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MDTATIONALLY-CREATED TRANSCRIPTIONAL INITIATORS IN THE 

ARGININE CLUSTER OF ESCHERICHIA COLI K-12

CHAPTER I 

INTRODUCTION

Promoter, Transcription. Initiation Site 

The promoter, as defined by Miller et al. (1), for a given 

operon, is the region in which transcription is initiated. Initiation 

includes all the processes involved in transcription up until the point 

at which the first RNA nucleotide is copied from DNA. This includes 

recognition and binding of RNA polymerase, and the opening up of the DNA 

duplex. Thus, a promoter governs the rate of transcription of a given 

operon. This rate can be altered by altering the promoter.

In the lactose system, there are three structural genes for 

the proteins 6-galactosidase (gene z), galactoside permease (gene 2) 

and thiogalactoside transacetylase (gene (2,3). The genes lie next 

to one another on the chromosome, in the order 2  " Z  " and are reg­
ulated by the repressor product of the ^  gene. In the absence of 6- 

galactoside inducers of the system, the repressor interacts with the 

lac operator (ô ) to prevent synthesis of the three proteins. Jacob and 

Mbnod (3) have suggested that repression involves an inhibition of 

transcription of lac operon DNA into a messenger RNA (mRNA) copy. This



model for regulation has received strong support from experiments of 

Gilbert and Müller-Hill (4,5) who have isolated the repressor protein 

and have found that it binds specifically to lac operator double stranded 
DNA. The lac repressor is a tetramer of a molecular weight around 

150,000 daltons. A horseshoe-shaped model of lac repressor covering 

20-30 nucleotide pairs on the DNA has been postulated (6), and with 

normal DNA, repressor does not prevent formation of the complex with 

polymerase, although it does stop transcription (7). This agrees with 

the traditional idea that the action of repressor is to get in the way 

of the polymerase enzyme.

The initiation of mRNA synthesis was first hypothesized to 

occur at the operator, in the original Jacob and Monod theory (3). In 

this version of the model, the operator possessed a dual function: (1)

interacting with the repressor, and (2) serving as an initiation point 

for transcription. Recognition of the promoter region awaited the iso­
lation of four mutants by Scaife and Beckwith (8). These four promoter 

mutations have these important characteristics: (a) they are pleio-

tropically lac negative and function in a cis-domlnant fashion; (b) they 

are not suppressible by any known nonsense or polarity suppressor; (c) 

they are ^  (they do not manifest a defect in repressibility). Point 

mutations LB, L29 and L37, in the promoter, reduce the level of lac 

operon expression by 15—fold. LI, a deletion, results in a 50-fold re­

duction in lac operon expression (9).

The principle used in isolating these mutants was to screen 

UV-induced lac mutants for ones which were leaky (9). It was assumed 

that some mutants, by altering but not abolishing the promoter, would



lower the maximal levels of the lac enzymes. Using these mutations, 

Ippen et al. (10) were able to locate the promoter between laci and 

laco. L8 and L37 appear to be identical. LI has been shown since to 

be a deletion extending into the jL gene (11). LI does not recombine 

with either of the two promoter point mutants (11). It was proposed 

that these mutations affected the process of initiation of transcription 

of the lac operon (12).

Â further complication in the understanding of the lac promoter 

region arises from the fact that this promoter is recognized efficiently 

by RNA polymerase only in the presence of the catabolite gene activator 

protein (CAP), and adenosine 3'-5' cyclic monophosphate (13). The lac 

operon and other opérons are said to be catabolite sensitive or subject 

to catabolite repression because the presence of glucose reduces their 

rate of expression. Glucose apparently brings about this result by de­

creasing the availability of adenosine 3'-5' cyclic monophosphate to 

CAP protein factor, which is absolutely dependent on this small molecule 

for transcription stimulating activity (13,14,15,16). It has been shown 

in vivo and by in vitro transcription systems that CAP protein and 3’-5’ 

cyclic AMP are necessary in addition to RNA polymerase for high levels 

of expression of lac operon (7,12,17,18). That the promoter is the 

target site for catabolite repression is indicated by the work of 

Silverstone et al. (19) and Perlman et al. (20). These groups have 

shown that lac promoter mutations result in a loss of catabolite re­

pression sensitivity. Furthermore, high level expression of lac that 

is insensitive to catabolite repression can result either from fusing 

the lac genes to a catabolite insensitive promoter (such as trp) (19),



or by generating second site, closely linked, revertants of promoter 

point mutations (21). Recently, Beckwith et al. (22) suggested that 

there are two distinct sites in the promoter by analysis of the promoter 

mutants of lac. One of these sites, between the region defined by de­

letion LI and the lac operator, which normally promotes a low level (2%) 

of lac transcription, functions independently of CAP and cyclic AMP, 

possibly by interacting with RNA polymerase holoenzyme alone. The second 

site, the region covered by LI, is a site through which CAP protein and 

3'-5' cyclic AMP stimulate lac transcription. They proposed that the 

function of the CAP and cyclic AMP complex is to bind to a site in the 

promoter, thus stimulating the initiation by RNA polymerase at the 

normally weak initiation site.

A similar delineation of the promoter and operator regions has 

been mapped for the trp operon in typhimurium (23). In other systems, 

such as his, the distinction is not so clear (24,25). The promoter and 

operator appear to be in reverse order in the arabinose operon (26).

The Transcribing Enzyme and Its Initiation Factor Sigma

The steps involved in the synthesis of RNA by RNA polymerase 

in vitro occur in the following sequence (27,28,29); the binding of the 

enzyme to DNA at discrete sites, initiation of RNA chains involves 

strand selection and the exclusive formation of a purine ribonucleoside 

triphosphate at the 5* end, elongation of the RNA chains from the 5* to 
the 3* end with concomitant elimination of inorganic pyrophosphate until 

a termination site is reached at which newly synthesized single-stranded 
RNA chains are released from the DNA-enzyme complex. Recently, a termi­

nation protein, called rho (p) factor, has been discovered by Roberts



(30) in the coli crude extract, which causes the release of discrete 

RNA. molecules in an ̂  vitro reaction using bacteriophage X DNA as tem­

plate.

The DNA-dependent RNA polymerase of Escherichia coli is comr-

posed of at least four different polypeptide chains: and a (27,

28,29). On the basis of the known molecular weights and the relative

contents of these components, the holoenzyme appears to have the struc­

ture a2BB'a. The core enzyme with the structure 02BB'', devoid of the 

subunit a, possesses all the enzyme activities associated with the poly­

merase for carrying out RNA synthesis, except that it cannot initiate 

RNA synthesis efficiently from the DNA duplex (27,28,29,31,32). Thus, 

the sigma subunit is essential for the proper initiation of transcription. 

The 6 subunit is the most important in the catalytic function of RNA 

polymerase, on the basis of the following investigations: (1) the 6
subunit may have the binding sites for the substrates (33); (2) the B 

subunit has the binding site for the antibiotic rifampin, a potent in­

hibitor of the initiation of RNA synthesis (33,34); (3) mutants resist­

ant to another antibiotic, streptolydigin, which inhibits elongation 

by binding to the polymerase, have an altered B subunit (34,35).

Sigma factor determines the specificity of initiation in bac­

terial cells and is released from the DNA-enzyme complex shortly after 

initiation, leaving the OgBg'' core enzyme to elongate the RNA chain. 

Hinckle and Chamberlin (31,32) reported that core enzyme by itself as­

sociates nonspecifically with DNA in loose binding which is rapidly 

reversible. Interaction with sigma forms a more stable complex in 

which the enzyme is tightly bound and can no longer dissociate from the



DNA. This ensures preferential initiation of transcription from tight 

binding sites. They agreed that sigma opens the DNA duplex for the 
start of transcription. Initiation depends on tenq>erature in a way 

which suggests that the first step in RNA synthesis is the action of 
sigma to melt the DNA to produce a region of local unwinding.

Granted that the sigma subunit may serve as a macromolecular 

allosteric effector to prime RNA polymerase for site selection, the 

question remains whether sigma itself bears structural information for 

recognition of the promoter sequence (36,37) or whether this information 

resides in the core polymerase but is expressed only when sigma is bound 

(34,38). The finding that sigma binds neither to DNA (31) nor to phos- 

phocellulose (39) makes models for sigma function in which sigma binds 

directly to the DNA promoter sequence less attractive, although they are 

not ruled out. It had originally been assumed that sigma subunit must 

carry the information for promoter sequence recognition, since sigma 
was thought to be replaced by an equivalent phage protein after phage 

infection, leading to the initiation of RNA chains at new promoter sites 

(37,40,41). It has recently been shown that this mechanism is not used 

in the switch of promoter specificity by phage T7 (42). If this is so, 

then the mechanism by which a promoter site is altered in other phage 

and bacterial systems must function through alteration of the core poly­

merase or through the imposition of other polymerases or specificity- 

altering factors (38,43).

The universal and asymmetric distribution of pyrimidine-rich 

clusters (poly dC, dT regions) over the two strands of DNA isolated from 

a variety of bacteria, bacteriophages and higher organisms, prompted



Szybalskl and coworkers (44) to put forward the hypothesis that pyri­

midine clusters could be the specific points for RNA polymerase to ini­

tiate. This hypothesis is further substantiated by the fact, that in 

synthetic polymers like dG:dC, dA:dT and dTC:dAC, the pyrimidine-con­

taining strands are preferentially transcribed by RNA polymerase (27,45), 

Moreover, X-ray diffraction studies have shown that the molecular con­

formation of the dG:dC or dA:dT polymers is different from that of the 

native DNA (27). Thus pyrimidine clusters might exhibit a higher af­

finity towards RNA polymerase.

Internal Promoters. Naturally-Occurring and Mutationally-Created

Tryptophan Operon 

The tryptophan (trp) operon is presently understood to consist 
of five contiguous genes each specifying a different polypeptide chain. 

The genes are arranged in the same sequence relative to the metabolic 

pathway in coli and Salmonella typhimurium, although the letter des­

ignations of the genes differ. The order of the trp operon of typhi­

murium is promotor(Pl)-operator(0)-trpA-trpB-trpE-trpD-trpC, The order 

of the promoter and operator sequence has been recently mapped by 

Callahan and Balbinder (46). The gene order in coli is PO-trpE-trpD- 

trpC-trpB-trpA. The order of the promoter and operator sequence is not 

entirely clear.

Investigations with the trp operon of typhimurium and 

coli reveal the existence of a relatively low-efficiency promoter ele­

ment (P2) at or near the boundary between the second and the third genes 

of the operon in addition to the principal promoter (PI) in the vicinity
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of the operator region (47,48).

The trp operon of _S. typhimurium appears to be composed of two 

independent units, trpA-trpB and trpE-trpD-trpC» each possessing a pro­

moter-like initiator element. However, the entire operon appears to 

function as a unit with respect to regulation by tryptophan, possessing 

a single operator region at the trpA end (47,49,50), Polarity mutations 

in the most operator-proximal gene (trpA) affect not only the function 

of the next gene (trpB), but also of the last three genes (trpE, trpD 

and trpC). However, the effect on trpB is rore severe, and in even the 

strongest trpA polarity mutants, an appreciable basal level of activity 

for the distal three genes persists. Deletion mutations extending into 

the operon from the operator end (trpA side of the operon) and ending 

in trpA eliminate expression of trpB, but retain a low constitutive 

level of function of the distal three genes, trpE, trpD and trpC. De­

letions ending in the second gene (trpB) yield essentially an identical 

result. However, expression of the three distal genes is completely 

lost in strains where the deletion extends past the boundary between 

second and the third genes (trpB-trpE), terminating in the third (trpE) 

or the fourth gene (trpD). Also the basal repressed level of the distal 

genes is decreased in strains with internal deletions eliminating the 

boundary between the second (trpB) and the third (trpE) genes.

These findings suggest that the apparent noncoordinate syn­

thesis of the enzymes of the trp operon results from the presence of 

the second promoter-like initiator element (P2) at or near the trpB- 

trpE boundary. The level of constitutive synthesis of those enzymes 

specified by the distal three genes is 2-3% of that synthesized by a



partially constitutive, 5-methyltryptophan-resistant (repressor-defi­
cient mutant) grown in the presence of tryptophan (47), and is about 40 

to 70% of the activity of the fully repressed wild type strains (49).
A homologous, low-efficiency promoter-like element exists be­

tween trpD and trpC in the trp operon of E, coli (48). As in typhi­

murium polarity mutations in the two most operator-proximal genes (trpE 

and trpD) fail to reduce the low-level constitutive expression initiated 

by the internal promoter, whereas polarity mutations in the third and 

the fourth genes (trpC and trpB) produce appreciable negative pleiotropy 

on the expression of the most operator-distal gene of the operon. Com­

parison of the enzyme levels of a maximally repressed culture with those 

of fully derepressed trpR~ constitutive cells indicates that constitutive 

P2 function is approximately 2% of the maximal rate and is responsible 

for synthesis of 80% of the trpC. trpB and trpA polypeptides present in 

repressed cells (48,51). Recently, P2 has been mapped within trpD near 

the operator distal end but on the operator proximal side of two trpD 

point mutants (51).
Since low-level constitutive expression of the three operator- 

distal genes is apparently not regulated by the trp repressor, the in­

ternal initiator (P2) seems to serve as a transcription initiator rather 

than as a special translational initiator (48,49).

A homologous internal initiator can be created by mutation 

within the trp operon of typhimurium. Mutants with deletions termi­

nating inside trpA (as mentioned above) lack trpB expression because 

the promoter, the operator, and the operator-proximal segment of the 

first gene, trpA, are deleted. Phenotypically, trpB"*" derivatives have
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been obtained by the induction of secondary mutations (called Ini) (50, 

52). They were induced by mutagens such as 2-aminopurine, nitro- 

soguanidine, and diethylsulfate and occur within the remaining segment 

of the trpA gene. The resultant mutant strains are able to grow on 

anthranilate-supplemented medium, indicating that all the genes except 

trpA are functioning.

Further study of the genetic and physiological characteristics 

of these mutagen-induced initiator elements indicated that the Ini muta­

tions could be created by a single DNA base-pair change (transition type) 

and were capable of generating a nucleotide sequence in the trpA gene 

which could initiate distal gene expression. There was also evidence 

that two distinct sites in the undeleted distal end of the trpA gene had 

the potential for becoming initiator elements as the result of a single 

base-pair change (50). In such trpBf** strains, the restored trpB activ­

ity in all cases is between 0.4 and 0.7 times the fully repressed wild- 

type level. The activity was found to be constitutive with respect to 

trp regulation, being essentially the same in cultures grown under con­

ditions of repression and derepression. The activity of the last three 

genes is increased to about the sum of the level restored by Ini muta­

tion and that determined by P2. Since expression of Ini mutations is 

constitutive (independent of derepression of the operon), and since the 

mutations do not require the proximity of a translation-terminating 

mutation for function, they differ from the translational "restart" 

mutations described in the rll region of bacteriophage T^ (53) and in 

the lac system of E. coli (54). It was concluded that Ini mutations 

are probably low-efficiency promoter elements serving as initiators of
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transcription (52).

Wuesthoff and Bauerle (52) constructed recombinant Ini strains 

in which proximal deletions (supX) are replaced so that the tryptophan 

operon is complete and normal except for the Ini mutations. Such strains 

are prototrophs (Anth!*3 and produced fully functional trpA enzyme.

Under repressed conditions all five gene products in such reconstituted 

Ini strains show higher levels than the wild-type control. The increase 
in trpA expression is surprising. It was concluded that recombinants 

are able to translate the Ini mutations as an apparent missense sequence. 

The Ini mutations also function as initiators when in combination with 

strongly polar trpA nonsense and frameshift mutations which lie between 

the operator and the Ini site. It was concluded that Ini mutations 

probably create low-efficiency transcription-initiation promoters. A 

tryptophan operon, with a supX deletion of PI, the operator, and the 

operator-proximal part of trpA, and with an Ini mutation in the remaining 

part of trpA, would then make two types of mRNA molecules in about equal 

quantities. Transcription initiations at the Ini mutation would result 

in mRNA carrying the information for the trpB, D, and genes, whereas 

the mRNA originating from initiations at P2 would code for the trpE, D, 

and products.

Morse and Yanofsky (55) selected coli feeder colonies show­

ing resistance to a combination of 6-methyltryptophan and 5-fluoro- 

anthranilate in the presence of anthranilic acid. It was found that one 

has a mutation in the operator-distal half of the first structural gene 

trpE, which acts as an initiating element. Unlike the Ini mutations, 

this mutation (trpE^) inactivates the trpE enzyme and simultaneously
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causes a partial constitutive functioning of four operator-distal genes 

(trpD, Ĉ , 2# 2nd A) at 30-50% of the maximal level observed for trpR~ 

constitutive mutants under maximal tryptophan-repressed conditions (com­

pared to 4% for the wild type). The auxotrophy of the trpE^ strain, 

due to the loss of trpE gene function. Is not suppressed by nonsense 

suppressors. The ̂  mutant reverts spontaneously to prototrophy (fre­

quency 2 X 10"®), but reversion Is not Induced by 2-amlnopurlne, nltro- 
soguanldlne, ethyImethan sulfonate or ICR. Reversion to prototrophy 

results In loss of the constltutlvlty of ̂  and the restoration of trpE 

gene expression. The mutation In the trpE gene apparently creates a 

transcription Initiator, since the resultant constitutive expression of 

the more distal genes Is not affected by tryptophan-mediated repression 

at the operator. Furthermore, the constitutive activity Is unaffected 

by the polar effects of a nonsense mutation Introduced Into the operator- 

proximal portion of the trpE gene. Constltutlvlty Is clearly the result 

of the Initiation of transcription at or near the ^  altered site, 

primarily for the distal four genes, as proved by hybridization studies 

of trp messenger RNA. They also noted that the operon with the Initia­

tion mutation can be derepressed to a significantly higher constitutive 

level by Introducing a trpR~ allele of the unlinked regulatory gene.

This Indicates that the transcription Initiator mutation in the trpE 

gene does not prevent transcription Initiated at the operator end (PI) 

from proceeding down the operon to the more distal genes. The added 

Increment of constitutive expression, however. Is not as great as that 

produced by a wild-type strain carrying a trpR" allele. Indicating some 

Interference with the transcription Initiated at PI. It Is possible
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that the ^  mutation involves the insertion of a foreign "promoter” 

internally into the trp operon and analogous to the insertions resulting 

in polar mutants of the lac and gal system (56,57,58,59,60).

A unique kind of initiator mutation, which may have a trans­
cription-terminating component as well as an initiation component, has 

been reported by Callahan and Balbinder (61). They reported a mutation 
(trpA515) which maps in the "unusual" region at the boundary between 

trpA and trpB in typhimurium. The initiator mutation, which was 

selected in a strain bearing a strongly polar mutation trpA49 in the 

most operator-proximal part of trpA, causes a dependence on 5-methyl- 

tryptophan for utilization of anthranilate as a growth factor. This 

analogue is normally a potent growth inhibitor and corepressor of syn­

thesis of the tryptophan biosynthetic enzymes. Given anthranilate, the 

double mutant grows better in the presence of 5-methyltryptophan than 

in its absence, \7hen the trpA49 is removed by recombination, the 

presence of the Initiator mutation alone causes trp auxotrophy and an 

absolute dependence on 5-methyltryptophan for growth with an anthranilate 

supplement.
In addition, trpA515 has the following unique enzymic prop­

erties: (1) trpA515 together with polar trpA49 has normal trpB function,

a higher trpD expression (three times as much as the wild-type) under 

repressed conditions, and trpB and trpD expression is not affected by 

physiological and genetic derepression; that is to say, their expression 

is constitutive; (2) trpA515 alone, shows a similar low-level consti­

tutive expression for trpB and trpD under repressed conditions. However, 

upon derepression, trpD is constitutive, but the trpB enzyme level is 

drastically reduced to 40%; (3) when trpA515 is combined with a supX
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deletion which eliminates PI and therefore eliminates all transcription 

at the operator end, the double mutant has low but significant consti­

tutive trpB and trpD enzyme levels, which are not affected by the pres­

ence of tryptophan or 5-methyltryptophan, and does not require the latter 

In order to utilize anthranilate for growth. These mutants have similar 

characteristics to the double mutant trpA49 trpA315 except they can grow 
twice as fast without 5-methyltryptophan.

A possible explanation for this peculiar phenotype Is that the 

mutation trpA515 creates a promoter for constitutive expression of the 

four operator-distal genes when the principal trp promoter (PI) Is 

either Inactive due to repression caused by tryphophan or 5-methyl­

tryptophan or due to a supX deletion. However, when PI Is functioning 

under derepressed conditions, the mutation Is read as a structural gene 

mutation In the "unusual" region and also acts as a terminator of trans­

criptions originating at PI, resulting In an extreme polarity effect for 

the four distal genes. The Initiator mutation reverts spontaneously but 

Is not Induced to revert by mutagens. It responds negatively to tests 

for a nonsense mutation. It resembles Insertion mutations with extreme 

polar effects (56,57,58,59,60).

Histidine Operon 

In the histidine operon of Salmonella typhimurium, the exist­

ence of Internal promoters and Internal Initiator has been reported 

although the work Is not as extensive as that for the tryptophan operon.

The histidine operon of typhimurium consists of promoter 

and operator regions followed by nine contiguous genes In the order of 

hlsG-hlsD-hlsC-hlsB-hlsH-hlsA-hlsF-hlsI-hlsE. Two natural internal pro­
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moters have been detected by Atkins and Loper (62) by using a highly 

sensitive intergeneric complementation test. They used a highly polar 

typhimurium his mutant with a deletion of the operator region as re­
cipient for coli his episomes. It was concluded that there are two 

natural initiators internal in the histidine operon which they designated 

P2 and P3. P2 is in hisC or at the hisC-hisB boundary, and P3 is in 

hisF or at the hisF-hisI boundary.

