
INFO RM ATIO N TO USERS

This material was produced from a microfilm copy of the original document. While 
the most advanced technological means to photograph and reproduce this document 
have been used, the quality is heavily dependent upon the quality of the original 
submitted.

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If  it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting thru an image and duplicating adjacent 
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it 
is an indication that the photographer suspected that the copy may have 
moved during exposure and thus cause a blurred image. You will find a 
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It  is customary to begin photoing at the upper 
left hand corner of a large sheet and to continue photoing from left to 
right in equal sections with a small overlap. If  necessary, sectioning is 
continued again — beginning below the first row and continuing on until 
complete.

4. The majority of users indicate that the textual content is of greatest value, 
however, a somewhat higher quality reproduction could be made from 
"photographs" if essential to the understanding of the dissertation. Silver 
prints of "photographs" may be ordered at additional charge by writing 
the Order Department, giving the catalog number, title, author and 
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as 
received.

Xerox University Microfiims
300 North Zeeb Road
Ann Arbor, Michigan 48106



74-6993

YERG, J r . ,  Martin Charles, 1942- 
AN OPTIMAL SAMPLING AND ANALYSIS METHODOLOGY.

The University o f Oklahoma, Ph.D ., 1973 
Physics, meteorology

University Microfilms, A XEROX Company, Ann Arbor, Michigan

T H IS  D IS S E R TA TIO N  HAS BEEN M IC R O F IL M E D  E X A C T L Y  AS R EC E IV E D .



THE UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

AN OPTIMAL SAMPLING AND ANALYSIS METHODOLOGY

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

degree of 

DOCTOR OF PHILOSOPHY

BY

MARTIN CHARLES YERG, JR 

Norman, Oklahoma 

1973



AN OPTIMAL SAMPLING AND ANALYSIS METHODOLOGY

APPROV

DISSERTATION COMMITTEE



ACKNOWLEDGEMENTS

For the past five years, Amos Eddy has been the motivating force 
behind my academic accomplishments. My present level of proficiency 
has been attained because he gave me the proper amounts of direction, 
freedom, encouragement and criticism at the right times. He is the 
one who taught me to regard all sciences (physical and social) as 
interdependent systems. I hope that my future work reflects some of 
his ability for problem solving and his genius of foresight.

Much of my work has relied on the encyclopedic knowledge of 
E. Pat Avara of the Atmospheric Sciences Laboratory at White Sands 
Missile Range, New Mexico. He has always been available for consul­
tation with me. His ideas on the interplay of various mathematical 
techniques as well as on the formulation of the basic problem form 
the backbone to the optimal sampling and analysis methodology contained 
in this paper.

I have had the continual cooperation and interest of Drs. Claude 
Duchon, Eugene Wilkins, John Brixey, Ray Lutz and Michael Devine 
during the period of my research. Discussions with each of them have 
provided many improvements in my basic ideas.

I also recognize the help I received in various forms from 
Marvin Kays, Dr. E. R. Reinelt, Dr. Stig Rossby, King Sum Mok,
Margaret Eddy and last, but not least, my wife. Ivy.

The funding of this research over the past three years has come 
from the National Science Foundation (NSF). The use of the computer 
facility at the National Center for Atmospheric Research (sponsored 
by NSF) has been invaluable to my work.



TABLE OF CONTENTS

Chapter Page

I. INRODUCTION..................  1

II. THE OBJECTIVE ANALYSIS.......  4

III. THE SIGNAL AND NOISE.........  10

IV. THE OPTIMIZATION PROCEDURE  20

V. THE RESULTS..................  32

VI. SUMMARY AND CONCLUSIONS....... 75

LIST OF REFERENCES........................ 80

IV



AN OPTIMAL SAMPLING 

AND

ANALYSIS METHODOLOGY 

CHAPTER I 

INTRODUCTION

Efficient sampling schemes for an experimental project or for 

routine observations may be found using different approaches to the 

placement of sensors in a space-time (x,y,z,t) volume. One approach 

might try to configure the sampling network based upon climatological 

considerations. Another might attempt to use a subset or an extension 

of available existing networks. Still another might rely upon the 

area of classical experimental design to dictate sampling concepts. 

Previous attempts to specify 'optimal' sampling networks for meteoro­

logical parameters have been reported by Gandin, et al., 1967; Baer 

and Withee, 1971; Northrop, et al., 1972; Kasahara, 1972; and 

Alaka and Elvander, 1972.

The methodology suggested here for selecting a sampling scheme 

uses the techniques of nonlinear optimization with stepwise regression, 

a generalized approach to objective analysis based upon multiple 

regression, and an exact definition of the goals of the sampling. In 

this paper, these ideas have been applied to a specific problem which

1



is how to sample a scalar phenomenon in a space-time volume using 

sensors on aircraft in order to produce an optimal signal analysis 

for a specified set of points when a number of constraints have been 

placed on the available resources and their use. This optimal sampling 

and analysis methodology, nevertheless, is generally applicable to 

many forms of experimentation and to most types of routine observational 

requirements. Besides the results presented here, the application of 

this methodology has been conceived for the problems of routinely 

observing the mesoscale wind field over irregular terrain and of 

providing the data input to numerical weather prediction models.

So far, simulation has provided the primary testing method for 

the sampling ideas. Simulation allows for the interpretation of the 

effects of various levels of complexity assumed for the problem through 

the existence of a known input signal. However, even though simulated 

data may be made to appear similar to real data, the test of a real 

field experiment with all the associated sensor failures, recording 

malfunctions, etc., still remains. Even so, simulation has the ability 

to present ideas on the importance of scale size, on the trade-off 

between several, relatively inaccurate sensors and a few, highly 

accurate ones, and on the feasibility of obtaining the desired results 

for a field exercise with the available resources. And, simulation 

can do all this without the expense and time required for field 

experimentation.

The deployment of a sampling system in a space-time volume can 

determine, by itself, the success or failure of any experimental effort.



However, many other considerations must enter into the total experi­

mental process, such as instrumental calibration, noise analysis, data 

quality control, etc. The optimal methodology presented here deals 

only with the sampling and analysis aspects of the data handling 

problem with the other areas of the experimental process left for 

subsequent research.



CHAPTER II 

THE OBJECTIVE ANALYSIS

The objective analysis technique used with the optimal sampling 

methodology is based upon multiple regression. Modifications have been 

made to the basic analysis procedure which make use of the structural 

characteristics of meteorological parameters and some of the types of 

noise usually associated with observing them. This objective analysis 

scheme has been presented in detail by Eddy, 1973 and applied to 

meteorological data by Lacy, 1973. Only a brief outline of the analysis 

procedure will be given here along with its connection with the 

sampling methodology.

