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ABSTRACT

The general nonlinear programming problem is a problem
which maximizes (or minimizes) an objective function subject
to a set of nonlinear equality and inequality constraints.
Many methods have been developed to handle certain types of
programming problems. A method, based upon Rosen's gradient
projection method and conjugate direction of Fletcher and
Reeves is presented here for solving maximization problem of
nonlinear objective function subject to linear constraints.
In some cases, optimal points of problems with nonlinear
constraints are also located by this revised algorithm after
nonlinear constraints are linearized at each iteration.

The necessary condition for increasing objective func-
tion in the search direction is discussed. The most impor-
tant consideration, the satisfaction of Kuhn-Tucker condi-
tions is also proved in chapter II. |

It happens that a feasible point may become infeasible
with respect to the new set of relinearized constraints. To
avoid the infeasibility, a step back from the infeasible
region into the feasible region is necessary. The criterion

of step back is given in chapter III.
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Different problems which have the optimal point located
in the internal region of constraints, at an intersection of
constraints and on a single constraint, have been solved
successfully.

A chemical process optimization problem is also solved
in this dissertation. This process consists of reactor, heat
exchanger, decanter, and distillation column. Three irre-
versible chemical reactions were considered in the reactor.
The final solution gives the optimal temperature in the re-
actor, optimal volume of the reactor, and optimal flow rates

of feed and recycle.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES. . - . [ . . ° . L3 - . . L] [ - - - [ . . . Vii

LIST OF ILLUSTRATIONS &« « o « o o o o o o o o s o o o o o viii
Chapter
I. INTRODUCTION

Literature SUIVEY. « « o o o o o o o « o o o o = 1

Examples in Process Optimization . . . . « . . . 9

Previous Works and Description of Present

Method L J - L ] - L3 L3 L] L J L J - L ] L ] - L ] L] - L] L] L ] L ] L J ls
IT. ALGORITHM FOR THE LINEARLY CONSTRAINED PROBLEM

Formulation of NLP Problems with Linear

constraints L] Ld L L] L] L] L d * . L ] - L d L L] . L ] ® L] - 20

Fletcher and Reeves' Direction for
Maximization L ] L] L] L] L] L ] L L ] L ] L ] L] L] . L ] L J L] - - 2 2

Determination of Entering Plane. . « « « o « « & 24
Recursion FOXrmula. « + v o « o « o o s o o o o = 26
Determination of Plane to be Removed . . . . . . 28
Condition for Increasing Objective Function. . . 29
Constrained Maximum and Interior Maximum . . . . 31
Satisfaction of the Kuhn~-Tucker Conditions . . . 33
Example 1. . « ¢ ¢ o ¢ o o o a o o s o o o o o o 35

III. THE NONLINEARLY CONSTRAINED PROBLEMS

Linearization of the Nonlinear Programming
Problem L ] * * * L] L] * L ] L J L] L ] L] L] . * L ] ® L ] L] - 38



Formulation of Linearized Constraints .
Step Back Criterion . . . « . « « « . .
Example 2 . . . «v o ¢ o o« o o o ecoe o o
Algorithm and Procedure of Calculation.

IV. NUMERICAL RESULTS AND CONCLUSIONS

Problem of Cubic Objective Function . .
Comparison with Improved MAP Method . .
The Chemical Process Problem. . . . . .
Alkylation Process Problem. . « . « . .
CONClusions . « ¢« ¢« o o o o o o o o o =

LIST OF REFERENCES . « « ¢« ¢ o o 2 o o o o o o &

NOMBNCLATURE . . . . . . 3 [} . 3 . L] . . L] . . -

APPENDIX

Program Listing . . « « ¢ o o ¢ o o o &

vi

Page
43
44
46
47

53
54
56
59
62

74
78

82



LIST OF TABLES

Table Page
I. Constants in Chemical Process Optimization

Example - - - - [ - - L ] . - L ] L] - - L] L] L ] - - L] . - 19

II. The Movement of the Point of Example 2. . . . . . . 50

III. Data for Five Variables Cubic Function. . .

IV. Minimization of Cubic Function of Five
Variables v« ¢ & ¢ ¢ ¢ o o o o o o o o o o o o o o o 65

V. Comparison of the Optimal Solution Obtained by
Present Method and Yang's Improved MAP Method . . . 71

vii



LIST OF ILLUSTRATIONS

Flow Sheet of Chemical Process Optimization
EXample . . ¢ ¢ ¢ 4o e o o o o ¢ o o o o

Determination of Entering Plane . . . . . .
Solution of Example 2 . . . . . ¢ « ¢« ¢« « &
Flow Chart of Revised Algorithm . . . . . .
Interior Optimum. . . . « « o o« « o o o « &
Optimum at An Intersection (Lee's). . . . .
Optimum at An Intersection (Yang's) . . . .
Optimum on A Constraint {(Lee's) . . . . . .

Optimum on A Constraint (Yang's). . . . . .

The Variation of Objective Function with
Number of Iterations. . « ¢« o« « ¢ ¢ « o « &

Local Optimum due to Nonconvex Constraints.

viii

Page

18
25
36
51
66
67
68
69
70

72

73



LINEAR APPROXIMATION IN CONJUGATE GRADIENT

METHODS FOR PROCESS OPTIMIZATION

CHAPTER I

INTRODUCTION

Literature Survey

The theory and application of mathematical programming
have drawn deep interest and attention since the simplex method
was discovered by Dantzig (13) in 1951. Two years later, the
simplex method was revised by Dantzig, Orchard-Hays and others
at Rand (14) to overcome the cumbersome operations of the
original method. 1In 1951, an important paper (35) appeared,
in which the well-known necessary conditions for a constrained
maximum were given by Kuhn and Tucker by relating the non-
linear programming problem to an equivalent saddle point prob-
lem. In two decades, the field of mathematical programming
has been developed very successfully both in the theory and
in the solution of practical problems.

Several bibliographies and general methods for solving
the general problems as well as its subproblems have been
published. All the methods can be sorted into two main cate-
gories. The first category contains the methods contributing

1
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to the solving of unconstrained problems. It has two sub-
classes: direct search methods and large step gradient methods.
In the second category are_the techniques for solving the gen-
eral constrained problem. Many techniques in the second cat-
egory are based upon the modifications of existing methods
for unconstrained problems (Rosen,1960;Goldfarb,1968), or
transformation of the general constrained problem into an un-
constrained problem, which is then solved by the use of ex-
isting methods for unconstrained problems.

The steepest ascent (descent) method is the essential
technique in the first category. It has the shortcoming that
the objective function oscillates when the optimal point is
approached. Davidon (15) developed a variable metric method,
which forced the point to move in a better direction than
steepest ascent and guaranteed finding the maximum of general
quadratic problem in a finite number of steps. Fletcher and
Powell (21) improved Davidon's method by reforming the vari-
able metric. In 1967, another algorithm, also based upon
Davidon's idea, was developed by Broyden (6). It is called a
rank one method, because the difference between the (k+1l)-th
and k-th variable metric is a symmetric matrix of rank one.
Some authors used the property of conjugacy, such as Hestenes
and Stiefel's method (30) of conjugate gradients for solving
linear systems. It is very interesting that the direction
vectors generated by Davidon's algorithm and the conjugate

gradients algorithm of Hestenes and Stiefel are scalar mul-
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tiples of each other, provided the initial step each takes is
in the direction of steepest descent. Fletcher and Reeves
(22) used a set of directions which are conjugate to the
Hessian matrix. The current direction for the movement of
point is formed by the linear combination of the current gra-
dient and old directions. Pearson (45) also proposed several
ways of computing a variable metric using search directions
which are conjugate. Three different variable metrics were
obtained and new algorithms were set up. Smith's work (53)
belongs to this subclass also. Actually, some methods for
solving constrained problems also used the conjugate property,
such as, Goldfarb (25) and Zoutendijk (62).

The properties of the Hessian matrix have been used to
develop improved algorithms. Greenstadt (26) guaranteed that
an estimate of the inverse of the Hessian matrix would be po-
sitive definite by a procedure of eigenvalue analysis. He
also derived a general relation (27) for differentiating two
successive variable metrics by minimizing the norm of the
difference and modified the variable metric. Other schemes
suggested to maintain a positive definite estimate of the
inverse Hessian matrix belong to Marquardt (37) and Zwart (63).
In 1970, Fletcher (20) used the relation of variable metric
and gradient and the property that the variable metric is an
approximation of the Hessian inverse, and that the eigenvalues
of both matrices are approximately the same. He derived an

algorithm as effective as Fletcher and Powell's.
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Another interesting approach (38) was done by Miele and
Cantrell. They proposed a method of search in which two
parameters were selected to minimize the objective function
in each search direction. For a quadratic function this method
is the same as Fletcher and Reeves' but takes longer to eval-
uate since two dimensional search on each stage is involved.
Cragg and Levy (1ll) extended Miele and Cantrell's two param-
eters method to a greater number of parameters. A case of
four parameters has been tested; the result is better than
that of two parameters.

So far the methods mentioned above are all developed from
classical gradient calculations. Techniques obtained through
a different approach are the direct search methods. 1In this
group, not so many methods can be found as those given above.
Hooke and Jeeves proposed the pattern method (32) for uncon-
strained minimization. This method consists of two major
searches, an exploratory search around the base point and a
pattern search according to an acceleration rule. The direc-
tions used in the first phase are the coordinate axes. A full
cycle must be performed before the second phase is involved.
Powell (46), (47) developed a method from the work of Smith
(53) to locate the minimum of a convex quadratic function by
successive unidimensional search along a set of conjugate
directions. All directions generated are conjugate to the
Hessian matrix. In 1960, Rosenbrock (49) used a set of or-

thonormal directions generated by the Gram-Smith procedure;
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his method is also a successive unidimensional search. Ac-
tually, if Rosenbrock's method is applied to a quadratic
function, it behaves somewhat like a conjugate direction
method. Rosenbrock's method was modified by Davis, Swann and
Compey (55) by locating the minimum of the objective function
in each direction instead of using a step length. This
revised method behaves similarly to Fletcher and Powell's
search as described by Swann. By using the analytical geometry
approach, Spendley, Hext, and Himsworth suggested a simplex
method (54) of optimization that sequentially projected the
worst point, which is the vertex that gives the worst objec-
tive function, in a simplex through the centroid of the re-
maining points. Nelder and Mead (42) proposed a more efficient
simplex method following the idea of Spendley, et al. 1In
their paper the change of the simplex or finding the new
vertex can be carried out by reflection, contraction and ex-
pansion procedures.

All the methods described above are those for solving
unconstrained problems. The techniques belonging to the second
category are those implemented to solve constrained problems.
The earliest technique for solving the constrained problems
was proposed by Frank and Wolfe (23). This is a method of
feasible directions and can be applied to solve problems with
linear constraints only. Later on, Wolfe (58) and Beale (2)
also developed methods for quadratic programming problems.

Wolfe's method is similar to Beale's but can not handle non-
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concave objective functions. Others who contributed to the
research in this class should include Frish (24) and Lemke
(36) .

As mentioned earlier, some techniques for constrained
optimization were developed via the idea of algorithms for
solving unconstrained problems. The most well-known are those
of Box (5), Rosen (48), Morrison (40) and Goldfarb (25).
Rosen's very famous gradient projection method was developed
from the idea of a gradient into a linear manifold formed by
the intersection of constraints in the basis, which consists
of the active constraints encountered by the moving point.
Box's complex method is due to the idea of Spendley's simplex
method and can be applied to solve problems with inequality
constraints. In his method a polyhedron with (n+l) vertices
was selected instead of n vertices. Morrison used a least
squares technique to solve nonlinear problems with equality
constraints. 1In his method constrained problems are trans-
formed into unconstrained problems by introducing a addi-
tional set of parameters. Also Goldfarb developed conjugate
gradient method based upon Davidon's variable metric method
and provided many of the details of the matrix manipulation.
This method can solve problems with linear constraints.