St. Pierre (63) studied hisG203 deletion strains of 2» typhi­

murium in which the second gene, hisD, is not functioning due to a de­

letion of the promoter, the operator, and the operator-proximal segment 

of the first gene, hisG. Secondary mutants could be selected for their 

ability to grow on histidinol, i.e., for restored expression of the 

intact hisD. Of 145 secondary mutants isolated, at least 91 contained 

point mutations mapping in the remaining distal portion of hisG. Seven­

ty-nine of these secondary mutants were shown to be allelic and are 

located in region VI of hisG. The site of the secondary mutations is 

thus very critical for expression of the operon in hisG203. This site 

may, by base pair transition, become an initiator site. These initia­

tion mutants are similar to the Ini mutants of the trp operon in the 

following ways: (1) both were isolated by base-transitional types of

mutagens; (2) they all restore 50% of the gene-expression distal and 

adjacent to the initiator mutations (i.e., hisD, in this case); (3) 

like the Ini mutations, hisG activity is restored after hisG203 second­

ary mutations were transduced into G203'*~. However, the mutations elicit 

a feedback hypersensitive and cold sensitive hisG enzyme.

However, the mechanism by which these mutations function
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has not been fully elucidated. They may be either transcriptional or 

translational types of reinitiators.

A unique way to isolate internal initiation mutants of the his 

operon in typhimurium was demonstrated by Mclntire and Loper (64).
The method is based on the same principle of intergeneric complementa­

tion by which they detected internal promoters as described earlier. 

Spontaneous aminotriazole-resistant (AT) mutants were isolated by plat­

ing a diploid strain hisOGD223/F*hisB~ on minimal medium in the presence 

of AT. Since AT is an inhibitor of one of the hisB enzymes, the diploid 

cannot grow. Two separate mutations conferring AT resistance cotransduce 

with the his P2 region, and do not impair function of hisC product.

These mutants show an increase of hisB enzyme and a decrease of hisD 

expression. Therefore these mutants represent events for increased pro­

motion at or near P2. The mode of action and mechanisms of these mu­

tants have yet to be elucidated.

The Regulation of Arginine Biosynthesis 

In Escherichia coli, arginine biosynthesis proceeds from 

glutamic acid via an eight-step reaction sequence. The intermediates 

and the reactions are shown in Figure 1. The first half of the pathway 

proceeds via a series of acetylated intermediates and is unique in 

nature. Between ornithine and arginine the reaction sequence is the 

same as that originally shown in mammalian tissues (65). The common 

and systematic names of the enzymes in the arginine biosynthetic path­

way are listed in Table 1,

The déacylation of acethylomithine to form ornithine is by 

two distinct mechanisms: a hydrolytic cleavage to release acetate, as
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Figure 1 . Arginine pathway in Escherichia coli.
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TABLE 1

ENZYMES OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI

Enzyme

Step Common name Systematic name

1 N-Acetylglutamate synthetase Acetyl-CoA:L-glutamate N- 
acetyltransferase (EC 2.3.1.1)

2 N-Acetyl-y-glutamokinase ATP:N-acetyl-L-glutamate 5- 
phosphotransferase

3 N-Acetylglutamic y-semi- 
aldehyde dehydrogenase

N-Acetyl-L-glntamate y-semi- 
aldehyde:NADP oxidoreductase 
(phosphorylating)

4 Acetylomithine 6-trans­
aminase

a-N-Acetyl-L-omithine : 2-oxo- 
glutarate aminotransferase 
(EC 2.6.1.11)

5 Acetylornlthinase a-N-Acetyl-L-ornithine amido- 
hydrolase

6 Ornithine transcarbamylase Carbamoylphosphate : L-omi thine 
carbamoyltransferase (EC 2.1.3.3)

7 Argininosuccinate synthetase L-Citrulline:L-aspartate ligase 
(AMP) (EC 6 .3.4.5)

8 Argininosuccinase L-Argininosuccinate arginine- 
lyase (EC 4.3.2.1)
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demonstrated in E» coll (66), and an acetyl-transfer to glutamate, form­

ing acetylglutamate as shown In Micrococcus glutamlcus (67). The latter 

also constitutes a second mechanism accomplishing the first reaction of 

the biosynthetic sequence for arginine.

The first enzyme In the pathway Is N-acetylglutamate synthetase 

(EC 2.3.1.1), specified by gene argA, which converts L-glutamate to N- 

acetyl-L-glutamate, with acetyl-CoA as the acetyl donor (68). In 1963, 

Vyas and Maas (69) demonstrated by an in vivo method of acétylation of 

glutamic acid that the enzyme was subject to feedback Inhibition by arg­

inine. However, the activity could not be demonstrated In cell-free ex­

tracts. Recently, Haas and Lelslnger were able to work out an In vitro 
assay of N-acetylglutamate synthetase both In Psuedomonas aeruginosa (70) 

and In E, coll K-12 (personal communication from T. Lelslnger).

N-acetyl-y-glutamoklnase, the second enzyme In the pathway. Is 

specified by argB and converts N-acetylglutamate to N-acetyl-y-glutarayl 

phosphate (71).

N-acetylglutamlc-y-semlaldehyde dehydrogenase, encoded In argC, 

catalyzes the NADPH-dependent formation of N-acetyl-glutamlc-y-seml- 

aldehyde from N-acetyl-y-glutamyl phosphate (71).

Acetylomithine 6-transamlnase (EC 2.6.1.11), specified by argP. 

converts N-acetylglutamlc-y-semlaldehyde to N-acetylomlthlne with gluta­

mate serving as the amino donor. The enzyme was shown to be dependent on 

glutamate and pyrldoxal-5-phosphate for maximal activity and yields a- 

ketoglutarate as a by-product (72).

Acetylornlthinase, the fifth enzyme of the arginine pathway, 

encoded In argE, catalyzes the hydrolytic cleavage of acetylomithine to
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ornithine. Its activity is dependent upon the cobaltous ion and gluta­

thione, and produces one mole of acetate for each mole of acetylomithine 

cleaved (66). An vitro synthesis of N-acetyl-L-omithine in coli 

K-12 has been recently demonstrated by Urm and coworkers (73),

Ornithine transcarbamylase (EC 2.1.3.3), enzyme 6, is encoded

by argF and argi in coli K-12. This enzyme (OTC) requires carbamyl

phosphate (74). Either of the two genes is able to produce a functional
%

ornithine transcarbamylase (75). Recently it was shown (76) that when 

both are active in the same cell, the two gene products Interact to 

form a family of four hybrid trimeric isoenzymes. In coli B and W,

only the argI product is found.

Argininosuccinate synthetase (EC 6.3.4.5) is specified by argG. 

This enzyme has not been studied in _E. coli except for some preliminary 

repression-derepression studies. It converts citrulllne to arginino­

succinate in the presence of ATP and aspartate (77).

Argininosuccinase, specified by argH, converts argininosuccinate 

to arginine with the release of fumarate (78).

The location on the coli chromosome of the eight genes 

which code for the biosynthetic enzymes, other genes associated with 

the arginine system, and selected reference markers, are shown in 

Figure 2 (79,80). The genes coding for the eight biosynthetic enzymes 
are located in six regions on the coli chromosome, with argE, argC, 

argB, and argH being clustered at minute 78.7 (79). The other structural 

genes are widely dispersed. The argM present in coli W, is re­

sponsible for production of an inducible transaminase (81,82,83); this 

gene appears to be another structural gene for a second acetylomithine



21

metB 
met F

E-C-B-H 
a'rg rif

7 9 : - - " '  7 9 . 5 '

9 0 - ^ - ^ 0

arg E,C,B,H
ilv o ^ rg  M

f VPrgR 
aroE \a r g G

Figure 2. Linkage map showing genes of the arginine system in 
E. coli and reference markers.



22

6-transaminase (personal communication from E. Jones). Ornithine trans­

carbamylase is encoded by two structural genes argF and argi (75). Both 

genes must be non-functional in order for a K-12 strain to be OTC-less.

The arginine permease specified by argP, is responsible for the uptake 

of arginine, lysine and ornithine as well as canavanine (85,86), hence, 

argP mutants are also phenotypically canavanine-resistant. The other 

two genes which, when mutated, give rise to the phenotype of canavanine- 

resistance are the argR gene and the argS gene (87). The argS marker 

codes for arginyl-tRNA synthetase (88). A regulatory gene locus argR, 
controls the expression of all nine structural genes (90,91,92,93,94,95, 

96). The arginine system has been termed a "regulon” (92).

The regulation of arginine synthesis in coli has been studied 
in three strains: W, K-12 and B. Though scattered, the genes in K-12

and W are controlled in parallel through repression by the end-product 

arginine (90,91,92,97), whereas in jE. coli B, at least partial induction 

by arginine occurs (93,94,98). However, a repressible mutant was iso­

lated from the nonrepressible strain B (93,94,98). The difference be­

tween strain K-12 and B now appears to reside in the nature of the argR 

alleles: strains carrying K-12 regulatory gene are repressible, those

with the strain B gene are inducible (91,94,95). Indeed, in an elegant 

series of experiments involving merodiploids containing an amber nonsense 

mutation in the gene argR and various amber suppressor genes, Jacoby and 

Gorini (95) demonstrated that substitution of one amino acid by another

in the argR gene protein product can change the type of regulation from

that observed in E, coli B to that in coli K-12.

It was reported that in transient argRt/argR" zygotes, argR***
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(or represslbility) is dominant over argR” (non-repressibility) (91).

In permanent merodiploids for the argR region, arginine is able to re­

press synthesis of OTC, showing again that argRt is trans-dominant to 

argR" (92). Strains with amber and temperature-sensitive mutations in 

the argR locus (95) provide evidence for a protein repressor. Udaka

(99), in 1970, reported the isolation from JE. coli K-12 of a protein 

fraction, presumably containing the arginine repressor, whose character­

ization is still incomplete.

That arginine or a derivative can act as the corepressor for 

enzymes in the arginine biosynthetic pathway was first observed in 1953

(100) when it was discovered that arginine added to growing cultures of 

strain W of coli represses the formation of acetylornlthinase. Since 

then it has been well documented that in the arginine biosynthetic path­

way, repression of all eight biosynthetic enzymes in coll depends upon 

the level of intracellular arginine and upon the argR gene (90,93). It 

appears reasonable that the corepressor is arginine or a derivative and 

the aporepressor is specified by the argR gene. However, the mechanism 

by which they generate a repression signal is still under investigation.

Direct evidence suggesting a transcriptional control of arginine 

has been obtained recently. The fraction of total RNA hybridizing with 

the DHA of a <|>80 bacteriophage transducing the argECBH cluster is about 
0.02% in argR*" strains grown in the presence of excess arginine and in­

creases to 0.4% under conditions of physiological (101,102) as well as 

genetic (argR“mutants) derepression (102,103); it reaches the intermediate 

value of 0.15% in a wild-type argR"*" strain grown in the absence of arg­

inine (101,102,104). These data are consistent with the view that
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arginine signals repression by inhibiting the initiation of trans­

cription of arg-mRNA and that the process is mediated in some way by the 

argR gene product. However, the possibility of a translational control 

signal operating simultaneously at a different level during repression, 

as suggested by Lavalle (105) cannot be ruled out.

By indirect and direct evidence, Vogel’s group suggested that 

there are both transcriptional and translational aspects of arginine re­

pression. McLellan and Vogel (106) explored the translational aspect of 

repression. They studied the accumulation of messenger RNA for arginine 

enzymes by starving auxotrophs for arginine, inhibiting further trans­

cription with rifampin and measuring enzyme formation in the presence of 

either an excess, or a restricted, supply of arginine. For the argR+ 

strain, little mRNA was found without starvation; for argR", a consider­

able amount of mRNA was demonstrated even without starvation. It was 

found that in the presence of excess arginine, there is substantial 

translation in an argR" strain, but relatively little translation in an 

argR* strain, apparently due to an accelerated degradation of mRNA under 

repressive conditions. Moreover, the formation and decay of mRNA were 

investigated directly by hybridization techniques (107). It was con­

cluded that arginine exerts both translational as well as transcription­

al repression on the arginine biosynthetic enzymes.

Further evidence of translational control was derived from 

studies with ribosomal inhibitors (108,109,110). Translational re­

pression by arginine was inferred from the findings that tetracycline 

or streptomycin, during partial growth inhibition, will lower the dif­

ferential rates of formation of the arginine enzymes when the conditions
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are physiologically or genetically derepressed, but not when they are re­
pressive.

Faanes and Rodgers showed that the arginine analogue, L-cana- 

vanine, represses the accumulation of translatable mRNA for three argin­

ine enzymes in coli (111). However, the added canavanine has little 

or no effect on reducing the level of hybridizable argECBH messenger 

RNA under conditions in which canavanine prevents formation of trans­

latable message. It apparently acts as a translational signal of re­

pression.

In Neurospora crassa, arginyl-tRNA synthetase may play a role 

in the regulation of arginine biosynthesis. Nazario (112) has isolated 

arglO (argininosuccinase) mutants which maintain high levels of ornithine 

carbamyltransferase even when grown in the presence of excess arginine.

It was discovered that arginyl-tRNA synthetase is inhibited by the ac­

cumulated argininosuccinate in the cells, and this inhibition leads to a 

marked reduction in the percentage of charged arginyl-tRNA in the cells. 

Furthermore, inhibition of arginyl-tRNA synthetase activity by ornithine, 

citrulline, and argininosuccinate have been reported for Escherichia 

coli (113). Conversely, Hirshfield et (114) reported the repression 

of arginine biosynthetic enzymes by arginine is unaltered in canavanine- 

resistant mutants of coli possessing defective arginyl-tRNA syn­

thetases. In addition, Celis and Haas (115) have reported that charging 

of arginyl-tRNA (five isoaccepting species) is not correlated with re­

pression of arginine biosynthesis.

Faanes and Rodgers (111) have recently reported that canavanine 

repression of translatable messenger RNA for three arginine enzymes does
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not occur in argS mutants unless canavanyl-tRNA is allowed to accumulate 

in such mutants. After 20 min growth with canavanine, coll strains 

containing a defective arginyl-tRNA synthetase (argS mutants) shows only 

9% of tRNA^’̂® which is protected from periodate oxidation, whereas an 

argS^ strain has 42% charged tRNA^^®. However, they failed to detect a 

specific arginyl-tRNA species that might be involved in repression by 

canavanine. The data suggest that canavanine repression of the arginine 

pathway occurs only when high levels of canavanyl-tRNA are present, and 

thus support the notion that arginyl-tRNA synthetase plays a role in 

generating a repression signal.

Most recently, Williams (116) was able to show a role for 

arginyl-tRNA synthetase in the generation of the repression signal. In­

stead of isolating canavanine-resistant mutants derived from arginine 

bradytrophs in arginine-free enriched medium as performed by Hirshfield 

et al. (114), his canavanine-resistant mutants were derived from argin­

ine prototrophs grown in minimal medium (116). These mutants were 

screened for nonrepressible synthesis of arginine; all such mutants (non- 

repressible) are arginyl-tRNA synthetase mutants possessing about 30-70% 

of the normal synthetase activity. The mutant enzymes exhibit turnover 

in vivo and are less stable In vitro than those of the wild type at both 

4°C and 40°C; they also possess different affinities for both arginine 

and canavanine. Furthermore, in one case it was shown that (1) the 

mutant possesses unaltered uptake of arginine, and (2) that the mutant 

possesses diminished ability to incorporate canavanine into proteins 

and to attach canavanine to tRNA. Results of genetic experiments sug­

gested that the mutants differ from the wild-type strain at only one
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locus, that is to say that non-repressibility and reduced arginyl-tRNA 

synthetase activity are the results of a single mutation. Results also 

suggest that this mutation lies in the region of the chromosome desig­

nated for arginyl-tRNA (argS). It appears that arginyl-tRNA synthetase 

may be involved in some way in repression by arginine of its own bio­

synthetic enzymes. Furthermore, Williams and Williams (117) were able 

to show that one of the arginyl-tRNA synthetase mutants has reduced in 

vivo aminoacylation of two of the five isoaccepting species of tRNA^^^ 

and complete absence of aminoacylation of one of the five isoaccepting 

species. These data suggest that a finite level of aminoacylation of 

tRNA^^® (all or one specific species) is essential for the generation 

of the repression signal. Based on the above evidence, it was proposed 

that arginyl-tRNA or arginyl-tRNA complexed with the synthetase is the 

corepressor or serves as the physiologically significant unit from which 

the corepressor is derived.

An interesting feature of the arginine system is the tight 

cluster formed by argE, £, £  and H. These genes were found to be ar­

ranged in that order by three-point transduction tests and deletion 

mapping (118,119). Although the four loci appear to be adjacent, their 

expression is not strictly coordinated. Baumberg et al. (120) reported 

a two fold difference in the repressibility coefficients of argE and 

argH expression. Glansdorff and Sand (121) reached independently the 

same conclusion and concluded, in addition, that the expressions of argC. 

£  and H present a strong degree of coordination, the repressibility co­

efficient of the corresponding enzymes being about 50. On the other 

hand, the repressibility coefficient for the synthesis of the enzyme
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specified by argE is about 18.

The observation of polar effects of certain nonsense and de­

letion (presumably frameshift) mutations in argC and argB on the ex­

pression of ^  and H, and of H respectively (119,122), and of an argC 

mutation, probably frameshift, on the expression of ^  and H (89), are in 

agreement that nonsense and frameshift mutations exist in argC which ex­

ert a polar effect on argB and argH; nonsense and frameshift mutations 

in argB exert a polar effect only on argH. Nonsense and frameshift mu­

tations in argH are nonpolar. These data together with the coordination 

of argB, £  and H expression suggest that argCBH belongs to the same unit 

of expression and are polarized clockwise in the order Ĉ, ^  and H. Non­

sense and frameshift mutation argE (119,123) are nonpolar, suggesting in 

agreement with the lack of coordination of argE with argC, ^  and H activi­

ties, that argE belongs to a different unit of expression.

Recently, both Glansdorff (124) and Jacoby (122) have reached 

independently the same conclusion that argE and argCBH form two opérons 

transcribed in opposite directions (divergently) from an internal pro- 

moter-operator complex between argE and argC (Figure 3). Their results 

are discussed below.

Early in 1969, Glansdorff*s group (119) had observed a peculi­

arity in cluster-gene expression of strain argEC-1, which has a deletion 

covering all of argE and the operator-proximal portion of argC. This 

strain has no trace of argE, argC and argB expression, but shows a low, 

constitutive, residual expression of argH, which is no longer repress­

ible by arginine (124). They also showed that the argEC-1 mutation is 

trans-recessive. The properties of the argEC-1 deletion imply that argB
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and H are controlled by an operator situated to the left of argC. More­

over, the same constitutive low level of argH expression Is shown In 

another deletion mutant, P4XEC(B). In which the genes ppc. argE. argC. 

and probably a small portion of argB have been eliminated. These results 

suggest that the low residual level of argH observed Is due to an In­

ternal Initiator situated somewhere within argB or at the argB-H junction.

It was also observed that In a mutant carrying an argCB de­

letion (sup-102) which greatly lowers the rate of expression of argE but 

falls short of known argE markers. argH expression under repressed con­

ditions Is Increased three and a half fold as compared to that of the 

normal wild-type strain (119,124). From aup-102 several derivatives 

were Isolated In which the expression of argE Is partly restored (124).

In about a third of these strains, both argE and argH are expressed 

almost constltutlvely, and the mutations responsible appear to be cls- 

domlnant and to map to the right of argE. probably between argE and argC. 

In two mutants with constitutive argE expression, argH appears to be de­

leted; since argE Is constitutive In the two mutant strains, the de­

letion that removed argH might affect Its operator. Since these two 

classes of mutations which reactivate argE expression constltutlvely are 

located on the right side of argE. It was suggested that an Internal 

promoter-operator complex Is situated between argE and argC.

Independently, and with a direct approach to the problem,

Jacoby (122) succeeded In Isolating operator mutations specific for genes 

In the arginine cluster. The technique employed Is similar to that used 

for selecting operator mutations for argi (95,123), and relies on the 

observation that streptomycin-induced suppression of an arginine non­
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sense mutation requires relief of repression such as Imposed by the non- 

end product repressible argR allele. Such operator mutations have been 

found. These 0^ mutations map between argE and argC, are cls-domlnant, 

and cause partial constltutlvlty for argE as well as for argCBH (122). 

These results confirm Glansdorff's conclusions that the argECBH cluster 

comprises two opérons transcribed divergently from an Internal promoter- 

operator complex (Figure 3). The promoter-operator complex has not been 

genetically defined as yet. By preliminary hybridization studies. It 

was demonstrated that argE Is transcribed from the heavy chain of the 

double stranded DNA, whereas argCBH Is transcribed from the light chain 

(personal communication from R. Cunln).

The purpose of the work presented here Is to gain more basic 

Information as to the functional organization of the clustered arginine 

genes. We have Isolated several mutants following nitrous acid muta­

genesis. These mutants lose argB expression and concomitantly show a 

high argH expression under maximal arginine-repressed conditions. We 

have characterized them as to their locations In the arginine cluster 

both by three-point transduction tests and deletion mapping We have 

also studied their physiologic function when they are combined with 

either nonsense mutations or with promoter-operator deletions.
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CHAPTER II

MATERIALS AND METHODS

Bacterial and Phage Strains

All strains of Escherichia coll and Salmonella typhlmurlum 

not arising as a result of genetic manipulation during the course of 

this study are listed In Table 2. Strains In use were maintained either 

on L agar slants, or In the case of merodiploids, on minimal medium agar 

slants supplemented so as to select for retention of the eplsome. All 

cultures were grown at 37°C and stored at 4°C.