Consider the model for the atmospheric signal which is to be sam­

pled and analyzed as

Y = X S + e  (1)

(NxJ) (NxM)(MxJ) (NxJ) 

where E(e) = 0 and COV(e^j, )  = Vo^ where V is a positive, 

definite matrix which contains the variance-covariance relationships 

of the noise, e , and COV(E^j,E^^) = 0. Essentially, this model says 

that the elements of the Y matrix (consisting of N realizations of 

parameter values at J predictand locations) has some linear relation­

ship (expressed by the 6 matrix) to the X matrix elements (consisting



of iî realizations of parameter values at M predictor locations).

Upon minimizing the error sum of squares, an estimate of the 

coefficients may be obtained using the normal equations,

6 = (X^V“^X)~1(X^V-1y).
In general, if the elements of the X^V“^X matrix were obtained from 

sampled data of sufficient resolution, the matrix would be nonsingular.

Also, this matrix would be nonsingular, in general, for simulated data

in that the model (equation 1) is usually an attempt to simplify 

the analytic representation of the signal. Thus, for each set of 

parameter values at the M predictor locations taken N times, (N = M), 

a set of M weights may be found whereby an estimate of the true value 

of the predictand matches the assumed signal in a least squares 

sense using

Y . - X

where Yj and gj represent the estimates of the true signal and the set

of M weights for the jth predictand.

For example, if one assumed that the temperature at Oklahoma City 

(OKC) were linearly related to the temperatures at Dallas-Fort Worth 

(FTW), Tulsa (TUL) and Dodge City (DDC), it might be expressed using 

equation 1 where J=l, M=3, V=I and N could be 10. The predictand 

location (OKC) and the location of the predictors (FTW, TUL, DDC) 

would be given a relative definition in x,y,z,t. Then, after collecting 

10 realizations of the temperatures at OKC, TUL, FTW, DDC for the 

particular time-space configuration defined, a 6 vector could be



obtained. At a future time, this S vector could be employed to 

provide an estimate of the temperature at OKC using the appropriate 

observations of temperature from FTW, TUL, DDC. However, the initial 

estimate of the true weights required N observations ^  the predictand 

point; a requirement which may not be easily attained.

The major modification to the basic regression scheme is to 

assume that the underlying relationships between the predictors and 

the predictands are known, or can be estimated. Thereby, the model 

for these variance-covariance relationships is given. Likewise, the 

variance-covariance relationships of the noise could be provided 

using a model for the noise such as a linear first-order Markov 

process. With these two matrices available, i.e., X*"Y ( or X^X ) 

and V, any vector, gj, can be completely determined using the 

following expression for the kth, &th element of a quadratic form,

j ,  “ik-K»!]  <2)

where â ĵ is the ith, jth element of A and similarly for b^^ and B~^. 

This modification does not require the vector of observations at the 

predictand locations as was required previously.

Another modification is necessary, however, because the basic 

multiple regression model assumes the observations at the M sample 

points contain only signal and no error. Yet, real experimental 

observations not only contain signal, but they also contain inseparable 

amounts of noise. In fact.

X + a s



where is the signal portion of the observation and a is the noise 

portion which may reasonably be defined similarly to e, i.e.,

E(a) = 0  and COV(a..,a, .) = Va^ and COV(a..,o.„) = 0.
i j  K j  Ot I J  IX »

Using this knowledge, a new set of weights must be derived in 

order that the estimate of the signal at a predictand location match 

the assumed signal in a least squares sense. The new weights, 6̂ , 

become

6j = (X^Xg+a^d)-lx|Xg 6 .  (3)

The use of these weights with the appropriate set of observations will 

give the desired signal analysis at a predictand location as follows

-  X B. .

Essentially, the optimal sampling algorithm will attempt to pick 

the particular set of observation locations in space and time which 

will give a desired definition to the signal for a specified set of 

predictand locations. The multiple correlation coefficient is a 

measure of the amount of variance in the predictand which is explained 

by a particular set of predictors. Thus, this parameter will be used 

as the link between the analysis and the optimal sensor deployment.

Let us define the multiple correlation coefficient for the single 

predictand vector, Yj, as

COV( Y.,Y. ) R _   J J
 ̂ {VAR(Y) VAR(Y)}'^



or,

' r  ‘jY^V"^Y.
R

It can be shown that

y ’̂v'^y .
"  t T ^   ................J Y V” Ŷ

i j

where 0 *■ 1. The amount of variance unexplained may be expressed

as 1 - R? for any jth predictand location. Therefore, the particular 

set of observation locations to select for obtaining an optimal signal 

analysis would be that set of locations which minimized the amount 

of unexplained variance at each of the J predictand locations.

The problem becomes how to select the predictor locations in order to 

find

J
MIN { I (1 - R?) }

j=l ^

for every possible observational configuration.

Because the space-time volume has been defined for x, y , z, t , 

the set of M predictor locations (whose N observational values have 

been represented by the matrix X) must be defined for each of the 

four coordinates. Thus, the actual solution vector (where to place 

the sensors in order to collect observations) to the minimization 

problem will have dimensions 4-(Mxl) . Likewise, each of the J 

predictand locations (whose N observational values have been represented 

by the vector Y.) must be specified as to their location in the



space-time volume.

It should be noted that when deriving the variance-covariance 

relationships between the signal (or the noise) at points in the 

space-time volume, the assumption is that each matrix operation 

has been done with an infinite amount of data, i.e., the matrix 

operations were done in an expected value sense. Thus, the X X 

term becomes X^X^ + a*"a because the signal and noise are assumed 

independent and for an infinite amount of data, XgU would be zero.



CHAPTER III 

THE SIGNAL AND NOISE

Both the objective analysis technique and the optimization scheme 

require only that some structural definition be given to the phenomenon 

to be observed and the noise associated with the observing it. The 

definitions may be analytical or empirical. Once the sampling and 

analysis locations have been determined, the experimental process or 

routine observational method will provide the actual observations needed 

for the objective analysis. However, when the entire process is being 

done using simulation, both the variance-covariance relationships and 

the actual signal and noise definitions must be available.

