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ABSTRACT

Artificial neural networks (ANN) have recently attracted attention for their ability to 

“learn” and “estimate” the mapping relationships between the data (Liu et al., 1998). 

In this dissertation, I investigate the applications of the artificial neural network in 

geophysical discipline.

The first application is seismic inversion. Artificial neural networks were used to 

invert post-stack seismic data into the petrophysical attributes. This application 

involves two steps. In the first step, the seismic data, low frequency data, spatial and 

temporal constraints are used as input and petrophysical attribute data (usually come 

well logs) are used as desired output data to train the neural network. In the second 

step, the trained neural network is used to predict the petrophysical attribute by 

inputting the seismic data. Both synthetic data and real data were used to test the 

seismic inversion by ANN. The results of this inversion have higher resolution and 

accuracy than those of the conventional inversion.

The second application is AVO inversion. Artificial neural network were trained to 

learn the relationship between a near-offset partially stacked trace and a far-offset 

partially stacked trace for non-hydrocarbon bearing rocks. Far traces can then be 

predicted by this learned relationship and the difference between observed and ANN 

predicted traces can potentially be used as a hydrocarbon indicator. An advantage of 

this method over conventional cross-plotting techniques is that it can be made 

insensitive to incorrect normal moveout corrections.
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CHAPTER 1. INTRODUCTION

Artificial Neural Networks (ANN) simulate the structure of human brain utilizing 

specialized hardware and/or sophisticated software. The field of the study of their 

application goes by many names, such as connectionism, parallel distributed 

processing, neuro-computing, natural intelligent systems, machine leaming 

algorithms, and artificial neural networks. The purpose of this dissertation is to study 

the use of artificial neural networks in the inversion of seismic data to obtain reservoir 

properties for petroleum exploration and reservoir characterization.

An artificial neural network is composed of multiple layers of simple processing 

elements called neurons. Each neuron is linked to certain of its neighbors with varying 

coefficients of connectivity that represent the strengths of these connections. These 

coefficients are called weights. Leaming is accomplished by adjusting these weights to 

cause the overall network to output appropriate results.

Neural networks can be classified by various properties. They can be classified by 

training method, such as supervised and unsupervised; by the leaming rule, such as 

Hebbian, perception, delta, winner-take-all, etc.; by the number of layers, such as 

single layer and multi-layer, and by data flow direction, such as feedforward and 

feedback networks. According to these classifications, the neural network selected for 

this research is a supervised feedforward multi-layer network with error back-



propagation training, using a delta-leaming rule. This network is the most common 

choice for seismic inversion.

In the past decade, neural networks have been widely used in many disciplines for (1) 

classification and recognition, such as pattern classification, finger print recognition, 

and voice recognition, and (2) prediction such as market prediction. ANN’s are also 

increasingly finding application in geology and geophysics.

Calderon-Macias (1997) used Hopfield neural networks in seismic deconvolution and 

multiple attenuation. Boadu (1997) approximated the relationship between the Rock 

Properties and Seismic Attenuation by ANN. Liu (1998) used an ANN to invert the 

seismic data into the well log data. Boadu (1998) inverted seismic velocity to fracture 

density by ANN. Calderon-Macias (1998) used ANN to do automatic NMO 

correction. Zhang (1999) applied the ANN to do fast forward modeling simulation for 

resistivity well logs. Davies (1999) cross-correlated the seismic surveys acquired with 

different bandwidth by neural networks. Buffenmyer (1999) applied the ANN in 

seismic crew noise identification in marine surveys. Chakravarthy (1999) detected 

layer boundaries from array induction tool responses using neural networks. Meldahl 

(2001) used neural networks to identify fault and gas chimneys. All these applications 

can be classified to the same two categories, (1) recognition such as noise, fault, and 

gas chimney identification, and (2) prediction such as simulation for resistivity well



logs. The application of ANN discussed in this dissertation belong to the prediction 

category.

Theoretically, a neural network can simulate any complex physical relationship. Based 

on this property, in this research, ANN’s are applied in seismic inversion for 

petrophysical attributes and detection of AVO anomalies.

Traditional inversion can only directly invert seismic data to impedance or perhaps 

velocities and density with sufficient constraints. ANN inversion can potentially invert 

seismic data to any petrophysical attributes, if those attributes have some relationship 

with the seismic data. In previous studies (reference consortium report; included as 

appendix A) I investigated the use of ANN’s to invert the post-stack seismic data into 

petrophysical parameters such as P-wave velocity, impedance, gamma ray response, 

resistivity, and porosity. I determined that the method worked better than linear 

regression for both 2D and 3D data. Other studies indicate that post-stack neural 

network inversion can be used to recognize lithology (Hampson et al., 2001, Appendix 

B shows the application of neural networks to elastic impedance inversion results to 

create resistivity and lithology sections). In this dissertation, I show two case studies 

where 2D seismic data were inverted to resistivity and 3D seismic data were inverted 

to produce a porosity cube for the reservoir simulation.



Another objective of this thesis is to investigate the use of ANN’s to detect AVO 

anomalies. An ANN was trained to learn the relationship between near-offset and the 

far-offset traces in a zone that doesn’t contain hydrocarbons. Far traces are predicted 

using that relationship; the differences between the predicted trace and the observed 

trace can thus be considered a kind of AVO anomaly which should be large when the 

neural network fails to predict properly, as would occur in the case of hydrocarbons 

when the neural network is trained in a non-hydrocarbon bearing interval. The 

application of this method to two 2-D datasets confirmed the validity of this method.



CHAPTER 2. THEORY OF BP NEURAL NETWORKS

The neural network I used in my research is a feedforward neural network with error 

back-propagation training algorithm (hereafter referred to as a BP network). With one 

hidden layer, the BP ANN is a universal function approximator (Homik, 1989).

2.1 The structure of BP networks

Output Layer

HMueaLayer 2

HUdcn Layer 1

Input Layer

Figure 2-1. The structure of the feedforward neural network

Figure 2-1 shows the structure of the feedforward neural network. The network is 

composed of multiple layers of simple processing elements called neurons. Three 

kinds of layers, the input layer, the output layer and the hidden layer comprise the 

network. The input layer is the entrance for the data with every neuron representing a 

unit of the input data. Thus, the input data is simply a series of numbers. Theoretically, 

there is no limit on the length of the series. However, because this length is the most 

important factor to determine the size of the neural network and therefore the training



and execution time, it should be kept to a reasonable length. The larger the size of the 

network, the slower the speed of processing and training. The output layer is the exit 

for the calculated values with every neuron in this layer representing a calculated 

result. Because a network with pyramidal structure performs better than a network 

with a rectangular structure, the length of this series should be smaller than that of the 

input layer. The hidden layers are between the input layer and output layer. The closer 

the hidden layer to the output layer, the smaller the size of the hidden layer. Neurons 

in the same layer are not connected. The neurons in adjacent layers are connected with 

each other by weights.

Recently, methods to optimize the structure of the neural networks dynamically have 

been developed (Baan and Jutten, 2000). These methods involve changing the 

complexity of the structure, either from simple to complex, or the reverse. When the 

starting structure is very simple, it is made more and more complex step by step. For 

each step, there will be some neurons or a hidden layer added into the networks. If one 

step does not modify the performance of the neural network by a given level, the 

structure will stop changing. When the starting structure is unnecessarily complex, it is 

made more and more simple step by step. For each step, there will be some neurons or 

a layer taken away from the network. If one step does not hurt the performance of the 

network very much, it will go onto the next step until there is a step that reduces the 

performance of the network by a given amount. The basic idea of both categories is to



find the simplest and most efficient structure of the network for solving a specific 

problem.

The dynamical methods to optimize the structure are very CPU intensive. Therefore, 

in this research, the size and structure of the neural network are fixed. The size of the 

input layer is one wavelength; the size of the output layer is I. Thus, all the seismic 

data points within a time window equal to the length of the wavelet are used to predict 

a single rock property at a given depth. Trial and error is used to adjust several 

structural schemes to find the best one to use.

2.2 The feedforward model of the neural network

When the data is input into the networks, it will go to the first hidden layer by the 

connections between the input layer and first hidden layer. Every connection has a 

coefficient of connectivity called a weight. From the right part of Figure 2 1, we can 

see that all the weighted output from the previous layer will be inputted into the 

neuron in the current layer and be summed. We call this sum the net value of this 

neuron. It is expressed as:

netj* = £ w ïi'“’Of-’ - 0|‘ (2-1)
j

I
i

where

k -  the current layer 

k-1 -  the previous layer



i -  the neuron in the current layer 

j -  the neuron in the previous layer 

y^M-1 -  the weight of the connection between the i* neuron in the ku, layer and 

the jih neuron in the k-U  layer 

Oj’’ -  the output of the jm neuron in the k-U  layer 

netj' -  the net value of the i,h neuron in the k* layer 

0k -  the threshold value of the iu, neuron in the k* layer

The threshold value is an option. This parameter can mute the outputs of some 

neurons that are less than a given level. The net value of the neuron will be inputted 

into a special function called the activation function to calculate the output of the 

neuron.

