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ABSTRACT

The equations for a non-linear adaptive filter are 
developed and applied to a continuously stirred tank reactor 
that is modelled by a fourth order system of non-linear equa­
tions. An algorithm for estimation of the plant and observa­
tion noise covariance matrices and of the state vector is 
obtained by maximizing a likelihood function. The state 
estimator equations turn out to be identically the extended 
Kalman filter and are coupled to the covariance matrix 
estimator equations.

How the algorithm optimally combines information 
regarding observational data with information about the plant 
model is demonstrated for several systems including the 
controlled chemical reactor. The effects of model error, 
steady state estimation, and response of the covariance 
matrix for the state estimate error are investigated. The 
response of the algorithm is compared to that of the Bayes 
maximum a posteriori estimator which was developed by Sage and 
Husa. The results indicate when use of the algorithm developed 
herein is preferable.
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CHAPTER I

INTRODUCTION

I.l Optimal Estimation
As time has passed, numerous techniques for combining 

knowledge of a model with available observational data have 
been proposed anew, but the basic problem of how to combine 
these two sources of information remains fundamentally the 
same.

In 1809, the German mathematician Karl F. Gauss 
discussed in his classic treatise "Theoria Motus" (7) the 
problem of determining the orbital elements of a celestial 
body from available measurement data. He proposed that the 
problem could be properly undertaken only when an approximate 
knowledge (the model) of the orbit had been already obtained, 
which afterwards was to be corrected so as to satisfy all the 
observations in the most accurate manner possible. The tech­
nique that Gauss suggested for obtaining the approximations 
(or estimates) of the unknown quantities has come to be known 
as the method of least squares.

There have been many contributions to the estimation 
problem since Gauss, but the subsequent major one was that 
of Norbert Wiener.

1
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The pioneering work of Wiener (35) on the problem of 

linear extrapolation, interpolation and smoothing has received 
much attention since the appearance of the original "yellow 
peril," as his theory of time series analysis which was writ­
ten on yellow tablet paper was called by his colleagues as 
they struggled through it. A contemporary major impetus to 
the development of estimation theory was contributed by R. E. 
Kalman (13, 14). Much work has been conducted since then in 
the time domain for the development of solutions to the linear 
prediction, filtering and smoothing problems, the combined 
problem being referred to as the estimation problem. So much 
emphasis has been placed on the analysis of these problems in 
fact that an entire issue, over 300 pages in length, of the 
IEEE Transactions (10) has been dedicated to R. E. Kalman on 
the topic "Linear Quadratic Gaussian Estimation and Control."

The driving force, even from initial work, has been 
the cognizance of a need for optimal estimation techniques by 
a wide diversity of scientific fields. Industries most active­
ly applying optimal estimation techniques to satisfy this need 
historically have been those of communication, aerospace, de­
fense, and information. Currently, applications are being 
proposed and applied in the power (16) and chemical industries 
(23), both of which require complex control schemes with 
consequent estimation techniques.

The need for estimation in the chemical process in­
dustry has several sources. Not all state variables may be
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measured to be used as feedback for process control. Conse­
quently, filtering provides an estimate of inaccessible vari­
ables plus the degree of reliability of the estimate.

Also required for control is a model of the process. 
Should operating conditions change unexpectedly, the model 
parameters may undergo significant changes as well. Any con­
trol scheme depending upon this consequently inaccurate model 
may thus become ineffective. Using an on-line filtering scheme 
overcomes this problem by a periodic updating of time varying 
model parameters. The periodic updating uses a minimum of 
time and hardware due to the sequential nature of filtering as 
opposed to an off-line simultaneous model identification 
scheme.

A final example of filtering as applied to the chemical 
industry is its use for processing noisy plant data. The fil­
ter optimally weights knowledge of plant dynamics and plant 
data to obtain a combined estimate of the actual state. The 
existence of nonstationary noise as well as nonstationary 
plant inputs is no limitation. Both types of random inputs 
may be estimated concomitantly to improve filtering with a 
consequent improvement in control.

Although applications to dynamic processes have been 
emphasized, and will be throughout this work, application of 
filtering to steady state plant operations and observational 
data is equally amenable. Whether on-line or off-line, the 
sequential nature of filtering is advantageous because of its
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efficiency and economy as well as flexibility (4). Conse­
quently, the sequential nature can be exploited for use in 
analyzing large amounts of data using algebraic models such 
as those encountered for describing physical property relations.

1.2 Kalman Filtering 
The linear filtering problem was solves in the time 

domain by Kalman and Bucy (13, 14) using the concept of "state 
variables." The statistical dynamical model of the plant and 
the statistical model of the measurement model comprise the 
system. These models are defined by the discrete, linear, 
vector difference equation

x(k+l) = (|) (k+l,k) x(k) + r (k+l,k) w(k)

where x is an n-vector, the state; w is a p-vector, the dis­
turbance; k = 0, 1 , ... is the discrete time index; (j) is an 
n X  n matrix, the state transition matrix; r is an n x p 
matrix, the disturbance transition matrix; and

z(k+l) = H(k) x(k) + v(k)

where z is an m-vector, the measurement; H is an m x n matrix, 
the measurement matrix; and v is an m-vector, the measurement 
error.

The random noise sequences w(k) and v(k) along with 
x(0) are assumed to be Gaussian with the following properties. 
They are zero mean, Elx(O)] = 0, Elw(k)] = 0, Elv(k)] = 0
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where "E" denotes the expected value (i.e., ensemble average)
operator. They are uncorrelated,

E[w(j) v'^(k)] = 0 
E[w(k) x^(0)] = 0 
E [v(k) xF(0)] = 0.

Finally, the stationary random sequences are "white" noise 
with covariance matrices

Elw(j) w^(k) ] = Q(k) 6 
E[v(j) v'^(k)] = R(k)

where Q(k) is an n x n matrix and R(k) is an m x m matrix.
Ô is the Kronecker delta. Both Q(k) and R(k) are assumed 
to be positive definite.

An estimate of the state x(k), based upon knowledge 
of the measurements Z(j) which denotes the set (z(l), z(2), 
..., z(j)}, is denoted by x(k|j). For the case k > j, 
x(k|j) is the predicted estimate; for k = j, x(k|j) is the 
filtered estimate; and for k < j , x(k|j) is the smoothed 
estimate.

For estimation with minimum mean square error, Kalman 
showed that the optimal estimate is given by

aCkli) = ELx(k) lz(j)J

which denotes the conditional expected value of x(k), given 
the knowledge of z(j). If complete knowledge of the given
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system, including knowledge of <j), F, H, Q and R, is available,
then the Kalman filter algorithm is given by

x(k|k) = x(klk-l) + W(k) z(k|k-l)
x(k|k-l) = *(k,k-l) x(k-l|k-l)
z(k|k-l) = z(k) - H(k) x(k|k-l)
W(k) = P(k|k-1) H^(k) [H(k)P(k|k-D nFfk) + R(k)]"^
P(k|k-1) = *(k,k-l) P(k-l|k-l) (j)̂ (k,k-l) + r(k,k-l)

Q(k-l) r'^(k,k-l)
P(k|k) = [I - W(k) H(k)] P(klk-l)

Initial values are
x(OjO) A E[x(0)] = 0 
P(0|0) = E[x(0) x'̂ (O)]

The optimal weighting matrix for assigning relative 
weights to new observations is W(k). The "innovation sequence" 
(12) is z(k|k-l). The predicted estimate of x(k) is denoted 
by x(k|k-l) with its associated covariance matrix of predic­
tion error, P(k|k-1). P(k|k-1) is referred to as the a priori
covariance matrix and is a measure of the reliability of the 
prediction based on one less measurement than the filtered 
estimate. The covariance matrix of the error in the filtered 
estimate is P(k|k) and is referred to as the a posteriori co- 
variance matrix. A block diagram for information flow during 
processing is shown in Figure 1.1.

The resulting Kalman filter is a recursive algorithm.
It processes the measurements as they become available in real
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time. Consequently, the growing memory problem is avoided and
the algorithm is easily implemented on the digital computer
for on-line estimation.

1.3 Adaptive Filtering
As useful as the Kalman filter is, a disadvantage is 

the requirement that the Gaussian statistical models of the 
plant dynamics and the measurements be completely known in 
order for them to be used in the filter algorithm. This is 
unfortunate for many chemical process applications because 
only portions of the model transition matrices <j)(k+l,k) and 
r(k+l,k), the measurement matrix H(k+1), or input covariance 
matrices Q(k) and R(k) may be known. Consequently, parameters 
in these matrices as well as the state variables need to be 
estimated.

For the purposes of this work, adaptive estimation 
refers to the estimation of the statistical moment matrices 
Q(k) and R(k). The estimation by state augmentation of system 
parameters in matrices *(k+l,k), T(k+l,k) and H(k+1) for chem­
ical processes has been presented elsewhere (34). Estimation 
of the means of the inputs may be handled similarly.

There are several possible approaches to adaptively 
estimating the unknown matrices Q and R. The most obvious 
approach is to de ive an estimator that is insensitive to the 
unknown portion of the model. This approach includes the 
least squares estimator (17) and the minimax estimator (5).
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A second approach is to apply the Kalman filter using

a conservative guess for the unknown portion of the model.
The consequence of such an empirical approach is a suboptimal 
estimator since the true model is not used. Nishimura (24) 
developed covariance and sensitivity analysis equations that 
determine the suboptimality of this approach. Once the effects 
of erroneous values of Q and R are determined then the initial 
guess may be adjusted to achieve less suboptimal estimation. 
This procedure is then repeated.

A truly adaptive method however is the direct estima­
tion of the unknown matrices. Sequential equations using 
measurements as they become available, much like the state 
estimation equations, are obtained by concomitantly satisfying 
the optimization criterion with respect to the identifiable 
matrices as well as the state vector. The resulting system of 
equations then comprises the adaptive filter.

One of the advantages of using a truly adaptive filter 
is that a less mean square error of estimation should be ob­
tained than the previous suboptimal approaches discussed.
This additional estimating capability is achieved however at 
the expense of requiring implementation of a more complex 
algorithm, which may be prohibitive. The extent of additional 
complexity and/or suboptimality depends upon the procedure 
selected. Previously proposed adaptive estimation algorithms 
are reviewed in the next section, after which a new procedure 
is proposed.



CHAPTER II 

LITERATURE REVIEW OF ADAPTIVE FILTERING

II.1 Adaptive Filtering 
In any control system, the reliability of much of the 

knowledge of the process dynamics is often questionable. Of 
particular interest is the re-evaluation of a priori informa­
tion about random plant inputs and observation noise. Each 
of these random quantities is specified by the first two 
statistical moments— the mean vectors and the covariance 
matrices Q and R. Estimation of the means may be handled by 
state augmentation. However, for estimation of the covariances, 
it is desirable to jointly obtain an algorithm which is in­
corporated into the overall estimation scheme and which adap­
tively updates the a priori knowledge of Q and R. Several of 
the significant approaches recently undertaken to adaptively 
estimate Q and R will be briefly reviewed.

Magill (18, 19) proposed an adaptive estimator, which 
is optimal in the mean square error sense, for Gaussian linear 
systems. The state estimate is a weighted sum of elemental 
Kalman filter estimates. The weighting coefficients, which 
comprise the adaptive feature since they change with the 
measurement sequence, are generated by operating on the

10
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incoming measurements. The algorithm for generating the coef­
ficients is obtained from Bayes rule for probability density 
functions.