Bacteriophage Pike, a generalized transducing phage for jE. 

coll, K-12 and B, Is a clear-plaque mutant of Pi.

Chemicals

The following chemicals and enzymes were purchased from the 
Calblochem Company: argininosuccinate (barium salt), glutathione (re­

duced), a-ketoglutarate, adenosine 5'-triphosphate, pyrldozal phosphate, 

pyruvate kinase, L-canavanlne sulfate, CIslands reagent, L-arglnlne 

(arg), L-omlthlne (om), L-cltrulllne (clt), L-tyroslne, L-tryptophan 

(trp) and L-phenylalanlne. 2-Amlnopurlne (AP), N-a-acetyl-L-omlthlne 

(aco), N-acetyl-L-glutamlc acid, phosphoenolpyruvate, p-amlnobenzolc 

acid, p-hydroxybenzolc acid, thymine, nicotinamide adenine dlnucleotlde 

phosphate (NADP) were products of Sigma Chemical Company. Kanamycln
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TABLE 2

LIST OF STRAINS

Strain* Other
Designation

Mating
Type

EcK2 K12,W.T. f“
EcK20 KLF5/AB2463 F'

EcKlOl Ra-2 Hfr

EcKlll P4X6 Hfr

ECK112 P4X6R1 Hfr

EcK164 KL16-99 Hfr

EcK172 HCB6-21 Hfr P4X

EcK173 MN42 Hfr P4X

EcK174 P4XN1601
P4XEC(B)

Hfr P4X

EcK175 Sup—102 Hfr P4X

Genotype and Comments Source and 
References

prototroph
F' argE*/argE" thl thr leu proA 
his str recA-13 X" lac gal ara 
xyl mtl

* \netB argECBH rif
metB—1:< " —  — — —------  proB proA leu
metB-1 rif;-< :---- — —  ProB proA leu
thi X recAl;-<-thy recA 
metB A(argCB-l)

serA

iroB proA leu 
metB A(ppc-argECBH)

metB A(ppc-argECB)

metB A[argE(?)-argCB]

K. B. Low (126)

K. B. Low (126, 
127)
D. Ezekiel (128) 

D. Ezekiel (128) 

K. B. Low (126)

N. Glansdorff 
(119,124)
N. Glansdorff 
(142)
N. Glansdorff 
(119, 124)
N. Glansdorff 
(119, 124)

ww



TABLE 2 continued

Strain Other
Designation

Mating
Type

Genotype and Comments Source and 
References

EcK176 HCB7-18 Hfr P4X metB A(argEC-1) N. Glansdorff 
(119, 124)

EcB177 MG126 F" aroE argRlS his strA40 argC,ir;/\ G. Jacoby (122)
EcKlSO MG427 f“ A(ppc-argECBH) G. Jacoby (122)
EcK183 MG535 f” thy str^ argOKHRH argR^ G. Jacoby (122)
EcK185 30S0MA4, Hfr P4X argB-1 thl N. Glansdorff 

(118, 119)
EcK186 12dTP67 Hfr P4X metB argB-5 N. Glansdorff 

(119)
EcK187 MN8A Hfr P4X metB argB-2 N. Glansdorff 

(119)
EcK188 30SOMA2 Hfr P4X argH-3 thl N. Glansdorff 

(118)
EcK189 C600R9 f” A(ppc-argECBH) supE N. Glansdorff 

(119)
EcK190 342G1 f " argH-2 thr leu thl his pro N. Glansdorff 

(115)
EcK191 P4XSB145 Hfr P4X metB argH-1 N. Glansdorff 

(119)
EcK198 RP31 f“ thl thyA argG metB his aroE str 4>8G®®”® W. Maas

w
JS



TABLE 2 continued

Strain* Other
Designation

Mating
Type

Genotype and Comments^ Source and 
References

EcW444 45A25 f“ argG H. J. Vogel
EcK496 — — f " argH496 D . Stroman
EcKlSSl — — Hfr P4X6 metB-1 argB D. Stroman
EcK1583 — — Hfr P4X6 metB-1 argB D. Stroman
ECK1585 — — Hfr P4X6 metB-1 argB D. Stroman
EcK1586 — — Hfr P4X6 metB-1 argB D. Stroman
ECK1593 — — Hfr P4X6 metB-1 argB*" D. Stroman
ECK1598 — — Hfr P4X6 metB-1 argB D. Stroman
EcK1637 — — Hfr P4X6 metB-1 argB D. Stroman
EcK1668 — — Hfr P4X6 metB-1 argB D. Stroman
EcK1734 — — Hfr P4X6 metB-1 argB D. Stroman
ECK1808 — — - Hfr P4X6 argBlSll D. Stroman
ECR1809 — — Hfr P4X6 argBlSll rif D . Stroman
ECK1810 — — Hfr P4X6 argC1418 D. Stroman
EcR1811 — — Hfr P4X6 argE492 rif D. Stroman
EcK1817 — — Hfr P4X6 argE492 D. Stroman
EcK1818 — — Hfr P4X6 argE492 rif D. Stroman
ECK1820 — — Hfr P4X6 argH496 D. Stroman

w
V I



TABLE 2 continued

Strain* Other
Designation

Mating
Type

Genotype and Comments^ Source and 
References

EcK1982 —  —“ Hfr P4X6 metB ar^H D . Stroman
ECK2007 - - Hfr P4X6 metB A(argBH) D. Stroman
EcK2009 —  — Hfr P4X6 metB argH D. Stroman
ECK2041 — — Hfr P4X6 m e ^  argB* D . Stroman
EcK2058 — — Hfr P4X6 metB argB D. Stroman
ECK2082 — — Hfr P4X6 metB argB D . Stroman
ECK2084 —  — Hfr P4X6 metB argE D. Stroman
ECK2402 —  — F" argRlO E. Schneider
Sal27 SL4040 F' F'gal^attl sup812 (ochre)/gal** met trp 

fla str rfb
J. J. Ferrettl 
(153)

Sal428 —  — f“ hlsG428 (ochre mutation) J. J. Ferrettl
Sal2100 — — f" hlsG2100 (frameshift mutation) J. J. Ferrettl
Sal3018 — — f" hlsD3018 (frameshift mutation) J. J. Ferrettl

wo\

EcK, E.coli K-12;
EcW, E.coli W;
EcB, E.coli B;
Sal, Salmonella typhlmurlum, LT-2.

b-<- * point of origin;
A ( ), designates deletion,

c argX mutants.
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sulfate (USP) and neomycin sulfate (US?) are from Bristol Laboratories 

and Charles Pfizer & Co., Inc., respectively. Rifampin (rif) and streptor 

mycln sulfate (USP) are from Schwartz/Mann. Dlethylsulfate (DES) and 

ethyl methanesulfonate (EMS) were purchased from Fisher Scientific 

Company and Eastman Organic Chemical, respectively. N-methyl-N'-nltro- 

N-nltrosoguanldlne (NT6) was obtained from Aldrich Chemical Co., Inc. 

o-Amlnobenzaldehyde was a product of K and K Chemical Co. and was re­

distilled before use. Arglnase was purchased from Worthington Bio­

chemical Corporation. ICR-191 was a gift from Dr. Hugh J. Creech.

All other reagents and solvents were obtained commercially In 

the highest grade available.

Media and Reagents 

All media were purchased from Dlfco Laboratories except M-Z 

Case, which was purchased from Sheffield Chemicals. N-Z Case Is a 

vltamln-free enzymatic digest of casein.

Minimal Medium A (MMA). MMA (129) was prepared ten times con­

centrated (lOX), stored over chloroform (2 ml/1), and diluted with 

distilled water just prior to sterilization by autoclavlng. The lOX 

MMA contained In g/1: K2HPO4, 70.0; KH2P0^, 30.0; sodium citrate.2H2O,

5.0; MgS0^.7H20, 1.0; (NH^)2S04, 10.0. Glucose, added aseptlcally after 

autoclavlng from a sterile stock solution of 25%, was used as a carbon 

and energy source In a final concentration of 0.5%. Glucose was omitted 
when MMA was used to wash and suspend cells.

Minimal Medium E (MME). MME (66) was prepared fifty times 
concentrated (50X), stored over chloroform (2 ml/1), and diluted with 

distilled water prior to sterilization by autoclavlng. The 50X MME
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contained in g/1 : MgSO^.7H20, 10.0; citric acid.H20, 100.0; K2HFO4,

500.0; NaNH^HPO^, 175.0. Glucose (0.5%, final concentration) was added 

separately after sterilization as above. Liquid stock cultures were 

prepared as MME + 0.2% glucose + 0.2% N-Z Case.

Arginine-free Medium (AF). AF medium was prepared by rehydrat- 

ing Difco arginine assay medium with MMA (26.0 g/1 MMA) and adding glu­

cose (0.25%, final concentration) after autoclavlng. The arginine assay 

medium was sterilized by filtration and added aseptlcally to MMA. AF + 

Can refers to arginine-free medium supplemented with L-canavanine (100 

Vig/ml, final concentration).

Peptone-beef Extract (PBE). PBE (130) contained 1% peptone 

and 0.3% beef-extract dissolved in distilled water, and was adjusted 
with NaOH to a pH of 7.6.

Nutrient Broth (NB). NB is rehydrated Difco nutrient broth 

(8.0 g/1 of distilled water). NBC refers to NB supplemented with glu­

cose (0.5%, final concentration).
Brain-heart Infusion Broth (BHIB). BHIB is rehydrated Dlfco 

brain-heart Infusion broth (37.0 g/1 of distilled water).

L Broth. L broth (131) contains In g/1: tryptone, 10.0;

yeast extract, 5.0; NaCl, 10.0. The pH of L broth was adjusted to 7.0 

with NaOH. Glucose was added to a final concentration of 0.1%.

LC broth. LC broth (132) is L broth to which CaCl2 (final 

concentration, 2.5 X 10 M) has been added.

Saline refers to 0.85% NaCl. It was used routinely to dilute 

bacterial cells.
Phage dilution buffer (133) contains In g/1: Na^HPO^, 7,0;
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KHgPO^, 3.0; NH^Cl, 1.0; MgSOt.TH^O, 0.25; NaCl, 5.0; gelatin, 0.02.

Unless otherwise noted, amino acids were added to minimal media 
in a final concentration of 100 |ig/ml to supply the auxotrophic require­

ments of a particular strain. Solid media contained 16.0 g of agar per

liter of media and soft agar had 7.5 g per liter of media.

"Aro mixture" (personal communication from W. Maas) contained: 

0.01% p-aminobenzoic acid, 0.01% p-hydroxybenzoic acid, 0.5% tyrosine, 

0.5% tryptophan, 0.5% phenylalanine. It was sterilized by autoclavlng 

and added to medium aseptlcally to give a 1:100 dilution. It was added 

to L broth when necessary to fulfill the requirements of aroE auxotrophs.

Thymine was added to MMA to a concentration of 100 yg/ml. It

was reduced to 50 yg/ml when added to L broth.

Rifampin (rif) was dissolved in 95% ethyl alcohol to a concen­

tration of 100 mg/10 ml, and added to solid or liquid medium prior to the 

addition of glucose.

Growth Conditions of Bacterial Cultures

Bacteria from stock slants were inoculated directly into broth. 

These liquid cultures were Incubated at 37°C. Liquid cultures of E, 

coli, W, were grown without aeration, whereas those of K-12 and B were 

grown with aeration in a water bath rotatory shaker (Fermentation Design 

Inc.) at a constant speed of 250 rpm. Growth in liquid media was fol­

lowed turbidimetrically in a Klett-Summerson colorimeter fitted with a 

No. 66 filter. Log-phase cells were routinely achieved by adding an 

equal volume of the same liquid medium to an overnight culture and in­

cubating for 2 hours.
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Viable Cell Count 
A standard curve relating viable cell concentration to colori­

meter reading was constructed for logarithmic phase K-12 cells growing 

in L broth (Figure 4). Samples were withdrawn periodically, diluted 

with buffer, and 0.1 ml aliquots of appropriate dilutions were spread 

in triplicate onto the surface of NBG agar plates. After 24 hours in­

cubation, the number of colonies per plate was counted.

Reversion Studies

Spontaneous Reversions 

The bacteria were grown overnight in 3.0 ml L broth. Fresh L 

broth (3.0 ml) was added and the cultures were reincubated for two 

hours. The turbidity was measured and the cells were centrifuged, wash­

ed with 2.0 ml saline, and resuspended in saline to a density of 2.0 X 

10^ cells/ml. Aliquots of 0.1 ml were spread onto solid MMA + methionine 

(met) + 1.25% (v/v) nutrient broth but without the requirements for which 

prototrophy was being sought. Plates were spread in triplicate. The 

number of colonies arising after five days of incubation at 37°C is a 

direct indication of the spontaneous reversion frequency.

Mutagen-induced Reversions 

The cells were prepared exactly as for spontaneous reversion. 

After the cells were spread, 50 pi of NTG (2 mg/ml), 10 pi of EMS (un­

diluted) , 5 pi of DES (undiluted), 50 pi of 2-AP (2 mg/ml), or 10 pi of 

ICR-191 (1 mg/ml) (applied in subdued light) were applied onto the agar 

surface of each plate. Plates were incubated for 5 days and scored for 

colony growth peripheral to a clear zone of inhibition. Controls were
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Figure 4. Standard curve relating number of 
viable cells of E. coll K-12 to Klett units.
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performed with previously characterized mutants as well as with media 

from which mutagens had been omitted.

Phenotypic Curing 
The cells were prepared exactly as for spontaneous reversion. 

After the cells were spread, aliquots of the following antibiotics were 

placed onto the surface of the agar: 0.2 ml of kanamycin sulfate (3.3

mg/ml); 0.1 ml of neomycin sulfate (15 mg/ml); and 0.1 ml of streptomycin 

sulfate (15 mg/ml). The plates were incubated for 5 days and scored for 

colony growth peripheral to a zone of inhibition. Controls were perform­

ed as described above.

Preparation of Cell-Free Extracts 

Bacteria from stock slants were inoculated into 3.0 ml of MME 

+ 0.2% glucose + 0.2% N-Z Case (liquid stock culture), and grown over­

night. Cells were inoculated into side-arm flasks containing 50 ml of 

the designated medium and cultivated overnight to a cell density corre­

sponding to 40-70 Kletts units (mid-log phase). An appropriate volume 

of cells was transferred into 150 or 300 ml of the same medium to give a 

turbidity of approximately 8 Klett units, and the flasks were reincubat­

ed. When the cell density reached 40-50 Klett units, the cultures were 

chilled and collected by centrifugation at 4°C in a Sorvall RC2-B cen­

trifuge (GSA rotor) at 10,000 rpm for thirty minutes. The cells were 

washed with MMA, resuspended in 4.0 ml of 0.1 M  phosphate buffer, pH 7.4, 

containing 1 x 10"^ M Cleland's reagent (extract buffer), and sonified 

for 60 seconds in a 10 ml beaker with a Branson sonifier (Model S125) at 

a power setting of 4.0. Cell debris and unbroken cells were removed by
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centrifugation at 4®C in a Sorvall RC2-B centrifuge (SS-1 rotor) at

15.000 rpm for 10 min. Portions of the cell-free extract were dispensed 

into two tubes and kept frozen until assayed.

Enzymes Assays and Protein Determination

Lowry Protein Determination 
The procedure employed was a modification (134) of the Lowry 

method. Bovine serum albumin was used as a standard.

N-Acety1-y-Glutamokinase Assay 

The assay is essentially that of Vogel and McLellan (135) as 

improved by Stroman (80). The reaction mixture contained: 60 ymoles

of KPO^ buffer (pH 7.4), 1.2 ymoles of ATP, 9.9 ymoles of phosphoenol- 

pyruvate, 3.0 E.U. of pyruvate kinase, 20 ymoles of N-acetyl-L-glutamate,

3.0 ymoles of MgCl2» 4.0 ymoles of KF, and enzyme extract, in a total 

volume of 0.6 ml. The reaction was started by the addition of N-acetyl- 

L-glutamate and was stopped by addition of 0.5 ml of 0.1% 2,4-dinitro- 

phenylhydrazine in 4N HCl. The reaction yields as by-product, ADP, 

which in the presence of pyruvate kinase and phosphoenolpyruvate, leads 

to the formation of pyruvate and subsequent regeneration of ATP. The 

pyruvate produced was determined colorimetically, as its 2,4-dinitro- 

phenylhydrazone, in a Klett-Summerson colorimeter fitted with a No. 54 

filter. One unit of N-acetyl-y-glutamokinase activity is defined as 

that amount of enzyme which catalyzes the formation of 0.1 ymole of 

pyruvate in 15 minutes at 37°C.
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N-Acetylglutanlc-Y-Seinialdehyde Dehydrogenase Assay 

The assay is a modification of the procedure of Vogel and 

McLellan (136) as described by Stroman (80). The reaction mixture con­
tained: 3.6 ymoles N-acetyIglutamlc-y-semlaldehyde, 100 ymoles glyclne-

NaOH buffer (pH 9.8), 40 ymoles of K2HF0^, 0.6 ymoles of NADP, and enzyme 

extract. In a final volume of 1.5 ml. The reaction was started by addi­

tion of NAOP, and was measured as the Increase In absorbance at 340 my 

due to the reduction of NADP which occurs when N-acetylglutamlc-y-seml- 

aldehyde Is converted enzymatically to N-acetylglutamyl phosphate (the 

reverse reaction).

One unit of N-acetylglutamlc-y-semlaldehyde dehydrogenase 

activity Is defined as that amount of enzyme which causes an Increase In 
absorbance of 0.010 per minute at 37°C.

N-Acetylomlthine 6-Transamlnase Assay 

This enzyme was assayed by the procedure of Vogel and Jones 

(137). The reaction mixture contained: 50 ymoles of KPO^ buffer (pH

8.0), 9.4 ymoles of pyrldoxal phosphate, 1.7 ymoles of a-ketoglutarate 

(pH 6.0-6.5), 1.4 ymoles of acetylornlthine, and enzyme extract. In a 

final volume of 0.5 ml. The reaction was started by the addition of 

extract, stopped by the addition of 0.3 ml of 6N HCl, and boiled for 30 

mln (to hydrolyze the H-acetylglutamlc-y-semlaldehyde to glutamlc-y- 

semialdehyde).

This assay depends on the acid hydrolysis to glutamlc-y- 

semlaldehyde of the enzymatically produced N-acetylglutamlc-y- semi- 

aldehyde. Glutamlc-y-semlaldehyde cycllzes spontaneously to A'-pyrrollne- 

5-carboxyllc acid which In turn reacts with o-amlnobenzaldehyde to yield



45

a yellow dlhydroqulnazollum compound. One unit of ace tylornl thine 6- 
transamlnase activity Is defined as that amount of enzyme which yields 

an absorbance of 0.100 at 440 my per 15 minutes at 37°C. The value of 

0.100 corresponds to 0.86 ymoles of A'-pyrrollne-5-carboxyllc acid per 
hydrolyzed reaction mixture.

Acetylomlthlnase Assay 

The method of Vogel and McLellan (138) was used to assay acetyl- 

omithlnase activity. The assay Is based on the determination with 

nlnhydrln of the ornithine produced. The reaction mixture contained:

40 ymoles of KFO^ buffer (pH 7.0), 0.1 ymole of CoCl2«6H20, 0.4 ymole 

of glutathione, 3.0 ymoles of acetylomlthlne, and enzyme extract. In a 

final volume of 0.5 ml. Color change was read In a Klett-Summerson 

colorimeter fitted with a No. 42 filter. The reaction was started by 

the addition of substrate (aco), and stopped by the addition of 1.5 ml 

of nlnhydrln reagent and boiled for 10 mln.
One unit of acetylomlthlnase activity Is defined as that amount 

of enzyme which catalyzes the formation of 0.10 ymole of ornithine In 

10 mln at 37°C.

Arglnlnosucclnase Assay 

This enzyme was determined by a modification of the method of 

Ratner ^  (139) • Instead of determining the urea released, this

assay utilizes nlnhydrln to measure the ornithine formed. The ornithine 

Is formed by added arglnase from the arginine produced by arglnlno­

succlnase. The reaction mixture contained: 10 ymoles of KPO^ buffer

(pH 7.5), 4.0 E.U. arglnase, 1.5 ymoles of arglnlnosucclnate as the
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potassium salt, and enzyme extract, in a total volume of 0.5 ml. The 

reaction was started by the addition of substrate (argininosuccinate), 

stopped by the addition of 1.5 ml of ninhydrin reagent, and boiled for 
10 min.

One unit of argininosuccinase activity is defined as that 

amount of enzyme which catalyzes the formation of 0.10 ymole of ornithine 
in 15 minutes at 37°C. This assay is able to detect as little as 0.006 

ymole of ornithine produced, but is hardly reproducible at this level.

The lower limit of the assay which gives reproducible results is about 

0.01 ymole of ornithine, with an upper limit of at least 0.4 ymole of 

ornithine produced.

Argininosuccinase activity has been shown to be proportional 

to incubation time for at least 180 min (Figure 5). Argininosuccinase 

activity is linear with protein concentration at least up to 1 mg protein 

per ml of extract (Figure 6). It has also been shown by Stroman (80) 

that argininosuccinase activity is proportional to protein concentration; 

however, the linear relationship shows a break at about 1.2 mg protein. 

Therefore, all extracts were diluted to below 1.2 mg protein per ml of 

extract before assay.

Bacteriophage Techniques

Lysate Preparation

Lysates of Pike were prepared by the soft-agar overlay technique. 

The bacteria used as donors were grown overnight in 3.0 ml LC broth.

