el al. estimated the Young’s modulus of the stapedius annular ligament to be 

l.OxlO*N/ m' '̂ *-1. Based on Lynch el al.'s assumption, the stapedius annular

ligament can be considered as a slab surrounding the side periphery of the footplate. The 

thickness of the slab was estimated as 0.05 mm by measuring the average space between 

the side periphery of the footplate and the wall of the oval window on the histological 

sections of human temporal bone. The area of the side periphery of the footplate was 

measured as 1.275 mm* using the middle ear FE model. If the slab is uniformly divided 

into 25 segments along the side periphery of the footplate, then each segment can be 

treated as a bar element perpendicular to the periphery of the footplate. Therefore, each 

bar has a cross-section area of 0.051mm* and a length of 0.05 mm. Based on the 

discussion above, the spring constant for each spring was estimated as 9.0 NI m.
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Cochlear Fluid Impedance

Some researchers considered cochlear fluid impedance to be resistive and expressed 

it as a viscous damping in their FE models. The damping

coefficients were estimated using the acoustic input impedance of the cochlea that was 

calculated from measurements of the stapes displacements. In another paper, Wada et al. 

modeled the cochlear impedance as a set of springs perpendicular to the plane of the 

footplate '^*1. However, they did not give the spring constant for normal ears. In

Funnell et al. and Ladak et al.'s FE models, the action of cochlear fluid and stapedial 

annular ligament on the stapes footplate was also considered as stiffhess perpendicular to 

the plane of the footplate The stiffness was estimated at a

specific frequency using the acoustic impedance or acoustic compliance of the cochlea 

that were calculated from measurements. In our FE model, the action of the cochlear fluid 

on the stapes footplate was modeled as a set of 49 linear springs with dashpots (damping) 

distributed on the footplate, as shown in Figure 5.6. Note that these springs and dashpots 

are oriented in the normal direction of the footplate plane.

Stapes Footplate

49 Springs with Dashpots 
to Simulate Cochlear Fluid

Figure 5.6 Cochlear fluid
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In order to understand how to estimate the total damping coefficient and stiffiiess of 

the cochlea from the published acoustic impedance data, we consider that the cochlea is 

uncoiled and is simplified as shown in Figure 5.7 (a). The cochlea appears as a tapered 

cylinder divided into two sections, scala vestibuli and scala tympani, by basilar 

membrane. Note that we ignore the cochlear duct because it is quite thin compared to the 

scala vestibuli and scala tympani. At the larger end of the cylinder are the oval window 

and the round window, each of which is closed by a thin membrane. Near the far end of 

the basilar membrane is a small hole called the helicotrma connecting the two sections. 

Therefore, the fluid in scala vestibuli and scala tympani can be simplified as a one 

dimensional mechanical system that consists of a mass block with mass m, a spring with 

spring constant k and a dashpot with damping coefficient c, as shown in Figure 5.7 (b). 

When the system is stimulated by a sinusoidal force F, the equation of motion of the 

system is

IMta trrw»

OvalWiMiMt

Bafitar.MMkruKSbpn

/ / / / / /

(a) Uncoiled and Simplified Cochlea (b) One Dimensional Mechanical
____________________________________________________________________Model____________
Figure 5.7 Uncoiled cochlea and one dimensional mechanical model of cochlear fluid
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mx + cx + kx = F (5.1)

Since F  is a sinusoidal function, then the displacement x can be expressed as

.r = (5.2)

where / = , m is the angular frequency and X  is the amplitude of the displacement x.

Therefore, we have

x = -ix/(û , x = m x  (5.3)

By substituting Eq.(5.3) into Eq.(5.1), the mechanical impedance of the system, Z„, can 

be obtained as

= F lx  = c + i{(dm-kl(ù) (5.4)

Assuming the area of stapes footplate is A and the pressure is uniform over the stapes

footplate, then the volume velocity of the cochlea is xA and the pressure is F / A . Based

on the definition of the acoustic impedance Za, which is the pressure divided by volume 

velocity, we have

_ F /A  c + i{(ûm -  k / (a) (5.5)
 7 ---------

Therefore the magnitude |Z„| and phase angle ZZ^of  the acoustic impedance are 

respectively obtained as

|Z„| = - ^ ^ c ‘ +{(ûm-k/(ûŸ  , = tan '
A ' c

Solving Eq.(5.6) gives

c = /4'|Z„|#|cosZZg| , k = (û((ûm-ctanZZ^) (5-7)

where to = 2nf and / i s  the frequency. The mass m can be estimated by halving the total 

mass of the fluid in scala vestibuli and scala tympani. The k and c can be determined
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using the cochlear input impedance curves obtained experimentally I''*®” *'®' ôooi

