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RAPID RECOVERY OF STARVATION 

DAMAGED RNA BY REFEEDING

CHAPTER I 

INTRODUCTION

N u tr i t io n a l  status has been reported by several workers to 

markedly a l t e r  the composition and morphology of the l i v e r .  The type 

o f d ie t  consumed has been shown to Influence the amounts o f  the various  

c e l lu la r  co n stitu en ts , Including DNA, RNA, p ro te in s , l ip id s ,  carbohy­

dra tes , e tc .  (References documenting these observations w i l l  be discuss­

ed l a t e r . )  The extent of these a lte ra t io n s  varies  with the type of d ie t  

and the length o f time I t  is fed. I f  the d ie t  Is d e f ic ie n t  In one or  

more essentia l nu tr ien ts  the e f fe c ts  of the d efic iency  may be repaired  

by providing the lacking ingredients .

The DNA content per l i v e r ,  and thus the number o f  c e l l s ,  has been

reported to remain constant In adu lt rats  during s ta rv a t io n .  (K o s te r l l t z ,

ig47; Davidson, 1947; Thompson, 1953; Enwonwu, 1971; HayashI and Kaz-

mlerowskl, 1972). Although HIrsch and H ia t t  (1966) reported a 10% to 25%

decrease in l i v e r  DNA a f te r  5 days o f  s ta rv a t io n ,  subsequent studies

from the same laboratory (Edleman, Hirsch, H ia t t  and Fox, 1969)

showed th a t th is  apparent decrease In l i v e r  DNA was due to  the presence

in the l i v e r  e x tra c t  of a diphenylamlne reacting materia l which was

I



not DNA. These resu lts  show that s ta rva tion  does not lower the l iv e r  

DNA content. There are c o n f l ic t in g  reports about the e f fe c t  of s ta r ­

vation upon the amount o f  DNA per l iv e r  c e l l .  (Fukuda and S ib atan i,

1953; Conrad and Bass, 1957; Harrison, 1953). The amount o f  DNA 

per weight o f  l i v e r  changes according to the s h i f ts  In e x t ra c e l lu la r  

and in t r a c e l lu la r  water volume, (Harrison, 1953). Montecuccoli,

Novello and S t r ip e  (1971) reported that DNA synthesis was markedly 

reduced in ra ts  starved fo r  3 days or fed a p ro te in - f re e  d ie t  fo r  7 days.

In view of the fa c ts  that DNA content per l i v e r  remained constant and 

the ra te  o f DNA synthesis was reduced during s ta rv a t io n ,  i t  may be 

concluded th a t  the ra te  of DNA degradation was a lso  reduced during s ta r ­

va tion .

Severe s ta rva t io n  (Watson ^  1973; Wittman, Lee and M i l l e r ,

19&9; Sox and Hoagland, 1966; Fleck, Sheperd and Munro, 1965) or the 

removal o f  p ro te in  from the d ie t  (Pronczuk, Rogers and Munro, 1971; 

Gaetani e_t aj .̂ 1969; Wunner, Bell and Munro, I 966; F leck, Sheperd and 

Munro, 1965) or feeding of grossly unbalanced amino acid mixtures,

Pronczuk, Rogers and Munro, 1971) have been reported to s h i f t  the hepa­

t i c  polysomal p ro f i le s  from heavier to l ig h te r  aggregates. Polysomal 

disaggregation re su lt in g  from an overnight fa s t  (Sidransky £ l .  1968; 

Wunner, Bell and Munro, I 966; F leck, Sheperd and Munro, 1965) or due to 

the lack o f an essentia l amino acid (Park ejt £1̂ . 1973; Murty and 

Sidransky, 1972; Pronczuk, Rogers and Munro, 1971; Sidransky e t  a l .

1967) was restored to normal w ith in  one hour o f  refeeding an amino acid  

mixture in the f i r s t  case and refeeding the d e f ic ie n t  amino acid in the 

second case. There a re ,  however, con trad ic ting  reports as to which one
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of the essentia l amino-acids is most important in res to r in g  the poly­

somal p r o f i le s .  Tryptophan alone was reported to res to re  the polysomal 

p ro f i le s  in rats (Wunner, Bell and Munro, 1966) and mice (Murty and 

Sidransky, 1972; Sidransky et_ al_. 1967). McGown and Richardson (1973) 

however, reported that omission o f tryptophan or methionine from an 

amino acid mixture used to perfuse ra t l iv e rs  resulted in polysomal 

disaggregation. I t  seems that the most l im it in g  amino acid  fô r  the 

species concerned would be most e f fe c t iv e  in restor ing  the polysomal 

p r o f i les.

Because o f the r a p id i t y  o f  polysomal recovery (1 hour) a f t e r  

adm in is tra tion  of tryptophan to overnight fasted mice, most workers 

believed that the recovery was independent of newly synthesized RNA 

and was probably due to c lo ser spacing o f ribosomes on unchanged mRNA. 

However, Murty and Sidransky (1972) from th e i r  studies involving  

actinomycin D and ribonculease d igestion  techniques, have reported a 

marked increase in the amount o f  mRNA a f t e r  tryptophan ad m in is tra tion  

to fasted mice. Therefore , they concluded that the polysomal aggre­

gation was dependent upon new mRNA synthesis.

Exogenous amino acids are  not the only c u ra t iv e  fa c to r  able  

to restore polysomal p r o f i le s  to  normal since p ro te in  f re e  d ie ts  have 

also been shown to cause the reaggregation o f polysomes in starved  

animals. Refeeding a p r o te in - f r e e  d ie t  fo r  8 hours (Webb e^ aj .̂ 1966) 

or glucose alone fo r  10 hours (Wittman aj_. 1969) restored the poly­

somal p ro f i le s  o f  starved ra ts .  These studies emphasize the ro le  o f  

energy in restoring  the polysomal p r o f i le s .  The time taken to restore  

the polysomal p ro f i le s  var ies  w ith  the source o f  energy since Wittman



et  ̂ aj_. ( 1969) found that feeding glucose to starved rats restored the 

polysomal p r o f i le s  w ith in  10 hours, w h ile  fa t  did not. S im ila r  results  

were obtained by Watson aj_- (1973) who found that refeeding of a high 

sucrose d ie t  to 7“day starved ra ts  restored the polysomal p r o f i le s  w ith ­

in 24 hours, w h ile  refeeding o f h ig h - fa t  d ie t  took 48 hours. From these 

observations, i t  appears that the lack o f e i th e r  amino acids or energy 

can cause disaggregation of polysomal p r o f i le s .  Although the above 

studies show that e i th e r  amino acids or energy can cause the reaggre­

gation of polysomes from starved animals, i t  is c le a r  th a t the recovery 

w i l l  be only temporary i f  both energy and prote in  are not made a v a i l ­

ab le . I f  the animal is supplied w ith  amino acids alone, i t  can use 

them both as source of prote in  and energy. On the other hand, i f  i t  is 

supplied w ith  energy alone, i t  w i l l  be able  to maintain normal poly­

somal p r o f i le s  only as long as i t ' s  body amino acid pools are  not de­

p le ted . A f te r  the depletion of body amino acid pools, the polysomes 

w i l l  again be disaggregated, i t  must a lso  be pointed out th a t  in the 

studies mentioned above, where amino acids restored the polysomal pro­

f i l e s  w ith in  one hour of a d m in is tra t io n , the animals were starved only 

overn ight, w h ile  in the studies where the energy sources took several 

hours to res to re  the polysomal p r o f i le s ,  the rats were starved fo r

3-7 days.

The mode o f action by which glucose restores polysomal p ro f i le s  

is s t i l l  not w ell understood. Wittman e t a l .  (19&9) suggested that  

glucose was ac ting  through induction o f in s u lin ,  since in s u lin  alone or 

with glucose stim ulated hepatic p ro te in  synthesis and polysomal reag­

gregation in hypophysectomized or d ia b e t ic  animals. However, admini-



s tra t io n  of insu lin  to fasted or fas te d -re fed  rats was without e f fe c t .  

Polysomal p ro f i le s  from 3-day starved r a ts ,  could, however, be restored  

by insu lin  w ith in  10 to 30 minutes a f t e r  in je c t io n  when supplemented 

w ith  glucose (Wittman and M i l l e r ,  1970).

Several studies have been c a rr ie d  out in ves tig a tin g  the 

re la t io n s h ip  o f  ATP supply and polysomal aggregation. (Stewart and 

Farber, 1967; Oler £ t  a l . .  19&9; Van Venrodij e^  aj^. 1970, 1972; 

Freudenberg and Mager, 1971). O ler e^a j_ . (19^9) suggested that ATP de­

f ic ie n c y  was not the tr ig g e r  fo r  polysomal disaggregation. Freudenberg 

and Mager (1971) have postulated tha t polysomal disaggregation is due to 

AMP, ADP accumulation. Van Venrodij £ t  aj_. (1972) using asc ites  tumor 

c e l ls  in c u ltu re  have shown th a t  the presence of glucose in the medium 

is essentia l fo r  polysomal aggregation. However, i t  is not c le a r  i f  

glucose acts by ra is in g  the ATP level o r by lowering the AMP, ADP 

levels  or by some o ther metabolic fu n c tio n .

I t  has been reported th a t  when a ra t  is starved (Davidson,

1947; Thompson, 1953; Enwonwu, 1971) or fed a p ro te in -d e f ic ie n t  d ie t  

(K o s te r l i t z ,  1947; Munro et al_, 1953; Enwünwu, 1970) an immediate and 

extensive loss of RNA from the l i v e r  occurs fo r  about 2 days, a f te r  

which a new and lower plateau is reached. S ta rva tion  of adu lt  ra ts  fo r  

5 - 7  days has been reported to decrease the RNA and pro te in  content o f  

the l iv e r  to 50% o f  normal (K o s te r l l t z ,  1947; Petermann and Hamilton, 

1958; Wilson and Hoagland, 1967). During s ta rv a t io n ,  the contents o f  

nuclear RNA, ribosomal RNA and soluble  RNA decreased exponentia lly  

with  loss of body weight and a t  approximately the same r e la t iv e  ra tes .  

Starvation  also decreased the leve ls  o f  ribonucleotides in l iv e r  c e l ls



(O nish î, 1970). Munro £ ^ a j . ( l9 6 1 » )  and Munro ( I 968) reported that the 

f ra c t io n a l  ra te  of ra t  l i v e r  RNA degradation c o rre la ted  w ith  the ribo­

somal subunit population and th a t the subunit population was most 

abundant during the period of most rapid RNA loss during s ta rva tio n .  

Rizzo and Webb ( I 969) reported a l in e a r  and inverse re la t io n s h ip  be­

tween the ra te  o f ribosomal synthesis and the concentration o f non­

functiona l monomeric ribosomes. Munro (1953) reported th a t the d ie tary  

a v a i l a b i l i t y  o f  amino ac id s , ra th e r  than c a lo r ie s ,  was the major fac tor  

in the regu lation  o f l i v e r  RNA content.

Refeeding o f  a complete d ie t  to starved ra ts  was found to re­

pa ir  d e f ic i t s  in RNA and pro te in  content w ith in  several days (Laird  

e_t £]_. 1955) .  Garza et_ (1970) reported th a t refeeding a high-carbo- 

hydrate (89% sucrose) p ro te in - f re e  d ie t  fo r  48 hours to 48-hour starved 

rats  did not change hepatic  RNA content from th a t  found a t the s ta r ­

vation  le v e l .  Refeeding o f high pro te in  (89% casein) carbohydrate-free  

d ie t  fo r  the same perio d , on the other hand, restored the RNA content 

to normal leve ls .

The ra te  of degradation and synthesis of r a t  l i v e r  RNA has 

been studied by several workers and a h a l f - l i f e  o f  5 days w ith  a turn­

over time of 7 .2  days has been reported fo r  rRNA o f  adequately fed rats  

(Gerber £ t  £l_. I960; Loeb £ t  al_. 1965; Wilson and Hoagland, 1967; 

Hirsch and H ia t t ,  1966; Blobel and P o tte r ,  1968). Hadjio lov  (1966) 

however, reported a h a l f - l i f e  o f  40 hours fo r  rRNA. I t  is not c lear  why 

H ad j io lov 's  data gave such a low h a l f - l i f e  fo r  rRNA. Enwonwu e t a l .