For the work of this paper, an analytic expression has been used 

to describe the atmospheric signal continuously over a time-space 

volume. The expression is meant to be illustrative. In order to pro­

vide the variance-covariance relationships required by the optimal 

sampling methodology, certain parameters of the expression have been 

given analytic and empirical distributions based upon research work 

conducted by Reinelt, 1973.

The signal has been expressed as

-â  (w^x^) Z-Og (u^y^) 
s^ = A e cos(w^x^)cos(w2 y^)cos(WgZ^+$)

(5)

10
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where is the value of the function at the point defined by x^, y., 

ẑ , t^ and

= X . - (Xg + c^t[),

= Yi - (Yo + CyCi),Y

and t = ti - t̂ .

The amplitude of the system is A; a^, U2 , ct̂ are the dampening factors

in the x, y, t directions respectively; , ^2 , represent the

frequency in the x,y,z directions respectively; and is the pahse

shift in the vertical. The system origin is at x ,y ,t and z =0.o o o o
Its propagation speed is c^ and c^ in the x and y directions respec­

tively. The parameters A, and 4> have been given independent

Gaussian distributions as follows

A N(a,o2)

0)1

^2 N(m2.02)

and

parameters x^. and c.

butions during the optimization process as will be shown.

Figure 1 (a,b,c) provides a visual illustration of this 

signal function for a particular set of input parameters. At 

each time step, the value of the function has been contoured on 

an x,y grid for three levels in z.

The parameters of the expression for the atmospheric signal 

which have analytic distributions have been intergrated out in the
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Figure la: A three-dimensional look at the signal
function, equation (5), for t^ = 10.
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Figure le: A three-dimensional look at the signal
function, equation (5), for t^ = 10.
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usual manner to obtain both the first moment and the second moment about 

the mean. The latter expression is used for the variance-covariance 

relationships required by the optimization process.

The results are that the expected value of the signal is

-an(wix')2
E(s^) - E(A) e E{ e cos(w^x^)}

-oi2(ü)2yp^
E{ e cos(ü)2 yp} E{ cosfw^z^ + $)}

which becomes

-a t|^ -I5 y 2 ^ 1
E(s ) = a e (PjQ.) cos( — —  ) cos( — —  )X J- 1 r

o-|Xi - Tiĵ " ^2 + P2 +
2Q.

+

cos(yg + "3 =1 )  (6 )

where

I*i = 1 + 2o2u^x[

Qi = 1 + Zogagyî

^ 1 = ,

and pg
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And, the expression for the variance-covariances between point 

(%!, y±j z±> t^) and point (xj, y^, Zj, tj) is

E (s ^ S j)  =
-Oiw?(x'2+x'2)

EW/S E( « I ^ COs(w^X^)cOs(W]Xj)}

E{ e cos(a)2 ypcos(tÜ2 y !) }

-« (tjZ+t'Z)
E{ cos(WgZ2+$)cos(w2Zj+$)} c -*

(o|+a2)/4 (P..Q ) e
3  ij 1 3

3 1  J 1 '2 '

^ 3
e cos -------

L L

-̂ 3+ e cos
UjCxJ-txl)

' i j  J

oZ(%:2+x|2) -  Hi

" 4  rw2(yi-yj)l , - " 4
e cos^ (j—  j  -+ e cos

U2(yî+yjï

13 /

a|(y'2+y’y-)
“

2Q
i j

-ZOg
Î2C0S (y2+^32^^) COS (v^+üj^z^) (1+c )

-2o?
+ ̂ sin(y2+W2Zi)sin(y2^U2%.)(]-c ')

(7)
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where P ., = P. + P. - 1 
1] 1 ]

n

9

9

9

■ .I'Si 

■ —

and all other parameters are defined as before.

The distributions given A, and $ are defined by the mean

value and the variance of the parameter. Because of this, the 

expected value of the signal function along with the variance- 

covariance relationships just presented may be easily determined 

using climatological information about the parameters of the 

phenomenon being sampled. The definition given to the expected 

value and covariances of the signal function is still valid for 

any a posteriori estimate of the parameters' mean and variance 

if the a priori and a posteriori distribution functions are similar. 

Where this is not the case, either a reintegration is necessary 

using the new analytic distribution function or the new distribution 

of the particular parameter must be handled using empirical means.

For illustration, let us assume, as before, the a priori 

distribution of the parameter A is Gaussian with mean, a, and 

variance, o^. If the a posteriori distribution of A can be assumed 

to remain Gaussian upon updating the estimates of the mean and 

variance of A (using mathematical techniques such as empirical 

orthogonal functions or linear discriminate analysis), the new mean, 

a, and variance, o^, would simply replace the former values in
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equations (6) and (7). However, if the a posteriori distribution of 

A were still independent of the other parameters, but not Gaussian 

having instead a non-analytic shape, new expressions for E(s^) and 

COV(s^,Sj) would be necessary which do not include E(A) and E(A^) 

as before. By dividing the new, non-analytic distribution for A into 

G sections, each with probability w^ and average value, a^, the 

a posteriori expression for E(s^) could be estimated by

G
E(s ) = Z w a E(s.)

1 g=l 8 8 1

where E(s^) is the new expression for E(s^) which does not include 

E(A). The a posteriori expression of COV(s^,Sj) is similarly attained. 

This method of including non-analytic or empirical distributions 

is applicable to all of the parameters defining the signal function.

The noise portion of the observational data set used for the 

objective analysis is manifest in the minimization problem (equation

t̂ a = Va^ a
true signal is a linear, first-order Markov process;

(4) ) as a a = Va^. The selected model for the noise present on the a

“i = Pl“i-1 + ^i

where is the lag-one autocorrelation coefficient defined over

the distance (space and/or time) between a. and a. , and y is
^ 1-1

Gaussianly distributed with E(y) = 0 and E(y^) = • This model

allows for the noise values to be independent or correlated depending 

upon the value of p^. And,

E (a i )  = 0
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11-3 1 
COV(a.,a.) = p,1 J -L* a

where -   and |i-j| represents the space-time distance
" l-p21

between noise values at locations i and j.

If the signal-to-noise ratio (S/N) is defined as the average 

variance of the signal over all predictand locations in the space-time 

volume divided by the variance of the noise, i.e.,

1 -J t- Z E(Y^Y)
S/N = — ^ .......  (8)

VAR(a)

then, for any optimal sampling problem, a signal-to-noise ratio 

may be specified in order to note the influence of noise on the 

sampling and analysis results.