Sometimes, an established method was modified to obtain
better efficiency of to extend its application to different
types of problems. Stewart and Griffith (28) suggested the
MAP algorithm. They extended the use of linear programming

to solve nonlinear programming problems by linearizing the
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objective function and constraints at the local optimal point
of a linear programming subproblem. Yang (60) improved the
MAP method by applying GFP technique to linearize constraints.
In this improved method the explicit calculation of partial
derivatives is not required. The time-consuming procedure
and the difficulty for linearizing constraints are avoided
during solving problems. Miller (39) also modified and ex-
tended the use of linear programming to solve separable pro-
gramming problems. In 1965, Abadie and Carpentier developed
the general reduced gradient method. This method is an ex-
tension of Wolfe's reduced gradient method. 1In this method
a set of dependent variables and another set of independent
variables are formed. The dependent variables are implicitly
determined by independent variables. So far they have not
found any problem which the general reduced gradient method
was not able to solve. Kowalik, Osborne and Ryan (34) modi-
fied Morrison's method by using heavyside functions to change
inequality constraints into equality constraints, then solved
the problem after it is converted into unconstrained problem.
The work of Murtag and Sargent (41l) also belongs to this
class. Their work, based on Rosen's gradient projection method
and Fletcher and Powell's modification of Davidon's method,
considered a number of methods which make it possible to update
the inverse Hessian for steps of arbitrary length and direc-

tion.

Some other developments should be mentioned individually.
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Zoutendijk (62) proposed a feasible direction method which
can handle linear as well as nonlinear inequality constraints
but not equality constraints. A linear programming subproblem
has to be solved in order to keep the new point in the feasi-
ble region and attain the greatest improvement in the value
of the objective function at each iteration. Kelley developed
the cutting plane method (33) for solving convex programs,
based on the idea that the optimal solution could be repre-
sented as the intersection of a set of half-spaces. Actually,
the cutting plane method was also developed by Cheney and
Goldstein (8) independently. In 1960, Carroll proposed the
created response surface technique (CRST), converting a con-
strained programming problem into a series of nonlinear
unconstrained problems. The most important characteristic of
this approach is that it automatically avoids constraint vio-
lations during the optimization. Fiacco and McCormick (18),
(19) developed the SUMT technique based on transforming a
given constrained minimization problem into a sequence of
unconstrained problems. This method is different from
Carroll's CRST in the treatment of constraints. It has been
used extensively in solving minimization problems. A dif-
ferent approach, using the property of infeasibility, has
been accomplished by Paviani and Himmelblau (44). This is the
flexible tolerance method. It improved the value of the ob-
jective function by using information provided at feasible

points and at near-feasible points. The near-feasibility
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limits are gradually made more restricted as the search
proceeds toward the solution of the programming problem. In
the field of linear programming, Saksena and Cole (50) pro-
posed a method that permits movement in either the feasible
or infeasible region of the given problem in the search for
the optimal solution. The initial point also can be infeasible.
The most recent method was developed by Westerberg and
Debrosse (56). In this algorithm the set of inequality con-
straints is divided into three sets: the set of active con-

straints, the set of constraints which are active but should
be released and the set of nonactive constraints. Certain

criteria determine the movement of constraints from one set
to another to obtain an improved objective function. They
also developed an algorithm (16) for finding an initial fea-
sible solution of the programming problem. The initial fea-
sible point is very important, since most methods for solving
constrained optimization problems have to start from a fea-

sible point.

Examples in Process Ogtimization

The mathematical description of the optimization of a
chemical process design is well suited to the mathematical
programming formulation, as shown by the following three
examples of nonlinear programming problems in chemical engi-
neering. All have nonlinear objective functions, the first

is without constraints, while the second has linear con-
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straints and the third has nonlinear constraints.

The first example is to find the best fitted analytical
equations for thermodynamic properties (43). In this problem,
the coefficients of an equation are determined to minimize
the deviation of the predicted values from given data. For

example, let the predicted enthalpy be

2 3 4 5
1 + sz + x3T + x, T + x5T + x6T

H=xXx 4

where T is the temperature and X; i=l,...,6 are derived co-

efficients. The nonlinear programming problem can be formu-

lated as:

N
. e . 2 3 4
Minimize 2_ (x, + x.,T, +x.,T7, + x,T7 + x_T, +
xl""xs k=1 1 27k 37k 47k 57k

*
k) (1-1)

where H; is the experimentally determined at the k-th data
point at a temperature of Tk' This is an unconstrained non-
linear programming problem.

The second one is the determination of the equilibrium
composition of a mixture of ideal gases at constant temper-
ature and pressure. A solution can be obtained by minimizing
the total Gibbs free energy of the System (25). Suppose

there are m species and k elements in the system, the problem

can be written as



11

o o m %*
Minimize f(x) = ) x.(c, + log x./x ) (1-2)
m
Subject to z;% a;5%; = by j=1,...,k (1-3)
and X 20
where
« m
X = 2_ Xy
i=1
and

c. = Fci’/RT 4+ 1n P

where X5 is the number of moles of the i-th species, P is the
total pressure, T is the temperature, R is the universal gas
constant, and F?/RT is the standard molal free energy of the
i-th species. In equation (1-3) aij is the number of atoms
of the j-th element in the i-th species and bj is the number
of moles of the j-th element originally present in the mix-
ture. This is a problem of nonlinear objective function with
linear constraints.

The third example is the optimization of a chemical
process (17). All design variables are determined to maxi-
mize the percentage return on investment. This process is
shown in the block diagram Fig. 1, it consists of a stirred-
tank reactor, a heat exchanger, a decanter and a distillation
column. Two pure inputs and a recycle are fed into the

reactor to yield a mixture of six components leaving the
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reactor. The reactions in the reactor are

k

A+B —t» C

k2
B+ C—~— P + E (1-4)

k

c + P‘——é—‘ G

where ki, i=1,2,3 are the reaction coefficients, and can be

evaluated by the Arrhenius equations:

k; = A;exp(-B,/T) (1-5)

The usual assumption of perfect mixing in the reactor is
given. The temperature of the reactor is controlled between
580° and 680° Rankine. The effluent of the reactor contains
raw materials A and B, an intermediate C an inert E, a resid-
ual product G and desired product P. This mixture is cooled
down in the heat exchanger and pumped into the decanter in
which the residual product G is removed. The desired product
P is obtained from the top of the distillation column. The
recovery of product is not complete since the mixture at the
bottom forms an azeotrope. A portion of the bottoms product
of the distillation column is discarded to control the con-
centration of the inert E, the rest of it is recycled to the
reactor.

This plant manufactures 40 millions pounds per year of

distillate product P. Dibella and Stevens determined the
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optimal values of 12 design variables FA’ FB' FD, FG' FP' FRA'
FRB’ FRC' FRE' FRP’ V and T, which give the maximal value of
the objective function under a set of design constraints. The

objective function is considered as the percent return on the

investment.

£f = 100 {8400(0.3F_ ~ 0.0068FD - 0.02F -0.03FB -

P A

O.OIFG) - 2.22FR -0.124(8400)(0.31?P + 0.0068

Fy) - 60Vp} /600 - Vp (1-6)

The constraints are equalities and can be set up by using
the material balance over individual components and the whole

process.

1. Overall material balance

hy =Fp+Fg -~ Fg-Fp - Fp =0 (1-7)

2. Azeotropic separation in distillation column
h, = Fpp - O.IFRE - F, =0 (1-8)
3. Material balance over component E
— 2 -
hy = (Mp/Mp)k; (FppFpe/FRIVP = FpFpe/ (Fg
Fe - FD) =0 (1-9)

4. Material balance over component P

— - 2 -
hy = [kZFRBFRC (MP/MC)k3FRCFRP](Vp/FR)
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FD(FRP - FP)/(FR - FG - FP) -FP =0 (1-10)
5. Material balance over component A
- - 2, _ - -
h5 = (leRAFRB)(Vp/FR) FDFRA/(FR FG FP) +
Fp = 0 (1-11)

6. Material balance over component B

S 2 -
h6 = (leRBFRA + kZFRBFRC)(Vp/FR) FDFRB/

(F. - FG -FP) + FB =0 (1-12)

R

7. Material balance over component C

hy = [(MC/MB) "k Frafrp = (Mg/Mp)koFrgFre ~

2 -
k3FRPFRé](V°/FR) = FpFpe/(Fg = Fg = Fp) = 0
(1-13)
8. Material balance over component G
2
= - = 1-14
h8 (MG/MC)k3FRCFRP(Vp/FR) Fo 0 ( )
9. Definition of FR
hg = Fpa + Fpg + Fpe + Fpg + Fpp + Fg = Fp = 0
(1-15)

where V is the volume of the reactor and p is the density of
reactor solution. All variables must be greater than or

equal to zero. The range of temperature is from 580° to 680°
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Rankine. The values of all constants in the system are
given in table I.

Dibella and Stevens (17) solved this process optimiza-
tion problem by using the MAP method. Yang (60) applied the
improved MAP algorithm to obtain an improved solution over
that of Dibella and Stevens. In this dissertation, this
problem is also solved by the revised gradient projection

algorithm. The result is given in chapter IV.

Previous Works and Description of Present Method

As mentioned earlier, techniques for solving constrained
problems can be developed from the established methods for
unconstrained problems or by modification of existing methods
for constrained problems. Yang's improved MAP method (60) is
a good example of the latter approach. In his method Yang
introduced the GFP technique into conventional MAP method of
Griffith and Stewart (28). This improvement saved very much
computational effort for the evaluation of the Jacobian
matrix at each iteration, especially for large problems and
those for which analytic&l partial differentiation are not
easily performed.

The conjugate gradient method of Goldfarb and Lapidus
(25) is an extension of Davidon's variable metric method for
solving unconstrained optimization problems. It also can be
considered as a modification of Rosen's gradient projection

method, in which the direction of the movement of the point
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was replaced by the direction used in the variable metric
method. Some evaluation examples in Goldfarb's paper showed
that the conjugate gradient method takes fewer steps to
reach optimum than does the gradient projection method, but
it requires more matrix manipulations and computer memory.

The algorithm presented in this thesis is also a revised
Rosen's gradient projection method or can be considered as an
extended Fletcher and Reeves' conjugate direction method (22).
The movement of the point is in Fletcher and Reeves' conjugate
direction before any of the linear constraints is encountered,
or in the direction of the projected conjugate direction when
a constraint basis exists. The comparison of the number of
steps to obtain optimal point exhibits that this new algorithm
gives more rapid convergence than original gradient projection
method does, since the conjugate direction does not zigzag
as the gradient direction when the optimum is approached.

The computational results, given in chapter IV, showed that
this revised algorithm is at least as efficient as conjugate
gradient method, or even slightly better. The measures of the
superiority of the new revised algorithm to the conjugate
gradient method are the fewer matrix manipulations and the
smaller computer storage.

This revised method is also appiicable to solve nonlinear
programming problems with convex nonlinear constraints after
linearization at each iteration. The GFP technique is used

for linearization. Based upon the criterion of the number of
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linearizations required to reach the optimum, the revised
gradient projection method is far better than Yang's improved
MAP. The remarkable evidence is the treatment of interior
optimum problems. A large number of iterations is required
for the MAP method, but not for the revised gradient pro-
jection method. The reason is because either MAP or im-
proved MAP method solved the subproblems of linear programming,
the bound range used in the subproblems can not be too large
due to the fixed direction of the gradient of the objective
function at each iteration. If the selected range is too
large, it becomes more difficult to reach the optimum.