The number of elemental Kalman filters required for 
the above approach was reduced by Sengbush and Lainiotis (29) 
by using an iterative technique. However, the consequent 
technique no longer is practical for on-line applications.

Mehra (21, 22) assumed the Kalman filter and linear 
system to have reached steady state. If the filter is opera­
ting suboptimally by using assumed values of Q and R, the 
autocorrelation function of the measurement innovation process 
(12) is generated, assuming stationary noise. This function 
is then utilized to obtain asymptotically unbiased and consis­
tent estimates of Q and R. The updated Q and R are then used 
in the Kalman filter and the process repeated. Unfortunately, 
a large amount of data is required to ensure steady state and 
to generate the autocorrelation function.

Another source of information for estimating Q was 
proposed by Jazwinsky (ii). He examined the predicted measure­
ment residuals

z(k+j|k) = z(k+j) - H(k+j) <|>(k+j,k) x(klk),

and required the residuals to be consistent with their statis­
tical properties,

EIz(k+j|k) z'^Ck+j|k)J = z(k+j|k) zF(k+j|k).
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The resulting algorithm for Q was used with the Kalman filter 
for linear systems to provide improved estimates of the state.

Smith (32) developed an approximate Bayesian approach 
to estimate a diagonal R matrix for measurement noise assumed 
to be Gaussian-Inverted-Gamma distributed. He used Bayes' 
rule for the density function

p [x (k) ,r [ Z (k) ] = p[Z (k) I x(k) ,R[ p [x(k) ,R]/p[Z (k) ] .

Distribution functions were substituted on the right side of 
the above equation. After regrouping terms, the approximate 
conditional means estimator of the state and parameters of 
the Gaussian-Inverted-Gamma distribution function for R were 
selected by inspection. The final algorithm consists of the 
Kalman filter for linear systems and a set of equations to 
sequentially estimate the distribution scaling parameter for R.

Kashyap (15) obtained a maximum likelihood estimator 
applicable for estimating Q and R. He separately treated the 
problem in two parts. First, the system model parameters 9 
and R may be estimated by maximizing the likelihood function 
&n [p(Z(k)IR,0)] with a conjugate gradient search scheme. 
Second, estimate Q and R directly from maximum likelihood 
estimates of 6. These estimates are valid only for large 
amounts of data, stationary linear systems, and steady state.

Shellenbarger (31) developed two approximate maximum 
likelihood estimators. By maximizing p[z(k)|Q,R] with
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respect to Q or R, estimators were obtained independent of the 
filter algorithm for state estimation. He showed the asymp­
totic stability and unbiased properties of these estimators.
On the other hand, the estimators obtained by maximizing 
plz(k)IZ(k-1),Q,R] at each stage k with respect to Q or R 
require algorithms consisting of interdependent equations for 
state estimation and estimation of Q or R. With the specifica­
tion of certain restrictions, Q and R could be estimated con­
comitantly with the state. In general, the estimators for Q 
and R were on-line recursive and applicable to linear systems.

These methods were improved upon (30) by selecting the 
R and Q estimates according to a least squares fit of the set 
of products {z(k|k-D (k| k-1) , k = 1, 2,...} to their ex­
pected values. The Kalman filter algorithm and the equations 
for Q and R are again mutually interdependent however.

Finally, Sage and Husa (24) began with a Bayesian 
approach by attempting to maximize the a posteriori probabil­
ity density function P[X(k) ,Q,r| Z ] with respect to X(k), Q 
and R at each stage k. Estimators are developed for a linear 
system and uniform a priori distributions for constant Q and 
R. For optimization, the necessary conditions are in the form 
of a nonlinear two-point boundary value problem which is solved 
via discrete invariant imbedding. However, the optimal solu­
tion which is in terms of the smoothed estimates {3c(j|k), 
j = 0 , 1, ..., k} is dismissed in preference for a suboptimal 
solution using only those terms generated by a Kalman filter.
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Suboptimality is due to the approximation

x(j|j-l) = xCj|k-l), i = 1, 2, k-1

which replaces the fixed interval smoothed estimate with the 
fixed single lag smoothed estimate.



CHAPTER III

MAXIMUM LIKELIHOOD ADAPTIVE FILTERING

III.l General Problem Formulation 
Consider the class of systems which can be represented 

by the nonlinear vector difference equation

x(k+l) = f[x(k),u(k)] + w(k) (1)

where f[x(k),u(k)] is an n-vector function of the state vari­
able X(k) and a deterministic variable u(k).

The observation equations can be represented by

z(k+l) = h[x(k+l)] + v(k+l) (2)

where h[x(k+l)] is an m-vector function of the state x(k+l). 
These equations hold for k = 0, 1, 2,... where k is the dis­
crete time index; x is the n-dimensional state vector; w is
the n-dimensional stochastic input vector; z is the m-
dimensional measurement vector; and v is the m-dimensional 
stochastic measurement error. Both f and h may also be func­
tions of time varying parameters.

The stochastic sequences (w(k), k = 0,1,2...} and 
{v(k), k = 1,2,...} are uncorrelated with one another and are 
Gaussian with means and covariance matrices

15
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E{w(k)} = q(k) E{v(k)} = r (k)
Cov{w(k) ,w(j) } = e { Iw(k)-q(k)] [w(j)-q(j)]'^} = Q(k)6j^
Cov{v(k) ,v (j) } 5 e { Iv(k)-r (k) ] tv( j)-r ( j) ]'̂ } = R(k)3j^
Cov{w(k) ,v(j) } = E{ [w(k)-q(k) 1 [v(j)-r (j) ]^} = 0

for all discrete times j,k i 0. E denotes the expected value
operator and 6 denotes the Kronecker delta. Q(k) and R(k) 
are the real positive definite covariance matrices of dimen­
sion n X n and m x m respectively.

The initial state x(0) is a Gaussian vector which is 
independent of {w(k), k=0,l,2...} and {v(k), k=l,2...} and has 
a positive definite n x n covariance matrix and mean,
Cov{x(0) , x(0)} = Var{x(0)} 5 e { [x(0)-x(0) ] [x(0)-x(0) ]^} = P(0) 
E{x(0)> = x(0) .

Our goal is to obtain sequentially an estimate of the 
state x(k), k > 0,given the sequence of measurements (z(k), 
k=l,2,...}. Concomitantly, we desire a sequential estimate 
of the stochastic inputs, w(k) and v(k), whether these are 
random inputs or unknown constants. To complete the adaptive 
estimation, we require sequential estimates of Q(k) and R(k). 
The resulting estimate of x(k) is denoted by x(k|k).

III.2 Solution Formulation 
In particular, x(k k) denotes the estimate of x(k), 

given all the observations up to and including the point in 
time k, 2 (1), z(2),...,z(k). Z(k) denotes the data set 
{z(i), i=l,2,...,k}.
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Using marginal maximum likelihood estimation, the 

function L[x(k),Z(k)] = p[x(k)|z(k)] has been maximized by 
Rauch, Tung and Striebel (26) for linear systems and by 
Meditch (20) for nonlinear systems. For adaptive estimation 
we would like to maximize the likelihood function

L[x(k) ,Q,R,Z(k)] = p[x(k) ,Q,R|z(k)]

which is equivalent to the joint conditional probability 
density function. Maximization is carried out with respect 
to x(k), Q and R such as to yield the extended Kalman (3) 
filtered estimate x(k|k) adapted to the estimates Q and R.
The means q and r likewise may be estimated. However, with 
no loss of generality, these are not considered here since 
estimates of q and r are available by using the extended Kal­
man filter with state augmentation.

Details of the following operations are available in 
the Appendices. Upon utilization of the probability density 
function identities, the present form of the likelihood func­
tion may be altered to a more amenable form. Specifically, 
by applying the definition of the conditional density thrice 
consecutively, one obtains

L[x(k) ,Q,R,Z (k) ] = p[z (k) i x(k) ,Q,R]
• p[x(k) ,Q,r | Z (k-1) ] • p[Z(k-l)3 

T p[Z(k)J



18
It is assumed that the state vector and the second 

moments of the random input and measurement error are statis­
tically independent. Furthermore, it is assumed that the 
density functions of the input and measurement error statis­
tics are uniform. The consequent likelihood function to be 
maximized reduces to

L = p[z(k) |x(k) ,Q,R]p[x(k) I Z (k-1) ]p(Q)p(R)
T p[z(k) |z(k-l)]

as opposed to the function maximized by Sage and Husa (27),

L = p[Z(k) lx(k) ,Q,R] p[X(k)]p(Q)p(R)

which yielded a maximum a posteriori estimate.
Each density is evaluated using Appendices D and E. 

The final non-Gaussian density function is

L = (2n)"(2m+n)/2|g,|-l/2|p(%|^_i)|-l/2|y(^^^_^)|-l/2 

• Exp [-1/2 II z(k)-z(k) II

- 1/2 II x(k)-x(k|k-l) II  ̂ ^
P" (k|k-l)

- 1/2 ||z(k)-z(k|k-l) 11̂  . ]
y ^(k|k-l)

The recursive equations for the single stage predic­
tion covariance matrix and estimate are derived in Appendix F 
as

x(k|k-l) = f [x(k-1 |k-l) ]
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P (kl k-1) = f^[x(k-l|k-l)] P (k-11 k-1) f^[x(k-l|k-l) ] + Q 

The conditional mean of the observation z(k) given x(k), is

z(k) = h[x(k)]

Finally, the conditional mean and covariance of the observa­
tion z(k), given Z (k-1) , are

z(kjk-l) = h[x(k|k-l)] 
and Y(kjk-l) = h^[x(k|k-l)] P(kjk-l) h^[x(k|k-l)] + R

Although the combined density function is non-Gaussian, we 
regard it as approximately Gaussian by having retained only 
the first term of the asymptotic expansion of a Gram-Charlier 
or Edgeworth series (2).

It follows that the joint maximum likelihood filtered 
estimate of x(k), and as many of the statistical moments Q 
and R as desired, may be obtained by maximizing L[x(k),Q,R,
Z(k)] with respect to x(k), Q and R.

Setting the gradient of L with respect to the set of 
variables S

S = (x(k) , Q, R}

equal to zero, yields the necessary conditions for maximum 
likelihood estimation.
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Evaluated at S = {x(k|k), Q, r }, one obtains a set of non­
linear simultaneous equations, the details of which are 
presented in Appendix C. The state estimator is

x(k|k) = x(k|k-l) + W(k){z(k) - h[x(k|k-l)]}

which is identical to the extended Kalman filter previously 
obtained ( 3) and applied (34). The optimal filter gain 
matrix is defined by

W(k) = P(k|k-1) h^lx(k|k-l)]
{R + h^tx(klk-l)] P(klk-l) h^[x(klk-l)l

The moment estimator equations are

0 = P"l(k|k-1) + h^[x(k|k-l)] Y"l(k|k-1) h^[x(k|k-l)]
- P"l(k|k-l)[x(k|k) - x(klk-l)] [x(klk) - x(klk-l)]'^

• P"l(k|k-1)
- h^[i(k|k-l)] Y"l(k|k-l)[z(k) - z(k|k-l)]

• [z(k) - z(k|k-l)]T
• Y"l(k|k-1) hj^[x(k|k-l)

and, 0 = R"1 + Y"l(k|k-1) - R“^{z(k) - h[x(k|k)]}
• {z(k) - h[x(k|k)]}^R"^
- Y"l(k|k-l)[z(k) - z(k|k-l)l
• [z(k) - z(k|k-l)]T y-l(k|k-l)

The expressions for x(klk-1) , z(k|k-l), P(k|k-1) and Y(k|k-1) 
previously were given. The symmetry of P(kjk-l) and Y(k|k-1)



21
has been used in deriving the above equations. Note that 
P(k|k-1) and Y(k|k-1) are implicit in Q and R. Therefore a 
recursive solution of these equations is required. It has 
been suggested (20) that Newton's method be used to recur­
sively solve a similar set of nonlinear equations for a non- 
adaptive filter.