Fresh LC broth (3.0 ml) was added and the cultures incubated for two 

hours. To 2.5 ml of melted LC soft agar, were added 10^ Pike phage and
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0.2 ml of donor cells, and the entire mixture was poured over an LC agar 

plate. The plate was incubated for 8-10 hours until confluent lysis of 

cells had occurred; then 4.0 ml of L broth were pipetted onto the sur­

face of the soft agar and allowed to remain for 2-3 hours. The broth 

was collected, treated with chloroform to kill remaining bacteria, cen­
trifuged to remove cell debris, and. stored at 4°C in a screw-capped tube 

with a drop of chloroform in the bottom. The stock lysate was titered, 

using the same procedure as described above, to determine the number of 

phage (plaque forming units- pfu) per ml. Only lysates with titers of 

more than 1 x 10^^ infective particles per ml were used for construction 
of strains or for mapping.

The recipient cells were grown overnight in 5.0 ml of LC broth. 

After addition of 5.0 ml of fresh LC broth, the culture was incubated 

for two hours. The turbidity of a 5.0 ml sample, withdrawn aseptically 

was determined in a Klett-Summerson colorimeter with a No. 66 filter.

The remaining 5.0 ml of culture was centrifuged and resuspended in LC 

broth to give 1.0 x 10^ cells per ml. These cells were mixed gently with 
phage at a multiplicity of infection (HOI) of 5 phage per cell, and in­

cubated for 30 min without shaking. Infected cells were centrifuged, 
washed with 3.0 ml MMA and resuspended in 1.0 ml MMA. Appropriate di­

lutions were spread onto selective media. Controls were performed (1) 

by spreading uninfected cells to ascertain the occurrence of mutations 

which might mimic the desired transductants, and (2) by spreading lysate 

alone to determine whether unlysed donor cells or contaminants were 

present which might mimic transductants. Transductants formed good- 

sized colonies after 48 hours incubation at 37°C.
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Dominant allele to recessive allele. If the donor marker Is 

recessive to the recipient allele, then It Is necessary to allow segre­

gation of the two alleles In the "transductant" before placing the bac­

teria on selective media. For example. In the case of transducing a 
riff allele Into a recipient which contains a rlf^ allele, the Infected 

cells were Inoculated Into MMA broth plus any auxotrophic requirements 

of the recipient (but In the absence of rlf) and Incubated In a shaking 

water bath at 37°C for 6 hours before plating on agar with rlf.
On the other hand. If an arggf recipient was to be transduced 

to argR~, the transductants were Inoculated Into liquid medium (AF + 

supplements) and Incubated for 6-8 hours before being plated on AF + Can 

agar plates. Canavanlne-resIs tant colonies were considered presumptive 

argR~ mutants. If the recipient Is auxotrophic for arginine and the 
block occurs before ornithine, ornithine (100 yg/ml) Is added to AF +

Can agar to fulfill the auxotrophic requirement. The addition of o m  

(100 yg/ml) to AF + Can agar media does not allow growth of the argR"*" 

cells.

The ability to excrete excess arginine, together with resist­

ance to canavanlne, are the two criteria for distinguishing an argR~ 

genotype on solid media. Hence, It Is necessary to check the ability of 

canavanlne-reslstant, presumptive argR" transductants to cross-feed an 

arginine auxotroph. The auxotrophic strain EcW444 (argG) was grown 

overnight In 3 ml of BH broth. An additional 3 ml of BH broth was added 

and, following a two hour Incubation, the cells were centrifuged, washed 

once with, and resuspended In, 2.0 ml of saline. A 0.1 ml aliquot of a 

1:200 saline dilution was spread as a lawn of cells on MMA + o m  (200
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pg/ml) + any growth requirements of presumptive argR“ transductants 
other than arginine.

The "argR~” strains were Inoculated onto the plates as stabs 
with a stralght-wlre Inoculating needle. Crossfeeding (detectable as a 

halo of growth around a stab) was apparent after 24 hours of Incubation.

Growth Response of Arginine Auxotrophs 

on Arginine Intermediates 

All arginine auxotrophs Isolated In the course of this study 

were characterized, after purification by streaking twice for Isolated 

colonies, as to their ability to grow on MMA plus acetylomlthlne (argA, 

jB, X, Ĉ, or 2  mutants), ornithine (argE mutants), cltrulllne (argF or 2  

mutants), or arginine (argG or argH mutants).

Deletion Mapping 

The method used In constructing a deletion map was modified 

from that of Blume and Balblnder (140). A mutation Is considered to be 

a deletion If It (1) Is not revertlble spontaneously or by mutagens and 

(2) Is a multlslte mutation (does not give prototrophic recombinants 

when crossed with several nonldentlcal point mutants).
Stock phage lysate was prepared routinely by propagation on 

strain MN42 (EcK173) which has a deletion of the arginine cluster. This 

lysate was recycled twice on donor cells prior to use In mapping.

Spot Plate Test

Recipient cells were grown overnight In 3.0 ml LC broth. To 

this culture, 3.0 ml of fresh LC broth were added. Following Incubation 

for two hours to reach log phase, the cells (0.1 ml) were spread as a
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lawn onto MMA + auxotrophic requirements of recipients with the except­
ion of arginine. A drop of phage which had been propagated twice on the 

donor was spotted onto the recipient lawn. In this way, 16 donors could 

be tested on the same plate. The donor phage were prepared by making a 

1:10 dilution of the lysate in phage dilution buffer and irradiating \dLth 

UV light to give 10% survival of phage (Figure 7). This degree of irra­

diation increases the frequency of transduction and hence the sensitivity 

of the spot plate test. Phage were irradiated with a 15 watt germicidal 

UV lamp (GE15T8) positioned 40 cm above the open petri dish. The number 

of transductants arising after 48 hours of incubation was scored. Any 

cross which yielded 6 or fewer transductants was repeated using the half 

plate test. Controls were run with uninfected cells and with lysates.

Half Plate Test

The recipient lawn and the donor phage were prepared as above. 

This test, however, consisted of spreading 0.1 ml of irradiated phage 

over half a plate, thus increasing by 10-20 fold the number of phage- 

infected bacteria. Consequently, the sensitivity of detection of arg"*" 

transductants was enhanced 10-20 fold. Any cross which had 10 or fewer 

transductants was repeated using the whole plate test.

Whole Plate Test 

This was done as a standard transduction as described above.

Construction of Double Mutants 

Construction of all strains was by Pike transduction.
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Construction of argE argX Double Mutant

Strain EcK2041 (metB argX2041) was first made rifampin-resist­

ant (Rif-R) by using EcK112 (metB rif^) as a donor. Transductants were 

selected for Rif-R (plated on NBG + rif agar) and scored for the Aco” 

and Met” phenotypes.
To construct the double mutant (argE argX), strain EcK2041a 

(metB argX2041 rif^) served as the donor and EcK2084 (metB argE riff) 

as the recipient. Transductants were plated on MMA + aco + rif + met + 

limiting arginine (4 yg/ml) to select for arg” rif^. The presumptive 

double mutants (argE argX) appear as tiny colonies since they cannot 

synthesize arginine from acetylomlthlne and the exogenous supply of 

arginine is growth-limiting. Therefore, the tiny Rif-R colonies were 

scored for an Orn" phenotype (i.e., ability to grow on ornithine but 

not on acetylomlthlne) which reflects the presence of the argE mutation 

in the transductants. The presence of the argX mutation in the pre­

sumptive metB argE argX rif^ strains was confirmed genetically by spot- 

transduction tests with the original metB argX2041 mutant (EcK2041) 

serving as donor, and the presumptive metB argE argX rif^ strains were 

used as recipients. The donor lysate was prepared by UV irradiation of 

a 1:10 dilution in phage dilution buffer as described above. Aliquots 

of 0.2 ml of diluted lysate were spread on MM + met. Presumptive 

double mutants were suspended in a drop of saline (containing 2.5 x 10”  ̂

M CaCl2) and spotted with a sterile tooth pick onto the donor lawn. In 

this way, 16 presumptive double mutants could be tested on the same 

plate. Any of those strains which failed to yield prototrophic arginine 

recombinants by spot-transduction were purified twice before further
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tests by whole plate transduction. Strains which showed an O m "  pheno­

type and which did not yield arg'*' transductants when crossed with an argX 

donor were taken to be argE argX double mutants. The presence of the 

altered argX site was further confirmed by recovery of argX among the 

transductants resulting from an out-cross with a wild-type (arg"*" rif°) 

donor (EcK2). Progeny were plated on MMA. + aco + rif. Recombinants 

which were metB'*' argE* were scored for argX (Aco”). Finally, the presence 

of the argE argX mutations in the double mutant was further confirmed by 
enzyme assay.

By this procedure mutant EcK3613 (metB argE argX2041 rif^) was 

constructed.

Construction of argX argH Double Mutant

EcK496 (argH) was made Rif-R (plated on MMA + arg + rlf). The 

resulting argH rif^ markers (EcK496-5) were cotransduced into recipient 

argX2041 (metB argX rif^). Selection was for Rlf-R and argH on MMA + met 

+ aco + rif + limiting arginine (4 pg/ml). Recombinants carrying argH 

would be expected to give small colonies due to the limiting supply of 

arginine. Progeny which were Rif-R and Arg" were subjected to spot and 

whole plate transduction tests with ar^2041 as donor as described above. 

Any mutants which failed to yield arg* were considered presumptive argX 

argH double mutants. The presence of argX in the presumptive double 

mutant was demonstrated by outcross of argH utilizing arg rif wild- 

type strain (EcK2) as the donor. Transductants were plated on MMA + aco 

+ met. Any argH* recombinants were screened for argX (Aco”). Loss of 

the Arg" phenotype, together with the appearance of the Aco" phenotype, 

was taken as confirmation of the presence of the argX marker in the
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double mutant. The presence of the argH mutation in the double mutant 

was further confirmed by enzyme assay.
Strain EcR3615 (metB argX2041 argH rif^) was constructed by 

this procedure.

Construction of argEC-1 argX Double Mutant 

Strain EcK1593 (metB argX1593) was made Rif-R by using EcK112 

(metB rif^) as a donor (selected on NBG + rif). The resulting strain is 

EcK1593-6 (metB argXl593 rif^). The Rif-R derivative of argX20Al 

(EcK2041a) was constructed as described above. The argX rif^ markers 

of both strains (EcK1593-6, and EcR2041a) were cotransduced into EcK176 

(metB argEC-1). Recombinants were selected on MM4 + met + o m  + rif.

On this selective media, strains carrying argEC-1, but not argX. grow 

slowly and form very tiny colonies after 48 hours of incubation; strains 

bearing argX. but not argEC-1. grow more rapidly and form large colonies. 
The argEC-1 argX double mutants would be expected to yield medium sized 

colonies. Therefore, medium-sized colonies were picked among rif^ re­

combinants and screened for an O m ~  (argEC-1) phenotype. All O m “ 

transductants were further tested for the presence of the argX mutation 

by spot and whole plate transductions with argX2041 and argX1593 as the 

donors, respectively. All those which failed to yield arg*** transductants 

were assayed to prove they were double mutants.

Strains EcK3725 (metB argEC-1 argX2041 rif^) and EcK3764 

(metB argEC-1 artftl593 rif^) were constructed by this procedure.

The rif^ marker was introduced into EcK176 (metB argEC-1) by 

using EcK112 (metB rif^) as donor. Transductants were plated on L agar 

+ rif. The strain EcX3726 (metB argEC-1 rif^) thus isolated served as
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a control in enzyme assays.

Introduction of Polar argC^g^ into P4X6 (EcKlll)

EcK2084 (metB argE) was made rlf^ (EcK2084-l) by using EcK112 

(metB riff) as the donor (plated on MMA + o m  + met + rif). The polar 

argCjjg^ marker was introduced into 2084-1 (metB** argE riff) with EcB177 

(metB'*' rif^ aroE argRlS his strA40) as the donor. The cells

were plated on MMA + aco + rif to select for metB'*' riff recombinants 

which were screened in turn for the Aco” phenotype. The Aco” phenotype 

should reflect the presence of the argC mutation. The presence of the 

argC mutation was confirmed by enzyme assay. Strain £cK3653 (argC,Tna 

riff) was constructed by this procedure.

Construction of Polar argC^^^ and argX Double Mutant 

The polar argC,Tcŷ  mutation was transduced Into EcK3613 

(metB” argE" argX riff) with EcB177 (metB'*' argCnr»̂  rif° aroE argRJ.5 his 

strA40) as the donor. Transductants were plated on MMA + aco + rlf to 

select for metB'*' riff progeny which were scored for Aco”. Transduct­

ants that showed an Aco” phenotype were further tested by spot trans­

duction with an argX2041 lysate. Recombinants that failed to yield 

arg^ were purified twice, and then subjected to the whole plate trans­

duction test with both argX2041 and EcB177 as donors. Transductants 

which failed to yield any arg*** with either donor were assumed to have 

incorporated both the argX and argC mutant sites. The presumptive 

double mutants were assayed to confirm the presence of both the argC 

and argX mutations. Strain EcK3648 (argCtwA argX2041 riff) was con­

structed in this manner.
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Transfer of argOg^gy into P4X6 (EcKlll)

The argE^ .SH£2e cBH were cotransduced into EcK2084-l 
(metB" argE’* argCf*' rif^) ; the donor was EcKlB3 (metB*** argE* argOf rif^ 

thy). Prototrophic (metB'*' argE'*’) recombinants were selected on MMA + 

rif. Since the argOf locus is cotransduced with the argE gene at a 

very high frequency, it was expected that almost all of the argF** 

progeny would also be carrying the argof marker. The presence of the 

argO^ mutation was confirmed by enzyme assay. Strain EcK3766 (argOprnu 
riff) was constructed by this procedure.

Construction of argOprgy argX Double Mutant 

The prototrophic strain EcK3766 (argOprn^ rif^) constructed 

above was used as a donor to construct an argOprng argX double mutant. 

The recipient was EcK3613 (metB" argE" argX2041 rif^). Cells were 

plated on MMA + aco + rif to select for metB'* argE* recombinants. The 

argE* progeny were scored for the Aco" (argX) phenotype. Such Aco” re­

combinants were presumed to have the argX locus intact. The presence 

of both the argOp^g^ and argX loci was confirmed by enzyme assay.

Strain EcK3666 (argOprpu argX2041 rif^) was constructed by this method.

Construction of Merodiploids

Introduction of Markers into Hfr Genome 

EcKlOl (Hfr Ra-2), which transfers the arginine cluster early, 

is ideal for use as a donor in construction of merodiploids bearing an 

F' factor containing the argECBH genes.

EcKlOl, which is prototrophic, was made riff and argH” by 

using EcK496-5 (argH rif* )̂ as a donor. Transductants were selected for
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riff on L agar + rif and scored for the arg" (argil) phenotype. Strain 

EcK3769 (Hfr Ra-2, argH rif^) was constructed by this procedure.

In a separate cross, the rif^ marker was introduced into 

EcKlOl, with EcKllZ (metB rif^) serving as donor. Selection was for 
rif^ on L agar + rif. Strain EcK3768 (Hfr Ra-2, rif^) was constructed 

in this manner.

Introduction of Markers into F" Genome 

EcK198 (argG" metB thi his aroE thyA str^) was made arg*** by 

transduction using EcKlll (argG"*" metB) as donor. The resulting arg* 

strain, EcK3728 served as recipient in a cross with a double arg" 

mutant, EcK3615 (metB argX2041 argil rif^). Rif-R recombinants were 

selected on MMA agar and scored for arg" (ar^). The arg" progeny were 

also tested by whole plate transduction with argX as a donor to confirm 

that argX had been cotransduced with argH. The resulting strain 

(EcK3731) has the following genotype: F", metB argX2041 argH rlf thi 

his aroE thyA str^.
Another strain was constructed as above, but with the use of 

a different donor, EcK2041a (metB argX2041 rlf^). to introduce only 

rif argX into the same recipient (EcK3728). The resulting strain, 

EcK3737, has the following genotype: F", metB argX2041 argH* rif thi

his aroE thyA str^.

Construction of recA Derivatives of F" Strains 

Since recA is closely linked to thyA. thy* recombinants may 

be examined for the Rec" character.

The two thyA P" strains, EcK3731 and EcK3737, constructed
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above were mated with EcKl64 (Kfr, thyA'*' recAl) according to B. Low 
(126). Matings were carried out by growing donor and recipient strains 

in L Broth + thymine + aro mixture at 37°C to a concentration of about 

2 X 10® cells/ml, and then mixing them in a ratio of 1:10. The cultures 

were shaken gently for aeration in a water bath for 30 min. Aliquots 

were pipetted into chilled saline buffer with streptomycin (final con­
centration, 100 ug/ml), mixed vigorously on a Vortex, and plated onto 

selective media with streptomycin. Recombinant (thy~̂  str^) colonies 

were scored for the Rec" phenotype by testing their UV sensitivity as 

described by Clark and Margulies (141). Cells were streaked on L agar 

plates together with known recA" (EcK164) and recA~*~ (EcK3731 and EcK3737) 

controls, and were irradiated in the dark for 25 seconds with a General 

Electric GE15T8 15-watt germicidal lamp positioned at a distance of 25 

cm above the petri dish. Plates were incubated overnight in the dark. 

Strains which are Rec” are more sensitive to UV than those which are 
Rec'*’. Diminished growth, after UV irradiation, compared to that of the 

rec~*~ controls, was taken to reflect the presence of the recAl marker. 

Strains EcK3744 (F“, metB argX2041 arglT*~ rif^ thi his aroE recAl str^) 

and EcK3735 (F“, metB argX2041 argil" rif^ thi his aroE recAl str^) were 

derived by this procedure.

Construction of Merodiploids

Merodiploids were constructed by the ingenious method of Low 

(126), who discovered that "recombinants" for an early marker introduced 

by an Hfr into a recA F” strain are actually partial diploids.

The procedure for the isolation of the F’ involves mixing the 

donor and recipient in a ratio of 1:5 and mating for 60 minutes in a
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water bath as described above.

EcK3769 (llfr, metB* argH" rif^) was crossed with the F“ strain, 
EcK3744 (metB" argX2041 argH* rif^ thi his aroE recAl str^), by con­

jugation. In addition, EcK3768 (Hfr, metB* rlf^) was mated with F” 

strain EcK3735 (metB" argX20Al argH" rif^ thi his aroE recAl str^). 

Selection was for met'*' arg'*’ progeny by plating on MMA + str + supplements 

(with the omission of arginine and methionine).

The diploid state of recombinants (metB* arg*) obtained was 

verified by the ability of the merodiploids to transfer their eplsomes 

to F" strains, and by the high frequency of segregation in L broth of 

markers carried on the F-merogenote.
Presumptive merodiploids with argH* rif^ markers on the 

episome were tested by transferring the episome to EcKlSO (which has a 
deletion of ppc and the entire arg cluster) using the cross-streak tech­

nique on MMA agar plates. In addition, presumptive merodiploids with 
argH" rif^ markers on the episome, were tested by transferring the 

episome to an F" derivative of EcK2041 (metB argX2041) using the cross­

streak technique on MMA agar plates. A positive control was performed 

with a known merodiploid (KLF5).

The diploids were further tested for their ability to segre­

gate the episome in L broth. In order to increase the frequency of 

their segregation, both diploids (strains 3742 and 3750) were incubated 

overnight with vigorously shaking in a water bath. An aliquot (0,1 ml) 

of the culture was re-inoculated into fresh L broth and recycled over­

night. Appropriate dilutions were made and plated on selective agar 

plates. Of 296 colonies of EcK3742 tested, 100 were both Arg” Met".
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For EcK3750, 8 of 108 colonies tested were Aco" Met".

The merodiploids EcK3750 (F* metB'*' argX^ argH" rif^/metB~ 

argX2041 argH*' rif^ thi his aroE recAl str^) and EcK3742 (F' metB'*" 

argX'*' argil'*' rif^/metB" argX2041 argH" rif^ thi his aroE recAl str^) 

were constructed by this method.



CHAPTER III

RESULTS

Characteristics of argX Mutants 

During the course of studies on the arginine cluster In 

Escherichia coll K-12, David Stroman, a former graduate student In this 

laboratory, had Isolated several mutants following nitrous acid muta­

genesis. Preliminary studies revealed that these mutants are arginine 

auxotrophs which show a concomitant Inability to repress normally the 

argH enzyme, argininosuccinase.

Growth Requirements of argX Mutants 

Two selected argX mutants, argX1593 and argX2041, together with 

selected argB mutants which were subsequently shown to map In close 

proximity to the argX mutations, were characterized by their growth re­

sponses on Intermediates of the arginine pathway (Table 3). These 

mutants are unable to grow on MMA, MMA + Glut, and AF medium. They are 

able to grow on MMA + Aco, MMA + O m ,  MMA + Clt, MMA + Arg, and AF +

Arg. Thus, they are acetylornlthlne-requlrlng auxotrophs. An Aco" 

phenotype Is expected of an argA. JB, jC, or D mutant. The block Is tight 

since the mutants show no leaky growth even after five days of Incubation 

on MMA, MMA + Glut, and AF medium. The nutritional requirement Is spe­

cific for arginine or Its appropriate precursor since none of the
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TABLE 3

GROWTH RESPONSES OF argX MUTANTS 

AND SELECTED argB MUTANTS

Strain Supplement a,b

MMA Glut Aco Orn Cit Arg AF AF + Arg

P4X6 + + + + + + + +

argBl585 - - + + + + - +

argB1586 - - + + + + - +

argB1637 - - + + + + - +

argX1593 - - + + + + - +

argX2041 — — + + + + — +

o\4f-

Abbreviations: MMA, minimal medium A; Glut, L-glutamate; Aco, acetylomlthlne; Om, ornithine;
Clt, cltrulllne; Arg, arginine; AF, arglnlne-free assay medium.

