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A LINEAR RIEMANN-STIELTJES INTEGRAL EQUATION SYSTEM
CHAPTER 1
INTRODUCTION

1. Introduction. The system treated here is a type of linear
vector Riemann-Stieltjes integral equation. Under certain conditions the
system reduces to the classical second-order linear differential system.

Chapter II is concerned with existence, uniqueness, and related
basic properties of solutions. Chapter III is concerned with the deter-
mination of the adjoint, compatibility of the system, and basic properties
of conjoined solutions. Necessary and sufficient criteria for solutions
to satisfy certain boundary conditions are given in Chapter IV. Also, the
relationship between the given system and an associated Riccati integral
system is considered; in particular, some results concerning principal
solutions are given. For self-adjoint systems, it is shown in Chapter V
that there are criteria of oscillation and non-oscillation which are
direct generalizations of known criteria for the classical self-adjoint
differential system, while Chapter VI is devoted to the extension to such
systems of the oscillation, separation, and comparison theorems occurring
in the generalization of the classical Sturmian theory due to Morse

([2], [3; Chs. IIL IV]).

2. The system. W&~ shall be concerned with the system

1
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t
() ute) = uy + | [aly,
a

v(t) =v_ + It [dM]u, for t € {a,b],
° a

vhere M and N are n < n dimensional complex valued matrix functionms,
vhile u and v are n-dimensional complex valued vector functions. By a
solution we shall mean (u(t);v(t)) which satisfy (E) for some values of

u, and vV, We shall assume that M and N satisfy H which is given by

H. M and N are of bounded variation and N is continuous

on fa,b].

At various other times we shall assume M and N satisfy the following

hypothesis.
H. M(t) and N(t) are hermitian for t € [a,b].
u. N is strictly increasing; that is, N(t) is hermitian for

t € [a,b] and N(t) - N(s) is positive definite for

s,t &€ [a,b], 8 < t.

Hy. System (E) is identically normal on [a,b]; that is, the

only vector function v(t), _ggé_h that (0;v(t)) is a solu-

tion of (E) on any interval [c,d] C [a,b] is v(t) = O.

We will also be interested in the general matrix system
t

(E,) G(t) =U_+ J [dN]V,
° a

t
V(t) =V + j [aM]Uu, for t g€ [a,b],
° a

where U and V are n X q matrix functidns. If M and N are absolutely
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continuous functions, (E) may be reduced to the classical second order
differential system, while if N is absolutely continuous and M of bounded
variation, system (E) may be reduced to the system found in Reid [4].

Matrix notation is used throughout; in particular, matrices of ome
column are called vectors, allm < n, n 2 1, identity matrices are
denoted by the symbol E, and 0 is used indiscriminately for the zero
matrix of any dimensions. Let C" denote the set of n-dimensional complex
valueq vectors. If u = (ul,-°',un) and v = (vl,--o;vn) are elements of
Cn, then the inner product of u and v, (u,v), will be the usual inner

product Zau;va; the norm of u, Iul, will be the usual norm (u,u)llz; and

the symbol (u;v) will denote the 2n-dimensional vector y = (yl,o--,yzn)T
such that ¥y Ty and Yim = V4 for i =1,..«,n. The conjugate transpose
of a matrix H is denoted by H*, and H is called hermitian whenever E* = H,
b
The symbol j [dN]u will denote the n-dimensional vector whose i-th compo-
a
b
[dNia]ua and if U is an n > q matrix function j [dN]U will

b
nent 1is z j
@ a

a
b

denote the n < q matrix whose ij-th component is Xa J [dNia]Uaj' The
a

integrals are Riemann-Stieltjes and the variable of integration normally
will be omitted. N is called non-decreasing on {a,b], if N(t) is hermitian
for t in this interval and N(t) - N(s) is non-negative definite for

s,t € [a,b], 8 < t. The norm of an n x d matrix N is

£eccd, el = 1}

IN| = sup{|Ng|
The sets BV[a,b], C[a,b],cl[a,b],BC[a,b], and CB[a,b] are the

n—-dimensional vector functions of bounded variation on [a,b], the

n-dimensional vector functions which are continuous on [a,b], the subset

of C[a,b] of functions with continuvus first derivative, BV[a,b] > C[a,b],
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and C[a,b] >< BV[a,b], respectively. If a subscript of 0 is used on any
set, it will indicate that the functions are restricted to be zero at
the endpoints; for example, n € cola.b] if n € C{a,b] and n(a) = 0 = n(b).
The symbol (1.1) will refer to the statement numbered 1.1 in the chapter
it is given, while (II.1.1) will refer to statement 1.1 of Chapter II,
and will be used in chapters other than II. Theoiems, lemmas, and

corollaries will also be numbered in this manner.



CHAPTER II
EXISTENCE AND UNIQUENESS OF SOLUTIONS

1. Existence. We first wish to examine the existence of solutions
to our system. If F is an n X n matrix function of bounded variation on

[a,b], let h = hF be defined as follows:
(1.1) h(a) =0,
h(t) = h.F(t) = sup{zlj:‘l |F(sj)-F(sj_l)| as<s S8 See<s
for t € (a,b]l.
Then h is monotone non-decreasing on [a,b], and continuous at t & [a,b] if

F is continuous at t.

If w(t) = (wa(t)) is a vector function on [a,b] which is such that
b ‘b
J [dF]w exists and ¢ is a real valued function such that Ja ¢th exists
a

and |w(t)| < ¢(t) for t € [a,b], then it follows readily that

U: [aFlw| < r: ¢dhy.

Using these conclusions, we get the following results.

THEOREM 1.1. If M and N satisfy H, system (E) has a solution for

arbitrary n-dimensional Uys Ve

We have that (u;v) is a solution of (E) if and only if

t
(1.2) u(t) = g(t) +J [aN(s) 14 j: [a4(z) Ju()}

a
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with g(t) = u, + [N(t) - N(a)]vo. In particular, g(t) is continuous.
Let

(1.3) uo(t) =0,

t 831
um,,,l(t) = g(t) + Ia [dN(sl)] L [dM(sz)]um(sz) s @ = 0,1,2,°°°,

Then
t

S1
u, () = u (t) = L [aN(s,)] fa [@(s,)1g(s,) -

Let hH =y, h.N = v, where for general matrix functions hF is defined as
above. Then v is continuous and u,v are monotone non-decreasing on [a,b].

If k is a constant such that Ig(t)l < k on [a,b], then we have

s s
(1.4) J [aM]g| < kJ du = ku(s), for s € [a,b],
a a
so that
t t
(1.5) qu(t) - ul(t)l < I kudv = kj pdv for t € [a,b].
a a

Suppose that the inequality

K t m
(1.6) |um+1(t) - um(t)i < - Ua ud\gl , for t € [a,b]

holds for m = r. Then we have

t S1
|ur+2(t) - uﬁ_l(t)l = L [dN(sl)] L [dH(sz)][uﬁl(sz) - ur(sz)'] ‘

e [%1 (%2 r
) U g, wepney] aepfaey

a a

A

k t 83 [‘ 82 r
Sy j J J u(s3)dv(s3a du(sz) dV(Sl)
a-‘a a
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x [t 81 r  S1
< ;T'ja [Ia u(sz)dv(szﬂ d[[a u(sz)dv(sza

Kk t r+l
Ay (I""‘l)! [[a Ud\a .

Hence, we have that (1.6) holds for all m = 1,2,*** and

b o
lum-i-]_(t) - Um(t)l < jnl"f Ua udv] , form = 1,2,°",

Consequently, the series Zj [uj(t) -u _l(t)] converges uniformly on

J
[a,b], and
(1.7) 17,00, (e) - u,_.(8)]] < i[fb R
. it “3-1 L ¥ P
fb udv
< ke a .
Since the convergence is uniform, we get that
(1.8) u(e) = 1y lug(®) - u, ()

t
is continuous and u(t), v(t) = v, + J {dM]u is a solution to our system
a

(E).

2. Uniqueness.
THEOREM 2.1. The solution of (E) for given values_c_’g_uo and v, is

unique.
This is equivalent to showing that if (u;v) is a solution of (E)

with u, = 0= v, then u(t) = 0 = v(t). But u(t) is continuous so there
exists a k > 0 such that |u(t)| < k for t € [a,b]. Moreover,

t {81
u(t) = f [dN(sl)] J dM(sz)u(sz)

a a

so that



t b
lu(e) | < kj pdv < kJ pdv.
a a

t r
1f we assume |u(t)] < rL! udv] for t € [a,b] we have
a

t (51
f Ja lu(s,)|du(s,) dv(s,)

a

lu(t) |

1A

8

k ft U r S
- ud\i] dU ud{l
r! Ja Ua a

Kk t r+l
el e

t r+l1 b r+l
Hence, |u(t)| < [k/(rl-l)!][fa udv] < [k/(rl-l)!][fa udv] for arbitrary

A

A

t
integers r and thus u(t) 2 0, v(t) = f [dN]u = 0.
a
In the above argument, we could have used any point to & [a,b] as

the initial point and obtained the inequality
(2.1) lu(t)| < ke " © , t€ [a,b].

If we let u = u(t,to,u ,vo), v = v(t,to,uo,vo) be the solutions of

(o]

(E) with initial conditions u(to) =u, v(to) =V, we find that u and v
are not necessarily continuous in t. However, we may choose k uniformly

for a set of the type

(2.2) Dy = {(tgouyuv) | £ & [apd, Jugh < 3, Ivgi = 33,

(¢]
so that we get the following result directly from the uniform convergence
of the sequence (1.8).