There are four basic types of activation functions. They are bipolar continuous

(equation 2-2), bipolar binary (equation 2-3), unipolar continuous (equation 2-4), and

unipolar binary (equation 2-5),.

::: >»
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The binary functions are usually used in recognition and classification. In prediction, 

and data mapping, continuous functions are used. The continuous activation functions 

are shown in Figure 2-2. The value of bipolar the continuous function varies from -1 

to +1, and the value of the unipolar continuous function varies from 0 to I. In this 

research, the input and output can be positive or negative, so the bipolar continuous 

activation function is used. For the properties of the activation function, both the input 

data and the desired output data should be standardized to the value between - I  and 

+I before input into the neural network.



n«t

(a)

f(n«t)

Or5

n tt

4•2 0 2-4
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Figure 2-2. Activation functions of a neuron: (a) bipolar continuous and (b) 
unipolar continuous

The input data will feed forward through the hidden layer, and reach the output layer. 

The relationship between the input data and the output data exists in the weights of the 

neural network. The neural network establishes this relationship using a process called 

learning, or from the standpoint of the user of the neural network, training. This 

process is achieved by adjusting the weights in the network using some algorithm to 

minimize the prediction error.

2,3 The training of the neural networks

There are two basic training schemes, supervised and unsupervised training. In 

supervised training, there is desired output d  provided by the teacher. The desired 

output serves to determine prediction error and is used to modify the network 

parameters externally. In unsupervised training, there is no such desired output. 

Learning must somehow be accomplished based on observations of responses to 

inputs for which there is marginal or no knowledge. “The technique of unsupervised

10



leaning is often used to perform clustering as the unsupervised classification of objects 

without providing information about the actual classes.” (Zurada, 1992).

This dissertation addresses only supervised neural network training. Both input data 

and desired output data are provided to train the network.

The weights of the neural network are initialized by some random number between • 

0.5 and O.S. When the input data come into the network, the network will calculate 

relative outputs. The differences between the calculated output (o,) and the desired 

output (di) are called errors. The mean square error (equation 2-6)

E = ï È W - O i ) '
& i

is propagated backward along the links in the network and the weights are modified 

along the negative gradient direction of the error function to minimize E:

w  I;}" ' =  W I;} -  T1 !:i -  w  !:;■’ ) (2-7)
"  "  i.i
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where the superscript k refers to the iteration step, / is the layer number, i and j are 

node numbers, and a  and are momentum and learning rate respectively. (Liu et al., 

1998) In practice, the training is processed from output layer to input layer. The Figure 

2-3 and equations (2-8)~(2-l 1) explain this process.

Error Back 
Propagate

O, *Q .0 „

Output Layer 

Hidden Layer 2 

Hidden Layer 1

)Input Layer
Figure 2-3. BP neural network training rule

8oi =^(di “ Oi)0“ Of)

^  i=l

w,,=w;j+TiS^yj+aAw;

V j,c= v ;+ n ô ^2 ,+ aA v ;

(2-8)

(2-9)

(2-10)

(2-11)
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where

dj -- The desired output for ith neuron in the output layer

0{ -  The calculated output for ith neuron in the output layer

Yj -  The calculated output for jth neuron in the hidden layer-2

z„ -  The calculated output for kth neuron in the hidden-layer-1

Sgj -  The error signal vector for ith neuron in the output layer

Syj -  The error signal vector for jth neuron in the hidden-layer-2

W|j -  The weight between the ith neuron and the jth neuron

Vj„ -  The weight between the jth neuron and the kth neuron

w'j, Vj„ -  The W|j, Vjk for the previous iteration

AWq, Avjk -  The adjusted amount of w,,, Vĵ  for the previous iteration

11, a  "  the momentum and the learning rate

The equation of error signal vector is derived from equations (2-2) and (2-6). The error 

signal vectors are used to adjust the weights between the output layer and the hidden- 

layer-2. Then the error will propagate backward by calculating 8 ,̂ to adjust the

weights between the hidden-layer-2 and hidden-layer-1. The weights between hidden- 

layer-1 and the input layer can be adjusted in the same way. When all the weight in the 

network been adjusted, the network will calculate the output again with the new 

weights. This output will be compared with the desired output, if the error is smaller

13



than a given level, the training will be halted, otherwise a new iteration of adjusting 

weights will begin.

In this way, the neural network can learn the relationship between the input data and 

the desired output data.

2.4 Over training

The following analogy helps explain the concept of over training: If you try to teach a 

boy what is a cat, you may bring one black cat to the boy, and let him observe it. He 

may observe the cat very carefully and many times and remember every detail of the 

properties of the cat. Next time, when he meets a white cat, he may think the white cat 

is not a cat because it is not black. Every member in a class has its common properties 

and special properties. If the learner mixes up the special properties with common 

properties, it will not recognize the class properly. We call this phenomenon over 

training.

Over training can be caused by two factors. The first is deficient training examples. 

The second is overlong training times. For the above example, if we bring the boy 

many cats with different colors, he will learn that the cats may have many different 

colors. So the number of the sample is very important for training. We should give as 

many as possible representative samples to the neural network to let the network learn 

the common properties of the class.

14



Overlong training times also can cause the over training. The proper training times can 

be found by dividing the samples into two groups, a training and a validation group. 

The training group will be used in adjusting weights of the network, the validation 

group won’t take part in training but will be used to test the network response after 

every training time. The error (the differences between the desired output and 

calculated output) of the training group will decrease with the training time, but the 

error of the validation group will decrease and then increase with the training time. 

The point at which the error of the validation group begins to increase is the time that 

the training should be stopped. (Figure 2-4)

0 
■S

1
I

2

1.5 error of validation

The point that 
training should stop1

error of training

0.5

0
0 50 100 150Training times

Figure 2-4. Training error and validation error with training times
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CHAPTER 3. METHODOLOGY OF SEISMIC INVERSION BY ANN

3.1 Frequency components

In seismic inversion, we try to invert the post-stack seismic data into petrophysical 

attributes. Those attributes mostly come from the well logs. The frequency spectrum of 

the well log data is broader than that of the seismic data, which means that the well log 

has some lower and higher frequency components that the seismic data do not have. 

Using a special training scheme for the neural network, we can add the higher frequency 

components into the inversion results. However, it is impossible for the neural network to 

obtain the lower frequency components that seismic data does not have directly from the 

seismic traces alone. So, this low frequency component must be provided to the neural 

network.

The low frequency data is obtained by filtering interpolated well log data with a low 

frequency band pass filter (less than IS Hz). This data will be used with the post-stack 

seismic data as the input data set for the neural networks. The low frequency data should 

have the same sampling rate and lateral resolution as the post-stack seismic data. If there 

are some geological surfaces to constrain the interpolation, the low frequency data will be 

more accurately interpolated.

3.2 Training scheme

16



Training is the most important step for neural network application. The purpose of this 

step is encoding the relationship between the input data (seismic data) and output data 

(well log) into the weights of the neural network. To fulfill this purpose, input data and 

desired output data should be provided to the neural network. We call this pair of data a 

learning pair.

The input data used are one wavelength of seismic data and low frequency data of the 

petrophysical parameter to be inverted. When it is necessary, temporal and spatial 

constraints may be added to the input data set. The output data consists of one point of 

petrophysical parameter at the center of each window. The learning pair is shown in 

Figure 3-1.

output layer

hidden layer

desired output

input layer

temporal and spatial 
constraints

low frequency 
constraints

seismic trace recordings

Figure 3-1. The Learning pair
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The use of one point petrophysical attribute correlating to one wavelength of seismic and 

corresponding low frequency data is based on the assumption that any underground 

reflector will influence one wavelength of seismic response. This is shown in Figure 3-2. 

By sliding the sampling window, we can create another learning pair. The length of the 

sampling window is determined by the reciprocal of the main frequency of the seismic 

data. The petrophysical attributes mostly come from well logs. The well log should be 

depth to time converted, and smoothed, and re-sampled to the same sampling rate as the 

seismic data.

There are two advantages for creating the learning pair in this way. (1) Avoiding over 

training as many learning pairs are constructed. For example, if we have a 200 ms 

seismic trace and corresponding well log, with 2 ms sampling rate and 30 ms wavelength, 

we can make 85 learning pairs. (2) Modifying the resolution. With this training method, 

the resolution of the inversion approximates the seismic sampling rate. The result of 

synthetic modeling verifies this.
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Figure 3-2. The configuration of training data set
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33  Resolution of the inversion

The resolution of inversion using neural networks can be tested using simple synthetic 

models (using GXH seismic modeling software). This wedge model is shown in Figure 

3-3.

IMei. llefUen

I

Figure 3-3. The synthetic model made by GXH, the velocity in the 
wedge is 1000 m/s, and the background velocity is 4000 m/s.

The velocity of the background is 4000 m/s and the velocity of the wedge is 1000 m/s. 

The maximum thickness of the wedge is 100 m in depth, or 100 ms in time. The wavelet 

is a 20 Hz Ricker wavelet. So the wavelength in the wedge is SOm. Along the horizontal
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direction, there are 50 zero-offset traces. The synthetic seismic traces are shown in Figure

3-4.