CHAPTER IV 

THE OPTIMIZATION PROCEDURE

Because of the form of the minimization problem (equation (4) ), 

the optimization procedure employed is a nonlinear programming (NLP) 

algorithm. The basic NLP problem may be stated as

minimize f(Z) , Z e E^

subject to h^(Z) = 0 , i-1,2 m

g^(Z)  ̂0 , i=m+l, p

where Z is a vector which is defined in n-dimensional Euclidean space, 

f(Z) represents the objective function to be optimized, h^(Z) represents 

the m equality constraints while g^(Z) handles the p-m inequality 

constraints and all the functions may be nonlinear. The optimal solution 

vector, Z*, is defined as the vector which satisfies the conditions of 

the problem.
J 2

For our case, f(Z) = E (1-Rf) where the decision variables
j=l ^

essentially are

= (xi'Yl'Zl'ti, ... ,Xĵ ,yĵ ,Zĵ ,t̂ )

which is a vector of M sample point coordinates in 4-space where M 

observations will be taken in order to provide the values of X.
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Because the sensors are attached to aircraft, the equality and 

inequality constraint set will restrict the M locations in the 

space-time volume at which the sensors may be placed in a manner 

consistent with aircraft flight capabilities. The set of M 

predictor locations in 4-space which give a minimum value to f(Z) 

and which will also satisfy the constraint set will be an optimal 

solution vector, Z*.

The NLP algorithm which has been chosen to find the optimal 

solution to the sampling problem is the Flexible Tolerance method of 

Faviani and Himmelblau (1969). The Flexible Tolerance method is 

basically a direct search procedure. This class of optimization 

algorithms does not use analytic approaches such as gradients or 

second derivatives to find an optimal solution, but instead relies 

on determining each new decision variable vector from successive 

evaluations of the objective function only. These successive 

evaluations determine the direction and the speed of movement of 

the search process in W-space where W is the number of independent 

decision variables.

The Flexible Tolerance algorithm uses both the flexible polyhedron 

search of Nelder and Mead (1964) and a procedure for checking the 

degree by which each potential solution vector violates the constraint 

set. The Nelder and Mead search method operates on the idea of 

rejecting the highest value of the objective function evaluated at 

W+1 vertices of a polyhedron and reflecting that vertex through the 

centroid of the remaining vertices. The polyhedron may expand or 

contract as it searches for the optimum. In the limit, all W+1
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vertices will contract to a single solution point. The degree by 

which each potential solution vector disobeys the constraint set 

also contracts during the search process until the constraint set 

holds exactly at the optimal point. In actual practice, the 

Flexible Tolerance method collapses to within an e tolerance of the 

optimum and the constraint set is met within a corresponding 

tolerance.

The objective function which will yield a statistically best 

objective analysis over a set of J predictands has been expressed 

as :
J 2f(Z) = Z (1-Rp
3=1 ^

where ^

3 y Jy ^

and the Z vector contains the locations of the M sample points, and 

the effect of the noise on the model of the atmospheric signal 

(equation (1) ) cancels.

Because of the use of R^, the objective function,as stated, 

only represents the percentage variance. The following modification 

is made in order to minimize the actual variance

J
f(Z) = Z 5.{Yh. - Y^CX^X +a^a)"lx*^Y.} .

^=1 3 3 3  3 * ® ^  ®3

Since the possibility exists that the reduction of actual variance 

at some of the J points is more important than at other points, 

a set of weights, 6^, allows the consumer to express analytically 

the usefulness of reduced variance at individual points in the
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objective analysis space. This corresponds to a multiple- 

dimensioned, discrete utility function. Thus, defining a very 

accurate point value of a meteorological parameter might be 

more useful near a population center than elsewhere even though 

the variance in the analyzed value would ordinarily be quite 

small there.

Noting that a modelled covariance function will be employed 

to obtain the components of each of the J elements in the 

objective function, we could include the effect of empirical 

distributions for P independent parameters to these modelled 

covariances by using weights, over the divisions in 

the pth empirical function. The final form of the objective 

function thus becomes

P L J
f(Z) = Z Z: Z 6 .  { Y h .  -  Y S x _ ( X t x _ + a t a ) - l X t Y . }  . . . ( 9 )

p=l i=l & j=l J  ̂  ̂ J s s s s J

This objective function can be minimized by finding the locations 

in time and space at which to place sensors in order to sample 

the signal function.

The constraint set has been formulated from considerations 

of the requirements of the optimization process and the 

restrictions on aircraft sampling movements. The former con­

siderations essentially desire decision variables which have 

similar scale sizes and effect on the optimization process.

The latter includes the requirement that aircraft take off and



land at only specific locations without running out of fuel, 

and, for our case, that the aircraft fly in straight lines while 

sampling. Even though the straight-line flight requirement will 

necessitate a change in the decision variable vector used with 

the search technique, this restriction on the aircraft movements 

provides a degree of simplicity to field operations, and eliminates 
some of the corrections which must be made to the data sets collected 

during the period in which the aircraft is accelerating and turning.

Because of the nature of the problem being considered, no explicit 

resource allocation constraints have been included. In general, 

research aircraft are already equipped with sensing devices and the 

problem is how to utilize these sensors in an optimal fashion to 

produce the desired results. However, the problem of whether to use 

a few expensive, highly accurate instruments or many inexpensive 

yet relatively inaccurate ones could also be a part of the overall 

optimizing process. The solution could be obtained by comparing the 

cost of using certain numbers of each sensors type versus the utility 

of the degree of accuracy in the analyzed signal. (Note that even 

the most precise instrument system might not be capable of yielding 

a minimum acceptable accuracy in the analyzed signal.)

The larger problem of how to allot the available resources for a 

multipurpose experiment conducted over an extended period requires 

more investigation than is presented in this paper.
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The constraint set is formulated as follows:

Let N represent the maximum number of sensor locations considered 

for the experiment and represent the number of possible sensors

placed on the qth leg of the aircraft path, q = 1,2, ..., Q. ( Q is 

the maximum number of possible straight line paths considered 

reasonable for this experiment.) Then,

Q
Z N <_ N .

q = l "

(Note that any could be zero.) Also, let the flight path be restricted 

so that the aircraft travels a nearly closed path where each sensor 

could be placed a y distance apart for each leg.

Q
Z Y N sin 0 <_ 3

q=l 4 q -

Q
Z y N cos 0 ± 3

q=l q

where 0 ^ is the angle between each leg of the flight path and the 

positive X direction. The level of the aircraft for each leg is 

considered constant and represented by z^. Thus, the new decision 

variables to be used by the search process are N^, 0 ,̂ and z^.