The vectors f[x(k)] and h[x(k)] are approximated by 
the first two terms of a Taylor series expansion about x(klk) 
and x(k|k-l) respectively.

f[x(k)] ^ f[x(k|k)] + f^[x(k|k) ] [x(k) - x(k|k)] 
h[x(k)] = h[x(k|k-l)] + h^[x(k|k-l) ] [x(k) -x(k|k-l)]

f^[x(k|k)l is the n x n Jacobian matrix of f[x(k)]
/\ .evaluated at x(k|k). h^[x(k|k-l)] is the m x n Jacobian

matrix of h[x(k)] evaluated at x(k|k-l).
A measure of reliability of the filtered estimate 

x(k|k) is the filter error covariance matrix P(k|k). This 
recursive equation has been developed from the filter error 
expression [x(k) - x(k|k)] in Appendix F.

P(k|k) = {I - W(k) h^(x(klk-l)]} P(k|k-1)

where W(k) and P(k|k-1) are previously defined. The I is 
the identity matrix.

The sufficient condition for the joint maximum likeli­
hood estimate to provide a maximum of the objective function 
L is
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9x^ (k)
< 0

x(k)-*-x (k|k)

It is shown in Appendix C that x(klk) is a maximum if 
P ^(k|k-l) - g^[x(k),R,z(k)] is positive definite where 
g^[x(k),R,z(k)1 is the n x n Jacobian matrix of h^R~^[z(k)-h], 
evaluated at x(k|k).



CHAPTER IV 

ADAPTIVE FILTERING OF CHEMICAL PROCESSES 

IV.1 A First Order System
1. The Model

In order to illustrate the mechanics of the Kalman 
filter and the utility of adaptively estimating the covariance 
matrices for the plant noise and measurement noise, consider 
the following simple case. The first order model is,

x(k + 1) = #(k+l,k) x(k) + r(k+l,k) w(k)

x(0) = 0, *(k+l,k) = 0.95, r{k+l,k) = 1

z(k) = H(k) x(k) + v(k), H(k) = 1

with x{0|0) = x(0) and P(0|0) = P(0)
where w(k) and v(k) are zero mean independent white Gaussian 
random variables.

For known noise statistics, R and Q, and for initial 
conditions, x(0) and P{0), Figure 4.1 illustrates the response 
of the filter to observations, z(k), and for the model, x(k+l). 
The estimated value x(k|k) generally lies between the observed 
value and the modelled value and represents a smoothed value 
by weighting x(k) and z(k) with the optimal gain W(k).

23
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Figure 4.1. Response for First Order Model, 
R =  1, Q = 1.
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A priori values of x(0) and P(0) do have an effect 

on the filtered estimate normally. Figure 4.1 also illustrates 
how fast the filter recovers from assuming the initial estima­
tion error variance to have a value of zero or one. Within 
four steps, the estimate recovers completely and remains iden­
tical thereafter whether P(0) is zero or one. The effects 
of the value of x(0) are more obvious, but equally damped 
out by the filtering algorithm.

Figure 4.2 illustrates the effect of the value of 
P(0) on the filtered and predicted error variances for the 
filtered estimate. For an optimistic initial guess of 
P(0) = 0, P(k|k) reaches the steady state value in four esti­
mation intervals. The same is true for a conservative guess, 
P(0) = 1. The effects of a priori P(0) on the predicted 
variance, P(k|k-1), are also shown, P(k|k-1) is the estimated 
error variance for the predicted estimate, x(k|k-l). Intui­
tively, the predicted error variance is expected to be larger 
than the filtered error variance for the estimate of the state 
x(k), since P(k|k) has the advantage of being based on one 
more recent observation than does P(k|k-1).

2. Limiting Cases
For this model, the state transition matrix, ^(k+l,k), 

has a scalar value of 0.95. The disturbance transition matrix, 
r(k+l,k), has a scalar value of 1. Throughout this work, 
r(k+l,k) is assumed to be the identity matrix. This
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simplification imposes no restrictions to the technique, as 
can be seen for this model. By assuming the identity matrix, 
the plant noise covariance matrix, Q, must be scaled by a 
factor of r , however. The measurement matrix, H(k), also has 
a scalar value of 1 for this model.

The optimal filter equations are

x(k|k) = (|>x (k-11 k-1) + W(k)[z(k) - 4>x (k-11 k-1) ]

P(klk-l) = P(k-ljk-l) + Q

W(k) = P(k|k-1) [P(k|k-D + R]"^
Combining, g

W(k) _ 4)̂ P (k-11 k-1) + Q 
4^P(k-l|k-l) + Q + R

P(k|k) = [1 - W(k)] P(klk-l)

Combining,
P(k|k) . P (k-11 k-1) + Q1

4) P(k-ljk-l) + Q + R

The equation for P(k|k-1) indicates that P(k|k-1) ^ Q since 
P(k-llk-l) > 0. Therefore, the performance limit of the pre­
diction accuracy is determined by the value of Q. Secondly, 
the optimal filter gain as calculated from the above equation 
for W(k) is limited as 0 3 W(k) i 1, except for the special 
case P(k|k) = Q = R = 0 .  Thirdly, from the equations for 
P(k|k) and W(k), it can be seen that P(k|k) = R W(k); there­
fore, the filtering error covariance is limited to the values, 
0 ^ P(k|k) i R.
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The steady state behavior of the error covariance 

can be determined by setting P(kjk) = P (k-11k-1) = P and 
then solving for W,

^  _  - ( - R * ^  +  R  +  Q) ±  / ( - R * 2  +  R  +  q ) 2  +  4RQ(j,2
r — ■ ' ' ■ ' ' ' M ... ..... .

2(t>‘̂

Since P is a variance, only the positive root is valid. For 
the first order model with = 0.95, R = 1, Q = 1, then 
P = 0.58, the predicted error covariance is 1.52, and the 
optimal gain is 0.60 (see Figure 4.2). Finally, at steady 
state the filtered estimate is obtained by optimally weight­
ing a new observation with the previous prediction as follows

x(klk) = 0.6 z(k) + 0.4 x(k|k-l)

In the limiting case for R = 0 and nonzero Q, P is 
zero, W(k) becomes 1, and P(k|k-1) becomes equal to Q. There­
fore, the filter algorithm closely follows the observations 
to the extent that the optimal estimate becomes

x(k|k) = z(k)

For the other limiting case 0 = 0  and nonzero R,

P = R4)̂ P 
(|>% + R

— 2Since P i 0 and (j> < 1  for this example, the only value 
allowed is P = 0; also P(k|k-1) and W(k) become zero.
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Therefore the filter algorithm ignores the observations and 
closely follows the plant model,

x(k|k) = x(k|k-l)

3. Modelling Error
Modelling error occurs in several ways. One common 

type is inherent error in the coefficients of a deterministic 
model. As constants, the coefficients can be handled by 
augmenting the state vector and then updating the value each 
time the state vector is estimated from a new observation. 
Biases and trends similarly can be handled. On the other hand, 
model error may occur when one assumes a deterministic model 
but a stationary random component exists which is not accounted 
for. Figure 4.3 illustrates the case where R and Q actually 
have values of 1, but it was assumed that there was no plant 
noise (i.e., Q = 0). The result is filter divergence. In­
stead of following information from the observations, the fil­
tered estimate, x(k|k), diverges to a nearly constant value 
of -0.5 after 20 time increments. The reason for this response 
becomes apparent from the previous equations. As a result of 
assuming 0 = 0  when actually Q = 1, the filtered error covari­
ance matrix is erroneously calculated to be less than when it 
would be if it were known that Q = 1. In particular, the 
erroneous steady state value is 0 instead of 0.58 (see Figure 
4.4). Even as the estimate degenerates, the covariance calcu­
lation appears satisfactory because the algorithm relies upon
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the assumption that the model is known exactly a priori. As 
a result, W(k) becomes zero and eventually uncouples the 
observations from the filtered estimate completely as the 
error covariance approaches zero. The observations are ignored 
and x(k|k) = x(k|k-l) with the result that x(k|k) diverges 
from the "true" estimate. This example points out the impor­
tance of assuming that knowledge of the plant model is avail­
able (including random components as well as deterministic 
components).

4. Adaptive Estimation of Plant and Measurement Noise 
Covariances

Filter divergence due to the above reason can be 
avoided by not necessitating the assumption of knowing the 
covariances Q and R, but by adaptively estimating the covari­
ances along with other state variables beginning with an 
initial guess.

The adaptive filter algorithm derived in Chapter 3 
was applied to the scalar system in this section. Figure 4.5 
compares the results from using that algorithm with the re­
sults from using an algorithm derived by Sage and Husa (27). 
Three curves are shown in Figure 4.5. The curve with the 
largest oscillation is calculated by using the Sage, Husa 
method for suboptimal Bayes estimation. The suboptimality 
arises in this method due to the replacement of the fixed 
interval smoothed estimate, Q(j|k-1), with the predicted

A .estimate, Q(j|j-1). The second, less oscillatory, curve is
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calculated using the method of maximum likelihood estimation 
derived in this work. The least oscillatory curve in the 
figure is a smoothed function of the second curve.

It should be pointed out that throughout this work, 
the algorithms for estimating the second moments of the plant 
and measurement noise were derived and used. But the algo­
rithms for the corresponding first moments were not derived 
nor used. The reason for this is that the filtered estimate 
of the mean for each noise can be obtained by proper struc­
turing of the mathematical model of the system, application 
of state augmentation, and then using the state estimation 
filter algorithm. In this way the non-zero mean noise is 
handled as a zero mean noise term plus a constant bias, which 
is estimated along with the state vector. It also should be 
noted that the noise covariance matrices enter into the pre­
exponential factor of the likelihood function, whereas the 
noise means do not.

Figure 4.5 illustrates that in general, the estimate 
of Q from this work is less oscillagory than the estimate 
using the Sage, Husa algorithm, and the algorithm derived in 
this work more rapidly tracks the value of Q. The smoothed 
estimate, Q, has been obtained by using an exponential filter 
which combines the instantaneous estimate with the previous 
smoothed value. The following relation was used,

Q(klk) = [(k-1) QCk-ljk-l) + Q(k|k)]/k
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where the filter constant, ol, is assigned a value between zero 
and one.

Although often requiring a large number of time in­
crements for convergence (27) (100-5000 depending on the
desired final accuracy of estimation), the Sage, Husa filter 
converges ofter a lengthy period of oscillation. The method 
proposed herein converges more rapidly, but after about 100 
increments the two estimates become essentially equivalent 
for this example.