Igarashi el al.'s study shows that the volume of scala vestibuli and scala tympani are 

respectively 3.15xlO'*m^ and 4.43xl0*m^ (igarashi e< a/. i986| Assume the density of the 

fluid to be the same as the density of water, i.e.,lxlO^Ag/w’ ; then we can estimate 

m = 3.79x 10'* Ag. From our middle ear model, we have A = 2.91 x 10'* . The mean

experimental curves of the cochlea input impedance published by Aibara el a i, as shown 

in Figure 5.8 were employed to estimate the stiffness and damping

coefficient from Eq.(5.7).

8 10*

Mean of 12 Temporal Bones 
Each of 12 Temporal Bones

SamiYlv N um ber» 12

Samiiie N um ber» 11

Frequency (kHz)

Figure 5.8 Human cochlear input impedance obtained by Aibara et a i 2000
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The estimated spring constant and damping coefficient as function of frequency are 

plotted in Figures 5.9 (a) and (b). These results show that the spring constant and 

damping coefficient are dependent on frequencies. In other words, we cannot estimate a 

set of actural values for k and c using the experimental cochlear input acoustic impedance 

data. Therefore the previously published data for k and c cannot be adopted in our FE 

model. In our FE model, the initial total stiffness of 49 springs was assumed as 60 N/m 

and the initial total damping coefficient of 49 dashpots was taken to 0.054 N-s/m based 

on the study of the simple model in Chapter 3. The final values for the two parameters 

were determined by the model calibration process, described in the following section. We 

will see that the final values determined by the model calibration process are the same as 

the initial values.

When all these modeling considerations were incorporated, the initial FE model of 

the middle ear was built.
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Figure 5.9 Spring constant and damping coefficient in one dimensional 
mechanical model of cochlea derived from Aibara ei a i 2000
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5.3 FE Model Parameter Determination

According to the discussions in Section 5.2, the mechanical properties of main 

components of the middle ear have been assigned mainly based on the published data, 

partially based on published experimental observations and partially based on the practice 

of the simple model. These data are listed in Table 5.1. Most of the boundary conditions 

also have been assumed based on the published data and the practice of the simple model. 

There are only four model parameters that need to be determined. They are the Young’s 

moduli of anterior mallear ligament and tympanic ring, as well as the stiffness and 

damping coefficient of cochlear fluid. These four parameters were determined using the 

FE model calibration process as described in Chapter 3.

The experimental measurements published by Gan et al. were used to

derive the four undetermined parameters following the FE model calibration process and 

are exactly the same as those used for the simple model calibration. The measured mean 

peak-to-peak displacement of the stapes footplate on seventeen normal fresh-frozen, 

cadaveric temporal bones was employed to calibrate the FE model. To be consistent with 

the experimental setup, a uniform pressure of 90 dB SPL (0.632 N/m') was applied to the 

lateral side of the eardrum in the initial FE model. The harmonic analysis was conducted 

on the FE model across the frequency range of 250-8,000 Hz. The displacements of the 

stapes footplate in the frequency field were collected and converted to peak-to-peak 

displacement response of the stapes footplate. The objective of the calibration process is 

to adjust the FE model prediction using the experimental curve obtained by the LDl 

measurement as close as possible. Through the process, the model parameters related to

III



the boundary conditions were finalized as listed in Table 5.3. The FE model with model 

parameters listed in Tables 5.1 and 5.3 is called the base-line FE model of the middle ear.

Table 5.3 Boundary conditions used for the FE model

Young's Modulus or Spring Constant Damping
Superior mallear ligament (Cl) 4.9x10* N/m^ (Beer e t a/. 1996) a=0 s ,0=0.0001 s
Lateral mallear ligament (02) 6.7x10*N/m^ (Beerera/. 1996)
Posterior incudal ligament (03) 6 .5x10 'N/m' (W adaeta/. 1996,

Prendergast e t el. 1999, Ferris e t el. 2000)
Anterior mallear ligament (04) 2.1x10* N/m^ (Determined by FE model calibration process)
Posterior stapedial muscle (05) 5 .2x10 'N/m' (W adaeta/. 1996,

Prendergast e t el. 1999, Ferris e t at. 2000)
Tensor tympani muscle (07) 2.6x10* N/m' (W adaeta/. 1996, Prendergast e t  a/. 1999)
Cochlear fluid (06) 60 N/m (Determined by FE model calibration process) 0.054 N-s/m
Stapedius annular ligament 9 N/m (Converted from Lynch e ta /. 1982) 0 N-s/m
Tympanic ring 6.0x10* N/m' (Determined by FE model calibration process) a=O s .0=0.0001 s