! ; ,1 : .1 j j  } 1 ! > ; ; '

Figure 3-4. Synthetic seismic trace, the dominant frequency is 20 Hz.

Usually, the practical seismic resolution is 14 wavelength. When a bed embedded in a 

medium of different impedance is about 14 wavelength in thickness, the reflection from 

the top and the base of the bed interfere constructively and the amplitude increases. This 

is called the tuning thickness. At and below this thickness, we cannot resolve the 

reflection at the top of a layer from the reflection at the base. Within the wedge model, 

the thickness decreases from left to right, and the tuning thickness is at trace #35.
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The synthetic seismic data was inverted for velocity using two methods. (1) conventional 

iterative GU  inversion and (2) neural network inversion. The conventional method we 

used for comparison (called blocky inversion) creates an impedance model whose 

forward synthetic matches the teal data as closely as possible. (Hampson and 

Russell;1999). The software used to accomplish the conventional inversion is STRATA, 

a Hampson-Russell software product. The result of conventional inversion is shown in 

Figure 3-5.

I I

i i ' l '

Figure 3-5. The result of blocky inversion

We can tell the outline of the wedge from the inversion result. From left to right the 

thickness of the wedge is decreasing before it reaches the trace #33. When the trace
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number is larger than 33, the thickness of the wedge does not change. It means that the 

resolution of blocky inversion is about % wavelength, the same as that of seismic data. 

From this figure we also can see that the top and the base of the wedge are not very clear. 

Especially at the base of the wedge, there are some "overshoots" and “undershoots" in 

the inverted impedance.

In inversion using neural networks, one seismic trace and one trace of low frequency data 

are used as input, and the velocity model for this trace is used as desired output to train 

the neural network. After the training, the neural network is used to calculate the velocity 

for the other traces comprising the entire wedge model.
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Figure 3-6. The result of inversion using neural network

Figure 3-6 shows the result of inversion using neural network. From this figure we can 

see that the top and base of the wedge are much clearer than those of the blocky 

inversion. From left to right, the thickness of the wedge is decreasing. Even when the 

trace number is larger than 35, the location of tuning thickness, the thickness of the 

wedge is still decreasing until it reaches the last trace. It means the resolution of the 

inversion using neural networic can be much higher than that of conventional seismic 

inversion. The resolution is almost same as the sampling rate of the seismic data.

3.4 Noise sensitivity
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In order to test the noise sensitivity of the inversion by neural network, 10% random 

noise was added to the seismic traces. With this noisy data, the performances of the 

blocky inversion and neural network inversion are very different.
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Figure 3-7. The result of blocky inversion with noisy seismic traces

The Figure 3-7 shows the result of blocky inversion with the noisy seismic traces. From 

this figure we can see that, with 10% noisy seismic traces as input, the result of inversion 

is also a little bit noisy. But we still can tell the outline of the wedge from the 

background.
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Figure 3-8. The result of inversion using neural networks, 10% noise was added before 
the inversion. Because we just use one random seed, the noise is not really random.

The Figure 3-8 shows the result of neural network inversion with the noisy seismic 

traces. From this figure we can see that, with 10% noisy seismic traces as input, the result 

of inversion is very poor. This inversion is very unstable. This is believed to be due to an 

artifact caused by the fact that the added noise is not really random, it is made by a 

formula. For the same random seeds, the neural network also can learn that formula; this 

is not what we want. To solve this problem, we use six different random seeds to create 

some noises, and use six traces in the training of neural network. After training, the
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neural network calculated the velocity of whole section. Figure 3-9 shows this inversion 

result.

From the Figure 3-9, we can see the inversion result is significantly modified. The 

resolution and accuracy are the same as those without noise added. So the neural network 

can be trained to ignore the real random noise.
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Figure 3-9. The result of inversion using neural networlcs, six traces with the same noise level 
(10%) but different random noise system (different random seeds) were used in the training.
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Unlike conventional seismic inversion, there is no known forward model so model error 

is not introduced into the inversion results. When we train the neural network to find that 

model, we should consider what the neural network can learn and what it cannot leam.

3,5 Conclusion

1. Since the well logs have lower frequency components, we should provide the neural 

network with low frequency interpolation data.

2. Using the learning pair as one wavelength of seismic data correlated with one point 

well log data to train the neural network, we can raise the resolution of the inversion.

3. The accuracy and resolution of inversion using neural network can be higher than that 

using conventional inversion.

4. The neural network can be trained to ignore the real random noise.

28



CHAPTER 4.2D SEISMIC INVERSION CASE STUDY, 

STRATTON FIELD

4.1 Introduction

A 2D seismic line extracted from the Stratton 3D seismic data set was used to test 

neural network inversion and to compare to multi linear regression (using Hampson- 

Russell Emerge Version 1.11).

The extracted 2D seismic line crosses three wells; well 11, well 12, and well 18. 

(Figure 4-1) Each of which contains digital resistivity logs. This data set was used to 

test the hypothesis that neural networks can be used to invert for petrophysical 

parameters that are not directly linked to the seismic data. The inversion for resistivity 

is particularly interesting as high resistivity may be indicative of pay.

The well log data was converted to the time domain using sonic logs and one check 

shot. In order to match the seismic data sampling rate, the resistivity logs were 

smoothed and re-sampled to 2 ms.

The linear-regression option in Emerge has the same general procedure flow as the 

neural network procedure. Two wells were used in training and one well was used in 

testing. The conditions of training and testing for the neural network and multi linear

29



regression meU'ods were the same. Both methods were applied to the extracted 2D 

line.
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Figure 4-1. The seismic section and well log data used in the inversion of resistivity. Among the three wells, 
the middle one was used in the predicting, and the other two wells were used in the training.



42 Training

The neural network training algorithm is described in chapter 2. In order to compare 

with the Emerge multi linear regression option, two flow charts were created. Figure

4-2 is a flow chart for the neural network approach used. Seismic data and the low 

frequency component of the well logs are used as input and the well log as desired 

output to train the neural network. The weights between layers of the network are 

modified iteratively until the differences between the output and desired output are 

less than a given level. After training, the seismic traces are input into the ANN 

algorithm and ANN predicts the well log response from the seismic data.

Emerge, version 1.11, uses the very same scheme as ANN, except for the training 

algorithm (Figure 4-3), it uses multi linear regression. Emerge will extract seismic 

attributes from the raw seismic data and use the well logs which did not take part in 

the training to do the validation analysis. The function of validation analysis is to find 

the best seismic attribute combination. As shown in Figure 4-4, as the number of 

seismic attributes increases, the total error decreases, but the validation error decreases 

first and then increases. The point at which the validation error begins to increase is 

the best combination of seismic attributes. After training. Emerge I. II  uses the same 

predicting scheme as the ANN algorithm to predict the well log response.

Wells 11 and 12 and the near well traces were used in the training, and well 18 was 

used in the testing.
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4J  Results

For both inversion algorithms, training is the process to find the operators. Applying 

the operators on the seismic data, we can invert the seismic data into the well log data. 

Figures 4-5 to 4-10 show the results of inversion using both algorithms.

For the training wells (well 11 and well 12), Figure 4-5 and 4-7 show the result of 

inversion using the neural network. Figure 4-6 and 4-8 show the result of inversion 

using Emerge. For the testing well (well 18), Figure 4-9 shows the result of inversion 

using the neural network. Figure 4-10 shows the result of inversion using the multi­

linear regression option of Emerge. From those figures we can see that neural network 

performed much better than multi linear regression. It is apparent that the calculated 

resistivity logs by the neural network have higher resolution and accuracy.

With the neural network, the results of the inversion in the training window are better 

than those in the testing window. In the training window, we find that calculated logs 

almost match the true logs perfectly. In the testing window (at location of well 18, 

Figure 4-9), we can see that most of the time, the observed resistivities match the 

ANN calculated resistivities, the two obvious errors are the first big peak and last big 

peak. The mismatch for the last peak may be due to an error of depth-time conversion 

resulting from lateral velocity variations rather than a problem with the neural network 

inversion. If we stretch/shift the last peak of calculated resistivity about 15 ms, it will 

match that of observed resistivity.
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Figure 4-5. Well 11 (training well), result of neural network inversion
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Figure 4-6. Well 11 (training well), result o f Emerge inversion
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Figure 4-7. Well 12 (training well), result of neural network inversion
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Figure 4-9. Well 18 (testing well), result of neural network inversion

Time (ms)

Figure 4-10. Well 18 (testing well), result o f Emerge inversion
6

5

E

3

1

0
1360 1400 1450 1500 1550 1600 1650 1700 17501250 1300

Time (ms)

39



CHAPTER 5.3D SEISMIC INVERSION

5.1 Introduction

Colombia

Figure 5-1. Location of Bermejo Field

As part of a cooperative reservoir characterization project between Tecpetrol and the 

University of Oklahoma, a reservoir model of the Hollin sand in Bermejo Field, 

Ecuador, was generated. The reservoir model required quantification of porosity 

throughout the volume, covering an area of approximately 9 x 13 km. Available data 

covering the area of interest included logs from 45 wells, and AGC migrated seismic
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data. The seismic data was shot in 2000 and interpreted as part of a reservoir 

characterization project.