Figure 4.6 illustrates similar results for calculating 
the measurement noise covariance. The Sage, Husa estimate is 
more oscillatory than the method of this work, and the 
smoothed estimate is nearly equivalent to the instantaneous 
estimate of this work. The smoothing algorithm used was

R(k|k) = [(k-1) ïï(k-l|k-l) + R(k|k)J/k

The main point of comparison of the two discussed methods is 
the rate of convergence. After 100 increments, the Sage,
Husa estimate was still converging to the true value of R,
but very sŒbwiyi

Although the estimation of R and W were demonstrated 
separately for the simple model, they can of course be esti­
mated simultaneously using either the derived algorithm or 
the Sage, Husa algorithm. However, with both inexactly known 
simultaneously, more time is necessary for convergence.
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IV.2 A Second Order System

1. The Model
For all but the simplest cases, the adaptive filter 

algorithm cannot be solved directly. For vector models, an 
iterative method of solution is necessary since the equations 
of the algorithm are so interrelated and cannot be uncoupled 
as the equations of the Kalman filter were in the previous 
section to analyze the steady state behavior of the algorithm. 
At each estimation time when a new observation is available 
to update the previous estimate, use of an iterative technique 
is necessary to solve the adaptive filter equations.

A technique which was found to be applicable and was 
used to obtain adaptive estimates was the successive approxi­
mation method of Wegstein (33). This method does not require 
use of any derivatives, which could be very complex for a set 
of matrix equations. The Wegstein method is based on a pro­
jection technique and is similar to the mathematical technique 
called "false position." Using the most recent two trial 
values, a projection is made to obtain the next trial value. 
Details of the computational aspects are available elsewhere 
(6, 9, 25).

A second order plant model with redundant observations 
("vertical" measurement matrix) is considered before applying 
the adaptive technique to higher order systems in the next 
section. The system is modelled by the following equations.
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x(k+l) = *(k+l,k) x(k) + w(k), x(0) = 0

TX (k) = [x^ (k) Xg (k) ]

(j) (k+l,k) =
1.0 0.0^
0 1.0

and z (k) = H (k) x(k) + v(k)

(k)

(k)

[z^(k) Zgfk) Zg(k)]
1 0 1 
O i l

with x(0|0) = x(0) and P(0|0) = P(0).

The known noise statistics, R and Q, and zero mean 
independent white Gaussian random variables.

w (k) = [w^(k) Wgfk)]

(k) = [v^(k) Vgfk) Vg(k)]

with initial conditions for the filter, x(0) and P(0), com­
plete the specifications for filtering. The filter response 
to the observations and model dynamics is shown in Figures 
4.7 and 4.8. The figures show that the estimates neither 
predominantly follow the model nor the observations when the 
noise in each is equivalent, i.e., = R^^ = 0.1

The filter is very insensitive to the initial condi­
tion P(0|0). Within four estimation intervals, the covariance 
matrices have reached steady state. Figure 4.9 shows



39

HWZoeuen
ë

3 - 0

2-0

1-0

0-0
0  2  4  6

(k)
Zl(k)
(k|k)

TIMK

= O  

= V  
= □

Q(k) =
0.1 0
0 0.1 R(k) =

0 . 1 0  0 
0 0 . 1 0  

0 0 1.0

Figure 4.7. Response for Second Order Model.



40

wwsoPwco

3.0

2 -0

1-0

0-0

- 1-0

0  2  4  G B 1 0  1 2  1 4  I G I B  2 0

TIME

%2(k)

Zgtk)
Z3(k) 
%2(k|k) =

O
V
A
□

Figure 4.8. Response for Second Order Model.



41

q.ob

H
§  0 * 0 4

0 1 2 3 4 5 5 7 8 9  1 0

TIME

P(0)
■ [ : : ]

22 (k|k-l) = A
Pll(k|k-1) = V
P^2(k|k-l) = O

Pll(k|k) = O
P22<k|k) = O  

P]_2 (k|k) = ^

Figure 4.9. Filtered and Predicted Error Covariance 
Matrix for Second Order Model.
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that the covariance matrix has decreased significantly from 
the initial P(OjO) estimate. The prediction variances 
and are much larger (about three times) than the filter
variances, as was previously seen for the scalar model. How­
ever, the prediction and filter covariances (P^g and Pg^) are 
equivalent and negative.

2. Modelling Error
Figures 4.10 and 4.11 illustrate the consequences of 

assuming incorrect knowledge of the plant model dynamics. If 
it is assumed that no random component exists in the plant 
(i.e., Q = 0), then the filter diverges when there actually 
is a noise component (i.e., Q = 1). Both the estimate for 
x^ and the estimate for Xg diverge to erroneous values; whereas 
with the correct model, the filter correctly follows the model 
dynamics and observations. The divergence is easily apparent 
here because of the large discrepancy between the values for 
the true and assumed plant noise covariance matrices. General­
ly, one expects the value of the filtered estimate to be 
between the value of the observation and the model since the 
noise covariance matrices were identical and the filter is 
essentially an optimal smoothing device. A small amount of 
fluctuation outside these limits occurs due to the random 
nature of the noise vectors w and v.

Figure 4.12 more clearly shows the reason for the 
filter divergence. For zero plant noise and complete knowledge 
of the plant dynamics, intuitively the best estimate is the
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value generated by the model. This value furthermore would 
be exact (i.e., zero variance). Computationally, this occurs 
as well. The covariance matrix is computed based on knowledge 
of the model, including knowledge of noise inputs. If know­
ledge of the inputs is erroneous, a false reliability is 
generated by the covariance equations. In fact, the errone­
ous covariance matrix becomes smaller in magnitude than the 
true covariance matrix. As a result, an erroneous weighting 
factor is calculated (but is optimal for the assumption, Q = 0). 
The consequences are propagated in the filter by providing 
an estimate which diverges from both the true model and the 
observations to the model assumed to have no noise component.

The resultant anomaly is that observations are totally 
ignored by the filter because the covariance matrix becomes 
zero (see Figure 4.12) when the observations, which consti­
tute a source of new information, are most needed to correct 
the model. A consequent need arises for updating the a priori 
assumptions for the random noise components described by Q and 
R. Of course, the variance of observational data can be 
statistically calculated with no a priori assumptions regard­
ing the dynamics of the phenomena which was observed when all 
the data is simultaneously available. The following illus­
trates the Sequential estimation of the noise covariances 
during evolution of a phenomena described by second order 
dynamics.
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3. Adaptive Estimation

Two cases are considered. The results for the two 
are similar and the conclusions are identical, but the differ­
ences are in the relative order of magnitudes of the covari­
ance matrices.

Figures 4.13 and 4.14 illustrate estimation of the 
plant noise variances. The estimate of converges very 
slowly for both methods illustrated. The estimate of @22 
converges more rapidly, but the Sage, Husa method permits much 
larger oscillation initially and converges relatively more 
slowly. Results for the observation noise variance estimator 
(Figures 4.15, 4.16 and 4.17) are similar. Large initial 
oscillations are characteristic of the Sage, Husa estimator 
with slow convergence, from the negative side however; where­
as, the adaptive estimator of this work does not have oscilla­
tory behavior and converges relatively more rapidly, especially 
in the early stages of estimation.

It was found that the algorithm proposed in this work 
generally brought the initial estimate of the noise covari­
ance matrices within an order of magnitude of the true value 
within 20 estimation increments; whereas, the Sage, Husa 
algorithm required more time and was largely dependent on the 
initial estimate (27). Based on this observation and depend­
ing upon the system modelled and the computational facilities 
available to a user, an optimal approach may be to use the 
algorithm of this work for an initial segment of time and then
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revert to the Sage, Husa algorithm to further refine the 
estimate after the order of magnitude is determined. In this 
manner, rapid convergence is achieved and less computational 
time is necessary. In general the proposed algorithm requires 
more time to process a single observation than the Sage, Husa 
algorithm, although the user can control the time consuming 
iteration necessary to solve the nonlinear filter equations. 
Because of the iteration, however, it is possible to obtain 
a more refined estimate at each estimation step, or time 
interval, which may explain the more rapid initial convergence 
of the proposed method.

Results of the second case are presented in Figures 
4.18 through 4.19 for the plant noise covariance matrix and 
Figures 4.20 through 4.22 for the observation noise covariance 
matrix. Although additional runs were made, the two cases 
presented here represent a wide range of values of Q, R, and 
initial conditions for these matrices. The behavior of the 
algorithms for this case varies somewhat from the previously 
described case, but the conclusions remain the same as pre­
viously discussed.

IV.3 A Fourth Order System
1. The Model and Modelling Error

A final demonstration of the applicability of the 
proposed adaptive filter is presented in this section. A 
higher order system is considered which previously was
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developed and used by Wells (34) to demonstrate the appli­
cability of the extended Kalman filter alone for estimating the 
process state and model coefficients. The system considered 
is an adiabatic stirred reactor which is simulated by a fourth 
order mathematical model. The details of this model are pre­
sented in Appendix G. The difference between the model used 
by Wells and the model considered here is that measurements 
for all four states are assumed to be available; whereas.
Wells assumed only three of the states (temperatures) were 
measured and the fourth (concentration) was then estimated 
using the extended Kalman filter.

The reactor is assumed to be at a controlled steady 
state initially. For a plant disturbance of 10 percent in 
the feed concentration at zero time, i.e.,

x^(0) = [0 0 0 0.1]

the simulated response is shown in Figures 4.23 through 4.26. 
The system was maintained at the final equilibrium by using 
steady state control. Shown in these same figures are the 
responses that simulate the observations where the standard 
deviation of the instruments is 1 percent of the normalized 
variables. The third curve in these figures is the estimate 
of the state vector using the extended Kalman filter and 
assuming that the model of the reactor is completely known 
with no plant noise present. However, as seen previously for 
the simpler systems, when this assumption is incorrect
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and a random input (e.g., plant noise) does exist, the filter 
diverges.

Figures 4.27 and 4.28 illustrate the mechanics of 
filter divergence. The filter error covariance matrix goes 
to zero and causes the estimate to diverge when the model is 
incorrectly assumed. The responses of the diagonal elements 
of the covariance matrix are also plotted to show how the 
initial values of the state variances were decreased when the 
model was correctly assumed to include plant noise.

2. Adaptive Estimation
The subroutines used to implement the adaptive filter 

derived in this work are listed in Appendix H. The Sage, Husa 
adaptive filter algorithm is available elsewhere (27). For 
both algorithms, it was found that the estimate of the state 
was very poor until the estimates of the noise covariance 
matrices stabilized and converged near the true value.

Even for this four dimensional model, the adaptive 
estimator developed by this work converges rapidly to an esti­
mate of the covariance matrix much more rapidly than that of 
Sage and Husa. The Sage, Husa estimator oscillates with a 
large amplitude initially, then converges to an order of mag­
nitude estimate, and finally after a large number of time 
increments (30 to 100) is close to the actual covariance. For 
the 30 estimation intervals shown in Figures 4.29 through 
4.32, the estimator for Q developed in this work is always
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(Figure 4.29, continued.)
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closer to the true value of Q than the Sage, Husa estimator. 
For a large number of estimation increments, the Sage, Husa 
estimator was found to converge more rapidly than the method 
proposed herein.