The algorithm of this revised method is given in chapter
III. The numerical results and comparisons with other methods

are given in chapter 1IV.
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TABLE I

CONSTANTS IN CHEMICAL PROCESS OPTIMIZATION EXAMPLE

Name Value Unit
Fp 4763 1b/hr
a, 5.9755x10° hrt
A, 2.5962x1012 het
A, 9.6283x10%° hrt
B, 12000 °r
B, 15000 °r
By 20000 °r
My 1000 1b
M, 200 1b
My 200 1b
Mg 300 1b
M, 100 1b

o} S0 lb/cu.ft




CHAPTER II

ALGORITHM FOR THE LINEARLY CONSTRAINED PROBLEM

Formulation of NLP problems with Linear Constraints

The standard form of a nonlinear programming problem

with linear constraints can be expressed as

Maximize £(x) = f(xl,......,xm) (2-1)
m

Subject to %;% nj4%5 2 by i=1,....,k
m . (2-2)
g;i ny5¥y = b, i=k+1,..,n

where the nij have been normalized such that

B2
: nij = l i=l'oo.oon (2-3)
j=1

We may consider the variables X0 i=1l,...,m represent a
point in the m-dimensional Euclidean space, Em, in the finite
dimensional geometry. Therefore, a set of variables and its
corresponding coefficients of constraints can be written as

column vectors. Relations (2-2) becomes

20
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nix 2 b, i=l,....,k
(2-4)

nix = b, i=k+l,..,n
where

Ei = (nilpoonooooo,nim) (2-5)
A surplus value Ai is defined for constraint i

14 - - -
nix - b, =2a,(x) 20 (2-6)

Ai=0, when point x lies on the constraint i, that is, when
constraint i is in the constraint basis. Point x is in the
infeasible region with respect to constraint i, if Ai<0; and
it is a feasible point, if all xizo.

A projection matrix is a m x m symmetric matrix defined

as
v -1
=1-N (NN) "IN 2-7
Pg=1 Nq(qq) q (2-7)
where
Nq'—'[glpooo-.oooo’aq] (2—8)

is the constraint basis, consisting of the constraints which
are contained in the basis, i.e., constraints with corre-
sponding A=0. Nq is an m x g ordered metric. The sequence
1,2,....,9 is determined by the order in which the constraints

are encountered by the moving point.
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In geometric terms, the linear inequalities and equal-
ities of m variables represent half-spaces and hyperplanes,
respectively, in m-dimensional Euclidean space. All these
half-spaces and hyperplanes representing constraints will
form a polyhedral region R in the Euclidean space, called
the feasible region. If the region R is closed, then the
programming problem will be bounded, otherwise, the solution
of the problem may be unbounded.

Any point X inside or on the boundary of region R, i.e.,
Xx'e R, is called a feasible point or feasible solution. The
moving point always stays in the feasible region during the
solution of problem with this algorithm. The term "constraint
basis" is a set of linearly independent hyperplanes, which
are the constraints with equality relations at the current
point. A manifold Mq is formed by the intersection of those
linearly independent hyperplanes and will restrict the move-
ment of the point. The intersection of any two linearly
independent hyperplanes is an (m=-2)-dimensional manifold of
ET. Similarly, the manifold Mq formed by the constraint
basis is (m-g)-dimensional. A line is an (m-(m-1l))-dimen-
sional manifold of E™ and has one degree of freedom. A point

is a zero dimensional manifold of E™ and has no degrees of

freedom.

Fletcher and Reeves' Direction for Maximization

Assume a functicn can be expanded in the form (2-%) if



higher terms are neglected.

£(x) = £(x°) + 9_'(§°) (x-x°) + %(§—§°)'H(§°) (x-x°)
(2-9)

where 3(59) is gradient of the function at point 5?,

g(x%) = (2£/3x°) o

and matrix H is called Hessian matrix, the element Hij of

Hessian matrix is defined as

Hyg = (82f/axiaxj)§o

The Hessian matrix is symmetric. If a function is quadratic,

it can be written in the form
L} 1] '
£(x) = g x + %x 0x (2-10)

Where g is a vector, Q is a symmetric matrix. Both g and Q
are constants. It is obvious that the coefficient vector of
the first term in right hand side is the gradient vector of
the function, and matrix Q equals to Hessian matrix.

The term conjugate direction means that if a set of
directions Pyr----+p, are conjugate to Hessian matrix then

the following relation is satisfied
1
EiHEj =0 if i#j (2-11)

Fletcher and Reeves demonstrated that if any set of

H-conjugate directions are used, the method of successive
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linear search is quadratically convergent. The minimum is
located at the n-th iteration for quadratic functions.
If some modifications are made, Fletcher and Reeves'
algorithm is also applicable to maximization problem. The

following algorithm is for maximization.

1l). Select arbitrary initial point g?.

2). calculate g(x°), and set p_ = g(x°).

3). 1If §l+l is the maximum of £(x) in the direction of
p;s i.e., £x**t
4) . Calculate g(§}+l).

y=max £ (x+np,).
n20
5). Let Bi=g§+l/g§.

6). Bi419441 * B3R5

In the current algorithm, if the optimal point is in
the interior of closed region R and none of tie constraints
stays in the constraint basis during the searching for the
optimum, then the movement of the point will be in Fletcher
and Reeves' conjugate direction. This is because the pro-
jection matrix is the identity matrix I if none of the con-

straints is encountered.

Determination of Entering Plane

While the point is moving in a certain direction, a
constraint, among one of the nonbasis constraints, may be
encountered which stops the moving point from leaving the

closed region R and going into infeasible region. This may
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be due to the possibility of the best objective tunction in
the moving direction being in the infeasible region or on the
constraint. If the movement of the point is not restricted,
infeasibility will occur and the algorithm fails to obtain
the constrained optimal point. Figure 2 shows the encounter

of a constraint.

Fig. 2 Determination of Entering Plane

The choice of a constraint coming to the constraint basis is

as follow.

X=X + 12 (2-12)

Where §}is new point, T is maximum step length and z is an

unit direction vector. According to (2-6)

A{ = n;x bi (2-13)
1 _ '1_ _
Ay = nx b, (2-14)
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Substract eq. (2-13) from eqg. (2-14), get

= Tn.z (2-15)

Since Aizo is necessary condition for feasiblity. Therefore

Al + TEiE 2 0
and
> =)° ' >
T - i/aii 20 (2-16)

. o ! .
Since 1,20, then n.z must be less than zero. The maximum

step length is

— S o ' -
Thax, = min Ili/gigl >0, n;z <0 (2-17)

and the coming plane is the constraint which has the smallest
value of T.

During solving a real problem, it is necessary to inter-
polate between old point and new point with largest step size
to find Top, the best step. The constraint relating to Ai

should come in the constraint basis if t =7 Otherwise

op max’
the addition of the constraint is not required.

Recursion Formula

In the course of Rosen's (48) gradient projection algorithm,

' -
the recalculation of the (Nqu) 1 matrix is necessary each time

a hyperplane is added to or removed from the constraint basis.
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Since it is time consuming if matrix (Nqu)_l 1s calculated

directly from Nq at each iteration, it will be very helpful if

direct calculation can be avoided.
Rosen used the formula for the inverse of a matrix in

terms of the inverses of its partitions and showed how to cal-

1 1 1

. -
from (Nq—qu—l)

with approximately q2 and 2q2+mq multiplications and divisions.
1

' -1 v - ' -
N N N
culate ( q-qu-l) from (Nq q) and ( qu)

]
Suppose the g x g nonsingular inverse matrix (N_N

&g s

known and partitioned as

-1 _ |B1 B _
[Nqu] = 5 & (2-18)

where Bl’ BZ' B3 and B4 are (g-1 x g-1), (g-1 x 1), (1 x g-1)

]
and (1 x 1) matrices respectively. In particularly, B2=83.

' -
The required recursion formula for (Nq-qu-l) 1 when constraint

g is dropped from the constraint basis is

' -1 _ . -1 _
[Nq_qu_l} = B, - BB, B, (2~19)

In case of the plane to be dropped, say Hl' is not the last
one, Hq' in the constraint basis, then the 1l-th and g-th row

L
and column of (N N 1 must be interchanged before relation

q q) ,
(2-19) is applied. Since (Nqu)-lis a symmetric matrix, the
]

interchange finds a new (Nqu)-l with Hl and Hq in interchanged

order in the constraint basis Nq'

] - v -
The procedure to find (Nqu) 1 from (N -qu-l) 1 when

q
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hyperplane Hq is added to the constraint basis is

' o1-1 _ [B1 B
[
where
By = [Nq—qu—l] e A;l—q-l]-::;—l
B, = 'A;l Ig-1 B;
By = Ag" (2-20)
Ro = BePq-1ng

In solving a real problem, if the initial feasible point
is an interior point of closed convex region R, then the
constraint basis is an empty set, there is no equality rela-
tion existing, the directions are not projected, and the pro-
jection matrix Py is chosen to be the identity matrix I. When
the initial point lies on g linearly independent hyperplanes,

then equation (2-20) is used g times to build up the project-

tion matrix Pq'

Determination of the Plane to be Removed

Rosen has shown that if point x lies on the manifold M
of linearly independent hyperplanes Hi, i=1l,...q, and sat-

isfies the following condition, then the hyperplane H should
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be removed from the constraint basis.

qug_l < !srqb;; (2-21)
where r b-%>r b3, i=1 -1, and where b.. is the i-th
q qg- i ii’ R Sl ii

, -
diagonal element of (Nqu) l, and only bii>0 is considered.

Where rq is the g-th element of column vector
[ ' ]'1 ' (2-22)
R= |NN N -
= gaq g
According to Rosen's proof, this is because point X is
on the intersection of g-1 linearly independent hyperplanes,
H., i=},...,g-1l, but not on the manifold Mq of g linearly
independent hyperplanes, provided relation (2-21) is met.
The hyperplane Hq should be dropped and new projection matrix
Pq—l must be found. The formulation of matrix P can be

g-1

' -
established after (Nq-qu—l) s obtained by using recursion

formulate (2-19).

Remember that if the plane to be dropped Hq is not the
last one in constraint basis, the interchange of 1l-th and g-th
' -
rows and columns of (Nqu) 1 must be accomplished before

relation (2-19) is applied.

Condition for Increasing Objective Function

It is well known that the gradient, if it is not zero,
points in a direction such that a small movement in that di-

rection will increase the value of objective function. But
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how does a direction p other than gradient increase the value
of the objective function is a question. The necessary con-
dition for increasing the value of the objective function
in the direction p is given by Zangwill (61).
Suppose function £f(x) is differentiable at x, and there

is a direction p such that

9_'(3_)2 >0
Then a t> 0, t21>0, exists such that
f(x+tp) > £(x)
This can be proved in the following way.
If f£(x) is differentiable at point x, by calculus

limf(§frg) -£(x)

d ]
I TR og = 107 li=p = 2 @B

(2-23)
Via equation (2-23), if

lim f(x+1p) - £(x)

0 T =0 >0

Then there must be a t>0, such that for all t#0, and t21>-t

f(x+1p) - £(x)
T

> 0

If 1>0 is selected, then we may have f(x+tp)>£f(x).
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The above statement shows that any given direction p
will increase the value of the objective function with a small
step in that direction if g'(§)g?0. The obvious example is
that if the gradient is chosen as search direction, i.e., =g,
then g'(g)géug(i)ﬂz, therefore a small movement in the
gradient direction will increase the value of the objective
function.

When this revised algorithm is applied to solve a real
problem, this condition is always held, so that the value
of the objective function increases monotonically. This can

be checked whenever a new point and new direction are obtained.

Constrained Maximum and Interior Maximum

If the global maximal point exists in the interior of
convex closed regicn R, it is called an interior maximum of
the objective function. If the global maximum is found on
the boundary of closed region, the global maximal point is
called a constrained maximum.

Rosen (48) has proved that the necessary conditions for
both a constrained maximum and an interior maximum of a

concave objective function are

pqg({) =0 (2-24)
and

[ - ] *
R= (NN) N g(x)s 0 (2-25)
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Relation (2-24) can be considered that at global maximum

the gradient must be orthogonal to the manifold Mq, i.e.;
*

g(x )=NR.

To prove the necessary condition of interior maximum, it
can be considered the same as unconstrained global maximum.
As well known, the necessary condition that §* is the uncon-
strained maximum is gﬁg*)=0. This requirement is also matched
by conditions (2-24) and (2-25). The sufficiency of (2-24)
and (2-25) is easily shown for concave objective functions.