The displacement magnitude at the stapes footplate obtained using the base-line FE 

model was plotted together with the seventeen experimental curves in Figure 5.10. The 

figure shows that the model-predicted stapes displacement curve falls between the

I

I
0 001 — Each of Gan ef a/.'s Measurements 

— Mean of Gan ef af.'s Measurements

'P E A  P rediction

Frequency (Hz)

Figure 5.10 Comparison of stapes footplate displacements 
between prediction and Gan et a i experimental measurements (2001)
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maximum and minimum of the 17 experimental curves. The predicted curve is lower than 

the mean experimental curve, especially in the frequency range of 700-2,000 Hz. There 

is a 1.92-fold difference in average between them. However, the trend is similar to the 

mean curve obtained experimentally across the frequency range of 250-8,000 Hz. The 

difference may come from the significant variations of individual temporal bones. The 

possible reasons to produce the difference will be discussed in section 5.4.
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5.4 FE Model Verifications

In order to verify the accuracy of the base-line FE model, four independent 

experimental results were employed. These experimental data include: (1) the magnitude 

of the umbo displacement as a function of frequency measured by Nishihara et al. 

étal. 19961̂ the stapes velocity transfer function published by Aibara et al.

(3) the ratio of the umbo displacement to that of the stapes footplate converted from the 

measurements of Nishihara et al. and (4) the ratio of the umbo

displacement to that of the malleus short process converted from the measurements of 

Goodeera/.'°==*'"^'^'.

5.4.1 Comparison Of Frequency Response Of The Umbo Displacement

The experimental data from 64 normal ears were selected for the comparison. The 

data are part of the experimental results published by Nishihara et al. In

their work, 99 ears of fifty-two human subjects (age 14 to 88 years, 31 males and 21 

females) were used. In experiments, a small piece of reflective tape was placed on 

subject’s umbo to serve as a laser-reflective target. When each of the thirty-four pure tone 

sounds of 80 dB SPL were delivered to the eardrum, the umbo displacement induced by 

the sound pressure on the eardrum was measured across the frequency range of 195- 

19,433 Hz. The measurements were performed using a laser Doppler interferometer by 

focusing the laser beam on the target placed at the umbo. The measured peak-to-peak 

displacements at the umbo on the sixty-four ears were employed to verify the base-line 

model.
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To be consistent with the experimental setup, a uniform harmonic pressure stimulus 

of 80 dB SPL (0.2 N/m') at the lateral side of the eardrum was applied to the FE model. 

The harmonic analysis was conducted on the base-line FE model across the frequency 

range of 250-8,000 Hz. The umbo displacements in frequency field were collected and 

converted to peak-to-peak displacement response curve. The curve was plotted together 

with the mean and the upper and lower bounds of the sixty-four experimental curves, as 

shown in Figure 5.11. The comparison shows that the model-predicted umbo 

displacements are within the bounds of the sixty-four experimental curves across the 

frequency range of 250-8,000 Hz. It is noticed that the FEA prediction is close to the 

lower bound of the experimental results, which is consistent to the case of the stapes 

footplate displacement in comparison with Gan et al.'s results.

 upper Bound of Nshihara e l al.'s 64 Normal Ears
 Lower Bound of Nshihara et al.'s 64 Normal Ears
—  •  -M ean of Nishihara e t a fs 64 Normal Ears 
— — FEA Rediction

3M

IlSOICO

Frequency (tk)

Figure 5.11 Comparison of umbo displacement between FEA prediction 
and Nishihara et a i experimental measurements (1996)
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5.4.2 Comparison Of Human Middle Ear Sound Transfer Function

The ratio of the footplate velocity to the pressure at ear canal is termed as the ear 

canal sound pressure to the stapes footplate velocity transfer function (STF). In this 

comparison, the STF curves reported by Aibara et al. were employed to verify our base­

line model The experimental measurements were conducted on twelve

normal fresh temporal bones (age 36-81 years, 9 males and 3 females). When a pure tone 

sound of 90-120 dB SPL was delivered to the eardrum, the stapes footplate velocities 

caused by the sound pressure on the eardrum was measured across the frequency range of 

50-10,000 Hz. The measurements were performed using a laser Doppler interferometer 

by aiming the laser beam on a small reflective tape on the center of the stapes footplate. 

Sound pressure in the ear canal was measured near the eardrum using a probe-tube 

microphone. The STF’s were calculated based on the measurements.