COROLLARY 2.1. For a given j > 0 there exists a ¢, > 0 such that

3

lu(tyto’uosvo)l hY cj) lv(t)to’uo’vo)l < cj _fﬂ (tosuo’vo) € Dj’ t € [a’b];



moreover, uniformly for t € [a,b] the vector function u(t,to,uo,vo) is

continuous in (t,uo,vo) on Dj’ and uniformly for t,t € [a,b] the vector

function v(t,to,uo,vo) is continuous in (uo,vo) on Iuol < 3, Ivol < 3.



CHAPTER III

PRELIMINARY RESULTS

1. The adjoint system. In this section we shall consider the adjoint

system and some of its properties. To do this, system (E) shall be changed

into a 2n-dimensional system by the following substitutions. Let

J = s "Yl = diag{-M,N}, y = (u;v).

1

It is to be noted that J~ J* = -J, and that M is hermitian if and only

if M and N are hermitian. Thus gystem (E) is equivaient to

(1.1) Llyl(t) = Jldy] + [dM]y = d¥g

for y € CB[a,b] and d‘i’y = 0. However, we may study L[y] for ‘Py € BC[a,b],
and will do so. Let H(L) = CB[a,b]. Since solutions to L{yl(t) =0

are uniquely determined by initial values y(to) at a given t_€ [a,b] we
obtain the following result for the corresponding matrix system

(1.1,) L{Y](t) = J[d¥] + [dMY = 0.

LEMMA 1.1. If Y(t) is a solution of (1.12n), then the rank of Y is

constant.

We wish to show that the system defined by
* *
(1.2) L [z](t) = J[dz] + [d’ﬁ'l l1z=0

is the adjoint system of (1.1). To do this we need the following result.

10
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LEMMA 1.2. If z is a solution of L*[z] =0 and y is a solution of

L{y] = 0, then there exists a constant k such that z*Jy = k.
We have that if y = (u;v) and z = (n;Z) are solutions of the respec-—

tive equations L[y] = 0 and Lﬁz] =0,

v(s) = v(s~) = [M(s8) - M(s™)]u(s) and

t(s) = t(s7) = [M*(s) - M*(s7)In(s);
so we may verify by direct subst;.itution that
z*(s)Jy(s) = z*(s')Jy(s"‘), s € (a,b].
In a similar fashion we may show that
2*(s)Iy(s) = 2*(s")y(sT), s € [a,b),
and thus z*Jy is a continuous function on {a,b].
Let n € Ci’[a,b]. Then we wish to examine
b b
(1.3) I 2*Jyn'dt -I 2*Jydn.
a a
Now y and z are elements of CB[a,b] so the integrals of (1.3) equal

b b b
(1.4) Ja [dz*Jyn] - ja [dz*13yn - «[a z*J[dyln.

But [d2*]J = z*[dﬂl], Jldy] = -[d‘n]]y, and n(a) = 0 = n(b), so that (1.4)

becomes

b b
(1.5) -I z*[{am] +I z*[dmjyn = 0.
_tamim + | 2*lam
Consequently, by the fundamental lemma of the calculus of variatioms

there exists a constant k such that z*Jy is equal to k at every point of

the interval [a,b].

If Y(t) is a fundamental matrix solution of (1.1), and Z(t) is a
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fundamental matrix solution of (1.2), then 2*JY = C where C is a constant,
non-singular matrix. Thus JY*.l(t) = Z(t)C*-l, and Z(t)C*-l is a funda-
mental matrix solution of (1.2). Also, Y-l(t) = C-lZ*(t)J is of the form
[P Q] where Q is continuous and P and Q are 2n X< n matrix functions of
bounded variation on [a,b]. In particular, the integrals

b

b
J [aY 1JY and J v 14y
a a

exist. Moreover,
b b
J [dY'ls'l]JY and J Y'IJ'I[dJY].
a a

also exist.
Let ¢ be a function on [a,b] such that ¢*y is constant on [a,b] for
all y which are solutions of L[y](t) = 0. If Y is a fundamental matrix

solution of (1.1) and z(t) = Jé(t), then y* = z*JY wvhere v is a constant

*

- *
vector. Moreover, if ¢ = J*z with z = JY ly, then ¢ y = z*Jy =

Y*Y—lJ.lJy = y*Y-ly which is constant on [a,b]. Now, for t € [a,b], we

have
t t -1 - t 1.
0= f dE = f [dY lJ 1]JY + J Y 1J 1d[JY]
a a a
t -1.-1 -1.-1
= j {{fdY 3 "3 ~-Y 3 [dvrp}y
a
so that

: -1.-1 -1_-1
= dY J 13 - Y J “[dml}
0 Ja{[ ] e

t
= j (*ratet ) - [dwvf]J*'lY*’l},

a

and since J* = -J it follows that z = J*-lY*-ly is a solution of (1.2).
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We let

w*

(1.6) ™[z](t) = Jdz + [d771*]z = a¥), B = cala,bl.

It is to be noted that if M and N satisfy hypothesis B, then I‘.*[z'_l (t) =0
is exactly L{y](t) = 0. If we let uy(t) = Jy(t) and UY(t) = JY(t), we
get the following result.

THEOREM 1.1. (i) If y and z are solutioms of (1.1) and (1.2),

respectively, then z*(t)Jy(t) is conmstant on [a,b]; (ii) if Y(t) and Z(t)

are solutions of the matrix equations for (1.1) and (1.2) respectively,

then there is a constant matrix C such that 2*(t)JY(t) = C on [a,b];

(iii) if Y(t) is a fundamental matrix for (1.1) and Z(t) is defined by

2*(£)J¥(t) = C where C is a constant matrix, then Z is a solution of (1.2);

moreover, Z(t) is a fundamental matrix for (1.2) if and only if C is non-

singular.
In view of (1.1) and (1.6), we have the identity

.7 @t,2) - (7,47 = dz"y),
so that
b b b
(1.8) J (a¥_,z) - J (Y,d‘?*) = z2"y| ,
a y a z a
*,
forye W), zaOH@).

in particular, from (1.8) it follows that

b b - . *
(1.9) J (a¥,,z) = f (y,d¥)) forye D (L), ze O L),
a y a Z (o]

where it is to be recalled that 80(1.) = {ylye B @), y@@) =0 = y(b)}.

Moreover, if z € CB[a,b] and thers exists an w:'e BC[a,b] such that

b b
(1.10) j (@v ,z) - J (7,d™ = 0 for ye £ @),
a y a 4 (o]
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we can rewrite (1.10) as

b * b * »*.
(1.11) 0= ja (dy,Jz) + Ja (y,[daM7 ]z - d‘l’z), for ye DO(L),

so that
b t
] * * W
(1.11") 0= (dy,J z - [d'Tt‘ lz+Y¥), foryed (L).
a a z o
Consequently, by the fundamental lemma of the calculus of variationms,
there exists a constant vector y such that

t
Jz(t) +J [dm*]z +vy = ‘P:(t)
a

or Jldz] + [dMp])z = d‘l’:.

That is, we have the following result.

THEOREM 1.2. The class b(L*) 1s characterized as the set of vector

functions z € CB[a,b] such that there exists a corresponding 'i’z*e BC[a,b]

for which (1.10) holds, and for z ea(L*) the corresponding d‘i’: is

uniquely determined as L*[z].

2. Compatibility. We now wish to consider the operator L with

domain D(L), a manifold between ﬁo(L) and {XL), and examine those

functions y € D(L) that satisfy the system
(2.1) Llyl(t) = 0, y e D(L).

Clearly the solutions of (2.1) form a vector space. If there are non-

trivial solutions, then there is a uniquely determined integer k,
1) _(2) (k)
34 ’

(1 < k < n) such that y oo,y are linearly independent and

span the space of solutions. If k > 0, we say system (2.1) is compatible
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and has index k. If there are no non-trivial solutions, we will say the

system is incompatible.

Let
D(L;a,b) = {Gyl&y = (Jy(a),Jy(b)) for all y e D(L)},

where J is defined in the preceding section. Now, D(L;a,b) specifies
D(L) since the condition that 0 (L)C D(L) CDO @) implies that y € D(L)
if and only if ye O(L) and Gy € D(L3a,b). Thus we can examine D(L) by
considering D(L;a,b). Let P be a matrix whose column vectors iorm a
basis for D(L;a,b). By examining the various cases as in Reid [6; pp.
127-128] we can obtain the following result.

THEOREM 2.1. The system (2.1) has index 2n if dim D(L;a,b) = 4n;
it has index 0 if dim D(L;a,b) = 0. If dim D(Lja,b) = 4n-m, 1 < m < 4n-1,

and the index is k, then the rank of the 4n < (6n~m) matrix [ﬁv P] is

6n -m- k.
Now we wish to exesmine the conditions under which we get a solution

to the differential system

(2.5) Llyl(t) = O, ﬁy - w € D(L;a,b),

for v some 4n-dimensional vector. To do this we need the adjoint system
(2.6) rlz1(t) = 0, % e D(%a,b),

vhere D(L*;a,b) is the set of all vectors orthogonal to the space spanned

by vectors of the set
(2.7) T={1|r = Qﬁy for y € D(L)}

with Q = diag{-E }.

2n’E2n
To conslder (2.5), we shall examine
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(2.8) Llyl(t) = d¥(t), for t € [a,b], y - w &€ D(L),

where w € D(L) and Y € BC[a,b]. If w is an arbitrary 4n-dimensional

vector, there is a w € D(L) such that ﬁw = », S0 system (2.8) is equiva-

lent to

(2.8") L{yl(t) = d¥(t), for t € [a,b], ay - w € D(L;a,b).