Let x be any point in the closed region, Using property

of concavity of function we obtain
* t %* *
£(x) < £(x) +g (x)(x-x) (2-26)

Since gﬁif)=0, then f(§)<f(§f). Thus §f maximizes f£(x).

To prove the sufficient condition for a constrained
maximum, assume there is a point 5} in closed region R such
that f(§1)>f(§f). Let unit direction be z and §}=§f+rg.
Since g} ig a point in closed region R, the condition that
Nérggo is required, see Rosen (48).

From equation (2-26) and assumption we get

1 * * 1 * LI
£(x') - £(x) >gx)(x -x) =g (x )tz (2-27)
The relation (2-24) can be rewritten as
] - ] *
[I - N (NN qu]g_(§ ) =0

*
This can be considered that g(x ) is given by the linear com-
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bination of constraints in the basis, or in the form

(x) = N_(Nw ) In (x")
2127 = TqlgTg’ Ngl'X
oxr
*
i(i ) = NqE = li-=1: riai (2-28)

Substituting (2-28) into right-hand side of (2-27), we obtain

From the requirement of ngzo and 1>0 to gain f(g})>
*
f(x ), at least one of the r, must be positive, which
*
contradicts (2-25). Therefore, that x is the global maximum

is proved.

Satisfaction of the Kuhn-Tucker Conditions

The Kuhn-Tucker (K-T) conditions are the necessary, but
not sufficient, conditions for a point to be the global
maximum of a constrained nonlinear programming problem.

Suppose the nonlinear programming problem is in the form

Maximize f(x)
Subject to hi(i) >0 i=l,...,k (2-29)
h.(x) =0 i=k+1l,.,n

*
and point x is the maximum. Then the following K-T condi-

tions must be satisfied.
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*
1. x 1is feasible
There exist multipliers Aizo, i=l,..,k, and unrestricted

multipliers Ai’ i=k+l,...,n, such that

*
2. Ahi(x) =0 i=1,...,k

(2-30)
and

* m *
3. g(x) + ¥ A.Vh.(x) = 0

To prove the current algorithm satisfies K-T conditions

at maximal point, two different cases have to be considered

independently. The first case is the interior maximum.
Assume §fis the maximum in the closed region R, then the

condition 1 is satisfied naturally. Condition 2 gives Ai=0,

*
i=1l,...,k, since hi(§ )>0, i=1,...,k. Condition 3 gives

k
3(5*) + 1 Aigpi(g*) = g(g*) (2-31)
i=1

It is obvious that at interior maximum g(g*)=0, then (2-31)
equal to zero. Thus, the K-T conditions are held.

The second case is the maximum on an intersection of
constraints. Assume 3* is the maximum on manifold Mq, 5*
must be a feasible point. To consider the second condition,
scparate all multipliers Ai, i=l,...,n into two sets, the
first set Zl contains multipliers Ai' i=1,..,q, such that

*
hi(§ )=0 . The multipliers in the second set Zz={ki,i=q+l,.
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...,n, such that hi(g*)>0}. The multipliers in the former
are those corresponding to constraints in the constraint
basis.
According to condition 2, the second set Zz=¢, and
elements of the first set are greater than or equal to zero,
i.e., AizO, i=1,...,q.

Condition 3 gives

n q
9_(§*) + ':1 Aighi(_:g*) = 3(5*) + .Z‘,lxighi(gg*) =0
i= i=
(2-32)

(2-32) can be rewritten in matrix form

%
gx ) * NAqg =0 (2-33)

where Aq is column vector (Al,kz,....,lq), substituting (2-28)
into (2-33), obtain

NR+NA =0 2-34
a= 9=q ( )

Thus Aq=-§. At constrained global maximum R<O, therefore
Aiao, i=l,...,q. We have proved the K-T conditions hold for
constrained optimum.

It is very interesting to notice that at a constrained
global optimum, the Lagrangian multipliers are equal to r,

but opposite in sign.

Example 1
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The following example is a maximization problem with
linear constraints. The optimal point is at an intersection

of two constraints. The problem is

Maximize £ = -(x; - 4)2- (%, - 2)2

Subject to + x, > 3

*1 2
x, + x2 <1

A
wm

x1+x2_

Xy - X, > -1

The solution is shown as Fig. 3

(2,3)

. £=0

Fig. 3

\ ]
At the point (1.5,2), g p=5, therefore the movement in
the direction shown in the figure will increase the value
of the objective function.

Since constraints 2 and 3 are encountered simultaneously,
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the order of constraint basis Nq is immaterial. Point (3,2)
is the optimum since qufo, and vector R=(-1,-1). The
Lagrangian multipliers of this problem are X

=0, Az=l,k =1,

1 3
A4=0, therefore Kuhn-Tucker conditions are satisfied. The

Lagrangian multipliers can be separated into two sets, Zz=¢
and 2z, containing the multipliers AZ and A3,1lq=§ is held at

the optimum as proved in the last section.



CHAPTER IIIX

THE NONLINEARLY CONSTRAINED PROBLEM

Linearization of the Nonlinear Programming Problem

The general form of a maximization nonlinear pro-
gramming problem in m variables, Xg0 i=l,....,m, subject to

n constraints is

Maximize £f(x) = f(xl,....,xm) (3-1)
Subject to h.(x) 2 0 i=l,....,k
hi(i) =0 i=k+1l,..,n (3-2)

where hi(§) can be a linear or nonlinear function. In order
to fit the algorithm given here, the constraints have to be
linearized if they are nonlinear.

A new form of the nonlinear programming problem is

obtained, when all nonlinear constraints are linearized and

normalized:
maximize f(x) = f(xl,.....,xm) (3-3)
m
subject to j};l njsXs 2 b; i=1l,....,k (3-4)

38
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n
Y. n..x. = b. i=zk+1l,....,n
. lj J 1
i=1
where
B2
3 njy = 1 i=),.0000.0n
j=1

A nonlinear function can be linearized by neglecting
the higher order. terms of the Taylor's expansion, if the
function is differentiable. The calculation of partial
derivatives of the function is necessary for zhe Taylor's
expansion. Sometimes the direct evaluation of the partial
derivatives is difficult and tedious if functions are com-
plicate or the number of functions is large.

A numerical method suggested by J. H. Christensen and
D. M. Clifton (10) is introduced here. 1In this method, the
explicit calculation of partial derivatives is not necessary.
Instead, it is completed by introducing a set of auxiliary
points of which the number is equal to that of the inde-
pendent variables in the functions. This method is very
available for computer manipulation.

Suppose a set of functioms, fl' .....fm, of n inde-
pendent variables are given and the linearization of this set
of functions at point x is to be calculated. If n arbitrary
points 5},......§F are chosen for the set of functions, the

Taylor's expansion at point 5? gives
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1l o

(xh)-£ (x 12

):(ag/axlﬂié(xl—xl)+....+(8§/8xn)|§?(xi-x§)

(x™) -£ (x°) = (3§}3xl)l§o (x2-x0) 4. ..+ (3E/9x ) 0 (x22x2)

'mooo '}-h

(3-5)

Let §}=£}§1),...., §P=£(§P) and a m x n matrix AF be

1

AF= -f-_zo,.a..o-oooc'gn-io]

then the set of Taylor's expansion (5-5) can be rewritten in

matrix form

AF = JAX (3-6)

where

J= [a_f_/axl,.........,a;/axn] ©

is a m x n matrix, and

N

l o n _o
xl-xl,.....o.-,xl-xl
AX = (3-7)
xl—xo x2-x°
n n'oocuooooc'n nj
is an n x n matrix.
Equation (3-6) can be rewritten as
_ -1
J = AF(AX) (3-8)

Let Ax=x-§?l, where X is an n X n matrix, 1 is an 1 x n sum

vector and 5? is n x 1 column vector, or they can be
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expressed in the fcllcwing mathematical form

1 n o

P ceeeXy X1

X = |3 : x° = |i,
n —

kn ..... ....xn *n

1 =({Q,1,....,1)

Premultiplying and postmultiplying equation Ax=x-§?l by x-l
and Ax-l, we obtain

ax7t = x4 x" %17t (3-9)
Premultiplying equation (3-9) by 1

= 1x7t s _1_x'1:_<_°le'1 (3-10)
Let a=;x-l§?, equation (3-10) becomes

1xt = 1x7 Y a-) (3-11)
Substituting (3-11) into (3-9), we get

ax7t = [T+ (/@i %) 7 (3-12)

Substituting (3-12) into (3-8), the Jacobian matrix becomes
3 = 8¥(1 + (/7 Q=N x e x7t (3-13)
Let

1 (3-14)

where
F = [fl,fz,.....fn]
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and
]
£ = (£]heeeiee )
Substituting (3-14) into (3-13) we obtain the final Jacobian

matrix
3= [F+ /a-aFy - £2]x (3-15)

The set of linearized functions can be performed after
the manipulation of Jacobian matrix has accomplished.

If only one of the auxiliary points is replaced by a
new point, the new inverse of matrix X, say ﬁ-l, can be up-
dated by the following formula. The direct calculation of

§-1 is avoided.

ﬁ—l = X“l - / -x'l j=1 n, i#r
ij iy T ¥i/¥r "fpy I=Lreee ety
(3-16)
A—l — -l j=1’...,n’ i=r

where y_ is the r-th element of relation X?X-l§?.

This method exploits the linear approximation of func-
tions without direct calculating the partial derivatives of
functions. Therefore, it is very useful when the partial
derivatives of functions are difficult to evaluate or the
number of functions is large. Equation (3-16) for updating

A .
matrix X 1 when one of the auxiliary points is changed is a

time-saving procedure. The conventional MAP method used
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explicit calculation to obtain partial derivatives. It

required very much computation effort at each iteration.

Formulation of Linearized Constraints

The procedure for calculating the Jacobian matrix was
given in the last section. The application of the Jacobian
matrix to obtain a set of linearized constraints will be

discussed here.

Suppose a set of nonlinear constraints

h(x) 20 (3-17)

will be linearized at point 5?.

The auxiliary points are selected and Jacobian matrix
is evaluated according to equation (3-15). The set of con-

straints can be written as

h(x) = h(x®) + J(x-x° 2 0

or
Jx > Jx

- b (x%
Then the set of linearized constraints is
JXx -b20 - (3-18)

Where gfagé-gjg?).
Equation (3-18) gives the hint that the coefficients of
each linearized constraints are the elements of the corre-

sponding row vector in the Jacobian matrix. This set of
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linearized constraints must be normalized to obtain the
constraints similar to relations (3-3) and (3-4).

The selection of the set of auxiliary points is very
important to the linearization of functions. 1In general, the
auxiliary points should be chosen closed enough to the point
at which functions are linearized, and the existence of
collinear auxiliary points should be avoided. Sometimes, the
random selection of auxiliary points does not give accurate
approximation. The auxiliary points which are very far away
linearizarion point always give inaccurate approximations.
Some trials are always needed to decide the best selection

of the auxiliary points.

Step Back Criterion

. During the solution of a programming problem with non-
linear constraints, it is possible that a feasible point
becomes infeasible with respect to the new set of reline-
arized constraints. In order to obtain a feasible point,
it is necessary to step back into the feasible region. There
are many acceptable ways to choose a new feasible point, such
as, using the first initial point or the point in between
the last two optimal points.

The following criterion gives a reasonable way to obtain
a new feasible point. The new point will stay on one or

more of the violated constraints. Let
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5}-1: The optimal point of the (i-1l)-th subproblem.

Eé : The nonlinearly infeasible solution to the
i-th linearized subproblem.

X : The desired feasible point.