Because of the linear characteristics of the FE model, the ratio of the stapes footplate 

velocity to the pressure at ear canal does not depend on the magnitude of the sound 

pressure applied to the eardrum. Therefore, a uniform pressure of 90 dB SPL (0.632 

N/m') on the lateral side of the eardrum was applied to the base-line model. A harmonic 

analysis was conducted on the base-line model across the frequency range of 250-8,000 

Hz. The stapes footplate velocities in the frequency field were collected and converted to 

the STF, which was plotted together with the mean and the upper and lower bounds of 

the eleven experimental curves, as shown in Figure 5.12. This figure shows that the 

model-predicted STF curve lies close to the lower bound of the experimental curves. 

Again, it is consistent to previous observations.
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Figure 5.12 Comparison of STF between FEA prediction 
and Aibara et al. experimental measurements (2000)

5.4.3 Comparison Of The Ratio Of Umbo To Stapes Footplate Displacements

The ratio of the umbo displacement to the stapes footplate displacement reflects the 

effectiveness of the middle ear system in coupling sound pressure into the inner ear. For 

FE model, the ratio may not be within a reasonable range even though both the stapes 

footplate displacement and the umbo displacement are within the reasonable ranges. 

Therefore, it is meaningful to test the base-line model by comparing the ratio between 

experimental measurements and FE model prediction. The experimental data for the 

comparison were calculated from Nishihara et al. measurements '^^1. The

experimental setup is similar to that described in Section 5.4.1. When a pure tone sound 

of 80 dB SPL was delivered to the eardrum, the displacements of the stapes footplate and 

the umbo caused by the sound pressure on the eardrum were measured using a laser 

Doppler interferometer. The results are plotted in Figure 5.13. The FE model prediction
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Figure 5.13 Mean peak-to-peak displacement obtained by Nishihara et al. 1993
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Figure 5.14 Comparison of ratio of umbo displacement to stapes footplate displacement 
between FEA prediction and Nishihara et ai measurements (1993)
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was calculated from the harmonic analysis results on the FE model under a uniform 

sound pressure of 80 dB SPL. Figure 5.14 shows that the FEA prediction is, in general, 

consistent with the experimental result.

5.4.4 Comparison Of The Ratio Of Umbo To Malleus Shoriprocess 

Displacements

The ratio of the umbo displacement to the malleus shortprocess displacement reflects 

the vibration pattern of the malleus that affects the sound transmission in the ossicular 

chain. Therefore, it is meaningful to test the FE model by comparing the ratio between 

experimental measurements and FE model prediction. The experimental data for the 

comparison was calculated from Goode et al.'s measurements The

experimental setup is similar to that of Section 5.4.1. When a pure tone sound of 94 dB 

SPL was delivered to the eardrum, the displacements of the shortprocess and the umbo 

caused by the sound pressure on the eardrum were measured using a laser Doppler 

interferometer. The results are plotted in Figure 5.15. The FE model prediction was 

calculated from the harmonic analysis results on the FE model under a uniform sound 

pressure stimulus of 94 dB SPL. Figure 5.16 shows that the FEA prediction is close to the 

experimental result in most range of frequency when the frequency is greater than 1,000 

Hz. However, the prediction is lower than the experimental result in lower frequency 

range. This experimental result indicates an unstable sound transmission effect from the 

eardrum to the shortprocess in the entire frequency range, i.e., lower in low frequency 

and higher in high frequency. The unstable sound transmission is not shown in FE model 

prediction probably because we used the uniform Young’s modulus but non-uniform
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Figure 5.15 Mean peak-to-peak displacement obtained by Goode ei a i 1994
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Figure 5.16 Comparison of ratio of umbo displacement to shortprocess displacement 
between FEA prediction and Goode et a l  measurements (1994)
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density in malleus in the base-line FE model. The inconsistency of Young’s modulus and 

the density may affect the transmission characteristics in low frequencies.

As discussed above, the verifications of the base-line FE model include four 

experimental measurements, the umbo displacement, the stapes footplate velocity transfer 

function, the ratio of the umbo displacement to the stapes footplate displacement and the 

ratio of the umbo displacement to the malleus short process displacement. The results 

were measured at three reference points, the umbo, the stapes footplate and the malleus 

shortprocess. These verifications plus the comparison of the stapes footplate 

displacements between FEA prediction and Gan el al.'s experimental measurements 

show that the base-line FE model predictions, in general, match the experimental results. 