The Hollin formation is of fluvial to estuarine origin, and consists of interbedded 

sands and shales that are laterally discontinuous. The stratigraphy is further 

complicated by large- and small-offset faults, some of which were reactivated during 

basin inversion. Because of the complex stratigraphy and structure, simple 

interpolation of porosity among wells could not yield satisfactory results. Instead, it 

was necessary to rely upon seismic data to create a clear picture of and quantify lateral 

and to some extent vertical variability throughout the volume of interest. The neural 

network was verified to be a very good method to generate the porosity cube using the 

seismic data set.

5.2 Training

There are some more factors to consider in the training of 3D data set: (1) With the 2D 

data set, the near well seismic traces are selected along the 2D line. For the 3D data 

set, the near well seismic traces are selected in a circular area. The radius of the 

circular area is chosen to be large enough to include 5-10 traces in the area. (2) Spatial 

location may be considered in the 3D area. The relative X, Y coordinate value is 

provided as input for the neural network. (3) The low frequency data interpolated from 

well logs are also input as a cube.
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There are 42 wells with porosity logs in the fîeld. For the first step, 10 wells were in 

the testing, and the other 32 wells in the training. 5-10 near well seismic traces for 

each well were used in the training. The well logs were depth to time converted to the 

time domain. In order to match the seismic sampling, the well logs were smoothed and 

re-sample to 2ms. Figure 5-2 shows the inversion results in the training window, and 

figure 5-3 shows the inversion result in the testing window.

From these two figures, we can see the neural network inversion works well in both 

windows if slight time shifts are allowed with the exception of data above 1 second in 

the testing window, which does not compare favorably to the logs. The result in the 

training window is better than that in the testing window. In the testing window, the 

peaks and troughs of predicted and observed porosity are consistent, except that there 

are some shifts and stretches. These errors may due to the improper depth-time 

conversion.
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Fig. 5-2. BS-04 (training well), observed porosity vs predicted porosity
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Figure 5-4 shows an arbitrary line in the 3D cube. The colored background is 

predicted porosity by ANN, and the well logs overlapped are the observed porosity. 

Well 16 is for the training, and well 09 is for the testing. From the figure, we can see 

that the observed porosity matches predicted porosity very well, for both the training 

and predicting wells. The predicted porosity for the whole section is geologically 

reasonable. The continuous sand strata, pinch outs and the faults can be interpreted 

easily.

For the second step all 45 wells were in the training to best match the actual porosity. 

Because the geological model is in depth, the seismic data was converted into the 

depth domain. The well logs were smoothed and re-sampled to match the seismic 

sampling rate. After the training, the porosity cube was generated by inputting the 

seismic data into the neural network.

5 J  The result of the inversion

Without the porosity cube from the seismic data, the porosity model used in reservoir 

characterization was generated by interpolation. Figure 5-5 shows the coverage of the 

interpolated porosity cube. In comparison the porosity cube from the seismic data 

using the neural network covered the whole 3D area. (Figure 5-6) The distance 

between the nearest two wells in the area is 5(N) ft, so the horizontal resolution of the 

interpolated porosity cube is very low. The porosity cube generated by neural network
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has much higher horizontal resolution, which is 30 ft (the distance between two 

seismic traces). Using traditional seismic inversion, only an impedance cube can be 

directly obtained. Due to the inhomogeneous geological situation in this area, the 

impedance has poor relationship with the porosity as shale content, porosity, and pore 

fluids all affect the impedance. Figure 5-7 shows the impedance and the porosity for 

the same line. The log on the left is the gamma ray and the log on the right is the 

porosity. Two circles highlighted the same sand layer in the impedance section and 

porosity section. According to the impedance, the high porosity sand should be 

continuous. But the porosity calculated by the neural network shows the high porosity 

sand is not continuous. The production data from the well verified that the ANN 

calculated porosity was correct.

This ANN-generated porosity cube was used to directly re-evaluate reservoir quality 

and continuity near proposed well locations. This porosity cube has the advantage 

over the impedance cube in that it is able to pick up on differences between good 

reservoir sands and tight sands that the impedance cube could not resolve. In addition, 

the vertical resolution appears to be better than in the impedance cube. Another 

significant benefit of using ANN to determine the porosity cube is that it is able to 

ignore bad porosity data in an individual well (e.g., base of BS07) if there is sufficient 

well control nearby. Well BS07 had a bad porosity log for some reason. When used in 

the training this bad well did not distort the calculated porosity result very much. The 

good data of the wells nearby balanced the error the bad well brought in.
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Figure 5-S. Interpolated porosity cube
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Figure 5-6. Porosity cube cakuiated iy  neural network
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same interval; warm colors indicate high porosity and cool colors indicate low porosity Gamma ray log is shown to the 
left o f the borehole; porosity log is shown to the right in each figure.



CHAPTER 6. METHODOLOGY OF A VO ANOMALY

DETECTION

6.1 Introduction

In this chapter, the use of artificial neural networks (ANN) for amplitude variation 

with offset analysis is investigated. A key aspect of AVO analysis is separating 

anomalies from the normal background, and recognizing the representative anomalies 

for different types of hydrocarbon reservoirs (eg., Castagna; 1993). The normal 

background is defined as the amplitude variation with offset (AVO) response within a 

given time and space window where hydrocarbon reservoirs are known (or presumed) 

not to exist. This background is expected to be specific to a given vintage of seismic 

data acquisition and processing and to be time and space variant (Castagna et al., 

1998).

Near offset trace 
in brine window

Near offset in 
the whole profile

PredictingTrauung

AVO Anomaly = 
Observed far offset trace -  
Calculated far offset trace

Far offset trace 
brine window

Calculated far of&et 
traces

Figure 6-1. The flow chart of AVO inversion using neural network
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Artificial neural networks are good at “learning” and “estimating” the mapping 

relationships between the data (Liu et al., 1998). Thus they can be trained to learn 

background AVO responses. Once an artificial neural network learns what is normal, 

it can be used to identify abnormal behavior.

Figure 6-1 shows the flow chart of AVO anomaly detection using the artificial neural 

networks (ANN). In order to teach the ANN what is normal, near offset partially 

stacked traces in the background window are used as the input and the far offset 

partially stacked traces in the same window are used as desired output in the training 

process. When training is complete, the far traces are predicted for the entire dataset 

being evaluated. The difference between the predicted traces and the observed far 

traces is an indicator of anomalous AVO behavior, possibly due to hydrocarbon 

reservoirs.

NMO correction is a very important processing step for the application of AVO 

technology. Small NMO error may not be important for stacked data, but will 

significantly influence AVO modeling and interpretation. In this chapter, several 

methods to make the neural network calculated AVO anomaly insensitive to incorrect 

normal moveout corrections are discussed.
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62 AVO inversion for the synthetic modei

1000
Distance

2000 3000 4000 5000

£.400

Brine Sand Gas Sand

Figure 6 2. Synthetic Model

Lithology Vp (km/s) Vs (km/s) Density (gm/cc) Poisson ' s Ratio
Shale 3.24 1.62 2.34 0.3333
Brine Sand 2.59 1.06 2.21 0.3994
Gas Sand 1.65 1.09 2.07 0.1128

Table 6-1. Model parameters (Castagna et al., 1998)

A synthetic model (Fig. 6-2) was made using GXE, 2D tools. The zero offset ray trace 

was used as near trace, and the 500m offset ray trace was used as far trace. They were 

filtered by a 30 Hz Ricker wavelet. The traces were NMO corrected and migrated to 

correct position before the ANN training.

Two GDPs from a brine window were used to train the neural network. Inputs were 

the near offset of each CDF and desired outputs were the far offset of each GDP. After
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training, the ANN predicted the far traces for the whole line by inputting the near 

offset traces. Three traces representing the training window, the brine window, and the 

gas window respectively were selected to show the testing results. Figure 6-3 shows 

that the predicted far traces fit the observed far traces very well in the training 

windows. Because the training window was selected from the brine window, the 

predicted far trace also fits the observed far trace in the brine window. (Figure 6-4) 

For this synthetic model, in the brine window the amplitude of near trace is less than 

that of far trace, but in the gas window, the amplitude of near trace is about same as 

that of far trace. This is the difference of the AVO behavior between the brine sand 

and gas sand.
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Figure 6-3. Training window AVO
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The trained neural network learned the relationship between the near trace and far 

trace in the brine window. This trained neural network was used to predict far traces 

in the gas window. The predicted far traces were very different from the observed far 

traces in the gas window. This is shown in Figure 6-5. The AVO anomaly was 

calculated by subtracting the predicted far trace from the observed far trace. Three 

traces of AVO anomalies from training, brine, and gas windows is shown in Figure 6- 

6. The anomalies for the training and brine windows are very small, approaching zero. 

The anomaly for the gas window is relatively large. Figure 6-7 shows the AVO
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anomaly for the whole synthetic seismic section. From this figure, we also can see the 

AVO anomaly of gas sand is much larger than that of brine sand. So using the neural 

network inverted AVO anomaly we can discriminate the gas sand from the brine sand.
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Figure 6-7. The AVO anomaly for the whole synthetic section
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63  Synthetic model with constant NMO error

In the synthetic model above, it was assumed that the NMO correction is perfect. 