( 1971) estimated a h a l f - l i f e  o f  30 hours fo r  rRNA during the f i r s t  2 

days of s ta rva t ion .  In the second phase of s ta rv a t io n ,  however, the



h a l f - l i f e  o f rRNA was about 7 days.

Wilson and Hoagland (1967) using actinomycin D,found that rat  

l i v e r  cytoplasm contained mRNA species w ith  an apparent h a l f - l i f e  

ranging from 3 to  80 hours. Murty and Sidransky (1972) using a c t in o ­

mycin D doses which would s e le c t iv e ly  a llow  the la b e l l in g  o f mRNA,or by

using doses o f ribonuclease which would s e le c t iv e ly  d igest mRNA ,found

lA
that during 0 .5  t o .3 hours a f te r  in je c t io n  of C -o ro tic  a c id ,  the

s p e c if ic  a c t iv i t y  of mRNA o f free  polyribosomes was on an average o f

2-3 times higher than that o f  mRNA o f  membrane-bound polyribosomes, 

over the e n t i re  period of la b e l l in g .

Hirsch and H ia tt  (1966) concluded that the loss of RNA th a t

occurred during s ta rva tio n  was due to an increase in ribosomal RNA de­

gradation as well as to a reduction in the rate  of RNA synthesis.

Clark e_̂  (1957) reported that the rapid loss in l i v e r  RNA contant

during the f i r s t  24-48 hours on a p ro te in  d e f ic ie n t  d ie t  was due to  

accelerated RNA breakdown ra ther  than to reduction in i t s  ra te  o f  

synthesis. Enwonwu et aj_. (1970) found that animals habituated to  a 

p ro te in -d e f ic ie n t  d ie t  underwent reductions in rates o f both synthesis  

and degradation of RNA.

Hayashi and Kazmierowski (1972) observed that during fa s t in g  

p roportionate ly  g reater amounts o f  ra d io a c t iv i ty  were incorporated into  

non-ribosoma1 RNA (mRNA). Wilson and Hoagland (1966) found th a t  re ­

feeding o f  animals starved fo r  4 -5  days led to gradual replenishment of  

cytoplasmic polysomal aggregates in 8-12 hours. During th is  period the 

to ta l  rRNA content increased tw o -fo ld ,  i . e .  reached normal values,  

whereas non-ribosomal RNA was s t i l l  55% below normal. They a lso re -
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ported tha t microsomes and ribosomes from the l iv e r s  of ra ts  starved  

fo r  one week incorporated amino acids less a c t iv e ly  in v i t r o  than pre­

parations from the l iv e rs  of rats that were starved fo r  the same period  

and then refed fo r  10-15 hours. But i f  the ribosomes were trea ted  w ith  

puromycin to s t r ip  o f f  mRNA and nascent p ro te in s ,  equal amounts o f  

polyphenylalanine were synthesized upon add ition  o f p o ly u r id y i ic  acid  

by those ribosomes from e ith e r  starved or s ta rved -re fed  ra ts .  From 

these studies i t  may be generalized th a t severe s ta rv a t io n  causes a 

marked reduction in the RNA content of the l i v e r  and also changes the  

h a l f - l i f e  o f  l i v e r  RNA. Ribosomes from starved animals do not appear 

to be d e fe c t iv e  in p ro te in  synthesis.

S ta rva tion  (O nlsh l, 1970) and p ro te in  dep le t ion  (C la rk  and 

Jacob, 1972) has been reported to decrease the leve ls  o f RNA polymerase. 

Shaw and F i l l l o s  (1968) reported that over a 42 day period the a c t i ­

v i t y  of DNA-dependant RNA polymerase was s ig n i f ic a n t ly  higher in the 

l i v e r  nuclei o f the ra ts  fed a low-protein (5%) d i e t ,  and s ig n i f ic a n t ly  

lower in the l i v e r  nuclei o f rats  fed a h ig h -p ro te in  (40%) d ie t ,  when com­

pared w ith  the l i v e r  nuclei from controls (20%). An Increase in tem­

p la te  e f f ic ie n c y  o f  endogenous DNA in ra ts  given low p ro te in  d ie ts  may 

be due to loss of deoxyribonucIeoh is tones. However, over a prolonged 

period o f p ro te in  dep le t ion  the r e la t iv e ly  higher leve ls  o f the RNA poly­

merase diminished in the low-protein fed groups. Vesley and Cihak (1970) 

reported a s ig n i f ic a n t  increase in the DNA-dependent RNA polymerase a c t i ­

v i t y  in the l iv e rs  o f ra ts  3 hours a f t e r  tube-feeding a complete amino 

acid mixture or tryptophan alone when compared to rats tube-fed a t ry p to ­

phan-devoid d ie t .  These resu lts  suggest th a t  both prolonged s ta rv a t io n



and prolonged amino acid de fic iency  may decrease the leve ls  of RNA 

polymerase.

Moris and Lamirande (1964) observed the presence o f  a ribonu­

clease in the microsomal f ra c t io n  o f  ra t  l i v e r  and Gavard and Lamirande

( 1972) reported the complete p u r i f ic a t io n  of an a lk a l in e  ribonuclease  

(pH 7 .2  to 8 .8 )  from r a t - i i v e r  microsomes. Arora and Lamirande (1971) 

found th a t  ribosomes from starved animals were more susceptib le  to 

autodegradation as compared to ribosomes from control animals. From 

these studies they concluded th a t  s ta rva tio n  caused an increased a c t i ­

v i t y  o f  ribosomal ribonuclease. This was, however, in c o n trad ic t io n  to 

the e a r l i e r  reports of Sox and Hoagland ( I 966) who had claimed no change 

in the leve l of ribosomal ribonuclease during s ta rv a t io n .  Hird e t  a i . 

( 1964) showed that f re e  ribosomal subunits were r ich  in endogenous r ib o ­

nuclease. Sheppard et_ al_. (1970) reported that the enzyme a c t iv i t y  of  

a c id -s ta b le  ribonuclease was lower in fed ra ts  as compared to fasted  

r a ts .  A l la rd  £ t  al_. (1957) reported a decrease o f  35% and 28% in the 

leve ls  of acid (pH 5 . 5) and a lk a l in e  (pH 7 5) ribonucleases o f ra t  l iv e r  

homogenate a f t e r  7 days o f s ta rv a t io n .  Onishi (1970) observed that f re e  

and la te n t  a lk a l in e  ribonuclease a c t i v i t i e s  were maintained up to 20-25% 

body weight loss, but then decreased to 50% of the normal level when the 

weight loss reached 40-45% of the i n i t i a l  weight. Acid ribonuclease  

a c t i v i t y  and the a c t i v i t y  o f  a lk a l in e  ribonuclease in h ib i to r  were also  

reported to decrease w ith  loss o f  body weight. These studies ind icate  th a t  

the leve ls  of some c e l lu la r  ribonucleases change w ith  s ta rv a t io n .  Some 

o f  the ribonucleases are  Increased, others are  decreased and s t i l l  others  

remain unchanged w ith  s ta rv a t io n .
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Polyacrylamide gel e lectrophores is  patterns o f ribosomal 

prote ins showed no d iffe rences  between 4-5 day starved and starved-  

refed ribosomes (Sox e^ aj_. 1966) and between s ta rved -re fed  and normal 

ribosomes. (Wilson, H i l l  and Hoagland, 1967).

One can f in d  l i t t l e  In the l i t e r a t u r e  concerning the events 

taking place a t  the RNA level regarding the disaggregation of poly­

somes w ith  s ta rva t io n  and th e ir  rapid recovery a f te r  re feeding . We do 

know th a t  polysomal d isaggregation during s ta rva tio n  is accompanied 

by a decrease in l i v e r  RNA content, however, we d o n 't  know i f  the d is ­

aggregation is due to the lack of rRNA and/or mRNA or to d e fe c t ive  

mRNA and/or rRNA. Ribosomes from the starved animals a f t e r  s tr ip p in g  

o f f  t h e i r  nascent proteins and mRNA were as e f f i c i e n t  in In v i t r o  

pro te in  synthesis as ribosomes from the control animals (Wilson and 

Hoagland, I 966) .  Ribosomes from starved animals are more susceptib le  

to autodegradation when compared w ith  ribosomes from the control animals 

(Arora and Lamirande (1971). We do not know i f  th is  is due to increased 

f r a g i l i t y  o f  rRNA or due to the lack o f  some s tru c tu ra l  ribosomal proteins  

or endoplasmic r e t ic u la r  membranes. There are  co n trad ic t in g  reports about 

the leve ls  of ribosomal ribonucleases during s ta rv a t io n .  The reaggre­

gation of the polysomal p ro f i le s  a f t e r  refeeding of starved animals could 

be due to the re p a ir  or de novo synthesis of the s tru c tu ra l  constituents  

o f polysomes. Some of the fac to rs  that could be Involved In polysomal 

reaggregation are mRNA, rRNA, s tru c tu ra l  ribosomal p ro te in s ,  endoplasmic re­

t i c u la r  membranes, ribonuclease In h ib i to r ,  e t c . ;  however, we d o n 't  know 

which one(s) of these fac tors  is Involved.

Keeping a l l  these problems In view, the present studies were
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undertaken to investigate  the fo llow ing  aspects of polysomal disaggre­

gation and reaggregation.

1) Changes in the RNA p ro f i le s  a f te r  d i f f e r e n t  periods of 

s ta rv a t io n .

2) The period of time required to restore the RNA p ro f i le s  to 

normal, a f t e r  refeeding e i th e r  a high carbohydrate (HC) or a high f a t  

(HF) d ie t .

3) Change in the level o f  ribosomal ribonuclease during  

s ta rva tio n  and the possible re la t io n s h ip  between the changes in RNA 

p ro f i le s  and ribosomal ribonuclease le v e l .

4) Comparison o f the RNA content o f the l iv e rs  o f  starved  

ra ts  with l iv e rs  of s ta rved -re fed  ra ts  to see i f  a c o r re la t io n  ex is ts  

between RNA content and the RNA p r o f i le s .

5) The r e la t iv e  loss during s ta rva tio n  and the r e la t i v e  in ­

crease a f t e r  refeeding in the ind iv idua l species o f RNA ( i . e .  mRNA, 

rRNA).



CHAPTER I I 

MATERIALS AND METHODS 

Diet M ater ia ls

A standard laboratory chow d ie t  was used to raise the animals 

from the weanling stage u n t i l  placed on s ta rva t ion .  A high carbohydrate  

or a high fa t  d ie t  was used during the refeeding periods a f t e r  s ta rva ­

t io n .  The compositions of  these d ie ts  are shown below.

Compositions of  ra t  diets

Ingredient High sucrose 
(HS)

High fa t  
(HF)

Stock diet^

9 Kcal 9 kcal Source 9

Casein 20.00 80.0 32.92 131.7 Protein 24.27

2
Sucrose 69.90 279.6 - - CHO 56.23

Lard^ - - 51.36 462.2 Fat 4 .15
. ,4  Corn oi 1 5.00 45.0 8.32 74.9 Fiber 4.86

S a lt  mix 4 .00 - 5.72 - Ash 7.78

Vitamin premix 0.50 2 .0 0 .76 3 .0

V i t .  A,D,E^ 17.71 mg1 25.6mg -

Choiine Cl 0 .10 - 0 .16 -

Methionine 0.50 - 0 .76 -

100.00 406.6 100.00 671 .8 359 .4

12
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Composition of d i e t s (continued)

HS HF Stock d ie t

Kcal/g d ie t  4 .0  6 .6  3 .6

Non pro te in  energy :
Protein energy, kcal 4 .0  4 .0  2 .7

CHO energy:
Protein energy, kcal 3 .5  0 .02 2.3

Fat energy:
Protein energy, kcal 0 .6  4 .0  0 .4

 ̂ "Rat/Mouse D ie t"  o f  Teklad In c . ,  Monmouth, 111., a l i s t  of ingredients  

including minerals and vitamins was supplied by the manufacturer, 

together w ith  an "average analys is" on which the above data are  based.
2

C&H Sugar, C a l i fo r n ia  and Hawaiian Sugar Co., San Francisco, C a l i f .

 ̂ S i lv e r le a f  (oxygenated), Sw ift S Co., Chicago, 111.
L

Mazzola, Corn Products, in c . .  New York, N.Y.