Figures 4.33 through 4.36 illustrate adaptive estima­
tion of the diagonal elements of the R matrix. Again the 
estimator of this work converges rapidly to the region of the 
true value of R and stabilizes with slow convergence to the 
final estimate of R. The Sage, Husa R estimator oscillates 
with large amplitude for the first 6 time increments, then 
reduces the oscillatory behavior and converges slowly to the 
true value of R. At the end of the 30 time intervals shown, 
the Sage, Husa estimate of R was 2 to 5 times larger than the 
estimate from the proposed method, which was about twice as 
large as the true value of R.
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS

The results of this work indicate the feasibility 
of applying the adaptive filter to chemical processes. An 
algorithm for adaptive estimation of the state as well as 
the plant and observation noise covariance matrices has been 
developed. Examples of its use indicate acceptable perfor­
mance of the method.

The limiting cases for zero plant noise covariance 
and zero observation noise covariance were considered to show 
the effects on the value of the optimal weighting matrix and 
how the model dynamics or observational data might be compu­
tationally ignored. The use of redundant measurements also 
was considered.

Incomplete models commonly occur for two reasons. 
Either the modeller unintentionally overlooks significant 
components of the model, or in trying to maintain the model 
as simple as possible, components are intentionally dropped. 
In either case, consequent modelling error was shown to cause 
filter divergence with subsequent deterioration of the esti­
mate. In order to overcome this problem, an algorithm was 
developed to identify the random components which have been
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ignored or overlooked in the model for the plant and 
observational process.

Finally, a comparison was made with a previously 
published adaptive filter of Sage and Husa (23). The filter 
developed in this work generally responded more rapidly with 
less oscillation. It was found that an "exponential smoothing 
filter" could be used in addition to the algorithm to reduce 
the noise in the estimate. Reduction of oscillatory or noisy 
estimates of the state is desirable when the estimate is used 
as input to a process controller. Although an iterative 
technique (Method of Wegstein) was needed to solve for esti­
mates of the noise covariance matrices, this can be used to 
advantage at each estimation interval in order to refine the 
estimates. The refinement necessitates additional computa­
tional time but may be justified when the state estimate is 
destroyed while the covariance estimate is converging to the 
true value too slowly.

Several extensions of this work can be recommended.
The estimates of the noise covariance matrices should be 
solved for explicitly. This might satisfactorily be done as 
Sage and Husa have made simplifying assumptions which led to 
a suboptimal, but explicit algorithm. Alternatively, the ob­
jective function could be optimized by a direct computational 
method such as a gradient technique.

A measure of the reliability, of the estimates of Q and 
R could be developed. This may take a form such as the trace
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of the error covariance matrix for the estimates of Q and R.

Random components of a stochastic model which are non- 
Gaussian should be considered, for example, the lognormal 
distribution which is basically as fundamental as the normal 
distribution. Also, the filter could be applied to the case 
for nonstationary noise covariance matrices, for "colored" 
noise inputs, or for the case where plant and measurement 
noise inputs are correlated. The latter may arise, for example, 
when plant noise is observed. The correlation becomes apparent 
by augmenting the measurement noise vector with the plant 
noise vector. "Colored" noise could be handled by adjoining 
to the state equations those equations for "linear signal 
filters" used to describe the "colored" noise generated from 
white noise inputs.

In this work, the discrete form of the filter was 
derived for purposes of implementation on the digital computer. 
But the properties of the filter could be more thoroughly 
evaluated for the continuous form of the filter. A nonrigorous 
limiting technique might be used to obtain the continuous case 
by allowing the samples to become dense such that as k -»■ <», 
then kA t and

F[x(t),t] = limit (f[x(k),kj - x(k))/Ak->-oo
Ap = limit AR(kA)k-voo

H(t) = limit H(kA) , etc.k->oo
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Finally, the proposed technique could be extended to 
the smoothing problem using the density function p[Z(k+j) 
x(k) , R(k) , Q(k)] instead of p[Z(k) x(k) , R{k) , Q(k)].

Potential applications of adaptive filtering are 
diverse. A general application and perhaps the most obvious 
is identification of random inputs to an industrial process.
A less obvious application of the extended Kalman filter is 
estimation of coefficients as well as the state property it­
self in physical property correlations. The sequential nature 
of the algorithm particularly is of value for correlations 
being fit to large data sets, and is much preferred for pur­
poses of computer storage space economy. The adaptive esti­
mation of random components might be of use where the correla­
tion parameters have a random component, for example, the 
dependence of a heat transfer correlation on the random 
formation of nucléation sites during the boiling phenomenon.
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APPENDIX A

MATRIX INVERSION LEMMA

A.1 The Lemma 
A is an n-square matrix; B and C are n x m matrices. 

If A and the two matrices (A + BC^) and (I + C^A^^B) are 
nonsingular, then a matrix indentity may be obtained,

(A + BC"̂ )“  ̂ = A“^ - a ”^B(I + C^a “^B)

A derivation is available in Sage and Melsa (28).

A.2 A Special Case of Interest
A -1 A T “1 T ALet A = P , B = h^R and C = h^. Substituting
Tfor A, B and C

(P"^ + h^R-lh = P - Ph%R"^(I + h Ph^R"^)"^h P
= P - Ph^(R + h^Ph^)“^h^P

where P and R are symmetric and positive definite.

A.3 An Alternate Expression 
Show: (P - Wh^P)h^R  ̂= W using the definition

W = Ph^(R + hxPhT)-!.
Proof : Reduce the above definition of W in the

following successive steps.
85



86

W(R + h^Ph^) = Ph^

W(I + h^Ph^ r"^) = Ph^R"^

W = Ph r"^ - Wh Ph'̂  r”^
X  X X

T —1W = (p - Wh^P) R which is an alternate expression 
for W.



APPEND&X B

VECTOR AND MATRIX OPERATIONS

B.l Vector Differentiation

Let X be an n-vector; z is an m-vector; and M is an 
m-square matrix.
1. Prove; 

Proof I
9(x Mz)/9x = Mz

x^'M = l̂ x̂  ... x^j
^11 ••• ” lm

. . . Mnm

n n
= I x.M., ... I x.M.1̂ ̂  1 il ^ 1 im

[n= I E

and X  *M*z
rn n 1

= Z x.M..... Z x.M.[i 1 il i 1

n n
= z, Z x.M.. + ... zm Z x.M._ 1 ^ 1 il im

[m n -j
Z z. Z x.M..

j : i "
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3 X  M z 
3x

^  x*̂ Mz /3Xi

3 x?Mz /3x,n
I—  m n
3 Z z . S x.M /3xj D i 1 ID ]

m n
3 Z z. Z x.M.. /3x j 3 ^ 1 ID n

m
Z z.M. .4 ] 1]

1

M

M

, where
3x.
"53^= *ii

11 ... MIm

hi 

M • z

Mnm

\

• •
zm

2. Prove: 3 [x Mx]/3x = 2Mx
m n n

Proof : X  Mx - Z X .  Z X . M.. from previous proof, 
i J i ^

and 1^ â
3/3x7

3/3xn

expanded,
T

X  M X

n
Ï .... X^M )

■ *n“nl’ *2 (*1^12 ■*■••• *n“n2*
+ ... + ... x_M__)n nn
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3x Mx/9x,

ax^Mx/Bxn ^ A l  ^2^n2 + *l"ln * ^n^nn ^ ^n^nn

T9x MX 
9x

n n
Z x.M.- + E X . M. . 
^  1 il ^  1 li

n • n
E x.M. + E x.M . 1 in  ̂ 1 nx

^11 *•• \ l

^in ••• \ n

r^ 'i i
, +.
X n

“ll "* ^in

%nl ... BLnn

^1

X n

= M • X  + M • X

= [m ^ + m ] • X

= 2Mx if M = M

3. Prove; 9z"^Mx/9x = m "̂ z
m

Proof: From previous proof, z M = E z.M..; j
n m i

Similarly, z Mx = E x . E z.M..
j ] i ̂

= l,...n

9z^Mx A 
9x

9/9x^

9/9Xn

Tz MX

m
I "i“in
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“il ••• “ml

MIn ' Mmn

^1
# •

zm

= MT

B.2 Vector Gradient Identities

Let h(x) and z be m-vectors; x is an n-vector; M is
tp Aan m X m matrix; and is an n x m matrix. Also = 8h^/3x^

1. Prove: 8 [h^(x)MzJ/8x = h^(x)Mz

T. m m
Proof: h Mz = Z z . Z h.M..j D i 1 11

9h^Mz
9x

m I m 9h.
n

m . m
I "j I

■ THi“z

THTMz L n _j
T= HTMZ
T= h^Mz

2. Prove: 9[h^(x)Mh(x)] /9x = 2h^(x)Mh(x)
m m

Proof: h Mh = Z h . Z h.M. .
j : i ^
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9h^Mh
3x

m m m m
j % ^i“ij +  ̂hj %

T T TH^M h + HjMh

m m  m= + h^Mh

= 2h^Mh if wF = M

f  ̂— 1 ••• n

3. Prove; a[z^Mh(x)] /9x = h^(x)M^z
m  m m

Proof: z Mh = Z h . Z z.M. .
j ] i ^

3z^Mh ^ 
3x

m 3h. m I
,2  = 1 n

m m

T T

= h ^ z

B.3 Matrix Gradient Identities
1. Prove: 3|A|/3A = |a |a *̂

,-l

Matrix A is n x n. A^j = cofactor of a^j in A matrix.
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Proof: Consider differentiation with respect to one

element a^j.
The determinant |A| may be expanded by a column of 
elements as 

n
|a | = S a^^A^^ for any kth column.

For differentiation choose element a^j, then expand 
the determinant |a | about the column containing this 
element,

Sj ̂  Aj _•
'ij ”"ij i= ■ i] i]

n 9a. .
= Z & A. . 

i=l ij
n

= Z 3(i-i) A.. 
i=l

A= A^j, where ô(i-j) = Kronecker delta 

= >  = (adjoint A)^

By definition A ^

••• # =  W  -
-1

2. Prove: 9|A+B|/9A= |a +B|(A+B)'^
A and B are n x n matrices.

Proof: IA + B| = |c|

A ^ kth column
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|M= ?
n

= Z 6(i-j) C.. 
i=l

'=1:

= (adjoint C)*̂  

also, C-1 =

.*. = |A + B| (A + B)
,-l

-1 -1 T -1 T T T3. Prove: 3{x A z)/3A = -A xz A
Matrix A is n X n; X is an n-vector; z is an
m-vector.

Proof: xT
3*ij ^^ij

where differentiation is carried out with respect 
to a scalor, of which only A is a function.

(1) 3A ^/3a^j may be obtained as follows:

Since ^ 4 ^  . A-1 + A3a^j 3a^j 3a^j

Then A l|—  = A"1

or 1 1 ^  = -A-^ -jI ^  A-13*1] 3a.j
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where 9A/3a^j is a matrix of zeroes, except for the 
ij^^ element which is 1.

• ^ A-1,3aij da.ID
4 -1(2) Rename for notational convenience B = A

-x^a "^ a "^Z 5 -x'̂ B Bz3aij 3aij

using X B — j*"» # #Z x.b,. * # #"j, n — 1 *L i 1 1] J
and Bz =

^11 ••• ^in

^nl •*• ^nn
« ••

z_ n

n

&k^k , £ = 1 n

then " Bz =3aij
0 .. . 0 
• 1• ij • 
0 # #  # 0

n 
I b 
k Ak^k

I
all elements are zero, except

row j.
0

-x^B Bz =3aij
n m:

0



95

n m

is the only nonzero product. 