Present at a concentration of 100 ng/ml.
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components of AF medium supports growth.

Linkage of argX Mutants to rif and metB

As mentioned in Chapter I, the arginine cluster is composed of 

argE-C-B-H and in the order as written. In crosses by Pike transduction, 

David Stroman (80) determined that the rif locus lies outside of the 

arginine cluster to the right (clockwise) of argH, and that it has an 

average cotransduction frequency to the arginine cluster of approximately 

0.55. Additionally, it was found that the linkage between rif and metB 

is approximately 0.10. Since metB lies to the left (counterclockwise) 

of argE-C-B-H and rif, it is reasonable to visualize that the arginine 

cluster is situated between metB and rif, with rif on the right side of 

argE-C-B-H and metB on the left of the arginine cluster (Figure 2).

The linkage by transduction of the argX (Aco") mutations to 

rif and metB was measured in order to determine whether the mutations 

were in one of the clustered genes or in one of those scattered genes 

(argA, argD) which would be expected to give an Aco” phenotype. The 

argX mutants, EcK2041a (metB” argX2041 rif^) and EcK1593-6 (metB” argX1593 

rlf^), served as donors and a metB"*" argX+ rif® strain (K-12, wild-type) 

as recipient. Transductants were selected for rif^ and scored for Aco” 

(argX) and Met” (metB). Results are shown in Table 4. Mutations 

argX2041 and argX1593 show a linkage to rif of 0.50 and 0.42, respec­

tively. The cotransducibility of metB to rif is approximately 0.10.

These results are consistent with the linkage studies performed by 

Stroman (80) and with the conclusion that the argX (Aco”) mutations 

appear to occur within the genes (argB or argC) of the arginine cluster 

which would give an Aco” phenotype. It remained to be determined by



TABLE 4

LINKAGE OF TO argX AND metB

Donor Recipient Selected RecombinantsfiarKer
arfiX- metB" argX"

metB argX2041 rif^ metB* argX* rif® riff #  - 0-5° -32 .
320 0.10

metB arsX1593 rif' metB* argX* rif® riff _36 =320 0.11

c\
ON
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direct enzyme assay whether these strains were argB or argC mutants.

Reduced Repressiblllty of Nonlsogenic argX Mutants 

The nonisogenlc argX mutants, EcK2041 and EcK1593, were assayed 

for the cluster enzymes E (acetylomithlnase), C (N-acetylglutamlc-y- 

semialdehyde dehydrogenase), B (N-acetyl-y-glutamokinase) and H 

(argininosuccinase), and for a noncluster enzyme, D (acetylomithine 6- 

transaminase). An argR~ derivative of argX2041 was constructed as a 

canavanine-resistant, arginine-excreter as described in Chapter II. The 

specific activities are shown in Tables 5 and 6. Wild type (P4X6) en­

zyme activities are shown in parenthesis. In order to discuss the reg­

ulation of the various enzymes in such a way as to eliminate differences 

in the way some authors measure and define units of activity and to 

normalize and compare the range of represslon-derepresslon behaviors of 

different enzymes. It Is useful to express the results In terms of three 

ratios: ratio A equals the specific activity of the argR~ strain grown

In arginine-supplemented media divided by the specific activity of the 

argR* strain grown In arginine-supplemented media, and represents the 

total represslon-derepresslon range; ratio B equals the specific activity 

of the argR~ strain grown without exogenous arginine divided by that of 

the argR* strain grown without arginine and represents the fold Increase 

above the partially derepressed rate of synthesis reflecting the Intra­

cellular, steady-state level of endogenously synthesized arginine; ratio 

£  equals the specific activity of the argR*** strain grown without arginine 

divided by the specific activity of the argRt strain grown with arginine 

and represents the fold decrease below the partially derepressed rate of 

synthesis.



TABLE 5

ALTERED REPRESSIBILITY OF ARGININOSUCCINASE (argH) 

IN THE NONISOGENIC argX20Al MUTANT

Strain Supplement Specific Activity (units/mg protein)*

argE argC argB argH argD

2041 R* o m 27.3 (27.7) 4.0 (3.5) N.M.b 1.1 (1.0) 2.8 (2.7)
2041 R*" erg 14.5 (12.9) 1.9 (1.7) N.M. 0.67 (0.17) 0.7 (0.7)
2041 R“ o m 227 (251) 64.7 (70.1) Low 9.3 (8 .8) 8.1 (9.3)
2041 R“ arg 229 (245) 67.4 (71.7) Low 9.4 (8.2) 8.7 (9.9)

o\00

Ratio^ argE argC argB argH argP

A 15.8 (18.9) 35.5 (32.6) 14.0 (55.3) 12.4 (12.4)
B 8.3 (9.1) 16.2 (20.0) 8.5 (8.8) 2.9 (3.4)
C 1.9 (2.1) 2.1 (2.1) --- 1^6 (5.9) 4.0 (3.9)

numbers In parenthesis are the specific activities for the wild type strain (P4X6). 
Not measurable^
The numbers in parenthesis are the ratios for the wild type strain (P4X6).



TABLE 6

ALTERED REPRESSIBILITY OF ARGININOSUCCINASE (argH) 

IN THE NONISOGENIC argX1593 MUTANT

Strain Supplement

Specific Activity (units/mg protein)^

argE argC argB argH argD

1593 R+ orn 30.4 (27.7) 3.9 (3.5) N.M.b 1.1 (1.0) 2.6 (2.7)

1593 R+ arg 15.0 (12.9) 1.8 (1.7) N.M. 0.45 (0.17) 0.6 (0.7)

Ratio^ argE argC argB argH argD

C 2.0 (2.1) 2.2 (2.1) --- 2.5 (5.9) 4.3 (3.9)

o\
VO

* The numbers In parenthesis are the specific activities for the wild type strain (P4X6). 
^ Not measurable.
c The numbers in parenthesis are the ratios for the wild type strain (P4X6).
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The argRt derivatives of both argX2041 and argX1593 show a 

high argininosuccinase (argH) activity under fully repressive conditions 

with arginine. In argX2041. the specific activity for argH is 0.67 

(Table 5), compared with the wild-type value of 0.17, and represents an 

almost four-fold increase in argH expression. In argX1593« the specific 

activity for argH is 0.45 (Table 6). This value represents approximately 

a two and a half-fold increase above the corresponding wild-type activ­

ity of 0.17, Hence, argininosuccinase is not repressible normally by 

arginine in argX mutants carrying the argPt allele.

When the argX strains are grown in the presence of ornithine 

to effect partial derepression, the increase in argH expression is not 

observed (Tables 5 and 6). Moreover, the argX mutation has no detect­

able effect on argH expression in a genetically derepressed argR~* de­

rivative of argX2041, when grown in the presence of either arginine or 

ornithine (Table 5). Kinase (argB) activity is not measurable in either 

of the argX mutants under partially derepressed or fully repressed con­
ditions. However, a low enzyme B activity was detected in the argR~ 

derivative of argX2041, which represents approximately 1-2 per cent of 

the corresponding level for the wild-type argR~ strain. The other 

arginine enzymes specified by cluster genes (argE and argC) and the 

noncluster enzyme (argD) behave normally both in the argR*** and the 

argR" strains.

These studies show that these two argX mutants are pleiotropic. 

They are deficient in argB enzyme (N-acetyl-y-glutamokinase) and show a 

concomitant inability to normally repress argH expression. Moreover, 

the argX mutations enhance gene expression in a clockwise (argH), but
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not counterclockwise (argC, argE) direction (Figure 3). The effect of 

argX on argH expression is detectable only under fully repressed con­

ditions.

Reduced Repressibility of Isogenic argX Mutants 

Subsequent mapping of the argX2041 mutation shows that it is 

confined to the argB gene and is located to the right of argClSlO (see 

below) (see Figure 9). In order to construct isogenic strains carrying 

the argX mutation, it is ideal to transfer only the argX region to a 

suitable recipient. A rifampin-resistant derivative (EcK2041a) of 

argX2041 was used as a donor in Pike transduction. A metst argC rif^ 
mutant (EcKlSlO) was used as a recipient. The rationale for using an 

argC strain as recipient was to ensure that only the piece of genetic 

material extending from rif to argX, but not beyond argC. was transduced 

into the recipient. Rifampin-resistant recombinants were selected on 

nutrient agar so that the argX mutation might be cotransduced with rif. 

The rif^ progeny were scored for the Aco” phenotype which reflects the 

presence of either the argC or argX gene, or both. The rif^ Aco” strains 

were subjected to spot transduction tests using EcKlSlO (argC) and 

EcK2041 (argX) as donors. Strains (rif^ Aco”) which failed to give 

prototrophic recombinants with both the argC and argX lysates were con­

sidered to be presumptive argC argX double mutants. The presumptive 
double mutants were purified twice and subjected to whole plate trans­

duction tests to reaffirm the presence of the argC and argX mutations. 

Strain EcK3506 (argClSlO argX2041 rif) was constructed in this manner. 

Enzyme activities found for the isogenic strain 3506 and its argR” de­

rivative (EcK3493 R%o) are shown in Table 7.



TABLE 7

ALTERED REPRESSIBILITY OF ARGININOSUCCINASE (argH) 
IN AN ISOGENIC argX2G41 STRAIN

Strain® Supplement

Specific Activity (units/mg protein)^

argE argC argB argH argD

3506 R* orn 23.6 (27.3) N.M.c N.M. 0.9 (1.1) 2.3 (2.8)
3506 R"*" arg 13.7 (14.5) N.M. N.M. 0.55 (0.67) 0.6 (0.7)

3493 R-q orn 193 (227) N.M. Low 9.2 (9.3) 8.0 (8.1)
3493 R-q arg 197 (229) N.M. Low 9.2 (9.4) 8.8 (8.7)

ts>

Ratio^ argE argC argB argH argD

A
B
C

14.4 (15.8) 
8.2 (8.3) 
1.7 (1.9)

16.7 (14.0) 
10.2 (8.5) 
1.6 (1.6)

14.7 (12.4) 
3.5 (2.9) 
3.8 (4.0)

All strains carry argC and rifampin-resistant (rif) genes.
^ The numbers in parenthesis are the specific activities for the nonisogenic argX2041 mutant. 
^ Not measurable.

The numbers in parenthesis are the ratios for the nonisogenic argX2041 mutant.
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The corresponding values for the nonisogenic argX2041 mutant 

are listed in parenthesis for comparison purposes. The isogenic strain 

exhibits a high level of argH activity under repressed conditions similar 

to that of the nonisogenic strain. It has a value of 0.55 compared to 

0.67 for the nonisogenic strain. Activities of argE and argD in the 

isogenic argR**~ and argR" strains are essentially similar to those of the 

nonisogenic argR*** and argR" strains.

Lack of Effect of argX on argH Expression in 

an argO^^BH ^rgX2041 Double Mutant
The argX mutations affect argH expression only under fully 

arginine-repressed conditions. They do not affect argH expression either 

during partial physiologic derepression (supplemented with ornithine) 

(Tables 5 and 6) or during full genetic derepression (in an argR" de­

rivative) (Tables 5 and 7). Therefore, it was necessary to ascertain 

whether an argX mutation has any effect during partial genetic de­

repression (in an argO^ mutant). The arginine cluster has its own, 

specific operator site which has been determined independently by 

Jacoby (122) and Glansdorff (124) to be located between argE-argC.

Jacoby (122) devised an ingenious method for the isolation of an 

argOgcBH ®“tant. This argOggg^ mutation causes a partial derepression 

of the clustered genes without any effect on nonclustered genes.

Jacoby's a£g2ECBH mutation was put into F4X6 and also into 
argX2041. Intermediate steps involved utilization of an argE strain, 

and construction of an argE argX2041 double mutant. Rationale and 

details for construction of the argE argX double mutant EcK3613 were 

described in Chapter II. Since the argE enzyme (acetylomithinase)
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occurs after the argX (argB) enzyme (kinase) in the arginine biosynthetic 

pathway, the presence of an argE (Om") mutation will "mask" the phenotype 

of an argX (Aco") mutation. In order to ensure the presence of both the 

argX and argE markers, it was necessary to recover argX (Aco”) from the 

double mutant. As shown in Table 8, wild-type strain (K-12) was used as 

donor in Pike transduction, with the presumptive argE argX strain as 

recipient. Recombinants on selective medium (deprived of ornithine and 

methionine but with added acetylornithine) were screened for Aco” mutants. 

Of 150 Om"^ transductants screened, 5 were actually also Aco". A control 

was performed using an argE strain (2084-1) as recipient, and no Aco" 

recombinants were recovered.

The argOprpH âEË^CBH mutants were assayed together
with the control strains argX2041, argE, argX argE. and P4X6 (wild-type). 

The results are presented in Table 9. It was found that there is no 

significant difference in enzyme H activity between strains argOprnn 

(3.7) and argO^^^^ argX (3.2) under repressed conditions. It is, there­

fore, concluded that the argX mutation does not affect argH expression 

in a partially genetically derepressed argOp^pg mutant.

Nature of the argX Mutations 

The argX mutations were classified by the criteria of Whitfield, 

Martin and Ames (143). These correlate the spontaneous revertibility, 

and the response of each mutant to chemical mutagens, to several amino­

glycoside antibiotics (phenotypic curing), and to suppression by known 

suppressors. Mutants with previously characterized mutations were tested 

in parallel with the argX strains. The results are shown in Table 10.

Spontaneous reversion rate. Mutants argX2041 and argX1593



TABLE 8

RECOVERY OF argX (Aco") FROM PRESUMPTIVE DOUBLE MUTANTS 

BY OUT-CROSS WITH E. COLI K-12 WILD TYPE

Donor' Recipient Selected Marker Unselected Marker 
(argX~)

metB^ argE* argX* metB~ argE argX 
(3613)

wmetB argE argX 
(2084-1)

metB* argE*

metB argE

150

150

= 0.033

Ul

metB argE argX metB argX argH 
(3615)

+ 4- -metB argX argH
(496-5)

argH

15
200
0

200

= 0.075

E. coll K-12 (Wild type).

All strains carry the rif gene.



TABLE 9

ABSENCE OF argX EFFECT ON argH EXPRESSION IN A 

PARTIALLY DEREPRESSED argOrrPH MUTANT

Strain Genotype®’̂ Specific Activity (unlts/mg protein)^

argE argH argD

P4X6
(Control)

Wild type 12.9 0.17 0.7
I-

2084-1
(Control)

argE N.M.^ 0.18 0.6

3613
(Control)

argE argX2041 N.M. 0.58 0.7

2041
(Control)

argX2041 16.7 0.58 0.6

3766 136.5 3.7 0.5

3666 argORrnH argX2041 127.4 3.2 0.6

All strains are rif except for P4X6.
All strains are metB except for strains 3766 and 3666.
After growth In the presence of excess arginine (100 pg/ml). 
Not measurable.



TABLE 10 

PROPERTIES OF argX MUTANTS

Mutant Origin Type of 
Mutation

Revertibility Phenotypic Curing

Spontaneous
Frequency NTG AP EMS DES ICR-191 Sm Km Nm

ar%X2041 HNOg 5.1 X 10"^ - - - - - — — -
-9argX1593 HNO2 1.8 X 10

argC3653 AP UGA H R + H R H R - , 44- -

his6428 UAA H R + H R H R - — •++ 4-

hisG2100 F. S. - - - - + —  — -

hisD3018 F. S. +

Abbreviations: NTG, N-methyl-N'-nitro-N-nitrosoguanidine; AP, 2-aminopurine; EMS, ethyl methane- 
sulfonate; DES, diethylsulfate; Km, kanamycin sulfate; Sm, streptomycin sulfate; 
Nm, neomycin sulfate; H R, high reversion frequency: F.S., frameshift mutation .

•vj
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were plated on MMA + met + 1.25% nutrient broth as described in Chapter 

II. Viable cell counts were made by plating appropriate dilutions, in 

triplicate, onto L agar. The spontaneous reversion frequency was calcu­
lated by dividing the number of revertants by the total number of colo­

nies plated. The results (Table 10) show that both argX2041 and 

argX1593 have very low spontaneous reversion frequencies of approximately 

10-9.
Reversions by chemical mutagens. The argX mutants were tested 

with NTG, EMS, DES, AP and ICR-191. NTG, EMS and DES are alkylating 

agents and are believed to cause base pair substitution by transition 

and transversion (143). In rare events, NTG and DES also cause single 

base deletions (144,145). AP is a base analogue which causes base pair 
substitutions of only the transition type (143). All nonsense and mis- 

sense mutants are reverted by NTG, and all nonsense and 67% of missense 

mutants are reverted by DES. About 61% of the nonsense mutants, but 

only 43% of the missense mutants, respond to AP. ICR-191 is an acridine 

half-mustard which is believed to induce primarily frameshift (deletion 
or addition of one or more bases) mutations and it has been shown to be 

69% effective in inducing frameshift reversions (143).

The data presented in Table 10 show that argX mutants are not 

revertible by any of the base substitution or frameshift mutagens, 

whereas the known nonsense mutations (argC3653 and hisG428) are reverted 

by all the mutagens except ICR-191. Known frameshift mutations 

(hisG2100 and hisD3018) are reverted only by ICR-191.

Phenotypic curing. It is known that aminoglycoside antibiotics, 

such as streptomycin, kanamycin, and neomycin, lead to phenotypic sup-
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pression by causing misreading of messenger ribonucleic acid (143). 

Phenotypic curing is manifested in spot tests by the appearance of a 
solid ring of growth peripheral to the zone of inhibition caused by the 

antibiotic. All amber and ochre mutants show phenotypic curing, whereas 

frameshift mutants give negative results, and only 33% of the missense 

mutants respond to at least one of the antibiotics (143). As shown in 

Table 10, the argX mutants fail to respond to all three antibiotics, 

whereas known nonsense mutants are suppressed by one or two of the anti­

biotics.

Suppression by known nonsense suppressors. Two suppressor- 

bearing strains were available which were suitable for testing the sup­

pression patterns of the argX mutants. One of the strains, EcK189, 

carries a supE (amber suppressor) on the chromosome and also a deletion 

of the entire arginine cluster. Sal27 is an F' strain which carries an 

ochre suppressor on the episome. Both strains are unable to grow on 

MMA + met. Pike was propagated on argX2041 and argX1593. An aliquot 
of each lysate was streaked across a line of early log phase cells of 

EcK189 (supE) on MMA + met agar plates. In addition, log-phase cells 
of the F' donor (ochre suppressor) were cross-streaked against argX1593 

and argX2041 log-phase cells on MMA + met agar plates. The appearance 

of growth at or past the line of recipient cells was taken as a positive 

test for suppression of argX. Both argX strains failed to be suppressed 

by either the amber or ochre suppressor.

Although revertible spontaneously, argX1593 and argX2041 are 

not revertible by mutagens known to revert nonsense and missense mutants 

nor by the one frameshift mutagen tested. Furthermore, they are neither
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suppresslble by antibiotics nor by the two known nonsense suppressors 

used. Apparently, the argX mutations are neither of the nonsense nor 

missense type. Since ICR-191 reverts only 59% of frameshift mutants 

(143), and since both argX mutants were derived by means of nitrous acid 

mutagenesis which Is effective in inducing deletion mutations In JE, coll 

(146), and In view of their ability to revert spontaneously, the pos­

sibility cannot be excluded that the argX mutants may be of the short 

(frameshift) deletion type.

Effect of Reversion to argX^ on argH Expression

The argX2041 mutant (Aco” phenotype) was made prototrophic 

(Aco"*" phenotype) by spontaneous reversion and by transduction to argX^̂  

using P4X6 (wild-type) as a donor. EcK3754 and 3755 were isolated as 

revertants, and EcK3751 and 3753 were constructed by transduction. These 

prototrophic strains were assayed for the argE (acetylomithinase) and 

argil (argininosuccinase) enzymes after growth under repressive conditions. 

The results are given In Table 11. Revertants 3754 and 3755 show an Aco^ 

(argX"*") phenotype and a concomitant loss of the enhanced expression of 

argH.
The findings are consistent with the view that the plelotropy 

of the argX mutants Is due to a single mutational event. Two types of 

spontaneous revertants were observed. In one type (3755) arginino­

succinase activity Is reduced to the normal wild-type level (0.14). In 

the second type (3754) expression of argH Is decreased to approximately 

30% (0.05) of that In the wild-type).

The argX^ prototrophs (EcK3751 and 3753) constructed by trans­

duction show normal wild-type argH activity.



TABLE 11

RESTORED REPRESSIBILITY OF SPONTAîJEOUS REVERTANTS AND 

PROTOTROPHIC TRANSDUCTANTS OF argX2G41

Strain Origin* Pertinent
Genotype®

Doubling Time 
(min)^

Specific Activity (units/mg protein)^

argE argH

P4X6 W.T. 48 12.9 0.17

2041 HNOg argX" 49 14.5 0.67

3754 S.R. argX* 45 12.5 <0.05

3755 S.R. 47 15.0 0.14

3751 Tran. argX"*" 46 13.6 0.19

3753 Tran. argX'*’ 43 13.2 0.19

COM

a

b
c

S.R., spontaneous revertants; Tran., Pike transductants. 

All strains carry the metB gene

After growth in the presence of arginine (100 yg/ml).
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The argX2041 site on the argB structural gene may well be 

very specific and critical for the expression of argH. On the one hand, 

the site can be created by mutation to promote argH expression. On the 

other hand, spontaneous reversion can inactivate the argX site and lead 

to diminished argH expression. Although the reversions have not been 

mapped, there is presumably a critical site in the argB gene, the mod­

ification of which may lead alternatively to enhanced (argX2041) or re­

duced (3754) expression of argH function.