 ̂ Mixture of 5 mg v itam in A pa lm ita te  (250,000 USP u n i ts /g ) ,  0 .6  mg 

vitamin D̂  (500,000 USP u n its /g )  and 20 mg vitamin E succinate.

Reagents

The fo llo w in g  chemicals, o f  reagent or a n a ly t ic a l  grade, were 

purchased from Fisher S c ie n t i f ic  Company, F a ir  Lawn, New Jersey: sodium 

c h lo r id e , sodium a ce ta te ,  sodium hydroxide, potassium c h lo r id e ,  t r i ­

ch loroacetic  a c id ,  magnesium c h lo r id e ,  o rc in o l ,  xylene, and l iq u i f i e d  

phenol.

Toluene, s c i n t i l l a t i o n  grade, and naphthalene were obtained  

from Eastman Kodak Company, Rochester, New York.

P-dioxane, ethylene g lycol monoethylether and isoamyl alcohol
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were obtained from Baker Chemical Company, Phi 11ipsburg, New Jersey.

Sodium dodecyl s u l fa te  (SDS) and polyvinyl s u l fa te  (PVS) were 

purchased from K and K Laboratories , In c . ,  P la inv iew , New York.

Pure U.S.P. ethyl alcohol was obtained from U.S. In d u s tr ia l  

Chemicals Company, New York.

Orcinol and deoxycholate (DOC) were obtained from Sigma

Chemical Corporation, Sain t Louis, M issouri.

32 32P as PO  ̂ in HCl”fre e  water was purchased from New 

England Nuclear, Boston, Mass.

Yeast RNA and ribonuclease A were obtained from Worthington 

Biochemical Corporation, Freehold, New Jersey.

Instruments and Equipment

C entrifugations were c a r r ie d  out w ith  a Sorvall automatic  

r e f r ig e ra te d  c e n tr ifu g e , RC2-B, Ivan Sorvall In c . ,  Norwalk, Connecticut 

and w ith  a Spinco Model L2-65B u l t r a c e n t r i fu g e ,  Beckman Instruments 

Company, Spinco D iv is io n ,  Palo A l to ,  C a l i fo rn ia .  The water bath used 

was a Metabolyte water-bath  shaker w ith  temperature c o n tro l ,  Model G77» 

New Brunswick S c ie n t i f ic  Company, In c . ,  New Brunswick, New Jersey.  

Spectrophotometric measurements were made using a G i l fo rd  Model 2400 

from G i l fo rd  Instrument L aborato r ies , In c . ,  O berlin , Ohio. R ad ioacti­

v i t y  was measured w ith  a Packard T r i-C arb  l iq u id  s c i n t i l l a t i o n  spec­

trom eter, Model 3214.

Methods 

Preparation o f the Animals 

Male, a lb ino ra ts  of the Holtzman and Sprague-Dawley s tra ins
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were raised on laboratory  chow d ie t  w ith free access to food and water.  

They were caged separate ly  in a room with con tro lled  temperature and 

l ig h t  periods. A f te r  the animals had reached a weight o f  about 350- 

400 grams, groups o f s ix  ra ts  were put on a 5"7 day s ta rv a t io n  period. 

During th is  period they had f re e  access to water. These ra ts  were then 

refed with e i th e r  a high sucrose (HS) or a high f a t  (HF) d ie t  fo r  4, 8, 

or 24 hours before s a c r i f i c e .  Rats which ate less than 3 grams during 

the f i r s t  2 hours o f refeeding were re jec ted . A l l  rats  were k i l le d  

between 8:30 a.m. and 9:15 a.m. to minimize d iurnal v a r ia t io n s .

P reparation  of to ta l  RNA

Rats were k i l l e d  by decap ita tion  with a g u i l lo t in e  and l iv e rs  

were removed immediately, wiped c lean, weighed and dropped into l iq u id  

nitrogen. The frozen l iv e r s  were lyophylized fo r  24 hours and crushed 

into a f in e  powder in a cold room. Normally, l i v e r  powder obtained  

from three rats was pooled fo r  the ex trac tion  o f RNA. Ribonucleic  

acids were extracted as described below. Unless otherwise s p ec if ie d ,  

a l l  of the fo llow ing processes were carr ied  out a t  a temperature close 

to 0°C.

Cold sodium ace ta te  b u ffe r  0.02 M, pH 5 2 ,  conta in ing  200 yg /  

ml of PVS ( in  the amount o f  3 ml per gram of wet l i v e r )  was added to 

the powdered l i v e r  and s t i r r e d  w ith  a magnetic s t i r r e r  in an ice bath 

fo r  5 minutes. An equal volume of cold w ater-sa tura ted  phenol was then 

added and s t i r r e d  again fo r  10 minutes. The phases were separated by 

cen tr ifu g a t io n  a t  27,000 x g fo r  10 minutes in a Sorva ll cen tr ifu g e  a t  

a temperature o f  4°C. The aqueous phase, containing the RNA, was
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harvested w ith  a Pasteur p ip e t te .  The interphase and phenol phase 

were given a second cold ex trac tio n  w ith  the o r ig in a l  volume of acetate  

b u ffe r .  The aqueous phases from the two cold extrac tions  were pooled. 

The residual RNA le f t  a f t e r  the second cold ex trac tio n  was extracted  

using the o r ig in a l  volume of acetate  b u f fe r ,  but now containing 0.5%

SDS and was heated up to 63°C in a b o i l in g  water bath. The mixture was 

cooled immediately in an ice bath. The aqueous phase was harvested 

a f t e r  c en tr ifu g a t io n .  Fresh phenol was used for a second hot e x trac ­

tion  and the aqueous phase again is o la te d .  The aqueous phases from 

two hot extrac tions  were pooled.

The hot and cold aqueous phases were then deprote in ized sepa­

ra te ly  by three extrac tions  (by s t i r r in g  for 5 minutes in an ice bath) 

with 0 .5  volume of phenol, followed by two extrac tions  with 0 .5  volume 

of chloroform-isoamyl alcohol (4:1 v / v ) .

P re c ip i ta t io n  o f  RNA 

Ribonucleic acids were p re c ip ita te d  by adding 0.25 volume of 

cold 2 .5  M NaCl and 2 .5  volumes o f e th an o l,  pre-chi l ie d  to -20°C. The 

ethanol mixture was kept a t -20°C overn ight.

Recovery o f  RNA 

Ribonucleic acids were recovered by c en tr ifu g a t io n  in a Sor­

v a l l  cen tr ifu g e  a t  27,000 x g fo r  15 minutes. The ethanol was d is ­

carded. The tubes were wiped dry o f  ethanol and the RNA p e l le t  was 

dissolved in 2 ml o f  cold water. The o p tica l density  of the RNA was 

determined a t  260, 280, and 232 nm to make sure i t  was fre e  o f prote ins .  

A dditional washings w ith  chloroform-isoamyl alcohol were g iven, i f  the
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o p tica l density at 232 nm was more than h a l f  o f  the o p t ic a l  density  a t  

260 nm. As a c r i t e r i a  of p u r i ty ,  the o p tica l  densit ies  o f  yeast RNA 

a t 232, 260 and 280 nm were determined and the o p tica l density  a t  260 

was found to be twice tha t o f  the o p t ic a l  density a t 280 or 232 nm.

Gradient Fraction ation  o f RNA 

Convex is o k in e t ic  sucrose gradients  (15 to 32.8%) were made 

according to Noll (1967). About 200 yg o f RNA was layered on the  

grad ient and centrifuged a t  2°C fo r  10 and 1/2 hours a t  198,759 x g 

using an SW 40 Ti ro to r .  The o p tic a l  density  patterns o f  these 

gradients  were monitored a t  260 nm by d isp lac ing  them from the bottom 

with  50% sucrose so lu tion  and passing them through a 5 mm continuous 

flow-through c e l l ,  using a G i l fo rd  spectrophotometer.

Iso la t io n  of ribosomes fo r  ex trac t io n  of rRNA 

Ribosomes from the l iv e rs  o f starved or s tarved-re fed  ra ts  

were iso lated according to Egly e_t a].- (1972). L ivers were rinsed in 

0.25 M sucrose, b lo tte d ,  weighed and homogenized in 2 volumes o f pH

8 .0  b u ffe r  (TEA 20 mM; KCl 50 mM; MgAc 4 mM; sucrose 0 .25  M ). The 

homogenates were centr ifuged  a t  20,000 x g fo r  15 minutes. The post- 

mitochondrial supernatant layers were d i lu te d  2.5 times w ith  TEA bu ffer  

and centrifuged a t  78,000 x g in a No. 30 ro tor fo r 143 minutes. The 

p e l le t  from 25 gm l iv e r  t issue was suspended in 12 ml o f  TEA b u ffe r  and 

d i lu te d  to 36 ml w ith  the same b u f fe r .  Deoxycholate was added to a 

f in a l  concentration o f 1%. Four and o n e -h a lf  ml o f  the DOC trea ted  

homogenate were layered on top o f a discontinuous g ra d ien t ,  comprised 

of 2 ml each of 1.7 and 1.3 M sucrose and centrifuged a t  105,000 x g
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fo r 17 hours a t  2°C in a No. 40 Ti ro to r .

The ribosomes were found as a p e l le t  a t  the bottom o f  the tube, 

w h ile  the interphase between 1.3 and 1.7 M sucrose contained p a r t ic le s  

re fe rred  to  as informosomes by Egly e t  aj_. (1972 ).  Ribonucleic acids  

from the ribosomal p e l le ts  were e x trac ted , p u r i f ie d  and fra c t io n a te d  as 

previously described fo r  to ta l  RNA.

Is o la t io n  of ribosomes fo r  ribonuclease estimations  

Ribosomes were iso la ted  according to  the method o f  Tashiro  and 

S iek e v itz  (19&5)- The l ive rs  were homogenized in 2 .5 volumes o f cold  

so lu tion  A (see Appendix) w ith  e ight up and down strokes of a P o tte r -  

Elvehjem homogenizer. The homogenate was c en tr ifu g ed  a t  10,000 x g fo r  

15 minutes. The postmltochondrlal supernatant was centrifuged a t

105,000 X g fo r  2 hours. The microsomal p e l le t  from 10 grams l i v e r  

tissue was suspended by homogenization in 10 ml of so lu tion  B (see 

Appendix) and DOC was added to a f in a l  concentration o f 0 .5  %. The sus­

pension was centr ifuged  a t  105,000 x g fo r  90 minutes. The ribosomal 

p e l le t  was rinsed twice w ith  so lu tion  C (see Appendix), suspended by 

homogenization in 10 ml of so lu tion  C and cen tr ifuged  a t  13,500 x g 

fo 10 minutes. Magnesium ch lo r id e  was added to  the supernatant layer  

to a f in a l  concentration o f 0.05 M. F ive minutes la te r  i t  was centr ifuged

at 6 ,000 X g fo r  10 minutes. The p e l le t  contained p u r i f ie d  ribosomes

which were suspended In 10 ml of so lu tion  C and stored a t  4°C overn ight.

Iso la t io n  of microsomal RNA

Microsomes iso lated as described above were used in some of
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E xtrac tio n  o f Microsomal RNA by the use of Pronase 

A 2 mg/mi s o lu t io n  o f  Pronase In s o lu t io n  B was Incubated a t  

37°C fo r  3 hours to  remove any ribonuclease contamination. This so lu ­

t io n  was f i l t e r e d  and kept frozen u n t i l  used. The microsomal p e l le ts  

from one ra t  l i v e r  were suspended In 10 ml o f  sodium-acetate (pH 5 .2 )  

b u f fe r .  F ive -ten th s  ml o f  10 % SOS ( f in a l  concentration o f SOS, 0.5%) 

and 0 .5  ml of the Pronase (2 mg/ml) so lu tio n  ( f in a l  concentration o f  

Pronase 100 ^g/m l) were then added to the microsomal suspension and 

the mixture was ge n tly  s t i r r e d  fo r  30 minutes a t  room temperature. 

Ribonucleic acids were then extracted  In two cold (0°C) e x t ra c ts ,  

using s eq u e n tia l ly  10 ml and 5 ml of cold w ater-sa tu ra ted  phenol. The 

rest o f the procedure was e s s e n t ia l ly  the same as described fo r  to ta l  

RNA, except that hot e x tra c t io n  was not used.