If (2.8) has a particular solution yp(t), then the general solution for
(2.8) is the sum of yp(t) and the general solution for (2.1).

By examining the various cases we can obtain the following result.

THEOREM 2.2. If y p(t) 1s a particular solution of the nonhomogeneous

system (2.8), and Y is a fundamental matrix of the corresponding homo-

geneous system, then: (1) if dim D(L;a,b) = 4n, (2.8) has a solution of

the form y(t) = yp(t) + Y(t)¢, for arbitrary £; (ii) if dim D(L;a,b) = 0,

Y
solution is unique; (iii) if dim D(L;a,b) = 4n-m, 1 < m < 4n-1, (2.8)

A A
(2.8) has a solution if and only if [U u - Gyp] has rank 2n, and the

has a solution if and only if the matrices [ﬁY P} and [ﬁY P Gw - ﬁyp]

have the same rank. The general solution is

y(t) = yp(t) + y(l) (t)ul + y(Z) (t)m2 + oor + y(k) (t)ck, where o, is

of solutions of (2.8).
The symbol D(L*) will denote the manifold of all 2n-dimensional
vector functions z € CB[a,b], for which there is a corresponding

\i’: ¢ BC[a,b] such that

b rb
I v, ,z) - (y,d!’*) = 0 for all y € D(L).
a 7 Ja z

Since DO(L) C D(L), Theorem 1.2 implies that D(L*)C ﬁ(L*) and
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d‘i’z* (t) = L*[z] (t) for t € [a,b], z € D(L‘). Thus D(I?) has the charac-
terization

D(L*) = {zlzeﬁ(L*), Q*Qay = 0 for y € D(L)}.

Consequently, the system

(2.6") ®[z](t) = 0, for t € [a,b], z € DA™

is equivalent to (2.6) and is called the adjoint of the system (2.1).
LEMMA 2.1. If k is the index of (2.1) and k* is the index of (2.6),
then 2n + k* = m + k.
The proof if m = 0 or m = 4n is obvious, so we need only examine
the case that 1 < m < 4n-1. If k is the index of the system (2.1), the
matrix [ﬁY P] has rank 6n -~ m - k. Therefore, if Z is a fundamental

matrix solution of L*[z] (t) = 0 such that Z*JY = E then

[2*a)  z*)]

(2.10) [_ JQ[ﬁY P]

has rank 6n -~ m -~ k. But this matrix is of the form

() Z*(b)

(2.11) s

and thus P*Qﬁ has rank 4n - m - k. But Theorem 2.1 applied to (2.6)
yields the result that P*QZ has rank 2n-k*. Hence 4n -m - k = 20 - k*
or 2n + k* = m + k.

Using this result, we may establish the following result by examining

the various cases.

THEOREM 2.3. System (2.8) has a solution if and only if

b A
(2.12) f z*dy = z*Qav
a
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for all solutions of the homogeneous adjoint system (2.6).

3. Conjoined solutions. We have shown that L*[z] = Liz] if Hh is
satisfied, so Theorem 1.1 implies the following result.
LEMMA 3.1. Lf hypothesis H .is satisfied, while (u;;v;) and (u,;v,)

are solutions of (E), then

kf_ot; t € [a,b],

(3.1)  {uy3v, |uysv,H(e) = v;(t)ul(t) - u’z"(t)vl(:)

where k is some constant.

Since this result will be used heavily in the remainder of the

chapter, we shall assume H 1is satisfied in the remainder of this chapter.
If (UG;VQ), (a0 = 1,2) are solutions of (En)’ then Lemma 1.2 implies
that

%,
{0,359, |0,57,} = V50, - u’;‘v1

is constant on [a,b].

If (ua;va) » (@ =1,2), are solutions of (E) such that the constant
function {ul;vlluz;vz} is zero, these solutions are said to be (mutually)
conjoined. If (u;v) is a solution of (E) such that {u;vlu;v} is zero, we
say that (ujv) is self-conjoined; in particular, all real solutioms (u;v)
are self-conjoined.

If Y(t) = (U(t);V(t)) is a 2n < r matrix whose column vectors are
¥ linearly independent solutions of (E) which are mutually conjoined,
these solutions form a basis for a conjoined family of solutions of
dimengion r, consisting of the set of all solutions of (E) which are
linear combinations of these vectors. As in Reid [6, p. 306] we have the
following result.

THEOREM 3.1. The maximal dimension of a conjoined family of
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solutions of (E) is n; moreover, & given conjoined family of solutions
of dimension r < n is contained in a conjoined family of dimension n.

If Y(t) = (U(t);V(t)) is a solution of (En) on {a,b] whose vectors
form a basis for an n—dimensional conjoined family of solutions, thea
for brevity we shall say that Y(t) is a conjoined basis of (E). In
particular, if ¢ € [a,b], we shall denote by ¥Y(t,c) = (U(t,e);V(t,e))
the solution of (En) satisfying the initial conditions Y(c,c) = (03E).
As {U(c,c); V(c,¢)|U(e,c);V(c,c)} = O it follows that Y(t,c) is a conjoined
basis for (E). Correspondingly, if Yo(t,c) = (Uo(t,c);vo(t,c)) is the
solution of (En) satisfying the initial condition Yo(c,c) = (E,0), then
Yo(t,c) is also a conjoined basis for (E).

The following result is of basic importance for the study of systems
(E).

THEOREYM 3.2. Suppese !l(t) - (Ul(t\-v (t)) 1is a solution of (En)

79 '1
with U, (t) non-singular on [c,d]C [a,b] and K = -{U;V, |U;;V,}. The

matrix function Y(t) = (U(t);V(t)) is a solutiom of (En) on [c,d] if and

only if on this interval

(3.2)  U(e) = U (R, V(£) = V) (DE(E) + U} (e [K, - KE(D)],

where K; is a constant matrix and H(t) is a solution of the matrix equation

t t

*-

(3.3) j a@ = [ et ek, - mel, for t ¢ .

c Cc

t t
(3.4) j az(s) = -J 07" (o) [aN(0) 10} (@)KT(s), T(e) = E,
(~ (~

then H(t) is of the form
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(3.5) H(t) = T(t,c|U1)[K° + S(t,clUl)KI], for t € [c,d],

where
t a -1 %=1

(3.6) S(t,cIUl) = J T (s,c|Ul)U1 (s) [dhl(s)]U:L (s) for t € [c,d],
c

and K, = -{U;vlnl;vl}.

We may write U(t) = Ul(t)H(t), V(t) = Vl(t)ﬂ(t) + A(t). Then

t t t t t
J [dUl]H + J Ul[dH] = J [dU] = I [dN]VIH +J [dN]A
c c c c c

t t
= J [dUI]B + J [dN]A
c c

so that

t t
J UI[dH] = j [@N]A, for t € [c,d].
c c

Also,

t

t t
j [dVl]H + J Vll.dH] + J
c c

t ‘ t
[dA] = J [d(V,H + A)] = J fdv]
c

c c

but

t t t
J [dV] = I [dH]Ulﬂ -I [dVl]H
c c c

so that

t t
J Vl[dH] +I [dA] = O, for t € [c,d].
¢ c

Consequently, we have

t t
*
|, v =<

t
K[dH] ~ I [dUI]A for t€ [c,d].
c c

Thus

UJ(£)ACE) - Uj()A(c) = - KH(t) + KH(c),



21

and we have

A(®) = U¥H(0) [U] ()A(e) + KE(c) - KE(D)], for t € [c,d],

but

UJ(c)A(e) + KH(c) = Ky,
so that
A(t) = ufl(t)[xl - KH(t)] for t€ [c,d].
Now

t t -1
Jc Ul[dH] - Jc [dN]U1 [K1 - KBJ =0

which implies (3.3).
Since (3.3) has a unique solution, we may verify (3.5) by substituting
the stated value of H(t) into (3.3). The proper use of integration by

parts shows that this value satisfies (3.3).



CHAPTER 1V
NORMALITY AND ABNORMALITY

1. Definitions. For a nondegenerate subinterval Io, let A(Io)
denote the set of all functions v such that (u(t) = 0; v(t)) is a solu-
tion of (E). It is to be noted that if v € A(Io), then v(t) is a
constant vector function such that N(t)v(t) is also comstant on L. If
the dimension of A(Io) is d = d(Io) and d > 0 we say (E) is abnormal of
order d, while if d = 0 we shall say (E) is normal. If 10(: Ii, then
d(Io) > d(Il'). Moreover, if N satisfies hypothesis K+ we have that d = 0
and thus (E) is normal.

Two points c,d € [a,b] are said to be (mutually) conjugate with
respect to (E) if there is a solution y(t) = (u(t);v(t)) of (E) such that
u(c) = 0 = u(d) and u(t) # 0 on the subinterval with ¢ and d as endpoints.
The system is called disconjugate on [c,d] if no two points of this sub-
interval are conjugate. If there exists an interval of the form (c,~)

for which no two points are conjugate, then (E) is said to be disconjugate

for large t.

We shall let the vector space QO[a,b] be the space of all functions
(u(t);v(t)) which are solutions of (E) such that u(a) = 0 = u(b), and
denote by kf[a,b] the dimension of QO[a,b]. It is to be noted that
k{a,b] > d[a,b} and k[a,b] > d[a,b] if and only if a and b are mutually
conjugate. The number k{a,b] - d[a,b] 1s the order of b{a} as a conjugate

22
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point to a {b}.