Genetic Analysis of argX Mutations 

A fine-structure map of the argX mutations in the arginine 

cluster was constructed. The approach Involved: construction of a de­

letion map, that is an ordering of arginine cluster markers by a series 
of overlapping deletion mutations; location of the cluster point muta­

tions within the appropriate deletions; ordering of point mutations 

which lie in the same region of the deletion map with respect to one 

another by three-point crosses with an outside marker. This outside 

marker should have a high cotransduction frequency with the clustered 

arginine genes in order to be useful.

Three-Point Crosses 

In three-point crosses, double mutants with closely linked 

markers were crossed with single mutants for the determination of the 

order of the mutations by donor-switching as described by Glansdorff 

(118). Selection was for prototrophic transductants in the respective 

crosses. The design of the three-point crosses is illustrated in Figure 

8. The rif locus was used as an outside linked marker in all the three-
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o r d e r :  a—b — rifA "" X
'  L  <■ \ + /  rtf ' \  V  b r t f ' '

o r d e r : b — a — r i f

^ ° A
1 +/ lif l l / b \ 4/rir\

2

Figure 8. The mapping of sites by three-point crosses.
+ + sBroken lines represent cross-overs necessary to get a jb rif 

recombinants. 1 and 2 are a pair of reciprocal crosses. If order is 
a - b - rif, frequency of 2 > 1. If order is b - a - rif, frequency of 
1 > 2.

jb = argE, £, X, or H; 
rif^ = rif ampin-resistance.
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point crosses. Double mutants with rif^ and an arg marker served as 

recipient, whereas a single mutant with a different arg marker was used 

as a donor. Transductants were spread on MMA. + met agar plates. The 
arg^ recombinants were picked, suspended in a drop of sterile saline, 

and tested for rif® by streaking on NBG + rif with sterile tooth picks. 

As shown in Figure 8, â  and ^  are designated as two arg markers in the 

cluster. If the order is ^  - rif, and ^  is the donor marker, the 

formation of ^  rifS recombinants requires a quadruple cross-over 
(Cross 1); if £  is the donor marker, the same class may arise from a 

double cross-over. The value of the ratio (a]̂  rif®) / (a^ h*") is 

thus expected to be lower if ^  (Cross 1) rather than £  (Cross 2) is con­

tributed by the donor. Opposite predictions could be made if the order 

is ^  - a, - rif^. That is, the value of the ratio in Cross 2 will be 

lower than that in Cross 1 (Figure 8).

The results of the three-point crosses are given in Table 12. 

Reciprocal crosses were performed to determine the order of the two argX 

mutations and several argB mutations with respect to reference argH. 

argB, argC, or argE markers. Strains argH496, argBlBOB. argClBlO, and 

argE1817 were used as the reference mutations. Four pairs of crosses 

were performed for each argX or argB mutant. It was found that both 

the argX1593 and argX2041 mutations map between argC and argH. However, 

they are different loci since argX2041 lies to the right of argBlBOB 

and argX1593 to the left of argBlBOB. The following mutations were 

found to be located between argC and argH; argBlSBl, argB15B5. 

argB1586, argB1637, argB166B, and argB205B. Mutations argBlSBl, 

argB166B, and argB205B map to the left of argBlBOB. On the other hand.



TABLE 12

ORDER OF argX AND argB WITH RESPECT TO ^  MUTATIONS 

AS DETERMINED BY THREE-POINT CROSSES

Cross
No.

Strains^ 
(Recipient X Donor)

Recombinants 
(arg^rif®/arg+)

Ratio %

Order

1. rlf^argX2041 X argH 17/112 15.2 argX2041 argH rif^
2. rif^argH X argX2041 28/112 25.0
1 . rif’̂ argX2041 X argB 67/204 32.8 argB argX2041 rif^
2. rlf^argB X argX2041 29/144 20.1

1 . rif*^argX2041 X argC 49/106 46.2 argC argX2041 rif^
2. rif^argC X argX2041 12/112 10.7

1. rif^argX2041 X argE 32/112 28.6 argE argX2041 rif^
2 rif argE X argX2041 15/112 13.4

1. rif^argX1593 X argH 17/111 15.3 argX1593 argH rif^
2. rif^argH X argX1593 31/111 27.9

1 . rif’̂ argX1593 X argB 11/141 7.8 argXl593 argB rif^
2. rif^argB X argX1593 25/161 15.5

00
Ul



TABLE 12 Continued

Cross
No.

Strains* 
(Recipient X Donor)

Recombinants
(arg+rifS/arg^^ Order

Ratio %

1.
2.

rif’̂ argX1593 X areC 
rif^areC X arRX1593

62/111
9/111

55.9
8.1

argC argX1593 rif^

1.
2.

riffargX1593 X ar&E 
rif^argE X argX1593

65/111
14/111

58.6
12.6

argE argX1593 rif^

1.
2.

rif^argB1581 X argH 
rif'argH X argB1581

39/206
66/192

18.9
34.8

argBlSBl argH rif^

1 .
2.

rif^argB1581 X argB 
rif^argB X argB1581

28/112
47/112

25.0
42.0

argBlSBl argB rif^

1.
2.

rif^argB1581 X argC 
rif^argC X argBlSBl

48/112
17/111

42.9
15.3 argC argBlSBl rif^

1.
2.

rif^argBlSBl X argE 
rif^argE X argBlSBl

49/112
12/112

43.8
10.7

argE argBlSSl rlf^

1.
2.

rif^argBlSBS X argH 
rif^argH X argBlSBS

40/224
S7/187

17.9
30.5

argBlSSS argH rif^

00ON



TABLE 12 Continued

Cross
No.

Strains^ 
(Recipient X Donor)

Recombinants 
(arg+rifS/arg )

Ratio %

Order

1 rif*^argB1585 X argB 47/168 28.0 argB argB1585 rif^
2 rif^argB X argB1585 32/187 17.1

1. rlf*’argB1585 X argC 48/112 42.8 arpC argB1585 rif^2. rif argC X argB1585 12/112 10.7

1. rif^argB1585 X argE 46/112 41.1 . _r
2. rif^argE X argB1585 10/112 8.9 argE argB1585 rif

1 . rif^argB1586 X argH 8/112 7.1 argB1586 argH rif^
2. rif^argH X argB1586 33/112 29.5

1 . rif^argB1586 X argB 60/200 30.0 argB argB1586 rif^
2. rif^argB X argB1586 37/161 23.0

1. rif^argB1586 X argC 40/112 35.7 arpC argB1586 rif^
2. rif argC X argB1586 14/112 12.5

1. rlf^argB1586 X argE 34/112 30.4 argE argB1586 rif^
2. rif^argE X argB1586 15/112 13.4

00



TABLE 12 Continued

Cross
No.

Strains 
(Recipient X Donor)

Recombinants 
(arg+rif^/arg )

Ratio %

Order

1.
2 .

rif argB1598 
rif^argH

X argH 
X argB1598

7/79
32/93

8.86
33.0

1. rif^argB1598 X argB 0
2. rif^argB X argB1598 0

I. rif^argB1598 X argE 24/78 30.8
2. rif^argE X argBl598 5/96 5.2

1. rif^argB1637 X argH 29/183 15.8
2. rif^argH X argB1637 46/207 22,2

1. rif^argB1637 X argB 33/44 75.0
2. rlf^argB X argB1637 16/52 30.8

1. rif^argB1637 X argC 30/104 31.7
2. rif^argC X argB1637 15/112 13.7

1. rif^argB1637 X argE 37/110 33.6
2. rif^argE X argB1637 12/104 11.5

argB1598 argH rif^

argE argB1598 rif^
0000

argB1637 argH rif^

argB argB1637 rif^

argC argB1637 rif^

argE argB1637 rlf^



TABLE 12 Continued

Cross
No.

Strains^ 
(Recipient X Donor)

Recombinants 
(arg^rifS/arg )

Ratio %

Order

1 . rif^argB1668 X argH 41/208 19.7 argB1668 argH rif^
2. rif^argH X argB1668 59/208 28.4

1. rif^argB1668 X argB 44/192 22.9 argB1668 argB rif^
2. rif^argB X argB1668 50/144 34.7

1. rlf^argB1668 X argC 47/112 42.0 argC argB1668 rif^
2. rif^argC X argB1668 16/112 14.3

1. rif^argB1668 X argE 32/112 28.5 argE argB1668 rif^
2. rif^argE X argB1668 8/112 7.2

1. rif^argB2058 X argH 29/112 25.9 argB2058 argH rif^
2. rif^argH X argB2058 45/112 40.2

1 . rif^argB2058 X argB 28/128 21.9 argB2058 argB rif^
2. rif argB X argB2058 56/143 39.2

1. rif^argB2058 X argC 24/72 33.3 argC argB2058 rif^
2. rif argC X argB2058 24/108 22.2

00\o



TABLE 12 Continued

Cross Strains* Recombinants
No. (recipient X Donor) (arg+rifG/arg+) Order

Ratio %

1 . rif^argB205B X argE 43/112 3B.4 argE argB20SB rif^
2. rif^argE X argB205B 9/112 B.O

1. rif^argX2041 X argB1637 13/111 11.7 areB1637 areX2041 rif’"
2. rif^argB1637 X argX2041 1/111 0,9

1. rif^argX2041 X argBlSBS 7/111 6.3 argX2041 argBlSBS riff
2. rif^argBlSBS X argX2041 2B/111 2S.2

VOo

Reference Markers: 
argH = argH496; 
argB = argBlBOB; 
argC = argCIBlO; 
argE = argE1817.
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argB1585« argB1586, and argB1637 map to the right of argB1808. One 

argB mutant, argB1598, falls to give any arg"** recombinants with 
argBlBOB, and Is presumed to map In the same locus as argBlBOB. Two 

argB mutants were mapped with respect to argX2041. Mutation argB1637 

lies to the left of argX2041. whereas argBl585 Is located to the right 

of argX2041.

Deletion Mapping 
In order to construct a deletion map, a large number of over­

lapping deletion mutants, particularly In the argB gene, are needed.

Thus far, efforts to Isolate a substantial number of cluster deletions 

have not been highly fruitful (80,118,119). Nevertheless, a number of 

useful cluster deletions are available. Multlslte mutant (2007) has an 

extensive deletion of part of argH and most of argB, and has been partic­

ularly useful In mapping the argX strains. Other deletion mutants were 

given to us generously by N. Glansdorff. They are as follows : MN42

carries a deletion for almost the entire arginine cluster (the distal 
portion of argH Is still Intact); argCB-1 and sup-102 are deletions 

which cover argC and extend dlstally to Include most of the argB gene; 

argEC(B) has argEC and part of argB deleted; argEC-1 carries a deletion 

of argE and the most proximal portion of argC. Some point mutants or 
small deletion strains, such as 185 (argB-1), 186 (argB-5), 187 (argB-2). 

188 (ar^-3), 190 (argH-2), and 191 (argH-1) were also provided by N. 

Glansdorff. These strains have been mapped rather extensively either by 
three-point crosses or by deletion mapping (118,119) as to their relative 

positions In the argB or argH genes. With these mutants and their known 

map-posltlons, together with other argB mutants from our own culture
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collection, it was possible to construct a fine structure map of the 

argX mutants as to their loci in the argB gene.

The results are shown in Tables 13-15. Procedures and methods 

for scoring prototrophic recombinants are described in Chapter II. Table 

13 represents the results of reciprocal crosses of the argX mutants with 

arg point and deletion mutants. Recipients are listed in the horizontal 

column and donors in the vertical column. As is indicated, argX2041 and 

argX1593 fail to give prototrophic recombinants with deletion mutants 

NN42, 2007, argCB-1. and sup-102 « but give wild-type recombinants with 
the argEC(B) and argEC-1 strains. Further confirmation that argX2041 

and argX1593 are not in the same locus was derived from the observation 

that they give prototrophic transductants when crossed with each other, 

but not with themselves (Tables 13 and 15). It is interesting to know 

that argX2041 crossed with 187 (argB-2) yields no recombinants (Table 

13 and 15). Hence, argX2041 and 187 are thought to share at least a part 

of the same locus in the argB gene. Mutation 187 (argB-2) has been mapped 

by Glansdorff and found to be located in the distal portion of the argB 

gene and is included within both the argCB-1 and sup-102 deletions (119, 

124).
As shown in Table 14, ten argB mutants as donors were crossed 

with six deletion mutants. It was found that all the argB mutations 
tested are included within deletions MN42, argCB-1 and sup-102. All 

except 1581, 1583, 1734, 2058, and 2082 map within 2007. However, 1581, 

1583, 1734, 2058 and 2082 give no prototrophic recombinants when crossed 

with argEC(B). These argB mutations apparently lie within argEC(B) which 

must extend into the proximal portion of the argB gene, but not into 2007.



TABLE 13

RECIPROCAL CROSSES BETWEEN argX AND arĝ  POINT AND DELETION MUTANTS

MN42 2007 sup-102
(175)

CB-1
(172)

EC(B)
(174)

EC-1
(176)

185 186 187 2041* 1593* 1810 190 188 191 496 2009 19J

MN42 - + + + +
2007 - - - - - + - - - - - + - - + + + +
sup-102 - - - - - - - - - - - - + + + + + +

CB-1 — — — — + — — — — — — + + + + + +
EC(B) - - - - - - + + + + + - + + + + + +
EC-1 - + - + - - + + + + + + + + + + + +

185 - - - - + + - + + + + + + + + + + +
186 - - - - + + + - + + + + + + + + + +
187 - - - - + + + + - - + + + + + + + +
2041* - - - - + + + + - - + + + + + + + +
1593* - - - - + + + + + + - + + + + + + +
1810 - + - - + + + + + + - + + + + + +
190 - - + + + + + + + + + + - + + + + +
188 - - + + + + + + + + + + + - + + + +
191 + + + + + + + + + + + + + + - + + +
496 + + + + + + + + + + + + + + + - + +
2009 + + + + + + + + + + + + + + + + - +
1982 + + + + + + + + + + + + + + + + + -

vow

* argX mutants.
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TABLE 14

CROSSES BETWEEN argB AND LARGE DELETION MUTANTS

R CB-1 sup-102 EC(B) EC-1
® \ MN42 2007 (172) (175) (174) (176)

1581 - + — — — +

1583 - + - - - +
1585 - - - - + +
1586 - - - - + +
1598 - - - - + +

1637 - - - - + +
1668 - - - - + +
1734 - + - - - +
1808 - - - - + +
2058 - + - - - +
2082 — + — — - +



TABLE 15

RECIPROCAL CROSSES AMONG argB AND argX MUTANTS

V 185 186 187 1581 1583 1585 1586 1593* 1598 1637 1668 1808 2041* 2058 2082 1734

185 — + + + + + + + — + + — + + + +
186 + - + + + + + + + + + + + + + +
187 + + - + + L - + + L + + - + + +
1581 + + + - - + + + + + + + + - - -
1583 + + + - - + + + + + + + + - - -
1585 + + L + + - + + + + + + L + + +
1586 + + - + + + - + + + + + - + + +
1593* + + + + + + + - + + - + + + + +
1598 - + + + + + 4- + - + + - + + + +
1637 + L L + + + + + + - + + L + + +
1668 + + + + + + + - + + - + + + + +
1808 - + + + + + + + - + + - + + + +
2041* + + - + + L - + + L + + - + + +
2058 + + + - - + + + + + + + + - - -

2082 + + + - - + + + + + + + + - - -

1734 + + + — — + + + + + + + + — — —

VOU1

L, low number of recombinants (under 20 colonies).
* argX mutants
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Moreover, It would appear that 2007 and argEC(B) overlap somewhere In 

the proximal argB gene, since no recombinants result from reciprocal 

crosses between 2007 and argEC(B) (Table 13).

As shown in Table 15, reciprocal crosses were performed among 

argB and argX mutants. Reciprocal crosses between argX2041« 187 (argB-2) 

and 1586 yield no prototrophic recombinants and, therefore, presumably 

occupy the same locus. Scarce transductants were found when argX2041 

was crossed with either 1585 or 1637. Therefore, strains 1585 and 1637 

probably map in close proximity to argX2041. It was previously deter­

mined that 1585 was to the right of argX2041 and 1637 to the left of it 

(Table 12). Since strain argX1593 fails to yield wild-type recombinants 

when crossed with strain 1668 (Table 15), they are presumed to share the 

same locus. Strain areB1808. which was the reference mutation used in 

the three-point crosses (Table 12), was found to map in the same locus 

as that of 185 (argB-1) and 1598 (Table 15). Strain 185 (argB-1) was 
formerly mapped by Glansdorff and shown to be in the proximal half of 

the argB gene (118,119).
The above data obtained by deletion mapping and by three- 

point crosses, together with information on the relative positions of 

some of Glansdorff's point mutations, were used to construct a "fine 

structure" map which is shown in Figure 9, Mutation argX1593 is placed 

in the proximal portion of argB, whereas argX2041 maps either at the 

extreme distal end of argB or at the argB-H junction.



Figure 9. Location of promoter mutations in argB. The 
numbers above the "chromosome" line indicate the approximate sites 
of arg point mutations. The lines below indicate the approximate 
regions of the chromosome which are missing in the various dele- 
ion strains. Termini of the deletions are approximate. The posi­
tions of Cl and C2, as assigned by N. Glansdorff (119,124,142), are 
included for reference purposes.

* argX mutations. ^
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Enzyme Activities of argB Mutants Which 

Map at or near argX2041 

Several mutants which either map at the same locus as 

argX2041, or in close proximity to it, were tested for their growth re­

sponses (Table 3) and enzyme activities (Table 16).

It is noteworthy that although auxotroph argB1585 maps distal 

to argX2041, it has normal argininosuccinase (argH) when grown under 

arginine repression (Table 16). Therefore, the argB1585 point mutation 

must lie in the structural gene of argB, at or near the argB-H border, 

and does not affect a critical region of the argH gene. Strains 

argX20Al. 187 (argB-2) and argB1586 appear to map at the same site (Table 

15). Whereas the argX2041 mutant shows a marked increase in arginino­

succinase (argH) activity under repressed conditions, the 187 mutant ex­

hibits a substantial reduction in argininosuccinase activity, to approxi­

mately 6% of that of the wild-type. Strain 187 thus resembles the 

argX2041 spontaneous revertant EcK3754 (Table 11) in the sense of having 

a low residual expression of argH. The revertant has 30% of the wild- 

type argH expression (activity). Hence, the argX2041 site in the argB 

structural gene, appears to be critical for argH expression, since two 

different mutations at this site alternatively "turn off" or "promote" 

argH expression. On the other hand, strain argB1586 shows normal argH 

expression.

Constitutivity of argH Expression Restored by argX 

in a Primary Promoter-Operator Deleted Mutant 

It has been established that argX mutations enhance argH ex­

pression only under maximally repressed conditions, and not under partial
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TABLE 16

ENZYME ACTIVITIES OF argB MUTANTS WHICH MAP 

AT OR NEAR argX2041

Strain Relative Specific Activity^
argE argC argH argP

P4X6 (W.T.) 100 100 100 100

2041 112 111 394 103

1585 91 116 95 87

1586 96 105 110 75

1637 96 147 105 105

187 108 N.D.b <6 113
(B-2)

Cells were grown under fully repressive conditions (arginine, 
100 pg/ml). Relative specific activities were calculated by 
designating as 100 per cent the specific activity of each 
enzyme in wild type (P4X6) grown under conditions of maximum- 
repression. Wild type specific enzyme activities (units/mg 
protein); enzyme E, 12.9; enzyme C, 1.7; enzyme H, 0.17; 
enzyme D, 0.7.

b Not determined.
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physiologie (after growth in the presence of om) or genetic (££S2ecBH^ 
derepression or full genetic (argR“) derepression. Therefore, its 

ability to function seems to correlate with that of the primary promoter 

(Pcbh^ for the argC, B̂, and H genes. The primary promoter seems to be 
affected by arginine repression, whereas the argX mutations are apparently 

unaffected by arginine, and, in fact, they function only when the argX 

mutants are grown under repressive conditions. Therefore, efforts were 

made to separate the argX mutations from the primary promoter in

order to determine directly whether argX can function independently and 

whether the expression of argH, restored by argX, is affected by re­

pression. From this study, it was also possible to infer whether the 

argX mutations act at the transcriptional or translational level.

Double mutants, argEC-1 argX2041 and argEC-1 argX1593, were 

constructed and assayed as described in Chapter II. Strain argEC-1 

carries an operator-primary promoter (Pggg) deletion in the arginine 

cluster (119,124). The results are shown in Table 17. Strain 3726, 

carrying the argEC-1 deletion, has a residual level of enzyme H activ­

ity of approximately 0.06 when grown under repressive conditions. This 

constitutive level of argininosuccinase activity is presumably due to a 

low-efficiency, unregulated internal promoter (Py) situated somewhere 

between argB and argH (119,124). Under repressive conditions, strains 

3725 (argEC-1 argX2041) and 3764 (argEC-1 argX1593) show an arginino­

succinase specific activity of 0.43 and 0.33, respectively (Table 17). 