It is also noticed that the predictions for the stapes footplate displacement, the umbo 

displacement and the stapes velocity transfer function are consistently lower than the 

corresponding mean experimental measurements, especially in the frequency range of 

700-2,000 Hz. The difference may be explained as follows:

(1) The individual difference in geometry and material properties induced the difference 

between the predictions and the experimental results since the base-line model was 

only based on one temporal bone and one set of mechanical properties. It has been 

stated that the anatomical and physiologic individual differences of the external and 

middle ear can induce up to 25 dB individual variation in hearing thresholds, 

particularly in the frequency range of l,00(M,000 Hz i978:Ooode.Gyoe/

al. 1986. Goode 1986]

(2) Some of the material properties adopted in the base-line model were assumed or 

determined by the calibration process, which may not be the actual values.
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(3) The ear canal was not included in the FE model. It has been reported that the ear 

canal acts as a pipe resonator that boosts hearing sensitivity in the range of 2,000- 

5,000 Hz

(4) The action of the cochlear fluid was linearlized in the FE model. It is not the case in 

reality, as discussed in Section 5.2.2.

(5) The uniform Young’s modulus and non-uniform density were employed in the 

ossicles in the base-line model. It is not the case in reality. The inconsistency of 

Yoimg’s modulus and the mass density may affect the transmission characteristics in 

low frequency.

(6) The sound pressure at the eardrum was simplified as uniform pressure load. In 

reality, the load is non-uniform due to the particular shapes of the eardrum and the 

ear canal

Although there are some differences between the base-line model predictions and 

experimental data, we can still conclude that the base-line model is useful for predicting 

the dynamic behaviors of the middle ear. It is appropriate to use the base-line model to 

simulate the middle ear frequency response characteristics, which are the major concern 

in the middle ear sound transmission study.
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CH A PTER SIX 

APPLICATIONS OF THE BASE-LINE FE MODEL

In this chapter, the base-line FE model will be employed to investigate the dynamic 

characteristics of human middle ear and support the otologic studies. The investigation 

includes the dynamic characteristics of normal and altered ears. The otologic applications 

focused on predicting the dynamic behaviors of the middle ear under various otologic 

situations.

6.1 Rocking Of The Footplate

In this study, five points along the long and short axes of the stapes footplate were 

selected to characterize the movements of the footplate, as shown in Figure 6.1. For 

convenience, the direction normal to the footplate plane was defined as the piston 

direction. The piston-like movement of the footplate was characterized using the piston- 

directional displacement of the center point. The rotational movements of the footplate 

were characterized by two rocking angles: anterior-posterior rocking angle (RAa-p) and 

superior-inferior rocking angle (RA;.j), as well as two relative rocking angles: relative 

anterior-posterior rocking angle (RRAa-p) and relative superior-inferior rocking angle 

(RRAs-i). These rocking angles are defined as:

=t an(^j —  ̂ ^
tang 'short
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RRA,_, =
&4._ (6.2)

where d^,dp,d,,d,,andd^  represent the piston-directional displacement at the anterior,

posterior, superior, inferior and central point of the footplate respectively; and

represent the length of the long and short axes of the footplate respectively. The rocking 

angles provided a way to understand how the footplate rocks. The relative rocking angles 

allowed us to observe the levels of the rotational movements of the footplate in anterior- 

posterior plane and inferior-superior plane relative to the piston-like movement.

Superior Point 

Central Point 

.interior Point ■

inrerior Point

Stapes

Posterior Point

Figure 6.1 Measure points at the stapes footplate

In order to obtain the FE model predictions of these angles in the frequency range of 

250-8,000 Hz, the harmonic analysis was conducted using the base-line FE model with a 

uniform stimulus of 90 dB SPL sound pressures applied on the lateral side of the 

eardrum. The displacements of the five points were recorded to calculate these angles. 

Figure 6.2 shows that the anterior-posterior and superior-inferior rocking angles have 

patterns similar to Prendergast et al.'s calculations, as shown in Figure 6.3, although their
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Figure 6.3 Rocking angles as function of frequency calculated 
by Prendergast, Ferris et al. 1999
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curves have more fluctuations fm is  eiai. 19991 pjg„jg 5  4  Indicates that the level of

anterior-posterior rocking movement increases with rising frequency but the level of 

superior-inferior rocking movement reverses. The observation that the level of anterior- 

posterior rocking movement increases with rising frequency is consistent with Heiland et 

al.'s experimental conclusion I”®''®"'* '^1 . Between 250-1,000 Hz, the predominant

movement is piston-like plus superior-inferior rocking. However, with increasing 

frequency, the stapes displays increasing anterior-posterior rocking motions.