Assay fo r  Ribonuclease 

The method of Gavard and Lamlrande (1972) was used w ith  some 

m o d if ica t io n s . The incubation system consisted o f  200 mmoles o f T r l s -  

HCl b u f fe r ,  pH 8 .0  ; 100 y,moles o f e thy len ed lam ln e -te tra ace ta te  (EDTA), 

pH 7.0 ; 1 mg of RNA and 0 .5  ml sample of ribosomes In a to ta l  volume 

of 5 ml (see Appendix fo r  d e t a i l s ) .  The tubes were Incubated a t  37°C 

fo r  1 hour. One ml a l Iq u o ts  were removed and the reaction was stopped 

by adding 2 .0  ml o f  cold 5 % HCIO^. A f t e r  c e n tr ifu g a t io n  a t  10,000 x g 

fo r  10 minutes the o p t ic a l  density  a t 260 nm was monitored In order to

determine a c ld -s o lu b le  nucleotides . In another series of experiments,

32 P -lab e lled  rRNA, Iso la ted  from the l iv e rs  o f starved and normal ra ts
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was used as substrate  for ribosomes iso la ted  from starved and control 

ra ts . In these experiments ra d io a c t iv i ty  released into the a c ld -s o lu -  

b le  f ra c t io n  was used as an Index of ribosomal ribonuclease a c t i v i t y .

Determination of Buoyant Density of Ribosomes 

Ribosomes Iso la ted  by the method o f  Tashiro and S iekev itz  

( 1965) were f ix ed  In formaldehyde (2 % f in a l  concentration) fo r  2 

hours In an ice bath. Four to f iv e  ODg^g u n its  of the fixed ribosomes 

were layered on top of a l in ea r  cesium c h lo r id e  gradient (density  

range 1.25 to 1 .65) and centrifuged a t  199.000 x g fo r  16 hours a t  

10°C, using an SW 56 T 1 ro to r .  Optical density  was monitored a t  260 

nm by d isp lac in g  the gradient from the bottom w ith  57 % cesium ch lo ­

r id e  and passing I t  through a 5 nm continuous flow-through c e l l  using

a G ilfo rd  spectrophotometer. A liquots  of 2 drops were co llec ted  and 

the d ens it ies  were determined by weighing 100^1 frac tions  out o f  eve­

ry f i f t h  a l Iq u o t .

Q u a n t i ta t iv e  Estimation o f Ribosomal RNA and Protein

The amount of ribonuclease was expressed on the basis of mg o f

rRNA and mg o f ribosomal p ro te in .  For th is  purpose rRNA was estimated  

by using the orc ln o l reaction o f  Mejbaum (1939) w ith  yeast RNA as a 

standard. Prote in  was q uantita ted  by the method o f  Lowry e t (1951) 

using c r y s t a l l in e  bovine serum albumin as a standard.

Studies involving the ra te  and amount o f RNA 

synthesized a f t e r  refeeding  

In order to estimate the ra te  o f  RNA synthesis during the
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32time of rereading, P as phosphoric a d d  in H C l-free  water was in je c ­

ted in t r a p e r i to n ia l ly  22 hours or Intravenously 75 minutes p r io r  to 

s a c r i f ic e .  Food was o ffered  fo r  4 or 8 hours before k i l l i n g .  To f in d  

the s p e c if ic  a c t i v i t y  of the RNA, 4 u n its  of RNA solution  were

placed on a f i l t e r  paper s t r ip ,  washed seq u en tia l ly  w ith cold 10 %

TCA, cold 5 % TCA, cold ethanol plus ether (50:50) and cold dher. The 

ether was allowed to evaporate and the s tr ip s  were put in to  10 ml volu­

mes of toluene s c i n t i l l a t i o n  f lu id  (composition given in Appendix) and 

counted. In experiments with ribonuclease, 0 .5  ml a liq u o ts  were taken 

d i r e c t ly  fo r  counting using 10 ml volumes o f Bray's counting m ixture.

in experiments where the s p e c if ic  a c t iv i t i e s  of ind iv idua l RNA 

species were determined, 0 ,6  ml a liq u o ts  from the gradients were c o l ­

lected in to  separate tubes and 2 mg o f  bovine serum albumin were added 

as a c a r r ie r .  The RNA-albumin mixture was p re c ip ita te d  w ith  cold 10 % 

TCA, followed by washing w ith  cold 5 % TCA. The p e l le ts  were dissolved  

in 0 .5  ml o f  ammonium hydroxide and counted in 10 ml volumes o f Bray's  

counting m ixture. (Composition o f th is  counting mixture given in Appen­

d ix ) .

S ta t is t ic a l  Analysis of the Data 

Comparison among d i f fe r e n t  groups was made by using Student's  

t te s t .  D i f fe re n t  values of P (0.001 to 0 .05 ) were used to te s t  the  

s ig n if icance  of the d if fe re n ce  among d i f fe r e n t  groups. The actual 

values of P used to test the s ig n if ican ce  of d iffe rences  are given in 

the footnotes of the tables Values of P h igher than 0 .05 were 

considered to represent n o n -s ig n if ican t (NS) d iffe ren ces .
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RESULTS

Period of S ta rva tion  and RNA P ro f i les  

The f i r s t  experiment was designed to see i f  s ta rva t io n  caused 

any change in the RNA p r o f i le s .  Rats were starved for 5 or 7 days and 

the l iv e r  RNA was extrac ted . About 65 7 o f  the to ta l  RNA was extracted  

at 0°C and the residual RNA was ex trac ted  by heating (63°C). No d i f f e ­

rences were found between the o p t ic a l  density  p ro f i le s  o f  the RNA ex­

tracted  a t  QPc from continuously-fed , 5-day starved or 7-day starved  

ra ts .  Ribonucleic acid p ro f i le s  from continuously-fed and 7-day s ta r ­

ved ra ts  are  shown in Figures la and lb ,  respec tive ly .  Figure 2 shows 

the p ro f i le s  of the RNA extracted  by heating from the l iv e rs  o f  5 and 

7-day starved ra ts .  No d iffe ren ces  were found in the p r o f i le s  o f  the 

RNA extrac ted  w ith  heat a f t e r  5 days o f s ta rva tion  when compared 

w ith  continuously-fed ra ts .  A f te r  7 days of s ta rv a t io n ,  there was a mar­

ked reduction in the amount o f  RNA sedimenting a t  l8s and 28S with a 

concomtant r e la t iv e  increase in the amount o f RNA sedimenting below 

18S. Thus, th is  experiment showed that the RNA extracted  by heating  

from the l iv e r s  o f  7-day starved ra ts  was degraded. No degradation  

of the RNA extrac ted  by heating from the l iv e rs  o f  5-day starved rats  

or the RNA extrac ted  a t 0^0 from the l iv e rs  of both 5 and 7-day s ta r ­

ved ra ts  was noticed.
22



1.2

W -

E
C 08|

CJ 0L6 —

d

04

0 2

kS 18s 28s

V y  y f

(a)

kS 18s 28s

V V V

(b)

4S 18S 28s 4s 18S 28s

Figure 1. O p tica l density  p r o f i le s  o f  to t a l  ra t  l i v e r  RNA ex trac ted  a t  0°C.

(a) Represents 6 continuously chow d ie t  fed ra ts .

(b) Represents 9 seven-day starved ra ts .

(c) Represents 11 seven-day starved 4 hours HS d ie t  refed ra ts .

(d) Represents 8 seven-day starved 4 hour HF d ie t  refed ra ts .
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Figure 2. O ptical density  p r o f i le s  of to ta l  r a t  l i v e r  

RNA extracted  by heating to  63°C.

(a) Represents 3 f ive -d ay  starved ra ts .

(b) Represents 9 seven-day starved ra ts .
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Recovery of RNA p ro f i le s  a f t e r  refeeding the 7~àay s tarved rats  

The next series of experiments were planned to f in d  the period  

of time required to  restore  the RNA p ro f i le s  to normal a f t e r  refeeding.

In our e a r l i e r  studies with polysoma 1 p ro f i le s  we compared the HF versus 

HS d ie ts ,  hence both these d ie ts  were again compared in regard to th e ir  

a b i l i t y  to resto re  the RNA p r o f i l e s .  Seven-day starved ra ts  were refed 

e ith e r  HF or HS d ie t  fo r 4 or 8 hours. The e f fe c ts  o f refeeding these 

d ie ts  on RNA p r o f i le s  are shown in Figures 1 and 3- F igure 1 shows the 

p ro f i le s  o f the RNA extrac ted  a t  0°C from 4 hour HS or HF d ie t  refed  

rats in comparison to the RNA p ro f i le s  o f control and 7~day starved rats. 

Perusal o f  Figure 1 reveals no d iffe ren ces  among the p r o f i le s  of RNA 

extracted  at 0°C from the c o n tro l ,  7-day starved and s ta rved -re fed  ra ts .  

Four hour refeeding of the HS d ie t  restored the p ro f i le s  o f the RNA ex­

tracted  by heating to normal (F igure  3b). Figure 3c shows that 4 hour 

refeeding o f HF d ie t  to the 7“day starved rats caused a marked increase  

in the amounts o f  RNA sedimenting a t  18S and 28S, and a decrease in the 

amount of RNA sedimenting below 18S, as compared to the p r o f i le s  o f heat 

extracted  RNA from the l iv e rs  o f  7-day starved ra ts  (F igure  2b). These 

p ro f i le s  (Figure 3b) were, however, not e n t i r e ly  normal. Eight hour 

refeeding of the HF d ie t  to the 7-day starved ra ts  was required to re ­

store the RNA p r o f i le s  e n t i r e ly  to  normal (Figure 3d).

S ta rva tio n  and Ribosomal RNA 

In the e a r l i e r  experiment when RNA from the l iv e r s  of 7-day 

starved ra ts  was extracted  by heating a marked degradation of the RNA 

sedimenting a t  l8S and 28S along w ith  an increase in the amount of RNA
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Figure 3. O ptical density  p r o f i le s  o f to t a l  ra t  l i v e r  RNA extrac ted  by 
heating  to  63°C.

(a ) Represents 6 continuously chow d ie t  fed ra ts .

(b) Represents I I  seven-day starved 4 hour HS d ie t  refed ra ts .

(c) Represents 8 seven-day starved 4 hour HF d ie t  refed ra ts .

(d) Represents 5 seven-day starved 8 hour HF d ie t  refed ra ts .
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sedimenting below l8s was noticed. This suggested that the ribosomal 

RNA from 7-day starved animals was degraded on e x tra c t in g  with heat. 

Therefore, in the next series o f experiments, RNA was extrac ted  from 

isolated ribosomal f ra c t io n s .  Ribosomes from starved and refed a n i­

mals were iso la ted  by a procedure involving DOC, and rRNA was e x trac ­

ted at 0 and 63°C. The p ro f i le s  o f the 0°C extracted rRNA frow the 

ribosomes o f starved and 4 hour, HS d ie t ,  refed rats  a re  shown in 

Figure 4. In contrast to the e a r l i e r  experiments w ith  to ta l  RNA, 

there were marked d iffe rences  in the p ro f i le s  of rRNA extracted  a t  

0°C from the ribosomes of starved (Figure 4a) and refed animals ( f i ­

gure 4b). The l8s and 28s peaks of the 7-day starved ra ts  were mar­

kedly lower than that of the 4 hour. HS d ie t ,  refed ra ts .  The p r o f i ­

les of the heat-ex trac ted  rRNA from the ribosomes of starved and 4 

hour HS d ie t  refed rats are shown in Figure 5. There were no d i f f e ­

rences in the rRNA p ro f i le s  of starved and refed ra ts .  The rRNA p r o f i ­

les from both starved and refed ra ts  were markedly degraded. No 18S and 

28s peaks ex is ted  and a l l  o f  the rRNA was found to sediment below l8s . 

These resu lts  showed that rRNA from refed rats was a ls o  degraded, 

although to a lesser ex ten t, than the rRNA from starved ra ts .  The de­

gradation of rRNA extracted a t 0°C was probably due to prolonged DOC 

treatment and w i l l  be discussed la t e r .