However, in the real case, the NMO correction will have more or less error. Whereas 

the method should properly learn to deal with NMO stretch and constant NMO error 

in the training process, variable NMO error must be handled differently.

Using the synthetic model above, with the addition of some NMO error, the effects of 

NMO errors can be evaluated. The far traces were shifted 8 ms downward relative to 

the near trace. This time shift between the near trace and far trace is same for the 

whole seismic section.

Two traces in the brine window were used in the neural network training. The near 

traces were used as the input, and the 8 ms time-shifted far traces were used as desired 

output. After training, the neural network calculated the far traces by inputting the near 

traces.

Figure 6-8 shows that the predicted far trace fit the observed far trace very well in the 

training window. With the shifted far trace, the predicted far trace also shifts to match 

it. Figure 6-9 shows that, in the brine window, the predicted far trace also fit the 

observed far trace very well. Figure 6-10 shows that, in the gas window, the amplitude 

of predicted far trace is smaller than that of observed far trace, but the locations of
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peaks and troughs are the same. Figure 6-11 shows the AVO anomaly in training 

window, brine window, and gas window. We still can see that the anomalies in the gas 

window are much larger than those in the brine window. So, AVO inversion by ANN 

is insensitive to the constant NMO error.
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6.4 Synthetic model with variable NMO error

In the real data we see some constant NMO error. However, in more realistic cases, 

near and far offsets will not be perfectly aligned due to NMO errors, and this error will 

vary across the line. Thus, the training dataset may teach the neural network to expect 

a certain time shift between near and far offsets which may not be correct for a given 

CDP location. Using the synthetic model, this situation was simulated as follows: In 

the training window, there was no NMO error. In the brine window and gas window, 

far traces were shifted downward by 8 ms. So, after training and predicting, the 

predicted trace matched the observed trace in the training window (Figure 6-12), but 

in the brine window and gas window, there are 8 ms time shift between the predicted 

far trace and observed far trace. (Figure 6-13 and Figure 6-14) Upon subtraction of 

near and far traces, the result would be apparent AVO anomalies due simply to 

variations in NMO error. This problem also interferes with extraction of AVO 

parameters such as intercept and gradient, and may cause crossplotting techniques to 

fail. However, a simple modification, whereby observed and predicted far traces are 

cross-correlated prior to subtraction, readily solves this problem as illustrated below. 

Figure 6-15 shows the AVO anomaly in training window, brine window, and gas 

window after such correlation. This AVO anomaly can be used to discriminate the gas 

sand from the brine sand. Note that, because the cross-correlation is performed 

between predicted and observed traces, it is not confounded by differential tuning.
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6^ NMO error suppression by phase unwrapping

Alternatively to the cross-correlation between the predicted far trace and observed far 

trace, there is another way to suppress the NMO error; called phase unwrapping. The 

basic idea of this method is that we assume the phase change is the factor to cause the 

NMO error, and the amplitude spectrum is independent of the NMO error. So, we use 

the phase spectra from the observed far traces and the amplitude spectra from the 

predicted far traces to compose new far traces, we call them composite far traces. The 

composite far traces should be NMO error free.

To test this technique, the synthetic model above with 8 ms variable NMO error, 

which means that there is no NMO error in the training window, and 8 ms downward 

shift of far traces in the brine and gas window. When the trained network was used to 

predict the far trace in the brine and gas window, there will be 8 ms time shift between 

the predicted far traces and observed far traces just as for the example above.

With the phase unwrapping, the ANN predicted far trace and observed far trace are 

used as shown in Figure 6-16. The predicted far trace by ANN with NMO error and 

the observed far trace are Fourier transformed, and their amplitude and phase spectra 

are calculated. Then the amplitude spectrum from the predicted trace and the phase 

spectrum from the observed trace are combined to calculate a new predicted trace by 

reverse Fourier transform. The NMO error is suppressed in this new calculated trace.
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The reverse Fourier transform requires that the phase spectrum be unwrapped. This is 

accomplished by retaining the sign of the real part of the forward Fourier transform.

Fig. 6-17 shows the observed far trace and ANN predicted far trace in the brine 

window. Because of the variable NMO error, there is an 8 ms time shift between the 

observed far trace and predicted far trace. Fig. 6-18 shows the two traces after this 

phase unwrapping. In this figure, the combined far trace fits the observed far trace 

very well. NMO error is suppressed efficiently by this method.

However, there is a disadvantage of this method. The AVO behavior may 

include the phase change. After phase unwrapping, the phase spectra between the 

predicted far trace and observed far trace are enforced to be the same. So, it may 

ignore that part of the AVO anomaly between the predicted far trace and observed far 

trace caused by phase change. For this reason, when we interpret the ANN inverted 

AVO anomaly, the AVO anomaly calculated before the phase unwrapping should be 

used with the AVO anomaly calculated after the phase unwrapping as shown in the 

next chapter.
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CHAPTER 7. AVO INVERSION FOR 2D SEISMIC DATA

7.1 Introduction

In this chapter two case studies of AVO inversion by artificial neural network for 2D 

seismic data using the same methods described in Chapter 6 are performed. With the 

real data, the near partial stack trace will be used as near trace, and the far partial stack 

trace will be used as far trace. In order to decrease the influences of depth and 

geological structure, the seismic data were flattened along the reservoir top.

The seismic data used had been previously interpreted. The reservoir locations were 

known before the application of AVO inversion. The reservoirs for both cases are gas 

reservoirs.

Partially stacked near traces and far traces in the brine window were used to train the 

neural network. After that, the trained neural network was used to predict the partially 

stacked far trace for the whole 2D section, and then the AVO anomalies (the 

differences between the predicted far traces and observed far traces) were calculated. 

For both cases, these anomalies were found to be much larger in the gas window than 

that in the brine window. Phase unwrapping was used in the second case to suppress 

the NMO error. The location and names of these two gas fields are confidential and 

will not be discussed here.
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7.2 Case study 1

The 2D seismic line used has 900 CDP gathers. The CDP gathers were partially 

stacked into near traces and far traces. In order to decrease the influence of geological 

structure and depth, the stacked data, both near traces and far traces were flattened 

along the reservoir top. Figure 7-1 and 7-2 show the partially stacked near traces and 

far traces. The reservoir top is flat, and the flat spot is curved. According to the 

interpretation result, we knew that the gas reservoir window is from trace #1~#620, 

the brine window is from #621-#900. 140 traces (trace #621-#760) in the brine 

window were used to train the neural network. Near traces in this training window 

were used as the input and far traces in this training window were used as the desired 

output in the training. After training, the trained neural network was used to predict 

the far traces for the whole section (900 CDPs). The differences between the observed 

far traces and predicted far traces were then calculated. Figure 7-3 shows this AVO 

anomaly for the 2D line. From this figure we can see that the AVO anomaly is much 

larger in the gas window than that in the brine window. With the AVO anomaly, we 

can easily tell the reservoir top and base. To show this more clearly, three CDP’s from 

the training window, brine window, and gas window were selected to show the 

predicted far trace, observed far trace, and AVO anomaly. Figure 7-4 shows the 

predicted far trace and observed far trace of one CDP in the training window. From
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this figure we can see that predicted far trace and observed far trace match very well. 

Figure 7-5 shows the same things in the brine window. The observed and predicted 

trace also matched very well. Figure 7-6 shows the predicted far trace and observed far 

trace of one CDP in the gas window. These two traces did not fit at all. The 

differences between the observed far trace and predicted far trace are much larger in 

the gas window than that in the brine and training windows (Figure 7-7). It is 

interesting to note that large differences are also observed beneath the reservoir, 

presumably due to offset dependent transmission loss and other complicating factors.
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7 J  Case study 2

In this case there are 50 CDP gathers in the 2D line. The gathers had been partially 

stacked into near traces and far traces. In order to decrease the influence of geological 

structure and depth, the stacked data, both near traces and far traces were flattened 

along the reservoir top. Figure 7-8 shows the partially stacked near traces, and Figure 

7-9 shows the partially stacked far traces. The time window selected is about 120 ms, 

including only the reservoir top. There is known to be a gas reservoir around CDF 

#16-50.4 near traces (trace#! -  trace#4) in the brine window were used as input and 4 

far traces at same location were used as the desired output to train the neural network. 

The trained neural network was used to calculate the far traces of the whole CDP 

gathers. The differences between the observed far traces and predicted far traces were 

next calculated. These anomalies are shown in the Figure 7-10. From this figure we 

can see that the anomalies in the gas window (CDP #16-50) are larger than those in 

the brine window. This AVO anomaly is verified as a hydrocarbon indicator.