LEMMA 1.1. If [c,d]1C [a,b] and uc,ud are n-dimensional vectors,

then there exists a solution yo(t) = (uo(t);vo(t)) of (E) such that

u (@) =%, u (@ = u’ if and only 1f

(1.1) v* ()€ - v*(d)ud = 0 for arbitrary (u(t);v(t)) € Qo[a,b].

This is a direct application of Theorem III.2.2, since (E) together
with the boundary conditions u(c) = 0 = u(d) is self-adjoint.
Let B(Io) be the set of all functions n such that
t t
(1.2) J dn = J [aN]c
a a
where 7 is any function which is integrable with respect to N. Then we

have for p € Afa,b],

t t
(1.3) 0= j o*{dn(s) - [dN(s)]z(s)} +j [dp*]n(s)

a a
(& * L

= [ (p*rants)] + [do*Ine)} -J o*[an(s) 12 (s)
a a
[t

= [dp*n(S)]-
Ja

This relation, together with Lemma 1.1,gives the following result.
LEMMA 1.2. If n satisfies (1.2) for z(t), then for p € Ala,b] the
function p*n(t) is constant on [a,b]. Moreover, if [c,d] C [a,b] and c

and d are not mutually conjugate, then there is a solution of (E)

satisfying u(c) = u®, u(d) = 0, {u(c) = 0, u(d) = v}, if and only if
o*u®=0 {p*u? = 0} for all p € Alc,d].

If ¢ is a point of [a,b] such that (E) is normal for every interval
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containing ¢ as an end point, and ¥Y(t,c) = (U(t,c);V(t,c)) is a solution
of (E) satisfying U(c,c) = 0, V(c,c) = E, then a value d distinct from c
is conjugate to ¢ if and only if U(d,c) is singular. Moreover, if U(d,c)
has rank r then the order of d as a conjugate point to ¢c is n - r.

If [e,f] C [a,b] and d[e,f] > O, then we can find an n >< 4 matrix
A such that the column vectors form a basis for A[e,f].

LEMMA 1.3. Suppose that [e,f] C [a,b], and c is a point of [e,f)

such that dfe,x] = dfe,f] = d for x € (c,f], 4 is as above, while R is

ann X (n-d) matrix such that [A R] is nonsingular. Let

Y (t) = (U, (t)5V (t)), o =0,1,2,3,

be the solutions of (Eq) satisfying the respective initial conditionms

Y (e) = (058) ¥, (e) = (O3R)

(R;0).

Y,(e) = (450) Yy(e)

Then a value t; € (c,f] is conjugate to t = e relative to (E)_if and only

if one of the following conditions is satisfied:

Ul(tl) has rank less than n - d;

2% the n < n matrix [Uz(tl) Ul(tl)] is singular;

3% the 2n x (2n - d) matrix

Ul(tl) Uz(tl) U3 (tl)

has rank less than 2n- d.

In particular, if R'A = 0, then ([U,(t) U ()]; [V,(£) YV (D)])

is a conjoined basis for (E).
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In order to prove the conclusion involving lo, note that if Ul(tl) =
[u(l)(t) see u(nrd)(t)] is such that Ul(tl) has rank less than n-d, then

there exist constants 61’°.°’€n-d’ not all zero, and such that u(t) =

n-d
ziﬂl gi

u(e) = 0 we have that ¢t

u(i)(t) satisfies u(tl) = 0. Then u(t) # 0 on [e,tll, and since
1 1s conjugate to e. Now if t € (c,f] and
(u(t);v(t)) is any solution of (E) satisfying u(e) = 0, then there exist

constants El,--',é and Ei,~-',€& such that

n~-d

ae) = 1518 6P o), v - iy Eiv(i)(t) + Zg_l g;a(j),

where V(t) = [v(l)(t) see v(n;d)(t)] and A = [6(1) see S(d)], and con-

sequently if t = t is conjugate to e then the constants El,---,a are

n-d
not all zero and the n < (n-d) matrix Ul(tl) must be singular.

In order to prove the conclusion involving condition 2°, note that
if Ul(tl) has rank less than n~d, then the n < n matrix

[Uz(tl) -Ul(tl)] is singular. Conversely, 1if [Uz(tl) Ul(tl)} -

[u(l)(tl) ses uﬁﬂ(ﬁ)] is singular, then we can find constants El’...’gn’
not all zero, such that u(t) = 21 Eiu(i)(t) and u(tl) = 0, By Lemma 1.1,
p*u(i)(t) is constant on [e,f] for all p € Afe,f] and we can assume

(i)*u(e) = Ei for

A= [p(l) s p(d)] is such that A*A = Ed’ so that p
i=1,---,d. Thus, Ei must be zero for i = 1,:°+,d, so that Ul(tl) has
rank less than n-d.

In view of the above, condition 3° 1s true if and only if Ulttl)

has rank less than n- d.

2. Endpoint behavior of solutions. We shall now turn our attention

to the behavior of solutions of (E) in a neighborhood of an end-point of
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a non-compact interval of existence. The following result can be shown

in the same manner as in Reid [6, pp. 315-316].

THEOREM 2.1. Suppose that Yl(t) = (Ul(t);Vl(t)) is a solution of
(E)) on an interval [a,b], with U, (t) non-singular on [c,d] C [a,b] and

let S(t,elUl) denote the matrix function defined by (3.6) in the statement

of Theorem III.3.2.

(1) If e € [c,d] is such that (E) is normal on every subinterval

of [c,d] with e as an end-point, and tl€ [c,d] and distinct from e then

S(r_l,elUl) is singular if and only if t, is conjugate to e, relative to (E).

(1) If I is an open interval (a ,b ), (- <a <b_ <+ =), on which

(E) is identically normal, while (E) is disconjugate on a subinterval

I, = (c b)) of I and Y, (t) = (Ul(t);Vl(t)) is a solution of (E ) with

Ul(t) nonsingular on Io’ then for c ¢ Io the matrix S(t,clUl) is non-

singular for t € Io’ t # c. Moreover, if there exists a c € Io such that
-1 -1

S (t,c|y) >0 as t > b, then 8 (¢,bU;) > 025 t ~ b, for all b€ I .

Conclusion (ii) of Theorem 2.1 implies that if (E) is identically
normal on an interval (co,do) and disconjugate on (eo’do) with Ul(t) non-~
-1
singular on (el,do) C (eo’do) and S (t,eIUl) >0as t~ do for some
-1
e € (el’do)’ then S (t,elUl) +>0as t~ d0 for all e € (el’do)‘ We

shall call such a solution a principal solution after Reid [6] and

Hartman [1]. In the same manner as is employed by Reid [6; pp. 316-317],
we may obtain the following result about principal solutions.

THEOREM 2.2. Suppose that (E) is identically normal on an open

interval I = (ao,bo), (~= < a < bo <+ =). I1f (E) is disconjugate on a

subinterval IO- (co,bo) of I, then a solution Yl(t) = (Ul(t) ;Vl(t)) of

(En) 1s a principal solution of (En) at b if Ul(t) is nonsingular on
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some subinterval I{Yl} = (cl,bo) of I, and there exists a solution

Yz(t) - (Uz(t);vz(t)) of (En) with Uz(t) nonsingular on some subinterval

I{¥,} = (ey,b), and such that for some c € (c;,b )

-1
(2.1) U, (£)U, (£)T(t,c|U;) > 0 as t > b_;

moreover, {UZ;VZIUI;VI}_ is nongingular for any such Y,. Conversely, if

(E) is disconjugate on a subinterval (c sb ), and Y, (t) = (U, (£)5V, (£))

is a principal solution with Ul(t) nonsingular on (cl,bo), then any

solution Y,(t) = (U,(t);V,(t)) of (E)) with {uz;vzlul;vl} nonsingular is

such that Uz(t) is nonsingular on some subinterval (cz,bo) sud (2.1)

holds for arbitrary c € (cl,bo).

3. The Riccati equation. In this section we will assume that M and

N satisfy hypothesis Hh Under this assumption, we wigh to study the
relationship of solutions of (E) and solutions of the corresponding
Riccati equation,

t t t
W[dN]w -J dM = 0.

e |
a

(3.1) RIW] = J

a a

The basic relationship is given by the following result which can be shown
by direct substitution.
THEOREM 3.1. There is a solution Yl(t) = (Ul(t) ;Vl(t)) of (E) on

an interval (ao,bo) with Ul(t) non-singular on this interval if and only

if there is a solution W = Wl(t) of (3.1) on (ao,bo) with Wl(t) =

Vl(t)UIl(t). Moreover, U = Ul(t) is a fundamental matrix solution of the

matrix equation

t t
(3.2) J du = J [dN]wU.
a a
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For Wl(t), a solution of (3.1) on (ao,bo) and ¢ € (ab’bo)’ let us

take H = H(t,clﬁl) and G = G(c,cIWi) to be solutions of the respective

systems
t t

(3.3) J {ds] + J H[dN]Wl =0, H(c) =E,
c [
rt t

(3.4)_ } [dG] + J Wl[dN]G =0, G(c) =E.
c c

We may obtain existence and uniqueness of solutions of (3.2), (3.3), and
(3.4) in a manner similar to the proofs of Theorems II.1l.1 and II.2.1.
Thus, the solutions U, H, and G of these systems are continuous, of
bounded variation, and nonsingular on (ao’bo)' If Wl(t) = Vl(t)UIl(t),

then H(t) = Ul(c)Uzl(t) and we have that

* *=1_% -1 *x=-1_ -1
(3.5) R R e R A e

where K = -{Ul;VllUl;Vl}. Consequently,

t t o, t
(3.6) J fdG] + J W, [dN]G = J [w1 - W] [aN]G.
[ c c

Let G(t,clwl) = H*(t,clwl)P(t,clwl) and substitute this into (3.6). Then

we get
t * tox t *=1, -1
(3.7) jc [an"P] + Jc Wl[dN]G = -Jc U1 lKU1 [aN]G,
so that
t * t *'ll(u'l *
(3.8) J H [dP] = -I U1 1 [aN]H'P,
c c

and consequently
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t

t
Jc UIH*[dP]UI-l(c) = -Jc xnzl[dN]n*PU;‘l(c).
Simplifying, we obtain
(3.9) Jt u*(c) [aP1v* L (c) = -J © el anerIet oyroLee)
. ! 1 ¢ 1 1 1'eh e