I
I
I
I
I ——  Relative Anterlor-ftsterlor 

Rocking Angle

 Relative Superior-Inferior
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001
looaatooono

Frequency ( t t)

Figure 6.4 Relative rocking angles as function of frequency

As Heiland et al. suggested, the studies might have important clinical implications 

[Holland era/. 1999] jp assumption holds, that is, the piston-like motion of the stapes is the

most effective in stimulating the cochlear fluid in vibrations of the stapes, any surgical 

alteration on the middle ear may increase the non-piston-like motion of the stapes at
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certain frequencies. As a result, a patient may experience poor post-surgical hearing 

thresholds at these frequencies. Therefore, it is possible to aid surgical plans by FE 

analysis on the vibration modes of the stapes before any surgical alteration, for example, 

the ossicular replacement prosthesis. The behaviors of normal middle ear should always 

be set as a goal for designing middle ear prosthesis.
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6.2 Mass Loading On The Ossicles

The middle ear as a sound transmission system is affected by the mass changes in the 

ossicular chain. An additional mass loading is detrimental to middle ear function 

1997; Gan et al. 20011 jhgfgfQjg (g helpful for biocngincers to determine the effect of the

mass of implants on stapes footplate movement before designing a new implantable 

device.

In this study, the middle ear base-line FE model was used to predict the variations of 

the footplate displacement due to different implants. As shown in Figure 6.5, the implant 

was modeled as a mass block of prescribed mass density using solid elements. The mass

Malleus Staoedius
Annular Ligament

I-S Jointy/

Eardrum
Mass Block 

Ew^rum Peripheiy

Figure 6.5 FE model of human middle ear with mass block 
on incudostapedial joint
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block was placed onto the incudostapedial joint to simulate the implant mass loading of a 

passive middle ear device, such as the SOUNDTEC ™ Direct System or the Symphonix 

Vibrant. Two experimental middle ear implants A and B (weighing 22.5 and 37.5 mg) 

were used for this study. These two implants were in cylindrical configuration. Both 

implants were 1.5 mm in diameter, but the implant A was 1 mm shorter than the implant 

B (3 mm long).

To obtain the displacements of the stapes footplate from the middle ear base-line FE 

model with two different implants, the harmonic analyses were conducted. Then, the 

difference of the stapes footplate displacements for the two implants were calculated in 

dB using the following equation:

SdB = 201og(f//c/,, ) -  20\ogid,/d^, ) = 20\ogid,/d„ ) (6.3)

where d^ and d^ are the stapes footplate displacements calculated from the base-line FE 

model with implant A and implant B on the incudostapedial Joint, respectively; and drd' is 

the reference displacement. Therefore 6dB is the displacement difference in dB of the 

two situations. It also indicates how large the displacement improvement can be obtained 

when the implant mass is reduced.

Using Eq.(6.3) we calculated the variation of footplate displacements in dB due to 

change of the mass loadings. It is found that 22.5 mg mass loading, compared to the 37.5 

mg mass loading, results in an average 3 dB improvement across the frequency range of 

250-8,000 Hz. The result was plotted in Figure 6.6 with the broken line. For comparison, 

the result of an experimental study was plotted with the solid line in the same figure 

al. 20011 experimental data show that there is no change in displacement due to the 

mass reduction at the low frequencies (<1000 Hz). But an obvious improvement at high

129



frequencies (>3000 Hz) was observed due to the 15 mg (=37.5-22.5) mass reduction. The 

base-line model prediction also shows an improvement at high frequencies (>3000 Hz) 

similar to the experimental data.
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Figure 6.6 Stapes footplate displacement increase due to a 15 mg 
mass loading reduction on incudostapedial joint
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6.3 Change Of The Eardrum Stiffness

In this study, the Influence of eardrum stiffness on stapes footplate displacements 

was examined using the base-line FE model. The harmonic analyses were conducted 

using the base-line model under uniform pressure stimuli of 90 dB SPL at the lateral side 

of the eardnun. The displacements of the stapes footplate for different stiffness of the 

eardrum pars tensa were collected and plotted in Figure 6.7. In this figure, the solid line 

represents the normal eardrum, having circumferential Young’s modulus of 2.0x10’ N/m" 

and radial modulus of 3.2x10’ N/m". The dotted line and broken line represent 

respectively the increment and decrement of the eardrum Young’s moduli by a factor of 