Z : Unit direction vector from point §i to 54_1

At point X and point 5} the constraints can be written as

n.x - b, = A4 (3-19)
'i _ L _
nx'- by = A} (3-20)

Substracting equation (3-20) from equation (3-19) we get

n; (x - x) =4, -2} (3-21)

- 1 1

-1

. . . . . i i
Since x is chosen on the line connecting point X and x

therefore, §?§l+TE. Equation (3-21) becomes

! i
TR;Z = Ay = A

Because the new feasible point will stay on at least one of
the violated constraints, Ai must be equal to zero. The

permissive step length from point §l toward point x -1 is

i | ]
T = -Ai/gig >0

Where A;<0, since §}is the infeasible point with respect to
constraint i. In order to maintain T be positive, only the

'
constraints with n.z>0 are considered. The maximum required
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step length will be

. i ] ]
Thax = ™D lli/gigl >0 n.z >0 (3-22)

Via the procedure of deriving the criterion it is obvious
that the new point will be feasible and stay on one or more
constraints which are violated by the optimal point of
previous linear constraint subproblem. The new feasible
point is a good starting point for the next iteration. The
constraints on which the new feasible point stays will come
in to constraint basis immediately after the iteration begins,
and the criteria in the chapter II will continue the process

of solving the problems.

The following example shows the application of this

criterion.
Example 2
Maximize f = 2xl + X,
Subject to x2 + x2 < 25
172 (3-23)
2 2 < 7

This example is a maximization problem with optimum located
at the intersection of two constraints. The movement of the
point is given in Table II and also shown in Fig. 7.

Table II showed that the moving point stayed in the
feasible region and the value of the objective function in-

creased monotonically until point (4.159,3) is reached.
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This point is feasible with respect to the current set of
linearized constraints, but infeasible relative to the relin-
earized constraints. The step back procedure drew the point
back to point (3.987, 3.001), which is at the intersection

of constraints and also the optimal point of the new sub-
problem. The infeasibility occured again when constraints
were linearized at point (4.003, 3). The new point after

step back procedure is (4, 3) which is the global optimum

of the problemn.

Algorithm and Procedure of Calculation

The proposed method in this dissertation satisfies the
Kuhn-Tucker conditions at the optimal point and the necessary
conditions for increasing the value of the objective function
during the process of solving problems. These satisfactions
had been proved in the last chapter. In this section the
algorithm is given for the solution of nonlinear programming
problems with convex nonlinear constraints. The entire
algorithm should be considered to consist of two major parts:
the routine for solving linearly constrained subproblems and
the manipulation of the linearization and step back processes.
Some minor modifications should be made, such as the dele-
tion of the procedure of linearization of constraints and
step back of infeasible point, if the given problem is
linearly constrained.

The description of the algorithm is
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Linearize the constraints at point X.
Normalize the constraints.
If x is feasible with respect to the set of normalized
constraints proceed to step 5. Otherwise, go to step 4.
Step back into feasible region, go to next step.
If x lies on manifold Mq, build up Nq and Pq. Otherwise,
set Pq=I.
Compute qu and R according to equation (2-22). If
qu=0 and R<0, x is a stationary point of the subproblem.
Set §i=§, proceed to step 7. Otherwise, go to step 8.
Compare current stationary point 5? with last stationary
point 51-1. If |§¢§i-1|53, where € is the tolerance,
the global optimum is reached. If not, return to step l.
qq-%’ where rqbqq-%zribii_%
and where bii is the i-th diagonal element of (Nqu)-l,

If Ipqg_|535rqb ’ i=1,ooooq-l’

drop the g hyperplane from the constraint basis and

obtain N and P by the recursion formula (2-19),

g-1
evaluate unit direction vector E;Pq_12/|Pq_12|. Then

g-1

go to step 10.

If the case in step 8 does not occur, compute unit
direction vector E;qu/l?qgl.

Evaluate the maximal step length Tm according relation
(2-17) in the direction of z.

Obtain vy, 0$ystm, which maximize the objective function
in the direction z.

Set x=x+yz.
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13. If Y=T,» add hyperplane Hq to the constrain basis and

form new N by recursion formula (2-20), then

g+l’ Pq+l
gc to step 1l4.
14. Find new gradient g(x) and direction p.

15. Return to step 6.

The procedure of the algorithm is also described by the

flow chart shown in figure 4.
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TABLE II

Constraint Violated Objective

Point Basis Constraints Function
(1.000,1.000) 0 0 3.000
(3.000,3.000) 0 0 9.000
(4.159,3.000) 1,2 1,2 11.318
(3.978,3.001) 1,2 0 10.957
(4.003,3.000) 1,2 1,2 11.012
(4.000,3.000) 1,2 0 11.000
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START

Read x l

Linearize Con-
straints at x

Normalize Constraints

No
Is x feasible ? Step Back

Yes

Calculate qu

3 - <
xt-x~t<e YeT0D)

' -1 ) < Local .
< (NqNg) N qg_: 0 >—‘— Optimal x
. -%
qug P qPaq }‘

Drop Hq from Q
Find N

q-1’ %g:l

Calculate qu}

Fig. 4(a) Flow Chart of Revised Algorithm
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@

Evaluate
=p P
z=Pp/|Pp|

Find Max. Step Length
Tm=min{rj>0}

Interpolate in Direction 2z
y is Optimal Step Size

!

Basis is
not Changed

aAdd Hq to Constraint Basis
Update Nq,P

g

Set x=x+yz

Find g(x)

Find p(x)

Fiqg.

4 (b)

Flow Chart (Cont d)




CHAPTER IV

NUMERICAL RESULTS AND CONCLUSIONS

Problem of Cubic Objective Function

The first example is a minimization of a convex cubic
function of five variables subject to 15 linear inequality
constraints. This problem had been solved by Goldfarb and

Lapidus (25) using the conjugate gradient method.

5 5 5 5 4.x3
Minimize Y e.x. + L Eci.xix,.‘ + 2 %%
j=1 1 J y=1i=1 13T =1
(4-1)
5
Subject to Z;i a;4%; 2 by i=1,....10
J (4-2)

x. >0
J

where the coefficients ej, cij' dj and bi are given in Table

III.

Starting from an initial feasible (0,0,0,0,1), the same
starting point for the conjugate gradient method and the
gradient projection method, the revised gradient projection

method took seven steps to reach the constrained minimum and

53
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had four hyperplanes in the constraint basis. This is the
same as the other two methods. The execution time for
solving this problem on an IBM 1130 was 4.93 seconds. A
comparison of execution time is not significant since the
computers are not the same model, but the comparison of the
number of steps taken for each method showed the revised
gradient projection method is the best. Other advantages of
the revised gradient projection method are the fewer matrix
manipulations and less computer storage than those required
for the conjugate gradient method. The step by step progress
of the three methods for this problem is presented in

Table 1IV.

Comparison with Improved MAP Method

Three different characteristic problems, which have the
optimal point located in the internal regions of constraints,
at an intersection of constraints and on a single constraint
are presented in this section. The solutions of the problems
at each iteration are shown on Figs 5, 6, and 8. These
three problems were also solved by Yang's improved MAP method
(60) and the solutions are given in Figs 5, 7, and 9. 1In
the figures, the solid lines represent the moving points
obtained by the revised gradient projection method, and the
broken lines represent those obtained by the improved MAP
method. The first problem is an interior optimum. The

current method took only one iteration to reach the optimal



55
point, it is much more efficient than the improved MAP method
which took 12 iterations to obtain the optimum.

When both methods are used to solve problems, a step
size restriction on the movement of the variables is required.
The purpose of the additional restriction is to keep the
solution closed to the feasible region, since the linearized
constraints might be very far away from the real positions.
This has been shown in Yang's work. If the restriction is
not added, the solution will be away from the feasible region.
From another aspect, since the improved MAP method solved
the subproblems of linear programming, the gradient direc-
tion is fixed at each iteration. The restriction can not be
too large, otherwise, it becomes difficult to reach the
optimal point. This consideration is not necessary for the
revised gradient projection method. Therefore, the restric-
tion for MAP method is smaller than that for the current
method. It is obvious that the former method takes more
iterations to obtain the optimum than does the latter.

The second problem is a linear objective function
with circular constraints, and the optimum located at an
intersection of the constraints. It took 8 iterations
to reach the optimum for the improved MAP method and 4
iterations for the revised gradient projection method. The
third problem is an elliptical objective function with
optimum located on a constraint. In this problem the itera-

tion number of Yang's work is 7 and 6 for the current method.
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The linearized constraints do not converge very fast, thus
it took almost the same number of iterations to get the
optimum.
All these examples show that the revised gradient pro-

jection method is much more efficient than the improved MAP

method in handle nonlinear problems.

The Chemical Process Problem

The mathematical description and system model of this
chemical process are given in chapter one. Dibella and
Stevens solved this problem by conventional MAP method, in
which the simplex technique was used to solve the subproblem.
There were 45 variables and 21 constraints when Dibella and
Stevens solved the original problem. It needed very much
running time and computer storage for this cumbersome problem.

J. H. Christensen (9) simplified the problem by intro-
ducing 5 additional equations and variables. He then used
the structure of the system of equations to convert the
original problem into one of 4 variables and 7 constraints.
This simplification not only saved tremendous computer
storage and computer execution time but also made it easier
to carry out the procedure of optimization.

The objective function and constraints are rewritten in

terms of four variables F FRC' @, and T.

REI

Maximize f = (368FP + 8.4FD - 28FA -42FB -14FG -
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0.37FR)/VD - 10

1 >
Subject to 'FRE >

g >
1-¢2

R

v

3

v

FRC

T - 580

v

v

680 - T

where = FP + 0.1 FRE

= (My/M)F, .0

W oW w
R
|

oW N

= R3/ (K3FppFpe)

= Rz/(kzF t)

RC

= Rl/(leRBt)
= (MG/MC)R3

RA RB

WM M M m b o

< Qﬂ o ®© g w g

2
= FRt/p

o
0

0

=R1+R2+FRB¢

= (M /M) (R,=F~F @ + F )

= (MB/MC)(R3+FRC¢) + R2

= F + F +FR+F

Cc

= @(Fg = Fg = Fp)

(4-3)

Dibella and Stevens (17) solved the problem on IBM 709

computer. They stopped searching at 600 iterations and

supposed it was the optimal solution of the problem.

Yang
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found that the value of the objective function he obtained
after 140 iterations on IBM 1130 computer was much better than
Dibella's. The reason Dibella and Stevens gave up when the
value of the objective function reached 72.5%, might be that
they thought the further searching is not significant, since
their problem contained too many variables which complicated
the problem and converged very slowly. Yang also found that
the objective function has the tendency to increase without
limit. He obtained 99.25% for the objective function at the
140-th iteration and still could improve it much better than
this. The unlimited increase of the objective function is
not realistic, because the percent return will not be higher
than 50% in general. It is then obvious that Dibella's
original.problem should be modified. Yang suggested an
additional constraint to restrict the irrational increase of
the objective function. The new constraint restricts the
flow rate of the effluent fromr the reactor can not exceed

thirty times the flow rate of prc.act P.

1w
o

h, = 30FP - F

8 R

The original problem became one of 4 variables with 8
inequality constraints.

The optimal solutions of the temperature in the reactor,
volume of the reactor and flow rate of f~ed and recycle were
obtained by the revised gradient projection method and given

in Table V. The percent return evaluated by Yang and the



59
current method were 65.098 and 64.9635. The slight d4dif-
ference might be due to the linearized constraints, which
were not exactly the same in two methods, and the sensibility
of the variables to the objective function. The variation
of the objective function with the number of iterations were
given in Fig. 10. The solid line represents the value of
objective function obtained by the revised gradient projec-
tion method and the broken line is for improved MAP tech-
nique. It is remarkable that the former method took only 4
linearizations to reach the optimum while the latter needed
36 linearizations. The value of the objective function
increased very fast for the revised gradient projection
method, but not for the improved MAP method after the 25-th
iteration. This fact shows the superiority of the current

method to the improved MAP technique.

Alkvlation Process Problem

This problem represents as alkylation process, which
consists of a reactor and a fractionator. Sauer, Coville
and Burwick (51) had described this process. Westerberg and
Debrosse (56) solved this problem by using their algorithm
developed for nonlinear programming problems.