* -
If we let F(t,c|Wl) =F = Ul(c)P(t,cIWl)UI 1(c) we have that F satisfies

the system

t t -1 -1
(3.10) J dF = -[ KuU] [dN]UI F, F(c) = E.
c [

We have that K = -K* and by the definition of T(t,cIUl) in the statement

of Theorem III.3.2 we have
t t
J ar* = J T*KU:I[dN]UI'l
c il
so that
| RS | w=L %1
- far } = J KU]. {dN}Ul & »
c
*~1
and this implies F(t,c|wl) =7 (t,clUl). Thus

(3.11) G(t,c|Wl) = H*(t,c|Wi)UI.l(c)T*-l(t,cIUl)UI(c).

If the matrix function Z(t,c]Wl) is defined as
t

(3.12) Z(t,clwl) - J H[dN]G,
c

we find that

(3.13) z(t,e[W)) = U (2)s*(e,e]U U5 (),

where S(t,cIUl) is as defined in the statement of Theorem III.3.2.

Using the results developed above we can obtain the following result.
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LEMMA 3.1. If Wl(t) is a solution of (3.1) on (ao’bo)’ then W(t)

is a solution of (3.1) on (ao,bo) if and only if the constant matrix

I' =W() - Wl(c) is such that E + Z(t,clﬂl)l‘ is nonsingular on (ao,bo)
and '

(3.14) W(E) = W (t) + G(t,e[W)T[E + Z(c,clwl)r]'la(t,ciwl).

We have that if W and Wl are n >¥ n matrix functions which are of

bounded variation, then

t t

t
‘i’[dN]Wl + J Wl[dN]‘i’ + I Y[dN]Y,
c c

t
(3.15) AW] - Aw,] =J dv +J
[

c
where ¥(t) = W(t) - Wl(t). Suppose R[Wl] = 0. Now, if Q(t) is defined
by
v(t) = G(t,CIWi)Q(t)H(t,CIWi),
then Q is of bounded variation and
et

t
dy = J d[GQH]
c

c

t
= _-L Wl[dN]W + ZJ Wl[dN]Wl + jf G{dqQlH - J' W[dN]Wl.

It then follows that R [W] = 0 if and only if
t t
f GldQIR --J (W=, 1[aN] [W-w,1,
c c

or, equivalently, if and only if Q satisfies the equation

t t
(3.16) J dQ = 'j QH[dN]GQ, Q(c) = W(c) - W;(c) = T.
c

c
If Ql(t) is defined by

(3.17) Q (t) = Q(t)[E + Z(t,c|W)r] - T
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then Ql(c) = () and

t (t
J dQ1 = d{Q(t)[E + Z(t,c]Wl)Y] - T}
c ‘e
rt
= | qalanlcq;.
‘c
Thus Ql is a solution of
t t
(3.18) L dQ,; = -Jc QH[leGle Ql(C) =0,

which implies Ql(t) = 0.

Suppose n is an n-dimensional vector such that [E + Z(t,chl)F]n = 0,
As Ql(t) = 0 we have Ql(t)n = 0 so that I'n = Q0 and therefore n = 0. This
implies E + Z(t,clwl)r is nonsingular, and thus (3.14) holds.

If T is such that E + Z(t,chl)F is norsingular on (a_,b ), we can
let Q(t) = T[E + Z(t,clwl)r}'l 2nd thus Q(t) satisfies (3.16).

1f Wl(t) is a solution of (3.1) such that Z_l(t,clwl) +0ast~> bo

for some ¢ € (ao,bo),we shall say Wl(t) is a distinguished solution of

(3.1)‘§£_b0. The concept of a distinguished solution of (3.1) at a 1is
defined in a similar fashion.

If (E) is an identically normal system, we may obtain results similar
to those of Reid [5] concerning the relationship of distinguished solu-
tions of (3.1) and principal solutions of (E). Moreover, a method for
obtaining a principal solution, or a distinguished solution, may be
demonstrated in a fashion entirely analogous to that used for differential

equations.



CHAPTER V

AN ASSOCIATED FUNCTIONAL

1. Definitions. In this chapter we shall assume that M and N

satisfy Hh Let us take the following sets:

{[a,b] = {ClC is an n-dimensional vector function which is

integrable with respect to N};

Pla,b] = {n|there exists a function Z € L [a,b] such that"

L2[n,l;] = 0},
where [a&a,b] is a compact intervali and
(1.1 Lzln.C] = dn ~ [dN]z.

The relationship between n and ¢ will be indicated by n¢ D [a,b]:z.
If (n;z,)€ Dla,b] x L [a,b], (e =1,2), let Jln;:z,5n,32,58,b]

denote the functional defined by
b, b,
If M and N satisfy Hh’ then (1.2) defines an hermitian form on

Dla,b] < §_[a,b]; that is, if (n z,) € Dla,b] = $[a,b], (@ =1,2,3),

then

a) J[n]_:Cl,ﬂz:Cz;a’b] = J[nz:CZ’nl:cl;a!b]’

32
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b) J[cﬂl:clll,nziz;asb] - C‘I[nl:clsnz:cz;a’b]’
) J[n; +nyit, +2,,0535,52,b]
= J[nlzcl’n3:C3;a’b] + J[n2:C2,n3=C3;a’b]-

In general, for a given n the corresponding vector function ¢ is
not unique. However, the value of (1.2) is independent of the choice of

¢ satisfying n€ D [a,b]:z; for this reason, we shall write (1.1) as
b * b,
Also, for brevity we write J[nl;a,b] for J[nl,nl;a,b].
If we let

Ll[n.c] = -dg + [dM]n,

the following result is a ready comsequence of the above definitioms.

LEMMA 1.1. If n,€ b[a,b]:;a, (¢ = 1,2), then

1.4") J sa,b : lb + ’ L 1s
( hd [nl,nzia’ ] nzcl a a nz 1[n1,§1 ’
1.4" ; x Ib + - Is

b

) b " * * * b
(1.4") j nply[ngs2yl - J (LyIngs2p1) ny = {egny = nzcl}la
a a

b
= {nl;cllnz;cz}la.

From this we see that if tyst, € [a,b] are conjugate and (u;v) is a
solution of (E) with u(tl) =0 = u(tz) and uZ 0 on [t:l,tZ], then

(n(t);z(t)) defined by (u(t);v(t)) on [t 2] and identically zero

1°t
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elgsewhere, are functions such that n€ ﬂo[a,b]:; and (1.4") implies

J[n;a,b] = J[g;tl,tzl = 0,

Thus we have the following result.

COROLLARY 1.1. There are no points tl,tz € [a,b] which are conjugate
if the only nG,Do[a,b] such that J[n;a,b} = 0 is n(t) = 0.

THEOREM 1.1. If u is continuous and of bounded variation on [a,b],

then there exists a v such that (u;v) is a solution of (E) om [a,b] if

and only if there exists a vle L[a,b] such that u€ b[a,b]:vl and

(1.5) J[uivy,nigza,b] = 0 for all ne [ [a,bl.

If (u;v) is a solution of (E) on [a,b] and n € ﬂo[a,b], then
u € Hla,b]:v and (1.5) is a consequence of (1.4') for (nl;cl) = (u3v),
(n,38,) = (n;z).

On the other hand, suppose u € D[a,b]:vl and (1.5) holds. If vo(t)

is a solution of the equation

t t
(1.6) - J dv + J [dM]u = O,
a a

then (1.5) becomes

b
L {[an*Iv) + n[dv ]} = 0.

> (lan* +*d]}=bd*]-01 [a,b] that
But . [n]vo n[vo 8‘[nvc, sncenEDoa, , so tha

we have

b : b
@n | ety - vl =0, 1 ce Lan) and | c*1an - o,
a

By a well known result of functional analysis (see, for example, Taylor
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[7, p. 138]), if we restrict { to be a continuous function, we have
that there exists a constant vector A such that
b

b
J C*[dN] [Vl - V°] = J C*[dN]k, for ¢ continuous.
a a

b o, [t
That is, we have that f 4 d{J [dN] [vl -V, = Al} = 0, for ¢ an arbitrary
a a
t
continuous vector function, and consequently j [dN] [vl -V, - Al £ 0on
a

t t
[a,b]. If v(t) = vo(t) + A, then since J dvo = I dv, we have that
a a

t t
J dv = J [dM]u, ¢t € [a,b] and u € ﬁ [a,b]:v, so that (u3v) is a solution
a a

of (E).

COROLLARY 1.2. If J[n;a,b] is non-megative definite on & [a,bl,

and u is an element of Iy [a,b] satisfying J[uja,b] = 0, then there exists
2 v € BV[a,b] such that (u;v) is a solution of (E) on [a,b]. In particu-

lar, if u(t) # 0, a and b are conjugate.