10. The change was applied to both circumferential and radial values. As shown in Figure 

6.7, the stiffness of the eardrum affects the frequency response of the stapes footplate 

displacement. An increased stiffness (Yoimg’s modulus higher than normal) of the 

eardrum results in reduced stapes displacements at low frequencies (<1250 Hz) and 

increased displacements at high frequencies (>1250 Hz). A decreased stiffness of the 

eardrum results in reduced stapes displacements in a large frequency range (>350 Hz) 

and a reverse result in a small frequency range (<350 Hz). These results agree with the 

predicted effects of the eardrum stiffness on the transmission factor of the middle ear by 

Koike et al. The transmission factor was defined as the ratio of the

intracochlear pressure to the stimulus pressure in front of the eardrum, which has the 

similar meaning to the footplate displacement in responding to the input sound pressure 

level at the eardrum. This suggests that an eardrum-stiffness-related hearing loss can be 

studied using the base-line model. For this purpose, we have to determine what cause the 

increase or decrease of the eardrum stiffness.
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Figure 6.7 Effect of the eardrum stiffness on stapes footplate displacement

These preliminary clinical applications of the base-line model predicted rocking of 

the footplate, the effects of passive implant mass loading on the ossicles and changes in 

the eardrum stiffness on middle ear system function. The results suggest that the base-line 

model is useful in the study of middle ear mechanics and the design of implantable 

hearing devices. Perforations of the eardrum, otosclerosis, and both passive and active 

functions of implantable hearing devices may extend the utility of this base-line FE 

model. In a word, the base-line FE model can provide a convenient, fast and economic 

way to predict the consequences of diseases and surgeries. It also can be used to support 

the design of implants and prostheses in selecting materials, configurations and other 

design parameters. Especially, the base-line FE model can be employed to optimize the 

positions and orientations of implants and prostheses in the ear by comparing different 

surgical plans.
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The research work presented in this dissertation involves the development of a 

computer-aided geometric modeling method for constructing human middle ear solid 

models from histological sections of human temporal bone, a computer-integrated finite 

element modeling method that converts the solid model to the analysis model for human 

middle ear mechanics, and the preliminary clinical applications of the FE model. The 

approach provides a tool for physicians and bioengineers to investigate 3D morphometry 

and dynamic behaviors of human middle ear from 2D histological sections of temporal 

bones. The outcome is a 3D base-line FE model of human middle ear with accurate 

geometric representation and relevant clinical applications of the model.

The outcome proves all the hypotheses formulated for the research in Chapter 1. 

First, the results of Chapters 5 and 6 prove that FEM can be used to appropriately predict 

the dynamic behaviors of normal, diseased, and altered human middle ears. Second, the 

results of Chapter 4 prove that an accurate and systematic geometric modeling method 

can be developed to support the human middle ear FE modeling. Third, the results of 

Chapters 3 and 5 prove that the FE middle ear models can be successfully calibrated 

using experimental results to simulate the behaviors of normal ears. Fourth, the results of
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Chapter 6 prove that some clinical applications can be characterized by identifying and 

quantifying FE model parameters.

The outcome also indicates the achievement of all objectives in the research. The 

major contributions of this research are:

(1) A systematic computer-aided geometric modeling method for constructing accurate 

human middle ear solid models in computer.

(2) A computer-integrated finite element modeling procedure for the human middle ear.

(3) A thorough review on the mechanical properties of human middle ear.

(4) An experimentally verified base-line FE model of human middle ear.

(5) Three successful applications of the base-line FE model for investigating the 

dynamic behaviors of normal and altered human middle ears.

The computer-aided geometric modeling method was developed to accurately 

reconstruct the geometry of human middle ear. The accurate geometry is essential for 

realistic middle ear dynamic analysis. The method begins with the histological section 

slide preparation of human temporal bone. The section slides are scanned into computer 

and calibrated into standard section images. The section images are then digitized to 

construct the geometry of human middle ear using the curve fitting and surface skinning 

techniques and CAD tool. This method is accurate, systematic, general and low cost. By 

employing the histological sections of human temporal bone, the accurate details of the 

structure are captured. By the systematic imaging process, the mismatch of component 

contours due to inevitable operation errors is minimized. By the error control scheme 

implemented in the curve fitting for image contours, the reconstructed geometry can be 

close to the real middle ear structure within a prescribed error bound. The standardized
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procedure makes the method easy to follow and eliminates potential inconsistency and 

mistakes. The fewer requirements for laboratory instruments and computer software tools 

make the method cost effective. Most importantly, it is applicable to structures with 

complicate geometry, various topology, and different physical sizes. This method works 

especially well with small-size structure and complicate geometry like human middle ear. 

The solid geometric model of human middle ear has been proven to be a good basis for 

fabricating the physical model and building the FE model of human middle ear.