In the f i r s t  experiment, the RNA extracted from the l iv e rs  o f  

7-day starved ra ts  at CP C was not degraded w h ile  the RNA extracted by 

heating was degraded. In th is  experiment using DOC, there  was degra­

dation o f the rRNA extracted both a t  0°C and 63°C, from the l iv e rs  of  

both starved and s tarved-refed  ra ts .  These resu lts  suggested : (1)

The extent o f  degradation of RNA was dependent upon how d ra s t ic  the
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Figure 4 . Optical density  p r o f i le s  o f  the rRNA 
extracted  a t  0°C from the DOC-treated ribosomes o f  ra t  1Iv e r .

(a) Represents 6 seven-day starved ra ts .

(b) Represents 8 seven-day starved 4 hour sucrose 
d ie t  refed ra ts .
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Figure 5 . O ptical density  p ro f i le s  o f  the rRNA 

extracted  by heating  to  63°C from the DOC-treated ribosomes 
of ra t  1iv e r .

(a) Represents 6 seven-day starved r a ts .

(b) Represents 8 seven-day s ta rved , 4 hour HS d ie t  
re fed  r a ts .
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e x tra c t io n  conditions were, and (2) the RNA from the l iv e rs  of starved  

rats was more susceptib le to degradation as compared to the RNA from 

the l iv e rs  o f continuously fed or s ta rved -re fed  ra ts .

S tarvation  and Ribosomal Ribonuclease 

Arora and Lamirande (1971) reported re su lts  co n trad ic t ing  those 

of Sox and Hoagland (1966) claiming that the increased autodegradation  

of ribosomes from starved animals was due to an increased level o f  r ib o ­

somal ribonuclease during s ta rv a t io n .  In an attempt to resolve th is  

controversy and to see i f  the degradation of RNA from the l iv e rs  o f  

starved animals could be a t t r ib u te d  to an increased a c t iv i t y  or amount 

of ribosomal ribonuclease, the next series o f  experiments were planned 

to examine the a c t iv i t y  o f  ribosomal ribonuclease in the l iv e r  r ib o ­

somes of starved and normal animals. Table I shows the re su lts  when 

yeast RNA was used as a substrate fo r  the ribosomal ribonuclease.  

Ribosomes from the l iv e rs  of starved animals were found to be a t  least  

two fo ld  more susceptible to autodegradation ( i . e .  when incubated w ith ­

out yeast RNA) than ribosomes from the l iv e rs  o f  normal animals. When 

incubated w ith  yeast RNA as a substra te , the ribosomes from the l iv e rs  

of starved animals again showed the release of s ig n i f ic a n t ly  higher 

amounts o f a c id -so lu b le  nucleotides as compared to  the ribosomes from 

the l iv e rs  o f  normal animals. These values represented the sum o f  auto­

degradation and endogenous ribonuclease a c t i v i t y .  However, i f  the auto- 

degradation values were deducted from the t o t a l ,  the level of endogenous 

ribonuclease was found to be the same in the ribosomes from the l iv e rs  

of both normal and starved animals.
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Normal 1.57 -0 .11 0 .3 4 -0 .0 6 ,32-0 .1  I 3 .6 7 -0 .2 4 0 .7 3 -0 .1 0 2 .9 2 -0 .2 2

7 day 
starved 1 .9 7 -0 .0 9 0 .7 5 -0 .0 8 1.31-0 .08 4 .7 9 -0 .2 2 1.82- 0.21 2 .9 4 -0 .1  I

Each o f  the values represents the mean-standard e r r o r  o f  the mean o f OD^^j. u n its  o f  ac id  
so lub le  nucleotides  released from yeast RNA, during 1 hour o f  incubation w ith  riBosomes. Figures  
w ith in  each column are  compared. For columns c and f  the d i f fe re n c e  is n o n -s ig n i f ic a n t ,  fo r  column 
a 0.01 <  P <  0 .0 2 ,  fo r  columns b and d 0.001 <  P <  0 .005  and fo r  column e P <  0 .0 0 1 .
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Since yeast RNA is not the natural substrate for ribosomal

ribonuclease. these resu lts  could not be taken as conclusive evidence

to ru le  out the increased ribonuclease level during s ta rva t io n . There-

32fo re ,  in the next series of experiments P -lab e lled  rRNA iso la ted  from 

the l iv e rs  o f starved and normal rats  was used as a substrate fo r  the  

ribosomes from the l iv e rs  of starved and normal ra ts . The ra d io a c t i ­

v i ty  released into the acid -so lub le  fra c t io n  was taken as an index o f

ribonuclease a c t iv i t y .  The resu lts  shown in Tables 2 and 3 revealed no

32s ig n if ic a n t  d ifferences in the CPM of P released into the ac id -so ­

lub le  fra c t io n  by the ribosomes from the l i t e r s  of starved and normal 

ra ts .  These results  support the e a r l i e r  f ind ings , when yeast RNA was 

used as a substrate fo r  ribosomal ribonuclease. The ribosomal r ib o ­

nuclease a c t iv i t y  per mg of rRNA or ribosomal protein was not increased 

during s ta rva t io n , even though the ribosomes from the l iv e rs  o f  starved  

animals were at least tw o-fo ld  more susceptib le  to autodegradation as 

compared to ribosomes from the l iv e rs  o f normal ra ts .

Feeding Regimens and L iver RNA Concentrations 

The recovery o f  RNA p ro f i le s  a f t e r  refeeding starved animals 

could be due to ^  novo RNA synthesis or the synthesis or re p a ir  

of some other c e l lu la r  constituents , such as s tructura l ribosomal 

prote ins  or endoplasmic r e t ic u la r  membranes e tc ,  which shield  the RNA 

from the d ra s t ic  ex trac tion  conditions and thus reduce the amount o f  

degradation. To determine whether the recovery was due to de novo RNA 

synthesis , the l i v e r  RNA concentrations under these feeding regimens 

were investigated and are  presented in Table 4. The d if fe re n ce  between



TABLE 2

RIBOSOMAL RIBONUCLEASE ACTIVITY AS MEASURED BY THE CPM OF 
RELEASED FROM NORMAL RAT LIVER RIBOSOMAL RNA

3 2 ,

Ribosomes
Number

o f
Animals

Per ug o f  
r i bosoma1 RNA

Per Mg o f  ribosomai 
p ro te in

Normal 5 A 6.8 8 -2 .3 9 113. 22- 6.01

7 day 
starved 5 ^6 . 39- 3.17 113. 39- 4 .05

VJVa>

Each o f  the values represents the mean -  the standard  
e r ro r  o f  the mean o f  the CPM o f  32p released from normal ra t  
l i v e r  rRNA, during 1 hour o f  incubation w ith  ribosomes.
Figures w ith in  each column are  compared and are  not s i g n i f i ­
c a n t ly  d i f f e r e n t .



TABLE 3

RIBOSOMAL RIBONUCLEASE ACTIVITY AS MEASURED BY THE CPM OF 
RELEASED FROM STARVED RAT LIVER RIBOSOMAL RNA

3 2 ,

Ribosomes
Number

o f
Animals

Per yg o f  
ribosomal RNA

Per yg o f  ribosomal 
p ro te in

Normal 5 5 1 .1 -3 .9 5 123. 35- 9 .93

7 day 
starved 5 5 A .13-2.71 I4 4 .6 0 k l0 .2 5

Each o f  the values represents the mean -  the standard  
e r ro r  o f  the mean o f  the CPM o f 32p released from 7 day 
starved r a t  l i v e r  rRNA during 1 hour o f  incubation w ith  r ib o ­
somes. Figures w ith in  each column are  compared and are  not 
s ig n i f ic a n t ly  d i f f e r e n t .



TABLE 4

MICROSOMAL RNA CONCENTRATIONS OF RAT LIVER 
FOLLOWING VARIOUS DIETARY MANIPULATIONS

Group
'lumber

of
Animals

I n i t i a l
body

weight

gm

Body weight 
a f t e r  

s ta rv a t io n

gm

Body weight 
a t

s a c r i f i ce 

gm

Liver
weight

gm

mg RNA 
per l i v e r

a

mg RNA 
per gm 

l i v e r

b

mg RNA 
per 100 gm 

f in a l  
body weight 

c

Normal 6 364+3 - - 11.0+0.5 23 .3311.04 2 .14+0.09 6 . 43+0 .30

5 day 
Starved 4 360±3 279±4 - 6 .6 + 0 .2 13.6010.12 2 . 0610.02 4 .9010 .08

7 day 
starved 4 361 ±5 263±i ■- 5 .8 + 0 .3 l l . 3 7 i l . 2 6 1 .95+0 .13 4 .31+0.46

8 day 
starved 3 373±2 24516 - 4 .1 + 0 .7 9 .7 5 12 .1 2 2 . 36+0.11 3 . 9710.78

4 hour 
HS d ie t  
refed

5 369+3 269 ±3 278±3 6 .8 ± 0 .5 13.3711.52 1 . 98+0.16 4 .5010.59

4 hour 
HF d ie t  
re fed

5 363 ±4 266 ±6 272+9 7 .2 1 0 .2 12.56+1.02 1 .64+0.09 4 .2010 .18

8 hour 
HF d ie t  
refed

5 365 ±4 267+4 280+4 6 .7 1 0 .3 13. 20+0 .36 1 . 92+0 .08 4 . 54+0 .1 5



TABLE 4 

continued

Refed groups were a l l  7“day starved p r io r  to re feeding .  
Figures in the ta b le  represent the mean *  the standard e r ro r  of 
the mean. Figures w ith in  each column are  compared under columns 
a and c, the normal group Is s ig n i f ic a n t ly  d i f f e r e n t  from a l l  
o ther groups a t  P <0 .001 , A l l  groups under column b are  not 
s ig n i f ic a n t ly  d i f f e r e n t .
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the RNA content among 5, 7 and 8 day starved ra ts  were n o n -s ig n if ican t  

when tested w ith  Student's t te s t .  However, when these d iffe rences  we­

re tested w ith  the least squares method, the best f i t  l in e  had a slope 

of -  5 .2 ,  which was s ig n if ic a n t  a t  P<0,05. This analyses showed that 

between the 5th and 8th day o f  s ta rva tion  the d a i ly  loss in l i v e r  RNA 

content was s t i l l  s ig n if ic a n t .

The amount o f RNA per to ta l  l i v e r  or per 100 gm f in a l  body 

weight was not s ig n i f ic a n t ly  d i f fe r e n t  among the 7-day starved or  

starved-refed  groups ; however, a l l  groups were s ig n i f ic a n t ly  lower 

than the normal. When the RNA concentrations were expressed per gm 

l i v e r ,  the d iffe ren ces  in the RNA concentrations among a l l  groups 

were n o n -s ig n if ic a n t .  Seven day s ta rva tion  decreased the l i v e r  RNA con­

tent to about 50 o f normal. The RNA content was about 60 % o f normal 

a f t e r  5 days o f  s ta rva tio n  or k hours a f te r  refeeding the 7-day s ta r ­

ved ra ts .  These resu lts  did not show any c o r re la t io n  between the chan­

ged RNA p ro f i le s  and RNA content, suggesting that the recovery o f  RNA 

p ro f i le s  did not involve the de novo synthesis of rRNA but th a t i t  may 

involve the de novo synthesis o f  mRNA or the synthesis or rep a ir  of 

the other fac to rs  l is te d  e a r l i e r .