(3) Using,

I

^11 ••• ^nl

*̂ ln ••• ^nn

X,

n

and
n

... Z
k bjk=k ••• - [z^ ... z j

^11 ••• ^nl

^in ••• ^na.
E

then - X  BT„ 3A
3aij Bz, or - X  AT,-l 3A

3aij A z, is the ij. .th
m mT T T -1 T -1element of the product -B xz B , or -A xz A

4.
-1 -1 

Prove: 3 (x'̂  (A+B) "^z)/3A = -(A+B)^ xz'^(A+B)'^

Proof : 8(x^(AtB)~^z) _ 8 (A-I-B)~̂ z
Saij 3a..

(1) Similar to previous proof,

1(A+B)--- _ _ -1 (A+B)
3aij 3aij

 El = -x'^(A+B)“ ^ ' (A+B)” ^Z3aij 3aij

(2) Similar to previous proof.

-x?(A+B)"l (A+B)"^z3afj
n n
I k
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A -1where C = ( A + B )

(3) Similar to previous proof.

-x^(A+B)  ̂ (A+B) is the ij^^ element of theaafj
T T

product - (A+B) ^ xz^(A+B) ^ .

B.4 A Useful Identity

Prove: Exp[-| x'^(B+A)"^z] }

= - J  |B+A|"l/2 Exp[-| x^(B+A)”^z^

• [(B+A)'^ ^ - (B+A)"̂  ^Xz’’(B+A)^

Proof: Ix = |B+A|"3/2 lL®+Al. Exp[-| x'*̂ (B+A) "^zl

- I B+A "1/2 Exp[~ x^(B+A)~lz]- — ' '̂1^^ -- -

from previous gradient matrix identities,

~  =  - y  | B + A | " 2 / 2 | g + A | ( B + A ) T  ^ [ e x p  -j  x ^ ( B + A ) " 1 z J3A

X __ 2+ I |B+A|"l/2 Exp[~ x'^(B+A)"lzJ (B+A)^ xz^(B+A)^^

reducing,
■—  = -J |B+Arl/2Exp[-j x'^(B+A)"lzJ*[(B+A)l’

t "! t ”11- (B+A) xz(B+A) J.



APPENDIX C

NECESSARY AND SUFFICIENT CONDITIONS

C.l Necessary Conditions of Optimization 
The necessary condition for minimization is required 

for solution of the optimal adaptive estimation problem.
This condition is expressed as

= 0 ; S = {x(k) ,0,R}

where the cost function L is obtained in Appendix E. The 
requisite vector and matrix gradients may be obtained using 
the identities in Appendix B.

1. 3L/3x(k) = 0

Considering only those terms in L which are a function of 
x(k) ,

0 = ■g-— ^Exp["Y(z (k) - h[x(k)] - r}R~^{z (k)-h[x(k) l-r}*̂  

- ^{x(k) - x(k|k-l)}p"^(k|k-l){x(k) - x(k|k-l)}^j}

97
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0 = {-h'^[x(k) ]R"^z(k) - z'^(k)R"^h[x(k)]

+ h'^[x(k) ]R"^h[x(k)] + r^R-lhtxtk)] + h’’[x(k) ]R~^r}

+ {xT(k)p"l(k|k-l)x(k) - ;F(k|k-l)p"l(k|k-l)x(k)

- x^(k)P ^(k|k-l)x(k|k-l)}

where terms which are not a function of x(k) have not been 
retained.

Differentiation may be completed using the vector 
gradient identities of Appendix B.

0 = l-h^R“^z(k) - h^R"^z(k) + 2h^R“^h + h^R“^r + h^R“^r]X X X X X
+ [2p"l(k|k-l)x(k) - P~l(k|k-l)x(k|k-l)

- p""(k|k-l)x(k|k-l)]

where h and h^ are evaluated at x(k|k-l). From the series 
approximation for h[x(k)],

hj^[x(k)] = h^[x(k|k-l)]

After substitution and utilization of the symmetry of R and 
P(k|k-1) the final expression may be rearranged for x(k).

x(k) = [h^R'^h^ + P"l(k|k-l)]"l [p"^(klk-*l)x(klk-D 

+ h^R"^{z(k) - h + h^x(k|k-l) - r}]
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2. 3L/3R = 0

0 = 1 ^  1̂1 |h^[x(klk-l)]P(k|k-l)h^[x(klk-l)] + R|"l/2

• Exp[j-^{2 (k) - h[x(k)] - r}^R"^{z(k) - h[x(k)] - r} 

- ^{z(k) - h[x(k|k-l)] - r}*̂

• {h^[x(k|k-l)]P(klk-l)h^[x(klk-l)] + R}” ^

• {z(k) - h[x(k|k-l)] - r }] j

where terms not a function of R have been dropped. By the 
chain rule of differentiation,

0 = Exp (...){|h^Ph^ + R|"l/2 3 I

+ Ir I V ^ x +

• I V ^ x  + SR [-7 - h - r||

- i | | z - h ~ r | |  ]} ̂ Y J-

For notational convenience, the argument of Exp is not re­
peated explicitly since there is no change between steps.
The subscripts have been deleted also, but with no loss of 
clarity however. Finally, A merely denotes h evaluated at 
x(k|k-l) .

Differentiation is completed using matrix gradient 
identities in Appendix B.
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0 = -2 Exp(...){|Y|"l/2 |r|r"1 |R|"3/2

+ |Y|"3/2 |y|(Y)~l

+ |R|"l/2 |Y|"l/2[_p-l(2_h_r)(2_h_r)TR-l

- (Y)(z-h-r)(z-h-rf(Y)"^]}

The matrix Y(k|k-1) has previously been derived as 
{h^[x(k|k-l)]P(k|k-l)h^[x(k|k-l)] + R}. The abbreviated 
notation is used here however. Also, the symmetry of R and 
Y has been utilized. Factoring out the nontrivial value of 
R which satisfies this equation,

0 = r"^ + y“  ̂- r"^br“^ - y”^cy“^

where Y implicitly depends on R as previously derived. B 
and C are defined for notation convenience only as

B = (z - h - r)(z - h - r)^
A ^ /V ^C = (z - h - r)(z - h - r)

0 = 1^ (lf3j[x(k-llk-l)]P(k-llk-l)f^[x(k-llk-l)l +
3. 3L/3Q = 0

( ' .
• |h^[x(k|k-l)]P(k|k-l)h^[x(klk-l)] + R|"l/2

• Exp [-|{x (k)-f [x(k-11k-1) ] -q}T{f^ [x (k-11 k-1) ]

• P(k-l|k-l)f^[x(k-l|k-l)] + Q}"1

• {x(k)-f[x(k-l|k-l)]-q} - 2^z(k)-h[x(k|k-l)]-r}T

• {h^[x(k|k-l)]P(k|k-l)h^[x(k|k-l)]+R}"^

{z(k) - h[x(k|k-l)] - r}*̂ ]̂
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By the chain rule of differentiation,

0 = Exp(...){|P(k|k-l)|"l/2 |Y(k|k-l)|"l/2

• h  -x(k|k-i)||

- |||z(k) - z(k|k-l)|| ]
Y -^(k|k-l)

+ |P(k|k-l,,-l/2 3| Y(k|k-l)| -1/2
30

+ |Y(k|k-l)|"l/2 |p(k|k-l)|"l/2)

where we have previously defined

P(k|k-1) = f^[x(k-l|k-l)]P(k-llk-l)f^[x(k-lIk-l)] + Q 
Y(k|k-1) = h^[x(k|k-l)]P(k|k-l)h^[x(k|k-l)] + R 
x(k|k-l) = f [x (k-l| k-1) J + q 
z(k|k-l) = h[x(k|k-l)] + r

For notational brevity, the argument of Exp is deleted.
The following two steps are carried out by utilizing 

matrix gradient identities from Appendix B; the symmetry of 
P(kjk-l) and Y(k|k-1) is noted; and the exponential term is 
factored out.
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G = Exp(...) ̂ P(k|k-1) |Y(k|k-l)

• [-P"l(k|k-1) [x(k)-x(k|k-D] [x(k)-x(k|k-1) ]'̂ p"̂  (k|k-1) 

- h^y"^(k|k-l) [z{k)-z(k|k-D] [z (k)-z (k|k-l)

• Y"^(klk-l)h^] + |p(k|k-l)t"l/2 lY(klk-l)

• Y~l(k|k-l)hx Y(k|k-1)

+ |Y(k|k-l) |"l/2|p(k|k-l) r^/^|p(k|k-l) |p"l(k|k-l\^

-1 -1 T -1 -1 T -1 -1G = -P AP - h^Y DY + h^Y + P

where P and Y implicitly depend upon Q. For notational 
convenience,

P = P(k|k-1) and Y = Y(k|k-1)
A = [x(k) - X(k|k-1) ] [x(k) - x^k|k-l)]^
D = Iz(k) - z(k|k-l)][z(k) - z(k|k-l)]T

C.2 Sufficient Conditions for Optimization
The sufficient condition for a maximum of the objec- 

2 2tive function L is 3 L/3x (k) < 0. Therefore, from part 1 of
2 2this Appendix, 9 L/9x (k) is less than zero if

3 3 ? W  - h - r] - p"^(k k-l)x(k)} < G

Equivalently, P ^(k|k-l) - g^^tx(k) ,R,z (k) ] is positive 
definite where [x (k) ,R, z (k) ] is the n x n Jacobian matrix of 
h^R ^[z(k)-h-r] evaluated at x(k|k) for the sufficient condi­
tion for optimal filtering.



APPENDIX D 

PROBABILITY DENSITY FUNCTION IDENTITIES

D.l p[x(k),0,R|Z(k)]
Show

p[x (k) ,Q,r | Z (k) ] = p[z (k) |x(k) ,Q,R]
• p[x(k) ,0,R|Z(k-l)]p[Z(k-l)]/p[Z(k)J

By the definition of the conditional density

p(a| B) = p(a,B)/p(6)

where p(a,B) is the joint probability density function of 
random vectors a and B; p(B) is the marginal density function 
of B; and p(a|B) is the conditional probability density func­
tion of a given B.

Proof:
(1) Using the above definition,

p[x(k) ,Q,r 1 Z (k) ] = p[x(k) ,Q,R,Z (k) ]/p[Z (k) ]

(2) Develop an intermediate result by using the definition

p[z(k) |x(k) ,Z(k-l) ] = p[z (k) I x(k) ,z (k-1) ,z (k-2).. .z (1) ]

where Z(k) = {z(i), i = l,2...k}. Applying the definition
103
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p[z(k) |x(k) ,Z (k-1) ] = p[z (k) ,x(k) ,z (k-1) ... z (1) ]
T p[x(k) ,z (k-1) ... z (1) ]

Rearranging,

p[x(k),z(k),z(k-1)...z (1)] = p[z(k)|x(k),z(k-1)...z(1)]
• p [x (k) ,z (k-1) ... z (1) ]

Or, p(x(k),Z(k)] = p[z(k) |x(k) ,Z (k-1) ]p[x(k) ,Z(k-l) ]
= p [z (k) I X (k) ] p [x (k) ,Z (k-1) ]

since knowledge of x^^jsupercedes the need for Z (k-1) .

.*. p[x(k) ,Q,R,Z (k) ] = p[z (k) |x(k) ,Q,R]p[x(k) ,Q,R,Z (k-1) ]

(3) Again applying the definition,

p[x(k) ,Q,R,Z (k-1) ] = p[x(k) ,Q,R|z(k-l)]p[Z(k-l)]

(4) Consecutive application of parts 1 through 3 yields the 
desired equality.