Figure 7-11 shows the AVO anomalies after phase unwrapping to suppress the NMO 

error. The area of the gas sand indicated by the AVO anomaly is smaller than that 

Figure 7-10 showed. With phase unwrapping we can erase the influence of the NMO 

error and be much more confident to use the AVO anomaly as a hydrocarbon 

indicator. However, the AVO behavior should include both amplitude change and the
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phase change. When we corrected the spectra change caused by NMO error, we also 

sacrificed the spectra change caused by hydrocarbon. Accordingly, the best idea is to 

balance the AVO anomaly before the phase unwrapping and after the phase 

unwrapping, use the AVO anomaly before the phase unwrapping to indicate the 

largest area of the hydrocarbon, and use the AVO anomaly after the phase unwrapping 

to indicate the most possible location of the hydrocarbon.

Three selected traces from the training window, the brine window, and the gas 

window respectively are used to show the AVO behavior more clearly. Figure 7-12 

shows the observed far trace, neural network predicted far trace, and phase unwrapped 

far trace of one CDP in the training window. The predicted trace matches the observed 

trace very well in the training window. Figure 13 shows the same traces in the brine 

window. Both the predicted far trace and phase unwrapped far trace match the 

observed far trace very well, but the phase unwrapped far trace matches better. Figure 

14 show the same three traces in the gas window. Comparing with that in the brine 

window, the predicted far trace does not match the observed far trace well. The phase 

unwrapped far trace matches the observed far trace better that the predicted trace. The 

amplitude of the phase unwrapped far trace at the trough location is much smaller than 

that of observed far trace, but the locations of the trough are the same. Figures 7-12 

through 7-14 show that the method of phase unwrapping can modify the predicted far 

trace, and can correct the NMO error if there is some. Figure 7-15 shows the AVO 

anomaly without the phase unwrapping for the CDP gathers in the training window.
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brine window and gas window respectively. The AVO anomaly for the gas window is 

much larger that in the brine window. Figure 7-16 shows the AVO anomaly with the 

phase unwrapping for the same three CDP gathers. Comparing the AVO anomaly in 

Figure 7-15, the anomalies in this figure are smaller. However, the AVO anomaly in 

the gas window is still very outstanding comparing with that in the brine window. So 

the AVO behaviors with and without phase unwrapping are the same in the most 

possible hydrocarbon area.

In conclusion, the AVO anomaly calculated by neural networks can be a hydrocarbon 

indicator. The phase unwrapping can suppress the NMO error. The AVO anomalies 

with and without phase unwrapping should be used comprehensively to interpret the 

likelihood of hydrocarbons.
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CHAPTER 8. CONCLUSIONS AND DISCUSSION

8.1 Conclusions

1. Using artificial neural networks, we can invert seismic data into petrophysical 

attributes, such as electric resistivity or porosity. This method requires the seismic 

data and relative petrophysical attribute data to train the neural network first. It 

does not require the forward model between the seismic data and petrophysical 

attributes. The neural network will find this forward relationship by the training.

2. The petrophysical data usually come from the well log. Since the well logs have 

wider frequency components than the seismic data, we should provide the neural 

network with low frequency interpolation data.

3. In the training of a neural network for seismic inversion, the learning pair should 

include one wavelength of seismic data as input and one correlated point in the 

well log as desired output. In this way, we can raise the resolution of inversion 

from tuning thickness to the sampling rate of the seismic data.

4. Usually, seismic data and well log are in different domains. Seismic data are in the 

time domain, and well log data are in the depth domain. Before the inversion, we 

should unify them into the same domain. I recommend converting the well log
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data from depth domain to time domain. The depth-time conversion is very 

important for the accuracy of the inversion.

5. The depth-time converted well log data should be resampled into the same 

sampling rate as the seismic data. In order to keep as most information as possible, 

before the re sampling, the well log data should be smoothed.

6. Comparing with conventional inversion (sparse spike, blocky), inversion using 

artificial neural networks can exhibit much higher apparent resolution and can be 

more accurate. Unlike conventional seismic inversion that can only invert seismic 

data into impedance or velocity, artificial neural networks can invert the seismic 

data into any petrophysical attribute that has a relationship with the seismic data 

without requiring a known forward physical model.

7. In order to avoid over-training, the training samples should be divided into two 

groups, the training group and validation group. The training process should be 

controlled by observing the error of both training data and validation data. When 

the validation error begins to increase, we should stop the training of the neural 

network.

8. With 2D seismic data, when selecting seismic traces near the well for training, we 

should pick the seismic traces in both sides of the well. The number of traces I
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recommend is 5-10. With the 3D seismic data, when selecting seismic traces near 

the well for training, we should avoid only picking the seismic trace in the inline 

and cross line that cross at the point of the well location. The near well seismic 

traces should be selected in a circular area. The center of the round is the location 

of the well. The radius of the circular area should be large enough to include 5-10 

traces in the area. In this way, we can guarantee that the training data set include 

the seismic traces in all the directions around the well. Otherwise, the seismic data 

will be improperly inverted in some direction.

9. The neural network can be trained to ignore real random noise, but will be 

influenced by regular noises. Sometimes, adding random noises can modify the 

result of the inversion.

10. The difference between the observed far trace and artificial neural network 

predicted far trace can be used as an AVO anomaly detector. The neural network is 

trained previously in the brine window. The AVO anomaly can be a hydrocarbon 

indicator. Both synthetic data and real data were used to test this method. The 

method was found to correctly identify AVO anomalies for both data sets studied.

11. AVO anomaly calculated by neural network is insensitive to constant NMO error. 

The constant NMO error means the NMO errors in the brine window and gas 

window are the same.
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12. With AVO inversion using ANN, one way to suppress the variable NMO error is 

cross-correlation between the observed far trace and ANN predicted far trace. 

Because the cross-correlation is performed between predicted and observed traces, 

it is not confounded by differential tuning, stretch, frequency content, interference, 

etc. that would occur if an attempt were made to correct the NMO by cross- 

correlating with the near trace for example.

13. Another method to suppress the variable NMO error for the AVO inversion by 

ANN is phase unwrapping. With this method, we assume that the phase change is 

the only factor that will cause the NMO error. So, the phase spectrum of the 

observed far trace and amplitude spectrum of the predicted far trace are combined 

into a new far trace. We think the NMO error should be erased in the new far trace. 

This method was tested on both synthetic data and real data. The result is very 

good. However, there is disadvantage of this method. The AVO behavior may 

include the phase change. After phase unwrapping, the phase spectra between the 

predicted far trace and observed far trace are enforced to be the same. So, it will 

ignore the AVO anomaly between the predicted far trace and observed far trace 

caused by phase change. For this reason, when we interpret the ANN inverted 

AVO anomaly, the AVO anomaly calculated before the phase unwrapping should 

be used with the AVO anomaly calculated after the phase unwrapping to get a 

more reasonable result.
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8.2 Discussion and future work

1. Low frequency of the petrophysical attribute is a kind of input for training the 

neural network. The reason we provide this data to the neural network is that the 

seismic data does not have the low frequency component. To prepare this data, I 

do the interpolation between wells and filter the interpolation by a low pass filter. 

The high cut of the filter should be between 5 and IS Hz, and should not be higher 

than 15 Hz. The low frequency data is just a very coarse back ground for the 

training of the neural network. The neural network will handle the detail 

information between the seismic and the well log data. When the low frequency 

data contain higher frequency components, the higher frequency component will 

dominate the detail information.

2. For the 2D seismic inversion by ANN, it is relatively simple to select learning 

pairs and train the neural network. For the 3D seismic inversion, the situation may 

be more complex. In my research, I find that faults will significantly influence the 

inversion. So, if the faults are very developed in the 3D area, it is better to divide 

the whole 3D area into some smaller areas according to the main faults and use 

several neural networks to handle the areas; every network corresponds to one 

area. After inversion by the multi-neural networks, combine the results back to the 

3D area. In this way, the accuracy of 3D inversion will be improved.
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3. For seismic inversion using neural networks, the selection of learning pair is very 

important. The learning pair is composed of input data and desired output data. 

Usually, the desired output is one point of well log data. In my research, I used one 

wavelength of post-stacked seismic data and low frequency data as the input. It is 

also possible to add spatial and temporal constraints in the input data. Actually, we 

can add any useful information into the input data set if we think it will help to 

modify the inversion result. I have added the convolutional model into the input 

data. This process is show in the Figure 8-1. The result of inversion after adding 

the convolutional model is more stable, however, loses some detail information 

and decreases the resolution. I give this example to explain that we should 

optimize the input data. The input data set I used may not be the best combination. 

There is some future work needed into establishing procedures to choose the input 

data. In the future, we may wish to consider extracting some attribute from the 

seismic data, and putting them into the input data set. This is common practice 

today, but it remains to be seen if additional information is obtained by extracting 

various attributes from the same seismic trace. These attributes may not only come 

from the post-stack seismic data, but also form the pre-stack seismic data, in which 

case additional information would be provided to the neural network.
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4. In order to suppress the NMO error in the AVO inversion by ANN, I tried another 

method, which is AVO inversion in the frequency domain. Figure 8-2 is the flow 

chart of this method. Near trace and far trace stacks were converted to the 

frequency domain by Fourier transformation. Two neural networks will handle the 

real part and imaginary part respectively. The predicted real part and imaginary 

part will convert back to the trace in the time domain by reversed Fourier 

transformation. In order to let the neural network adapt the NMO error, several 

CDF gathers with different NMO errors were used in training the neural network. 