32
Use of P to determine the amount and type o f  RNA 

Synthesized during d i f fe r e n t  d ie ta ry  regimens

The amount of RNA newly synthesized during refeeding was in-  

32vestigated by in je c t in g  P In to  ra ts ,  22 hours before  s a c r i f ic e .  Ta­

ble 5 shows that the s p ec if ic  a c t iv i t y  of l i v e r  microsomal RNA was 

s ig n if ic a n t ly  lower for the 7-day starved group than the normal or re­

fed groups. The s p ec if ic  a c t iv i t y  o f  the normal group was about three  

times higher than the starved group w hile  those of the refed groups



38

TABLE 5

SPECIFIC ACTIVITY OF MICROSOMAL RNA, 22 HOURS AFTER 
INTRAPERITONIAL INJECTION OF 32p 0 .5  mCi/100 gm BODY WEIGHT

Group
Number

of
Animals

RNA extracted  a t  0°C 
CPM per mg X 10“

RNA extracted  by 
heating to 63°C , 
CPM per mg x 10“

Normal 4 12.60^0.99 14.21-1.41

7 day starved 3 4 . 66- 0.08 4 .2 0 -0 .0 4

7 day starved  
4 hour 

HS d ie t  refed
4 25.48^1.40 29 . 35- 2.75

7 day starved  
4 hour 

HF d ie t  refed
4 29 .97 -1 .78 3 3 .6 1 - 3 .58

The f ig u res  in the tab le  represent the mean -  the standard 
e rro r  o f the mean. Figures w ith in  each column are compared. Under 
both the columns the starved group is s ig n i f ic a n t ly  d i f f e r e n t  than 
a l l  o ther groups a t  P <0.001. The d if fe re n c e  between 4 hour HS or 
HF d ie t  refed groups is non-significant under both the columns.
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were 6 times h igher than the starved. The d if fe re n ce s  between the speci­

f i c  a c t i v i t i e s  o f  the groups fed e i t h e r  HS or HF d ie t  being n o n -s ig n i f i -

32cant. During the same period (22 hours) the incorporation o f  P into  

microsomal RNA per to ta l  l i v e r  was about f i v e  times g re a te r  in the nor­

mal group than in the starved group. Four-hour refeeding o f  the 7-day

32starved rats caused about s ix fo ld  increase in the to ta l  amount o f P

incorporated in to  l i v e r  microsomal RNA. The d iffe ren ces  between the

groups fed e i t h e r  HS or HF d ie t  were again n o n -s ig n if ic a n t  (Table 6 ) .

The RNA concentrations o f  the starved and s ta rved -re fed  groups

were not s ig n i f ic a n t ly  d i f f e r e n t  (Table 4 ) ,  but the s p e c if ic  a c t iv i t y

32and to ta l  incorporation  o f  P fo r  the réfed groups were about 6 times 

higher tham those o f  the starved group. These resu lts  suggested that  

changed RNA p r o f i le s  did not involve the RNA species w ith  a slow turn­

over ra te  but may have involved some ra p id ly  tu rn ing -over RNA species. 

This required the short-term  la b e l l in g  o f  RNA and in v es t ig a t io n  o f  the 

d is tr ib u t io n  o f  r a d io a c t iv i t y  under ind iv idua l species o f  RNA. A v a l id  

comparison o f  the d is t r ib u t io n  o f  r a d io a c t iv i ty  under ind iv idual species 

of RNA among d i f f e r e n t  groups could not be made u n t i l  the o p tica l  densi­

ty p ro f i le s  from a l l  the groups were s im i la r  ( I . e .  there was no degra­

dation o f l8s and 28s peaks). An e x tra c t io n  procedure which would a llow  

the complete e x t ra c t io n  o f  RNA w ithout d ra s t ic  e x tra c t io n  conditions  

such as heat and DOC was required. This was achieved by the use o f  an 

extrac tio n  procedure involv ing pre-treatm ent o f  the microsomal f ra c t io n  

with Pronase. In th is  procedure a i l  o f  the RNA was extrac ted  a t  0°C 

(without heat and DOC). The o p t ic a l  density  and r a d io a c t iv i ty  p ro f i le s  

of microsomal RNA extrac ted  from the l iv e rs  o f  d i f f e r e n t  groups, 75 mi-
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TABLE 6

32,INCORPORATION OF INTO MICROSOMAL RNA PER WHOLE LIVER, 
22 HOURS AFTER INTRAPERITONIAL INJECTION OF 

0 .5  mCi 32p/ioo qm BODY WEIGHT

Group
Number 

of 
Anima 1s

RNA extracted  a t  0°C 
CPM X 10’ 5

RNA extrac ted  by 
heating to  63°  

CPM X 10-5

Norma 1 4 17.59-2 .69 8 . 72- 0 .9 8

7 day starved 3 3 .84 -0 .0 2 1. 85- 0 .03

7 day starved  
4 hour 

HS d ie t  refed
4 24 .7 3 -1 .0 9 10. 03- 0 .47

7 day starved  
4 hour 

HF d ie t  refed
4 23. 54- 2.39 7 . 57- 0.81

The fig u res  represent the mean -  the standard e r ro r  o f  the  
mean. Figures w ith in  each column are  compared. Under both the  
columns the starved group is s ig n i f ic a n t ly  d i f f e r e n t  from a l l  o ther  
groups a t P <0.001. The d if fe re n c e  between the 4 hour HF or HS d ie t  
refed groups is n o n -s ig n if ic a n t  under both the columns.
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3 2nutes a f t e r  intravenous in je c t io n  o f P are shown in Figure 6. The op­

t ic a l  density  p r o f i le s  of microsomal RNA did not show any major d i f f e r e n ­

ces among the d i f f e r e n t  groups. However, there was a small peak between 

the 4S and l8s regions o f the starved and refed animals which was mis­

sing in the normal animals. In a l l  groups o f animals the incorporation  

o f ra d io a c t iv i ty  was the highest in the 4s peak, followed by 4s - l8s,

l8s and 28s. The r e la t iv e  d is t r ib u t io n  o f the r a d io a c t iv i ty  among in -

32dividual RNA species 75 minutes a f t e r  intravenous in je c t io n  o f  P,

0 .3  mCi/100 gm body weight, is presented In Table 7. The s p e c if ic  a c t i ­

v i ty  of a l l  species o f microsomal RNA from the 8 hour, HF d ie t ,  refed  

group was s ig n i f ic a n t ly  h igher than that o f  the corresponding species 

o f the starved group. The d if fe ren ce s  between the starved group and the 

normal were n o n -s ig n if ic a n t .  Table 8 shows th a t during reféeding the  

synthesis o f  a l l  species o f RNA was markedly increased but the h ighest  

increase was in the 4s - l8s and 18S region (normally c a l le d  mRNA reg io n ).

To c a lc u la te  the to ta l  amount o f  the newly synthesized RNA, re s u lts  in

32Table 9 are presented as to ta l  incorporation o f  P per l i v e r  RNA o f  

each kind, and a comparison is made among d i f f e r e n t  groups in Table  10. 

The d iffe ren ces  between the starved and normal group were not s i g n i f i ­

cant, w h ile  the refed group had 2 .3  times more to ta l  incorporation o f  

^^P into to ta l  microsomal RNA as compared to the starved group. The re ­

la t iv e  increase in the amount o f  mRNA a f t e r  refeeding being again  

higher than in the amount o f  rRNA. These resu lts  showed th a t refeeding  

o f the starved rats  increased the synthesis o f  both mRNA and rRNA, but 

the synthesis o f mRNA was turned on to a g reater  extent.
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Figure 6 .  O ptical density  and r a d io a c t iv i t y  p r o f i le s  o f ra t  l i v e r
microsomal RNA ex trac ted  from the microsomes p re tre a te d  w ith  Pronase ; ------
represents the o p t ic a l  d e n s ity ,  - - - - - - - -  represents the r a d io a c t iv i t y .

(a) Represents 7 continuously chow d ie t  fed ra ts .

(b) Represents 9 seven-day starved ra ts .

(c) Represents 6 seven-day starved 8 hour f a t  d ie t  refed r a ts .



TABLE 7

THE RELATIVE DISTRIBUTION OF RADIOACTIVITY AMONG INDIVIDUAL 
SPECIES OF RNA, 75 MINUTES AFTER INTRAVENOUS INJECTION OF 

0 .3  mCi 32p/100 gm BODY WEIGHT

Group
Number

o f
animals

CPM put on 
the 

grad ien t

CPM in in d iv id u a l peak regions

4S region 4S-18S region 18S reg i on 28s region

a b c d e

Normal 3 1372+207
(100%)

696±73
(50.7%)

296±78
(21.6%)

151±29
(11.0%)

201±40 
(14.7%)

7 day starved 4 1691±244 
(100%)

876±136
(51.8%)

334+49
(19.8%)

201±36 
(11.9%)

248±29
(14.7%)

7 day starved
8 hour fa t  
d ie t  refed

3 3725±308
(100%)

1543±43
(41.4%)

931±149 
(25.0%)

648±120
(17.4%)

551±9
(14.8%)

Figures represent the mean ± standard e r r o r  o f  the mean. Figures w ithout parenthesis w ith in  
each column are compared. For a l l  the columns the d i f fe re n c e  between starved and normal groups is 
n o n -s ig n i f ic a n t .  The d if fe re n c e  between starved and refed groups under columns a and e is s ig n i f i a  
cant a t  P <0.005 and under columns b , c , d , a t  P <0 .0 1 . Figures w ith in  parenthesis represent the 
percentage d is t r iu b t io n  o f  r a d io a c t i v i t y ,  assuming 100 percent fo r  column a.



TABLE 8

COMPARISON OF THE AMOUNTS OF INCORPORATED INTO INDIVIDUAL 
SPECIES OF MICROSOMAL RNA 75 MINUTES AFTER INTRAVENOUS 

INJECTION OF 32p ,0 ,3  mCi/100 gm BODY WEIGHT

Group
Tota l

microsomal
RNA

4S region 4S-l8S region 18S region

—1

28s region

Starved/normal 1.23 1.26 1.13 1.33 1.23

8 hour
re fed /s ta rved 2 .20 1.75 2 .79 3.22 2.22

These ra t io s  were c a lc u la te d  from the data given in Table 7-



TABLE 9

INCORPORATION OF INTO INDIVIDUAL SPECIES OF MICROSOMAL 
RNA PER TOTAL LIVER, 75 MINUTES AFTER INTRAVENOUS INJECTION 

OF 0 .3  mCl 32p/100 gm BODY WEIGHT

Group
Number

o f
animals

Total  
microsomal RNA 

CPM X 10"5

4S
CPM X 10"?

4S-I8S  
CPM X  lO"^

18S 
CPM X  10“^

28s
CPM X 10-5

a b c d e

Normal 3 1.48±0.11 0 . 80+0 .02 0 .31±0 .06 0 . 1610.02 0 .2 110 .0 3

7 day starved 4 0 .97+0.18 0 .50±0 .13 0 .18+0.03 0 . 12+0.03 0.1510.03

7 day starved  
8 hour 

HF d ie t  refed
3 2 . 21+0 .1 8 0 .91+0.03 0.55+0.09 0 .38+0.07 0 . 3310.01

vn

Figures represent the mean ± standard e r r o r  o f  the mean. Figures w ith in  each column are  
compared. For a l l  the columns the d i f fe re n c e  between starved and normal groups Is n o n ^ s ig n lf lea n t .  
The d if fe re n c e  between starved and refed groups under columns a ,  c and e Is s ig n i f ic a n t  a t  P < 0 .005 ,  
under column d a t  P <0.01 and under column b a t  P <0 .05 .



TABLE 10 

32COMPARISON OF THE AMOUNTS OF  ̂ P INCORPORATED INTO MICROSOMAL RNA 
PER TOTAL LIVER, 75 MINUTES AFTER INTRAVENOUS INJECTION OF

0 .3  mCi 32p/ioo  gm BODY WEIGHT

Group
Total

Microsomal
RNA

ks 4S-18S 18S 28s

Starved/Normal 0 .6 5 0.62 0 .59 0.72 0.71

Refed/Starved 2 .29 1.82 3 .00 3.31 2 .15

O '

Table 9.
These ra t io s  were derived from the data given in
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Buoyant D ensit ies  o f the Ribosomes 

The buoyant densit ies  o f  ribosomes were determined to see (1) 

i f  the ribosomal preparations were pure ribosomes, (2) i f  there was any 

gross change in the RNA to p ro te in  r a t io  of the ribosomes from starved  

animals. The buoyant d ensit ies  o f  the ribosomes from starved and con-
4 * 9  +  9

t ro l  ra ts  were found to be 1 .518-0 .013  gm/cm and 1 .510-0 .005  gm/cm 

resp ec tive ly . The d iffe rence  in the buoyant d ensit ies  was s t a t i s t i ­

c a l ly  n o n -s ig n if ic a n t .  These re s u lts  showed that the ribosomal prepa­

rations were pure and there was not any gross change in the RNA to  

prote in  r a t io  of ribosomes during s ta rv a t io n .  However, these resu lts  

do not n ecessarily  exclude the changes in the ind iv idua l ribosomal pro­

te ins . Two dimensional d isc-ge l e lectrophoresis  studies need to be 

conducted to  see i f  one or more o f  the s tru c tu ra l ribosomal prote ins  

are missing or e x is t  in a lower concentration during s ta rva t io n .