1f n€ .O'o[a,b], we have that u + on € ﬂola;b] for arbitrary o, so

that
0 < J[u + onja,b]
= J{uja,b] + dJ[u,n;a,b} + 0J[n,u;a,b] + }oZIJ[n;a,b].
As J[uja,b] = 0, we can make the right-hand side negative unless

J{u,nza,b] = 0. Thus J{u,n;a,b] = 0 for all n € b’o[a,b].

COROLLARY 1.3. 1If J[n;a,b] is non-negative definite on ﬁo[a,b] and

(u;v) is a solution of (E), while uoeﬂ[a,b] with uo(a) = u(a),
uo(b) = u(b), then J[uo;a,b] 2 J[u;a,b]; moreover, if J[n;a,b] is positive

definite on ﬁola,b] the inequality holds with equality omly if u (t) = u(t).
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Preliminary to the study of necessary and sufficient conditions for
the system (E) to be disconjugate on a subinterval of [a,b], the follow-
ing result will be stated without proof, as it may be established by
direct substitution.

LEMMA 1.2. Suppose that U(t), V(t) are n < r matrix functions of

bounded variation on [a,b] with U continuous. If n  is continuous and

of bounded variation, Cae L [a,b], for « = 1,2, and there exists an

r-dimensional vector function ha(t)’ such that h(1 1s of bounded variation

and continuous on [a,b] while n a(t) z U(t)ha(t), then on this interval we

have the identity

t L % t N
J {cz[dN]c1 + nZ[dM]nl} = J {[;2 - thl [cm][r,l - anl
a a

* % : x
* & *
+ hz(V LZ[U’V] + U L1[U’V1)h1
* * * %
- hz[u*v - v*u][dh,] + d[h,U" Vh, 1},

COROLLARY 1.4. If the column vectors of Y(t) = (U(t);V(t)) form a

basis for an r-dimensional conjoined family of solutions of (E), while

nedHla,bl:z and there exists a function h(t) which is continuous and of

bounded variation such that n(t) = U(t)h(t) for t € [a,b], then

« |b b .
J[n;a,b] = n Vhla +J [z - Vh] [dN][z - Vh].
a

THEOREM 1.2. If J[n;a,b] is non-negative definite on D‘o[a,b], then

N(t) is a non—decreasing functiom.

Suppose N is not non-decreasing. Then there exists an interval [c,d]
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and a vector £, with |€| = ], and such that E*[N(d) - N(e)]g =

d
J E*[dN]E < 0. Also, there exists a kl > 0 such that
c

d
(1.8) j £*[aN])g = -klv[c,d].
Cc

where v{c,d] is the variation function hN of N as defined by II.1l.1.
For any § > O there must exist an interval [e,f]C [c,d] with |e-f| < 8§,

and such that

f *1NJE = -k v[e,f] < K>k
e E [ ]g - 1“[3’ ] - -kl\’[e’f]’ 1 - 1'

If not, there is a 6 > 0, such that any interval [e,f] C [c,d] with

f
le = £] < 6 1s such that Je £*[dN]g > -klv[e,f]. We can partition [c,d]
into a finite number of non-overlapping intervals [ei,f i]’ with

Iei - fi| < § and such that'u'i{ei,fi} = {¢,d}. Then

d %* fi %*
J g [dN]g = zi J g [leg > zi(-klv[ei,fi]) = -klv[c’d]’
[ ei

a contradition to (1.8).

Let m be the first positive integer such that y n, and [c,d] an

interval such that (1.8) holds and

(1.9) vle,d] < k) /(27vMD)

where V[M] is the variation of M on [a,b]. In particular, {[c,d] may be

chosen to satisfy (1.9) since v is continuous on [a,b]. If we consider

t

d
the functions J 5*[dN]£ and L 5*[dN]5, then there exists a g € (c;d)

c

8
such that J E;*[dN]E = J E*[dN]E = -klv[c,d]IZ. The intervals {c,gl
c 8
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and [g,d] may then be subdivided in the same manner, until this operation

has been repeated m times. There is thus obtained a partition of [c,d],

c=t°< tl< see <t2m=dsuch that
t
i * m m
(1.10) . £ [dN]E = -klv[c,d]/2 1 =1,00¢¢,2°,
i-1

Then, if )([t is the characteristic function of [ti_l,ti], ve
i

define n(t) = J: [dN]Ed, where ¢(t) = Zi cix[t i] (t) with the ¢y

chosen so that zilcilz = 1 and n{dj = 0. If u(t) = n(t) for t € [c,d]

and zero elsewhere, then we have that u is such that u(t) € D o[a,b]:&cb.

t
Moreover, [n(t)| < I [dv(s)1|&]|e(s)] < f: dv(s) = v[c,t], so that

c

b b m
[” se*tancs + [ o*tann < 12 e 2kple,al/2™ + oleanim <o,
a

in view of (1.9). Consequently, the assumption that N is not non-
decreasing has led to a contradiction of the non-negative definiteness
of J.

In the same manner as Reid [6, pp. 326-328], the following result
can be established.

THEOREM 1.3. Suppose J[n;a,b] is positive definite on ﬁo[a,b].
If dla,b] = d, A is a basis for Ala,b] with 4*A = E;, and R 1s an
n X (n-d) matrix such that R*A = 0 and [A R] = 0 is nonsingular, then

there exists a unique solution Yb (t) = (l.!b(t:);vb (t)) of (En_ d) such that

(1.11) U(a) =R, T ®) =0, V;(a)A - 0.
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The column vectors of b4 (t) form a basis for a conjoined family of solu-

tions of (E) of dimension n - d, and if T,(t) = (Ua(t);Vl‘(t)) is a

second solution of (En- d) whose column vectors form a basis for a com-

joined family of solutions of (E) of dimension n - d, and satisfying

(1.12) U,(a) =R, V,(a)s =0, U;@)V, () > U:(a)vb(a),

then Ué(t) is of rank n - d on [a,b]. Moreover, _i_{Yz(t) = (Uz(t);Vz(t))

is the solution of (E,) satisfying the initial conditioms Uz(a) = A,

Vz(a) = (), then
D) = ([U,(0)  T0BLY,0) VD = ©E);:V(D)

is a conjoined basis for (E) with U(t) nonsingular on [a,b].

THEOREM 1.4. The form J[n;a,b] is positive definite on 30[a,b] if

and only if N(t) is a non-decreasirg matrix function on [a,b] and there

H]

exists a conjoined basis Y(t) = (U();V{t)) for (E) with U nonsingular o

{a,b].

Since J[n;a,b] is positive definite on Bola,b], Theorems 1.2 and
1.3 imply that N(t) is non-decreasing on [a,b], and the existence of a
conjoined basis Y(t) = (U(t);V(t)) with U(t) nomsingular on [a,b]. Con-
versely, if such a basis exists, then in view of Lemma 1.2 we have for
n¢ £ la,bl:z that

b
J[n;a,b] = fa [z - Vh]*[aN][g - Vh],

with h(t) = U-l(t)n(t:). But N being a non-decreasing hermitian matrix

function implies that

b
K{a;a,b] = J o*[dN]a
a
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is a non-negative definite hermitian form on the vector space of func-

tions a which are N-integrable. Thus, if
b *
[tz - wtantz - wl = 0
a

we must have

t
J [dN]1[z - Vh] =6 for ¢t € [a,b].
a

As L2[n,c] = 0 and LZ[U,V] = 0, it follows that

t t
J uan-J [dN][z - Vh] = o.
a

a
t t

Also, since J Udh = 0 implies I dh = 0, and the condition n(a) = 0
a a

implies that h(a) = 0, it follows that h(t) = 0, and n(t) = 0. Con-
sequently, J[n;a,b] is positive definite on ﬂo[a,b].

THEOREM 1.5. The form Jin;a,b] is positive definite on £ [s,b] if

and only if N(t) is non-decreasing on [a,b] and there is no point

t, € (a,b] conjugate to a.
Corollary 1.1 and Theorem 1.2 imply (E) is disconjugate and N(t)

is non-decreasing whenever J{n:a,b] is positive definite on Hola,b].
Conversely, suppose N(t) is non-decreasing and a has no conjugate
point on (a,b]. Let ¢ = sup{t € [a,b]:J[nja,t] 18 positive definite on
ﬁo[a,t]}. We know ¢ > a since, if we take (U(t);V(t)) the solution of
(E,) such that (U(a);V(a)) = (E;0), we have U is nonsingular on some
nondegenerate subinterval [a,t], and Theorem 1.4 implies that Jin;a,t]
is positive definite on Qfa,t]. We will first show that J [n;a,c] is non-

negative definite on ﬁO[a,c]. Suppose n; € ﬁo[a,clzf:l. Let
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Yl(t) = (Ul(t);Vl(t)) be such that (Ul(c);Vl(c)) = (E;0); also, for

dl=1im dft,c], let el> 0 besych that 0 < ¢, <c¢c - a, dfec - g,,c] = d
e 1 1 1

and Ul(t) is nonsingular on [¢ - el,c]. Let A be such that A*A = Ed , and
1

A is a basis for Afc - el,c]; moreover, let € be such that 0 < €y < Eys
1°¢ - so] = dl' Corollary 1.1 and Theorem 1.4 imply that (E)

is disconjugate on [c - el,c]. Also, Lemma IV.1.2 implies that for any

with dfc - ¢

€ satisfying 0 < ¢ < €y there exists a solution (uE (t);vz(t)) of (E)
satisfying

ue(c - el) =n(c - el), ue(c -€g) = (0.