The mathematical model of this process problem is

Minimize f = -0.063x

4x7 + 5.04x1 + 0.035x2 +
10x3 + 3.36x5 (4-4)
Subject to xl 20 x1 < 2000
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X, 20 X, < 16000

Xy 20 x, < 120

X, 20 x, < 5000

Xg 20 Xg < 2000

Xe 2 85 Xe < 93

Xq 2 90 X5 < 95l

Xg > 3 Xg < 12

Xg 2 1.2 Xg < 4 (4=7)
X), > 145 Xy, < 162

%, (1.12+0.13167x4-0.00667x2) ~0.99x, > 0

x, (1.12+0.13167x,-0.00667x2) ~1.01x, < 0
86.35+1.098x,-0.038X2+0. 325 (x,~89) -0.99%, > 0
86.35+1.098x-0.038x5+0. 325 (x-89)-1.01x., < 0
35.82-0.222%,,-0.99%, 2 0

35.82-0.222x, ,-1.01x, < 0

-133+3x7-0.99x10 >0

-133+3x7-1.01x10 <0

(x2+x5)/xl -x8=0
98000x3/(x4x9+1000x3) —Xg = 0
l.22x4-x1--x5 =0

This is a nonlinear programming problem of 10 variables
with 31 nonlinear constraints. The last threé equality con-
straints can be used to solve for 3 independent variables.
After some mathemat = ' manipulations, the original problem

can be simplified to a new one of 7 variables with 28
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inequality constraints.

Starting at a slightly different point from Westerberg
and Debrosse's, the problem was solved by using the revised
gradient projection method. The value of the objective
function increased very fast from 700.562 to 1310.238 in
two iterations. It is surprising to find that infeasibility
occurred and the objective function oscillated in the fol-
lowing iterations. The global optimum could not be reached,
at which the value of the objective function is 1714.93
obtained by Westerberg and Debrosse. A reasonable explana-
tion for the failure of the solution of this problem is the
nonconvexity of the region formed by the constraints. Sup-
pose an optimal point of the subproblem was obtained at n-th
iteration, the movement of the point in the next iteration
is in the direction of increasing the value of objective
function, but the point in the (n+l)-th iteration may be in
the infeasible region of the actual constraints if the non-
convexity exists. The final optimal point of the (n+l)-th
subproblem might be infeasible to the real constraints,
although it is feasible to the current linearized constraints.
Therefore, the infeasibility will occur repeatedly, since
the region is nonconvex. The global optimum can not be
reached no matter how much computer time is used. The point
obtained at each iteration is a local optimum.

The local optimum due to nonconvex constraints is shown

in Fig. 11, in which the global optimum is at point b. The
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solution stops at point a, since the point moves in the
direction of increasing objective function will be in the

infeasible region.

Conclusion

The proposed revised gradient projection method is an
efficient method for nonlinear programming problems with
convex linear constraints. It is more efficient than the
original gradient projection method, since the direction of
the movement of the point in the proposed method is better
than the steep ascent(or descent) direction near the optimum.

The advantages of the proposed method over Goldfarb's
conjugate gradient method are that it requires fewer matrix
manipulations and less computer storage. Since the proposed
method is at least as efficient as Goldfarb's, or even
slightly better, and requires fewer matrix manipulations,
the computer time for the former should be shorter than that
of the latter.

The numerical approximation of the Jacobian matrix is
used to handle the nonlinear constraints problems in this
method. The tedious and time-consuming task of deriving the
first partial derivatives is avoided.

The proposed method is much more efficient than Yang's
improved MAP method in the treatment of both linearly and
nonlinearly constrained probiems. Solving the nonlinearly

constrained problems the improved MAP technique requires a

\% -
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smaller maximum step size which requires more iterationms
than the present method to reach the optimum. The example
problems in this chapter show the superiority of the proposed
method.

This revised gradient projection method has many advan-
tages over Rosen's gradient projection, Goldfarb's conjugate
gradient and Yang's improved MAP methods. It can be applied
to solve nonlinear programming problems with convex linear
or nonlinear constraints, but special problems with nonconvex

constraints can not be solved by this method as shown in the

last example.
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TABLE III

DATA FOR FIVE VARIABLES CUBIC FUNCTION

=20 -10 32 -10
-31

30
-20

32
-10
=20

39

-31 39
=20

32
-10

30

-10

32

10
-36

-12

-18

=27

-15

-40

-16

ij

0.4

-0.25

-3.5

-2.8 -4

1

-40
-60

10
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TABLE IV

MINIMIZATION OF CUBIC FUNCTION OF

FIVE VARIABLES

Revised

Gradient Projection Conjugate Gradient

Gradient Projection

No. of No. of No. of
Con- Con- Con-
straints straints straints
Step -f(x) in Basis -f(x) in Basis -f(x) in Basis
0 -20 0 -20 0 -20 0
1 23.8967 1 23.8967 1 23.8967 1
2 24,8052 2 25.1972 2 25,1972 2
3 25.2201 3 25.2605 3 25.2605 3
4 30.4768 2 28.5235 2 25.5748 2
5 31.5119 3 29.6326 3 31.4719 3
6 31.97897 3 32.0165 4 32,2252 3
7 32.34870 4 32.1134 3 32.2955 3
8 32,3353 3 32.34865 3
9 32.34868 4 32.34867 4
10 32.34870 4
11 32.34870 4

V.
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Fig. 5 Interior Optimum

Minimize (xl - 2)2 + (x
Subject to 25 - xi - X
2
7 - x:L + x

wv

v

———
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Fig. 6 Optimum at an intersection (Lee's)

Maximize 2x1 + X
. 2 2
Subject to 25 - X T Xy 2 0
7 - Xi + xg > 0
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Fig. 7 Optimum at an Intersection

Maximize 2x1 + x2
. 2 2
Subject to 25 - x7 - x, 2
1 2
2 2
7 - Xy + X, >

(Yang's)
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Fig. 8 Optimum on a Constraint (Lee's)

Maximize 4xi + 9x§
Subject to 25 - xi - xg >0
2 2
7 - X3 + x2 >0




70

Fig. 9 Optimum on a Constraint (Yang's)

Maximize 4x2 + 9x2
1 2
. 2 2
Subject to 25 =~ X <X, 2 0
2 2
7 - x1 - x2 20
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TABLE V

COMPARISON OF THE OPTIMAL SOLUTION OBTAINED BY

PRESENT METHOD AND YANG'S IMPROVED MAP METHOD

Optimal Optimal
Initial Solution Solution
Variable Guess Yang's lee's Unit
FRE 43119.5 52972.465 52884.710 1b/hr
@ 0.333 0.278 0.278
Free 3120.00 3258.539 3282.963 lb/hr
T 644.75 650.667 650.137  °Rr
FRP 9074.95 10060.25 10051.47 1b/hr
R2 7179.40 7360.524 7350.97 1b/hr
R4 1961.04 2250,.84 2235.54 1b/hr
R1 8679.40 8938.72 8925.07 lb{?r
K1 49,33 58.46 58.90 hr_.1
K2 204.29 252.60 246.70 hr_l
K3 324.65 430.87 423.10 hr
Frn 52798.89 56115.43 56288.232 1b/hr
FB 33440.82 31893.72 31896.24 1b/hr
Fra 15620.67 17099.05 16677.43 1b/hr
FG 2941.55 3376.26 3353.31 1b/hr
FR 126675.53 142881.98 142538.11 1b/hr
FD 39617.34 37445.01 37356.294 1b/hr
Fa 13881.08 13690.54 13558.06 lb/hr
Return 49.69 65.098 64.967 $
hy 1961.03 2250.83 467.00
h, 16214.46 0.148 0.002
Iteration
0 36 4

Number
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Fig. 10 The Variation of Objective Function with

Number of Iterations
e
Lee's —

# of Iterations

1 i A i 4 1 A

5 10 15 20 25 30 35
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NOMENCLATURE

coefficient of xj of constraint i before normalization

chemical reactant of chemical process problem

rate constant of Arrhenius equation of reaction i

constant defined in connection with Eg. (2-20)
constant of constraint i
chemical reactant of chemical process problem

rate constant of Arrhenius equation of reaction i

' -
a partition matrix of (N N ) 1

94q

' -
a partition matrix of (Nqu)

' -
a partition matrix of (Nqu)

! -
a partition matrix of (Nqu)

1
1

1

constant of Fg/RT
corresponding coefficient of X X,

3

intermediate of chemical reaction of chemical process
problem

corresponding coefficient of xg
corresponding coefficient of xj
objective function

activation energy, Btu/lb

flow rate of reactor input A, 1lb/hr

flow rate of reactor input B, lb/hr
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flow rate of portion of column bottoms to plant fuel

flow rate of G from decanter, lb/hr

flow rate of product P, 40 million 1lb/yr=4763 lb/hr

flow rate of A from reactor, 1lb/hr
flow rate of B from reactor, 1lb/hr
flow rate of C from reactor, lb/hr
flow rate of E from reactor, lb/hr
total flow rate from reactor, lb/hr
flow rate of P from reactor, lb/hr
vector formed by a set of functions

vector of £ at point 5}

matrix in connection with Eq. (3-14)
matrix formed by vectors g?
gradient vector of a function
residual product in reactor
constraint i

enthalpy, Btu/lb

hyperplane 1

hyperplane g

Hessian matrix at point x

identity matrix

Jacobian matrix

number of inequality constraints
reaction coefficient of reaction i

number of variables or functions

manifold formed by the intersection of g hyperplanes
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normalized vector of constraint i

coefficient of variable j of constraint i after normal-

zation

constraint basis containing g hyperplanes

direction vector

pressure in reactor or desired product of chemical process

projection matrix

number of constraints in the constraint basis

' -1
vector of [N l] (Nq_l

q-1"g- o)

i-th element of vector R

universal gas constant

constant vector in connection with Eg. (2-22)
temperature in reactor

volume of reactor

independent variable i

stationary point

an n x n matrix of the auxiliary points
new matrix of the auxiliary points
matrix in connection with Eq. (3-7)

the r-th element of X-lié

vector of x”l§°

unit direction vector

set of nonzero Lagrangian multipliers
set of zero Lagrangian multipliers

density of the reactor solution 1lb/cu.ft

slack value of constraint i or the Lagrangian mul-
tiplier i
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value of ii+l/3§
a positive number
maximum step length in certain direction
a positive number 0<151m
gradient of a function
vector consisting of Lagrangian multipliers
sum vector
-1 o

a constant of 1X X

new independent variable of chemical process problem
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LIST OF COMPUTER PROGRAMMING

$J08 00119656,T IME=S0
CexxexCONJUGATE GRADIENT METHOD WITH REEVE
DIMENSION POP(S)sONL(S+S)eB(S5)sA(10)
DIMENSION ALF(S)+Z(S)sGL(S)PF(S).PI
DIMENSION X(S3)sG(9) +PN(S)sP(5)sD(5S)
DIMENSION XB(S)+GB(9)sGH{11)+XP(5)
DIMENSION XHA(S)s XHB(S)
COMMON Mo NsML MM MALI2,1QeNX(5) 8
COMMCN MAA,XS(4)
CCMMCN C0OBJ(11,4)
MAA=0
MA=1
M=4
N=10
MM=N+1
ML=M+1

READ (S+510) (X(1)sI=1,M)
FORMAT (5fF8.5
MAX=0
JK=1
JM=1
I1Q=0
DO S16 1=1
XP(I)=x(I)
516 XS(I)=xX(1)
CALL LICM (X,C0ORJ08J)
MAA=MAA+]
CxxxxxNORMAL IZATION OF CONTRAINS
D0 321 J=1,sN
F=0e
DO 522 I=1+M
522 F=F+BIGN(1sJ)**x2
F=F%%0.5
DO 525 I=1.ML
525 BIGN(I1+,J)=BIGN(I.J)/F
521 CONT INUE
DO 524 I=1.M
NX(1)=0
DO S24 J=1.M
524 QN(I+J)=0.