Having selected all the possible leg orientations and lengths

as well as heights, all the possible places to put sensors can be 

derived using
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AXq = Y cos 8  ,

Ay = Y sin 0 ,
q q

and At = 5
q t

where Ax^ and Ay are the x, y distances between possible sensor 

locations on the qth leg and the time distance between the possible 

sample points is a constant 5^ for the entire flight. Then,

^i = 4- i AXq ,

^i = % 4- i Ayq ,

^i = ^q 9

"i = 4- i «t

for i = 1,2,..., Nq and q = 1,2, . .. , Q. The x^, ^y^ and *̂ t̂  

represent the origin of the qth leg,where at least one origin must 

be specified. The circumflexes indicate that the coordinates are 

those selected by the optimization process as possible sample points.

All of the sensor locations calculated above satisfy the straight- 

line flying requirements, but they do not necessarily satisfy the 

constraints restricting the total number of sensors allowed. If there 

were resource allocation constraints, the cost versus utility of each 

of the sensor locations must also be evaluated. Both of these consider­

ations may be handled using a suboptimization scheme based upon 

stepwise regression after Efroymson (1962),

This process will be illustrated for a single predictand with the 

necessary extension explained later. Form the matrix of covariance
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between all the possible predictors and the predictand;

: xtXg+oCa Xty ' 2 ••• ri,M ^l.M+i

" y t v  y t v  , ^  ^ 2 , 1  ' 2 . 2  ••• ' 2 , M  ^ Z . M + l
S y y j  !

^ % + l , l  ••• ^M+1,M+1 _i

Having been given the coordinates of each of the possible sample 

points, all of the elements in the Fj matrix are available. For 

the initial matrix, = COVCs^.s^) where the superscripts

indicate the stage of the stepwise regression process.

Now, test the parameters, R^,

(0) (0)r
(0 )~ ^i,M+l M+l,i= -

(0 )r
i,i

for i = 1,2,...,M , and select the largest, say the kth, element. The 

ratio will indicate the sensor which explains the most variance present 

in the predictand of all possible sensors because it is most correlated 

with that predictand. After pivoting on the kth,kth element, the 

process is repeated. The stopping criteria employed for this stepwise 

regression process include (1 ) stop when the number of allowable 

sampling points has been met, (2 ) stop when the percentage variance 

explained by any additional sensor is below .1% and (3) stop when 

the variance explained in the predictand point exceeds 99%.
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The method chosen to handle all the predictands considered for

the objective analysis is to form this matrix:

(0 )p, ^ s s s
ytx yty

where the dimensions of Y have been expanded to include all the 

predictand points. The test for reduction in variance would be 

over all the predictands as follows

J 2 (g)j.
(R)R. = 1 (s)R.i = —  i-îMÜ îîiUi----

The largest would then be used to decide the elements to enter

the regression and the pivot would be carried out on the entire

matrix. After the subset of all possible sampling locations 

has been selected by the stepwise regression technique, they are 

used in the previously defined Z vector to evaluate the objective 

function.

Other constraints enter into the optimization process. Among 

these is one which requires the aircraft to land before the fuel 

supply is depleted:

£ V t  i “t 
5=1

where is an upper limit on the possible aircraft flight time.

And, another set of constraints are used to help the optimization

algorithm converge faster by keeping all positive or zero:



29

Nq >; 0 for q = 1,2, ..., Q.

For the use by the optimization procedure, all decision variables

(Nq, 0 q, Zq) are scaled to the same order of magnitude.

Many other constraints are possible for th. optimization problem, 

but are not a part of the constraint set used for this report. For

instance, the cost of sampling at each point or for the entire

exercise may be restricted by a specific amount. This constraint might 

better show the trade-off between few, expensive, but accurate sensors 

versus many, inexpensive yet relatively inaccurate ones.

As implemented using the direct search to optimization, this 

methodology may have many applications and can handle many different 

kinds of constraints. The suboptimization could be eliminated in 

order that all possible sensor locations be considered. At present, 

the decision variables (Nq, 0 q, Zq) are not required to be integer. 

However, any number of these variables could be made integer during 

the optimization process simply by having the direct search process 

only consider integer values where desired. Realizing the variations 

possible in the optimal sampling problem, the NLP optimization approach 

of direct search is highly recommended because of its "hands on" 

capabilities.

Figure 2 shows a schematic diagram of the optimization algorithm 

as used for this research. The basic search method follows the 

Flexible Tolerance procedure with the addition of a suboptimization 

problem.
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BASIC SEARCH ALGORITHM SUBOPTIMIZATION PROCESS

Start

Input starting vector 

and convergence criterion

Form vector of all possible 
sample points in x,y,z,t 

from search decision variables

Form search polyhedron
_____________ it______________
Define sample point vector 
in x,y,z,t at each vertex

using Suboptimization process
n1/

Evaluate objective function 
using sample point vector

 ^ __________________
Select new vertex to search

polyhedron using Flexible Tolerance
method (includes feasibility
and optimality considerations)____

. 4" ■

I Suboptimize^ new vertex

Calculate all variance-covariance 
relationships between possible 
sample points and analysis grid

Using stepwise regression, select 
the sample point most correlated 
with analysis grid points for 

new sample point vector_______

Evaluate objective function 
using sample point vector

Is
umber of 

sample points 
greater than 

maximum 
allowed

7

amount

<•1% ?

Figure 2: A schematic diagram showing the
optimization procedure used in the 
optimal sampling and analysis methodology.
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For the NLP purist, one feature of the methodology might be 

bothersome. The particular objective function used is highly complex 

and many local optima exist, i.e., many Z vectors may represent the 

smallest value of f(Z) within their immediate vicinity. (The minimum 

of all local minima is the global minimum.) Thus, for any starting 

vector, the solution vector and value of the objective function found 

by the optimization process will not necessarily be the same as 

found with another starting vector. Usually, in such a case, the 

optimization process is repeated a number of times with different input 

vectors and the most optimal of all the solutions declared the global 

optimum. Different input vectors may be supplied for this problem 

by selecting various geometric patterns for the proposed aircraft 

flight plan. As an extreme, a random number generator could even 

be used to provide the individual elements of the starting vector. 

However, as will be shown, the expense of resolving the NLP problem 

several times for different starting vectors may not be justified 

for the problem being considered, depending on the signal-to-noise 

ratio assumed.