The computer-integrated FE modeling method was developed to predict the dynamic 

behaviors of the middle ear. The method begins with the generation of finite element 

meshes of human middle ear. The anatomic characteristics and functions of the middle 

ear are incorporated in to the FE model by assigning different material properties to 

different parts of the middle ear system. Most material properties are selected based on a 

thorough investigation about the mechanical properties of the middle ear. The remaining 

material properties are assumed partially through engineering reasoning and partially by 

the FE model calibration process. By perturbing model parameters in a restrictive 

manner, the FE model is calibrated to match the FE model prediction with the laser 

Doppler interferometry measurements of the stapes footplate displacement. The 

procedure produces the base-line FE model of human middle ear.

The base-line model is verified by using four independent experimental 

measurements. The verifications test three points, the umbo, the stapes footplate and the 

malleus shortprocess, of the FE model using these measurements. The verifications show 

that the FE model predictions match the experimental results well. Therefore, we believe 

that the base-line FE model is very useful for predicting the dynamic behaviors of the
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middle ear. It is appropriate to investigate the middle ear frequency response 

characteristics using the base-line model, which are the major concern of the middle ear 

sound transmission study.

The detailed review about the mechanical properties of the middle ear is crucial for 

building and finalizing the FE model. It will also benefit future research related to middle 

ear mechanics.

Movement of the stapes footplate generally represents the mechanical output of the 

middle ear in response to sound input at the eardrum. In the application studies, the 

displacement of the stapes footplate was selected as the primary variable. The clinical 

applications of the base-line model predicted the rocking of the normal ear, the effects of 

passive implant mass loading on ossicles, and the effects of eardrum stiffness variation on 

the middle ear system function. The results suggest that the finite element model is useful 

in the study of middle ear mechanics and the design of implantable hearing devices. 

Perforations of the eardrum, otosclerosis, and both passive and active functions of 

implantable hearing devices may extend the usage of the base-line FE model.
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7.2 Recommendations

The purpose of the section is to discuss additional research issues that ought to be 

explored to advance our understanding on the middle ear mechanics. There are several 

areas in which the current research may be expanded.

7.2.1 Finite Element Model Of The Middle Ear

The efficacy of the base-line FE model can be further improved by adding more ear 

components related to sound transmission into the model. These components include the 

external ear canal, the middle ear cavity and the cochlea. Adding these components will 

simulate the real sound transmission process from the external ear to the inner ear by the 

ossicular chain. The ear canal and middle ear cavity can be modeled using acoustic 

elements to form the real sound pressure distribution on the eardrum and the real 

vibration environment for the middle ear. The cochlea can be modeled using fluid 

elements that will effectively realize the real cochlear input impedance. In the model, an 

additional boundary will be applied at the Eustachian tube, and the sound pressure can be 

applied at the open end of the ear canal. The new FE model, once developed, will be 

suitable to predict the sound transmission characteristics for the entire ear including 

outer, middle and inner ears. It also provides a possibility to investigate the effect of the 

perforation of the eardrum and the injury of the ear due to violent environmental factors 

such as blasts, abrupt environmental pressure change, intense noise, etc.

7.2.2 Multibody Model Of The Middle Ear

The multibody dynamic analysis of human middle car serves as one of the theoretical
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bases of the artificial ear. To prepare for the multibody analysis of the middle ear, the 

mass properties of the ossicles, including the mass, the center of mass and the moments 

of inertia, can be calculated easily based on the CAD model of the middle ear using 

SolidWorks. The multibody model is also suitable to explore the dynamic behaviors of 

the incudomalleolar and incudostapedial joints.

7.2.3 Material Property Test Of The Ear System

In FE modeling of human middle ear, the most difficult task is to find the real 

mechanical properties of the middle ear system. Unfortunately, there is still lack of 

experimental data for a complete set of material properties. In the base-line FE model, 

some mechanical properties came from estimates. The base-line FE model was finalized 

by the FE model calibration process that yields the best estimates of the mechanical 

properties. We need more accurate mechanical property data for better models that will 

produce more accurate predictions.

7.2.4 Identifications Of The Mechanical Parameters Related To Clinical 

Situations

For successful clinical applications using the FE model, the relations between the FE 

model parameters and the clinical situations, such as diseases and aging, must be first 

identified. Once the work is completed, the FE model can be used to explore various 

clinical situations in computer using the variations of the model parameters as input. It is 

a fast and less expensive way to understand how various diseases affect the middle ear 

function. The implementation of the work will require more collaboration between 

bioengineers and physicians.
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