These values correspond to a 5.5 - 7 fold increase above the specific 

activity of 0.06 achieved by argEC-1 in the absence of the argX muta­

tions. When strains 3764 and 3725 are cultivated under partially de-



TABLE 17
INSENSITIVITY TO REPRESSION OF argH EXPRESSION RESTORED 

BY argX IN A PROMOTER (P^gjj)-OPERATOR DELETION MUTANT

Strain Genotypea,b Supplement
Specific Activity (units/mg protein)

argE argH

P4X6

2041

1593

3726

3725

3764

Wild type 

argX2041 

argX1593 

argEC-1

argEC-1 argX2041 

argEC-1 argX1593

orn
arg
orn
arg
orn
arg
orn
arg
orn
arg
orn
arg

27.7 
12.9
27.3
16.7
30.4 
15.0

1.0
0.17
1.1
0.58
1.1
0.43
0.10

<0.06
0.48
0.43
0.35
0.33

oNJ

All strains carry the rif gene except for the wild type (P4X6). 
All strains carry the metB gene.
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repressed conditions (grown with ornithine), they have essentially the 

same argH specific activity as under repressed conditions. It Is appar­

ent that the argX mutations can act as Initiators In the absence of the 

primary promoter and restore argH expression. Moreover, the argX muta­

tions no longer depend on the repressed state of the arginine cluster In 
order to function; they effect the same constitutive level of arginino­

succinase under both repressed and partially derepressed conditions.
Under repressed conditions, argX restores and actually enhances arginino­

succinase to a level which Is 1.9 - 2.5 fold above the wlld-type activity 

of 0.17. However, under partially derepressed conditions, argX can only 

restore from 35% - 50% of the corresponding wlld-type activity of 1.0.

The growth rates of these strains In the presence of ornithine 

or arginine are noteworthy (Table 18). The promoter-operator deleted 

strain, argEC-1. cultivated In the presence of arginine, has a doubling 

time of 49 minutes. However, when grown with ornithine. It has a longer 

doubling time of 120 minutes. This Is apparently due to the limited 

amount of arginine synthesized because of the low level of arginino­

succinase present. When strain argEC-1 was combined with either the 
argX1593 or argX2041 mutation, the doubling time of the resulting strains 

(after growth In orn) are accelerated from 120 minutes to an essentially 

normal doubling time of 57 minutes (compared to 51, 48, or 49 minutes 

for wlld-type, argX2041. or argX1593« respectively). The resumed normal 

growth rate Is presumably due to an elevated level of argininosuccinase 

promoted by the argX mutations. The growth curves of an argEC-1 

argX2041 double mutant and an argEC-1 deletion strain, when supplemented 

with ornithine and arginine, are shown In Figure 10.
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TABLE 18

DOUBLING TIMES OF PROMOTER(P^gg)-OPERATOR DELETION 

MUTANT WHEN CARRYING argX MUTATIONS

Genotype Supplement Doubling Time 
(min)

P4X6 (W.T.) Orn
Arg

51
48

argX2041 O m
Arg

48
49

argX1593 Orn
Arg

49
52

argEC-1 Orn
Arg

120
49

argEC-1 argX2041 Orn
Arg

57
52

argEC-1 argX1593 Orn
Arg

57
51
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From the above data. It is reasonable to conclude that 

argX1593 and argX2041 are transcriptional types of initiators. Both 

argX mutants act to promote transcription when the normal initiation 

site Is deleted. It is unlikely that these argX mutants act at

the translational level, because there would be hardly any mRNA for the 

arginine cluster in the argEC-1 strain due to the deletion of the primary 

promoter-operator region. However, there is a low level of transcription 

of argH, which is initiated at the internal promoter (P^). This amount 

of mRNA certainly could not account for the enzyme H activity (1.9 - 2.5 

fold increase above that of the wild-type when grown with arginine) in 

the argEC-1 argX mutants.

Possible Involvement of An Operator in argX Mutant 

Since the argX elements are not regulated by arginine, it was 

of interest to determine whether the argX mutation includes its own 

"operator" region. This "operator" might be able to interact with active 

repressor only at abnormally high concentrations of arginine, or might 
be sensitive to active repressor from another pathway. Strain argX2041 

was cultivated in MMA with abnormally high arginine (200 ug/ml), or in 

enriched arginine-free assay medium with added arginine (100 pg/ml). 

Extracts were assayed for the argE and argH enzymes. The results, shown 

in Table 19, indicate that the argX strain has the same constitutive 

level of argininosuccinase activity either in enriched medium (arginine 

free assay medium containing arginine), or in MMA medium with a high 

concentration of arginine. It is concluded that the argX mutation does 

not include an operator region.



TABLE 19

AN OPERATOR NOT INCLUDED IN argX2G41 MUTATION

Strain* Medium Arginine
Supplement

Specific Activity (units/mg protein)
(yg/ml) argE argH

P4X6 (W.T.) Minimal 100 or 200 16.2 0.17

2041 R* Minimal 100 14.9 0.67

2041 R+ Minimal 200 15.6 0.64

2041 R^ Arginine- 
free assay

100 14.5 0.71

All carry the metB gene.
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Function of argX Mutation in Combination with 

Polar Nonsense Mutation in argC 

Since an argX mutation is able to initiate and restore argH 
expression in a promoter-operator deletion mutant, it was of interest 

to determine whether the argX mutations might also be effective in re­

ducing the polar effect exerted by a nonsense mutation (UGA) in argC 

on argH function. Mutant 3653 (argCnrA rif^) shows a polar effect on 

argH expression. As shown in Table 20, when polar mutant 3653 is culti­

vated in arginine, argH expression is reduced to approximately 50% (0.08) 

of the corresponding wild-type specific activity of 0.17. However, when 

it is grown in the presence of ornithine, the enzyme H activity of 0.73 

represents a loss of only 25% of the wild-type specific activity of 1.0.

The procedure for isolation of an argC argX double mutant was 

tedious, as described in Chapter II. An argE strain (2084-1) was used 

to construct an argC (3653) mutant, and an argE argX double mutant (3613) 

was used to construct an argC argX double mutant (3648). With these 

strains, it was possible to examine the effect of the argX mutation on 
operon expression after termination of translation has occurred at the 

operator-proximal argC gene. The growth curves and rates of the argC 
polar mutant and of the double mutant in ornithine and arginine are shown 

in Figure 11. The results strongly suggest that the argX2041 mutation 

indeed relieves the polar effect of the nonsense mutation on argH ex­

pression since the growth rate of the double mutant in ornithine is in­

creased to that of the arginine control. Assays of the cluster enzymes 

verified this conclusion (Table 20). Under conditions of arginine re­

pression, it was found that function of the previously almost inactive



TABLE 20

RELIEF BY argX OF POLAR EFFECT EXERTED BY A NONSENSE

argC MUTATION ON argH EXPRESSION

Strain a bGenotype ’ Supplement
Specific Activity (units/mg protein)^

argE argC argH

P4X6
(Control)

W.T. orn
arg

27.7
12.9

3.5
1.7

1.0
0.17

2084-1
(Control) argE orn

arg
N.M.^
N.M.

4.7
2.0

1.1
0.18

3613
(Control)

argE argX2041 arg N.M. 1.9 0.58

3653 aiSÇuGA orn
arg

50.0
16.7

<0.37
N.M.

0.73
<0.08

2041 argX2041 orn
arg

27.3
14.5

4.5
2.2

1.1
0.58

3648 “ gÇuGA ^^6X2041 orn
arg

45.6
12.3

<0.27
N.M.

0.81
0.40

H*
S

Ail strains carry the rif gene except for P4X6. After growth in the presence of excess
b j arginine (100 yg/ml)

All strains carry the metB gene except for 3653 and 3648. Q measurable.



300

^3 100 
90

g :  
^  60 
UJ 50

(/>

gtflC arqX2041 on arg

orflC on arg

grgC qrflX2041 

on orn

orgC on orn

3  20
I—
lil

Genotype Medium Doubling Time 
(M in )

—1
10 r y /  /  / o

y y °

argC oigX arg
orn

4 7
44

ag C arg
orn

4 0
63

0 30 60 90 120 ISO 180 210 240 270 300 330 360 390 420

T I M E  (MINUTES)
Figure 11. Growth curves of polar argC mutant when carrying 

areX2041 mutation.



Ill

argH gene is restored by the argX mutation in the polar argC strain. The 

specific argininosuccinase activity is 0.08 for the argC strain as com­

pared to 0.40 for the argC argX strain. Therefore, argH expression in 

the double mutant is elevated to 235% above that in repressed wild-type 

strain. However, no such dramatic release of the polar effect is ex­

erted under conditions of partial derepression, and in fact, there is 

essentially no significant relief of the polar effect. This finding is 

further evidence that argX mutations are unable to promote transcription 

when the primary promoter Is functioning even if only 75% effi­

ciency.

In summary, the evidence indicates that the argX mutations 
act as efficient internal promoters in combination with polar mutations, 

as well as with promoter-operator deletion mutations.

Effect of the argX Element on the Expression 

of argH in Merodiploids

Before construction of the diploids, an F~ strain, EcK361S 

(argX2041 argH"), was isolated as described in Chapter II. The pres­

ence of the argX mutation was confirmed by demonstrating its recover­

ability via transduction from the double mutant (Table 8). An argH" 

strain was used as a control.
The merodiploids, EcK3742 (F' metB*** argX^ argH* rlf^ / metB" 

argX2041 argH" rif^ thi his aroE recAl str^) and EcK3750 (F* metB* argX^ 

argH" rif^ / metB" argX2041 argH+ rif^ thi his aroE recAl str^), were 

constructed as described in Chapter II.

The two diploids, together with the corresponding exogenote 
and endogenote parents, were grown in the presence of arginine, and
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assayed for the level of acetylomlthlnase and argininosuccinase. The 

results are given in Table 21. The exogenote (arglC**) is unable to re­

duce synthesis of argininosuccinase from the endogenote (arglT*’) as de­

monstrated in the F' strain 3750 (F' argXT*" argH" /argX~ argH*’). There­

fore, it is concluded that argX constitutivity is cis-domlnant. Parallel 

studies in the diploid strain 3742 (F* argX^ argH^/argX~ argH") show 

that argX is trans-recessive, since argX" in the endogenote does not 

elevate argH expression in the exogenote (argH+).

Absence of Duplication of argH Gene in 

argX2041 Mutant 

It has been reported that mutants which utilize ornithine 

slowly due to low argH expression could be reactivated to achieve an 
increased growth rate (142,147). Some of these fast omlthine-utilizers 

carry duplications of the argH gene in the close vicinity of the argin­

ine cluster, but not within it. In view of the above report, it was 

necessary to rule out the remote possibility that a duplication of the 

argH gene is responsible for the enhanced argininosuccinase activity in 

the argX mutants.

The tactics to approach this problem were as follows. It was 

assumed that argX2041 did indeed carry more than one copy of the argH

gene [arg(H+) ]. An argH" marker (EcK496-5) was Introduced into the n
argX" arg(H+)^ recipient (EcK2041), thereby replacing the presumed 

multiple arg(H*^^ gene copies with a single copy of argH" (as described 

in Chapter II). Recovery of the argX mutation from the double mutant 
EcK3615 (argX" argH") was performed as described in a previous section 

in the present Chapter, and the results are given in Table 8. The



TABLE 21

EFFECT OF argX ON THE EXPRESSION OF argH IN MERODIPLOIDS

Strain Genotype
(exo-/endogenote)

Doubling Time 
(mln)b

Specific Activity (unlts/mg protein)

argE argH

3769

3744

3750

Hfr argX argH 48
F” argX“ argH'*' 80

F* argX*' argH~/argX~ argH* 94

13.9

13.4

28.2

N.M."

0.59

0.56 w

3768

3735

3742

Hfr argX^ argB* 47

F“ argX argH" 79

F argX* argH*/argX~ argH" 97

13.6

15.8

30.5

0.17

N.M.(

0.19

® All strains carry the rlf gene. All strains except for 3769 and 3768, also carry recAl. 
^ After growth In the presence of excess arginine (100 yg/ml).
^ Not measurable.
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double mutant, EcK3615 (metB" argX~ argH" rif?) served as recipient in 
a transduction in which a copy of the argH** gene was introduced from a 

wild-type strain (P4X6). Cells were plated on MMA. + met + aco agar to 

select for Arg*** (argff**) recombinants which were in turn scored for the 

Aco" phenotype (argX"). It is reasonable to expect that the resulting 

argX" strain has only a single copy [arg(H+)i] of the argH gene. 

Argininosuccinase (argH) and acetylomlthlnase (argE) assays were per­

formed on extracts of EcK3758 (metB" argX" argH'*') and related strains 

grown in the presence of arginine to determine whether there is enhanced 

expression of argH in an argX strain which reasonably may be expected 

to carry only a single argH* gene.

The results are represented in Table 22, Strain 3758 

[argX~ arg^H^)^] has an enzyme H specific activity of 0.68, as compared 

to 0.67 for argX2041 [argX" arg(H+)^]. Since these values are es­

sentially Identical, it is apparent that the argX mutant (argX2041) does 
not have a duplication of the argH gene. However, the possibility 

cannot be excluded that an insertion of a piece of foreign DNA into the 

region between argB and argH had occurred, thereby inactivating the 

argB enzyme and concomitantly enhancing argH expression.

Effect of Rifampin on the Efficiency of 

arg and argX Promoters 

BNA polymerase must interact with the promoter sites in the 

arginine cluster. Since rifampin interferes with in vivo transcription- 

initiation at promoter sites, this antibiotic was used as a probe to 

examine the relative efficiencies of the arginine promoters. Prelim­

inary studies were made to test the effect of rifampin on the effi-



TABLE 22

DUPLICATION OF argH GENE NOT PRESENT IN argX2041 MUTANT

Strain Genotype
Specific Activity (unlts/mg protein)

argE argH

P4X6 (W.T.) argX^ argH* 16.7 0.18

2041 argX~ arg(H*)^ 17.0 0.67

3615* argX~ argH" 15.8 N.M.d

3758 argX" arg(H*)^ 16.2 0.68

Ui

a
b
c
d

Carries the rlf gene.
All strains carry the metB gene.
After growth In the presence of excess arginine(100 yg/ml). 
Not measurable.
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ciency of transcription-initiation at the naturally-occurring primary 

(Pcbh^ and secondary (P^) promoters, and also at the mutationally-creat- 
ed argX type (P^) of promoter. All strains used were rifampin-resistant 

(riff). Cultures were grown In ornithine and arginine, with and without 

rifampin. The levels of enzymes specified by argE and argH were deter­

mined. The results are given in Table 23. Under repressed as well as 

partially derepressed conditions, the wild-type strain (PAX6) grown with 

added rif has essentially the same enzyme H activity as when it is 

grown without added rif. Whereas P4X6 (grown under repressed conditions) 

shows the same specific enzyme E activity with and without added rif 

under repressive conditions, it has higher enzyme E activity with rif 

(39) than without rif (27.7) under partially derepressed conditions 

(after cultivation in the presence of ornithine). This corresponds to 

an increase of almost 50%.
After growth in ornithine plus rif, argX204l shows an enzyme 

H activity of 0.58, which is 40% lower than that after growth without 

added rif (1.0). Under repressed conditions with added rif, the argX 

mutant also has a correspondingly lower (approximately 40%) enzyme H 

activity of 0.38, as compared to 0.59 without added rlf. It is note­

worthy that the enzyme H activity of 0.38 shovm by the argX mutant 

(grown under repressed conditions with added rif) is exactly equal to 

the enzyme H activity of strain argEC-1 argX2041 grown under the same 

conditions. Therefore, it is apparent that the primary promoter (Pc b r) 
does not function at all to initiate argH transcription in the argX 

mutant during growth in arginine with added rif. However, the function 

of (promoter created by argX mutation) is not affected by added rif



TABLE 23

EFFECT OF RIFAMPIN ON EFFICIENCY OF TRANSCRIPTION-INITIATION

AT ARGININE PROMOTERS

Strain Promoter(s) Supplement 
Present

Specific Activity (units/mg protein)

argE argH argP

P4X6 (W.T.) ^CBH orn
arg

39.0 (27.7) 
19.6 (15.0)

1.0 (1 .2) 
0.19 (0.18)

2.4
0.8

(2.6)
(0 .6)

argX2041 ^CBH ^X o m 24.4 (27.3) 0.58 (1.0) 2.3 (2.3)

+ Ph (?) arg 17.7 (16.7) 0.38 (0.59) 0.7 (0.9)

arpEC-1 orn 0.56 (0.11) 6.8 (11.2)
arg 0.08 (0.06) 0.7 (1 .0)

argEC-1 argX2041 Px + Ph  (?) orn 0.44 (0.48) 6.9 (8.3)
arg 0.38 (0.43) 0.7 (0.6)

 ̂All strainrt carry the metB and rif genes.
After growth in the presence of rifampin; values in parenthesis obtained after growth in the 
absence of rifampin.
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since enzyme H activity does not change significantly when the 

argEC-1 argX20Al strain is grown in arginine either with (0.38) or with­

out (0.43) rif. Hence, the lower enzyme H activity of the argX mutant 

when grown with rif is apparently due to the lower efficiency of the 

primary promoter (Pggg) in the presence of the antibiotic.

When the argEC-1 strain is cultivated in ornithine plus rif, 

the argininosuccinase level is increased five fold above that of the 
same strain under the same conditions but without added rif. The spe­

cific activity is 0.56 as compared to 0.11. It would seem that rifampin 

acts either as an "inducer", or just binds to RNA polymerase to facilitate 

or direct transcription specifically at Pg (low efficiency promoter 

between argB and argH) under partial derepression (with ornithine). 

However, under repressed conditions with rif, enzyme H is no longer 

"induced" and Pg again has the same low efficiency (0.08) as it does 

without rif (0.06).

From the studies of the effect of rifampin, an unexpected 

property of the argX mutant was uncovered. The findings Indicate that 

in the argX mutant, only Pq q q and P^ are still intact, whereas Pg is 

either deleted by the presence of the argX mutation, or is completely 

nonfunctional. After growth in ornithine plus rif, strain argEC-1 

(carrying Pg as the only promoter) shows an enzyme H activity of 0.56 

and strain argEC-1 argX2041 [P^ + (Pg) ? ] has an enzyme H activity of 

0.44. If Pjj was present and functional in the argEC-1 argX strain, 
argH expression should be equal to the sum of Pg (0.56) and P^. In fact, 

argH expression (0.44) in argEC-1 argX2041 is somewhat less than that 
found for P^ alone (argEC-1). Therefore, it is unlikely that Pg is still
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Intact in the argX mutant. Additional support may be derived from com­

paring strains argX2041 and argEC-1 after growth with ornithine + rif. 

The enzyme H activity made available at Pc b h + 9%^?) (0*58) is
essentially the same as that contributed by Pg alone (0.56).

The doubling times for strains P4X6, argX2041. argEC-1 and 

argEC-1 ar.gX2041 are shown in Table 24. Although there is no marked 

difference in doubling times when these strains are grown with or with­

out rifampin, there appear to be slightly shorter doubling times under 

repressed as well as partially derepressed conditions in the presence 

of rif.
The findings are in accord with the view that the rate of in 

vivo transcription-initiation of specific mBMA molecule# at different 
promoter sites in rifampin-resistant strains is affected nonuniformly 

by rifampin, and that the effect of rifampin on initiation at Pg appears 

to be influenced by arginine.
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TABLE 24

EFFECT OF RIFAMPIN ON DOUBLING TIME OF argX. argEC-1 

AND argEC-1 argX STRAINS

Strains* Supplement Doubling Tlme^ 
(mln)

Orn 41 (47)
P4X6 (W.T.) Arg 41 (51)

2041 Orn 43 (48)
Arg 41 (49)

argEC-1 O m 114 (120)
Arg 41 (49)

argEC-1 argX2041 Orn 50 (57)
Arg 45 (52)

* All strains carry the metB and rif genes.

After growth In the presence of rifampin; values In parenthesis 
obtained after growth In the absence of rifampin.



CHAPTER IV

DISCUSSION

Information for the synthesis of the enzymes which catalyze the 

terminal steps of arginine biosynthesis of Escherichia coli K-12 is en­

coded in nine structural genes, scattered in six regions of the chromosome. 

Five of the structural genes map at five different sites (Figure 2), where­

as four structural genes are contiguous and form a cluster in the order 

argE-C-B-H (118). The unlinked genes are repressed by arginine in paral­

lel, but not coordinately, as though each constitutes a distinct operon 

with its own operator site. It is reasonable to believe that the arginine 

genes constitute various functional units under negative transcriptional 

control by arginine through the mediation of an active protein repressor 

produced by the argR gene. The evidence in favor of this view for the 

arginine system is briefly discussed as follows:

(1) Evidence has been given which demonstrates the presence 

of cis-dominant operator regions for the argECBH cluster (122) and for 

argi (95,125).

(2) Evidence has been presented which suggests that arginine 
or a derivative acts as the corepressor for the system at the transcrip­

tional level (101,102,103,104). BNA-DNA hybridization experiments support 

the view that arginine signals repression by inhibiting the initiation of 

transcription of argECBH messenger BNA via the involvement of the argR

121
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product. However, there are indications that a translational control 

signal might operate simulâtaneously during arginine repression (105).

The data also suggest that, in the presence of excess arginine, an accel­

erated degradation of mRNA occurs in the argR* strain (107).

(3) Based on studies of coordinacy (120,121), of polarity 

(89,119,122,123), and of argOg^gy mutants (122), it has been proposed 

that argECBH form two adjacent, but distinct, functional units. One unit 

is comprised of argCBH and is transcribed cloclcwise from the light strand, 

and the second unit consists of only argE, and is transcribed counter­

clockwise from the heavy strand (Figure 3). Whereas deletions covering 

the region between argE and argC result in a total nonfunction of argE, 

and they allow a constitutive level of argH to be maintained, pre­

sumably due to a low-efficiency internal promoter (Pg) at or near argB 

(119,124). It was therefore, hypothesized that the primary promoter- 

operator complex is located between argE and argC, and that a secondary 

promoter exists at or near the argB-H boundary. Although no direct mea­

surements have been reported on the quantitative aspects of the argECBH 

mRNA, Krzyzek et al. (102) estimated that at least two discrete pieces of 

mRNA are involved. All the above results suggest that argC, and H are 

transcribed into a single polycistronic messenger RNA, and that argE is 

transcribed individually.