Therefore, each solution vector for the problem of how to fly 

aircraft in a space-time volume in order to get an optimal signal 

analysis should be considered as only a locally optimum flight path 

and not as an absolutely unique or globally optimum solution.



CHAPTER V

THE RESULTS

For visual display and because of numerical weather prediction 

requirements, the predictand locations used for testing the optimal 

sampling and analysis methodology are regularly spaced. The regularly 

spaced grid selected consists of 49 points and might be thought of 

as corresponding to a portions of the NMC Octogonal Grid (figure 3). 

For instance, if the signal function was a representation of the 

Arctic High, the grid might be the subset of the NMC grid bordered 

by the points (17,11), (23,11), (23,17) and (17,17). Or, if the 

signal function attempted to represent divergence-convergence patterns 

of these Highs, the grid might fall within the NMC grid points of 

(18,12), (21,12), (21,15) and 18,15). The reference to the NMC grid 

and the particular areas mentioned is a result of the Arctic High 

pressure system investigation conducted by Reinelt, 1973 and the fact 

that historical data is readily available at NCAR for these grid 

locations.

Because of the grid location and orientation as suggested above, 

a basic set of parameter values has been chosen with which many of 

the tests on the optimal sampling and analysis methodology have been

32
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NMC OCTACON&l GKH)

>  X
Figure 3 . NMC 47x51 grid.

There ere 1977 data pointa in the octagon. 
The pole point is I,J - 24,26.
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run. They are

and

for A: a = 5 and .5

for : ^ 1 = 1 and
^ 1  = .5

for Wg: h2 = . 8 and 0 2  = .3

for 0 : Ms = 0 ° and °3 = 1 0 °

X =4. 
0

= .5 •̂x = .75

Yo = 4. » “ 2 = .5 9 -1.5

:o = “3 = . 1 “3 “ .78

The shape and movement of this system for all = 0 is shown in 

figures 4 through 6 as calculated by the expected value of the atmos­

pheric signal (equation (6 ) ). The true value of the analysis for 

a set of 49 grid points at t = 2 is shown in figure 7. This is the 

signal which will serve for all root-mean-square values calculated. 

Modifications to this basic signal will be specified as necessary.

The first set of tests run on the sampling algorithm was how to 

place sensors within the grid array in order that the sensors would 

be optimally placed for all time. For these tests, time was integrated 

out of each of the variance-covariance relationships using Gaussian 

Quadrature. Because of the nature of this problem, no objective 

analysis accompanies the optimal solution vector. The amount of 

unexplained variance at the grid locations for all time is, in general, 

quite large. Similar results were found when solving this problem 

with different input signals and different starting vectors. Figures 

8  and 9 show typical results for an input vector of four sampling legs
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Figure 4 : The expected value of the signal function,
equation (6 ), for all = 0 , all t^ = 1 . and
Xo'yo'to = 4.,4.,2 .
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Figure 5 The expected value of the signal function, 
equation (6 ), for all = 0 , all t. = 2 . and
Xo'?o't( = 4.,4.,2.
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Figure 6 The expected value of the signal function, 
equation (6 ), for all z. = 0, all t^ = 3. and 

= 4. ,4.,2.Xo'fu'to
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Figure 7 The true signal for ail z, = 0 and ail t. 
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= 2
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Figure 8 The optimal sensor placement for sampling 
when the sensors are fixed for all time. The 
sampling origin is = 0 .,0 .
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X

Figure 9 : The optimal sensor placement for sampling 
when the sensors are fixed for all time. The 
sampling origin is x^/y^ = 1.5,3.5.
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where the maximum number of sensors allowed was 18 and the origin of 

the sampling patterns are as shown. In these cases as well as others, 

the optimal sensor placement consists essentially of a linear 

arrangement of sensors which is perpendicular to the path of movement 

of the signal function. This is interesting in that a similar 

sensor placement technique (Kays, 1973) which places sensors sequen­

tially instead of simultaneously, selected a sensor placement pattern 

which is along the path of the signal function.

The next set of tests run on the optimal sampling methodology 

involved horizontal sampling and analysis where all = 0  and the 

maximum number of sensors allowed was 40. For this work, the input 

vector selected was as shown in figure 10. This input vector is based 

upon a flight pattern suggested for the Global Atmospheric Research 

Program's Atlantic Tropical Experiment (GATE) by Zipser, 1973. The 

input pattern was oriented in order that the sensing system closely 

followed the signal as it moved across the grid. The sample points 

in figure 1 0  show all the possible sampling locations allowed for 

this track. Both the first and the last sample points of each leg 

are not admissable.

Figures 11 and 12 show the analyses possible with this input 

sampling pattern for cases A and B where p^=0 and S/N=10 and S/N=l 

respectively. Figures 13 and 14 are similarly defined except that, 

for cases C and D, p^=.5 . A signal-to-noise ratio of 10 is used 

to represent a strong signal and weak noise. The signal-to-noise 

ratio of 1 is based on the results of an investigation by Eddy and
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Figure 10 The sampling pattern used as input to the 
optimization algorithm in order to sample the 
signal shown in figures 4 through 6 in order to 
analyze the true signal (figure 7). All possible 
sample points are shown.
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Figure 11: Case A - An objective analysis available
using the sample points of the input vector for 
S / N = 10 and o = 0 .
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Figure 12: Case B - An objective analysis available
using the sample points of the input vector for
S/N = 1. and = 0.
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Figure 14: Case D - An objective analysis available
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Rose (1973) into the analysis of a known divergence-convergence 

pattern using a data set of sampled winds.

Figures 15 through 18 show the optimal flight tracks selected by 

the optimal sampling algorithm for cases A through D. Figures 19 

through 2 2  show the resulting objective analyses possible with 

these revised flight patterns. In every case, the objective analysis 

after the flight track adjustment by the optimization process is 

better than is attainable with the input sampling pattern. Both 

of the objective analyses for each case were conducted using the 

true covariance function of the input signal along with the signal 

values from equation (5) and a set of randomized noise values 

corresponding to the specified signal-to-noise ratio. Therefore, 

any deterioration in the objective analyses resulting from inaccuracies 

in the covariance definition should affect both analyses similarly.

Table 1 shows the amount of unexplained variance along with the 

average root-mean-square value over the grid for the objective 

analysis done before and after the optimization process. The number 

of sensors allowed was 40 although no sampling configuration used more 

than 30. The criterion for the use of an additional sensor was that 

it explain more than .1% of the unexplained variance over the grid.