However, the result showed that the neural network is over trained. I tried several 

training schemes to avoid the over training. Those schemes include increasing exit 

error, decreasing training time, and adding some random noise to make more 

learning pairs. However, the situation of over training was not modified. In the 

time domain we can use one wavelength of seismic data correlating one point of 

desired output data and slide the sampling window to make a learning pair. In the 

frequency domain, we cannot use slicing windows to make learning pairs, so the 

number of learning pairs is much less than those of time domain. This may be the 

reason for the over training. I did not find a good way to select the learning pairs to 

avoid over-training. But I think if we make a much more complex synthetic model, 

the over-training may be avoided.
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s. For the AVO inversion by ANN, in addition to using near trace as input and far 

trace as output, I tried the reverse. In that way, far traces were used as input and 

near traces were used as desired output to train the neural network in the brine 

window. Then, the trained neural network was used to predict the near traces by 

inputting the far traces. After that, the AVO anomalies were calculated by 

subtracting the predicted near traces from the observed near trace. This method 

worked well in the synthetic model. However, in the real data set, it did not work 

well. Figure 8-3 shows the AVO anomalies calculated in this way for the 2D 

seismic data set of case#l in the chapter 7. The result is very noisy. Comparing 

with that in Figure 7-3, it very difficult to tell the prospect of the gas reservoir in 

the Figure 8-3. The reason for the failure is that the partially stacked near traces 

are not so stable as the partially stacked far traces.

6. For the AVO inversion by ANN, in addition to using the CDF gathers in the brine 

window to train the neural network, I used the CDF gathers in the gas window to 

train the neural network. Using this training scheme, I wanted to let the neural 

network learn the relationship between the near traces and far traces in the gas 

area. The trained neural network was used to predict the far traces by inputting the 

near traces. After that, the AVO anomalies were calculated by subtracting the 

predicted far traces from the observed far traces. I expect that these anomalies 

should be small in the gas window, and larger in the brine window. This method 

worked well in the synthetic model. However, it did not show such behavior in the 

real data set. Figure 8-4 shows the AVO anomalies calculated in this way for the
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2D seismic data set of case#l in the chapter 7. From the figure we can see that the 

AVO anomalies are not small in the gas window and not large in the brine 

window. The reason for the failure is that the seismic responses in the gas window 

are not very stable, and varies due to many factors such as porosity change and 

water saturation change.

In conclusion, the use of neural networks is a promising seismic inversion method that 

does not rely on a known forward physical model. This dissertation has demonstrated 

such promise on various real and synthetic, post-stack and pre-stack inversion 

problems. As much research is needed into how to set up the neural networks for 

specific problems, as is needed in improving the inversion algorithms themselves. 

Existing algorithms are adequate for many potentially profitable applications if 

appropriate methodologies can be developed and employed.
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Appendix A 

SEISMIC INVERSION BY ARTIFICIAL NEURAL NETWORKS
BY ZHENGPING LIU and QIANG SUN

ABSTRACT

In this report, we address a new seismic inversion method by Artificial Neural 

Networks (ANN). Rather than using a theoretical model, we let the BP neural network 

learn the relationships between the seismic input and the desired output, (the well 

logs), and perform the inversion. We tested the method by using several seismic 

synthetic models which include a wedge model, a wedge model with noise and a 

wedge model with multiple, and then compared the inversion results with conventional 

methods, blocky and sparse spike. The results show that ANN worked better in many 

fields. Finally, some real data are used to test the inversion by ANN, and a technology 

which creates new learning pairs is introduced.

INTRODUCTION

Conventional inversion strategies look for an optimal geophysical model, which can 

invert the seismic traces to well data with minimum residual. These methods can 

produce pseudo-acoustic impedance logs from seismic records. These methods include 

the bandlimited, blocky, sparse spike, etc. There exist two limitations for the 

conventional strategies. First, we must use a proper forward model. Second, the 

inversion can not directly invert for well data other than impedance, velocity and 

density.
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Artificial Neural Networks (ANN) are an attractive alternative to conventional 

inversion methods due to their ability to "learn" and "estimate". Since ANN can learn 

the relationship between well data and seismic records, a correct forward modeling 

algorithm is not required. Also, as long as there is some kind of relationship between 

the well data and seismic records, we can perform the inversion. We need not know 

what the exact relationship is, because to find the relationship is the ANN’s job. In this 

study, we let an ANN invert seismic data for the Gamma Ray (OR) log response. The 

result is pretty encouraging.

Among the ANN models, the back ward propagation (BP) model is one of 

most effective. It is a feed forward network trained by error back propagation. When it 

has one hidden layer, its approximated function is universal. In the learning stage of a 

BP neural network, the output error is propagated back ward, and the link weights of 

the network are modified with the propagation of error. When the total error is 

decreased to a given level, the network arrives at the relationship between the input 

and the desired output. This relationship is saved in weights, which are encoded in the 

network.

To test inversion by ANN, we used a seismic modeling package (GXII) to 

create some synthetic models, which include a wedge model, a wedge model with 

noise and a wedge model with multiple. We use both conventional methods and ANN 

to invert these models, and compare the results. The ANN worked better in certain 

aspects. We also use some real data to test the ANN, the results are also very 

encouraging.
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STRATA (Hampson-Russell software) was used to perform the conventional 

inversions, which include bandlimited, sparse spike and blocky algorithms.

In order to stabilize inversion by ANN, we also introduce a method to create 

some new learning samples by a differential convolution model.

INVERSION OF SYNTHETIC MODELS

The inversion result of synthetic models and the comparison with conventional 

inversion are discussed here. The models are created with GXH.

1. Wedge without noise

This is a very sample model, but it is useful to test resolution. When a bed embedded 

in a medium of different impedance is about ‘4  wavelength in thickness, the reflection 

from the top and the base of the bed interfere constructively and the amplitude 

increases. This “tuning” thickness is a practical resolution limit (the theoretical limit is 

1/8 wavelength). In the wedge model (Fig. 1 and Fig. 2) we want to know if this effect 

in seismic record will also influence the resolution of inversion.

The maximum thickness of the wedge is 1(X) ms, the background velocity is 

40(X) m/s, and the wedge’s velocity is 1000 m/s. For the ray tracing, we chose a 20 Hz 

Ricker wavelet (wavelength in the bed is 50m). So the #35 trace location is near a 

thickness of 14 wavelength. (Fig. 3).

The results of conventional inversions, both of blocky (Fig. 4) and sparse spike 

(Fig 5), show that tuning influences the resolution seriously. The real thickness is not
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be obtained when the trace number is greater than 33, so the practical resolvable 

thickness is greater than V* wavelength.

The inversion by ANN (Fig. 6) has better resolution. The real thickness is 

obtained down to trace #40. Even between traces #41 and #49 traces, there is 

decreasing thickness trend. In this inversion, only one trace was used in the training.

2. Noise Processing

In order to test the stability of ANN, we add 10% random noise in the ray tracing of 

the wedge model (Fig. 7). The results of blocky (Fig. 8) and sparse spike (Fig. 9) 

show that noise influenced the inversion, but not very seriously. However, the result of 

ANN (Fig. 10) is greatly degraded by noise. To get this result, we used 5 traces to train 

ANN. So, the ANN is apparently not stable in the presence of noise.

This result is misleading, when GXU adds noise, there is some regularity in the 

supposed random noise. The ANN may learn this regularity. To solve this problem, we 

use several different random systems to make the same level of noise, and use the 

traces with noise from different random systems in the training of the ANN. The result 

(Fig 11) is much better than the conventional inversion methods.

3. Multiple Processing

Multiples are supposed to be attenuated by stacking and other processing methods. 

However, multiples are often inadequately suppressed. Such multiples will influence 

inversions very seriously. A wedge synthetic with a multiple (Fig. 12) from its base
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boundary is used to study the affects of multiples on ANN and conventional inversion 

methods.

The sparse spike (Fig. 13) and blocky (Fig. 14) inversions are affected by the 

multiple. However, the ANN (Fig IS) trained with three traces was not perturbed by 

the multiple. This is because that the ANN does not assume a primary only forward 

model, as do the conventional inversion methods tested.

INVERSION OF REAL DATA

In addition to the synthetic model, we also use real data to test the ANN inversion. The 

data we used are from Las Cavaos Oil Field, YPF. We select one line (Fig. 16) from its 

3D seismic data set. There are three wells in the section. We use only the middle one, 

well 62, to train ANN. In the training, four traces near well 62 and a low frequency 

model are the input data; the velocity log of the well is the desired output. The result 

of inversion by ANN is shown as Fig 17. In the figure, the background wiggle is 

velocity by inversion. Near the well 62, the velocity log and the velocity by inversion 

match very well. This is expected for the training well. Near well 108 and well 143, 

the trend of velocity logging matched the velocity of inversion. So, the training results 

were applicable some distance from well 62. Comparing with that. Fig 17B is 

inversion by conventional method.