The general form of ve(t) is v:(t) + Ay where y i3z a d-dimensional constant
vector. Thus, there is unique solution satisfying A*ve (¢) = 0. Moreover,
since the matrix in criterion 3° of Lemma IV.1.3 has rank 2n-d and
encompasses all solutions with A*v(c) = 0, we have that (u_(t) ;ve(t))

€
tends to {(u (t);v (t)) uniformly om {c - epcjase >0 ForOsecse

o o o

define
(n ()55, (£)) = (n;(£)5z;(6)), t € [a,c = &3
= (w (t)sv (8)), t € [c - egs - el;

- (0’0)’ t € [c - E’c]-

Then n_€ 5°[a,c]:;e and ng € ﬁola,c-e]:;e, so that J[ne;a,c] =
J[ne;a,c-e] > 0, and consequently upon letting ¢ -~ 0 we obtain
J[no;a,c] > 0. Theorem 1.4 implies that J[uO;c-sl,c] > 0 and Corollary
1.3 implies that J{nl;c-el,c] > J[uo;c-el,c]. Thus J[nl;a,c] >0, so
that J[n;a,c] is non-negative definite for n ¢ Do[a,c]._ Ifne P c,[a,c]

and J[n;a,c] = 0, then Corollary 1.2 implies there is a vE L [a,c] such



42

that (n;v) is a solution of (E) satisfying n(a) = 0 = n(c) so that n = 0.
Thus Jfnja,c] is positive definite on bola,c]. But Theorem 1.4 gives
the existence of a conjoined basis Y(t) = (U(t);V(t)) on [a,c], and since
U(c) is nonsingular, we have a conjoined basis with U(t) non-singular on
[a,c+8], (5 > 0). Thus J is positive definite on Do[a,c+ 6] and we have
a contradiction to our choice of ¢ unless ¢ = b, and J[n;a,b] is positive
definite on so[a,b].

If the roles of t = a and t = b are interchanged, one may establish
the following result.

COROLLARY 1.5. The form J[nja,b] is positive definite on ﬁo[a,b]

[a,b) which is conjugate to t = b.

2. Disconjugacy criteria. The results of the preceding section
will be compressed here for ready reference.

THEOREM 2.1. If N(t) is non-decreasing for t € [a,b], then the

following conditions are equivalent.

i) (E) is disconjugate on [a,b].

ii) J[n;a,b] is positive definite on ﬁO[a,b].
iii) There is no point on (a,b] conjugate to t = a.
iv) There is no point on [a,b) conjugate to t = b.

v) There exists a conjoined basis Y(t) = (U(t);V{t)) for (E) with

U(t) nonsingular omn [a,b].

vi) There exists an n X n hermitian matrix function W(t), t € [a,b],

which is a solution of the Riccati matrix equation

t t t
(2.1)  RIWI(e) = L [dW] + Ja WldNJW - L d = 0, t¢ [a,b].
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Suppose that for o = 1,2 the matrix functions Mu and Na satisfy
hypotheses H and Hh. The corresponding classes Sfa,b] and Do{a,b]

will be denoted by ,ba [a,b] and bao[a,b]. If we have

then ﬁl[a,b] = ﬁz[a,b] and 310[a,b] = ﬂzo[a,b]. However, these rela-
tions may occur without (2.2) holding. For a = 1,2 we have the correspond-

ing systems

L1lu,v](£) = -dv(t) + [aM () ]u(t) = O

(2'3a)

Ly[u,v](e) = du(e) = [aN,(£)1v(e) = 0

and corresponding functionals

b
(2.4) J, [n.z3a,b] = L {C*[dNa]C-i' n*[dﬂa]n}.

In particular, if ﬁl[a,b] = cﬁz[a,b] = [a,b] then the difference

functional
(2.5) leln;a,b] = Jl[n;a,b] - len;a,b]

is well defined for n € Hla,b].

THEOREM 2.2. Suppose that for a = 1,2, the n x n matrix functions

Na(t), Mu(t) satisfy hypotheses H and H.h and Nz(t) is non-decreasing.

Also suppose ﬁl[a,b] = ﬂz[a,b] and J12[n;a,b] is non-negative definite

on B [a,b] = B la,b] = ﬁzo[a,b]. If (2.3,) is disconjugate om [a,b],

then (2.31) is also disconjugate on [a,b]. Moreover, if le[n;a,b] is

positive definite on fa,b] then the solutions of (2.3,) oscillate
on & ox 9/ OsScl_zate

more rapidly than the solutions of (2.31) in the following semse: if t,

and t2 are mutually conjugate with respect to (2.31) then any conjoined
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basis Y(t) = (U(t);V(t)) for (2.32) is singular at least once on (tl,tz).
If (2.32) is disconjugate on [a,b], then (ii) of Theorem 2.1 implies
that Jz[n;a,b] is positive definite oﬁ f’o[a,b] so that Jl[n;a,b] is
positive definite on fbo[a,b]. Thus Theorem 1.2 implies that Nl(t) is
non~decreasing. Hence (2.31) is disconjugate on [a,b].
Now, in a manner similar to the proof of Theorem 1.5, it can be
shown that if there is a conjoined basis Y(t) = (U(t);V(t)) of (2.32) with
U(t) nonsingular on (a,b) and Nz(t) is non-decreasing on this interval,
then Jz[n;a,b] is non-negative defipite on Zj;[a,b]. Let u(t) be a solu-

tion of (2.31) with u(tl) =( = u(tz), and u(t) # 0 on [t 2], where

1t
asgt <, < b. If n(t) = u(t) for t ¢ [tl,tZ], n(t) = 0 on

[a,£,1Ultyb], then n€ ) [a,b] and Jj[nsa,b] = Jylusty,t,] = 0, so
that Jz[n;a,b] < 0. Hence, any conjoined basis Y(t) = (U(t);V(t)) of
(2.32) must have at least one point on (t.,,tz) where U(t) is singular.

THEOREM 2.3. If N(t) is non-decreasing on [a,b], then (E) is dis-

conjugate on [a,b] if and only if one of the following conditions holds:

(1) there exists on [a,b] a nonsingular n < n matrix function

U(t) € ,6 [a,b]:V with V of bounded variation on [a,b] while {U;V|U;V} (t) =0,

t
ﬂi_J U*Ll[U,V] 1s non-decreasing for t € [a,b];
a

(i1) there exists ann < n hermitian matrix function W(t) of bounded

variation on [a,b] which is such that

t t
W[dN]W - J [dM]
a

t
RWI() = j [aw] +J
a

a

is non-increasing for t € [a,b].

If (E) is disconjugate on [a,b] then there is a conjoined basis

Y(t) = (U(t);V(t)) of (E) with U(t) non-singular on [a,b]; also, U(t)
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satisfies (i) and W(t) = V(t)U-l(t) satisfies (ii).

On the other hand, if U(t) satisfies (i) then let P(t) =

t
[ U*Ll[U,V]. Since U(t) 1is continuous, the integral exists and defines
a
a matrix function of bounded variation on [a,b]. If we take the system

(2.32) ¢to be such that

dN, (t) = dN(t) dM,(t) = aM(t) - U*-l(t)[dP(t)]U-l(t),
then (U;V) is a conjoined basis for (2.32). If (2.31) is system (E), then
D k1, . -1
J;plnsa,b] = J n"U" T[dP]JU "n >0
a

for n € jjo[a,b], so that Theorem 2.2 implies that (E) is disconjugate on
[a,b].
Under the condition (iii) if ¥(t) = R[W](t), then ¥(t) € BV[2,b)
and ¥ is non-increasing. If we take U(t) to be the solution of the system
t t
J du = J [dN(s) JW(s)U(s), U(a) = E,
a a
and V(t) = W(t)U(t), then U and V are n >< n matrix functions on [a,b]
with V of bounded variation on [a,b}; moreover, U€ fﬁ[a,b]:v, U is
nonsingular on [a,b], while {U;V|U;V}(t) = 0, t € [a,b], and
Jt v*L, [U,V] = - jt v*[av1u
a a
which is non-decreasing on [a,b], so we have reduced case (ii) to case (i).
Results may be obtained corresponding to the results of Reid [6;
pp. 341-344] concerning sufficient condiiions for the existence of

principal solutions and properties of solutions when a principal solution

exists.
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3. Focal points. We shall denote by D'*o[a,b] the class of all
n€ O [a,b] with n(b) = 0 and by ﬂo*[a,b] the class of all n€ 0 [a,b]
with n(a) = 0. Then J [a,b] = ﬁ*o[a,b]n O,,[a,bl. We shall also

consider the functional
A * -
3.1) J[nl-cl,nz-c?_,a,b] = nz(a)f‘nl(a) + Jinl,nz.a,b].

If M and N satisfy H and T is 2 hermitian matrix then J[nlzcl,nzzcz;a,b]

is a hermitian form on ﬁ[a,b] > &_[a,b]. As in the case of the func-

tional J[n;a,b}, if nae ﬁ[a,b]:;a, (¢ = 1,2), then the value of (3.1)

is independent of the value of ¢, SO that we will abbreviate to 3[n1,n2;a,b]

or S[nl;a,b] if Ny = Nye
Using the results of Theorem 1.1 and Corollary 1.2 we can obtain the

following results.

THEOREM 3.1. There exists a solution (u;v) of (E) such that

(3.2) Tu(a) -v@) =0

if and only if there exists a vle § {a,b] such that u€ b[a,b]:vl and

J[u;vl,n:r,;a,b] = 0 for n€g ﬁ*o[a,b]:;.