D.2 p[x(k) ,Q,r | Z (k-1) ]
From the property of independent vectors

p(a,B) = p(a) p(B)

where a and g are statistically independent random vectors. 
It follows for x(k), Q, R mutually independent,

p[x(k) ,Q,R|z(k-l)] = p[x(k) lz(k-l)]p[Q|z(k-l)]p[R|z(k-l)l

= p[x(k) I Z (k-1) ]p(Q)p(R)



105
where the true moments, Q, R are independent of Z(k-l).

D.3 p[z(k) |z(k-l)3 
Show p[Z (k)]/p[Z(k-1)1 = p[z(k)1Z(k-1)1. From the 

definition of the conditional probability density function, 
p[Z(k)l may be rewritten as

p[Z(k)] = p[z(k) ,Z(k-l)]
= p[z(k) |Z(k-l)] p[Z(k-l)]

p[Z(k)]/p[Z(k-l)] = p[z(k) |Z(k-l)]p[Z(k-l)]/p[Z(k-l)l
= p[z(k) Iz(k-l)]

where Z(k) = {z (k) , z (k-1) ... z (1)}
= {z(k) ,Z(k-l) }

D. 4 Uniform Probability Density Distributions 
The following uniform probability densities have been 

utilized to obtain a solution to the maximization of the 
likelihood function with respect to the plant input and 
measurement error statistics.

(^max ®min^ ' ®min ^  ̂®max
p(Q) - 0 , otherwise

p(R) =
^^max ^min^ ' ^min  ̂ ^  ̂ ^max
0 , otherwise

V
These functions contribute only a pre-exponentail constant to 
the likelihood function which can be ignored if the above 
limiting values are not exceeded during estimation.



APPENDIX E

PROBABILITY DENSITY FUNCTION EVALUATION

Some definitions which are utilized in this Appendix E 
are the following.

x(k| j) = E [x(k) I Z (j) ]

for the Gaussian stochastic segue*ces {x(k), k = 0,1,2...} 
and {z(j), j = 1 ,2 ,...}.

II all g = a^Ba

This is the Euclidean norm of a over B.
Assuming ||x(k) - x(k|j)|| is sufficiently small for 

us to represent f[x(k)] and h[x(k)] by the first two terms of 
a Taylor series expansion about x(k|k) and x(k|k-l) respec­
tively, then

f[x(k)] = f[x(k|k)l + f^[x(k|k) ] [x(k) - x(k|k)] 
for k = 0 ,1,2...
and htx(k)] = h[x(k|k-l)] + h^ [x (k| k-1) ] [x (k) - x(k|k-l)] 
for k = 1,2...

The definition of the estimation error covariance is
106
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P(k|j) = E([x(k) - x(klj)][x(k) - x(k| j) (j) ]
= Cov [x (k) I Z (j ) ]

where
Z(j) = {z(i), i = 1,2...j}

Other definitions for the convenience of notation
only are

x(k| j) = [x(k) - x(kl j) ]
A

V  (k) = [v (k) - r (k) ]
w(k) = [w(k) - q (k) ]
x(k) = x(k|k), for identical double subscripts.

E.l p[x(k) |Z (k-1) ]
Assuming a Gaussian density, only the first two condi­

tional moments are required. The conditional mean is defined 
by

E[x(k)IZ (k-1)] = x(k|k-l)
= E(f[i(k-l)] + fj^[x(k-l)] [x(k-l)-x(k-D]

+ w(k-l) I Z(k-D)
= f[x(k-l)] + q(k-l)

which is the single stage prediction estimate using

E[x(k-1) |z(k-l)] = 0 
E[w(k-1) |z(k-l)] = q(k-l)
E(f [x(k-D ] |z(k-D) = f[x(k-l)] 

and x(k-l) = x(k-1 Ik-1) for notational convenience.
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The conditional variance is defined by

E([x(k) - x(klk-l) ] [x(k) - x(k|k-l)]'^|z(k-D) = P(k|k-1)
= E({f[x(k-1)] + f^[x(k-l) ] [x(k-*D - x(k-l)]

+ w(k-l) - f[x(k-l)] - q (k-1) } • {f [x (k-1) ]
+ f^[x(k-l) ] [x(k-l) - x(k-l)] + w(k-l)
- f [x(k-l)]}'^|z(k-l))

= f^[x(k-l)]P(k-l)f^[i(k-l)] + E(w(k-l)x^(k-l)
• f^[x(k-l)] Iz(k-D)
+ E(fj^[x(k-l)]x(k-l)w'^(k-l) Iz(k-D) + Q(k-l)

Assuming the state vector and plant input vector first moments 
are statistically independent,

E [w(k-l) - q(k-l) J [x(k-D - x(k-l)]^|Z(k-l)]
= E[w(k-1) |Z (k-1)] E[x?(k-l)|Z(k-l)]

- q(k-l) E[xF(k-l)|Z(k-l)] - E[w(k-l)|Z(k-l)]%T(k_i) 
+ q(k-l) X?(k-1)

= q(k-l) xF(k-l) - q(k-l) xF(k-l) - q(k-l) x^(k-l)
+ q(k-l) x'^(k-l)

=  0

Similarly, E[x(k-1) (k-1) | Z (k-1) } = 0. Therefore,
P(klk-l) = fj^[x(k-l)]P(k-l)f^[x(k-l)] + Q(k-l) where 
Q(k-l) = E[w(k-l)w'^(k-l) |z(k-l)].

Assuming the state vector remains normally distributed, 
the density function for the conditional random n-vector x(k) 
given Z(k-l) becomes
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plx(k) |z(k-l)] = (2TT)"^/2 |p(klk-l)
• Exp {-i||x(k) - x(k|k-l)||  ̂ , }

 ̂ P~^(k|k-1)

E.2 p[z(k) |x(k) ,0(k) ,R(k)]
The conditional mean is defined by

E [z (k) IX (k) ,Q (k) ,R(k) ] =E(h[x(k)] + v (k) | x (k)... }
= h[x(k)] + E[v(k) lx(k) ...]
= h[x (k) ] + r (k)
= z'(k)

where h[x(k)] is constant for a given value of x(k) and the 
error vector v(k) is assumed nonzero mean.

The conditional variance is defined by

E{[z(k) ~'z(k)][z(k) - z\k)]^|x(k)— }
= E({h[x(k)] + v(k) - h[x(k)] - r (k)}

• {h[x(k)l + v(k) - h[x(k)] - r (k) ] x (k)... )
= E{[v(k) - r(k)][v(k) - r (k) ]^ | x (k)...}
A= R(k)

The Gaussian density function for the conditional 
m-vector z(k), given x(k), becomes

p[z(k) |x(k) ,Q(k) ,R(k)] = (2n)-m/2 |a(k)|-l/2
• Exp [-i II z (k) - z'(k) II  ̂ , ]

R"-*- (k)
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E.3 p[z(k) |z(k-l)]
The conditional mean is defined by

E[z(k) |z(k-l)] = E{h[x(k|k-1)] + h^[x(k|k-l)] [x(k)
- x(klk-l)] + V (k) 1 Z (k-1) }

= h[x(k|k-l)] + h^[x(klk-l)]E[x(k|k-l)| Z(k-l)]
+ E[v(k) I Z(k-l) ]

= h[x(klk-l)] + r(k)
= z(klk-l)

where h[x(klk-l)] and h^[x(k|k-l)] are constant for a given 
value of x(klk-l), and r (k) = E [v(k) I Z (k-1) ].

The conditional variance is defined by

E{Iz(k) - z(klk-l)] [z(k) - z (klk-l)]^l Z(k-l)} A Y(k| k-1)
= E({h[x(k|k-1)] + hj^[x(k|k-l) ] [x(k) - x(k|k-l)]

+ v(k) - h[x(k|k-l)] - r (k)} • {h [x (k I k-1) 1 
+ h^[x(k| k-1) ] [x(k) - x(k|k-l)] + v(k)
- h[x(k|k-l)] - r(k)}T|z(k-l))

= h^[x(k|k-l)E{ [x(k) - X (k| k-1) ] [x (k) - x(k|k-l)]^ 
|z(k-l)} • h^[x(k|k-l)] + h^[x(k|k-l)l 
. E[x(k|k-1) v^(k) |Z(k-l)]
+ E[v(k) x'^(k|k-l) |z(k-l)]h^[x(k|k-l)] + R(k)

Assuming the state vector and measurement error vector 
first moment are statistically independent.
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E{[v(k) - r(k)][x(k) - i(k|k-l)]'^ z (k-1)}
= E[v(k) |z(k-l)l E (k) I z (k-1) ] - r(k)E[x'^(k) |z(k-l)3 

- E[v(k) |z(k-l)] x'^(klk-l) + r(k) ^^(k|k-l)
= r(k) x^(k|k-l) - r(k) xF(k|k-l) - r(k) x^(k|k-l)

+ r (k) x"̂  (k| k-1)
=  0

Similarly, E[x(k|k-1) v^(k)|z(k-l)] = 0. Therefore,
Y(k|k-1) = h^[x(k|k-l)]P(k|k-l)h^[x(k|k-l)] + R(k) where 
R(k) = Elv(k) v^(k)|z(k-l)] = R(k).

The Gaussian density function for the conditional 
m-vector z(k), given Z(k-1) , becomes

p[z(k) |z(k-l)] = (2n)""'/2 |y(k|k_i)|-l/2

• Exp [-i||z(k; - zXk|k-l)H  ̂ ? ]
 ̂ Y"^(k|k-1)

E. 4 p[x (k) I Z (k) ]
The consequent probability density function of x(k), 

given Z (k), which is of interest may be obtained from the 
results of parts E.l through E.3.

L = p[z(k) |x(k) ,Q(k) ,R(k)]p[x(k) |z(k-l)]/p[z(k) |z(k-l)]
= (2n)"(2m+n)/2|a(k)|-l/2|p(%|k_i)|-l/2|y(k|%_i)|-l/2

• Exp [-i||z(k) -z(k)|p. -i||x(k) -x(k|k-l)|p^
'• R"̂ (k) P I k  I k-1)

- ^ ||z(k) - z(k|k-l)|| 2
Y i(k|k-l)



APPENDIX F

KALMAN EXTENDED FILTER ALGORITHM

F.l Extended Filter
Evaluate [9L/3x^^^]^ -+ from Appendix C, and

(k)
using the matrix inversion lemma of Appendix A replace the 
first factor to obtain the results

*(k|k) = V >  h y  ̂ (z
- h + hx%(k|k_n - + P

Substitute the definition of the gain matrix W,

W A Ph^(R + h^Ph^)"^

*(k|k) ' - "^x^>'‘'x’''̂ '='(k) - h + V(klk-l)

■'■(k)" ^ ^*(k|k-l)

Rearranging this expression and substituting the alternate 
expression for W from Appendix A, one obtains the result.