CHAPTER IV 

DISCUSSION

Starvation  and L iver  RNA Content 

The microsomal RNA content o f  the l i v e r  was reduced to 59,49  

and 42 % o f the normal levels  a f t e r  5, 7 and 8 days of s ta rva t io n  respec­

t i v e l y .  S im i la r  losses in l i v e r  RNA content were reported by K o s te r l i t z  

( 1947) ; Petermann and Hamelton (1958) ; Wilson and Hoagland (1947) who 

found th a t  s ta rva tio n  fo r  5-7 days reduced the RNA content to  50 % o f  

normal. Refeeding HS d ie t  fo r  4 hour or HF d ie t  fo r  8 hour to the 7-day 

starved ra ts  did not cause a s ig n if ic a n t  increase in the l i v e r  RNA con­

te n t .  This is in marked contrast to  Wilson and Hoagland (1966) who re ­

ported a complete recovery o f  the rRNA w ith in  8-12 hours o f refeeding  

the chow d ie t  to the 4-5 day starved animals ; however, th is  is probably 

due to  the d if fe re n ce  in the ribosomal is o la t io n  procedure . In th e i r  

procedure, the RNA recovered as rRNA was less than 55 % o f to ta l  RNA. 

These workers also observed th a t  a f t e r  8-12 hours o f refeeding the non- 

ribosomal RNA was s t i l l  55 % below normal. I t  is probable th a t  they were 

recovering only a part o f  the ribosomes. Garza e t  aj_. (1970) did not 

get any increase in RNA content a f t e r  48 hour refeeding o f  a p rote in  

f re e ,  high-carbohydrate d ie t  to  the 48 hour starved ra ts ,  w h ile  re fe e ­

ding a high p ro te in ,  carbohydra te -free  d ie t  fo r  the same period resto­

red the RNA content to normal. These studies emphasize the fa c t  that

48
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in connection w ith  the recovery of RNA a f t e r  s ta rv a t io n ,  the length o f  

s ta rva tio n  and the type of d ie t  refed should not be Ignored.

S tarvation  and RNA p r o f i le s  

Some o f  the fac to rs  th a t could lead to  increased degradation o f  

RNA during s ta rv a t io n  are b r i e f l y  discussed as fo llow s.

Roie o f  Ribosomal Ribonuclease 

An increase in the ribosomal ribonuclease a c t i v i t y  or amount during  

s ta rva tion  Is the most l ik e ly  cause fo r  the increased degradation o f  rRNA 

during s ta rv a t io n .  This p o s s ib i l i t y  was f i r s t  investigated  by Sox and 

Hoagland ( I 966) who found no d iffe ren ces  in ribonuclease a c t iv i t y  between 

ribosomes from l iv e rs  o f  starved and contro l animals. Because they had 

used a substrate  (p o lyu r Id y1ic ac id ) which was not the natura l substrate  

for ribosomal ribonuclease, th e i r  conclusions were considered doubtful 

by other workers. Arora and Lamirande (1971) reported resu lts  c o n tra d ic ­

t in g  those o f  Sox and Hoagland ( I 966) .  From t h e i r  studies on autodegra­

dation o f the ribosomes from the l iv e rs  o f  starved and control ra ts ,  

they concluded th a t the level of ribosomal ribonuclease increased during  

s ta rva t io n , and that th is  caused Increased autodegradation o f  the r ib o ­

somes from the l iv e rs  of starved animals. When we used the techniques 

of Arora and Lamirande (1 9 7 0  our resu lts  agreed in part w ith  t h e i r ' s .

We found th a t ribosomes from the l iv e rs  o f  starved animals were a t  least  

two times more susceptib le  to  autodegradation when compared to  r iboso­

mes from the l iv e r s  of control animals. However, we do not agree th a t  

the increased autodegradation o f  ribosomes from the l iv e rs  of starved rats  

is due to  increased a c t iv i t y  o f  ribosomal ribonuclease. Three d i f f e r e n t
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substrates (yeast RNA, rRNA from starved and rRNA from normal ra t  l i ­

vers) fo r  the ribosomal ribonuclease were used and no change in the 

level of ribosomal ribonuclease per mg o f ribosomal RNA or ribosomal 

prote in  during s ta rv a t io n  was found. Since the resu lts  obtained by 

the use o f  rRNA from ra t l i v e r  or yeast RNA as a substrate fo r  the 

ribosomal ribonuclease a c t iv i t y  were the same, th is  implies th a t  even 

i f  the yeast RNA Is not the natural substrate  fo r  ribosomal ribonu­

clease i t  can be used as a substrate  fo r  the ribosomal ribonuclease.

Since our resu lts  did not show any change in tHiie a c t i v i t y  o f  

ribosomal ribonuclease during s ta rv a t io n ,  the Increased autodegrada­

t io n  o f the ribosomes from the l iv e rs  o f starved ra ts  may be due to  

the RNA in these ribosomes being more e a s i ly  accessible to the r ib o ­

somal r ibonuclease. The increased access of the ribosomal r ibonuclea­

se to rRNA during s ta rva t io n  may be due to  some changes in the o r ie n ­

ta t io n  or unfo ld ing  o f  RNA i t s e l f  or to the lack of some p ro te c t iv e  

s tru c tu ra l  ribosomal pro te ins . Blobel and Potter (1967) observed that  

f re e  ribosomes were more susceptib le  to enzymic degradation than mem­

brane-bound ribosomes. S ta rva tion  was reported to  damage the endoplas­

mic r e t ic u la r  membranes, thus decreasing the a v a i l a b i l i t y  o f  ribosomal 

binding s ite s  on the membranes and leading to  an increase in the amount 

of fre e  ribosomes (Tomi £ t  aj_. I 9 6 I ) .  H ird  e t  a2_. (1964) reported th a t  

fre e  ribosomal subunits were r ich  in endogenous ribonuclease. Munro 

e_t £j_. (1964) and Munro (1968) reported that during s ta rva t io n  the f r a c ­

tio n a l ra te  o f  RNA degradation c o rre la te d  w ith  the ribosomal subunit po­

p u la t io n , which was most abundant during the most rapid RNA loss during  

s ta rv a t io n .  In view of these reports and our re s u lts ,  we fe e l th a t  the
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increased autodegradation of the ribosomes from the l iv e rs  o f  starved 

rats is not due to increased ribonuclease a c t iv i t y  but may be due to the 

lack o f  b inding s ites  in the endoplasmic r e t ic u la r  membranes and an in ­

crease in the ribosomal subunit population.

The autodegradation of the ribosomes w i l l  a lso depend upon the  

amount o f ribonuclease in h ib i to r .  An in h ib i to r  of a lk a l in e  ribonuclease  

is found in the c e l l  cytoplasm. During s ta rva tio n  (Onishi 1970) and pro­

te in  d e fic ien cy  (Gaetani e t  aj^. 1969) the level o f  the in h ib i to r  for a l ­

k a l in e  ribonuclease was reported to decrease to  a g reater  ex ten t than the  

decrease in the a lk a l in e  ribonuclease, thereby free in g  some o f  the la ten t  

ribonuclease to  a tta c k  RNA. The increased degradation o f  RNA in th is  case 

would be due to the lack of ribonuclease in h ib i to r  ra ther than to an in ­

crease in the level o f  ribonuclease. Since the ribosomal ribonuclease is  

an a lk a l in e  ribonuclease and has properties  s im i la r  to  th a t  o f  the cyto­

plasmic r ibonuclease, i t  is possible th a t the cytoplasmic in h ib i to r  of the 

a lk a l in e  ribonuclease may in h ib i t  the ribosomal ribonuclease. I t  may, the­

re fo re ,  be possib le  that the increased degradation o f the RNA from the  

l iv e rs  o f  the starved animals may be due to a decrease in th e  amount of 

the ribonuclease in h ib i to r .  However, since the assay fo r  the autodegrada­

t io n  was c a rr ie d  out in the absence of cytoplasm, i t  is u n l ik e ly  th a t the  

increased autodegradation o f the ribosomes from the l iv e rs  o f  the starved  

animals was due to the lack o f  cytoplasmic in h ib i to r  o f  ribonuclease.

Since the cytoplasmic ribonuclease in h ib i to r  is found to be associated  

w ith  the cytoplasmic a lk a l in e  ribonuclease, i t  may, th e re fo re ,  be possi­

b le  th a t  such an in h ib i to r  is a lso  found to be associated w ith  the r ib o ­

somal ribonuclease and the decrease In th is  in h ib i to r  during s tarvation
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may be responsible for Increased autodegradation o f ribosomes from the 

l iv e rs  o f starved ra ts .  Our results  have shown that t h e •ribosomal r ib o ­

nuclease can use exogenous substrate and based on these re su lts  we 

found no change in the level o f  ribosomal ribonuclease during s ta rva ­

t io n ,  However, to completely ru le  out the p o s s ib i l i ty  of an increase in 

the ribonuclease level during s ta rv a t io n ,  studies involving the s o lu b l i -  

zed enzyme need to be conducted.

Extraction  conditions and RNA degradation  

The extent of RNA degradation varied depending upon how d ra s t ic  

the e x tra c t io n  conditions were. Heating to 63°C was d ra s t ic  enough to  

cause degradation of the RNA from starved animals, w h ile  e x tra c t io n  un­

der the same conditions did not cause the degradation of RNA from the  

continuously fed or s ta rved -re fed  groups. Heat could cause the degrada­

tion  of RNA in several ways such as unfolding the RNA molecules and 

thus making them more accessib le  to the hydrolyzing agents o r  by brea­

king the phosphodles te r  bonds o f the RNA backbone, e tc .  As mentioned 

e a r l i e r ,  during s ta rva tio n  there is an increase in ribosomal subunit 

population and there are  less binding s ites  in the endoplasmic re t ic u ­

la r  membranes for the ribosomes. I t  is possible th a t ribosomal subunits  

are more susceptib le  than the whole f re e  ribosomes, which in turn  are  

more susceptib le  than membrane-bound ribosomes to heat degradation. The 

ribosomal subunit population Is less In continuously-fed than In the 

starved animals and more o f the ribosomes from continuously-fed animals 

are membrane bound, and a re ,  th e re fo re ,  less susceptib le  to degradation  

with short-t im e  heating (2-3  m inutes). However, prolonged heating (15 

to 20 minutes) does cause the degradation of RNA from the continuously
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fed animals as w e l1.

When DOC was used the RNA extracted a t  0°C was a lso  degraded 

from both starved and refed groups, although the extent o f  degradation  

was more in the starved group than in the refed group. Sugano e t a i .

( 1967) claimed that the increased degradation o f  polysomes on treatment 

with DOC was due to the release o f  ribosomal ribonuclease from microso- 

mes by DOC. We agree w ith  these workers regarding the fa c t  th a t  t r e a t ­

ment of microsomes w ith  DOC causes RNA degradation. However, we don 't  

th ink  th a t  the degradation o f RNA a f t e r  DOC treatment of ribosomes was 

necessarily  due to  the re lease o f  ribonuclease from the microsomes. S in­

ce these workers did not examine the amount o f  la ten t ribonuclease re­

leased a f t e r  DOC treatm ent, t h e i r  resu lts  do not ru le  out the other pos­

s ib le  e f fe c ts  of DOC which could increase the RNA degradation. In our 

studies, we did not f in d  any d if fe re n c e  in the ribonuclease leve l be t­

ween starved and continuously fed groups, although the RNA from the  

starved group was more degraded than the RNA from the refed group a f te r  

DOC treatment o f  the microsomes. We, th e re fo re ,  th ink  th a t  DOC may be 

in te ra c t in g  w ith  ribosomes or w ith  endoplasmic r e t ic u la r  membranes and 

thus exposing the RNA to the ribonuclease. Since the RNA in the  ribosomes 

of the starved animals is comparatively poorly shie lded, the  in te rac tio n  

of DOC may more rap id ly  expose the RNA to the ribonuclease In the s ta r ­

ved group, w h ile  in the refed group the exposure o f RNA to  the  ribonu­

clease may be comparatively slow. This explanation can be supported by 

the fa c t  tha t in te rac tio n  between DOC and endoplasmic r e t ic u la r  membra­

nes is a s to ich iom etric  reaction  (Staehelin  e^ aj_. 1963). Because in the 

starved group there are less of the endoplasmic r e t ic u la r  membranes and
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thus the same concentration of DOC may cause more degradation o f  the  

RNA in the starved than in the refed group. Changes in the conformation 

of ribosomes during s ta rva tio n  a lso  need to be investigated to see i f  

the RNA in the ribosomes from the starved animals is more exposed and 

thus e a s i ly  accessib le  to the ribonuclease as compared to the RNA in 

the ribosomes from the continuously fed animals.