(UR6)]
- s
no

oM

523 WRITE (6+4526) (X(I)eI=1eM)
326 FORMAT (/, INITIAL FEASIBLE POINT X
CALL GRAFN (XsG)

DO 53S I=1.M
ALF(1)=0.
935 P(1)=G(1)
Cx*xx%x2DETERMINATION OF SLACK VALUES
545 DO S30 J=1.N

F=0e
DU S31 [=1+M
S2! F=F+X(1)*BIGN(I1.,4)
530 ADML(J)=F=-BIGN(ML+J)
WRITE (5+533) (ADML(I), I=1sN)
533 FORMAT(/, VECTOR LMDA 2/7+15F843
AZ=~1.,E+03

J=1
413 IF (ADML(J)) 41S5.414,4]
415 1IF (ABS(ADML(J))-0.0001
a14 J=J+1l

IF (J-N) 413,413,536

4
) 414,414,401

e ~O

»/+5E16.4

IRECTION
S).ADML (]
ZP(S) + Z20(
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401 IF (ADML(J)) 403,408,408
IF (AB-0.) 422,422,423
422 DO 4295 K=1,.,M
425 F=F+ZP(K)*BIGN(K+J)
: GO TQ 426
423 DO 404 K=]1,M
404 F=F-ZP(K)*BIGN(K,J)
426 IF (F) 408,408,405
40S ETA==-ADML(J)/F
IF (ETA-AZ) 408,408,406
406 AZ=ETA
408 J=Ju+1
IF (J-N) 401,401,407
407 IF (AB-0.) 402,402, 409
402 DO 411 I=1.M
411 X(I)=X(I)+AZ%xZP(])
GO TO 523
409 DO 410 I=1.M
410 X{(1)=X{(1)-AZ%x2ZP(1)
GO TO 523
S36 IF (IQ) S34,534,532
532 WRITE (6+4547) (NX(I)eI=1,1Q)

547 FORMAT(/, ACTIVE CONSTRAINTS IN THE BAS3IS ,/,5i4

S34 DC=0.
0B=0.
DO 546 [=1,M
GL(I)=G(1)
546 PI(I)=P(1)
Cxx%x%xxMAX IS THE NUMBER OF ITERATIONS
MAX=MAX+1
CALL MLON(GsALF (D)
Cxxx*%XDETERMINE UPTIMAL POINT REACHES
DO 548 I=1.Mm
S48 D0B=DB+D(1)%x%2
IF (IQ) S51,551,549
549 DO S50 I=1,.1Q
SS0 DC=DCH+ALF(I)**x2
WRITE(6,552) (ALF(l),1=1,1IQ),D8B
S52 FORMAT (/. VECTOR ALF v/ +5E12.4, LETHPQG
S51 IF(DB~SE-01) 553+:553,555
S53 1I=1
554 IF (ABS(ALF(I1))~0.001) 556,556,557
SS7 1IF (ALF(I)-0e) 556,556,555
556 1=+l .
IF(I-1Q) 554,554, 1000
Cxx%x%x%xFIND MAXIMUM DIAGONAL ELEMENT OF NO NO-1
559 ?A¥=OQ
584 IF (GAV-QN(IsI)) S87+587,590
587 GAV=QON(I,1)
S90 I=l+1
IF(I-1IQ) 584,584,600
600 ALFQ=-1.E+06
I=1
301 JB8=NX(I)
IF (J48) 620,620,305
C*¥x*x*TEST ACTIVE CONSTRAINTS EXIST OR NOT
Cxxx%%F IND MAX, VALUE OF ALF WHICH ARE IN THE BASIS
305 IF (ALFQ-ALF(1)) 30643064309

»1E12.4
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306 ?LFQ:ALF(I)
3=1
CxxxxkxPLANE NX I3 SHUULD BE DROPPED
309 I=1+1
IF(I-IQ) 301,301,320
320 F=0.5S*%ALFQ*GAV*%x(—-0e95)
WRITE (6,307) GAV,ALFQ,DB
307 FORMAT (/. GAV s 1E12e4, ALFQ v1E1244, LE THPQG e1E12.4
Cxx%x%%xDETERMINE PLANE NX I3 SHOULD BE DROPPED OR NOT
JB=NX(13)
IF (DB=F) 617.617,620
617 JUM=JUM+1}
IF (JUM-2) 618,618,1000
618 IF (I3-1Q) 625,628,625
Cxxxxx INTERCHANGE COLUMNS AND ROWS BEFORE DROPPING PLANE I3
625 NX(I3)=NX(1Q)
DO 631 K=1.1Q
B(K)=CN( 1IQ.K)
A(K)=QON( I3,
AN(IQ.K)=A(
631 AON(I3,K)=8(
D0 634 K=1,
B(K)=CN(K,1
A(K)=CN(K, I
ON(K,1Q)=A(
634 QON(K,13)=8(
Cxx%xxNEW CN MATRI
628 Bal=1./70GN(IQ
LN=IG-1
DO 202 I=1.LN
202 B(I)=CGN(I.IQ)%*B4]
DO 2048 I=1,LN
DO 204 J=1,.LN
2048 QONL(I1:J)=QN( I, IQ)%B(J)
D0 209 I=1.LN
D0 209 J=1.,LN
209 QN(I1+J)=ON(IsJ)—-0ONL(I,J)
IQ=1IC-1
WRITE (6+212) JUB. 13
212 FORMAT (/7 , OUT GOING PLANE IN BIGN IS o114, IN NQ IS o114, [
1 ATRIX OGN IS
DC 214 I=1,1Q
214 WRITE (6,216) (QN(l1+J)esJ=1,10)
216 FORMATY (5E12.4
620 CALL MLON(P,PN,PQP)
DC=0.
DO 640 I=1,M
640 DC=DC+POP(I)*x%x2
DC=DC*%0 .5
DO 643 I=1.+M
643 Z(1)=PQP(I)/0C
WRITE (6+648) (Z(1)sIx=1eM)
648 FORMAT (/, UNIT OCIRECTION VECTOR Z +/+S5€E12.4
C*x%x%xx%xCHOOSE NONACTIVE CONSTRAINTS
Y=1E+05
I12=0
DU 652 I=1.N
IF (IC) 658,658,655
655 DO 656 J=1,1Q
IF (I-NX(J)) 656,652,656

)
)
)
Q
)
)
)
)
X
L]

AFTER DRCOPPING PLANE Q
1Q)
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656 CONTINUE
658 IF (ABS(ADML(1))~SeE~03) 657:657: 654
654 F=0e
DO 653 K=1.+M
653 F=F+Z{K)%XBIGN(K
IF (F) 649,652,
649 AA=ABS(ADML(I1)/
IF (Y—AA) 652.+6
657 Y=0.
GO TC 659
647 Y=AA
659 12=1
652 CONTINUE
BPS=Y
Cxxkxxk]2 [S THE PLANE CCMING IN
Cxxxx%kY [S MIN, UF ABS LMDA/N 2 FOR WHICH N Z ARE LESS THAN ZERO
Cx*x*¥%x%xBPS 0S THE MAX. PQOSSIBLE STEP LENGTH
Cx*x%xx%XB8 IS THe POINT WITH POSSIiBLE MAX, STEP
C**x%x%x%IF Y O INTERPOLATION IS NOT NECESSARY
1200 DO 1210 [=1.M
1210 XB(I)=X([)+8BPS*2( 1)
WRITE (6+1220) Yo (XB(I)eI=1,M)
1220 FORMAT (/. POINT X8 WITH PUOSSIBLE MAXe STEP LENGTH 21F10e3,
1/+:S5F12.7
Cxxxxx%%xF JABUNACCI UNTERPOLATION
MM=1

1)
S2
)

»
o
+
47 547

1o

M
+0.618%(XB(1)=-X(1))
1221 XHA(I)- })~0.618%(XB(I)-X(I))
CALL FUNE (XHA+XSesGHsFA)
CALL FUNEV (XHB+XSsGHsFBB)
1224 IF (FA-FBB) 122%,1225,1228
1225 DO 1226 [=1.,M
XF(I)=XHA(I
XHA(I)=XHB(
XHB(I)=XF(1
1226 XP(I)=XHA(!
FA=FBEg
CALL FUNEV (XHB+XS, GHe.FBB)
GO 7€ 1229
1228 DO 1230 I=1.M
XB(I)=XHB(I)
XHB(I)=XHA(I)
XHA(I)=XB(1)=-0.618%(XB(I)=-XF(I))
1230 XP(I1)=XHB(1)
FBB=FA
CALL FUNEV AXHA+XSes GHeFA)
1229 [S=1IS+1
IF (IS-14) 1224,1224,+,1235
1235 DO 1236 I=1+M
1236 XF(I)=XP(1)
1255 CALL FUNEV (XF4XSGH.FF)
WRITE (6+1240) (XF(l)el=1eM)
1240 FORMAT (/7. INTERPOLATION POINT o 5F12.7
WRITE (6,1256) FF
1256 FORMAT ( 0BJe FUNCTION OF INTERPOLATION POINT 2/91F12.5
DS=0. .
DO 1257 [=1.M

)
i)

) +0.618*%(XB({I)=-XF(1))
)
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219 1257 DS=DS+(XF(I)=X(1))*%x2
220 DS=DS*%0.5

221 IF (ABS(DS-Y)~0.000S5) 1242,1242,1258
222 1258 Y=0.5%BPS

223 1242 CALL GRAFN (XF,G)

224 MM=N+1

225 MAA=NAA+]

226 683 D1=0e

227 F=0e

228 DO 678 [=1sM

229 O1=D1+G(1)*%2

230 678 F=F+GL(I)*%2

231 BET=C1/F

232 DO 682 I=1,M

233 682 PF(I)=G(I)+BET*PI(I)

C IF THE FINAL STEP LFNGTH IS GREATER THAN OR EQUAL TO B8PS ADD PLANZ €
234 IF (BPS-Y) 694,694,690

23S 694 DO 698 I=1+M

236 X(I)=XF(1I)

237 ZP(I)=X(I)-XS(1)

238 698 P(IL)=PF(1)

239 WRITE (6,700) 12

240 700 FORMAT(/., THE COMING PLANE IS +1E3
241 WRITE (6+707) (P(I)eI=1sM)

242 707 FORMAT (/s OIRECTION P ,/:5E12.8
243 CALL ADCOJ

244 IF (MAX-20) 545.545+1050

Cxx#%x*[F THE FINAL STEP LENGIH 1S LESS THAN B"™S, BASIS IS NOT CHANGED
245 690 WRITE (6,723)

246 723 FORMAT (/. THE FINAL STEP LENGTH IS LESS THAN 8PS BASIS IS
1 NOT CHANGED

247 DO 724 [=1.M

248 XCIY=XF(1I)

249 ZP(1)=X(I)-XS(1)

250 724 P(I)=PF(1I)

51 IF(MCD(MAX,M+1)) 727,725,727

252 725 DO 726 1=1.M

253 726 P{(1)=G(I)

254 727 IF (MAX-20) 545.54551090

255 1000 WRITE (6,728) MAX

256 728 FORMAT ( UPTIMAL POINT REACHES IN ITERATIOUNS 113

257 WRITE (6+4800) (X(I)eI=1sM)

258 800 FORMAT (/7. TNE OPTIMAL POINT IS 2/ +¢SF12e7

259 WRITE (64803) (P(I1)esI=1M)

260 803 FORMAT (/7. OIRECTION P +/+5E1244

261 ZX=0e

262 EE=0e

263 8B=0.