Figure 23 shows the effect of increasing the signal-to-noise 

ratio for the sampling on the amount of unexplained variance over the 

grid for both the input and the optimum solution vector. The values 

plotted are a result of using the single input vector shown in 

figure 1 0 .
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Figure 15: Case A -The optimal flight path and sampling
locations computed by the optimization algorithm for
S/N = 10 and = 0.
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Figure 16 Case B - The optimal flight path and sampling
locations computed l*y the optimization algorithm for
S/N = 1. and = 0.
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Figure 17 : Case C - The optimal flight path and sampling
locations computed by the optimization procedure for
S/N - 10. and = .5
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Figure 18 : Case D - The optimal flight path and sampling
locations computed by the optimization algorithm for
S/N = 1. and = . 5



52

+

y

7

•-Il

* MI-2T

4 *43 2#♦•3 »

»-16 25

♦ •17♦  21*-lf

1
41 7

X

Figure 19 : Case A - An objective analysis using the
sample points available along the optimal flight
track for S/N = 10 and = 0.
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Figure 20 : Case B - An objective analysis using the
sample points available along the optimal flight
path for S/N - 1. and = 0.



Figure 21: Case C - An objective analysis using the
sample points available along the optimal flight
track for S/N = 10 and = .5
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Figure 22: Case D - An objective analysis using the
sampling points available along the optimal flight
path for S/N - 1. and = .5
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Figure 23 : A comparison of the unexplained variance
over the grid for the input vector and the optimal 
solution for various signal-to-noise ratios.
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CASE A

CASE B

CASE C

CASE D

J 5
Z (1 -R?)

.1 = 1  J
RMS

Number of 
Sensors 
Used

Input .420 .485 28

Optimum .154 .037 . 28

Input .534 .756 28

Optimum .322 .341 29

Input .419 .491 28

Optimum .143 .038 29

Input .548 .824 27

Optimum .307 .245 24

TABLE 1

Number of 
sensors 
allowed

6

Input Optimum

.430 (6 ) .227 (6 )

1 0 .398 (10) .129 (10)

2 0 .381 (20) .099 (20)

40 .379 (28) .098 (28)

S/N = 50

= 0.

TABLE 2
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Table 2 provides the values for the unexplained variance when the 

number of sensors is restricted. The actual number of sensors used 

by each solution (initial and optimum) is shown in parentheses. Using 

this table, figure 23 and a value system for unexplained variance 

over the grid, a decision is possible as to the number and quality 

of the instruments needed to accomplish research goals.

A scale size text was run which first doubled and then, halved 

the input signal wavelengths in the x and y directions for a S/N=50 

and p^=0. For the large scale size, the unexplained variance between 

the input vector and the optimum showed only slight improvement 

from .025 to .003. However, for the small scale size, an improvement 

from .661 to .166 was obtained. An in-depth study of the relationship 

between analysis grid, scale size of sampled phenomenon and the 

accuracy of the variance-covariance definition is still necessary 

before a definitive statement on the applicability to a specific 

problem is possible. Figure 24 and 26 show the suggested flight 

tracks for sampling the large and small scale signal in order to 

obtain an optimal signal analysis as shown in figures 25 and 27.

Another test of the optimization procedure was to include more 

that one aircraft in the sampling scheme. Input vectors for 2 and 3 

sampling aircraft were placed in the space-time volume in an effort 

tp saturate the analysis grid with observations. For 2 aircraft 

with S/N=.5 and Pj=0, the optimal solution with 30 sample points 

produced an unexplained variance of .326 and with 45 sample points, 

it was .307 . In each case, the improvement over the input vector 

was about .2 . Figures 28 and 29 show the input vector for a case of
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Figure 24 : The optimal flight path and sampling positions
computed by the optimization algorithm for a large 
scale signal.
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Figure 25: An objective analysis using the sample points
available along the flight path shown in figure 24.
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Figure 26 The optimal flight path and sampling positions 
computed by the optimization algorithm for a small 
scale signal.



62

7

♦ -a

•u
4

>— I

1 1 4 7

-, .1

-  ' *

-■ I

— ‘ c

Figure 27: An objective analysis using the sample points
available along the flight path shown in figure 26.



63

+

y

1.1» 2-St Z%i 2.V 2?7: zSs '’

« k,

«lUI» 2 1 4 7

X -t

Figure 28 : The input vector for the problem of using
3 aircraft to sample the atmospheric signal function 
of figures 4 through 6 .
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Figure 29 : The optimal solution flight patterns suggested
by the optimization process for the input vector of 
figure 28.
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3 aircraft and the optimal use of those 3 aircraft as suggested 

by the optimization algorithm. The change in unexplained variance 

went from .267 to .177 and the RMS went from .339 to .112 for 

the objective analysis of the simulated data.

Figures 30 through 32 show the values of the objective func­

tion for twelve feasible input vectors and the resulting solution 

vectors from the optimization algorithm for S/N = 100, 10 and 1, 

respectively. For S/N = 100, the range of the values of the objective 

function for the solution vectors is .024; for S/N = 10, the range 

is .057; for S/N = 1, the range is .070 . The spread in the solution 

values of the objective function for S/N = 100 is not great enough 

to warrent resolving the optimization problem several times.

However, when the signal-to-noise ratio is on the order of 10 or less, 

the optimization problem should be resolved for different input 

vectors and the most optimal of all these should be used for sampling.

The illustrations thus far have been for aircraft flying at a 

constant level. Since the z dimension will now be included, the 

analysis grid has been changed. The 49 grid points have been placed 

in the vertical with y^=4 and t^=2 for all i. For the signal parameters 

described in the beginning of this chapter, the true signal analysis 

for the vertical grid (where z ranges from 1 to 3) is shown in 

figure 33.