A
COROLLARY 3.1. If J[n;a,b] is non-negative definite on B*o[a,b],

and there exists a u€ & [a,b] satisfyin S[u;a,b] = 0, then there
= *0 Satisliylng then there

exists a v such that (u,v) is a solution of (E) on [a,b] which satisfies

the condition

(3.3) Tu(a) - v(a) =0, u(b) = 0.

Since I' is hermitian, the solution Y(t) = (U(t);V(t)) which
satisfies Y(a) = (E,T) is a conjoined basis. The following result is

proved in a manner similar to that used to estuhlish Theorem 1.5.
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THEOREM 3.2. The functional 3[n;a,b] is positive definite on

b;o[a,b] if and only if N(t) is non-decreasing on [a,b], and the con-

joined basis Y(t) = (U(t);V(t)) for (E) satisfying Y(a) = (E;T') is such

that U(t) is nonsingular on [a,b].

Relative to the functional (3.1), or relative to system (E) with

initial condition (3.2), a value T € [a,b] is a right-hand {left-hand}

focal point to t = a if t > a {7t < a} and there is a solution (u(t);v(t))
of (E) which satisfies (3.2), has u(t) = 0, and u(t) # O on the interval
with a and T as endpoints.

The following result can be established by an argument similar to
that occurring in the proof of Theorem 2.2, and using the result of
Theorem 3.2.

THEOREM 3.3. Suppose that for o = 1,2 the n >< n matrix functions

Ma(t) and Na(t) satisfy hypotheses H and B , while }12 {t) is non-decreasing

on [a,b]. Moreover, for arbitrary [c,d] C [a,b] we have tﬁl[c;d] =

bz[c,d] = B[c,d], and I‘a(u = 1,2) are hermitian matrices such that

» A A
J12[n;a,b] = Jlln;a,b] - J2[n;a,b]

=n*(@Ir; - rIn(a) + I ,In;a,b]

12[n;

A
is non-negative definite on B*O[a,b]. If relative to J2 [n;a,b] there

A
is no right-hand focal point to a on (a,b], them relative to Jlin;a,b]

there is also no right—hand focal point to a on (a,b].




CHAPTER VI
MORSE FUNDAMENTAL FORMS

1. Focal points. The results of this section correspond to the

results found in Reid [6, pp. 356-366] and the proofs of the results are
in most cases the direct analog of Reid’s pr-ofs. We wish to examine

the relationship of the Morse Quadratic Form and the idez «: iocal points
as defined in Section 3 of the last chapter. That is, if hypothesis HN
is satisfied and Y(t) = (U(t);V(t)) is a conjoined basis for (E) on [a,b],

then ¢ is a focal point of the family of order k if U(c) is singular and

of rank n~k. The following lemma is basic to the study of these points.

LEMMA 1.1. Suppose hypothesis HN holds and (E) is disconjugate on

[a,b]. If Y(t) = (U(t);V(t)) is a conjoined basis for (E), then on (a,b]

and [a,b) there are at most n focal points, each point being counted a

number of times equal to its order. Moreover, the focal points of a

conjoined basis are isolated.

Throughout the remainder of this chapter we will assume that Hy holds.

A partition

(1.1) a-to<t1<~--<tm<tm+1-b

will be called a fundamental partition if (E) is disconjugate on each of
the subintervals [ti_l,ti] » 1 = 1,-cc,m+1. Such a partition exists

since, in view of the results of Corollary II1.2.1 and Theorem V.2.1,
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there exists a § > 0 such that if |c-d| < §, [c,d] C [a,b], then (E) is
disconjugate on [c,d]. Moreover, if T = {to’tl’""tm’tn&l} is a funda-
mental partition, then any refinement is also a fundamental partition.

If T is a fundamental partition, then in view of the condition H.N
of identical normality and the result of Lemma IV.1l.1l we have a unique
solution u = ugj’ v = ij of (E) such that qu (tj_l) = gj—l’ ugj(tj) = Ej
G =1,2,+-+,m+1), where the Ej are arbitrary n-dimensional vectors. If

§ is defined to be the n(m+1) vector

g=¢®) o= :32,°°,n(m+1)
with g(nj-!-a) = gaj’ (e =1,**-,n, j = 0,-++,m), then the corresponding
vector function
ug(t) = ugj(t), tj_l fts tj, (G =1,°°2,m+1),
is continuous on [a,b] and linear in the components of £. We shall
denote by §(II), the set of all vectors §. If bl = 0 we shall say

£ € S*o(n), and if §_ = O we shall say & € So*(H). Moreover, set

S,M = SoaMM § , M. If 6 is an n x n hermitian matrix, the form
o..1 .2 2% 1 .
(1.2) QLe7,87|m) = £76e, + Ilu y,u p3a,0]

is hermitian on S*O[H] since J is a hermitian functional. Thus, there

is an n(m+1) dimensional, hermitian matrix Q: such that

1
oreh,e?m = 2%t

THEOREM 1.1. 1If G is an n > n hermitian matrix and T and ug(t) are

specified as above, then Q: is of rank n(m+1)-r if and only if t = b is

a focal point of order r of the conjoined family of soiuticns
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Y(t) = (U(t);V(t)) of (E) with Y(a) = (E;G). Moreover, the elements of

Q: are continuous functions of the elements of G and of tl,tz,---,tm.
For the systems of ordinary differential equations considered in

[6; Chapter VII, Section 7] the proof of a result corresponding to that

of the above theorem uses the continuity of the vector functions u, and

€

v, as functions of t,to,tl,--- In the present situation the func-

£ st -y
tions u, are continuous functions, but the functioms Vg are not
necessarily continuous. However, the type of argument used by Reid
[5; pp. 716-717] to establish the stated result for a system (E) where
N(t) is absolutely continuous is still valid for the more general problem

considered here.

The dimension of the null space
o
{t]qkt =0}

is called the nullity of Qi, and the dimension cf the largest subspace on
which Q: is negative definite is called the (negative) index of Q:' We
can now obtain the following results.

THEOREM 1.2. If 1 is a fundamental partition of [a,b], then the

index of Q:[EIII] is equal to the number of points on the open interval

(a,b) which are right-hand focal points to t = a relative to the func-

A
tional J[n;a,b] where each focal point is counted a number of times equal

to its order.

THEOREM 1.3. If 1 is a fundamental partition of [a,b], then the

index, {index plus nullity}, of Q:[E|II] is equal to the largest non-

negative definite integer k such that there exists a k-dimensional mani-

fold in O *o[a,b] on which 3 [n;a,b] is negative definite, {non-positive

definite}.
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For a conjoined basis Yo(t) = (Uo(t) ;Vo(t)) of (E), the designation
of a point c where Uo(c) is singular as a focal point is consistent with
the characterization of a focal point in terms of the functional .f . If
t = a is a point such that Uo (a) is non-singular then Wo(a) = Vo(a)U;]'(a)
is hermitian, and (U(t);V(t)) = (Uo(t)U;l(a) ;Vo(t)U;l(a)) is a conjoined
solution which satisfies U(a) = E, Vo(a) = Vo(a)Ugl(a). If we let
r = Wo(a), then a value c > a will be a focal point of 3[n;a,b] of order
k if and only if U(c) is singular of order n- k.

For a given ¢ € [a,b], the points of [a,b] which are right-hand focal
points to t = ¢ relative to the functional J [n3a,b] will be ordered as a
sequence -r;(I‘), (p = 1,2,+++), and numbered so that r;(r) < T;_l(r‘), with
each repeated a number of times equal to its order as a focal point. For
focal points we have the following basic separation theorem.

THEOREM 1.4. Suppose that (E) satisfies hypothesis HN’ and for

a=1,2 let
~ * b * *
J,Insa,b] = n (a)T n(a) + L {z [aN 1¢ + n [aM ]n},

where I‘l and I‘2 are n > n hermitian matrices. Moreover, let @ and N

denote the number of positive and negative proper values of the hermitian

matrix I‘l - I'Z, where each proper value is repeated a number of times
equal to its multiplicity. If for a positive integer p the focal point
+ + + + +

oo (T,) exists, then TP(I'l) exists and ‘rp(I‘l) < Tp-G-G(rZ)’ if TN (T;)

+

+ +
exists then 'rp(I‘z) exists and ‘rp(I‘z) < 1'p+.n (I'l).

2. Conjugate points. If we take fundamental partitions as in the

last section, and Eie S o(n), (1 = 1,2), then we again obtain a form
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Qo[El,EZIH] which is fundamental to the study of conjugate points. Using
the same techniques as irn Section 1, we may establish results correspond-
ing to Theorems 1.1, 1.2, 1.3, and 1.4, along with the following
additional results.

THEOREM 2.1. The number of points om (a,b), {(a,bl}, conjugate to

a is the same as the number of points on (a,b), {[a,b)} conjugate to b,

where each point is counted a number of times equal to its order as a

conjugate point.

If we let t;(a) and t;(a) be the p-th right and left conjugate
point of a, respectively, again with the usual order and numbering conven-
tion, we get the following results.

THEOREM 2.2. If t;'(c), {t5(e)}, exists for c = c_, then there
exists a 6 > 0 such that t;(c‘-), {t;(C)} exists for c € (e - 8,c +38);
moreover, t:(c), {t;(c)} is continuous at ¢ _.

THEOREM 2.3. If a, € [a,b], (@ =1,2), and a, < a,, then whenever

+ - . + - -
tp(az), { tp(al)} exists, the conjugate point tp(al), {tp(az)} also exists

and c;<a2> > t;(al), (@) > €l
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