264 DO 804 I=1+M

265 IX=ZX+ZP (L) *

266 EE=EE+X(1)*%*

267 804 8B= BB+XS(I)*#2

268 ZX=ZX%*¥%0¢5

269 AB=EE-B88B

270 AC=ABS(EE-88)

271 808 IF (ABS(AC)-1,E-068) 1111,1111,80S

272 805 DO 807 I=1.M

273 807 ZP(1)=2P(1)/ZX

274 MA=MA+1

275 IF (MA-16) S1S5,1111,.,1111



276
277
278
279
280

281

282
28313
284
28%
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
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1050 WRITE (6,806) MAX

806 FORMAT( DOES NOT CONVERGE IN s112,

1111 Ii=1
sSTOP
END

SUBRCOUTINE LICM (XHsFAU.0BJ)
Cx*xxxx_ INCARIZATIUN OF CONTRAINTS

ITERATION

DIMENSION RB(11)eXAI(S5:S)eYV(7)sFO(11)eFAU(11,4
COMMON Mo NoML MMgMA, 2, IQsNX{(S)sBIGN(6+10),AN(S

CCMMCN MAAXS(4)
CONMMCN C0BJ(11,4)
120 BIGN(

DO 10
101 CCBJ(1,

LQ”L

He XS+ FO»084)
(XH,YV)
D0 102 1=3,6
102 COBJ(I,1-2)=1e
COBJ(7+3)=~-1.
CcCOBJ(8.4)=-1.
coBJ(10,
coBJ(11,
DO 345 1
DO 345 J
345 BIGN(J.I
DO 350 1
DO 349 U=
349 BIGN({ML, 1)
350 BIGN(ML, [)=BIGN(ML, I)-FO(I+1)
DO 35S [=2.MM
355 WRITE (6+356) (COBJ(IeJ)eJd=1,M)
3955 FORMAT(SEL12.4
DO 357 J=1+N
357 WRITE (6,358) (BIGN(IsJ)eI=1,ML)
358 FORMAT(SEl2.4
RETURN
END

BJ(I+1sJ)

s it 4N
bt bt ||t o
2ZCXZ

SUBRQUTINE GRAFN (HeG)
DIMENSION X(5),G(S)sH(S5)

BIGN(ML, [)+COBJ(I+1,J)%XH(J)

4)s
*S

S)
A(Ss5)

COMMON M NeyMLaMMeMAL L2, IQsNX(S)sBIGN(G6s10)sQN(S+5S)eXA(S,+9S)

COMMON MAA,XS(4)
CCMMON CO0BJ(11,4)

4)%10.

97SSE+09%c XP(—-120006/7(X(4)
RCB=2.5962E+12%EXP(-15000.7(X(4)
RCC=9.6283E+1S*EXP{-20000.7(X(4Q)
FRP=4763.+0.1%X(1)
R2=05%X (1) *X(3)

R3=2+%(R2-4763.—FRP(X(3)4+4763.%X(3))

R1=0.5%(R34X(2)*
T=R3/(RCC*FRP*X(
FRB=R2/7(RCB*X(2)

X(3))+R2
2))
*T)

+580.))
+580.))
+580.))



€£0-3°1%1d-=(v*6)rB80D
SO0-3°1xddy-=(£°6)r8od
10-3*12J¥8~-=(2*6)r80>

YY-=(1*6)r802
v0-3*1xdEN=(E*  )r80d

*OoTxIVEY=(TI" ) rs0d

C*xI0AS°0S=Q0A
C0S/11%2C%x38d4+°0S /1Y% 1xdd%*2=1A

(E)Xklvd=1V

(E)X%x1¥=1Q

1V E+18¥=1Y

(L/711+8¥8471884+v2d/71VO8)awed-=1VY

18¥x (g ) X=189
(Cxxl*(2)IXxEIY) /71 1%x2U-(2xxBJuU*x1%(2)X)/7182Y*2y~-=18Y
(20U (2 IXRAYS) /L1DDtsEU~-=2 1
(2%%x(°08S+(v)X))/7°00002%2D0H=1DD8
(Cxx(°08GS+(H)X))/°000ST%x8OU=L8DY

(2% (*08S+(v)IXN))I/*0002txVIOH=LVDOY
*0S/C1%2k%xUI+°0S/dU* Lk HIx®2=dA

Q¥ EF (€ ) X+VAH d+d18=dY

(dO—di )% (E IX+*°FfO9L9~9d-NAd=dQq

dO+098+dvd=dY

deE Yk sS* 1=do9

(1 %x884xVYDU)/Z/( L /71 H%C1-884/888%xT18~d1d) =dVvy
d8U* (£ ) X+ByJd+d2u+dIu=dB
(C*%1%(2)X%xBD28)/di%x2d-( 1% (2)X*8D¥) sd2y=d8Y
((2)XxdUd%DID¥V ) /dfd=dl

d2U+( (C)IX+dEV ) %S*0=d 1Y

(*ELV+dVI—d2y )x*2=dEd

(1)X2S5°0=cd2y
*OS/DU1I%*2k xS+ *0G/DBUx LY I*x*Z2=DYA
DUTH+DIUVYMHX (£ ) X=DUY

JddH%x (£ ) X=2¥0

140838+ HVE=DHY

(12853%VIH) /(L /7TH%xDHL-8YI/T 84 DPBY-IN 1Y )=D8VY
28 1H+DH8H%x (E ) X=Du8
(Cx%x12(2)X%BOY)I/DULx2U-(C*%x(2) X*1%8DY)/28~-=D48Y
(Cx% (2 )X*dUI%DDOH) /£ ¥-=DHL

(E)XXS*°0=D41Y

0SS /31 %2%%xY3+ *0S/73UU%x LxMIx*2=THA

VU (E )X+ IYTy=3YY

( J&O9~-38Y )% (£ )x =330

JYUO+3UH+* T+3HTH+ v =34y

INF UG * 1=349
(L1%x8UdxVIH)/(1/381%TH~-GH3/73438uH%TH-3H 1Y) =348V
AU (£ ) X+3H2H+ W I ¥=3589

(Cxx1%x (2 )X%8IU)/3ULx28-(1x (2 )X%x8D8 ) /7342y=34gA
(2x%xddd% (2 ) X%DDY)/3UAH*EY—( (2 ) X dUA%IDH)/3IVEN=38L
Y2 Y+IPEHRS* 0=V 1Y

(1°0*( £ ) X—-JH2U )%=

(E)X%S°0=342¥

1°0=38d3

U3%LE°0-94%° 01 -gd%x°Z20-Vd%°8C~-03%xv°*°B+°E9L0%°R9¢ =430
*0S/71x2*x8d4=T10A

(E)Xxvud+lu=vd

(*E9LY-Od-M3)x(E)X=0d

A4+ dUS+(SIXNF (T IXN+BUS+YNA=Y I

FHxG*1=94d

(Lx8UHAxVYON )/ 1H=VYHS

(E)X*3AH3+ 28+ TH=8d
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393

394
395
396

439
440
441
a42
a4 3
444
445
446
447
448
449
450

500

400

405

89

G(1)=(8e42DRE=28¢ *ARE~Q42*BRE-14.*¥GRE-0¢37%¥RRE)I/Z(VOL*¥50.)-0F%*VRE,
vao

G(2)=(8+4*¥DRC~23¢*ARC~42+,*BRC-0e37 *RRC)I/(VOL*50.)-0F*VYRC/VQOD
G(3)=(8¢03%DP-28.%¥AP-32.%BP-14,%GP-0.37%RP)/{VOL%X50,)-0F $VP/V0OD
G(8)=(8e4*¥DT 28 ¥AT—-482.,*¥BT-0.37%RT)/(VOLXS0.)-0OF%VT/VOD
G(1)=G(1)=%xl,.,E+04

G(2)=G(2)*%1.E+03

G(3)=G(3)*%0.1

G(4)=G(a)*10.

WRITE (6:500) (G(I)sl=1,M)

FORMAT (7. GRADIENT IS +/+SE13.5

RETURN

END

SUBRCUTINE FUNEV (HHXT.F0O,08J)

DIMENSION FO(11)sFAU(11948)sXX(S)esHH(S)«XT(4)

DATA NEU/ZO/

CCMMCN MoNosML MM, MAL 12, IQs,NX(S)sBIGN(6s10)+sQNL{S+5) s XA(S5+5)
CCMMON MAA+XS(4)

CCMMON C0OBJ(11,4)

XX(1)=HH(1)*1,E+04

XX{(2)=HH(2)*1.,E+03

XX(3)=HH(3)%*0.1

XX(4)=HH(4)%*10.

DES=50.

GC=1.5

BE=0.5

Cp=2.

BC=0.5

FP=4763,

RCA=Se97SSE+09%EXP(~12000./(XX(4)+580.))
RCB=2¢5962E+12*EXP(-15000./7(XX(&)+580.))

RCC=9¢6283E+15%t XP(~-20000s/(XX{(4)+580.))
FRP=FP+0.1%XX(1)
R2=BE*XX (1) %XX(3)
R3=CP¥(R2-t P-FRPxX

X(3)+FPRXX(3))
R1=BC*(R34+XX(2)*XX(3))+R

))

T)

2
T=R3/7(RCC*FRPxXX(2
FRB=R2/7(RCBxXX(2) *

FB=R1+R2 +FRB*XX( 3)
FRA=R1/Z(RCA*FRB*T)

FG=GC*R3
FR=FRA+FRB+XX{( 1)+ XX (2)+FRP+FG
FU(9)=(30.*%¥FP=-FR)*1 .,E-04

IF (MM-1) 405,400,405
FD=XX(3) *(FR-FG-FP)
FA=R1+FRA®*XX(3)
VOL=FR**2%xT/DES
FO(1)=(368%FP+8,3%FD=28¢%FA-42.%FB=14.%¥FG-0637*FR)/(VOL*DES)~10e
gBJ=FC(1)

NEU=NEU+ 1

o A¥HH( 1) XHH( 3)=4.763)

@ 0O MW
| P PWN =~
#IX

mOOIIXIXe
XN oo~

~sp i

e ITITIX

0V ew
X A g

1)-HH(1)



451
452
453

454
455
456
457
453
459
460
461

462
463
464
465
466
467
468

20
30

S0
40

55

60

90

FO(L11)=14159%XS(2)-HH(2)
RETURN
END

SUBRCUTI Nt MLQN{(P,PN,sD)

DIMENSION P(S),0(5)+PN(S)

COMMON MoeNs ML MM MA,J2, IQeNX(S) eBIGN(6510)3QON(5:5)+XA(S5,5)

COMMCN MAA, XS

CCMMCN COBJ(1

IF (1Q0) S5.55

D0 10 I=1,1Q

PN(I)=0.

D0 30 I1=1,1IQ

JB=NX(I1)

PC=0.

D0 20 J=1.M

PQ=2Q+3IGN(J

DO 30 J=1,.10
J)+
oM

(4)
1e4)
»5

s JB) *¥P(J)

PN(J)=PN(
DO 4C (=1
DIF=P(I)
D0 S50 Ji=1,1Q

J=NX(J1)
DIF=0DIF-BIGN{(I,J)*PN(J1)
D(1)=01F

RETURN

DU 60 I=1,Mm

DLI)=P(1)

PN(I)=0.

RETURN

END

PQ*ON(J.11)

SUBRCUT INL ADCOJ

Cx¥xxxxSUBRCUTINE FOR UPDLCATING ON MATRIX

DIMENSION PN(5).D(5)

CCMMON MoN ML MMiMA, [2, IQeNX(S)+sBIGN(6+10),CN{S5+5)+XA(S,:5)
CCMMCN MAA,XS(4)

CONMCN CUBJU(11,4)

CxxxxxTEST THE EXISTENCE OF ACTIVE CONSTRAINTS IN THE BASIS

151

[F (IC) 200,200,151
CALL MLON(BIGN(1s I2)sPNsD)
SUM=0.

Cxxx&xCALC. NOQ I1-NQ NQ NQ NG NQ

170

S0 17C J=1eM
SUM=SUM+D(J) x%2
B4=1.,/SUM

CL 17S [=1,1Q
BeI=-B4%PN(1)

CxxxsxF ORMING THE NEwW QN MATRIX

180

17%
184

185

186
187

200
189

SEXEC

DU 180 Il1=1.1Q
QN(T+sI1)=0ON(I.I1)-B2I%PN(11)
ON( L, IQ+1)=B21]

FORMAT (/, MATRIX QN
00 186 [=1,1Q

WRITE (6,187) (UON(I1+3)eJd=1,10)
FORMAT (SEl2.4

RETURN

B84=0.

DO 18G I=1.M
B4=8B4+BIGN(I[, I2)%%*2
H4a=1e./84

GO T7C 184

END