In training, well logs are the desired output and the seismic record is the input 

provided to the ANN. We call the input and desired output a learning pair. In order to
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stabilize the inversion by ANN, we introduce a method that creates some additional 

learning pairs by a differential convolution model.

The simple convolution model is:

S = W*R+n (1)

Where S = the seismic trace,

W = a seismic wavelet,

R = earth reflectivity, 

n = additive noise 

R=(z2-zl)/(z2+zi) (2)

Where z = impedance 

z=pV (3)

Where p = density 

V = velocity

and,

P=f(V) (4)

In the training, the desired output is V and input is S. From equation (1)~(4), 

we can find that if we change V to V*, then we can get a correlative S* by the 

convolution model. So by changing V, we can get some new learning pairs.

The detailed process of creating new samples is show as the flow chart (Fig. 

18). Using this technique, we created another six learning pairs. The original learning 

pair is well 62 and the seismic traces nearby. The inversion result (Fig. 19) is more 

stable but smoother than that of inversion without new learning pairs.
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We selected some traces near by the wells from these inversion results, and 

compared them. Fig 20 shows that inversion by ANN can be better than conventional 

inversion. The correlation coefficient of inversion by ANN is much higher than that of 

conventional inversion. The preconditioned ANN (Inversion by ANN with new 

learning pairs) did not modify the correlation coefficient in well 143 (Fig 21). 

However, in well 108 (Fig. 22), the correlation coefficient of preconditioned ANN is 

higher than that of original ANN.

Since ANN’s get the relationship of data by training, they can do inversion for 

any type of well log that has relationship with the seismic record. To prove this, we did 

the inversion for Gamma Ray (OR). The training process is pretty similar as inversion 

of velocity. The result (Fig. 23) shows that near well 108 and well 143 the inversion 

result and OR logging matched well in shallower layers.

CONCLUSION

1. Inversion by ANN can have higher resolution than the conventional inversion 

method.

2. Inversion by ANN can be stable in the presence of random noise.

3. Inversion by ANN can be done in the presence of multiples.

4. Inversion by ANN can be stabilized by creating some learning pairs with a 

differential convolution model.
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THEORETICAL MODEL PARAMETERS

Model wavelet
velocity of
background
(m/s)

velocity 
of the 
bed 
(m/s)

Noise Maximum 
thickness 
of bed 
(ms)

type frequency phase
change

Wedge I Ricker 20 95 4000 1000 none 100
Wedge2 Ricker 20 95 4000 1000 10% 100
Multiple Ricker 20 95 4000 1000 none 250
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FIGURE NUMBER AND NAME

F ig .l Horizons and layer of initial model, the wedge without noise
Fig. 2 P-Velocity of initial model, the wedge without noise
Fig. 3 Seismic Traces of the wedge without noise
Fig. 4 Blocky Inversion of wedge without noise
Fig. 5 Sparse Spike Inversion of wedge without noise
Fig. 6 Inversion by ANN of wedge without noise
Fig. 7 Seismic Traces of the wedge with 10% noise
Fig. 8 Blocky Inversion of wedge with 10% noise
Fig. 9 Sparse Spike Inversion of wedge with 10% noise
Fig. 10 Inversion By ANN of wedge with 10% noise
Fig. 11 Inversion By ANN of wedge with 10% noise, six same noise level traces with 

different noise system join to the training.
Fig. 12 Seismic Traces of the wedge with the multiple
Fig. 13 Sparse Spike Inversion of wedge with the multiple
Fig. 14 Blocky Inversion of wedge with the multiple
Fig. 15 Inversion by ANN of wedge with the multiple
Fig. 16 Seismic Traces of real data. Las cavao, line 364
Fig. 17 Inversion by ANN of real data, P Velocity
Fig. 17B Conventional Seismic Inversion, P-Velocity
Fig. 18 Flow Chart of Learning Pair Pre-conditioning
Fig. 19 Inversion by ANN of real data, P-Velocity, with data pre-conditioning
Fig. 20 Well 62 inversion result
Fig. 21 Well 143 inversion result
Fig. 22 Well 108 inversion result
Fig. 23 Inversion by ANN of real data, GR
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Fig. 1 Horizons and layer of initial model, the wedge without noise
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Fig. 2 P-Velocity of initial model, the wedge without noise
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Fig. 9 Sparse Spike Inversion of wedge with 10% noise
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Fig. 10 Inversion By ANN of wedge with 10% noise
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Fig. 11 Inversion By ANN of wedge with 10% noise, six same noi 
level traces with different noise system join to the training.
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Fig. 12 Seismic Traces of the wedge with the multiple
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Fig. 13 Sparse Spike Inversion of wedge with the multiple
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Fig. 14 Blocky Inversion of wedge with the multiple
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start

Output Ae New Stu(fying 
Sample(VJ)^ds,S*) 

END

Read wavdet dataRead log data(vdodty) Read Sdsmic Record

Convolution to Get ds

Calculate die 
new Sdsmic Record 

S*=S+ds*wdght

Vdodty*=Vdodty+ 
Vdodty*Random*Wdg)it 

(Random -1~1)

Calculate die Redecdon 
coeffident from Velodty and 

Dendty, R*=(Z2-Z1)/(Z2+Z1)

Cdculate Dendty from Velodty 
Densi^=CHC2*Velod^ or 
Densî r=Cl*E]q)(Vdodty)

Fig. 18 Flow chart of studying pair pre-conditioning
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Well 62 Well-log velocity Vs. Conventional Inversion velocity
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1.30 1.35
Tim e (s)



Well 143 Well-log velocity Vs. ANN Inversion velocity
6000

4000

Well-log Inversion
2000 I -

1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46
Time (s) c o r re la t io n  c o c ff ic c n t =0 ,461

i

%

8000

6000

4000

2000

Well 143 Well-log velocity Vs. Pre-condltional ANN Inversion velocity

Well-log Inversion

1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46
Time ( s )  c o r re la t io n  c o c ff ic c n t = 0 .2 9 6

Fig. 21 Well 143 inversion resnlt



I
I

I
I

6000

4000

2000

Well 108 Well-Log velocity Vs. ANN inversion velocity

Well-log
~r *T r I ~ r “T T

Inversion
T 1----- 1 r  1---------1---------1---------1--------- 1---------1-------- 1

1.31 1.32 1.33 1,34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1 44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56
co rre la lion  co e fiic cn l =0 .243

6000

4000

Time (s)

Well 108 Well-log velocity Vs. Pre-conditional ANN inversion velocity

2000
Well-log Inversion

— I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r -  r  -  I  I  1-1-1 I - - - - - - - - 1 ^  I  1 I  I  I  — I - - - - - - - - - 1- - - - - - - - - 1 - - - - - - - - - T - - - - - - - - - 1 - - - - - - - - - 1 - - - - - - - - - - 1 - - - - - - - - - - 1- - - - - - - - - - 1

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56
Tinrie (s) corre la tio n  co c fficcn t =0 445

Fig. 22 W ell 108 inversion result



l\oè 'JM.ü
Ti*cv 20 0

1 m

L C d . t i - i Ü B ( D )

3W0
40 0 ÔOO

IC é’SZ

«00

t 300

1.300

1.400

1600

364U
1 2 0 0

3040
140.0

3040
1600

304 0 
100.0

3040
2000

364 0 
2200

3 6 4 0
100 0 240.0

1.500

1600 137 600 
IXiOÛO 2SÛÛ 
IlSOOÜ 
|7  500 

3000

l'ij; 1 }  liivcrsuMi hy A N N  oi liaU, OR
o!(kaiv4io4 Line 364 0, qt 

12/23/9/ 19:3520



Appendix B

Resistivity and Lithology Fraction inversion for the YPF data set 

Data available:

The data available are extracted S-impedance, P-impedance, and density for a 

2D arbitrary line, and 6 wells with resistivity log and lithology fraction log on the 2D 

line.

Method:

Two BP ANN’S were trained to learn the relationship between the seismic 

attributes and the well logs. The input data are S impedance, P-impedance and 

density for both networks. The desired output data for the first network is the 

resistivity, and the desired output data for the second network is the lithology 

f^tion. Training window length is 28 ms. The network had one hidden layer with 

13 nodes. Five wells were used in training one well was used in validation. The 

software I used is Hampson-Russell Emerge, version 2.1. This new version has the 

neural network function.

Results:

The predict^ well log match the true well log very well for both resistivity and 

lithology faction.
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Figure I . T he observed  resistivity and the  predicted resistivity for (a ) the training wells and (b ) the validation well.
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Figure 2. The ANN predicted resistivity for the whole 2D arbitrary line.
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Figure 3. T he observed lithology fraction and the predicted  lithology fraction for (a ) the training wells and (b ) the validation well.
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Figure 4. The ANN predicted lithology fraction for the whole 2D arbitrary line.