*(k|k) " *(k|k-l) ■^^(k)(^(k) " htx(k|k-l)] - r̂ ĵ j)

for nonzero mean r^^^, and R^^^ assumed to be known.
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F.2 Extended Filter Error Covariance Matrix 
For a dynamic system modeled by the equation

X(k+1) ' f'X(k)' + ” (k)

with observations of the system available in the form

:|k+l) = h[*(k+l)' + ''(k 1) 

the filtered estimate of the state is given by

*(k|k) " *(k|k-l) ^-^(k) " h[X(k|k-l)] ■ z\k)]

where the filter gain matrix, W(k) is given by

"(k) = P(k|k-l)h%t*(k) ^ V(k|k-l)hx!‘^

The estimation error is defined by

*(k|k) " *(k) " *(k|k)

" f[*(k-l)] *(k-l) " f[X(k-l)] " S(k-l)

- Wh[X(k|k_i)] - ^^x^^(k|k-l) ̂ ^^^(k-1) ̂

■  Mhx[X(k|k-l)]*(k-l) Mhx[X(k|%_i)]f[X(%_i)]
M^xt*(k|k-l)]9(k_i) - + Wh[X(%|%_i)]

+ (k)

where substitutions using the model, observation, and predic­
tion equations have been made. This is further easily reduced 
to the recursive equation for filter error
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*(k|k) " fxt*(k-l)]*(k-l) *(k-l) " ^\^^(k|k-l)^

* fx[*(k-l)]%(k-l) - Whx[=(k|k-l)]"(k-l) 

” ^(k)

The filter error covariance matrix is obtained from the 
definition.

P(k|k, = (%(k|k)'%(k|k)>

' ®'^(klk)*'(k|k)'

Ti
• t ( I  -  W h x ) % ( k | k _ i ,  -  M ^ ( k , I  }

A
(k|k-l) “ *(k) " *(k|k-l)

= + W(k_i) - f[X(k-l)] - 9(k-l)

= fx[*(k-l)]*(k-l) + *(k-l)

U s i n g  P ( k | k - 1 )  = ^ ^ ^ ( k l k - l ) ^ a | k - l ) ^

and R(k, = E[v

the covariance matrix equation reduces to

P(k|k) = "  - "hx)P(k|k-i)(: -

"  G ' t ( k ) % X k | k - i , l ( :  - « V ’’
- (I - «bx,E,|X(k|k.i)t(k/'lwT + MR(k,W? 

= (I - Wh^)P(klk-l) (I - wh^)^ + WR(k)«^
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where and are statistically independent.
Consider the term

B[X(k|k-l)V(k)] = B[(X(k) - X(k|k-l))(V(k) "

Since = X(k|k-l)G[(V(k) " =\k))^3 ^ °

and E[X(k)V^k)] = E[X(k)] = ^^^(k)^^'^k)

by the statistical independence of and also

-E[X(k)f^k)' = -2 t*(k)'rlk) finally than E[X(k|%_i,vT%,l = 0. 
Similarly for = 0.

The expression for may be reduced to the final
recursive equation by rearranging to

^(k|k) = (I ^(k)^x^^(k|k-l) ■*■ ” (k) ^V(k|k-l)^x ^(k)^^*(k)

"  P(k|k-l)hxW^k)

= - ^x>^k|k-l)

where the alternate expression for the gain matrix has been 
substituted after the following rearrangement of the expression

^^(k) " (^\k|k-l) " ”V ( k | k - l ) ^ \  

then (WR(%) + ĥ^^* (k| k-1) ̂ x^ ^ ^(k|k-l)^x*



APPENDIX G

CHEMICAL REACTOR MODEL

Wells (34) previously has developed a mathematical 
model for an adiabatic stirred reactor. Figure G.l is a 
schematic of the physical system. It is assumed that:
1. The exiting solutions have been perfectly mixed inside 

the reactor and coolant containment.
2. There is no heat loss from the coolant containment to the 

surroundings.
3. The reactor wall has sufficient capacity to influence 

system dynamics.
4. The reactor contents undergo a second order irreversible 

exothermic reaction

2 A  B

A model for the reactor dynamics is obtained from the 
following four balances.
1. Energy balance on reactor contents

pvc II = pFC (T. - T) + AHkVC_^ - hA(T - T )
P  p i  A  W
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Figure G.l. Stirred Chemical Reactor.
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2. Energy balance on reactor wall

dT
P w V p w  dt- = - ?w) - V w ^ ^ w  - "̂ ĉ

3. Energy balance on coolant
dT
a f  = PcfcCpc'Tci - + V w < ^  - ■'o'

4. Mass balance on reactor contents

V 3E*: = f(Cai - =A> -

For convenience, these four state equations are 
normalized about an operating point in the temperature- 
concentration plane T^, C^. The resulting equations are

= - (c^ + c^) + Cg (1 + x^)^ exp (k̂ Xĵ /[l+Xĵ ] )

+ C^Xg + c^u^

^2 = - (Cg + Cg) xg + CgXi + CgXg

= - (c? + ^3 + CgXg + C7U2

%4 = - c^x^ - CgCl + exp (ki^i/tl+Xi]) + c^Ug

which have the vector form x = f(x,u). The process parameters
for this fourth order model are defined in Tables G.l, G.2 
and G.3. To maintain the system at the operating point 
(T , C ), steady state control functions are used for u,,5 S  J,

Ug and Ug.
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TABLE G.l 

PROCESS VARIABLES AND CONSTANTS

Symbol Definition Units

A reactor wall surface area ft2
coolant wall surface area ft"

^A weight concentration A in reactor lb/ft"
CAi weight concentration A at inlet lb/ft"
Cp mean heat capacity of reactor

contents Btu/lb-
pc
'pw
E
F

G
AH
h
hw

k
R
T

'̂ i

t
V
Vc
Tw

mean heat capacity of coolant 
mean heat capacity of wall 
activation energy 
volumetric flow rate of reactor 

effluent 
volumetric flow rate of coolant 
heat of reaction 
film coefficient in reactor 
film coefficient between wall and 

coolant 
Arrhenius rate constant 
gas constant
reactor effluent temperature
coolant temperature
reactor inlet stream temperature
wall temperature
time
reactor volume
coolant containment volume
wall volume
operating point concentration

°R
Btu/lb-°R
Btu/lb-°R
Btu/mol

ft /sec 
ft^/sec 
Btu/lb
Btu/ft^-°F-sec

Btu/ft^-op-sec — 1sec
Btu/mol-®R
°R
“R
°R
®R
sec
ft^
ft"
ft"
lb/ft"
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TABLE G.l— Continued

Symbol Definition Units

P
operating point temperature 
mean density of reactor contents

OR
Ib/ft^

Pc
Pw

mean density of coolant 
mean density of wall

Ib/ft^
Ib/ft^

TABLE G.2
DIMENSIONLESS CONSTANTS

Symbol Definition Value

kl E/RTg 1
Cl F/(Vg)

(k/g)Cg^ exp(-Kj^)
0.2
0.2

AHJt exp(-K^)CgV(pCpTgB) 1.0
C4 hA/(pVC ) 0.5
C5
Cec?cs
e

hA/(P«V»Cpwg)
W ‘PwVpw»>V ‘V>
W < P o V p c 8>
T/t

0.5
0.5
0.05
0.5
1/240

^1
*2
*3

-C3/C1
0
Cj/Ci

-5.0
0
1.0
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TABLE G.3 
DIMENSIONLESS VARIABLES

Symbol Definition

^1 = (T-T

(?w-
X 3  = (Tc-

^4 = (^A

s

X  = dx/dT

normalized reactor effluent 
temperature

normalized wall temperature 
normalized coolant temperature
normalized reactor effluent 

concentration
rate of change in normalized 

state variables
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All states are assumed to be measurable,- and the 

measurements are assumed to contain white Gaussian noise. 
The vector matrix measurement model is

__  _ — M  •m m

^1 1 0 0 0 ^1 ^1
^2 =: 0 1 0 0 + ^2
^3 0 0 1 0 =̂ 3 ^3
Z4 0 000 1 ^4 V4

— —

The state transition matrix for the linearized system 
is obtained from the Jacobian matrix for the state equations. 
The matrix of partial derivatives for these equations is

where ^11 =

11 ^12 0 ^14
21 ^22 ^23 0
0 ^32 ^33 0

41 0 0 ^44

) + 03klB^DE

12
14

= c.
2 Cg BE

22 - (C5 + Cg)

^23 =
32 = c.

^33 = 
^41 = 
^44 =

- (<=7 +
-Cg k^B^DE
- c^ - 2C2BE
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and B = (1 + x^) 

D = (1 + Xĵ )- 2

E = exp (kj^x^/tl + x^])
To complete the model, the initial condition state 

vector is
0

x(0) =
0
0

0.1

where the reactor is perturbed from the steady state with a 
10 percent disturbance in feed concentration. The prior 
statistics for the measurement error are given by the measure­
ment noise covariance matrix

11 0 0 0
0 ^22 0 0
0 0 ^33 0
0 0 0 ^44

R =

where the noise is assumed to be: (1) zero mean, (2) Gaussian
distributed, and (3) uncorrelated. The prior statistics 
for the plant noise are given by the plant noise covariance 
matrix

Oi

Q =

and the same previous three assumptions,

1 1 0 0 0

0 ^ 2 2 0 0

0 0 ®33 0

0 0 0 Q 4 4



APPENDIX H

COMPUTER PROGRAMS

There are three types of subroutines incorporated 
into the Computer Program for Adaptive Estimation. These 
three are as follows:
1. operational— utility programs for matrix operations and 

information retrieval.
2. user supplied— model specific programs reflecting user's 

choice of mathematical model and options.
3. functional— filter specific programs which depend upon 

the particular type of estimation method employed.

(1) ADD
(2) SUB
(3) MULT
(4) INVRS
(5) TRANS
(6) SYM
(7) IDEN
(8) SKALR
(9) MATPT

H.l Operational Subroutines
matrix addition, A + B = C
matrix subtraction, A - B = C
matrix multiplication, A x B = C
matrix inversion, A~^ = C, (sequentially (4)]

Tmatrix transpose, A -  C  

matrix symmetry, A^^ = (A^j + Aj^)/2 
matrix identity, A = [I] 
multiply a matrix by a scalar, b • A = C 
print a 1-dimension array as an (n x m)- 

dimension matrix 
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(10) TYM
(11) STR

(12) SUMRY

(13) DIAGV

(14) RPTQR

(1) C
(2) CNTRL

(3) SYS

(4) PHI

(5) MEASR

(6) PARTH

(7) STATE

(8) DSKSYS

125
print current model time 
store a set of vectors sequentially to 

facilitate printing later 
print summary of states, estimates, and 

observations as a function of model time 
store diagonal elements of a matrix in a 

vector to facilitate printing later 
print summary of plant and observation noise 

and covariances

H.2 User Supplied Subroutines 
constants used in mathematical model 
desired control function used in mathematical 

model
mathematical model; non-linear state function 

for continuous time model 
partial derivative of continuous time model 

(Jacobian]
non-linear measurement function; continuous 

time
partial derivations of non-linear measurement 

function [Jacobian] 
numerical integrates the non-linear state 

functions over given model time interval 
discretized non-linear state function; 

discrete time model
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(9) DSKPHI

(10) OBSRV

discretized linearized state functions;
discrete time linearized model 

generates "experimental observations" from 
exact measurement model and observational 
noise

H.3 Functional Subroutines
(1) PREDX predicts estimate of state
(2) FILTX filters estimate of state
(3) PREDP predicts estimate of state covariance
(4) FILTP filters estimate of state covariance
(5) PLTMN estimates plant noise mean
(6) PLTCO estimates plant noise covariance
(7) OBSMN estimates observation noise mean
(8) OBSCO estimates observation noise covariance
(9) RESID estimates observation residual

(10) WAIT estimates optimal filter gain
(11) SUCES implements Wegstein successive approximation

method