Figures 34 and 36 show an input and optimal flight track while 

figures 35 and 37 show the optimal signal analysis possible from the 

two tracks repectively. For this case, S/N=l and pĵ =0 resulting
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Figure 30: The objective function values for
the input and optimum solution vectors for 
one signal function with S/N = 100.
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Figure 31: The objective function values for
the input and optimum solution vectors for 
one signal function with S/N = 10.
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Figure 32; The objective function values for
the input and optimum solution vectors for 
one signal function with S/N = 1.
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Figure 33 : The true signal for all y = 4 displayed 
on a 7x7 grid where 1 ± z ±  3. ^he maximum and 
minimum values on the grid are + 2 1 2  and -2 1 2 .
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Figure 34 ; The sampling pattern used as input to the 
optimization algorithm in order to sample the 
signal shown in figures 4 through 6 in order to 
analyze the true signal (figure 33) . All possible 
sample points are shown.
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the sample points of the input vector for
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Figure 36 : The optimal flight path and sampling
locations computed by the optimization algorithm
for an aircraft sampling in x,y,z,t.
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Figure 37: An objective analysis of the vertical
shape of the true signal using the sample points 
available along the optimal path shown in figure 36 
for S/N = 1. and = 0.
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In an initial unexplained variance of .274 and an optimal amount of 

.157 . Many tests using this grid were run for different signal-to- 

noise ratios, different signal parameters and different input vectors. 

A movie has been produced on the NCAR CDC 6600/7600 computer system 

showing four different signal functions moving through a three- 

dimensional grid network with an aircraft flying an optimal flight 

track and sampling each system as it traverses the grid. Such a 

visual display is edifying, but hard to produce with figures in a 

paper.

Other tests have been conducted with this sampling scheme. They 

include sampling for a grid which extends throughout a space-time 

volume. The results of the objective analyses are difficult to 

display however. In addition to these tests, the signal origin 

and speeds were altered systematically in order to test the sensi­

tivity of the optimal flight track derived from a single input vector.

Many other tests must be conducted in an effort to realize 

the usefulness of this optimal sampling methodology for planning 

field experiments. Many new applications of this sampling scheme 

are being planned. However, with just the results presented in this 

chapter, the potential of this optimal sampling scheme is obvious.

This is especially true when one realizes the difficulty of aircraft 

flight planning compared with the placement of ground-based sensing 

systems.



CHAPTER VI

SUMMARY AND CONCLUSIONS

The optimal sampling and analysis methodology presented in this 

paper has taken advantage of recent developments in the fields of 

objective analysis and nonlinear programming along with the concepts 

of a multiple correlation coefficient and stepwise regression 

analysis. The goal has been to combine these techniques in order 

to achieve an objective solution to the problem of how to place 

sensors in a space-time volume in order to produce an optimal signal 

analysis. That goal has been achieved.

The elements of this methodology have remained relatively 

simple in an effort to make the optimal sampling scheme available 

for routine use by a wide range of experimenters. And, the methodology 

combines these elements in a modular fashion for ease in adapting 

the scheme to most types of sampling problems. That is, the variance- 

covariance relationships may take many analytic or empirical forms, 

any number of objective analysis techniques may be used, and the 

optimization algorithm may be changed to take advantage of the special 

form of the sampling problem.

Yet, despite the relative simplicity and modularity of this

75
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optimal methodology, t:»e results presented in this paper already are 

capable of providing some thoughts on the use of aircraft for field 

experiments. For instance, figures 15 through 22 indicate that flight 

planning with respect to a signal which evolves in x,y,z,t should 

be based upon temporal as well as spatial considerations. And, these 

same figures show that as the noise levels increase, the usefulness 

of the sampling is dramatically reduced even when the noise model 

is known. Without the noise model accurately defined, the use of 

observations (containing inseparable amounts of noise) in an 

objective analysis scheme could be disastrous. Therefore, at a 

minimum, a portion of data from each flight should be devoted to 

noise analysis.

Upon reviewing the objective analysis produced by the input 

vectors similar to figure 1 0 , one might conclude that intuitive 

flight planning can have the same effect as increasing the noise 

level on the observations, i.e., decreasing the signal-to-noise 

ratio. The amount of effective decrease in signal-to-noise ratio 

is dependent on the skill of the flight planner. A part of the 

reason for the development of this methodology is to increase that 

skill for any experimenter without the expense in time and money 

of gaining the necessary experience by repeatedly conducting actual 

field experiments. Any number of "what if ..." 's may be tested 

through simulation to determine the relative importance of the 

variables in placing sensors in the sampling volume.

This optimal sampling and analysis methodology also has the
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ability to test the feasibility of obtaining desired results for an 

experiment when the available resources are limited. Such an 

evaluation has been made using the Arctic High investigation mentioned 

previously with the conclusion that the resources were too limited 

to produce an acceptable signal analysis in the presence of a small 

signal-to-noise ratio. Similar feasibility studies could be con­

ducted before every field exercise to determine the minimum 

resources which would be necessary before an experiment could be 

considered successful. Then, if at any time before the experiment, 

the resources were cut, the experiment could be cancelled.

Another reason for this methodology's development is to 

provide an operational tool in the field. Real time information 

could be given the optimization algorithm for the planning of each 

segment of a large experimental effort or for providing a strategy 

tree of actions to the experimenter. In fact, this application of 

the optimal sampling portion of the methodology could make use of 

the objectivity of the scheme. The day-to-day conduct of any field 

experiment might be able to be continued dispite the physical or 

emotional health of one person.

This report only briefly shows the potential of this optimal 

sampling and analysis methodology. Many more tests and alterations 

will be necessary before the scheme can be applied to any one 

sampling problem. However, an approach is now available to answer 

the question of how to place sensors in a space-time volume in order 

to produce an optimal signal analysis when resources are restricted.
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Peripheral developments in the areas of signal and noise analysis 

as well as in objective schemes to produce a posteriori information 

must continue in order that an entire systems approach to optimal 

experimental design (of which this optimal sampling and analysis is 

only a part) may be realized.

Further work with this basic sampling and analysis idea is being 

planned. First, an actual field experiment must be conducted using 

the methodology. And, the analysis results must be compared with other 

sampling methods. This test of the technique presented in this 

report must be done in conjunction with noise analysis techniques.

It cannot be done without the effort and cooperation of competent 

individuals. It is for this reason that one idea for a field test 

might be to manage only a portion of an existing field exercise.

Other improvements to this methodology are being contemplated 

in an effort to make the optimal sampling ideas more general.

One is a sequential updating plan which would attempt to define the 

signal covariance relationships when prior knowledge of the signal 

structure is unknown. Another is an overall management decision 

process which would provide a means of satisfying several goals for 

an experimental effort by selecting the particular goals to be 

attempted at any one time. Thus, the resources could be used optimally 

so that each goal could be attained during the experimental period.

Hopefully, this paper will stimulate the interests and ideas o;: 

those individuals who plan and conduct field experiments. Although 

not an answer to all the myriad problems associated with field
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experiments, this optimal sampling and analysis methodology is 

capable of having a useful impact on increasing the probability 

of success.
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