On the basis of the fo llow ing  observations, we th in k  th a t  the  

RNA from the l iv e rs  of the starved animals is more susceptib le  to  de­

gradation than the RNA from the l iv e rs  o f  continuously fed or s ta rved -  

refed animals.

1) The ribosomes from the starved group were a t  leas t two fo ld  

more susceptib le  to  autodegradation as compared to the ribosomes from 

continuously fed group. The increased autodegradation o f the ribosomes 

from the starved group was not due to  increased ribonuclease a c t i v i t y .

2) The ribosomal RNA extrac ted  a t  0°C from the DOC tre a ted  r i ­

bosomes from the l iv e rs  o f starved ra ts  was more degraded than the  rRNA 

extracted from the DOC trea ted  ribosomes of s tarved-re fed  ra ts .

3) The RNA from the l iv e rs  o f  starved animals was degraded 

when extracted  by heating to 63°C, w h i le  th is  treatment did not degrade 

the RNA from the l iv e rs  o f continuously fed or s ta rved -re fed  group.

The Net and R e la t iv e  Amounts of the Individual RNA 
Species Synthesized during these D ietary  Regimens

32Twenty-two hours a f t e r  in je c t io n  of P, the s p e c if ic  a c t i v i t y  

of the l i v e r  microsomal RNA was about 3 times higher in the normal than 

in the 7-day starved ra ts .  These re s u lts  contrad ict those o f  Hirsch and 

H ia t t  ( 1966) ,  who found th a t rats  in jec ted  w ith  ' \ - o r o t i c  acid  48
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hours before s ta r t  o f  s ta rv a t io n  and then starved up to 6 days, had a

higher s p e c if ic  a c t i v i t y  of rRNA over a l l  the 6 days of s ta rv a t io n  than

the fed rats  in jec te d  a t  the same tim e. S im ila r  reports were made by

Hayashi and Kazmierowski (1972) who found a s l ig h t ly  h igher s p e c if ic

a c t iv i t y  fo r  both f r e e  and bound ribosomes from the 48 hour starved ra ts

than those o f the normal up to a period o f  2k hours a f t e r  in je c t io n  o f

' \ - o r o t i c  a c id .  We agree w ith  them th a t  the to ta l  incorporation per 1 i -

32ver RNA 22 hours a f t e r  in je c t io n  o f P was more in the fed than in the  

starved animals. However, we found th a t  the to ta l  incorporation in fed 

animals was about 5 times more than in the s ta rved , whereas they repor­

ted about tw o -fo ld  more incorporation . These d iffe rences  are  probably 

due to the d if fe re n c e s  in the length o f  s ta rv a t io n ,  and can be accounted 

fo r  by the fa c t  th a t  during the f i r s t  two days o f s ta rva t io n  the h a l f -  

l i f e  of rRNA was reduced from 5 days to 2 days. Around the 7th day o f  

s ta rv a t io n ,  the h a l f  l i f e  of rRNA was increased to  7 days (Enwonwu, e^  

a l . 1971). The s p e c i f ic  a c t iv i t y  as w e ll  as the to ta l  incorporation per 

l i v e r  microsomal RNA was about 6 times more in the refed than the s t a r ­

ved ra ts .

32S e v e n ty -f iv e  minutes a f t e r  in je c t io n  o f  P the s p e c if ic  a c t i v i ­

ty of microsomal RNA from starved animals was about the same as In the

normal animals. This along w ith  the e a r l i e r  observations th a t  22 hours

32a f t e r  in je c t io n  o f P the s p e c if ic  a c t i v i t y  o f  microsomal RNA from the  

l iv e rs  o f the fed animals was 3 times more than that o f  starved animals,

suggested the rapid turnover or an increased e n d - la b e l l in g  o f  an RNA

32species in the starved animal. Since the r e la t iv e  incorporation o f P 

into mRNA and rRNA in the starved group was about the same as in the
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continuously fed group (Table 8) we th ink  that the rapid turnover during 

s ta rva tio n  involved both mRNA and rRNA. I f  during s ta rv a t io n ,  a l l  o f  the 

rRNA and mRNA was turned over ra p id ly ,  the s p e c if ic  a c t iv i t y  of the RNA 

from the starved group should have been much higher than th a t o f  the RNA 

from the continuously fed group. As the s p e c if ic  a c t i v i t i e s  o f  the RNA 

from the starved and continuously fed group a f t e r  short-term  la b e l l in g  

of RNA were not s ig n i f ic a n t ly  d i f f e r e n t ,  the rapid turnover involved on­

ly a part o f  rRNA and mRNA. Messenger RNA from free  polysomes was repor­

ted to turnover more rap id ly  than the mRNA from bound polysomes (Tanaka 

et aj_. 1970, Sarma e t al^. 1969, Hayashi and Kamierowski 1972, Wilson 

and Hoagland 1967) and rRNA from both classes o f polysomes was label led 

to about the same extent (Tanaka e t  aj^. 1970). F o rty -e ig h t  hour s ta rva ­

t io n  was reported to enhance the la b e l l in g  o f  both mRNA and rRNA of  

f re e  polysomes (Hayashi and Kazmierowski 1972). in view of these obser­

vations and our re s u lts ,  we th in k  th a t  during s ta rva tio n  both mRNA and 

rRNA o f f re e  polysomes were rap id ly  synthesized and degraded.

Refeeding of the starved animals markedly increased the synthe­

sis of both mRNA and rRNA ; however, the synthesis o f mRNA was increased

32to a g rea te r  extent than that o f  rRNA. The greatest increase in P in­

corporation was in the IBS peak. Since the l i v e r  RNA contents from the 

starved and s ta rved -re fed  groups were not s ig n i f ic a n t ly  d i f f e r e n t ,  i t  

seems th a t  the recovery o f  RNA p r o f i le s  a f t e r  refeeding the starved  

group was not due to the ^  novo synthesis o f  rRNA. Refeeding caused a 

marked increase in the s p e c if ic  a c t i v i t y  o f  both rRNA and mRNA, the  

greatest increase was in the mRNA region. I t  may be th a t  the increased 

synthesis o f  mRNA a f t e r  refeeding leads to the synthesis o f some s tru c ­
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tu ra l ribosomal or endoplasmic r e t ic u la r  membrane p ro te in s , thus increa­

sing the heat s t a b i l i t y  o f  RNA,

The signal f indings o f  th is  In v es tig a tio n  are  th a t  the extent of 

degradation of RNA from the starved animals varies  depending upon the  

period o f  s ta rv a t io n  and the e x trac t io n  cond itions. The increased sus­

c e p t ib i l i t y  of the RNA to degradation during s ta rva tio n  is not due to  an

increased ribonuclease level and can be repaired w ith in  4 -8  hours of

32refeeding. The r e la t iv e  incorporation o f  P in to  mRNA and rRNA during  

sta rva tion  is approximately the same as in continuously fed animals, but 

the to ta l  amount o f  newly synthesized RNA is markedly reduced during  

s ta rv a t io n .  This may be due to lack o f  RNA precursors or energy. Refee­

ding of starved animals increases the syntheses o f both rRNA and mRNA 

but the synthesis o f  mRNA is turned on to a g reater extent than th a t of  

rRNA. Further studies need to be c a rr ie d  out to  see i f  there  is one or 

more of the s tru c tu ra l  ribosomal pro te ins  which is made fa s te r  than others 

during re feeding.



CHAPTER V 

SUMMARY

The current studies were undertaken to understand the events a t  

the RNA level leading to polysomal disaggregation during s ta rva t io n  and 

reaggregation o f polysomes a f t e r  re feeding. Male Albino ra ts  of the 

Hoitzman and Sprague Dawley S tra ins  were used. Rats weighing 350-400 gm 

body weight were starved fo r  7 days and then refed e i th e r  a high carbo­

hydrate or high f a t  d ie t  fo r  4 or 8 hours. The changes in the nature  

and amounts o f rRNA and mRNA during these feeding regimens were studied. 

The possible ro le  o f ribosomal ribonuclease in association w ith  these 

changed RNA p ro f i le s  was in ves tiga ted . The following conclusions were 

made from these studies.

S ta rva tion  up to 5 days did not cause any change in the RNA 

p ro f i le s .  A f t e r  7 days of s ta rva t io n  p ro f i le s  o f the RNA extracted  a t  

0°C were not d i f f e r e n t  from the 0°C extrac ted  RNA o f continuously fed 

ra ts .  However, the ex trac tio n  o f RNA w ith  heat (63°C) from the starved  

animals caused degradation o f the iBS and 28S peaks, which was not found 

in the continuously fed ra ts .  Four hour refeeding of the HS or 8 hour 

refeeding of the HF d ie t  to the 7-day starved rats restored the p ro f i le s  

of the heat extracted  RNA. Using d i f f e r e n t  procedures o f is o la t io n ,  i t  

was found th a t  RNA from the starved animals was more susceptib le  to de­

gradation than RNA from continuously fed or s tarved-re fed  animals. The

5 8
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increased degradation of rRNA during s ta rva t io n  was not due to an in ­

crease in the a c t i v i t y  o f  ribosomal ribonuclease.

Although, the l i v e r  RNA contents of the 7-day starved and 

sta rved-re fed  group were not s ig n i f ic a n t ly  d i f f e r e n t ,  the RNA from the 

l iv e rs  of the refed group had markedly higher s p e c if ic  a c t iv i t y  than 

the RNA from the l iv e rs  of the starved group. Refeeding of the starved  

animals caused a marked increase in the synthesis of both mRNA and rRNA; 

however, the r e la t iv e  increase in the amount o f  mRNA synthesis was 

g reater  than the amount o f rRNA synthesis. These resu lts  suggest that  

the re s to ra t io n  o f RNA p ro f i le s  a f t e r  refeeding the starved animal was 

not due to de novo synthesis of rRNA; i t  may, however, be due to  in ­

creased synthesis o f mRNA. The increased synthesis of mRNA a f t e r  re ­

feeding may have caused the synthesis of some s tru c tu ra l  ribosomal or 

endoplasmic r e t ic u la r  membrane proteins which may have increased the  

heat s t a b i l i t y  o f  RNA.
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APPENDIX

S olution  A g m s /H te r

sucrose 0.25 M 85.500

MgClg 0.005 M 1.017

KCl 0 .05 M 3.728

T r is  base 0.025 M 3.028

pH was adjusted to 7 .6  w ith  0.1 N HCl 

Solution  B

MgClg 0.001 M 0.203

I r i s  base 0 .05  M 6.055

pH was adjusted to 7 .6  w ith  0.1 N HCl 

Solution  C

MgClg 0.001 M 0.203

T r is  base 0.001 M 0.121

pH was adjusted to 7 .6  w ith  0.1 N HCl 

Sodium a ce ta te  b u ffe r  fo r RNA e x trac t io n

Sodium acetate  0.821

pH was adjusted to  5 .2  w ith  0.1 N NaOH 

Toluene counting s c i n t i l l a t o r

Toluene s c i n t i l l a t i o n  grade = 1 l i t e r  

2,5-D iphenyloxazole (PRO) = 6 grams

1 , i f -b is -2 -( i* -m ethy l-5 -pheny loxazo ly l)-benzene  (POPOP) = 76 mgs

6 7
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Bray's Counting f lu id

Xylene 500 ml

P - dioxane 1500 ml

Ethylene glycol monoethyl ether 1500 ml

PPG 35 mg

POPOP 1.750 gm

Naphthaleine 280 gm

Ribonuclease incubation system

The incubation system for the ribonuclease assays consisted of : 

1 ml o f a so lu tion  of T r is  base 2.422 gm/100 ml pH 8 .0 .

1 ml o f  a so lu tion  of EDTA disodium s a lt  3.722 gm/100 ml pH 7 .0 .

0 .2  ml o f  an RNA solution  of 5 mg/ml.

0 .5  ml o f the ribosomal suspension as source o f  RNase.

2.3 ml o f  w ater was added to make the volume up to 5 ml.