In the present work, two argX mutations have been described which 

are able to function as reinitiation elements in the arginine cluster of 

coli K-12. The mutants were isolated fortuitously from the wild type 

as acetylomithine-requiring auxotrophs following nitrous acid mutagenesis 

(80). They are deficient in argB expression and show a concomitant and
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enzyme-specific inability to repress, normally, argininosuccinase. The 

expression of argH in argR* derivatives of the argX mutants is three- to 

four-fold higher than that in the wild type under arginine-repressed 

conditions (Tables 5, 6 and 7). The other arginine enzymes in the cluster 

(enzymes E and C) and the noncluster enzyme, D, behave normally. The argX 

mutations inactivate argB function, and concomitantly their intrinsic 

specific DNÂ sequences act as initiators to promote mRNA synthesis speci­

fically for argH expression, in a clockwise manner, consistent with the 

divergent transcription model as proposed by Jacoby (122) and Glansdorff (124) 

The argX mutations appear to be unique as initiators in that they 

function only under fully repressive conditions. They have no detectable 

effect on argH expression under either the partially derepressed condition 

(after growth with added ornithine or when combined with an argOgggy muta­

tion) (Tables 5, 6, 7 and 9), or the fully derepressed state resulting from 

the presence of an argR allele (Tables 5, 6 and 7). Furthermore, argX 

shows no detectable effect under partial derepression when it is combined 

with a polar argC mutant even when the translation of mRNA transcribed from 

Pcbh (primary promoter) is reduced by 25% (Table 20). It is possible that 

the effect of argX might not be detectable during full or partial genetic 

derepression, since it is masked by the high enzyme H activity (3.2-9.9) 

(Tables 5, 7 and 9) contributed by initiation at the primary promoter site 

(?Cbh)• However, if the argX mutations were functional under partial de­

repression, the contribution by argX alone (enzyme H activity of 0.33-0.48) 

(Table 17) to a r ^  expression in the argC mutant (enzyme H activity of 0.73) 

(Table 20) and in the R^ derivatives (1.1-.1.2) (Tables 5, 6 and 7) would 

be proportionately large and, hence, readily detectable. Therefore, the
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finding that the argX mutations do not enhance argH expression, either 

under partial physiologic derepression or in a polar argC strain grown in 

ornithine, is taken as strong evidence that argX mutations can actually 

function only under fully repressed conditions. The phenomenon, however, 

is not clear.
It seems that argX2041 and argX1593 have dual effects on the 

arginine cluster. Under maximal arginine repression, argX mutations create 

a promoter of transcription for the constitutive expression of the distal 
argH gene and are also read as structural-gene mutations for the argB gene. 

However, under partially and fully derepressed conditions, the mutations 

are read only as structural gene mutations.

Callahan and Balbinder (61) have isolated a type of initiator 

mutation (trpA515) of the trp operon of_S. typhimurium which may have a 

transcription-terminator component as well as an initiation component.

This mutation (trpA515) is similar to the argX mutations in the sense that 

both function as initiators only under conditions of maximal repression.

Upon derepression, the adjacent trpB expression of trpA515 is drastically 

reduced to 40%, whereas the other distal gene, trpD, has the same expression 

as under repressed conditions. The reason for this peculiar phenotype may 

be explained by the hypothesis that mutation trpA515 creates a promoter of 

transcription of the four operator-distal genes, whereas the primary trp 

promoter is inactive due either to repression by tryptophan or the presence 

of a supX deletion (deletion which covers the primary promoter-operator 

region and extends into the proximal part of the first structural gene).

When the primary promoter is functioning normally in derepressed conditions, 

the mutation acts as a terminator of those transcriptions originating at
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the primary promoter. The result is an extreme polarity effect for the

four distal genes. In contrast, the argX mutations are probably read as

nonpolar structural mutations in the argB gene, since the mutations do not

affect the expression of the operator-distal argH gene under partially or

fully derepressed conditions (Tables 5,6, 7 and 9) (also see discussion

in the latter part of this Chapter). Hence, argX mutations differ from

trpA515 in this respect. However, an alternative explanation is that in

argX mutants, is a highly efficient promoter for transcription. When

P-„„ is available for transcription (under partially and fully derepressed Coil
conditions), it may be recognized efficiently and preferred by RNA poly­

merase for initiation rather than (argX mutations).

Several internal promoter mutants of the trp and his opérons of

S. typhimurium (52,63) were isolated from strains carrying promoter-oper­

ator-structural gene deletions. Selection was for secondary mutations in 

the first operator-proximal structural gene which restore trp or his operon 

expression. With this in mind, argX1593 and argX2041 were introduced into 

the argEC-1 strain (with a deletion of the primary promoter-operator com­

plex) . Both argX mutations can function independently and are not affected 

by the absence of transcription at the proximal primary promoter (^Qgg) 

(Table 17). Thus, argX mutations act as initiators and restore argH 

function. The argH expression is constitutive with respect to arginine 

regulation, being essentially the same in cultures grown under conditions 

of repression and partial derepression of the arg cluster (Table 17). The 

finding that argX mutations can restore constitutive argH expression in the 

absence of the natural primary promoter is taken as strong evidence that 

they are internal promoters.
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Further evidence that argX mutations are internal promoters is 

the finding that argX2041 is capable of relieving the polar effect exerted 

on argH by a translational terminator (nonsense mutation) in the argX- 

proximal argC gene (Table 20). Under repressive conditions, argH expression 

initiated at (argX2041) is at the same constitutive level in the polar 

argC mutant (enzyme H activity of 0.40) (Table 20) as it is in the pri­

mary promoter-operator deletion strain (enzyme H activity of 0.43) (Table 

17). The argH expression initiated at in strains carrying these com­

bined mutations is approximately two and a half-fold above that of the 

fully repressed wild type (0.17). Similarly, argH expression initiated 

at argX1593, when in combination with the promoter-operator deletion, 

shows a two-fold increase (enzyme H activity of 0.33) (Table 17). There­

fore, the argX mutations can function more efficiently than the primary 

promoter (P^„) under repressed conditions.

The argX2041 mutation differs from the translational-restarters 

described in the rllB region of bacteriophage T4 (53) and in the lac system 

(54) for the following reasons: (1) argX does not require the proximity of 

a translation-terminating nonsense mutation in order to function, whereas 

a translational-restarter requires a proximal translational-terminater in 

its close vicinity in order to express its function; (2) argX does not 

depend upon derepression of the cluster (Table 17), whereas the activity 

of the translational-restarter in the lac system is dependent on induction 

of the operon; (3) argX relieves the polar effect of a nonsense mutation 

and actually boosts argH expression two and a half-fold (efficiency of 250%) 

above that in the repressed wild type, even though the proximal trans- 

lational-terminator is located within a relatively distant, different gene
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(argC) (Table 20); on the other hand, a translational-restarter can 

apparently relieve only part or even most of the polar effect of a pro­

ximal translational-terminator which must be In Its close vicinity within 

the same gene, but does not boost gene expression above 100% (repressed 

wild type) efficiency; (4) argX does not relieve the polar effect of a 

nonsense argC mutation on argH expression under partial derepression 

(after growth In ornithine) (Table 20): If argX were a translational- 

restarter, the same efficiency (250%) found under full repression should 

apply to the state of partial derepression.

The additivity of to the constitutive function of In

argX mutants can be demonstrated by comparing the enzyme H activity In 

strains In which the argX mutations are combined with a P^jg^-deletlon.

The results are presented In Table 25. The argH expression transcribed at 

Pcbh the wild type (P4X6) was calculated by subtracting the value found 

for the P _ ^  deleted mutant from that for the wild-type strain under re-CBn
pressed conditions. The specific enzyme H activity transcribed at Pggg In 

argX mutants was calculated by subtracting the value of the PggH^deleted 

argX strain from the activity of argX mutants under repressed conditions. 

Since argH expression Initiated at Is essentially the same In the

wild type (o.ll) as It Is In the argX1593 (0.10) and argX2041 (0.15), the 

argX mutations do not appear to have a polar effect oA the translation of 

argiH mBNÂ whose transcription Is Initiated at the proximal promoter

under repressed conditions. Moreover, transcription at P^ sites apparently 

does not Interfere with the "downstream" transcription by RNA polymerase

'CBH-
Cls- and trans-domlnance tests were performed on argX2041 (Table
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TABLE 25

ADDITIVE NATURE OF PcBH(PRIMARY PROMOTER) AND P^ 

UNDER REPRESSIVE CONDITIONS

Strain Promoter(s) presumed to function argH
under repressive conditions*

P4X6 (W.T.) Pc b h + Ph 0.17

argEC-1 Ph <0.06

argX1593 Pc b h + Pn + Px 1593 0.43

argX2041 Pc b h + Pat?) + Px 2041 0.58

argEC-1 argX1593 Ph  + Px 1593 0.33

argEC-1 argX2041 Pr (?) + Px204i 0.43

Calculations:
argH expression at Pggg in P4X6 = 0.17 - 0.06 = 0.11
argH expression at PcbH argX1593 = 0.43 - 0.33 “ 0.10
argH expression at Pq b h in argX2041 « 0.58 - 0.43 = 0.15

PCBR: 
Ph :

Natural primary promoter at argE-C border
Natural secondary internal promoter near argB-H border
Promoters created by either argX1593 or argX2041.



129

21). The results show that the argX effect on argH. expression is cls- 

dominatn and trans-recessive and suggest that argX does not produce an 

altered polypeptide product which, in turn, causes an elevated arginino­

succinase level. The findings are in accord with the view that the argX 

mutation is a transcriptional initiator. In addition, the elevated 

argininosuccinase level is probably not due to a duplication of the argH 

gene (Table 22). It remains a possibility that the argX mutations involve 

the insertion of a foreign "promoter" in the argB gene analogous to the 

insertions in the lac (57,58) and gal system (56,58,59). However, it is 

unlikely that argX mutations are insertions, since the known insertions 

cause extreme polarity effects on operon expression. Moreover, even if 

argX2041 is an insertion, it does not include an "operator region", since 

argH expression is at the same constitutive level when the argX strain is 

grown in enriched medium or in MMÂ with an abnormally high amount of 

arginine (Table 19).

Both argX1593 and argX2041 appear to be short frameshift dele­

tions. They are not revertible by base-substitution mutagens or the 

frameshift mutagen ICR-191 (Table 10), and do not show phenotypic curing 

by aminoglycoside antibiotics. In addition, they are not suppressed by 

the UÀÂ and UÂ6 nonsense suppressors available in this laboratory. How­

ever, they do show a low spontaneous reversion frequency of approximately 

10"9 (Table 10). It is of interest to know that although they may be 

frameshift mutants, the argX strains are not polar since the argH expres­

sion elevated by the argX mutations under fully repressive conditions is 

additive to that initiated at (Table 25). It is therefore concludedLDfl
that both argX1593 and argX2041 are short "in phase" frameshift deletions.
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Deletion analysis and three-point crosses reveal that argX 

mutations occur in two regions of the argB gene (Figure 9). The mutations 

map either in the proximal half of argB (e.g., argX1593), or in the 

vicinity of the argB-H border (e.g., argX2041).
There appears to be a natural secondary promoter (Pg) in the 

arginine cluster which is located in argB or at the argB-H border (119,

124). The basal level of enzyme H observed in polar point and deletion 

mutants [e.g., argB-5 (EcK186), argEC-1 and argEC(B)] is presumably due to 

this Pg promoter. This is not ture, however, in strains harboring muta­

tions ivhich either destroy all knoî«i argB markers (e.g., argCB-1) or are 

located in the immediate vicinity of the argB-H junction [e.g., argB-2 

(EcK187)]. Mutation argB-2 has been characterized as a short frameshift 

deletion (119). It has an extreme polar effect on argH function, reducing 

the basal level of enzyme H from 35% (specific activity 0.06) to appro­

ximately 6% of the repressed wild-type activity of 0.17 (Table 16). The 

basal constitutive level of argH expression is due to transcription at P„ 

in the absence of P ^ g  and is presumably unaffected by polar mutations 

proximal to it. The only ways to further reduce the basal enzyme H level 

seem to be by inserting a polar or frameshift mutation distal to Pg or 

simply by deleting Pg. The present author proposes, therefore, that argB-2 

is either a frameshift deletion that destroys Pg, or is in the immediate 

vicinity of Pg, but distal to it.

It is surprising that one of the argX mutations (argX2041), as 

well as a point mutation (argB1586) , map virtually at the same locus as 

argB-2 (Figure 9), and another argB point mutation (EcK1585) is located 

distal to them. Nevertheless, both 1586 and 1585 show normal enzyme H
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activity (Table 16). It is very likely that is located within the 

structural gene of argB at the operator-distal end, adjacent to argH, and 

on the operator-proximal side of 1585. A similar internal promoter (P2) 

has been described by Jackson and Yanofsky (51) in the trp operon of 

E,. coli. It was demonstrated to map within trpD at the operator-distal 

end. It was, therefore, proposed that the nucleotide sequence of P2 has 

two functions: (1) it codes for a sequence of amino acids for the carboxy- 

end of the trpD polypeptide; (2) it promotes low-efficiency transcription 

for the distal genes adjacent to trpD.

Since argX2041 maps in the same locus as argB-2, it must also 

be in the close vicinity of P^. This is an unusual situation since P^

(the natural internal low-efficiency promoter) and P^ (the promoter created 

by mutation) may be situated side by side in the argB gene, unless P^ is 

destroyed by the argX2041 mutation. If P^ and P^ do coexist, it would be 

of interest to study their functional integrity. However, studies of the 

effect of rifampin on the efficiency of arginine promoters (Table 23) re­

veal that it is likely that P„ was destroyed by the same event that created 

argX2041. If P^ and P^ did coexist, it might be expected that enzyme H 

activity in the argEC-1 argX2041 strain grown in ornithine would be ele­

vated by rifanq>in beyond the constitutive level to that of the sum of the 

transcriptions occurring at P^ and P^. This is not the case, as pointed 

out in Chapter III, since the expression of argH in the P „-deleted mutant
VDfi

carrying the P^ promoter is essentially the same as in the P^g^-deleted 

strain not carrying the P^ promoter. However, the possibility that inter­

ference exists between the two independent transcription processes at such 

close range cannot be eliminated.
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Therefore, the specific base sequence of the low-efficiency P 

may be changed into a more efficient promoter, i.e., argX2041, merely by 

deletion of several base-pairs. The number of bases deleted should be a 

multiple of 3 since argX2041 and argX1593 appear to be "in phase" frame­

shift deletions, and since both mutants can be reverted spontaneously 

(Table 10), the number of deleted base-pairs should be small. The argX2041 

prototrophic revertants (Table 11) show either a normally repressed 

argininosuccinase activity or a drastic reduction to below basal level as 

compared to the P^^jj-deleted strain (Table 17) . This phenomenon is not 

understood since no studies have yet been made to characterize these pro­

to trophs as to the nature and location of the "reversion", or to determine 

the enzyme B level. Furthermore, since only a few of these revertants were 

assayed for the argH enzyme, it is premature to draw any firm conclusions.

It is possible to speculate, however, that "foreign" bases have been inserted 

into the deleted site in some of the revertants, and that the Inserted bases 

may be translated as a missense sequence which can no longer serve as the 

transcription-initiator for argH expression.

Highly efficient transcription-initiators, possibly created by 

similar deletions, have been described by Morse and Yanofsky (55) in the 

trp operon of coli, and by Callahan and Balbinder (61) in typhimurium. 

Other low-efficiency transcription-initiation mutations created by only a 

single base-pair change in specific areas in the operator-proximal segment 

of the first structural gene were demonstrated in the trp operon of S. 

typhimurium (52) and in the his operon (63). The above results imply that 

as little as a single DNA base-pair change is capable of generating a 

nucleotide sequence which could serve to initiate gene expression. Although
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the. base sequence of a specific promoter element has not yet been eluci­

dated, it may consist of a cluster of pyrimidine-rich codons, as proposed 

by Szybalski et al. (44). In addition, a primary promoter may be dis­

tinguishable from a low-efficiency internal promoter by an intrinsic 

specific base sequence or merely by its location in the operon. Since 

some of these initiation-mutations are also transcribed and translated 

into protein as missense mutations (e.g., "ini'* mutations), there exists 

the hope that eventual determination of the amino acid change, as well as 

the sequence of the amino acids adjacent to the change, will disclose the 

nucleotide sequence of the promoters.

The significance of naturally occurring, low-efficiency internal 

promoters might be important with respect to evolutionary development of 

the gene organization in the prokaryote and eukaryote. It is well docu­

mented that a high degree of clustering of genes specifying biochemically 

related functions, especially in biosynthetic pathways, has been found 

for certain enterobacteria (148). The high frequency of gene clustering, 

however, does not appear to extend to eukaryotic organisms, such as 

Neurospora, or even to all bacteria (149). The clustering of genes, es­

pecially the existence of opérons (contiguous, coordinately regulated 

units of functionally related genes) may provide a clue to the mechanisms 
by which metabolic pathways evolved. The extended opérons, such as .those 

for histidine and tryptophan found in E. coli and S. typhimurium, m ^  be 

speculated to be the more primitive form of gene organization.

Horowitz (149) has proposed a theory to account for the evolu­

tionary development of metabolic pathways. He proposed that the metabolic 

sequence evolved in a retrograde fashion following the sequential tandem 

duplication of genes, each step being followed by the occurrence of modi­
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fying mutations in the newly duplicated gene, which conferred upon it the 

ability to specify an altered protein capable of metabolizing the newest 

intermediate in the growing pathway. The genes of a metabolic pathway, 

when found to be closely linked, were thus to have a common evolutionary 

origin. If the histidine and tryptophan opérons are the more primitive 

form of gene organization, then the arginine system would be the more 

advanced form of gene organization found in enterobacteria. It is 

speculated that in the arginine system in E.. coll K-12, the functionally 

related genes which are not highly clustered may also have arisen by 

tandem duplication but were dispersed later. The clustered arginine genes 

occur also in £. typhimurium (150) and in Proteus mirabilis (151). How­

ever, in Pseudomonas putida, the arginine genes are more widely scattered 

and show no close linkage among argE-C-B-H (152) . The scattered-gene 

organization of psuedomonads therefore, more closely resembles the higher 

forms, the eukaryotes, rather than the classical prokaryotes of the family 

Enerobacteriaceae (152). It is not surprising that the argECBH cluster 

in E. coli is probably the vestige of an operon which once had even the 

scattered arginine genes linked together into one operon. We might spec­

ulate further that the high-efficiency primary promoter located between 

argE-C might once have been a low-efficiency internal promoter dominated 

by another promoter proximal to those genes in the system which used to 

be contiguous, but which are now scattered on the JE. coli chromosome. The 

internal promoters which presently exist between argE-C and argB-H might 

be visualized as possible intermediary steps between the clustered and 

scattered types of gene organization. Glansdorff et al. (142,147) have 

suggested that mutants possessing specific duplicated genes, such as
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argH. may be selected under conditions of severe polarity and that this 

represents a selective pressure for gene duplication.



CHAPTER V

SUMMARY

Two argX mutants have been described which are able to function 

as reinitiation elements for transcription in the arginine cluster of 

Escherichia coli K-12. These mutants, argX2041 and argX1593, were isolated 

as acetylomithine-requiring auxotrophs following nitrous acid mutagenesis. 

They are deficient in argB expression and show a concomitant and enzyme- 

specific inability to repress, normally, argininosuccinase (argH) synthesis, 

The specific activity of argininosuccinase in argR'*' derivatives of argX 

mutants is 3-4 fold higher than that in wild type after growth under 

arginine repression. The argX mutations have no detectable effect on 

argH expression under the partially derepressed condition (after growth 

in ornithine or when combined with an argO^^QH mutation) , or the fully 
derepressed state of argR" derivatives. Moreover, an operator region 

does not appear to be included in the argX2041 mutation.

The argX mutations function independently and constitutively 

when in combination with a deletion of the primary cluster promoter (Pggg) 

and also show an additive effect to This implies that argX affects

transcriptional control. Additional evidence supporting the view that 

argX2041 is a transcriptional type of initiator is the finding that it re­

lieves the polar effect exerted by a nonsense mutation in the proximal 

argC gene on argH expression.

136
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The argX mutants are not revertlble by base substitution mutagens 

or the frameshift mutagen ICR-191, and do not show phenotypic curing with 

aminoglycoside antibiotics. Furthermore, the argX mutations are not stç- 

pressed by two nonsense suppressors (UÂG, UAA). However, they do show a 

low spontaneous reversion frequency of approximately 10”^. The findings 

suggest that argX mutations are short frameshift deletions. Although the 

argX mutations appear to be frameshift deletions, they are not polar since 

the argH expression Initiated at (argX mutations) Is additive to that 

Initiated at

Mapping of the argX mutants by deletion analysis and by three 

point crosses revealed that argX mutations occur In two regions of the 

argB gene. They either map within argB (e.g., argX1593) , or at the argB-H 

border (e.g., argX2041).

The effect of argX2041 on argH expression Is cls-dominant and 

trans-recesslve and Is not due to duplication of the argH gene.

In the absence of arginine, rifampin lowers the efficiency of 

transcription at P__-, facilitates transcription at P„ (the natural low-Lon cl
efficiency Internal promoter), and has no effect on transcription at P^ 

(argX2041). However, In the presence of arginine, rifampin seems to In­

hibit completely transcription at P^g^, and has no effect on transcription 

at Pg and P^.

The results indicate that the argX mutations are non-polar, 
secondary, internal promoters, created by frameshift mutations, which act 

Independently as transcription-initiators for the argH gene In a clock­

wise manner, and which are not under specific regulatory control.
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